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Abstract

Background

In light of the role that airborne transmission plays in the spread of SARS-CoV-2, as well as

the ongoing high global mortality from well-known airborne diseases such as tuberculosis and

measles, there is an urgent need for practical ways of identifying congregate spaces where

low ventilation levels contribute to high transmission risk. Poorly ventilated clinic spaces in par-

ticular may be high risk, due to the presence of both infectious and susceptible people. While

relatively simple approaches to estimating ventilation rates exist, the approaches most fre-

quently used in epidemiology cannot be used where occupancy varies, and so cannot be reli-

ably applied in many of the types of spaces where they are most needed.

Methods

The aim of this study was to demonstrate the use of a non-steady state method to estimate

the absolute ventilation rate, which can be applied in rooms where occupancy levels vary.

We used data from a room in a primary healthcare clinic in a high TB and HIV prevalence

setting, comprising indoor and outdoor carbon dioxide measurements and head counts (by

age), taken over time. Two approaches were compared: approach 1 using a simple linear

regression model and approach 2 using an ordinary differential equation model.

Results

The absolute ventilation rate, Q, using approach 1 was 2407 l/s [95% CI: 1632–3181] and Q

from approach 2 was 2743 l/s [95% CI: 2139–4429].
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Conclusions

We demonstrate two methods that can be used to estimate ventilation rate in busy congre-

gate settings, such as clinic waiting rooms. Both approaches produced comparable results,

however the simple linear regression method has the advantage of not requiring room vol-

ume measurements. These methods can be used to identify poorly-ventilated spaces,

allowing measures to be taken to reduce the airborne transmission of pathogens such as

Mycobacterium tuberculosis, measles, and SARS-CoV-2.

Introduction

At the time of writing, over two million people have died from COVID-19 and there have

been close to 100 million cases reported worldwide [1]. The world has taken unprecedented

measures to control its spread. The role of droplet infection in transmission was established

very early in the pandemic, and current World Health Organization (WHO) COVID-19 con-

trol guidelines list a number of measures aimed at reducing or preventing droplet and fomite

transmission, such as maintaining at least a 1 metre distance from others and regular hand

washing [2]. However, it is now recognised that airborne transmission also plays a role in the

spread of SARS-CoV-2 necessitating a range of additional control measures [3–5].

Well-known and long established airborne infectious diseases continue to cause large num-

bers of deaths, with tuberculosis (TB) and measles claiming an approximately 1.4 million and

over 200,000 lives in 2019 respectively [6, 7]. Work on TB and other airborne infectious dis-

eases highlight the crucial role that ventilation levels play in transmission risk, especially in

low- and middle-income settings with high TB and HIV prevalence [8–10], and studies have

shown that transmission could be reduced if facilities were better ventilated, particularly in key

buildings such as clinics [11–14]. To help prevent transmission of pathogens by the airborne

route, WHO has previously recommended natural ventilation of at least 60 ls-1/patient for gen-

eral outpatient departments and wards [15]. To help identify inadequately ventilated spaces,

however, it is necessary to be able to estimate levels of ventilation.

Two methods are commonly used in epidemiological research to estimate ventilation rates

in indoor spaces. The first method is to estimate ventilation rates using carbon dioxide (CO2)

release experiments; that is, releasing CO2 into an empty room and measuring the rate of CO2

decay. These data can then be used to estimate ventilation rates [16]. However, this method

may not be feasible in a clinic setting, a) because the space must be empty of people (not always

possible) and b) because in large spaces that cannot easily be made airtight, it may not be possi-

ble to achieve the peak CO2 levels needed to perform accurate experiments.

The second method to characterise ventilation and indoor air quality in a room is using the

steady-state methods demonstrated in Persily and de Jonge [17]. This is a simple and more

practical approach to determining ventilation rates. The method only requires measurement/

estimation of the steady-state outdoor and indoor CO2 levels and occupancy, and makes

assumptions about the CO2 generation rate per person, which the authors defined for a range

of ages and levels of physical activity. Though this approach can be easily implemented in a

clinical setting, the steady-state method may not accurately estimate the true ventilation rate,

as the number of room occupants and CO2 concentrations are unlikely to be constant.

Ventilation measurements obtained from these, or related methods, can then be used to

estimate the potential risk of infection in an indoor space. The Wells-Riley model [18, 19] (Eq
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1) is an example of a method that can be used, under steady-state conditions, to estimate the

probability of infection in a susceptible individual (P). The input parameters are: the number

of infectious individuals present (I), the number of infectious doses (‘quanta’) produced by

each infectious individual per unit time (q) [20], the volume of air inhaled by susceptible peo-

ple per unit time (p), the absolute ventilation rate (Q), and time (t). Usually, I, p and q have to

be assumed.

P ¼ 1 � exp �
Ipqt
Q

� �

ð1Þ

Rudnick and Milton [19] adapted Eq 1 to allow for non-steady state conditions (Eq 2). Here, n

is the number of people in the ventilated space and �f is the average fraction of indoor air that

is exhaled breath:

P ¼ 1 � exp �
�f Iqt
n

� �

ð2Þ

where �f can be calculated from:

�f ¼
Cin � Cout

ca
ð3Þ

where Cin is the volume fraction of CO2 in indoor air, Cout is the volume fraction of CO2 in

outdoor air, and Ca is the volume fraction of CO2 added to exhaled breath [19]. This approach

has been widely adopted but does not permit disaggregation of the contributions that over-

crowding versus poor ventilation make to transmission risk.

In this paper, we demonstrate the application of a simple non-steady state method to calcu-

late absolute ventilation rates in a busy clinic waiting area with fluctuating occupancy. This

method is suitable for routine use in such spaces, during operational hours, and requires no

additional equipment beyond the CO2 dataloggers typically used in such research in

epidemiology.

Methods

Data

The methods were applied using data from the Umoya omuhle project [21], a large multi-disci-

plinary research project that aims to generate novel interventions for tuberculosis infection

prevention and control (IPC) in primary healthcare clinics in Western Cape and KwaZulu-

Natal, two provinces in South Africa. As part of this project, ventilation measurements were

undertaken in clinical spaces in ten primary healthcare clinics, using a combination of both

CO2 release experiments and paired indoor and outdoor CO2 measurements. Here, we focus

on one naturally ventilated clinic waiting room.

Datalogging Indoor Air Quality Meters, model 800050 (Sper Scientific, Scottsdale, Arizona;

accuracy +/- 75 ppm) were used to measure CO2 levels. CO2 measurements were taken at

three central locations within the room, with one concurrent measurement taken immediately

outside of the space to measure CO2 in the replacement air. Sets of measurements were taken

approximately every 20 minutes with headcounts of room occupants (by age category) col-

lected concurrently by research staff. Room dimensions were measured using a laser distance

meter (Bosch PLR 40R, Robert Bosch GmbH Gerlingen, Germany, accuracy +/- 2.0mm), and

used to estimate room volumes. All data were entered in Microsoft Excel and data analyses

were carried out using R version 3.6.0 [22].
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Models

Steady state approach. The methods applied in this study expand upon the model used

by Persily and de Jonge [17]. In the original study, the authors described the relationship

between steady-state CO2 concentration and ventilation rate as follows:

Q ¼
G

Cin;ss � Cout
ð4Þ

Where G is the CO2 generation rate per person (taken from [17]), Cout is the outdoor concen-

tration of CO2, and Q and Cin,ss are the steady-state ventilation rate per person and indoor

CO2 concentration, respectively (Table 1). This method does not allow for non-steady state

CO2 or number of occupants, but is rather a ‘snapshot’ of the situation, and will be inaccurate

if occupancy or ventilation levels vary.

Non-steady state approach. The method used by Persily and de Jonge [17] was adapted

to allow for changing concentrations of indoor CO2 and number of occupants. Two

approaches were investigated: approach 1, using simple linear regression, and approach 2,

which calculated the rate of change in CO2 concentration accounting for the number of indi-

viduals at each elapsed time point, t, using ordinary differential equations.

For both approaches, the mean indoor CO2 concentration was calculated at each time point

across the three monitors. The total CO2 generation rate (G) at each time point was estimated

by multiplying the number of individuals in each age group in the room at that time point by

the corresponding G for those individuals, using the reference values provided by Persily and

de Jonge [17]. Both approaches assumed a well-mixed air space. For approach 2, the differen-

tial equation (Eq 9) was simple enough to be solved analytically. The formula for the indoor

CO2 concentration was expressed in terms of the integral of the outdoor CO2 concentration

and the generation rate (G) over time. Since such quantities were known at the 10 points in

time when measurement were taken, the integral was approximated using the trapezoidal rule

between those points. For the sensitivity analysis, we evaluated the effects on the estimated

ventilation rates (using both approaches) of assuming different rates of occupant metabolic

activity.

To determine the best fitting model (between approach 1 and approach 2), the sum of

squares due to regression (SSR) was used, where the smallest value of SSR represented the best

fitting model to the clinic data.

Approach 1. Simple linear regression. This was a direct adaptation from Eq (4). We fit a sim-

ple linear regression model for the relationship between the difference in CO2 concentration

(Cin−Cout) at each time point (Table 1) and the total CO2 generation rate at each time point (n

(t)G, which is given by = nage_1Gage_1 + nage_2Gage_2. . . nage_i Gage_i), where the slope of the line

Table 1. Definitions of parameters.

Parameter Definition Units

min (Cin /1x106)V = volume of CO2 in the room l

Cin concentration of CO2 in the room ppm

Cout concentration of outdoor CO2 ppm

V room volume l

Q Ventilation rate ls-1

n Number of individuals (occupancy) -

G Total CO2 generation rate = (nage_1Gage_1 + nage_2Gage_2. . . nage_i Gage_i) ls-1

t Time elapsed from start of data collection s

https://doi.org/10.1371/journal.pone.0253096.t001
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provided Q. Note that to ensure that a total generation rate of zero corresponded to no differ-

ence in CO2 concentration, we constrained linear the y- intercept to be zero.

Approach 2. Ordinary differential equation for non-steady state model. The rate of change of

CO2 in the room was calculated by:

dmin

dt
¼ CoutQ � CinQþ nðtÞG ð5Þ

where the term n(t)G = nage_1Gage_1 + nage_2Gage_2. . . nage_i Gage_i represents the individuals

contributing to exhaled air.

Dividing both sides of the equation by V and substituting Cin = min / V (from Table 1), we

get:

dCin

dt
¼
ðCout � CinÞQþ nðtÞG

V
: ð6Þ

Eq (5) is a linear differential equation of first order, which can be solved analytically using an

integrating factor. Bringing all terms in Cin to the left, we get the equation in its standard form

dCin

dt
þ

Q
V

Cin ¼
CoutQþ nðtÞG

V
: ð7Þ

The integrating factor is then

uðtÞ ¼ exp
Z

Q
V

dt
� �

¼ exp
Q
V
t

� �

ð8Þ

and the solution of Eq (6) is

CinðtÞ ¼ uðtÞ� 1 Cinð0Þ þ

Z t

0

uðt0Þ
Coutðt0ÞQþ nðt0ÞG

V

� �

dt0
0

@

1

A:

Substituting (8) we obtain

CinðtÞ ¼ exp �
Q
V
t

� �

Cinð0Þ þ

Z t

0

exp
Q
V
t0

� �
Coutðt0ÞQþ nðt0ÞG

V

� �

dt0
0

@

1

A: ð9Þ

For any given value of Q, the integrand exp Q
V t
0

� � Coutðt0ÞQþnðt0ÞG
V

� �
in (9) was known at the 10

points in time in Table 2: the integral in (9) (and therefore the value of Cin(t) was then approxi-

mated using the trapezoidal rule between those 10 points in time.

The model was fitted to the ventilation data collected from the clinic room and the best fit-

ting value of Q was determined by minimising the residual sum of squares. The 95% confi-

dence interval was calculated through bootstrap resampling where 1000 iterations were carried

out to develop a marginal range of values of Q in order to derive 2.5% and 97.5% percentiles.

Ethics approval and consent to participate

This study received ethical approval from the Biomedical Research Ethics Committee of the

University of KwaZulu-Natal (ref. BE082/18), the Human Research Ethics Committee of the

Faculty of Health Sciences of the University of Cape Town (ref. 165/2018), the Research Ethics

Committee of Queen Margaret University (ref. REP 0233), and the Observational/Interven-

tions Research Ethics Committee of the London School of Hygiene & Tropical Medicine (ref.

14872).
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Results

Head counts for the clinic waiting room showed a higher level of occupancy in the early part

of the morning, falling over the period of measurement (Table 2). The average outdoor CO2

concentration was 400 ppm and the average indoor CO2 concentration (across three monitors

and all time points) was 419 ppm. Mean room occupancy throughout the data collection

period (of 3 hours 10 mins) was 20 individuals. The room volume was measured to be 135,363

litres (Table 3).

The concentration of CO2 in the air varied with the number of people in the clinic room

(Fig 1), as would be expected.

In the primary analysis, the level of physical activity was assumed to be 1.2 metabolic

equivalents (MET), assuming occupants were sitting quietly. The corresponding CO2

generation rates (G) were obtained from Persily and de Jonge [17]: the <1 year old age

group (G = 0.00105 ls-1), 1 to 5 year olds (G = 0.001975 ls-1) and those in all age categories

above this group (G = 0.00377 ls-1 [17]; which is the mean of G provided for all older age

brackets).

Both approaches showed comparable results though, using the SSR, approach 2 was found

to be the best fitting model (Figs 2 and 3 for model fits and Table 3). The absolute ventilation

rate was quantified as 2407 ls-1 (95% CI: 1632–3181) and 2743 ls-1 (95% CI: 2139–4429) for

approach 1 and approach 2, respectively (Table 3).

Table 2. Carbon dioxide (CO2) measurements taken immediately outside the room, from three CO2 meters at central locations within the room, and concurrent

headcounts of room occupants.

Time Time elapsed

(s)

Outdoor CO2 conc.

(ppm�)

Indoor1 Indoor2 Indoor3 Older children and

adults

Children (1–5

years)

Infants (<1

years)

Total occupa-

ncyCO2 conc.

(ppm�)

CO2 conc.

(ppm�)

CO2 conc.

(ppm�) (>5 years)

9:40 0 398 408 425 505 37 6 1 44

10:00 1200 373 422 428 483 32 6 2 40

10:21 2460 403 438 449 464 26 7 1 34

10:40 3600 403 416 436 456 29 6 2 37

11:03 4980 401 401 420 432 19 2 1 22

11:25 6300 411 401 399 403 7 1 1 9

11:50 7800 406 400 397 396 6 0 0 6

12:09 8940 409 402 402 402 4 0 0 4

12:34 10440 398 392 396 398 1 0 0 1

12:50 11400 399 400 400 401 2 1 0 3

�ppm = parts per million.

https://doi.org/10.1371/journal.pone.0253096.t002

Table 3. Results of approach 1 (linear regression) and approach 2 (model fit) for estimating the absolute ventila-

tion rate (Q) in the clinic waiting room.

Approach 1 Approach 2

Room use Waiting area

Volume of space (l) 135363

Duration of measurement (s) 11400

SSR 2 x 10−9 1.7 x 10−9

Absolute ventilation rate, Q (95% CI, ls-1) 2407 (1632–3181) 2743 (2139–4429)

SSR: sum of squares due to regression; CI: confidence interval.

https://doi.org/10.1371/journal.pone.0253096.t003
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Sensitivity analyses

We compared our original estimate, which assumed a metabolic activity of 1.2 MET, with esti-

mates assuming 1.0, 1.4, and 1.6 MET (Table 4). For example, 1.0–1.3 MET represent states

such as lying down, sitting quietly (such as when reading or writing), or standing still; 1.5

MET is seen when sitting whilst carrying out light tasks, such as office work; and 3.0 MET is

seen in individuals carrying out light standing tasks, such as filing [17]. Note, certain disease

states would be expected to increase the metabolic rate.

Regardless of the approach used, the resulting estimates of the absolute ventilation rate, Q,

increased by approximately 400 ls-1 for each 0.2 MET increase in the assumed metabolic activ-

ity level.

Differences were evident in the data between the first and last five observations (Fig 1 and

Table 2), and we therefore estimated ventilation rates separately for the two time periods. Esti-

mates of Q were similar using the first five observation compared to using all ten observations

(2510 ls-1 compared to 2407 ls-1 using approach 1, and 2571 ls-1 compared to 2743 ls-1 using

approach 2.). Neither approach gave meaningful results using the last five observations only

(see S1 File).

Finally, we showed that our results are not overly sensitivity to greater gaps in time between

observations (see S1 File).

Fig 1. Number of individuals (A) and the difference in CO2 concentration (ppm) between the indoor and outdoor

meters (B) over time.

https://doi.org/10.1371/journal.pone.0253096.g001

Fig 2. Difference between indoor and outdoor CO2 readings (ppm = parts per million) against the total CO2

generation rate at each time point (ls-1). Line represents the best fit by linear regression with y-intercept constrained

to be zero.

https://doi.org/10.1371/journal.pone.0253096.g002
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Discussion

The role of airborne transmission of SARS-CoV-2 in the COVID-19 pandemic has

brought to the forefront the critical need for adequate ventilation in indoor congregate

settings such as clinic waiting rooms. Improved ventilation would not only potentially

reduce COVID-19 deaths, but would also reduce the high numbers of deaths that continue

to occur from other airborne infectious diseases such as tuberculosis [6]. It can be difficult

to estimate ventilation in these settings however, and the approaches that are typically

used in epidemiology do not account for fluctuating occupancy and CO2 concentration

over the course of a day. In this paper, we demonstrate a simple method that overcomes

these limitations, and is suitable for widespread use both in epidemiological research and

by facility managers.

To help prevent transmission of pathogens by the airborne route, the World Health Organi-

zation has previously recommended natural ventilation of at least 60 ls-1/patient for general

outpatient departments and wards [15]. In this study, the average absolute ventilation rate of

the clinic waiting room was estimated to be 120 ls-1/patient using approach 1 and 137 ls-1/

patient using approach 2.

Both non-steady state approaches produced similar estimates of the absolute ventilation

rate with a relative difference in Q of 13% between the two approaches. However, approach 1

did not require room volume measurements and was technically and computationally less

intensive than approach 2. Approach 1 produces estimates that are likely to be sufficiently

accurate for most applications, and the analyses are considerably simpler to conduct. However,

it is worth noting that approach 2 may work better in poorly ventilated spaces where CO2 lev-

els may take some time reach equilibrium, as the method does not assume equilibrium is

instantaneously achieved. Both approaches need further validation.

Fig 3. Mean concentration of indoor CO2 (ppm = parts per million) vs time elapsed since start of data collection

(s). The line represents the fitted model from approach 2 and the black dots are the data points.

https://doi.org/10.1371/journal.pone.0253096.g003

Table 4. Carbon dioxide generation rate (ls-1) in each age group for each level of metabolic activity (MET [17]).

Metabolic activity (MET) 1.0 1.2 1.4 1.6

CO2 generation rate in each age group (ls-1) <1 year olds 0.0009 0.0011 0.0013 0.0014

1–5 year olds 0.0016 0.0020 0.0023 0.0026

Mean across all other age groups 0.0031 0.0038 0.0044 0.0050

Q� from Approach 1 (95% CI, ls-1) 1977 (1341–2614) 2407 (1632–3181) 2810 (1906–3714) 3190 (2163–4216)

Q� from Approach 2 (95% CI, ls-1) 2258 (1629–3704) 2743 (2139–4429) 3200 (2470–5346) 3639 (2765–5767)

�CI: confidence interval; CO2: carbon dioxide; MET: metabolic equivalents; Q: absolute ventilation rate.

https://doi.org/10.1371/journal.pone.0253096.t004
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The estimated 95% confidence intervals were large, with a range of 1549 with approach 1,

and 2290 with approach 2. These confidence intervals should be interpreted as reflecting both

the uncertainty we have in the true ventilation rate, but also any variation in the ventilation

rate that occurred over the 3 hour data collection period. For instance, due to windows being

open or closed, or changes in wind speeds or direction.

We only present results for one space in a single clinic, recorded on one day only. As such,

our results are not designed to be representative of clinics in the province, or even of the clinic

as a whole. When applying these methods elsewhere, there are a number of adaptations to the

data collection method described here that could improve the accuracy and generalisability of

ventilation estimates. Firstly, the duration of data collection was only 3 hours 10 mins for the

dataset used in this study. The outputs may, therefore, not be representative of a full clinic day.

Specifically, the time with the highest occupant density (early mornings) was not captured.

Additionally, there is likely to be substantial variation in ventilation rates between days, as a

result of differences in daily wind speed, wind direction, and whether doors and windows

were opened or closed, and more generally, seasonality. Using data collected over a range of

days and weather conditions would help produce a more accurate and representative estimate

of absolute ventilation. Taking more regular CO2 measurements over a longer period can be

easily done, particularly if meters can be left in situ [13]. Recording CO2 measurements and

headcount data at more frequent intervals may also improve estimates, although our sensitivity

analysis suggests that the method is not overly sensitive to moderate gaps between observations

(S1 File).

All occupants were assumed to have the same level of metabolic activity (although the varia-

tion in CO2 generation rates between age groups was taken into account). Sensitivity analyses

showed that a slight change in assumed activity levels (such as sitting quietly [1.0–1.3 MET] vs

sitting with light tasks such as doing office work [1.5 MET]) resulted, in this space, in an

increase of approximately 500 ls-1 in the estimated absolute ventilation rate per 0.2 MET

change in activity. A better understanding of the metabolic rate of individuals in clinical and

other congregate spaces could help resolve this uncertainty. Both approaches assume that air is

well mixed. The three indoor CO2 dataloggers, situated in different places in the room,

recorded very similar values to each other for most of the data collection period, suggesting

that this assumption was reasonable. Their values differed from each other at the start of the

period, however, and the assumption may therefore not have been true for the first part of the

data collection. Additionally, both approaches assume that the replacement air comes only

from the outside space where the meter is located. Where spaces adjoin other occupied spaces

and exhaled breath from adjacent spaces make a contribution to CO2 levels, the absolute venti-

lation rate may be underestimated. However, ventilation from other occupied areas will likely

not result in the same reductions in transmission risk, and so this is not a major limitation.

Finally, Table 2 and Fig 1 show a notable difference between data in the first half of the

morning, where attendance was high and the indoor CO2 concentration was well above the

outdoor concentration, and data in the second half of the morning, where few people were in

the room and the levels of indoor and outdoor CO2 were very similar. For this reason, we used

approaches 1 and 2 to estimate the absolute ventilation rate in the first half/second half of the

morning separately (cf. S1 File for more details on this analysis). While both approaches

worked well on the first five observations, they led to unreliable estimates for Q when applied

to the last five observations. This is likely due to the difference between outdoor and indoor

CO2 concentration being below the accuracy of the instrument for all last five observations.

This demonstrates that these methods may fail in settings were numbers of people are low and

ventilation rates high, although this could be mitigated by the use of more precise CO2 datalog-

gers. As government-mandated lockdowns are lifted in many countries, and people return to
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crowded congregate settings, a simple and readily scalable method may help to identify spaces

where inadequate ventilation may result in high SARS-CoV-2 transmission risk. Methods that

calculate the absolute ventilation rate are preferable, as approaches that calculate only trans-

mission risk fail to partition that risk into overcrowding versus inadequate ventilation–prob-

lems with distinct solutions.

The method demonstrated in this study improves on the existing approaches typically used

in epidemiological research, by allowing ongoing estimation of ventilation levels in busy spaces

where the number of people present and ventilation rate may change over time. Data collec-

tion requires only a CO2 meter and minimal training. The proposed analysis could be readily

programmed into a mobile phone application or an online calculator. In summary, of the two

approaches explored in this paper, we would recommend approach 1 and suggest further work

to validate the method in other settings. This could include comparing the CO2 release method

with the approaches used in this study, or taking simultaneous measurements with balometers.

However, we note that such comparisons are inherently limited. The former by the fact that

contemporaneous measurement is not possible, given one approach requires to space to be

occupied, and the other requires it to be empty. The latter as balometers could not be used on

all ventilation points in a space in which people are entering and exiting.

Simple reorganisation of the workplace or low cost retrofits can have a significant impact

on the absolute ventilation rate [12–14, 23]. Empowering clinicians, facility managers and dis-

ease intervention programmes to identify inadequately ventilated spaces is a necessary first

step in reducing the risk of acquiring airborne infectious diseases in congregate settings such

as healthcare facilities.

Supporting information

S1 File. Contains all of the S1 and S2 Tables.
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