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Environmental and spatial risk
factors for the larval habitats
of Plasmodium knowlesi vectors
in Sabah, Malaysian Borneo

Isabel Byrne'*!, Wilfredo Aure?3, Benny O. Manin?, Indra Vythilingam®,
Heather M. Ferguson®, Chris J. Drakeley?, Tock H. Chua?® & Kimberly M. Fornacel:®

Land-use changes, such as deforestation and agriculture, can influence mosquito vector populations
and malaria transmission. These land-use changes have been linked to increased incidence in

human cases of the zoonotic malaria Plasmodium knowlesi in Sabah, Malaysian Borneo. This study
investigates whether these associations are partially driven by fine-scale land-use changes creating
more favourable aquatic breeding habitats for P. knowlesi anopheline vectors. Using aerial remote
sensing data, we developed a sampling frame representative of all land use types within a major focus
of P. knowlesi transmission. From 2015 to 2016 monthly longitudinal surveys of larval habitats were
collected in randomly selected areas stratified by land use type. Additional remote sensing data on
environmental variables, land cover and landscape configuration were assembled for the study site.
Risk factor analyses were performed over multiple spatial scales to determine associations between
environmental and spatial variables and anopheline larval presence. Habitat fragmentation (300 m),
aspect (350 m), distance to rubber plantations (100 m) and Culex larval presence were identified as risk
factors for Anopheles breeding. Additionally, models were fit to determine the presence of potential
larval habitats within the areas surveyed and used to generate a time-series of monthly predictive
maps. These results indicate that land-use change and topography influence the suitability of larval
habitats, and may partially explain the link between P. knowlesi incidence and deforestation. The
predictive maps, and identification of the spatial scales at which risk factors are most influential may
aid spatio-temporally targeted vector control interventions.

Malaysia has reached malaria pre-elimination status and is currently under review for certification malaria elimi-
nation in 2021. Despite strong progress in reducing the incidence of human malarias, disease control efforts have
been hampered by the emergence and increase in human cases of the zoonotic Plasmodium knowlesi'. Previously
misidentified as P malariae, P. knowlesi was first identified as a public health threat in 2004%. Since then, the
reported incidence of human cases of the simian malaria has increased, and P. knowlesi is now the most common
cause of malaria in humans in Malaysia®. Most human cases of P. knowlesi occur in the Malaysian Bornean state
of Sabah; with a large cluster in the northern district of Kudat, where P. knowlesi constituted 98% of malaria
admissions in 2017*°. Taking improvements in molecular diagnostics and surveillance into account, the increase
in P. knowlesi cases in Malaysian Borneo likely represents a genuine incidence rise. Sabah is a global hotspot
for deforestation, and a clear association between the rise of P. knowlesi incidence in humans and deforestation
have been shown in Sabah%’. While the mechanisms which underly this association are unknown, it has been
suggested that they may be influenced by changes in macaque behaviour and densities, human behaviour and
vector bionomics®.

P. knowlesi transmission is sustained by primary reservoir hosts: the long tailed, and pig tailed macaques
(Macaca fasicularis and Macaca nemestrina). Spillover events occur when infected anopheline mosquito vectors
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feed on humans. Mosquitoes, including the Anopheles genus, have 4 main life stages. The juvenile egg, larva and
pupa stages are aquatic, and the adult stage is terrestrial®. The primary vector of P. knowlesi in Sabah is Anoph-
eles balabacensis; a member of the Leucosphyrus group of Anopheles'. Anopheles balabacensis are described as
a primarily forest-dwelling species, with the larval stages preferring humid, shaded aquatic habitats'!. The high
levels of land-use change in Sabah are impacting this vector’s ecology. Deforestation separates habitats into
fragments, bringing distinct ecosystems into closer contact, and can create new habitats at the forest fringe'2.
Higher abundances of An. balabacensis have recently been reported in disturbed, logged forest than in unmodi-
fied primary forest'’. In Kudat, high densities have been found in shrub and bush habitats, often close to human
settlements, deforested areas, plantations and farms'*, and higher densities have been found in peri-domestic
settings than in plantation and secondary forested sites'®. A recent study of the ecology of P. knowlesi vectors
over a wider geographic area in Sabah found different patterns of vector-habitat associations, with higher An.
balabacensis abundances in farms and forest patches than peri-domestic settings, highlighting the local context
of the findings from Kudat'®. There are a number of suggested mechanisms which may explain these changes in
P, knowlesi vector abundance and distribution in response to land use change in Sabah. Deforestation can change
microclimate, vegetation and soil composition, possibly creating new habitat types for mosquito populations®!’.
Brant et al.!® suggested that the changes in P. knowlesi vector abundance and distribution may be explained by an
increased availability of larval habitats resulting from land-use change. Data on the fine-scale landscape factors
which may mediate such a process, are largely unreported. However, the current knowledge on An. balabacensis
vector ecology relies strongly on studies based on adult populations.

Kudat has seen extensive land-use change, with large areas of forest converted to palm oil and rubber
plantations'®. Rohani et al."® characterised the breeding sites of An. balabacensis in Kudat, describing associa-
tions between water body types and the vector’s larvae. They reported An. balabacensis larvae in ground pools,
tyre tracks, slow-flowing streams and swamps. The survey employed a ‘purposeful’ sampling design, sampling
in locations where one would expect to find higher An. balabacensis densities. Study sites were selected based
on high village incidence of P. knowlesi malaria and large vector populations. Their results, therefore, may not
be representative of Kudat’s various habitat types and their different ecologies. The study did not describe the
associations between breeding sites and their surrounding environment. Ageep et al.?* demonstrated the benefits
of using geospatial tools (remote sensing and geographic information systems) to plan and execute spatially
representative and randomly sampled larval surveys. The advantage of this study design is that one can acquire
a dataset with a reasonable representation of all habitat types. This will result in an accurate representation of
the variability of vector breeding sites across a study site, rather than an overrepresentation of habitats which
are easy to access or for which there is a prior knowledge of association with larval presence®!. Such data can
provide a comprehensive picture of the whole vector population across the full range of land types in the study
site. This could highlight areas where aquatic habitats likely or unlikely to be present, which may be useful for
formulation of vector control strategies.

These spatially representative data additionally provide opportunities to examine how landscape configura-
tion influences vector breeding sites®. Organisms interact with their surrounding environment at varying spatial
extents, or “spatial scales”. These are the different distances over which environmental factors influence and deter-
mine the distribution of predators, food sources and breeding sites. As a result, the spatial distribution of aquatic
habitats selected by female mosquitoes for oviposition is likely determined by interactions between mosquitoes
and their environment occurring over varying spatial scales, rather than solely at the point of oviposition*>*.

We hypothesised that land-use change is increasing the availability of Anopheles vector larval habitats, result-
ing in an increase in human P. knowlesi incidence in Sabah. The aim of our study was to assess the associations
between fine-scale landscape factors over multiple spatial scales and the presence of potential P. knowlesi vector
larval habitats in an anthropogenically disturbed landscape of Kudat. The key objectives were to develop a larval
survey sampling frame which was representative of the study site using aerial drone imagery, to use remote sens-
ing (satellite and drone) data to assemble environmental and spatial covariates for the study site, and to identify
the fine-scale landscape risk factors for P. knowlesi vector larval habitats at their most influential spatial scales.
We also assessed key indicators for the presence of potential P. knowlesi larval habitats and predicted their pres-
ence within the study site over time. Together, this study illustrates the role of fine-scale land use to anopheline
larval ecology and highlights potential targets for surveillance and control.

Results

This study area was highly fragmented and consisted of secondary forest, village areas, plantations and open
areas. Prior to the start of larval collections, detailed high-resolution aerial imagery was generated through
aerial drone surveys, using the methods described by Fornace et al.>*. To define a sampling frame representative
of all land cover types, we divided this study area into a 3 x 2 km grid of 600 sampling blocks of 100 x 100 m.
We assigned each sampling block to a habitat strata based on visual identification of the predominant land type
within the sampling block (Fig. 1). This yielded 217 sampling blocks classified as forest, 175 as clearing, 91 as
palm oil plantation, 41 as rubber plantation, 37 as settlement and 39 as coconut plantation.

From the 600 blocks, we sampled the same 1 fixed block every month to capture temporal variation at the
same sites. We additionally sampled at least 3 randomly selected blocks per land strata every month. This resulted
in a total of 516 blocks which were sampled at least once throughout the sampling period (Table 1). 365 water
bodies were sampled in total (Table 2). Anopheles larvae were collected from 95 water bodies, including artificial
containers, borrow pits, ditches, irrigation canals, intermittent streams, leaf axils, ponds, puddles, rock pools,
rivers, streams and tree holes. Of these Anopheles positive water bodies, Culex larvae were collected from 30
(32%), and Aedes larvae were collected from 3 (3%). A total of 25 Anopheles larvae were speciated further than the
genus level, with 19 of these being identified as the primary P. knowlesi vector in Sabah An. balabacencis (75%).
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Figure 1. (A) Drone image of a sub-section of the sampling site. (B) The sub-section split into 100 x 100 m
sampling blocks. (C) Sampling blocks classified by their predominant land use, used to create the larval survey
sampling frame which ensured an even representation of habitats. All drone images collected by?**.

Total 516 365 (0.71) 76 (0.21) 19(0.2)
Clearing 84 58 (0.69) 14 (0.24) 1(0.07)
Coconut plantation | 85 66 (0.78) 18 (0.27) 2(0.1)

Water bodies per habitat Forest 82 62 (0.76) 9(0.15) 3(0.33)

strata Palm oil plantation | 91 65 (0.71) 13 (0.2) 2(0.17)
Rubber plantation 73 46 (0.63 12 (0.26) 7(0.58)
Settlement 101 68 (0.67) 10 (0.15) 4(0.4)

Table 1. Numbers of sampling blocks sampled for water bodies and proportions of these which were positive
for Anopheles and An. balabacensis larvae by habitat strata. Proportions included in brackets. Repeated visits
to sampling blocks are included in this table.

The number of Anopheles positive water bodies found per month ranged from 1 to 43 with a mean of 15
(£ 11). The highest numbers of water bodies positive for Anopheles larvae were found in November and Decem-
ber, and the highest mean EVI and rainfall levels were recorded in February (Supplementary Information Fig. 3).

To determine the effect of fine-scale landscape factor and land use patterns, we extracted remote sensing
derived variables on land cover, fragmentation, rainfall and topography (Table 3) at buffer distances from 50 to
500 m, at 50 m intervals, from each surveyed water body (Supplementary Information Fig. 1). We additionally
extracted variables aggregated to the 100 m? level, for all sampling blocks within the survey site. We first fit mod-
els to determine the presence or absence of anopheline larvae in water bodies, (univariate model results presented
in the Supplementary Information Table 1). Of the 185 univariate models run for the presence of Anopheles in
the larval survey water bodies, 35 were significant at p <0.2. When the significant variables were assessed for
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Number of water bodies positive for Anopheles | Number of water bodies with Anopheles larvae

Water bodies Number of water bodi pled | larvae speciated as An. balabacensis
Total 365 95 (0.26) 19 (0.2)

Clearing 58 15 (0.26) 1 (0.06)

Coconut plantation | 66 20 (0.30) 2(0.1)

Forest 62 12 (0.2) 3(0.25)
Habitat strata

Palm oil plantation | 65 15 (0.23) 2(0.13)

Rubber plantation 46 19 (0.41) 7(0.37)

Settlement 68 14 (0.21) 4(0.29)

Table 2. Numbers of water bodies sampled and proportions positive for Anopheles larvae by sampling block
strata. Proportions included in brackets. Repeated visits to sampling blocks are included in this table.

Covariate Source

Rainfall NASA Tropical Rainfall Monitoring Mission (TRMM)*
Enhanced Vegetation Index (EVI) and Normalised Differential NASA Terra Moderate Resolution Imaging Spectroradiometer
Vegetation Index (NDVI) (MODIS)?¢27

Elevation NASA Terra ASTER global digital elevation model (DEM)*
Slope, aspect, topographic wetness index (TWTI) Derived from elevation raster

Land class water body situated in Classified land cover map of Sabah, prepared as described by

Distance of water body to 9 land classes: bush forest, rubber, coconut/
mixed plantation, palm oil plantation, rice, built, grassland/ cleared | Classified land cover map of Sabah, prepared as described by*
land, intact forest, water

Time series of drone imagery of the study site collected in 2014,

Recent deforestation prepared as described by

Vegetation density and diversity Aerial drone imagery of the study site

General habitat fragmentation Extracted from classified land cover map

Table 3. Environmental and spatial covariates assessed and their sources. The methods used to extract each
covariate from their corresponding raster are described in Supplementary Information Table 4.

their most influential spatial scales, 12 variables were assessed for inclusion in the multivariate model. These
variables comprised enhanced vegetation index (EVI) at 500 m, aspect at 350 m, distance from bush forest at
400 m, distance from rice agriculture at 250 m, distance from rice plantations over 100 m, perimeter: area ratio at
300 m, water body situated in a palm oil plantation, water body situated in an area of recent deforestation, shrub
vegetation, dense vegetation, Culex mosquito larvae present in the water body and Aedes mosquito present in
the water body. In the final multivariate model increases in mean perimeter: area ratio at a 300 m spatial scale,
average distance from rubber plantations at a 100 m spatial scale, mean aspect at a 350 m spatial scale and Culex
larvae presence were all positively associated with the presence of Anopheles larvae in aquatic habitats (Fig. 2).
There was no association between the land class at the site of the water body and larval presence.

The second part of the analysis involved fitting two models to determine the presence or absence of water
bodies within sampling blocks, and the presence or absence of anopheline larvae in sampling blocks. The uni-
variate results are presented in the Supplementary Information Tables 2 and 3. Results of the final multivariate
regression indicated that the presence of water bodies in sampling bodies was negatively associated with elevation
and slope and positively with rainfall lagged by 2 months and EVI (Fig. 3). The Moran’s I statistic for residual
spatial autocorrelation in the water body presence model was low, but significant (Moran’s I 0.16, 0.01). There
was no residual temporal autocorrelation. Predictive power of the model as Area Under the Curve (AUC) was
moderately strong (AUC 0.76, 95% CI 0.72-0.81). The four variables which comprised the final model for water
body presence in sampling blocks were used to create a time-series of predictive maps over the study time period
(Video 1). Although aspect and elevation were both significantly associated with Anopheles presence in sampling
blocks in the univariate analysis (Supplementary Information Table 3), these variables did not remain significant
in the multivariate analysis. Thus, none of the environmental factors investigated were significantly associated
with presence of Anopheles larvae in sampling blocks. The Moran’s I statistics for residual spatial autocorrela-
tion in the sampling block model for Anopheles larvae presence was not significant (Moran’s 10.03, 0.06). There
was no residual temporal autocorrelation, and the predictive power was moderately strong (AUC 0.75, 95% CI
0.71-0.80). In the final multivariate models for both water body presence and larval presence within sampling
blocks, there were no associations between the majority land class of the sampling block and presence of the
response variable.

In these initial models of water body presence in sampling blocks, collection month was retained as a ran-
dom effect to account for correlations between repeat samples. In a second step, we investigated whether month
of collection was the main source of variation in water body and Anopheles larvae presence by removing this
random effect and examining the impact of the AUC. The predictive power for the water body models remained
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Figure 2. Odds ratios and 95% confidence intervals for risk factors for Anopheles larval habitats, at their most
influential spatial scales.

stable when month was removed as a random effect, with only a minor reduction in AUC from 0.761 to 0.756
(95% CI 0.71-0.80). This confirms temporal variation between months was not a major source of variation for
water body presence. In contrast, the predictive power of the Anopheles model fell more substantially (0.75 to
0.60, 95% CI 0.53-0.67) when month was removed, indicating that temporal variation may be a more important
determinant of larval presence.

Discussion
The key objective of this study was to address the gap in our understanding of the role of land use change and fine-
scale environmental factors in driving increases in incidence of human P. knowlesi by increasing the availability
of vector larval habitats. We found positive associations between Anopheles larval presence and distance from
agriculture, forest fragmentation and topology, and key environmental indicators for potential vector breeding
sites in the study site. The probability of detecting Anopheles larvae in aquatic habitats did not very between land
classes, and there was no association between deforestation and Anopheles larvae presence. To our knowledge, this
is the first study which has systematically assessed the environmental and spatial risk factors for Anopheles vector
breeding ecology in Kudat. We demonstrated how aerial and satellite-based remote sensing data can be used to
make a study more robust by informing a spatially representative sampling frame, and to evaluate risk factors
for vector breeding over multiple spatial scales, a methodology highly relevant to other vector-borne diseases.

Overall, the findings show that there are interactions at play between Anopheles vector breeding, distance
from plantation agriculture, forest fragmentation and topology. The associations with forest fragmentation and
distance from rubber plantations indicate that An. balabacensis vector ecology may be more complex than its
previous descriptions as a primarily forest dwelling group, or the vector has adapted to the new environment
resulted from changing land use patterns. This is supported by the lack of association between Anopheles posi-
tive water bodies and forested land types, and the lowest proportions of Anopheles larvae positive water bodies
being found in forested land classes. These findings support our hypothesis that land use change is creating more
suitable habitats for Anopheles vector larvae and this may be contributing to the higher P. knowlesi incidence in
humans in Kudat. Our findings are consistent with recent findings of increased adult An. balabacensis abundance
in disturbed forests, plantations, farms and close to human settlements'*-*°. The findings also align with those
of Fornace et al.”, that fragmentation, aspect and agriculture are associated with increased risks of P. knowlesi
exposure, and may explain some of the mechanisms underlying this link, whereby these changes to land cover
may increase potential for P. knowlesi vector proliferation and disease transmission.

Culex larvae were collected from roughly one third of the water bodies which were positive for Anopheles lar-
vae, resulting in a strong positive association between these species’ larval presence. This may be driven by

Scientific Reports |

(2021) 11:11810 | https://doi.org/10.1038/s41598-021-90893-1 nature portfolio



www.nature.com/scientificreports/

(per 1%

Rainfall lagged 2 months
(per 0.5 mm/day monthly - ‘l @ {

change in elevation) \

(per 10m decrease) |

Odds ratios and 95% confidence intervals for
water body presence in grid cells

Slope | ‘ @ |

average increase)

EVI ] [ P {

per 0.1 increase [

Elevation | I Y

1 5 10
Odds ratio

Figure 3. Odds ratios and 95% confidence intervals for risk factors for presence of water bodies within
sampling blocks.

finer-scale micro habitat characteristics which were not analysed in this study, such as the physical and chemical
characteristics of the water bodies which may create favourable conditions for oviposition in both species. How-
ever, further studies are needed to investigate this further.

The ecological processes which determine vector breeding ecology likely occur over multiple spatial
scales®?231-33; however these scale-dependent effects are rarely considered in standard investigations of larval
ecology. This study used a novel data-driven approach to incorporate and assess the contribution of environ-
mental variables acting across different spatial scales (from 50 to 500 m around the larval collection points).
The results showed that fragmentation, distance from agriculture and aspect were most strongly associated with
larvae positive sites, each at different spatial scales. Habitat fragmentation, measured as perimeter: area ratio, over
a 300 m buffer radius was positively associated with the presence of Anopheles breeding sites. Perimeter to area
ratio is a strong and widely used indicator for habitat fragmentation®. Lower habitat patch size within a given
area results in higher perimeter to area ratio, meaning that the area is constitutes smaller islands or “fragments”
of habitat making up a complex mosaic, rather than larger homogenous patches of habitats*. Fragmented land-
scapes form a patchwork of land types and can expose more forest fringe, providing more potential larval habi-
tats than one continuous patch?®. This association may explain the findings by Fornace et al.?, that fragmented
landscapes contribute to increased human exposure to P. knowlesi in Sabah. We additionally identified that mean
proximity to rubber plantations was associated with increased risk of larval presence, and the highest proportions
of Anopheles larvae were found in sampling blocks which were classified as rubber plantations. Although adult
malaria vectors have been reported from rubber plantations in Thailand, Indonesia, and Malaysia®’~, there
is limited evidence for anopheline breeding around rubber plantations in South East Asia. These habitats are,
however, inhabited by P. knowlesi reservoir macaques*’, and breeding in close proximity to macaque habitats
may be beneficial to vectors as they can provide essential bloodmeals before oviposition. The rubber farmers
in these habitats may also be a source of bloodmeals. The association of larval presence close to, but not within
rubber plantations is consistent with previous reports of malaria vectors breeding on the outskirts of plantations
in Thailand*'. The central tendency of aspect over a 350 m radius was associated with Anopheles larvae presence.
This finding supports, and may offer partial explanation to the findings of Brock et al.®, who found mean aspect
over 1-2 km to be a potential determinant of household P. knowlesi infection risk in Northern Sabah. Aspect is
highly correlated with agriculture type in Kudat and the association may arise from the availability of aquatic
larval habitats in local agriculture®. While the mechanisms underlying these associations and the varying spatial
scales over which they occur may be due to complex ecosystem processes, the results are useful in identifying
the most influential spatial scales at which these fine-scale landscape risk factors work.
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Additionally, we demonstrate how remote sensing data can be used to design sampling frames and stratify by
habitat type. Although larval surveys are routinely conducted, these are typically only done in areas with water
bodies. Quantifying the availability of aquatic habitats across different land types provides further insight into
how land use change impacts larval distribution by identifying areas where no aquatic habitats are likely to be
present. This sampling approach allowed us to identify An. balabacensis larvae in water bodies which are not
usually surveyed for Anopheles larvae. The sampling block-level analysis provided key temporal indicators of
water body presence within the study site. The results show that the presence of water bodies is largely governed
by topographic and climactic variables; slope, elevation, rainfall levels two months prior and EVI. There were
no strong indicators for the presence of Anopheles larvae within sampling-blocks. The experimental removal of
collection month as a random effect in this model greatly reduced its predictive power, indicating that temporal
trends may drive some of this variation. The lack of strong association with any of the environmental variables
may also be due to the smaller sample size of larval presence compared to water body presence, or due to the more
complex relationships between vector breeding, agriculture and fragmentation. Nevertheless, identification of
factors associated with water bodies allows prioritisation of areas to sample or to target for preventative control
programs and larval source management; for example, choosing areas to sample or treat based on topography
and rainfall within the past two months.

While this study has generated several new insights into the larval ecology of P. knowlesi vectors, it has
several important limitations. As we aimed to characterise fine-scale environmental risk factors, with 500 m as
the maximum spatial extent of prediction, this study cannot be used to generalise about larval distribution over
wider spatial scales or predict over larger areas. As this study area was highly disturbed and in close proximity to
human settlements, future studies could evaluate larval distribution within primary forests or across disturbance
gradients. We were also limited by the water bodies which we could reach. It is possible that some potential larval
habitats such as tree holes higher in the canopy and water collecting plants such as Bromeliads may have been
missed in this sampling frame. High mortality rates when rearing Anopheles larvae, and the unavailability of
molecular tools in the field to identify mosquitoes to the species level, meant that only a minority of Anopheles
larvae could be speciated. Seventy six percent of the speciated Anopheles larvae were, however, identified as An.
balabacensis, the primary P. knowlesi vector in the study region. We can therefore assume that a high majority of
the Anopheles larvae from which the conclusions of this study are drawn, were of the An. balabacensis species.
This indicates that the results presented in this study are directly relevant to P. knowlesi transmission. The study
is also limited by the fact that it was conducted over one year and cannot be used to examine temporal fluctua-
tions in vector breeding sites between years. More extensive long-term studies could additionally characterise
breeding sites of different Anopheles species and confirm the majority within this area were An. balabacensis.

Despite these limitations, this study sheds important insights on anopheline vector ecology relevant for P.
knowlesi transmission. Additionally, we develop a new methodology using drones to collect aerial imagery to
define sampling frames which are representative of the land types present. Despite the complexities of land cover
and landscape aspects associated with P. knowlesi breeding, it is clear from the results that P. knowlesi vectors
are not strictly forest breeding in Kudat. Many of the results correspond with, and may offer partial explana-
tion to the mechanisms underlying findings by Fornace et al.' on the contribution of agriculture, topography
and habitat configuration to human P. knowlesi exposure. We have provided key indicators which can inform
the future surveys to be used in planning, and shown how datasets derived from freely available remote sens-
ing sources and drone technology can be used to interrogate how fine-scale landscape factors are related to P
knowlesi vector breeding ecology.

Methods

Study site. Kudat experiences a tropical climate, with temperatures averaging 32 °C in lowlands, and 21 °C
in highlands (Fig. 4). Rainfall is frequent throughout the year, with higher volumes during the November to
March north-east monsoons'. The landscape is comprised of lowland secondary forest, with extensive conver-
sion to palm oil and rubber plantations'®.

Larval survey. A randomly stratified longitudinal larval survey was completed from May 11th 2015 to April
14th 2016 within a major transmission focus of P. knowlesi in Kudat, Sabah in Malaysian Borneo, previously
described by Fornace et al... The survey was conducted within a 3 x 2 km grid composed of 600 sampling blocks
of 100x 100 m. To ensure an even representation of habitats sampled, drone imagery was used to classify each
sampling block into 6 different land types based on visual classification of predominant vegetation by local field
staff. The field staff were familiar with both the landscape and interpreting drone imagery using standardised
guidelines describing each land type (Fig. 1). Every month, at least 3 random blocks from each land stratum were
surveyed. Additionally, a single fixed block per strata was sampled every month to evaluate temporal trends.
During the surveys every potential aquatic habitat which was within-reach of field technicians on the ground in
the sampling block was sampled for mosquito larvae by larval dipping. Larvae were collected from water bodies
by the conventional 10-dipping*2. In smaller aquatic habits such as tree holes where dipping was not possible, a
plastic pipette was used*’. The GPS point of each sample site was recorded. Collected larvae were sorted by land
use type and larval habitat and brought to the field laboratory for rearing to adult stages. Identification of adult
mosquitoes was by microscope, and based on keys*+*.

Remote sensing data analysis. We extracted the covariates to be assessed as risk factors from the drone
and remote sensing data described in Table 3. Slope, aspect and topographic wetness index were calculated from
the elevation raster in ArcGIS (10.8.1). The distance from different land cover classifications were calculated as
Euclidean Distance in ArcGIS. EVI and NDVT were filtered for pixel quality, and raster values were scaled to a

Scientific Reports |

(2021) 11:11810 | https://doi.org/10.1038/s41598-021-90893-1 nature portfolio



www.nature.com/scientificreports/

0 250 500m ® Larval sample water body collection (1 of 368)

(] Sampling frame

o 75

15 km

e Study Site

Figure 4. Map of Sabah, Malaysian Borneo, including drone image of sampling site in Kudat.

factor of 0.0001. Mean habitat fragmentation indices were calculated using the “landscapemetrics” package in R
(v1.2.1335)%. The indices assessed were perimeter: area ratio (the ratio of habitat patch perimeter length to total
patch area), shape index (measure of patch shape complexity adjusted for size of patch) and fractal dimension
(degree of patch complexity across a number of spatial scales)*>*’. Drone images of the sampling frame were
visualised in QGIS (3.12) and the density and diversity of the vegetation surrounding each larval sampling site
were qualitatively assessed. Vegetation density was categorised as dense (tightly-packed vegetation with no clear
patches of forest floor), patchy (some low canopy with patches of low lying shrubbery and forest floor visible),
planted (evenly spaced vegetation of the same species) and sparse (large portions of ground visible and little to
no vegetation nearby) (Fig. 5). Vegetation diversity was categorised as edge (a visible transition between forest
and another form of vegetation), mixed-farmed (mixture of planted species and natural growth), mixed forest
(mixture of natural growth), monoculture (single species evenly planted) and shrub (low canopy level of major-
ity of vegetation) (Fig. 6). Number of months since a deforestation event in 2014 was calculated for each sam-
pling block using a series of 4 classified images of deforestation. Full details of the preparation of environmental
and spatial covariates are explained in Supplementary Information Table 4, with visual examples of distance,
EVI, rainfall and topographic rasters in Supplementary Information Fig. 1.

The mean and standard deviation of the covariates in Table 3, aside from time since deforestation and veg-
etation density and diversity, were extracted at 10 buffer radii (50-500 m in 50 m intervals), using the “raster”
package in R. These buffer radii were used as a proxy for the spatial scales at which associations between covari-
ates and Anopheles breeding may occur (Supplementary Information Fig. 2).

Statistical analysis. All statistical models were built and run in R using the “Ime4” package. Univariate
binomial repeated measure mixed-effect logistic regression models were run for each covariate at each spatial
scale (buffer radius). The primary outcome of this analysis was a binary presence or absence of larvae, and sam-
pling block and collection month were included as random effects. All variables with p <0.2 were assessed for
inclusion in the multivariate analysis. Variables which were significant over multiple spatial scales or over multi-
ple fragmentation indices were compared, and single variables were selected based on lower Akaike Information
Criterion (AIC). The final multivariate model was developed using a foreword stepwise procedure, retaining all
variables significant at p <0.05 and assessing each step for reduction in AIC and interactions.

Two sampling block-level risk factor analyses were undertaken. The outcomes were the presence or absence
of water bodies, and the presence or absence of Anopheles larvae, within sampling blocks. The variables assessed
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Figure 5. Examples of vegetation density levels. (A) Dense vegetation, (B) Patchy vegetation, (C) Planted
vegetation, (D) Sparse vegetation. The red point represents the water body being categorised.

Figure 6. Example of vegetation diversity levels estimated from UAV imagery. (A) Edge, in this example
monoculture and shrub, (B) Mixed-farmed, (C) Mixed forest, (D) Monoculture. The red point represents the
water body being categorised.

in the sampling block level analyses comprised the mean EVI, NDVI and monthly rainfall for collection month
and lagged by 1 and 2 months, distance from a large water body, elevation, slope, aspect, TWI, the majority land
class for each sampling block, and a binary variable for whether deforestation had occurred in each sampling
block. These were analysed using the logistic regression procedure described above, with collection month as a
random effect. To avoid overfitting these models by including sampling block as both an outcome and a random
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effect, sampling block was not included as a random effect. Residual spatial autocorrelation for risk of water body
or Anopheles larval presence in sampling blocks was assessed using Moran’s I. Residual temporal autocorrelation
functions and partial autocorrelation functions were also assessed for significance. The predictive power of the
sampling block models were assessed by AUC. To determine whether collection month was a key source of vari-
ation in the sampling block-level models, it was experimentally removed, and AUC was examined. The results of
the multivariate model for water body presence were used to predict the presence and absence of water bodies
in each sampling block cell over the study period.

Ethics. The data analysis (Ref: 22082, 19/05/2020) and larval survey (Ref: 6302, 19/12/12) were approved by
the London School of Hygiene and Tropical Medicine Research Ethics Committee. This project was approved by
the NMRR Ministry of Health Malaysia (NMRR-12-786-13048).
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