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Perspective

Introduction

Recognition of the early years as a domain of global 
importance and the inclusion of specific child devel-
opment indicators in both the Sustainable Development 
Goal framework1 and the United Nations Secretary 
General’s Global Strategy for Women’s, Children’s and 
Adolescents’ Health2 have refocused attention on critical 
“windows of opportunity” for intervention within a life 
course perspective. The need to ensure that children meet 
their developmental potential, in the context of rapidly 
falling child mortality, has inspired the “thrive” agenda 
within the Global Strategy. However, tracking develop-
mental progress longitudinally is expensive and time 
consuming, with few existing, valid methods available 
effectively to measure and monitor at a population level 
in low-resource settings.3 Currently, some low- and mid-
dle-income countries relay on data collected every 3 to 5 

years using Demographic and Health Surveys (DHS) and 
UNICEF’s Multiple Indicator Cluster Surveys (MICS). 
These tools use a standardized methodology to assess 
health and well-being, and their outputs can support the 
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Abstract
Current approaches to longitudinal assessment of children’s developmental and psychological well-being, as 
mandated in the United Nations Sustainable Development Goals, are expensive and time consuming. Substantive 
understanding of global progress toward these goals will require a suite of new robust, cost-effective research 
tools designed to assess key developmental processes in diverse settings. While first steps have been taken 
toward this end through efforts such as the National Institutes of Health’s Toolbox, experience-near approaches 
including naturalistic observation have remained too costly and time consuming to scale to the population level. 
This perspective presents 4 emerging technologies with high potential for advancing the field of child health and 
development research, namely (1) affective computing, (2) ubiquitous computing, (3) eye tracking, and (4) machine 
learning. By drawing attention of scientists, policy makers, investors/funders, and the media to the applications and 
potential risks of these emerging opportunities, we hope to inspire a fresh wave of innovation and new solutions to 
the global challenges faced by children and their families.
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monitoring of child health and development. Broadly, the 
MICS measures developmental potential through the 
Early Child Development Index (ECDI), which is com-
posed of 4 domains: language/literacy, numeracy, physi-
cal, socioemotional, and cognitive development.4 The 
ECDI exists as one of many tools with the development 
of indicators to monitor child development globally 
remaining an ongoing area of research.5 Approaches 
such as these rely on self-report by respondents and 
observations by trained enumerators. The responses are 
influenced by social desirability of respondents, training 
level and professional background of enumerators, and 
adequate cultural and contextualization of the measures.

First steps toward meeting the need for assessments 
of children’s developmental and psychological well-
being include the National Institutes of Health’s (NIH) 
Toolbox,6 which comprises a validated set of freely 
available measures that can be used to quickly (2 hours 
or less) assess cognitive, sensory, motor, and emotional 
function in a diverse range of contexts.6 All measures 
are available electronically for use on an iPad. Rather 
than requiring highly trained research staff to simulta-
neously monitor time, record responses, and interact 
with the child, these electronic assessments simplify 
test administration and reduce cognitive load, thereby 
improving data accuracy. Although the NIH Toolbox, 
and other app versions of psychometric tests, are well 
described,6-8 little has been written about how techno-
logical innovations might benefit other child assess-
ment methodologies. The challenge is that many of the 
issues of interest are best examined through methods 
that require manual collection and coding of unstruc-
tured data. Additionally, the cost of this type of research 
continues to climb outside of low- and middle-income 
countries, making the need for new approaches a global 
imperative. Such demands impede scaling up the method 
for widespread use in research, and are impractical to 
consider within large-scale service delivery monitoring, 
evaluation, and learning activities.

The approaches we present emerge directly from our 
experience in the 2015 Jacobs Foundation conference 
on “eKIDS: Technologies for Research and Intervention 
With Children and Youth.” This meeting brought 
together leaders in child development, intervention, and 
technology in a workshop format to explore how tech-
nologies can meet the needs for better Maternal, 
Newborn, and Child Health (MNCH) research and inter-
vention. We chose a number of innovation and technolo-
gies in order to focus with more depth. The review is not 
a comprehensive list of new technologies but rather a 
detailed review of a select few promising technologies. 
The authors declare no competing interest or involve-
ment in the companies, products, and technologies dis-
cussed. The approaches we chose based on the meeting 

are (1) affective computing, (2) ubiquitous computing, 
(3) eye tracking, and (4) machine learning. Table 1 pres-
ents a short summary of each approach and outlines how 
it fits into our conceptual guide.

Affective Computing

Although not a new concept, recent advances in speech 
recognition and processing power now make affective 
computing principles useful in applied or everyday set-
tings. Affective computing is about how machines can 
be used to understand, interpret, and respond to human 
emotion.9 Machine-based recognition of people’s emo-
tional state relies on a variety of cues, including voice 
tone, facial gestures, breathing rate, and galvanic skin 
responses.

Relevance to Child Health and Development

The trajectory of a child’s social-emotional develop-
ment is strongly influenced by their early environ-
ment. Unstimulating environments that are emotionally, 
socially, and physically unsupportive are known to 
affect brain development.17 Linear growth is often used 
as a proxy for measuring the complex interplay between 
child and environment due to robust evidence of the 
long-term consequences of stunting on health.18 No 
equivalently simple measure is available to assess early 
social-emotional development. Acoustic features of a 
verbal interaction between mother and child such as 
pitch, speed, vocal rhythm, and turn taking may predict 
attachment style and can shed light on disrupted affec-
tive communication.19,20 Affective computing technol-
ogy that could be trained to recognize these patterns 
might make it possible to gauge social-emotional devel-
opment from a simple audio sample.

Application

The work of Mehl and colleagues,21 whose electroni-
cally activated recorder (EAR) yields valuable acoustic 
logs of people’s day to day experience, is one example 
of how affective computing could be put to good use. 
Laughter, arguments, and silence all can be coded from 
the EAR data. The Language Environment Analysis 
(LENA) system is a similar approach targeted at under-
standing the home environment and childcare of chil-
dren (LENA Foundation). A small audio recorder is 
worn by the child throughout the day and environmen-
tal audio periodically sampled. These audio data are 
loaded into the LENA system and are immediately 
translated into information about the environment of 
the child. A growing body of evidence exists around the 
use of LENA as a new methodology to assess language 
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development.22,23 Furthermore, future work could per-
mit automatically classifying affective state as inferred 
from the recorded vocal expression. Affective computing 
principles applied to techniques such as the EAR and 
LENA hold huge potential as natural ethnographic tools. 
They provide practical, scalable means to gather data that 
were previously too invasive and tedious to collect, and 
then code and transform them into information about 
the child’s social affective environment. In addition, the 
automation of these tools rely on means that their appli-
cation no longer needs to be restricted to research set-
tings; it is possible to deploy these tools for longer with 
larger groups, as exemplified in the Providence Talks 
program in the United States (http://www.providence-
talks.org/). A limitation of the approach might be that dif-
ferent cultures express emotion through language in 
nuanced ways. Without access to recourses, the potential 
use cases may not be applied systematically to the global 
population of children (Figure 1).

Ubiquitous Computing

The concept of ubiquitous computing24 draws on the 
successive shrinking of room-sized computers to devices 
so small and easy to use that they disappear from aware-
ness. Personal desktop computers, mobile phones, and 
wearables (Fitbit, iWatch) illustrate the device ubiquity 

spectrum. The imagined endpoint is inexpensive, low-
energy, miniaturized Internet-connected devices that are 
pervasively available in the environment to complete 
everyday tasks. One example is a smart city sensor net-
work that detects areas of high pollution.25 Together 
these networked sensors and devices provide the oppor-
tunity to monitor and respond to changing environments 
and contexts in real time.

Relevance to Child Health and Development

Identification of persistent neighborhood conditions that 
moderate efficacy of early nurturing care interventions 
offers a pathway to enhance intervention impact and sus-
tainability. Poor infrastructure, elevated violence, over-
crowding, and environmental toxicity such as pollution 
may seriously compromise maternal child functioning 
and health.26 Current caregiver-focused models com-
monly overlook contextual factors. Intensive assess-
ment methods are critical to understand community 
contexts by tapping conditions and processes in neigh-
borhoods and households.27 These tools also offer the 
opportunity for insight into both the patterns and, when 
combined with affective computing, the emotional qual-
ity of caregiver and child interactions. Other advantages 
of the approach are its ecological validity and scalability, 
that is, small devices that measure the amount of light 

Table 1. Technologies of Interest, Examples From Relevant Literature, and Research/Assessment Applications.

Research 
Field Overview

Example 
Literature Example Applications

Affective 
computing

Affective computing explores how 
machines can be used to understand, 
interpret, and respond to human 
physical and emotion states.

Poria 
et al9

Caregiver facial expressions shape children’s 
behavior and emotions. Studying this phenomena 
requires time-consuming coding. Automated 
facial expression coding (AFEC) is a first step to 
removing this barrier.10

Ubiquitous 
computing

The imagined endpoints of the ubiquitous 
computing paradigm are inexpensive, 
low energy, Internet-connected devices 
that are small and pervasively available 
in the environment.

Patrick 
et al11

The portable, solar-powered smart under-5 clinic 
booth uses ultrasound and other sensors to 
monitor child growth and vitals simply by placing 
the child in the sensor laden booth.12

Eye tracking Eye tracking technologies estimate 
direction of gaze by using infrared 
light reflections from the person’s 
eyes (cornea and pupil). The tracking 
technologies can be integrated with 
computer displays.

Jones 
et al13

Eye movement control can be altered in children 
with ADHD. The ability to direct the eyes inward 
toward a single point (vergence) in response to an 
attentional task can be used as an objective marker 
of ADHD.14

Machine 
vision

Enabling computers to process visual data 
and derive feature patterns from these 
images.

LeCun 
et al15

Syndromic genetic conditions often are accompanied 
by recognizable facial features. DeepGestalt, 
using machine learning and computer vision, 
outperformed clinicians in the identification of 200 
different syndromes in children.16

Abbreviation: ADHD, attention deficit hyperactivity disorder.

http://www.providencetalks.org/
http://www.providencetalks.org/
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in crèche could easily be deployed widely and provide 
evidence of the lighting conditions in the room without 
worrying that the lights are only being turned on when a 
monitoring visit takes place.

Application

Ubiquitous computing may offer an affordable com-
munity-level solution to the real-time monitoring of 
the environments in which children are growing, learn-
ing, and playing. These data could enable decision 
makers to locate and monitor environments not sup-
portive of positive life trajectories for children and 
inform targeted interventions to improve environments 
in which children live. Using a wireless sensor net-
work, Salathe et al28 were able effectively to track the 
proximity of students during a typical day at school 
and map social networks through close proximity pat-
terns. This enabled the authors successfully to model 
the spread of influenza-type diseases via individuals 
who come into close proximity of one another. Similar 
approaches are being developed to feasibly monitor 
child-caregiver proximity across the day in rural, low-
resource settings (Figure 2).29-31 The use of ubiquitous 
computing for child health comes at the increased risk 
of data being exposed through security breaches of sel-
dom updated embedded devices.32,33

Eye Tracking

Remote eye tracking technologies use infrared light 
reflections to estimate a person’s direction of gaze. Low-
cost eye-tracking cameras can be integrated with com-
puter displays for unobtrusive data collection on eye 
movements and visual fixations during everyday screen-
viewing situations.

Relevance to Child Health and Development

Problems in neurocognitive development are common 
in children with birth complications, and in settings with 
high levels of poverty, undernutrition, parental psycho-
social problems, and stress. Efforts to study and manage 
these problems require accessible measures of develop-
mental outcomes. Traditional tests of visual function 
(eg, acuity and perimetry), attention, and learning in 
infants and young children rely on manual assessments 
of children’s visual fixations to pictorial stimuli, and as 
such, are costly and difficult to standardize.

Application

Fully automated rapid tests have been developed for 
assessing infant visual function, attention, and sequence 
learning.13,34,35 Field tests support the technical feasibil-
ity and robustness of eye tracking–based testing of 
infants in high- and low-resource settings. For example, 
Forssman et al35 piloted the use of infrared eye tracking 
as an alternative to standard cognitive tests in assessing 
and monitoring early neurocognitive development in 
children in low-resource settings in rural Malawi. 
Similar studies have been documented in other low-
resource countries.36-39 In addition to the research assess-
ing cognitive development in groups of children, eye 
tracking may have utility as a diagnostic tool in the 
assessment of specific neurodevelopmental problems in 
individual children. Recent studies have, for example, 
shown promise in the use of this technology in assessing 
visual (resolution) acuity,13 autism spectrum disorders,40 
and attention deficits.14 If these tests can be incorporated 
into routine health checkups, they may offer a practical 
solution for large-scale screening of neurocognitive 
problems in children.

Machine Vision

One of the most elusive and persistent shortcomings of 
computers has, until recently, been their inability to pro-
cess visual data and derive feature patterns from these 
images. Although even a child can tell you whether or not 
a photograph contains a dog, image classification has 
remained a stubborn challenge in computer science. 
Artificial Neural Networks (ANNs) were originally 
developed to mimic the human brain. Dendrites receive 
inputs, and based on these inputs, they produce an output 
through an axon to another neuron. ANNs were not very 
effective at these visual recognition tasks. The discovery 
of Deep Neural Networks, (DNNs), ANNs manipulated 
to contain multiple layers between the input and output, 
are, however, very good at this task and have propelled 

Figure 1. Laughing (top) visualized as a raw wave form and 
(bottom) representing Mel Frequency Cepstral Coefficients 
(MFCCs), which are a feature of audio signals that are widely 
used in automatic speech and speaker recognition.
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rapid advances in the field over the past 5 years. The rate 
at which DNNs continue to improve at tasks such as 
visual recognition are accelerated over this time, although 
there is concern that these current methods will soon 
begin to plateau.

A suite of modeling techniques uses multiple pro-
cessing layers to extract constructs from data by learn-
ing increasingly abstract representations of the original 
data.41 Deploying the huge amount of visual data now 
available online, such DNNs are able to process images 
and accurately predict the content and objects contained 
in the image.15 For instance, deep neural nets have been 
shown to achieve an accuracy of 97.5% when asked to 
recognize the gender of a person in an image.42 These 
advances have, however, been found to have significant 
bias due to the Western slant inherent in many of the 
training dataset.43

Relevance to Child Health and Development

Positive and frequent caregiver-child interactions are 
fundamental to healthy child development. Practices of 
physical care and attending to the infant’s basic needs 
establish a caregiver-child relationship that will influ-
ence the social, emotional, and cognitive development 
of the child. The quality of the caregiver-child bond cor-
relates positively with developmental outcomes of social 
competence and emotion regulation.44 The relevance 
of the field of machine vision to child health and devel-
opment lies in the opportunity to automatically code, 

detect, and monitor the world as experienced through 
the eyes of the child. Applied to tasks such as the auto-
matic analysis of video containing children undertaking 
tasks of interest and detection of syndromic disorders 
through facial image analysis, many time-consuming 
tasks that previously required specialist training could 
be handed off to machines and routinized.16,45,46

Application

Assessment of this relationship currently generally 
requires specialized, highly skilled practitioners who 
painstakingly review and code videos of caregiver-child 
interactions frame by frame.47 This intensive, unscalable 
approach would be revolutionized by advances in the 
field of computer vision. Video footage of such interac-
tions that previously has been coded would need to be 
located in order to create as large a training dataset as 
possible. These data then could be leveraged to train a 
classifier on what different types of interactions look 
like (using the labels already assigned to the footage by 
skilled human coders). Once trained, new unlabeled 
video footage could be fed into the classifier and auto-
matic coding of the interaction performed. This approach 
offers enormous potential for research in the field of 
child and adolescent development. Adaptation of sys-
tems designed to compete in the Emotion Recognition in 
the Wild (EmotiW) challenge could be a starting point 
(https://sites.google.com/view/emotiw2019). The aim 
of this challenge is to assign 1 of 7 emotions to actors in 
scenes extracted from popular style movies. The win-
ning entry in 2014 achieved a test set accuracy of 
47.67%.48 MNCH furthermore can be used to character-
ize material contents and quality of settings in which 
children live (Figure 3).49

Another example of the application of machine 
vision to child health is through the use of Google 
StreetView and other visual data sources about the built 
environment.50,51 Using these data, it has been demon-
strated that income, education, unemployment, health, 
and crime in London could be predicted with an aver-
age classification accuracy of 62% (minimum 47%; 
maximum 72%).52

Risks and Ethical Considerations

The methods and approaches described so far cannot be 
discussed in a balanced way without reference to both 
the ethical and contextual challenges rapid changes in 
technology create. The approaches described here are 
increasingly straining current ethical frameworks, often 
resulting in case-based decision-making by Researchers 
and Ethics Committees partially due to the fact that they 

Figure 2. A child wearing a proximity beacon to estimate 
time spent with caregiver.

https://sites.google.com/view/emotiw2019
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run ahead of appropriate legislation.53 The Emanuel 
framework for ethical biomedical research states that to 
be ethical, research must (1) be a collaborative partner-
ship, (2) have social value, (3) be scientifically valid, (4) 
allow for the fair selection of participants, (5) have a 
favorable risk-benefit ratio, (6) undergo independent 
ethical review, (7) require informed consent, and (8) 
maintain ongoing respect for participants.54 Classic 
guidelines such as these are now beginning to be updated 
to include further protection for participants in the era of 
biomedical big data analytics, where insights can be 
generated from social media feeds, personal health mon-
itoring platforms, home sensors, smart phones, and 
online forums and search queries.55 One example is the 
Ethics Framework for Big Data in Health and Research 
that lays out a set of clear processes for recognizing and 
resolving issues arising from research with these types 
of data.56 Significantly, this framework raises the chal-
lenges associated with informed consent as the founda-
tional ethical pillar for these types of data and explores 
alternative ethically acceptable alternatives such as the 
principles of respect for persons and social license.

One clear risk to collecting these types of data are 
privacy concerns that could result from a study data 
breach. Culturally appropriate approaches to describ-
ing these types of data collection and consulting with 
families are needed to assure understanding and agency 
for consent and participation.30,57 Finally, thoughtful 
solutions are needed to inform how best to act on 
information revealed from these data. Acute risk of 
harm, like detection of abuse and maltreatment in a 

home, require carefully considered risk management 
protocols.

Ethical Approval and Informed Consent

No ethical approval or informed consent were needed 
for this study as there was no primary data collection, 
chart review, or secondary data analysis.

Discussion and Conclusion

Population-based data on child development is essential 
to improve the lives of children globally and to substan-
tively advance the thrive agenda in the Global Strategy 
for Women’s, Children’s and Adolescents’ Health58 as 
well as to measure progress in meeting Sustainable 
Development Goals 4.2. Current efforts in this regard 
include the development of a birth to 3-year population-
based measurement framework by the World Health 
Organization, UNICEF, and UNESCO, the Global Scales 
of Early Development, and the NIH Toolbox. While such 
paper-based analogue tools provide much of the func-
tionality required for population-level monitoring and 
support, these approaches will always be limited by 
human resources, appropriate in country expertise, time 
costs, and data quality challenges. These efforts would be 
strengthened greatly by new technologies such as those 
discussed in this article, which offer the ability to rapidly 
analyze and code unstructured data at scale.

While collecting these data maybe be beyond the 
scope of academic research studies, it is increasingly 

Figure 3. Wearable camera captures from top left (a child at play, dental hygiene and a homework session outside) and what 
an automated object detection algorithm identified.
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feasible for many large technology companies. Fields, 
such as genomics, can show the way with examples of 
both the potential and challenges of public-private part-
nerships available.59 MNCH practitioners, researchers, 
funders, and policy makers should not ignore this oppor-
tunity but rather advocate for collaboration between the 
owners of these sociobehavioral datasets and the global 
health community. Managing the potential conflicts of 
interest between the research objectives, platform user’s 
expectations of data privacy, questions of ownership, 
wariness toward the commercialization of public sector 
health data and company objectives of maximizing prof-
its are limitations to this approach.60

Rather, global agencies and policy makers such as 
World Health Organization will need to take a lead 
through, for example, the eHealth Observatory and related 
initiatives to ensure ethical, sustainable development of 
tools that can be scaled up from use in small research 
studies to routine implementation at the population level. 
For researchers and implementation partners, the call is to 
engage meaningfully with these new technologies and 
grapple with the translation and adaption of these tools, 
particularly for use in low-resource settings. Opportunity 
also exists for clearer coordination of efforts that ensure 
diffusion of local innovation to the global community. 
The rate of change is a significant risk to this agenda as it 
will take a concerted effort from all concerned parties to 
remain abreast of a landscape that is changing at an accel-
erating pace. To be successful, a balance needs to be 
found that acknowledges the opportunities, recognizes 
the risks, and plans for a future that is yet to be invented.
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