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Abstract

Background

The scale-up of indoor residual spraying and long-lasting insecticidal nets, together with

other interventions have considerably reduced the malaria burden in The Gambia. This

study examined the biting and resting preferences of the local insecticide-resistant vector

populations few years following scale-up of anti-vector interventions.

Method

Indoor and outdoor-resting Anopheles gambiae mosquitoes were collected between July

and October 2019 from ten villages in five regions in The Gambia using pyrethrum spray col-

lection (indoor) and prokopack aspirator from pit traps (outdoor). Polymerase chain reaction

assays were performed to identify molecular species, insecticide resistance mutations,

Plasmodium infection rate and host blood meal.

Results

A total of 844 mosquitoes were collected both indoors (421, 49.9%) and outdoors (423,

50.1%). Four main vector species were identified, including An. arabiensis (indoor: 15%,

outdoor: 26%); An. coluzzii (indoor: 19%, outdoor: 6%), An. gambiae s.s. (indoor: 11%, out-

door: 16%), An. melas (indoor: 2%, outdoor: 0.1%) and hybrids of An. coluzzii-An. gambiae

s.s (indoors: 3%, outdoors: 2%). A significant preference for outdoor resting was observed

in An. arabiensis (Pearson X2 = 22.7, df = 4, P<0.001) and for indoor resting in An. coluzzii

(Pearson X2 = 55.0, df = 4, P<0.001). Prevalence of the voltage-gated sodium channel

(Vgsc)-1014S was significantly higher in the indoor-resting (allele freq. = 0.96, 95%CI: 0.78–

1, P = 0.03) than outdoor-resting (allele freq. = 0.82, 95%CI: 0.76–0.87) An. arabiensis pop-

ulation. For An. coluzzii, the prevalence of most mutation markers was higher in the outdoor

(allele freq. = 0.92, 95%CI: 0.81–0.98) than indoor-resting (allele freq. = 0.78, 95%CI: 0.56–

0.86) mosquitoes. However, in An. gambiae s.s., the prevalence of Vgsc-1014F, Vgsc-

1575Y and GSTe2-114T was high (allele freq. = 0.96–1), but did not vary by resting location.
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The overall sporozoite positivity rate was 1.3% (95% CI: 0.5–2%) in mosquito populations.

Indoor-resting An. coluzzii had mainly fed on human blood while indoor-resting An. arabien-

sis fed on animal blood.

Conclusion

In this study, high levels of resistance mutations were observed that could be influencing the

mosquito populations to rest indoors or outdoors. The prevalent animal-biting behaviour

demonstrated in the mosquito populations suggest that larval source management could be

an intervention to complement vector control in this setting.

Introduction

Successful implementation of indoor residual spraying (IRS) and long-lasting insecticidal nets

(LLINs) has hugely contributed to the malaria decline observed in sub-Saharan Africa [1].

These interventions reduce transmission by primarily limiting human contact with human-

feeding (anthropophagic), indoor-feeding (endophagic) and indoor-resting (endophilic) vec-

tors [2]. Unfortunately, these measures also induce selection for physiological and behavioral

resistance in vector populations, resulting in reduced mosquito susceptibility to most of the

current insecticides used for LLINs and IRS [3], as well as increased exophilic behavioral phe-

notypes in primarily endophilic vectors [4]. Moreover, residual transmission partly driven by

high LLINs and IRS use, is maintained by vectors with physiological and behavioral resistance

[5]. Therefore, studying the behavioral dynamics of vector populations during the scale up of

vector control interventions will assist in determining the appropriate response to emerging

behavioral changes.

Malaria burden in the Gambia has declined significantly over the last decades with vector

control approaches being a major component of intervention, coordinated and implemented

by the Gambia National Malaria Control Program (GNMCP). Following the World Health

Organization (WHO) Global Plan for Insecticide Resistance Management (GPIRM), the

GNMCP has consistently implemented rotational use of different classes of insecticides for

IRS, to curtail dichlorodiphenyltrichloroethane (DDT) and deltamethrin resistance. For IRS,

DDT was replaced initially by deltamethrin and bendiocarb, and since 2017 by pirimiphos-

methyl (actellic 300CS) [6]. Similarly, LLINs intervention has been stable over the years and

Gambia has recorded successful LLINs coverage as high as 90% [7, 8].

Despite such successes, residual transmission has become increasingly spatially heteroge-

neous, with its intensity increasing from western to eastern Gambia, and could have been

driven by specific vector population dynamics [7]. The major vector species, namely Anopheles
arabiensis, An. coluzzii and An. gambiae sensu stricto (s.s.) are variably distributed throughout

the country. An. arabiensis is most prevalent in the eastern Gambia while An. coluzzii and An.

gambiae s.s. inhabit the western region [9, 10]. However, An. arabiensis has been recently

found throughout the country [11], indicating possible replacement due to successful control

of other sibling species [12, 13]. Moreover, the population prevalence of each vector species

varies by season, whereby An. arabiensis and An. coluzzii are dominant throughout the rainy

season, while An. gambiae s.s. become rarest early in the onset of dry season [9, 10]. DDT and

pyrethroid resistance has been reported at various degrees in all vectors, that continue to be

highly susceptible to carbamates and organophosphates [11, 14, 15].

Host seeking and resting behavior of vectors are important metrics to evaluate the impact

of control and resistance management strategies [16]. Vector behavioral adaptation, resistance
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selection and persistent transmission could increase during extensive scale-up of interven-

tions, and this information can only be captured by real-time surveillance [17, 18]. Hence,

national malaria control programs should actively monitor behavioral dynamics in the local

vector population, to inform decisions.

In the Gambia, DDT and pyrethroid resistance is widespread and associated with residual

transmission [11, 14]. However, the effect of control activities on vectors feeding and resting

behavior remains unclear. The biting and resting preferences of An. gambiae sensu lato (s.l.)
populations was investigated in the Gambia following few years of intensive vector control

interventions.

Materials and methods

Ethical clearance

Ethical approval was obtained from the Gambia Government/Medical Research Council

(MRC) Unit the Gambia at London School of Hygiene and Tropical Medicine (LSHTM) Joint

Ethics Committee. The permit Number was: SCC 1586.

Anopheles gambiae s.l. collection

Indoor and outdoor-resting adult mosquitoes were sampled from July to October 2019, during

the malaria transmission season across five administrative regions in the Gambia, namely Cen-

tral River Region (CRR), Lower River Region (LRR), North Bank Region (NBR), Upper River

Region (URR) and West Coast Region (WCR) (Fig 1). WCR is a coastal area characterized by

mangrove swamps. The remaining regions are mainly inland and have forest vegetation. Rice

is mainly cultivated in CRR while cereals farming is common in all regions. Two villages were

selected from each region and most of the villages are GNMCP surveillance sites with high

LLIN and IRS coverage. Malaria transmission is highest in URR compared to other regions in

the Gambia [7].

Indoor-resting mosquitoes were collected from sleeping rooms using pyrethrum spray col-

lection (PSC). Twenty houses per village, at least 50m apart from each other, were randomly

selected. In each village, collections were done for two consecutive days, with ten houses sam-

pled per day. Outdoor-resting mosquitoes were sampled from pit shelter traps using prokopak

aspirator. Three pit shelter traps that were 10m away from the selected compounds, were

placed at different parts in each village. Both indoor and outdoor collections were conducted

from 06.00 am to 09.00am in every collection day.

Mosquito identification

Morphological identification of female An. gambiae s.l. was done using identification keys as

described by Gillies & Coetzee [19]. Afterwards, mosquitoes were stored individually in 96%

ethanol in 1.5ml Eppendorf tube until DNA extraction. DNA was extracted separately from

Fig 1. Map of the Gambia showing the study sites, comprising two villages each from the 5 administrative regions

in the country.

https://doi.org/10.1371/journal.pone.0241023.g001
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abdomen and head/thoraces of individual mosquitoes using Qiagen QIAxtractor robot. Spe-

cies-specific genotyping PCR to identify An. arabiensis, An. melas and An. gambiae was per-

formed using specific primers to discriminate the species as previously done [20]. This was

followed by restriction enzyme digestion to specifically identify An. coluzzii, An. gambiae s.s.
and their hybrids (An. coluzzii-An. gambiae s.s.) [21].

Insecticide resistance markers identification

Screening for molecular markers of target-site resistance to carbamates, DDT, pyrethroids and

organophosphates was done on all samples using a probe-based assay (TaqMan SNP genotyp-

ing) [22]. The following markers were investigated: voltage-gated sodium (Vgsc)-1014F, Vgsc-
1014S and Vgsc-1575Y associated with target-site mutation to DDT and pyrethroids [23–25].

Acetylcholine esterase (Ace)-119S, marker for carbamate and organophosphate resistance [26]

and glutathione-S-transferase epsilon 2 (Gste2)-114T, involved in metabolic resistance to DDT

[27] were also assayed. The TaqMan allelic discrimination assay used is a multiplex real time

PCR, where primers and probes specific for each insecticide target gene were employed to dis-

criminate susceptible (wild type) and resistant (mutant) alleles based on probe fluorescence

signals [28].

Plasmodium sporozoite detection

DNA extracted from mosquito head and thoraces was used to detect sporozoites of Plasmo-
dium falciparum, P. ovale, P. malariae and P. vivax species, employing TaqMan SNP genotyp-

ing protocol [29] which enables discriminatory identification of circum-sporozoites (CSPs) of

P. falciparum from P. ovale, P. malariae and P. vivax CSPs. Genomic DNA specific to each of

these Plasmodium species were analyzed in each assay as positive controls.

Blood meal identification

Extracted DNA from engorged mosquito abdomens were amplified using modified multiplex

PCRs with specific primers that amplify cytochrome B genes of human and animal hosts

including chicken, cow, dog, donkey, goat, horse and pig [30, 31].

Statistical analyses

The proportion of each mosquito species in relation to the total number of mosquitoes cap-

tured from each region was calculated in percentage, as well as allele frequencies of indoor and

outdoor-resting mosquitoes. Sporozoite positivity rate was the proportion of PCR positive

mosquitoes among all mosquitoes tested. Human (HBI) and animal blood meal indices were

estimated as the proportion of mosquitoes positive for human or animal hosts among those

positive for all hosts. Mean differences between HBI and animal blood meal indices by vector

species and resting locations were analyzed by ANOVA. Statistical analyses were done using

Stata/IC 15.0 (2017 StataCorp LP).

Results

Anopheles species distribution and their resting behavior

A total of 844 An. gambiae s.l. mosquitoes were collected from the five regions. Four main vec-

tor species were identified, namely An. arabiensis (N = 350, 41%); An. coluzzii (N = 214, 25%),

An. gambiae s.s. (N = 224, 27%) and An. melas (N = 17, 2%). Hybrids of An. coluzzii-An. gam-
biae s.s. were also detected (N = 39, 5%). Most mosquitoes were collected from URR (642,

76%), followed by LRR (97, 11%) and then the other regions (Fig 2).
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Overall, the number of mosquitoes resting indoors (421, 49.9%) and outdoors (423, 50.1%)

were similar. Nevertheless, the resting preference varied by species. A significantly higher pro-

portion of An. arabiensis were found outdoor (26.1%) than indoor (15.4%) (Pearson X2 = 22.7,

df = 4, P<0.001) while both An. coluzzii (19.1% indoor and 6.3% outdoor, Pearson X2 = 55.0,

df = 4, P<0.001) and An. melas (1.9% indoor and 0.1% outdoor, Pearson X2 = 13.3, df = 4,

P<0.01) preferred resting indoor. For An. gambiae s.s. (10.9% indoor and 15.6% outdoor,

Pearson X2 = 7.0, df = 4, P = 0.14) and An. coluzzii-An. gambiae s.s. hybrids (2.6% indoor and

2% outdoor, Pearson X2 = 0.7, df = 4, P = 0.45), there was no significant difference between

resting indoor and outdoor. In URR, the region with the highest malaria transmission in the

Gambia, An. arabiensis was most abundant vector (45.8%, 294) (indoor: 14.5%, outdoor:

31.3%), followed by An. gambiae s.s. (28.4%, 182) (indoor: 12.8%, outdoor: 15.6%) and An.

coluzzii (21.5%, 138) (indoor: 13.6%, outdoor: 7.9%). No An. gambiae s.s. was collected in CRR

while An. melas was mainly found in LRR (N = 15). All mosquitoes collected from LRR and

NBR were resting indoors. The hybrids of An. coluzzii and An. gambiae s.s. were mainly found

in URR (indoor: 2.3%, outdoor: 1.9%) and WCR (indoor: 10%, outdoor: 8.3%).

Distribution of voltage-gated sodium channel (Vgsc) mutation markers in

the vectors

Vgsc point mutations associated with DDT and pyrethroid resistance were highly prevalent

and detected at varying frequencies in all vector species across all regions. Overall, An. arabien-
sis was found resting indoors when resistance allele frequency was higher in the indoor popu-

lation, whereas An. coluzzii were resting outdoors with higher outdoor resistance. No

consistent resting preference was observed in An. gambiae in the presence of mutations.

Vgsc-1014S mutation was found predominantly in indoor-resting vector populations

(Table 1). In An. arabiensis, the mutation was more frequent in the indoor-resting than out-

door-resting mosquitoes regardless of the region. Vgsc-1014S was also the only mutation iden-

tified in An. gambiae s.s. and An. melas when found resting indoors.

In An. arabensis resting indoors in URR, Vgsc-1014S frequency was significantly higher

(Z = 2.230, P = 0.03) in the indoor- (allele freq. = 0.91, 95%CI: 0.84–0.96) than outdoor-resting

(allele freq. = 0.82, 95%CI: 0.76–0.87) mosquitoes. Moreover, Vgsc-1014S was the only muta-

tion identified in this species when found resting indoors (allele freq. = 0.96, 95%CI: 0.78–1) in

CRR. Whereas in An. coluzzii in URR, Vgsc-1014S mutation was higher in the indoor (allele

Fig 2. Distribution of Anopheles gambiae s.l by region as collected indoors and outdoors. An. coluzzii-An. gambiae
s.s. are the hybrids of An. coluzzii and An. gambiae s.s. Mosquitoes were collected from 5 regions: CRR- central river

region, LRR-lower river region. NBR- north bank region. URR-upper river region and WCR- West coast region.

https://doi.org/10.1371/journal.pone.0241023.g002
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freq. = 0.25, 95%CI: 0.17–0.36) than outdoor-resting mosquitoes (allele freq. = 0.04, 95%CI:

0.005–1.3) but this was not statistically significant (Z = 0.965, P = 0.33). In LRR, the mutation

was found only in indoor-resting mosquitoes (allele freq. = 0.3, 95%CI: 0.19–0.42). In WCR,

the mutation was common in An. gambiae s.s. and higher among outdoor- (allele freq. = 0.84,

95%CI: 0.67–0.95) than indoor-resting (allele freq. = 0.75, 95%CI: 0.35–0.97) mosquitoes, with

no significant difference (Z = 0.510, P = 0.61).

Vgsc-1014F was almost fixed in most mosquitoes, except An. arabiensis. It was also more

common in the outdoor- than indoor-resting mosquitoes. Specifically in URR, the mutation

was found to be significantly higher (Z = 2.956, P = 0.003) in outdoor-resting (allele freq. =

0.92, 95%CI: 0.81–0.98) than the indoor-resting An. coluzzi population (allele freq. = 0.74, 95%

CI: 0.63–0.82). Likewise, in the hybrid population of An. coluzzi and An. gambiae s.s., the

mutation was fixed and higher in the outdoor-resting (allele freq. = 1, 95%CI: 0.74–1) than

indoor-resting (allele freq. = 0.93, 95%CI: 0.80–1) mosquitoes but not statistically significant

(Z = 1.027, P = 0.3). The mutation was similarly fixed in both the indoor (allele freq. = 1, 95%

CI: 0.96–1) and outdoor (allele freq. = 0.99, 95%CI: 0.95–1) An. gambiae s.s. populations.

Table 1. Frequencies of insecticide resistance alleles on VGSC, GST and AChE loci in Anopheles gambiae s.l. populations from all study regions.

Region Anopheles species Vgsc-1014F Vgsc-1014S Vgsc-1575Y GSTe2-114T Ace1-119S
Indoor Outdoor Indoor Outdoor Indoor Outdoor Indoor Outdoor Indoor Outdoor

URR An. arabiensis 0.05 0.02 0.91 0.82 0 0.004 0 0.01 0 0

N = 5 N = 4 N = 85 N = 164 N = 1 N = 1

An. coluzzii 0.74 0.92 0.25 0.04 0.68 0.9 0.78 0.9 0 0

N = 64 N = 47 N = 22 N = 2 N = 59 N = 46 N = 68 N = 46

An. gambiae s.s. 1 0.99 0 0.01 0.96 0.98 0.98 0.99 0.05 0.04

N = 82 N = 99 N = 1 N = 79 N = 98 N = 80 N = 99 N = 4 N = 4

An. coluzzii-An. gam biae s.s 0.93 1 0 0 0.87 1 0.87 0 0.07 0

N = 14 N = 12 N = 13 N = 12 N = 13 N = 1

LRR An. arabiensis 0 - 0.9 - 0 - 0.1 - 0 -

N = 9 N = 4 N = 1

An. coluzzii 0.66 - 0.3 - 0 - 0 - 0 -

N = 47 N = 21

An. gambiae s.s 0 - 1 - 0 - 0 - 0 -

N = 1

An. melas 0 - 1 - 0 - 0 - 0 -

N = 15

WCR An. arabiensis - 0.13 - 0.88 - 0 - 0 - 0

N = 1 N = 7

An. coluzzii - 1 - 0 - 0 - 0 - 0

An. gambiae s.s. 0.25 0.13 0.75 0.84 0.13 0.06 0 0 0 0

N = 2 N = 4 N = 6 N = 27 N = 1 N = 2

An. coluzzii-An. gam biae s.s 0 0 1 1 0 0 0.17 0 0 -

N = 6 N = 5 N = 1

CRR An. arabiensis 0 1 0.96 0 0 0 0.1 0.27 0 0

N = 11 N = 22 N = 3 N = 3

An. coluzzii - 1 - 0 0 0 0 0 0 0

An. melas 0 - 1 - 0 - 0 - - 0

Vgsc- voltage-gated sodium channel. GSTe2-glutathione-s-transferase epsilon 2. Ace1-Acetylcholine esterase1. N = number of mosquitoes positive for respective

resistance marker.

https://doi.org/10.1371/journal.pone.0241023.t001
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Although in WCR, Vgsc-1014F was more frequent in An. gambiae s.s. resting indoors (allele

freq. = 0.25, 95%CI: 0.03–0.65) than those outdoors (allele freq. = 0.13, 95%CI: 0.04–0.29), the

difference was not statistically significant (Z = 0.688, P = 0.49). Whereas in LRR, where only

mosquitoes resting indoors were caught, this mutation was most common in An. coluzzii
(allele freq. = 0.66, 95%CI: 0.81–0.98).

Vgsc-1575Y and GSTe2-114T were found mostly in URR and were more frequent in out-

door-resting mosquitoes. The mutations were almost fixed in An. gambiae s.s. regardless of

resting place (allele freq. = 0.96–1, 95% CI: 0.92–1.2). In An. coluzzii, these mutations were sig-

nificantly higher (Vgsc-1575Y: Z = 3.343, P = 0.001. GSTe2-114T: Z = 1.948, P = 0.05) in those

resting outdoors (allele freq: 0.9, 95% CI: 0.79–0.97) than in their indoor-resting counterpart

(allele freqs: Vgsc-1575Y = 0.68, 95% CI: 0.57–0.77. GSTe2-114T = 0.78, 95% CI: 0.68–0.86).

An. coluzzii -An. gambiae s.s. hybrids with higher and fixed Vgsc-1575Y mutation were equally

found resting outdoors (allele freq. = 1, 95% CI: 0.74–1) while those found resting indoors

were carrying only the GSTe2-114T mutation (allele freq. = 0.87, 95% CI: 0.60–0.98).

The carbamate and organophosphate resistance marker, acetylcholine esterase (Ace)-119S
was detected only in 8 (4 indoor and 4 outdoor) An. gambiae s.s. and in one hybrid specimen

in URR.

Sporozoite infection rate

Plasmodium falciparum sporozoites were detected in 11 out of 844 mosquitoes (Table 2), rep-

resenting a 1.3% (95% CI: 0.5–2%) infection rate. All the infected mosquitoes were caught in

URR, of which six were resting indoors and five resting outdoors. Outdoor-resting An. ara-
biensis were mostly infected (36%, 4/11), followed by indoor-resting An. gambiae s.s. (27%,

3/11) and indoor-resting An. arabiensis (18%, 2/11). One each of outdoor-resting An. coluzzii
and An. coluzzii-An. gambiae s.s. hybrid were also infected.

Host blood meal preference

Host blood meal origin was determined in 251 randomly selected engorged mosquito abdo-

mens. Overall, animal and human blood meal indices were higher for indoor- than outdoor-

resting mosquitoes (Table 3). In all vector species, most blood meal (91%) were from animal

origin. Indoor-resting An. coluzzii had the highest preference for human blood while indoor-

resting An. arabiensis had most preference for animal blood. Regardless of their resting loca-

tion, all vector species preferred cow and donkey blood meal compared to other animals. Most

vectors rarely fed on chicken and horse.

Discussion

Insecticide resistance is currently widespread among malaria vectors in the Gambia [11, 14],

resulting in insecticide rotation for IRS. Currently, actellic, an organophosphate insecticide is

being used, whilst LLINs impregnated with deltamethrin and permethrin as recommended by

WHO are distributed widely [32]. This study assessed how such vector interventions have

Table 2. Sporozoite positivity rate in the eleven vector species that were infected based on their resting locations.

An. arabiensis Proportion (n) An. coluzzii Proportion (n) An. gambiae s.s. Proportion (n) An. coluzzii-An. gambiae s.s. proportion (n)

Indoor 0.18 (2) 0.09 (1) 0.27 (3) 0

Outdoor 0.36 (4) 0 0 0.09 (1)

n = number of mosquitoes positive for sporozoite detection. Proportion = the number positive per species divided by overall positive (11).

https://doi.org/10.1371/journal.pone.0241023.t002
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influenced the feeding and resting behaviour, as well as malaria transmission dynamics of the

vector population. Anopheles arabiensis showed a marked preference for outdoor resting and

An. coluzzii and An. melas for indoor resting. An. gambiae s.s. and An. coluzzii-An. gambiae
s.s. hybrid populations were found mostly resting outdoors, but with no statistical difference

from those resting indoors. Moreover, local vectors had a marked preference for animal blood.

The overall sporozoite infection rate was low and infectious mosquitoes were mainly outdoor-

resting An. arabiensis.
In this study, high frequencies of Vgsc-1014F, Vgsc-1575Y and GSTe2-114T were recorded

in the malaria vector populations resting indoors and outdoors. These mutations were particu-

larly at saturation in both indoor and outdoor-resting An. gambiae s.s. populations in URR, as

well as in most of the An. coluzzii-An. gambiae s.s. hybrid samples analyzed. This magnitude of

the DDT and pyrethroid-associated resistance mutations [23, 24, 27] recorded in the vector

populations is worrying. These might have been as a result of extensive coverage of IRS and

LLINs across the Gambia [7, 8]. These findings suggest that effectiveness of LLINs may be

compromised in the local vector populations as pyrethroids remain the only public health-

approved insecticide for LLINs [32]. Selection for resistance could have resulted from the

extensive use of pyrethroids for vector control [7, 8] and pest control in agriculture [33, 34] in

this region. Moreover, the level of resistance found in the An. coluzzii-An. gambiae s.s. hybrid

population suggests an extensive gene flow between An. gambiae and An. coluzzii [35–37] in

these settings. These observations are a concern for a possible setback to the ongoing anti-vec-

tor efforts; thus deserve close monitoring.

A possible influence of genotypic resistance on the resting behaviour of the vector popula-

tions [38], was observed from this study. A higher proportion of An. arabiensis that was found

resting indoors harboured the Vgsc-1014S mutation whereas An. coluzzii exhibited an out-

door-resting behavior when all mutation markers except Vgsc-1014S were higher in the out-

door than indoor population. Anopheles gambiae s.s. with extremely high mutations were also

found resting both indoors and outdoors. These indicate that resistance could be driving An.

coluzzii and An. gambiae s.s. from their usual indoor resting to outdoor resting behaviour [4,

39, 40], a trait that could promote residual transmission [5, 17, 40]. Indeed, indoor resting

behaviour demonstrated in the resistant vectors despite the presence of IRS and LLINs sug-

gests that resistance could be protecting these vectors against the effect of insecticides used

indoors [41, 42]. This has been previously reported from studies in Kenya [43, 44], where An.

Table 3. Human and animal blood meal preferences of the indoor and outdoor-resting vector species in combined study sites.

An. arabiensis An. coluzzii An. gambiae s.s. An. coluzzii-An. gambiae s.s.
Indoor(n) Outdoor(n) Indoor(n) Outdoor(n) Indoor(n) Outdoor(n) Indoor(n) Outdoor(n)

Human 0.01(3) 0.004(1) 0.03(7) 0 0.008(2) 0.008(2) 0 0.004(1)

Cow 0.09(22) 0.02(6) 0.06(14) 0.03(8) 0.09(22) 0.08(21) 0.03(7) 0.02(4)

Chicken 0 0 0 0 0 0.004(1) 0 0

Dog 0.008(2) 0.004(1) 0 0.004(1) 0 0.004(1) 0 0

Donkey 0.11(27) 0.12(31) 0.06(14) 0.04(11) 0.02(6) 0.03(8) 0.004(1) 0.008(2)

Goat 0.02(4) 0.008(2) 0.008(2) 0.008(2) 0.004(1) 0.004(1) 0.004(1) 0

Horse 0.004(1) 0 0 0 0 0 0 0

Human + animals 0.004(1) 0.004(1) 0.01(3) 0 0.008(2) 0 0 0

Mixed animals 0.008(2) 0 0 0.004(1) 0 0.004(1) 0 0

HBI 2 0.8 4 0 1 0.8 0 0.4

Animal blood indices 23 16 12 9 12 13 4 2

Proportion (number). HBI = Human blood index.

https://doi.org/10.1371/journal.pone.0241023.t003
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gambiae s.s and An. arabiensis that had higher frequencies of Vgsc-1014F and Vgsc-1014S
respectively, were predominantly found resting indoors. Similarly, association between geno-

typic resistance and outdoor-resting behavior was earlier found in An. coluzzii [45, 46]. Any

resistance-driven resting behavior in these vectors could further limit the success of anti-vector

interventions currently being scaled-up in these settings [47, 48].

The majority of the vector populations analyzed had a marked preference for animal than

human blood meal. Anopheles arabiensis demonstrated predominant preference for animal

blood meal than other vector species. This is not surprising as An. arabiensis is known to be

highly zoophilic [49, 50]. However, the proportion of vectors resting indoors and that have

taken a blood meal either from human and animal source, could be a concern for the effective-

ness of vector control measures. As animals were found only in outdoor locations in the study

sites, this finding shows that the vectors took blood meal from animals outdoors and later

went indoors to rest regardless of the presence of IRS and LLINs, indicating that these vectors

are resistant to the insecticides being used [51]. Furthermore, the observed choice of animal

blood by majority of the vectors could lead to increase in vector population that may eventu-

ally resort to biting humans in the long run and become difficult to control. Notably, alterna-

tive vector control methods such as treatment of animals with endectocides [52] and larval

source management [53] could be promising tools that could be adopted by the Gambia

National Malaria Control Program.

This study recorded an overall low sporozoite rate in the vector populations. Given the cur-

rent low malaria prevalence in the Gambia [7], a low sporozoite rate is expected. This may

reflect the impact of the scaled-up in IRS and LLINs program in the study sites which seems to

successfully limit mosquito access to human blood meal indoors and consequently reducing

transmission, as previously reported [54, 55]. Indeed, the study sites benefitted from improved

housing projects conducted in country which aimed at reducing mosquito survival as well as

malaria transmission [56].

The composition of the vector species was consistent with previous studies in the Gambia

where the most abundant vector was An. arabiensis, followed by An. gambiae s.s. and, An. coluzzii
along with their hybrids [11, 14, 15]. Low density of An. melas found was as a result of our choice

of villages in the West, which were not located in the coastal regions where this species breeds in

salty water [57]. Remarkably, predominance of An. arabiensis could be as a result of its outdoor-

resting preference to avoid insecticide used in IRS and LLINs [58, 59]. This leaves the highly

anthropophilic and endophilic species more exposed to vector interventions, possibly leading to

relative advantage that maintains the exophilic population and malaria transmission [59].

Conclusion

This study observed high levels of resistance mutations in the local vectors that could be influ-

encing their resting behaviour. As the Gambia is in earnest preparation for pre-elimination

phase of malaria, the magnitude of resistance mutations observed in the vectors in this study

suggests that vectors could pose great challenges for their control using the present control

paradigm. Therefore, use of larval source management as a complementary vector control

measure is highly recommended.
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