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Contact tracing is an important tool for allowing countries to ease lockdown
policies introduced to combat SARS-CoV-2. For contact tracing to be effective,
those with symptoms must self-report themselves while their contacts
must self-isolate when asked. However, policies such as legal enforcement
of self-isolation can create trade-offs by dissuading individuals from self-
reporting. We use an existing branching process model to examine which
aspects of contact tracing adherence should be prioritized. We consider an
inverse relationship between self-isolation adherence and self-reporting
engagement, assuming that increasingly strict self-isolation policies will
result in fewer individuals self-reporting to the programme. We find that
policies which increase the average duration of self-isolation, or that increase
the probability that people self-isolate at all, at the expense of reduced self-
reporting rate, will not decrease the risk of a large outbreak and may increase
the risk, depending on the strength of the trade-off. These results suggest that
policies to increase self-isolation adherence should be implemented carefully.
Policies that increase self-isolation adherence at the cost of self-reporting rates
should be avoided.

This article is part of the theme issue ‘Modelling that shaped the early
COVID-19 pandemic response in the UK’.
1. Background
Since the first cases of SARS-CoV-2 in China in late 2019 [1], the virus has spread
globally, resulting in over 600 000 confirmed deaths by August 2020 [2].
Lockdown in the UK began in March 2020 [3] and reduced R0 below 1 while
also triggering unprecedented reductions in economic activity [4]. As lockdown
restrictions are relaxed, both in the UK and in other countries, other methods
for keeping R0 below 1 are needed. Large-scale contact tracing is one of the
potential methods for keeping virus spread under control [5–7].

During the current SARS-CoV-2 outbreak, contact tracing has been used to
great effect in a number of countries, including Vietnam and South Korea
[8,9]. Two broad classes of contact tracing include manual tracing and digital
tracing using a smartphone app [10]. Manual contract tracing is the only
system currently running in the UK though it is expected that a contact tracing
app will be launched soon [11]. In manual contact tracing, trained public
health staff ask a case for the names and contact details of people they have
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Figure 1. Overview of adherence in test and trace. An untraced individual
must self-report and give the name and details of close contacts. The contact
tracing team must then manage to contact the close contacts. The close con-
tacts must self-isolate when asked and remain in self-isolation for the full
isolation period (14 days in the UK). In some systems, the isolated individual
is given a self-administered swab test which must be administered correctly.
There is imperfect adherence or performance at each of these stages. In this
paper, we focus on trade-offs between self-report rate (stage 1) and self-
isolation adherence (stages 4 and 5). In our model, stages 2 and 3 are
incorporated into a parameter which we call control effectiveness.
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recently been in close proximity with, as well as asking
for information on which public areas the infected person
has visited. The tracers will then identify as many contacts
as possible and ask them to self-isolate for a period. Adherence
to the contact tracing system is an important determinant
of its efficacy [6,10,12].

Adherence applies to a number of different aspects
of contact tracing [13] as shown in figure 1. Untraced individ-
uals with symptoms must get themselves tested (the process
of which automatically reports them to the contact tracing
system) and they and their household should self-isolate.
If they test positive they are contacted by the test and trace
team and must give identifying information about the
people they have been in close proximity with. Then, both
the index case, and the traced contacts, must self-isolate
for a period [14,15]. If the contact tracing system uses home
swab tests, the swabs must be taken carefully [16,17].
Adherence to each of these steps will be imperfect.

Although there are many unobserved variables involved,
we can start to examine some of these adherence rates using
public statistics from the UK tracing system [18]. For example,
of the 6923 people who were referred to the contact tracing
system between the 11 and 17 June, 70% were reached. How-
ever, these 6923 cases certainly do not represent 100% of the
new cases in the country that week. Of the 6923, 74% gave
details of at least one contact though it is not possible to
tell how many of the remaining 26% actually had no contacts.
Of those that gave details of at least one contact, it is
unknown what proportion gave details of all their close con-
tacts. Someone might not give contact information of a close
contact deliberately, for reasons of privacy, embarrassment or
to save a contact from being asked to self-isolate, or acciden-
tally through not remembering that they were in contact with
someone or not knowing any details about the close contact.
Eighty-two per cent of close contacts were reached and asked
to self-isolate.

However, these adherence rates are not fixed parameters
and can be influenced by policy. For example, economic
support for those missing work [15,19], daily phonecalls
to monitor adherence [20] or legal ramifications for breaking
self-isolation, such as those implemented in Singapore and
Taiwan [20], might be expected to increase self-isolation rates
[19]. In particular, this work was originally undertaken in
response to a question from policy makers asking whether
legally mandating self-isolation for close-contacts would
reduce transmission rates. Furthermore, there are likely to
be trade-offs and dependencies between parameters. In par-
ticular, contact tracing relies on self-reporting of symptoms
in order to initially identifya chain of transmission but introdu-
cing penalties for non-compliance to self-isolation might be
expected to decrease the proportion of people that report
themselves to the system in the first instance. In general,
there are few direct, individual benefits to self-reporting one-
self to a contact tracing system; instead the benefits are
communal and the drivers for self-reporting are likely to be
altruism or social norms [21,22]. However, there are direct
costs both to the individual that self-reports and to their
close contacts. Self-isolation is mentally difficult [23] and will
come with economic costs for many [15,21,24–26]. Legally
enforcing self-isolation exacerbates these costs.

The exact form that these trade-offs would take are difficult
to know. Adherence to self-isolation requirements might lar-
gely be binary with people complying for the full 14 days
(as requested in the UK) or not adhering at all. In this case,
legal enforcement would be expected to increase the pro-
portion of people that self-isolate. Alternatively, it is possible
that self-isolation adherence is more continuous with people
adhering for a few days instead of the full 14 days. Similarly,
legal enforcement might be expected to increase the duration
of isolation. Finally, if swab tests are being self-administered,
people might be less careful or less willing to endure discom-
fort if the consequences of a positive test are more severe
(though this might change as saliva tests are produced
[27,28]). While it is difficult to know the functional effects of
different levels of compliance, it is evenmore difficult to quan-
tify the strengths of the trade-offs. Legal enforcement might
have a weak effect on improving self-isolation adherence [23]
but a strong deterrent effect on self-reporting. Alternatively,
perhaps legal mandation has a strong effect on self-isolation
adherence without being a strong deterrent to self-reporting
rates. Furthermore, the shapes of these trade-offs are likely
to differ in different countries and social groups based on cul-
ture, trust in the government and other factors. Careful
quantitative and qualitative studies will need to be conducted
to quantify these effects.

Here we use a previously published branching process
model [6,12] to examine the effects of these trade-offs on
the risk of a large outbreak of SARS-CoV-2. We examine
trade-offs between self-isolation duration and self-isolation
probability with self-reporting rates, contact information
reporting probabilities and sensitivity of home swab tests.
It is important to note that we do not consider the societal
costs [29] of legal enforcement of self-isolation; we aim to
quantify the benefits of these policies without considering
the costs noting that the costs are not easy to directly compare
to the benefits.



Table 1. Model parameters values/ranges. (Parameters taken from the
literature are fixed and for other parameters a range of values are explored.)

parameter values refs

self-isolation probability 10–70% [30]

self-reporting probability 10–70%

test sensitivity 35–65% [31–33]

minimum isolation duration 1–14 days

maximum isolation duration 7, 14 days

contact tracing coverage (%) 40–80%

number of initial cases 20

symptomatic RS under

physical distancing

1.3

asymptomatic RS under

physical distancing

0.65

dispersion of RS, k 0.16 [12,34]

proportion asymptomatic 50% [35,36]

delay: onset to isolation 1 day

incubation period (lognormal) mean log: 1.43,

s.d. log: 0.66

[37]

infection time (gamma) shape: 2.12, rate:

0.69 d−1
[37]

infection time shift 12.98 days [37]

time to trace contacts (days) 1 day

delay: isolate to test result 1 days
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2. Methods
In this paper, we extend a previous model of SARS-CoV-2 trans-
mission [12]. An overview of the model is given in the electronic
supplementary material, figure S1 while parameter values and
references are given in table 1. At the individual-level, the
number of potential secondary contacts are modelled by a nega-
tive binomial distribution while the exposure times of these new
infections are modelled as a gamma distribution. Self-isolating
individuals are assumed to be unable to transmit the disease
(assuming isolation within households) and therefore potential
secondary cases are avoided if the gamma-distributed exposure
time occurs during self-isolation of the primary case. The timing
of self-isolation depends on whether the case was traced as a
potential contact or not and a number of factors affecting adher-
ence as described in detail below. The model proceeds as a
branching process with each simulation being seeded with 20
untraced, infected individuals.

(a) Secondary case distribution
The heterogeneity in the number of potential secondary
cases caused by an individual is modelled as a negative binomial
distribution. For symptomatic cases, we use a mean value of 1.3
secondary cases while asymptomatic cases are given a 50%
lower infection rate. This relates to a scenario where strong
social distancing and good hygiene is still being observed. Earlier
work [6,7] and preliminary analyses indicated that contact tracing
is unable to keep the risk of an outbreak lowwithout being paired
with social distancing so this is the scenariowe focus on. Estimates
for the dispersion parameter, k, for SARS-CoV-2 range from k = 0.1
(0.05–0.2) for pre-lockdown UK [38] to k = 0.25 (0.13–0.88) for
Tianjin, China during lockdown measures [39]. Given this
range, we have kept the parameter as used in [12,34] setting
k = 0.16. This value of k yields a strongly skewed distribution
with most individuals causing zero potential secondary cases.

(b) Infection profile
Individuals are labelled as symptomatic or asymptomatic with a
probability of 50% [35,36]. The onset time of symptoms is mod-
elled as a lognormal distribution with mean 1.43 days and s.d. of
0.66 [40]. All individuals, whether symptomatic or asymptomatic
are given a symptom onset time as the exposure time of second-
ary cases is calculated relative to this time. The exposure time for
each new potential case is drawn from a gamma distribution
with shape parameter of 17.77 and a rate of 1:39 d�1. This distri-
bution is centred 12.98 days before the onset of symptoms. If this
randomly sampled value yields a negative generation interval
(i.e. the secondary case being infected by the primary case
before the primary case is infected) the value is resampled. The
parameters for this gamma distribution were estimated by fitting
to the data in He et al. [37] in a maximum likelihood framework
that accounts for this resampling process. The model fitting does
not ignore any data as discussed by Ashcroft et al. [41]. The esti-
mated distributions are qualitatively similar to the original fitted
models (electronic supplementary material, figure S2). If the
exposure time of a potential secondary case occurs during the
primary case’s self-isolation, the infection event does not occur
and the potential secondary case does not become a case.

(c) Contact tracing
The first stage in the contact tracing system is an untraced, symp-
tomatic individual self-reporting themselves by seeking a test.
We define the control effectiveness of the contact tracing
system as the proportion of secondarily infected people that are
contacted by the contact tracers. In practice, this variable is
never observed, but it can be broken down to a number of
processes. For infections transmitted on surfaces, the primary
case will rarely know who else touched the same surface. For
face-to-face contact in small groups, the primary contact must
remember that they were in contact with the secondary case,
know their name and chose to divulge this information to the
contact tracing team. In the UK the definition of a close contact
is being within 2 m for more than 15min, which probably
encompasses most small group infections. For transmission in
larger groups, such as at restaurants and bars, contact tracing
effectiveness depends on how well the venue recorded who vis-
ited. The control effectiveness parameter in the model encodes all
of these processes and is varied between 40 and 80%. If contact
tracing is successful, the traced individual is asked to self-isolate.
We assume it takes one day to contact a contact. If a traced con-
tact subsequently shows symptoms or returns a positive test the
next round of contact tracing is initiated. That is, the contacts of
the traced contact are then traced.
(d) Testing
As a baseline we assume that tests have a sensitivity of 65% and
that it takes 1 day for results to be returned. This reflects the
sensitivity of tests observed in the community [31,32]. Given a
positive test result contact tracing for the tested individual is
initiated. A negative test allows the tested individual to be
immediately released from quarantine. Any contacts of a nega-
tive-testing case that were successfully identified prior to
receiving the test result are still isolated and tested. This process
is different to the UK contact tracing system in which the trace
team only ask for contact details if a positive test has been
returned. In a branching process model, only infected individuals
are modelled. Therefore we do not track the number of uninfected
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Figure 2. Trade-off between self isolation time (columns) and self-report rate (rows) with error bars denoting 95% confidence intervals. Individuals self isolate for a
randomly selected duration between min isolation and 14 days. Untraced, symptomatic individuals self-report with a probability that varies across the rows. The
proportion of close contacts that are divulged and asked to self-isolate varies across the x-axis of each subplot. The y-axis shows the risk of a large outbreak (greater
than 2000 cases) over 15 000 simulations. The probability that an individual self-isolates at all is fixed at 70%. If we assume we are currently near the top left we
expect that introducing legal ramifications for breaking self isolation would move us down and right. This generally increases risk.
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people that are unnecessarily asked to quarantine. Test specificity
affects the number of uninfected people asked to quarantine
but does not directly affect the spread of the disease and
therefore we do not define a test specificity. In this study, we are
concerned with quantifying the benefits of contact tracing and
do not attempt to weigh the epidemiological benefits against the
sociological costs.
(e) Adherence trade-offs
We consider three main trade-offs. As we do not have good data
to define the shapes of these trade-offs, we run simulations for all
combinations of parameters.

First, we assume that without policies to encourage self-iso-
lation most people attempt some self-isolation but the lack of
adherence is with respect to the duration of self-isolation that
decreases. We keep the probability of self-isolation constant at
70%. We assume that each person that does self-isolate isolates
for an amount of time taken from a uniform distribution between
a minimum and maximum value. For the maximum values,
we use either the full 14 days currently recommended in the
UK or a shorter 7 day maximum isolation. We vary the minimum
duration of self-isolation from 1 day to being equal to the
maximum duration.

Second, we examine the trade-off between self-report prob-
ability and self-isolation probability. We expect that policies
which increase self-isolation probability will reduce self-report
probability. We use values of self-isolation from 10 to 70% in incre-
ments of 20% and examine all combinations with self-report
probabilities from 10 to 70%, also in increments of 20%. The
upper bound for self-isolation here is certainly above the rate of
self-isolation currently being achieved in the UK. However, it is
below the target rate for other national contact tracing programmes
[30]. Furthermore, the very strict restrictions applied to travellers
entering countries such as Singapore could also be considered an
upper bound on feasible policies. Many of the policies used in
these areas, such as enforced isolation in government run hotels,
GPS ankle bracelets, and daily video calls, would be considered
draconion if applied to the population at large but could be reason-
ably expected to produce self-isolation rates of 90%. In contrast to
the first trade-off, we assume that everyone who does self-isolate
does so for the full maximum value of either 7 or 14 days.

Finally, we assume that policies which increase self-isolation
probability will decrease test sensitivity. This scenario applies to
the case of home administered tests. With strong incentives to
test negative, people will be less likely to perform swabs cor-
rectly. We therefore examine a range of test sensitivities from a
baseline of 65% down to 35% in increments of 10%.
( f ) Simulation process
Results presented are the combined output of 15 000 simulations
for each parameter combination, or scenario, considered. We
define a simulation as leading to a large outbreak if it has more
than 2000 cumulative cases or if there are still infected cases
after 300 days. The threshold of 2000 cases was chosen by running
simulations with a maximum of 5000 cases and noting that of the
simulated epidemics that went extinct, 99% of extinction events
occurred before reaching 2000 cases. Nearly all simulations
either went extinct or reached 2000 cases with very few simu-
lations lasting longer than 300 days. These simulations were
then used to calculate the probability of a large outbreak given a
certain set of conditions. Here, 95% Clopper–Pearson exact confi-
dence intervals were also calculated. To test the sensitivity of our
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delay between being contacted by the contact tracers and starting
self-isolation, we ran simulations at 60% control effectiveness and
varied each parameter in turn. Themodel waswritten in R and the
code and testing suite [42] is publicly available on GitHub
(https://github.com/timcdlucas/ringbp/tree/adherence_trade-
off_runs).
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Figure 3. Trade-off between (a) minimum self isolation time and self-report
probability, and (b) self-isolation probability and self-report probability. The con-
trol effectiveness is held constant at 60%. The results are a subset of those in
figures 2 and 4, with each line being a slice through a column of those plots.
The y-axis shows the risk of a large outbreak (greater than 2000 cases) over
15 000 simulations. Error bars show the 95% confidence intervals. In (a) if we
optimistically assume we currently have 70% self-report probability but 1 day
minimum isolation (red), legally mandating isolation would be expected to
move us to the left and to the purple line which gives an increased risk of an
outbreak. In (b) if we optimistically assume we currently have 70% self-report
probability but 10% self isolation probability (red), legally mandating isolation
would be expected to move us to the left and to the purple line which gives a
marginal decrease in risk of an outbreak. (Online version in colour.)
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3. Results
(a) Trade-off between self-isolation duration against

self-report probability
In our first comparison we assumed that increasing the dur-
ation of self-isolation would reduce the self-reporting
probability. We found that increasing the duration of self-iso-
lation increases the risk of a large outbreak in the presence of
reductions in self-reporting rates. The probability of a large
outbreak for all combinations of self-isolation duration and
self-report rates are shown in figure 2. If we assume that we
are currently in the top left panel (high self-report rates but iso-
lation taken uniformly between 1 and 14 days), policies that
move us down and right generally increase the risk of a
large outbreak. For example, if we consider a control effective-
ness of 60%, with a self-isolation duration of between 1 and
14 days and a self-report rate of 70%, the risk of a large outbreak
is 1%. If we increase the self-isolation duration to always be
14 days but reduce the self-report rate to 10%, the probability
of a large outbreak increases from 1 to 6%. If the trade-off is
very weak, such that increasing self-isolation duration to
always be 14 days only decreases self-report rates to 50%, we
see no change in the probability of an outbreak.

If we assume a more pessimistic starting scenario of a
self-isolation duration of between 1 and 14 days and self-
reporting rates of 10% and given a control effectiveness of
60% we have a 6% risk of a large outbreak (figure 3a, red
line). We find that increasing self-report rates gives a larger
reduction in risk. Increasing self-report rates from 10 to 70%
reduces risk from 6 to 1% (moving right along the x-axis in
figure 3a). By contrast, increasing the duration of isolation
to always being 14 days does not change the risk of a large
outbreak (purple line in figure 3a). We find that reducing
the maximum isolation duration from 14 days to 7 days con-
sistently increases the risk of a large outbreak (electronic
supplementary material, figures S3–S5). Altering the relative
asymptomatic transmission rate has a strong effect on the
overall risk of a large outbreak, but the effects of minimum
isolation length and self-report probability remain similar
(electronic supplementary material, figure S6). Furthermore,
these results are qualitatively robust to changes in the delay
between being asked to self-isolate and doing so (electronic
supplementary material, figure S7).

(b) Trade-off between self-isolation probability against
self-report probability

In our second comparison, we assumed that increasing the
probability of self-isolation will decrease the self-report prob-
ability. We find that increasing self-isolation probability while
decreasing self-report probability does not strongly alter the
probability of a large outbreak. The probability of a large out-
break for all combinations of self-isolation rates and self-
report rates are shown in figure 4. If we assume that we are
currently in the top left panel (high self-report rates but low
self-isolation rates), policies that increase self-isolation rates
but decrease self-report rates would move us down and
right. However, whether this decreases the risk of an out-
break depends on the strength of the trade-off. For
example, if we consider a control effectiveness of 60%, with
a self-isolation rate of 10% and a self-report rate of 70% the
risk of a large outbreak is 6%. If we increase the self-isolation
rate to 70% and equivalently reduce the self-report rate to
10%, the probability of a large outbreak is still 6%. If the
trade-off is weak, such that increasing self-isolation from 10
to 70% only incurs a reduction in self-report rate to 50%,
the reduction in risk of a large outbreak is substantial, redu-
cing from 6 to 1.5%. However, if the trade-off is strong, such
that increasing self-isolation from 10 to 30% causes a
reduction in self-reporting rate from 70 to 10%, the risk of
an outbreak instead marginally increases from 6 to 7%.

We could instead assume a more pessimistic starting scen-
ario of self-isolation rates of 10% and self-reporting rates of
10%. Given a control effectiveness of 60% we have a 7% risk
of a large outbreak (figure 3b, red line). However, from this
scenario we can consider whether it is better to increase self-
isolation or to increase self-reporting. Increasing self isolation
probability to 70% reduces risk to 6% (move right along the
x-axis) and increasing self-report probability to 70% also
reduces risk to 6% (purple line). Increasing both to 30%
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Figure 4. Trade-off between self-isolation probability (columns) and self-report probability (rows) with error bars denoting 95% confidence intervals. The y-axis
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reduces risk to 5%.Overall, these two parameters are relatively
evenly balanced. The overall risk of a large outbreak changes
with relative asymptomatic transmission rate, but the effects
of self-isolation probability and self-report probability
remain similar (electronic supplementary material, figure
S8). The results are similar with different values for the
delay between being asked to self-isolate and doing so (elec-
tronic supplementary material, figures S9).
(c) Trade-off between self-isolation duration against
test sensitivity

In our final comparison, we assumed that increasing self-
isolation probabilities would decrease the probability of careful
administration of home swab tests and therefore decrease the
test sensitivity. We found that increasing self-isolation rates
decreases the risk of a large outbreak even if this occurs in com-
bination with reductions in test sensitivity. The probability of a
large outbreak for all combinations of self-isolation rate and test
sensitivity are shown in figure 5. If we assume that we are cur-
rently in the top left panel (relatively high test sensitivity but
low self-isolation rates), policies that increase self-isolation
rates but decrease test sensitivity would move us down and
right and this in general yields reduced risks of a large outbreak.
Forexample, ifwe considera control effectiveness of 60%,with a
self-isolation rateof 10%andatest sensitivityof 65%, the riskof a
large outbreak is 6%. If we increase the self-isolation rate to 70%
while reducing the test sensitivity to 35%, the probability of a
large outbreak reduces from 6 to 3%.
4. Discussion
Overall we have found that policies which increase self-iso-
lation rates at the expense of self-report rates are unlikely to
improve the effectiveness of contact tracing systems. If the
primary trade-off is between the duration of self-isolation
and the probability of self-reporting, we find that policies
which increase self-isolation and reduce self-report rates
will cause either an increase or no change in the probability
of a large outbreak depending on the strength of the trade-
off. When the primary trade-off was instead between the
probability of self-isolation and the rate of self-report, policies
which increase self-isolation rates and reduce self-report rates
can increase or marginally decrease the probability of a large
outbreak depending on the strength of the trade-off. Overall
this implies that policies such as fines, and police enforce-
ment of self-isolation will have either little benefit or a
negative effect. Broadly, policies that improve self-report
rates, even at the expense of self-isolation rates should be
used. This might include publicity that encourages people
to self-report by reminding them that there are no legal
consequences to them or their contacts for doing so.

Policies that improve self-report rates or self-isolation rates
without an associated trade-off will also improve contact
tracing efficacy. For example, economic support and employ-
ment protection for individuals that self-isolate would be
expected to improve self-isolation rates [15,19,26] without
decreasing self-report rates. Similarly, efforts to communicate
the reasons why people should self-report and self-isolate
may improve both of these rates simultaneously [19,26].
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One of the core assumptions to this work is that legal conse-
quences for breaking self-isolationwould improve self-isolation
rates. However, the evidence for this is not strong and there is
evidence that feelings of shame do not promote adherence
[22,26]. By contrast, there is good evidence that other factors
such as income and boredom [43] do affect self-isolation rates.
How effectively legal consequences for breaking self-isolation
can increase self-isolation rates is a complex question that will
depend on cultural norms, perceived enforcability, and the
strength of economic and psychological consequences for self-
isolation. An important consequence of this is that self-isolation
rates and the effectiveness of policies aimed to improve these
rates will be strongly correlated, such that individuals who
are most likely to infect each other are also likely to have similar
self-isolation rates. This is not included in ourmodel but has the
potential to strongly reduce contact tracing efficacy in certain
groups and locations.

With regards to test sensitivity, our results are relevant
only to self-administered swab-tests. Swab-tests may be
replaced with reliable paper-based tests. Given that we
found that optimizing self-isolation rates over test-sensitivity
minimizes risk, other considerations such as test timing and
access are probably more important. Furthermore, currently
in the UK, traced contacts are not allowed out of quarantine
after a negative test so the system is more robust to low test
sensitivity than in our simulations.

Here we have focused solely on the probability of a large
outbreak as a consequence of policy change. However, there
are other costs and benefits to changing values of self-report
rates and self-isolation rates. High self-report rates not only
improves contact tracing efficacy directly, it also creates a
more effective system for measuring the incidence of SARS-
CoV-2 in the community. This gives better early warning
for when an outbreak is beginning in an area or group and
allows for health care resources to be deployedmore efficiently.
By contrast, self-isolation comes with many economic and
social costs both for the individual and the community.
These costs are not the same for all people; the monetary
costs to someone who is self-employed or working on very
short-term contracts is much higher than for someone who is
working at home anyway. Avoiding strict penalties for break-
ing self-isolation allows those most affected by these costs to
self-isolate less (i.e. for a 7 instead of 14 days) and may increase
buy-in to the system as a whole. Furthermore, enforcement of
self-isolation policies are an infringement on a basic liberty.
While we have not tried to compare these costs to the epide-
miological benefits, they must always be taken into account
when implementing policy.
5. In context
This paper was taken into consideration by the Department
for Health and Social Care when deciding whether to
impose a legal duty to self-isolate and was referenced in a
recent SPI-B report [44]. On the 28th September 2020, the
UK government introduced fines for breaching self-isolation
rules either after testing positive for SARS-CoV-2 or after
being contacted by NHS Test and Trace [45]. The core
assumption in our analysis was that introducing penalties
for not self-isolating would drive down self-report rates.
Our results suggest that increasing self-isolation rates at the
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expense of reduced self-report rates would make SARS-CoV-
2 outbreaks harder to control. However, given that many
other restrictions are changing simultaneously, it is unlikely
that we will be able tell whether the results from our analysis
are borne out after this change. The introduction of legal
penalties for breaking isolation also changes the important
policy question. The original policy question was whether
self-isolation should be legally mandated. Now the more rel-
evant question is when should these restrictions be lifted.

Since the first submission of this paper, results from a
large study of adherence in the UK have been released [46].
The study contains self-reported behaviour (rather than
intentions) of 42 thousand people between March and
August 2020. While the sample was not random, quotas
based on age, gender and region were used. Of those with
COVID-19 symptoms in the previous seven days, 12% (95%
CI 10–14%) requested a test (this measurement corresponds
to the self-report parameter used in our analysis) which
places the UK in the bottom row of figures 2 and 4. Of
those contacted by the track and trace system, 11% (95% CI
8–14%) self-reported as having not left home at all in the
following 14 days. This corresponds to the self-isolation prob-
ability parameter used in our analysis and places the UK in
the left-hand column of figure 4. These adherence rates did
not change between March and August. Based on this
study, the baseline assumptions made in our analysis were
broadly correct. However, further understanding of adher-
ence as a multifaceted continuous variable, rather than a
binary variable is required. Measurements of aspects of
adherence such as minimum isolation time, as used in our
analysis, are still needed.
Data accessibility. All the code used for the simulations are available
at https://github.com/timcdlucas/ringbp/tree/adherence_trade-
off_runs.
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