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Abstract
Global gridded crop models (GGCMs) are the workhorse of assessments of the agricultural
impacts of climate change. Yet the changes in crop yields projected by different models in
response to the same meteorological forcing can differ substantially. Through an inter-method
comparison, we provide a first glimpse into the origins and implications of this divergence—both
among GGCMs and between GGCMs and historical observations. We examine yields of rainfed
maize, wheat, and soybeans simulated by six GGCMs as part of the Inter-Sectoral Impact Model
Intercomparison Project-Fast Track (ISIMIP-FT) exercise, comparing 1981–2004 hindcast yields
over the coterminous United States (US) against US Department of Agriculture (USDA) time
series for about 1000 counties. Leveraging the empirical climate change impacts literature, we
estimate reduced-form econometric models of crop yield responses to temperature and
precipitation exposures for both GGCMs and observations. We find that up to 60% of the
variance in both simulated and observed yields is attributable to weather variation. A majority of
the GGCMs have difficulty reproducing the observed distribution of percentage yield anomalies,
and exhibit aggregate responses that show yields to be more weather-sensitive than in the
observational record over the predominant range of temperature and precipitation conditions.
This disparity is largely attributable to heterogeneity in GGCMs’ responses, as opposed to
uncertainty in historical weather forcings, and is responsible for widely divergent impacts of
climate on future crop yields.

1. Introduction

Agriculture, particularly cultivation of field crops, is
weather dependent and exposed to meteorological
shifts (Gornall et al 2010, Moore and Lobell 2015),
making it especially vulnerable to adverse effects of
climate change (IPCC 2014). The specter of declining
yields of maize, wheat, soybeans and other food staples
with exposure to high temperature and low precipita-
tion extremes arises from two lines of evidence (Moore
and Lobell 2015, Lobell et al 2011, Porter et al 2014,
Müller et al 2015, Lobell and Asseng 2017). First, the
empirical climate change economics literature esti-

mates reduced-form responses of yields to weather
shocks using historically observed production, har-
vested area, temperature and precipitation in many
locations across multiple years (e.g. Lobell et al 2011,
Porter et al 2014, Schlenker and Lobell 2010, Tack et al
2015). Second, process-based crop models simulate
the detailed influences on plant growth of a wide array
of weather variables, plant genotypes, environmental
factors such as the carbon dioxide (CO2) fertilization
effect (CFE), soil quality or pests, and agronomic
adaptations such as irrigation, fertilizer application,
and the timing of planting and harvesting (Elliott et al
2015, Bassu et al 2014, Rosenzweig et al 2014).
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Whereas the geographic domain of empirical studies is
often limited to individual countries or regions with a
sufficient number of historical observations5, global
gridded cropmodels (GGCMs) simulate the growth of
field crops worldwide under different climatic con-
ditions projected by earth system models (ESMs) (see
Deryng et al 2011, Rosenzweig et al 2014 and Elliott
et al 2015 for further discussion), resulting in a
comprehensive picture of the effects of climate change
on crop yields.

Confidence in GGCMs’ simulated agricultural
impacts turns on the ability of models to accurately
capture the myriad interacting meteorologically-
driven processes that determine yields (Bassu et al
2014). GGCMs’ representations of plant growth
dynamics rely on numerous parameters that must
be calibrated, but whose values are uncertain and may
vary geographically in ways that are poorly constrained
(Rosenzweig et al 2014, Jones et al 2016). Validation
typically involves statistical evaluation of GGCMs’
ability to reproduce point estimates of yields at
different locations, for example at field trial sites or
over spatially aggregated production regions under
year-to-year variation in weather conditions (for
excellent recent examples, see Morell et al 2016,
Müller et al 2017). However, comparatively little
attention has been paid to how the response of
GGCMs-simulated yields to meteorological forcings
compare with the weather sensitivity of yields
observed in observed agricultural systems. Early
studies focused on a single crop model (Lobell and
Burke 2010, Watson et al 2015), and recent availability
of extensive multi-model cross-section/time-series
crop yields datasets generated by GGCM intercom-
parison exercises have facilitated reduced-form statis-
tical emulation of single (Oyebamiji et al 2015) or
multiple-GGCM (Blanc and Sultan 2015, Blanc 2017)
simulations, for one or more crops (Blanc 2017).
However, except for Lobell and Asseng 2017 and
Schauberger et al 2017, such emulators do not appear
to have been used for diagnostic purposes. It is this gap
that we address here6, by comparing the responses of
process simulations with those of econometric models
trained on observations. Our strategy is to elucidate
and compare the aggregate responses of observed and
GGCM-simulated yields to observed and ESM-
simulated temperature and precipitation under cur-
rent climatic conditions. We pose six key questions:

Q.I How well do the outputs of GGCM hindcast
simulations match historically observed yields?

Q.II Do GGCMs reproduce the correlations be-
tween yields and adverse (i.e. high temperature and
low precipitation) weather extremes seen in the
observational record?

Q.III How similar are GGCM-simulated and ob-
served yield responses, under not only adverse
extremes, but the full range of weather conditions
over crops’ growing seasons?

Q.IV Do differences between GGCMs and observa-
tions in the weather-responsive component of yields
originate in divergent meteorological forcings (i.e.
differences in temperature and precipitation expo-
sures between weather observations and ESM his-
torical simulations), versus divergence in GGCMs’
simulated responses and observed crop responses to
these forcings?

Q.V To which characteristics of GGCMs can the
divergence between simulated and observed
responses be attributed?

Q.VI What do simulated and observed response
functions imply for the impacts of climate change-
driven shifts in temperature and precipitation on
future United States (US) crop yields?

To provide answers we statistically extract and
compare the responsesof yield toweather shocks for two
sets of data that span the same temporal and spatial
domain: rainfed maize, wheat and soybeans in the
coterminous US over the period 1981–2004. For crop
models we use the outputs of runs of sixGGCMsfielded
by the Inter-Sectoral Impact Model Intercomparison
Project Fast-Track (ISIMIP-FT) exercise (Warszawski
et al 2013, Rosenzweig et al 2014, Frieler et al 2015),
together with their bias-corrected ESM-simulated
meteorological forcings (Hempel et al 2013). For
historical observations, we use US Dept. of Agriculture
(USDA) multi-decadal time series of production and
harvested area for about 1000 predominantly rainfed
counties (whose areal extents are comparable to
GGCMs’ grid cells across US farm states), matched to
high-frequency temperature and precipitation expo-
sures from a historical weather dataset.

The rest of the paper is organized as follows.
Section 2 discusses our data and elaborates the
methods we use to answer questions I–VI. A
discussion of the results is provided in section 3.
We summarize our findings with the associated caveats
and recommendations for future research in section 4.

2. Methods

Our data consist of m unbalanced panel datasets of
maize, wheat and soybean yields (Y) that are either
observed or modeled at i areal units over t years,
matched with observed or simulated daily temperature
(T) and precipitation (P) over the growing season for

5 For examples, see Iglesias et al (2000) for Spain, Lobell and Burke
(2010) for US counties, Lobell et al (2012) for India, Schlenker and
Lobell (2010) for Sub-Saharan Africa.
6 Whereas Lobell and Asseng (2017) focus on identifying systematic
differences between process-based and statistical methods, Schau-
berger et al (2017) address the yield losses in maize, soybeans and
winter wheat (rainfed and irrigated) attributable to high-
temperature induced mechanisms.
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the same locations and periods. Historical crop yields
were computed from 1981–2004 county production
and harvested area records from the USDA National
Agricultural Statistics Service’s Quickstats 2.0 data-
base, which provides survey data7. Historical weather
exposures are calculated from the Parameter-elevation
Regressions on Independent Slopes Model (PRISM)8

forcing files, which are daily meteorological fields on a
2.5 arcmin (∼4 km) grid that we spatially interpolate
to county boundaries. Simulated 1981–2004 yields on
a 0.5° grid were taken from the ISMIP-FT ESGF node9

for six GGCMs: GEPIC (Liu et al 2007), GAEZ-
IMAGE (Bouwman et al 2006), LPJ-GUESS (Sitch et al
2003), LPJmL (Bondeau et al 2007, Sitch et al 2003),
pDSSAT (Elliott et al 2013, Jones et al 2003) and
PEGASUS(Deryng et al2011).Model runs are forcedby
historical bias-corrected meteorology simulated by the
HadGEM2-ES climate model (Jones et al 2011) at the
same resolution. Further details of the data and models
are given in the supplementary information (SI)
available at stacks.iop.org/ERL/12/075007/mmedia.

Several factors complicate assessment of GGCMs’
skill in reproducing the spatial and temporal patterns
of observed yields (Q.I). GAEZ-IMAGE and LPJ-
GUESS simulate potential yields while the remaining
models simulate actual yields10, and models are
calibrated using historical yields from different
sources, whereas others are not calibrated (see
Rosenzweig et al 2014 SI for further details). For
consistency, we characterize the distribution of the
differences between the cross-section/time-series yield
anomalies of GGCMs (m ¼ g) and observations
(m ¼ USDA), �Y i;t ;GGCMs��Y i;t ;USDA. Anomalies are
defined as fractional deviations from the de-trended
long-run mean yield in each location,
�Y i;t ;g ¼ Y i;t ;g=Y i;g � 1. If �Y i;t ;g and �Y i;t ;USDA are
similar, then we would expect the probability density
function (PDF) of the anomaly difference to be sharply
peaked at zero mean.

Our computed anomalies facilitate comparison of
the covariation between yields and adverse weather
(Q.II). Using a fixed annual growing season11, we
calculate the days of each GGCM (USDA) grid cell’s
(county’s) exposure to j intervalsof temperature,jTj , and
k intervals of precipitation, jPk (see supplementary
section S4). We then group grid cells by county, and for
both simulations and observational datasets compute
the county-level temporal correlations between de-
trended yield, �Y i , and the extreme temperature and
precipitation bins (j : T >30 °C, k : P � 5 mm).

Taking this analysis one step further, we quantify the
potentially nonlinear influence of climate on yields
(Q.III) using a semi-parametric cross-section/time-
series regressionmodel, following the empirical climate-
change impacts literature (Schlenker and Roberts 2006,
2009,Deschênes andGreenstone 2007, 2012, Lobell et al
2011, Ortiz-Bobea 2013, Wing et al 2015, Burke and
Emerick 2016, Schauberger et al 2017). For each dataset
we specify the dependent variable as the natural
logarithm of annual yield (y), and the explanatory
variables as avectorof location-specific effects (m,which
capture the influenceofunobserved time-invariant local
characteristics such as topography and soils), a time-
varying function, f(t), which captures the influence of
unobserved time-varying shocks, and the vectors of
weather exposure covariates jTj and jPk described above,
and append a random disturbance term, e:

yi;t ;m ¼ mi þ f ðtÞ þ Sjb
T
j;mj

T
j;i;t þ Skb

P
k;mj

P
k;i;t

þ ei;t ;m ð1Þ
We estimate equation (1) via ordinary least squares
on the observational dataset of USDA yield and
PRISM weather, the six datasets of GGCM yield
outputs and ESM weather inputs, and multi-model
panel consisting of the combined inputs and outputs
of the six GGCMs12. Specifying the function f ð⋅Þ
involves tradeoffs in temporal and spatial flexibility:
time effects (f tð Þ ¼ tt ) capture the secular influence
of year-to-year shocks common to all counties, while
geographic variation in trending influences (e.g. input
prices, technology adoption, management practices)
can be captured by state-specific linear time trends
(f tð Þ ¼ λst)

13.
Of interest in equation (1) are the estimated

parameters bT
m and bP

m, vectors of semi-elasticities
that capture the average percentage shift in county-
level (m ¼ USDA) and grid-level (g∈m) yields
relative to their conditional mean quantities in
response to an additional day in a given interval of
temperature or precipitation. Each element of these
vectors captures the marginal effect of an additional
day of exposure within the corresponding interval
(e.g. the average effect of one more day with
25 °C�27 °C versus >30 °C average temperature).
Together, the elements flexibly trace out the aggregate
response of yields to temperature and precipitation as
piecewise linear splines. The latter are statistically
identified from the contemporaneous covariation

7 http://quickstats.nass.usda.gov/ (accessed on 13 February 2017).
8 PRISM daily data (1981∼2004) accessed from www.ocs.orst.edu/
prism/ on 13 February 2017.
9 https://esg.pik-potsdam.de/search/isimip-ft/.
10 Rosenzweig et al (2014) define potential yields as ‘unlimited by
nutrient or management constraints and without calibration of
growth parameter to reproduce historical yields’.
11 For both simulated and historical datasets, we define the growing
season as April–August (AMJJA) for wheat andMay–August (MJJA)
for maize and soybeans. See supplementary data for details.

12 The multi-model econometric specification generates multi-
model average responses, b

T and b
P , controlling for variation

among GGCMs via a model-specific indicator, g: yi;t ;g ¼
mi þ gg þ f ðtÞ þ Sjb

T

j
jTj;i;t þ Skb

P

k
jPk;i;t þ ei;t ;g .

13 The specification estimated using USDA data uses a state-specific
time trend. While the ISIMIP-FT protocol requires management
practices and technology to be held constant at year 2000 levels,
different GGCMs include a variety of endogenous adaptation
mechanisms (see section 3.5). We therefore consider a model with
time effects more appropriate. For comparability, we also tested a
specification for GGCMs using state-specific time trends as opposed
to time effects (results available upon request). Results hold across
different specifications.
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between observed yields and meteorology within each
interval, as well as the distribution of temperature
and precipitation exposures across intervals in our
transformed datasets.

Empirically-derived yield responses from the
GGCM-ESM and USDA-PRISM datasets are not
directly comparable because they are based on
different meteorological inputs with distinct exposure
distributions: ESM-simulated jT ;ESMj and jP;ESMk versus
observed jT ;PRISMj and jP;PRISMk . This raises the
question of whether differences between the fitted
GGCM-ESM and USDA-PRISM semi-elasticities
(b̂

T

g � b̂
T

USDA and b̂
P

g � b̂
P

USDA) are simply the product
of differences in the distributions of temperature and
precipitation inputs to yields (Q.IV). From equation
(1), the weather-responsive component of log yield is
defined as:

cm Ti;Pið Þ ¼ Sjb̂
T

j;mj
T
j;i þ Skb̂

P

k;mj
P
k;i ð2Þ

and the difference between the weather-responsive
components of GGCM and USDA yield is thus

Dcg ¼ cg Ti;Pið Þ � cUSDA Ti;Pið Þ
¼ Sjb̂

T

j;gj
T ;ESM
j;i þ Skb̂

P

k;gj
P;ESM
k;i ð3Þ

� Sjb̂
T

j;USDAj
T ;PRISM
j;i þ Skb̂

P

k;USDAj
P;PRISM
k;i

� �

Adding and subtracting cross-terms on the right-hand
side of equation (3) and evaluating the weather
exposure covariates at their 1981–2004 climatic means
facilitates decomposition of Dc into two terms, one
capturing the effect of differences in climate forcing
and the other capturing the effect of differing
responses to meteorology:

The relative importance of DcClimate and DcResponse

can then be assessed by comparing their distributions
across locations.

Equation (1)’s estimated parameters enable us to
investigate another key question: how do the
characteristics of models drive the divergence between
GGCMyield responses and those of historical yields to
observed weather (Q.V). Drawing on documentation
for each of our six GGCMs (Rosenzweig et al 2014,
Elliott et al 2015), we construct binary indicator
variables for five sets of characteristics likely to affect

the yield response: (i) type of yield simulated (actual
versus potential); (ii) endogenous cultivar change; (iii)
heat stress; (iv) endogenous sowing date; (v) and
whether the model was calibrated using site-specific or
FAO country observations (supplementary table S6).
We assemble characteristics (i)–(v) into a matrix, Z.
Then, using the stacked vector of temperature and

precipitation semi-elasticities (zm ¼ ½b̂T

m; b̂
P

m�) we
compute the difference in the response from the USDA
benchmark,Dzg ¼ zg � zUSDA,whichweemployas the
dependent variable in the meta-analysis regression:14

Dz ¼ Zhþ n ð5Þ

The estimated parameters, h, indicate how strongly the
shift in GGCM-ESM responses relative to the USDA-
PRISM response is associated with each model
attribute.

Finally, the implications of our estimated
responses for future climate change impacts (Q.VI)
are indicated by the yield changes that result from
forcing our fitted empirical response functions with
the distributions of temperature and precipitation
under future climate warming. Log yield response
functions from equation (2) are combined with
meteorological exposures from bias-corrected
HadGEM2-ES model simulations for our hindcast
period (current climate), as well as mid-21st century
(2033–2065) and late century (2067–2099) future
climate under the RCP 8.5 (Moss et al 2010) high-
warming scenario. In each epoch HadGEM2-ES daily
temperature and precipitation (~Ti and ~Pi) fields are
binned into the j and k intervals, respectively, to
construct analogues of the weather exposure cova-
riates, ~j

T
and ~j

P
, for current and future years. Because

climate simulations do not reproduce observed high-

frequency weather extremes, and may exhibit biases
relative to current climate (Vavrus et al 2015, Schoof
and Robeson 2016), we do not directly compare
simulated future exposures against their observed
counterparts, but instead employ the ‘delta’ change

Dcg ¼ Sjb̂
T

j;g j
T ;ESM

j;i � j
T ;PRISM

j;i

� �
þ Skb̂

P

k;g j
P;ESM

k;i � j
P;PRISM

k;i

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Climate component ðDcClimateÞ

þSj b̂
T

j;g � b̂
T

j;USDA

� �
j
T ;PRISM

j;i
þ Sk b̂

P

k;g � b̂
P

k;USDA

� �
jP;PRISMk;i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Response component ðDcResponseÞ

ð4Þ

14 This model is estimated with no constant. We test additional
specifications to investigate both the impacts of model character-
istics on the differences in responses to temperature and

precipitation alone (zm ¼ b̂
T

m and zm ¼ b̂
P

m, respectively), as well

as the effects of interactions between characteristics and indicators

of extreme high temperature and low precipitation.
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method of computing differences in exposure between
ESM-simulated current and future climates15. Specif-
ically, we time-average the temperature and precipita-
tion bins to generate the mean meteorological
exposure for the hindcast period (current climate),
calculate the difference between the resulting average
and simulated exposure under future climate, and
finally multiply the result by the estimated semi-
elasticities to generate meteorological shocks to log
yields. We use the latter to compute a normalized
multi-decadal index of climate impact, given by the
ratio of each location’s average yield under a future
climate to its average yield under the present climate.
Using E to denote the expected value over each epoch,
the index is:

We note that Ci diverges from fractional changes in
future yields from the current climate projected by
GGCMs, as equation (6) omits both the CFE and
endogenous adaptation mechanisms into GGCMs
models, particularly endogenous or unrecorded
prescribed future changes in fertilizer application
rates, crop calendars, or crop genotypes16.

3. Results

3.1. GGCMs’ ability to reproduce recorded yields
Figure 1 summarizes the distributions of the differ-
ences in percentage yield anomalies between GGCMs
and USDA records for our three crops over the 1981–
2004 period. The wide support of the distribution
suggests that the ISIMIP-FT GGCMs struggle to
reproduce the PDF of historical US yield anomalies.
For counties within the interquartile range the
GGCM-observation divergence is ±30%, while in
the majority of remaining locations simulated yields
can dramatically overstate or understate the observa-
tions.

While this pattern persists across crops, GGCMs’
performance—as indicated by the variance of the
distributions—is generally better for wheat and
especially maize compared to soybeans. The modes
of the individual annual cross-county PDFs (shown in
light colors) exhibit positive and negative interannual
fluctuations, but do not follow any easily discernible
pattern that suggests systematic bias. The differences
across models and among crops in the annual and

aggregate PDFs also suggest that no single GGCM has
a clear advantage in modeling all crops17. A certain
GGCMmay exhibit skill in modeling a particular crop
(e.g. LPJmL wheat), while some GGCMs outperform
others in simulating a certain crop (e.g. GAEZ-
IMAGE versus GEPIC for maize).

3.2. Yield correlations with adverse weather
extremes: simulations vs. observations
A more nuanced way to evaluate GGCMs’ perfor-
mance is to examine how well they reproduce
historical correlations between annual yield anomalies
and exposure to extreme high temperature and low
precipitation. We do this in figure 2 by presenting the
correlations between de-trended yields and annual

growing season exposures to extreme high tempera-
ture and extreme low precipitation bins as a bivariate
PDF. Relative to our comparison of yield anomalies
(section 3.1), there is more agreement in correlations
between ESM-simulated meteorological extremes and
GGCM-simulated yields, and the correlations between
PRISM meteorological extremes and observed yields.
Both correlations are negative in 50%–75% of
counties (with the exception of GAEZ-IMAGE),
and the magnitudes of the correlations differ both
across models and among crops. Simulated maize and
soybean responses are for the most part qualitatively
similar to observations, with GEPIC, LPJ-GUESS,
LPJmL showing tight clustering of negative correla-
tions across counties. Even so, simulated wheat
responses vary markedly relative to one another,
and diverge from observations. This result may arise
from GGCMs simulating different types of wheat (e.g.
GGCMs decide internally the type of wheat to be
grown) while our observational data are spring durum
wheat only.

3.3. Simulated and observed yield responses to
weather
In a refinement of the analysis in section 3.2 we
statistically model additional factors that affect yield.
One is management practices, whose sub-national and
interannual variation is unfortunately not available in
either the GGCM-ESM or USDA-PRISM datasets.
Another is non-extreme weather: negative yield
impacts of more frequent extreme low precipitation
and/or high temperature days might be offset by

Ci;m ¼ E exp cm
~T

Future
Climate
i ; ~P

Future
Climate
i

0
B@

1
CA� cm

~T

Current
Climate
i ; ~P

Current
Climate
i

0
B@

1
CA

8><
>:

9>=
>;

2
64

3
75 ð6Þ

15 First studies using this method include Arnell (1996) and Gleick
(1986). For application of this method in the context of agriculture
see (Roberts et al 2013).
16 For instance, see Rosenzweig et al (2014) SI for details on
adaptations accounted for by the GGCMs, and Elliott et al (2015) for
revised protocols in the next phase of GGCMs’ simulations to
introduce harmonization in GGCMs’ simulation runs.

17 GAEZ-IMAGE appears to be an exception, perhaps due to its
unique temporal scale relative to other GGCMs—interpolating
monthly meteorology to a daily time-step, while simulating annual
yields every 5th year and interpolating yields for the intervening
years (Rosenzweig et al 2014: table S4).
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Figure 1. Cross-county distribution of the GGCM–USDA difference in percentage yield anomalies for maize, soybeans, and wheat.
Anomalies are calculated as the % deviation of each county’s de-trended yield from its own 1981–2004 mean. Light lines show the
annual distribution of county differences between each model and observations. Heavy lines show the ditribution across counties and
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near-optimal growing conditions throughout the
remainder of the growing season, while yields may
be lower in counties and years that experience fewer
extreme adverse days, but more frequent non-extreme
but nonetheless sub-optimal weather.

Equation (1) accounts for both sets of factors by
partitioning the variance in yields into influences

associated with unobservables (mi and f(t)) and the
mean deterministic effects of the distribution of
temperature and precipitation conditions experienced
by crops. Figure 3 illustrates the splines tracing out the
responses of log yield to the distribution of tempera-
ture and precipitation. All covariates explain 75%
of the cross-section/time-series yield variation
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(supplementary table S4), and the weather responses
account for between 0% and 60% (supplementary
table S5). GGCM and USDA yield responses are
both consistent with empirical findings on the
negative effects of exposure to high daily temper-
atures and (aside from GEPIC maize and pDSSAT
soybean simulations) as well as smaller magnitude
responses to low precipitation (Schlenker and
Roberts 2009, Tack et al 2015).

Whether the responses of different GGCMs to both
extreme and non-extreme weather vary can be said to
diverge from one another (panels A–C and G–I), and
from the USDA-PRISM benchmark (panels D–F

and J–L) depends on the specification of the
variance-covariance matrix of the error term in
equation (1). Our default standard errors are clustered
at the level of cross-sectional units (counties in the case
of USDA-PRISM and grid-cells in the case of GGCMs)
and are robust to temporal autocorrelation. They
suggest differences in responses among individual
GGCMs, and betweenGGCMs andUSDA-PRISM that
are statistically significant (supplementary table S8).
However, in empirical models of crop yields, residual
spatial autocorrelation can substantially inflate the
standard errors of the coefficients (Yun et al 2015).
Adjusting for joint residual temporal and spatial
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autocorrelation using Cameron et al (2011) clustering
of the standard errors by county/cell and year increases
their values by factors of 2–3 (supplementary table S4),
weakening the conclusion that the GGCM and USDA-
PRISM responses significantly diverge—especially in
the case of extreme high-temperatures (Schauberger
et al 2017), but less so for extreme low precipitation
(supplementary table S8). Even so, for either specifica-
tion of the variance-covariance matrix, no GGCM
exhibits a consistent positive or negative bias relative to
the USDA-PRISM response.

The USDA-PRISM response suggests that expo-
sure to an additional day>30 °C reduces annual maize
and soybean yields by 1.5% but generates wheat yield
losses six times as large. For GGCMs, the correspond-
ing response varies between 0.2%–3% for maize,
0.5%–3.6% for soybeans, and 0.1%–6.5% for wheat,
and the observed responses fall within the range of
simulated responses, except for wheat. Exposure to an
additional day with precipitation <5 mm reduces
maize and soybean yields by about 0.5% and wheat by
about 1.5% in the observational dataset. GGCMs
exhibit larger losses for maize and soybeans (with the
exception of PEGASUS), between 0 and 4.5% (1% at
the multi-model average response), whereas wheat’s
response to dry days in the observational dataset is
understated by most models (with the exception of
GEPIC and LPJmL)18.

3.4. Decomposition of the divergence between GGCM
and USDA yield responses
We focus on two factors that likely drive the GGCM-
observation divergence in figure 3.19 The first is
differences between the aggregate responses to weather
shocks implied by process models’ internal represen-
tation of crop growth and the responses of
observed agricultural systems. The second is differ-
ences in the exposures implied by the PRISM data for
the observations as opposed to HadGEM2-ES for
the GGCMs. We use the decomposition technique
illustrated in equation (4) to establish their relative
magnitudes. Figure 4 shows the results of this
calculation.

The horizontal axis rank-orders counties from the
largest negative to the largest positive values of the
difference between the weather-responsive portion of
each GGCM’s historical run and the observations,
Dc, whose magnitude is measured on the vertical axis

and whose county values are indicated by black dots.
For each county the corresponding light- and
dark-colored bars indicate the response and climatic
components of the divergence (DcResponse and
DcClimate, respectively). For the majority of GGCM
x crop combinations, cross-county trends in the total
divergence and DcResponse closely track one another,
while DcClimate tends to add either noise or an offset.
This result demonstrates that the differences in the
splines in figure 3 are mostly attributable to GGCMs’
internal responses, not differences in meteorological
inputs.

3.5. Correlates of the GGCM-USDA yield response
divergence
Finally, table 1 summarizes our meta-analytic results
that associate model attributes with the gaps between
GGCMs’ responses and those derived from historical
observations. To conserve space we report results for
maize only, and consign results for wheat and soybeans
in the supplementary data (table S7). The largest
magnitude coefficient is on heat stress, whose overall
impact is to make the divergence in responses the
more negative, suggesting that in panels A and G of
figure 3, the responses of the sole model incorporating
this mechanism (PEGASUS) exhibits a smaller change
in yield (i.e. a downward shift) for an additional day of
exposure over their entire range of weather variation.
Simultaneously, the positive effect of heat stress
interacted with high-temperature (low-precipitation)
intervals indicates that in panel A (G) the right (left)
tails of the corresponding splines are shifted upward,
resulting in a less weather sensitive—i.e. flatter—
response profile. Cultivar adaptation, the second
largest influence, acts in the opposite way: inducing
an upward shift in the response profiles over their
entire range that is outweighed by the negative impact
of interactions with extreme high temperature and low
precipitation exposures, resulting in a more weather
sensitive—i.e. steeper—profile for models that include
this mechanism (GEPIC, and less evident for LPJ-
GUESS, PEGASUS). Other characteristics, such as
endogenous selection of sowing dates and model
calibration based on site-specific studies—which
respectively flatten and steepen the response profiles,
have a smaller overall influence and are not uniformly
significant across all crops. The major implication is
that with a flatter response profile, shifts in the
distributions of temperature and precipitation inputs
translate into smaller simulated yield changes, while a
steeper response profile can result in excess sensitivity
that translates modest weather shocks into large yield
changes.

We obtain broadly similar results for soybeans, but
equivocal estimates for wheat (supplementary table
S7), whose response is positively affected by heat stress
interacted with low precipitation intervals, capturing
the PEGASUSmodel’s flatter response to precipitation
relative to the other GGCMs.

18 The econometric models for simulated wheat generally have a
lower explanatory power compared to maize and soybeans (see table
S5). This might be due to differences in the type of wheat chosen by
models compared to the variety observed, spring durum wheat) and
to the fact that those varieties might be grown outside the growing
season (April–August), see also section S5 in the supplementary
data.
19 A potential third issue is omitted variable bias, in the form of
contaminating effects on the estimated parameters of management
practices that are correlated with weather and unrecorded in the
observational dataset, but omitted from GGCM simulations.
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While the source of this disparity is not clear cut,
we speculate that it emanates from inter-model
variation in the type of wheat being grown, and
emphasize that our meta-analytic approach will likely
prove more beneficial in imminent intercomparison
exercises with comprehensive records (e.g. ISI-MIP2
and Global Gridded Crop Model Intercomparison,
Elliott et al 2015).

4. Discussion and conclusions

Using cross-section/time-series datasets of simulated
and observed rainfed yields of maize, wheat and
soybeans for about 1000 US counties over 24 years, we
have characterized the heterogeneous responses of
crop models to ESM-simulated temperature and
precipitation, and compared them with empirically
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derived responses to observed weather series. The six
GGCM simulations we examined do not reproduce
the cross-county, inter-annual distributions of yield.
Notwithstanding this, our econometric analyses
indicate that GGCM broadly capture the major
stylized facts of weather impacts on crop yields that
have been identified by the empirical climate change
economics literature. Yet the responses of individual
GGCMs differ substantially from one another and
relative to their observationally-derived counterpart.
Simulated yields are generally more temperature
sensitive than observed yields, but can be more or
less sensitive to high temperature or low precipitation
extremes, depending on the particular model and
crop. We show that such behavior is attributable to
differences in how models simulate heat stress and
cultivar adaptation. GGCMs incorporating the latter
(former) mechanism tend to be more (less) sensitive
to weather shocks.

The consequences of these details for the impacts
of climate change on US crops are summarized in
figure 5. The yield changes therein are calculated not
by running GGCMs with meteorological inputs
projected by ESMs, but by forcing their response
functions derived in figure 3 with changes in
future temperature and precipitation exposures from
the historical period simulated by HadGEM2-ES.
They therefore do not account for the potential
benefits of the CFE, or future management changes
and other adaptations either endogenously computed
by, or exogenously imposed upon GGCMs simu-
lations as part of the ISIMIP-FT exercise. Notwith-
standing the overlap in the confidence intervals of the
GGCMs’ responses, under vigorous warming, late-
century (2067∼2099) projections of production
changes based on the coefficient point estimates
diverge widely; ranging from �96% to þ6%—and
�71% at the multi-model mean response—for maize,

Table 1. Effects of model characteristics on GGCM-USDA divergence in maize yield response. Model specifications are discussed in
the supplementary data. Robust standard errors in parentheses. Table S7 summarizes results for soybeans and wheat.

Dependent variable Dz½b̂P ; b̂T � Dz½b̂T � Dz½b̂P � Dz½b̂P ; b̂T � Dz½b̂T � Dz½b̂P �

Potential yield �0.007 �0.011 0.004 �0.024��� –0.028��� –0.015���

(0.008) (0.009) (0.010) (0.008) (0.008) (0.004)

Endog. cultivar 0.013 0.017� –0.001 0.033��� 0.036� 0.021

(0.008) (0.010) (0.010) (0.008) (0.008)

Endog. sowing date –0.0003 –0.0004 –0.005��� –0.005��

(0.002) (0.002) (0.002) (0.002)

Heat stress –0.017�� –0.023�� 0.001 –0.035��� –0.040��� –0.025

(0.008) (0.009) (0.010) (0.008) (0.008)

Site calibration 0.004�� 0.005��� 0.007��� 0.005���

(0.002) (0.001) (0.001) (0.002)

T >30 °C
� Potential yield 0.051��� 0.059���

(0.009) (0.009)

� Endog. cultivar –0.056��� –0.063���

(0.009) (0.009)

� Endog. sowing date 0.015��� 0.015���

(0.004) (0.004)

� Heat stress 0.48��� 0.56���

(0.009) (0.009)

� Site calibration –0.006��

(0.003)

P < 5 mm

� Potential yield 0.035��� 0.028���

(0.008) (0.005)

� Endog. cultivar –0.044��� –0.033���

(0.008) (0.002)

� Endog. sowing date 0.010���

(0.003)

� Heat stress 0.44��� 0.039���

(0.008) (0.002)

–0.012���

(0.002)

F Adj. 4.289���

(df ¼ 4;77)

4.885���

(df ¼ 4;59)

1.553

(df ¼ 2;17)

42.577���

(df ¼ 14;77)

24.052���

(df ¼ 8;59)

2.325�

(df ¼ 5;17)

Obs. 78 60 18 78 60 18

Adj. R Sq. 0.211 0.308 –0.153 0.593 0.624 0.336

�p < 0.1; ��p < 0.05; ���p < 0.01
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�90% to þ21% with a mean of �70% for soybeans,
�91% to �1% with a mean of �70% for wheat. The
responses of GGCMs that are most sensitive to
extreme high temperatures (GEPIC, LPJ-GUESS and
LPJmL) are associated with the largest losses, in excess
of 40% of maize and wheat production, and 60% of
soybean production by mid-century (2033∼2065),
while only GAEZ-IMAGE predicts production gains.
Relative to the GGCM responses, our USDA-PRISM
response generates smaller losses (�58% for maize,
�60% for soybeans,�90% for wheat) for late-century,
but its predicted production declines due to more
frequent days > 30°C closely track those reported by

Schauberger et al (2017)20 for the 30°C� 36°C
temperature range (�54% for maize, �60% for
soybeans and �73% for wheat—see supplementary
table S9) which gives us confidence in the reliability of
our approach21.

2033-2065
Maize

-87%

3%

-47%

-67%

-49%
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-54%
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-24% -37% -52% -44% -73%
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Figure 5. Mid- and end-century % change in rainfed yields under RCP 8.5 warming scenario simulated by HadGEM2-ES. The %
change numbers accompanying each map depict the projected % change in aggregated production across the sample of counties,
under the assumption of same harvested area in future periods, as in historical.

20 While a direct comparison with results of Schauberger et al (2017)
is difficult to make for maize and soybeans (due to a larger number
of counties utilized in their study), results for wheat are not
comparable due to winter wheat used in their study.
21 By contrast, GGCMs’ late century (2067∼2099) losses due to
extreme high temperature days (> 30 °C), range from �72% to
þ3%—and �53% at the multi-model mean—for maize, �86% to
þ7% with a mean of�56% for soybeans, and�66% to�4% with a
mean of �42% for wheat.
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By relying solely on meteorological inputs, and
ignoring confounding factors such as the CFE,
exogenous future adaptations or additional endoge-
nous adjustments such as shifts in cultivars and crop
calendars represented within models, our projections
provide insights into how GGCMs’ characteristics can
amplify or moderate climatically-driven yield declines.
For example, a key feature of figure 5 is the lack of
spatial (particularly latitudinal) variation in GGCM
yield shocks compared to the USDA projections. The
exception is the PEGASUS model, whose flatter
response profiles generate smaller losses than the
USDA benchmark. For most of the remaining GGCM
responses the converse is true: excess sensitivity
generates yield changes—and, without compensating
adaptation mechanisms, production losses—that are
uniformly large. Heat stress at anthesis (and,
secondarily, endogenous sowing) may therefore be
important for bringing models’ overall sensitivity into
better agreement with the responses exhibited by
observed agricultural systems. But this also raises the
question of what model attributes might drive
GGCMs’ excess sensitivity. Our findings hint at
endogenous cultivar selection as a potential candidate,
as it amplifies negative yield responses to low
precipitation in soybeans, high temperature in wheat,
and both types of weather shocks in maize. Another
may be the use of site-specific data for calibrating
maize and soybean simulations, but the potential
mechanisms are unclear.

Such interpretation challenges highlight four
important caveats to our analysis. The first is the
small number of observations on which our meta-
analysis results are based, especially relative to the
number of dimensions along which GGCMs can
potentially vary. Without a larger sample of models,
little can be done to increase the statistical power of
our assessment. A second, related issue is that because
the ISIMIP-FT protocol did not mandate standardi-
zation of GGCMs’ characteristics, or harmonization
and recording of the corresponding detailed inputs
across models and scenarios, our own coding of
model attributes could conceivably introduce errors.
Third, the aforementioned paucity of data required us
to use all of the parameters of the GGCM and USDA-
PRISM estimated responses, as opposed to zeroing
out differences that were not statistically significant.
With the latter approach, the substantial reduction in
the divergence between GGCM- and observationally-
based responses when residual spatial autocorrelation
is accounted for can potentially weaken our
inferences in table 1. Finally, because the GGCM
simulations employed here are not specifically
optimized for US counties, it is not clear how well
our results extrapolate beyond the specific spatial
domain of the eastern US.

All of these limitations are already being addressed
by the current generation of crop model inter-
comparison exercises (ISI-MIP2, the Global Gridded

Crop Model Intercomparison (Elliott et al 2015)),
which are in the process of fielding larger numbers of
GGCMs running more controlled experiments with
considerable efforts being made to harmonize and
record key inputs such as management practices, and
evaluate model outputs against a common set of
recently-developed global historical data benchmarks
(Ray et al 2012, Iizumi et al 2014). Our hope is that the
inter-method comparison techniques developed here
can contribute to improving the evaluation of the
results of these exercises (cf Müller et al 2017), with the
goals of more rigorously pinpointing the origins of
GGCMs’ emergent crop yield responses, and thereby
strengthening the empirical basis of global-scale
assessment of future climate change impacts on
agriculture.
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