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Abstract

Planning vaccine distribution in rural and urban poor communities is challenging, due in part to inadequate
vehicles, limited cold storage, road availability, and weather conditions. The University of Washington and
VillageReach jointly developed and tested a user-friendly, Excel spreadsheet based optimization tool for rout-
ing and scheduling to efficiently distribute vaccines and other medical commodities to health centers across
Mozambique. This paper describes the tool and the process used to define the problem and obtain feed-
back from users during the development. The distribution and routing tool, named route optimization tool
(RoOT), uses an indexing algorithm to optimize the routes under constrained resources. Numerical results
are presented using five datasets, three realistic and two artificial datasets. RoOT can be used in routine or
emergency situations, and may be easily adapted to include other products, regions, or logistic problems.

Keywords: humanitarian logistics; vehicle routing; vaccine distribution; medical supplies distribution; routing tool; index-
ing algorithm; route optimization

1. Introduction

Distribution of vaccines in rural Mozambique faces many challenges such as inadequate vehicles,
limited cold storage, road availability, and variable weather conditions. This paper presents joint
∗Corresponding author.

The copyright line for this article was changed on September 18, 2020 after original online publication.

© 2020 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited.

https://orcid.org/0000-0001-8987-7463
https://orcid.org/0000-0003-1838-4981
https://orcid.org/0000-0003-2506-0723
https://orcid.org/0000-0001-7462-6207
http://creativecommons.org/licenses/by/4.0/


L.P.G. Petroianu et al. / Intl. Trans. in Op. Res. 28 (2021) 2334–2358 2335

work between VillageReach, a nonprofit organization that transforms health care delivery to reach
everyone, including the most rural and remote communities (VillageReach, 2019), and the Univer-
sity of Washington (UW), Department of Industrial and Systems Engineering, to optimize delivery
routes that can improve the efficiency of vaccine distribution when considering issues such as vehi-
cle availability and reliability, road conditions, and weather. VillageReach and the UW are working
with the Mozambican Ministry of Health (MoH) to develop and test a user-friendly, Excel spread-
sheet based optimization tool called the route optimization tool (RoOT), for routing and scheduling
to effectively distribute vaccines and other medical commodities to health centers across the coun-
try. RoOT is designed to be easily updated and executed, and considers the availability of roads,
vehicles, and medical products to distribute. The tool can be used periodically for routine opera-
tions, in emergency situations, or pandemics such as COVID-19 (Peckham, 2020). RoOT can also
be used for strategic planning when exploring the effect of changes in the situation (such as new or
closed health centers, additional or fewer vehicles, new medical supplies, or new refrigerators) on
distribution plans.

2. Methodology

The process of creating RoOT started with several discussions among UW and VillageReach team
members describing goals for a light-touch routing tool for potential government users in Mozam-
bique. Based on the experience of VillageReach and the Mozambican government with current
network optimization tools, it became clear that the user interface must not be complicated to
use and that it should not be difficult to update data. Existing tools are not typically used by the
Mozambican MoH to plan distribution of medical supplies, partly because of these difficulties. The
team decided to consolidate all input data into one Excel spreadsheet file that is easy for users to
update. The spreadsheets are designed to be in a similar format to documents that the government
stakeholders are familiar with, to make data entry easy. The output results are presented in another
Excel file.

The objectives and constraints of the route optimization model were discussed with Vil-
lageReach, UW, and MoH team members, to ensure that the model reflects issues of concern
to the end users. Road and vehicle conditions are important considerations and affect deliv-
ery plans. Certain roads may not be accessible due to rain or flooding, and a different route
may be needed during the rainy season or in the event of cyclones. Furthermore, untimely
delivery may affect the potency of vaccines. For example, if a vehicle breaks down en route
or gets stuck in the mud, the temperature of the vaccines in cold storage may violate the
recommended range, which would impact the potency of the vaccines (Garnett, 2015). These
critical and practical issues that affect distribution are included as “risk factors” and are incor-
porated into the route optimization model with the use of penalty parameters in an objective
function.

Another objective is to minimize the total transit time to distribute the vaccines to the rural
areas. RoOT allows users to select either objective function, or to minimize a weighted sum of
the two objective functions. Although most routing problems minimize cost, the primary objective
in RoOT is the timely delivery of effective vaccines within constrained resources. However, a cost
calculation associated with a solution is provided to the user as additional information.
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The first prototype was shared with all team members over several conference calls, and then
the UW doctoral student traveled to Mozambique to obtain more feedback and determine im-
portant features. As is typical with vehicle routing optimization models, the computer execution
time to determine an optimal solution can be hours or even days, which is impractical for our
end users. It was determined from interviews with VillageReach and MoH that a light-touch
tool must quickly return a feasible solution so that it can be useful for operational decisions.
Instead of using a commercial solver, a new solver, called vehicle routing and scheduling algo-
rithm (VeRSA) (Zabinsky et al., 2020), was tailored to fit the considerations of vaccine distri-
bution. VeRSA uses an indexing method to determine near-optimal feasible solutions promptly
and is embedded into a branch-and-bound framework to obtain an optimality gap for intermedi-
ate solutions. Given sufficient time, it will eventually obtain an optimal solution (Zabinsky et al.,
2020). The indexing algorithm is coded in Python and reads and outputs Excel files. For compar-
ison purposes, the performance of the Python implementation is compared to the performance
of a commercial solver, Gurobi 8.0.1 (Gurobi Optimization, 2019), as well as to two open-source
solvers, CBC and GLPK (Forrest et al., 2018; GNU, 2019), on the same mixed-integer optimization
model.

RoOT was tested by VillageReach team members during the summer of 2019, and feedback
was incorporated into the version delivered on 1 November 2019. Users from the Mozambican
MoH are being trained on the use of RoOT and final modifications will be implemented in 2020.
RoOT will be translated into Portuguese for the Mozambican users, and the English version will be
available on Github in 2020 for other users from NGOs, government, and academia.

This paper is organized as follows. Section 3 contains background material and a brief literature
review of humanitarian logistics with a brief discussion of vehicle routing problems (VRPs) and al-
gorithms. Section 4 includes a detailed description of RoOT. The mixed-integer optimization model
is given in Section 5, and the indexing algorithm is discussed in Section 6. Numerical results com-
paring the performance of several solvers using three realistic datasets are presented in Section 7,
and finally, conclusions are drawn in Section 8, followed by future work in Section 9.

3. Background and literature review

3.1. Humanitarian logistics

Vaccine distribution is a difficult problem for governments around the world, but it is especially
challenging in poor neighborhoods and low- and middle-income countries, where the demand is
uncertain due to lack of accurate population estimates, and road infrastructure is poor, even in-
accessible under some weather conditions. Chan et al. (2013) discuss the problem that low- and
middle-income countries have of adopting new vaccines. For example, 98% of newborns in low-
income countries do not receive pneumococcal conjugate vaccines, according to their government
plan, while in high-income countries, the number is 13%. The geography of many low-income coun-
tries, such as the lack of proper roads or transportation methods to reach populations in need (Chan
et al., 2013), is an important factor. In addition, current distribution respects political boundaries
(Lim et al., 2019). Therefore, it is important to understand this type of humanitarian logistics prob-
lem and adapt how other fields achieve efficient distribution under these conditions.
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Fig. 1. Last mile of vaccine delivery.

Even though it is important to understand the underlying conditions in this type of humanitarian
logistics problem, it is also vital to recognize the available supply-chain tools that can improve
operations in these circumstances. Van Wassenhove (2006) and Tomasini and Van Wassenhove
(2009) discuss the existing gap between supply-chain tools for humanitarian organizations and
those used in the private sector. Humanitarian organizations have begun to realize the value of
logistics and supply-chain management tools used in the private sector to improve their operations
(Van Wassenhove and Pedraza Martinez, 2012). Consequently, humanitarian organizations have
begun to adopt private sector practices in their operations.

For example, using supply-chain practices from the private sector, Nigeria has increased its im-
munization coverage by about 30%, with a cost reduction of about 15% (Sarley et al., 2017). Using
computer simulation, Lee et al. (2016) redesigned the vaccine distribution process in two provinces
in Mozambique, as a joint effort with VillageReach. The redesign increased availability by 27% and
8%, while decreasing costs by 40% and 37%, respectively. However, some differences between a pri-
vate sector supply chain and a humanitarian relief chain should be noted. In the private sector, the
network configuration is more stable with respect to supply and demand (quantities and entities
involved), while they are challenging to predict and are less consistent in humanitarian logistics
(Manopiniwes and Irohara, 2014). In addition, cost is often the sole objective in the private sec-
tor, whereas a humanitarian relief chain may prioritize rapid distribution using available resources
(Tomasini and Van Wassenhove, 2009).

Limited technology is an important consideration for humanitarian logistics, such as poor In-
ternet connectivity, lack of real-time data, and outdated computers. Supply-chain tools need to be
simple for users, and may not be adopted by the end users if they are complex to use, require data
that are not easily available, require time to update, or need a fast reliable Internet connection. There
is a lack of tools for routing that are easy to use and address desired issues that were highlighted
during interviews with VillageReach staff and Mozambican MoH officials (Vitoriano et al., 2013).

The differences between humanitarian organizations and private sector, and the lack of available
tools motivate the development of an easy-to-use routing tool that is designed to address last mile
(Laseinde and Mpofu, 2017) vaccine distribution in a developing country. Figure 1 exemplifies the
last mile for vaccine delivery.
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Table 1
Humanitarian logistics tools/software

Tool/software name

1. LLamasoft—supply-chain Guru—cloud-based supply-chain design software
2 HERMES—highly extensible resource for modeling event-driven supply chains
3. GLC—global logistic competence
4. SUMA
5. LSS
6. Fritz Institute—Humanitarian Logistics Software (PRSRM-HLS)
7. HELIOS
8. Sahana
9. Chevinfleet

10. Logistimo
11. Parcel Project
12. UNICEF
13. ELIST
14. DMIS
15. LOGITIX

Table 2
Vehicle routing tools/software

Tool/software name

1. ClearD Optima
2. DISC
3. Intelligent routing
4. JOpt
5. ODL Studio
6. OptimoRoute
7. Optrak4
8. Routist
9. Routyn

10. Scientific logistics cloud-based route optimization
11. StreetSync Pro
12. Locus Dispatcher
13. Workwave Route Manager
14. Onfleet
15. Routific
16. Loginext
17. Track POD
18. Cro software solutions

3.2. Current tools

We evaluated 33 commercial software products listed in Tables 1 and 2, where Table 1 lists 15 soft-
ware products that focus on humanitarian logistics and Table 2 lists 18 software products that focus
on routing. Most of the software that provide decision support systems for humanitarian logistics
focus on inventory control and are primarily used for disaster preparedness and response but do
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not incorporate routing. These systems also primarily address management but not operational is-
sues (Vitoriano et al., 2013). Therefore, this project focused on developing a routing optimization
tool that is simple to use, and in which the user interacts only with Excel files. The optimization
algorithm is run in Python in the background to create the distribution routes and schedules.

3.3. Vehicle routing problem

The problem addressed in this project is a VRP in which routes between centers are planned such
that each center is visited once by a vehicle, and each vehicle starts at the distribution center (often
termed as a depot) and returns to it by the end of its route. This VRP is widely studied and Laporte
(1992) presents a comprehensive review of the problem. There are many variations of the VRP that
are studied, such as the addition of time constraints including time windows for delivery, total time
for each route (Solomon and Desrosiers, 1988; Kohl and Madsen, 1997), and capacity constraints
(Laporte et al., 2002; Sungur et al., 2008).

The problem considered in this paper includes capacity constraints on the vehicles and can be
formulated as a capacitated VRP (CVRP) (Laporte et al., 2002). The need of a cold chain is also
an important aspect to consider in vaccine distribution (Lim et al., 2019). Vaccines are perishable
and inappropriate refrigeration outside of ideal storage temperatures results in waste (Comes et al.,
2018). Since the vehicles in Mozambique use “cold boxes” as passive containers to keep the vaccines
within the proper temperature range, we consider the capacity of cold storage by vehicle type. The
size of the vehicle (e.g., motorcycle, car, truck) determines the limited total capacity for its passive
container for cold storage and other medical supplies that do not require refrigeration. Therefore,
we incorporate two types of capacity constraints per vehicle, called cold and dry capacities. Prosser
et al. (2017) discuss the importance of redesigning vaccine supply chain in Benin since insufficient
cold chain capacity jeopardized the distribution of new vaccines.

Large and small cold boxes can maintain the proper temperature for a specified maximum
amount of time before the vaccines are either used or transferred to a refrigerator at a health center.
In this model, the total time of a route is constrained so that the cold box will preserve the vaccine
until final delivery. We do not allow transfer of products between health centers, as it would require
intermediary storage and some regions do not have electricity. Therefore, in addition to the vehicle
capacity constraint, we also include timing constraints, such as a constraint on the time from depar-
ture to the time of delivery and a constraint on the time for a driver to complete a route (typically
eight hours) as in Laporte (1992), Laporte et al. (1992), Bräysy and Gendreau (2005), Chen et al.
(2006), Grasas et al. (2014), and Zabinsky et al. (2020).

Different factors can lead to vial wastage in vaccine distribution. In addition to refrigeration or
cold boxes keeping the vaccines within a proper temperature range, closed vial wastage may be due
to breakage of vials (Hanson et al., 2017). We include the risk of breakage of vials due to poor road
condition or poor vehicle condition with a penalty parameter.

In humanitarian logistics, most routing problems focus on disaster preparedness, for example,
earthquakes (Mete and Zabinsky, 2010; Ahmadi et al., 2015; Tofighi et al., 2015). These problems
are commonly modeled as classical vehicle routing or dynamic network problems, having as ob-
jective the minimization of total travel time, unmet demand, or cost (Ozdamar and Ertem, 2015).
Hoyos et al. (2015) consider the use of operations research in disaster operations management.
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In 48 papers using mathematical models, the most common goals were to minimize cost (31%),
minimize unmet demand (21%), and maximize regional coverage (19%).

The model presented in this paper has two objective functions, that is, minimization of trans-
portation time and minimization of risk factor for spoilage and breakage of vaccine using penalties
for use of certain roads and vehicles. Although much has been written about the importance of
transportation for humanitarian logistics, infrastructure risks such as information technology, fi-
nancial systems, and transportation are rarely addressed, and those risks are responsible for most
of the network disruptions. Since transportation is fundamental to humanitarian logistics, its risks
should be properly accounted for (Baharmand et al., 2017). According to Ozdamar and Ertem
(2015), road risks should be considered in the objective function, along with cost, travel time, and
demand satisfaction. Furthermore, road failure, caused by flooding, road sink, or bridge collapse,
could make a calculated route longer than expected or even infeasible (Hamedi et al., 2012). An op-
tion is to consider the reliability of the transportation scheme, such as the probability of not com-
pleting a route. Penalty parameters are also used to incorporate a failure probability as in Hamedi
et al. (2012). The use of penalty parameters reduces the amount of traffic (e.g., number of vehicles)
on unreliable roads (Hamedi et al., 2012). Another way to calculate risk is to estimate the proba-
bility a road between two centers is inaccessible. Nolz et al. (2011) identify critical roads that could
be bottlenecks in a tour. Avoiding the bottleneck decreases the total risk. In one example, using a
minimum risk approach, the risk range decreased from 0.97–0.98 to 0.81–0.83. However, the travel
time range increased from 0.25–0.61 to 0.59–0.98. Since there is a trade-off between risk and travel
time, the users of RoOT will decide whether to minimize risk (e.g., penalties) or minimize transit
time, or minimize a weighted sum of both objectives.

While analyzing risks for humanitarian logistics is not typically addressed in the literature (Ba-
harmand et al., 2017), risk minimization is one of the main goals when transporting hazardous
materials. Since the 1970s, the National Transportation Safety Board recommends a risk-based
approach for transporting hazardous materials (List et al., 1991). One of the reasons there is a
large quantity of research done for risk minimization is that fatalities due to hazmat-related traffic
accidents are considered unacceptable (Akgün et al., 2007). Among multiple objectives for routing
hazardous materials, minimization of risk should be the main objective (Patel and Horowitz, 1994).

Some approaches for risk analysis for hazardous material transportation incorporate an evalua-
tion of accident rates by mode, carrier type, vehicle type, and road classification (List et al., 1991).
According to List et al. (1991), private vehicles have lower accident rates than for-hire vehicles, and
accident rates due to the time of day and weather conditions depend on the roadway type. In addi-
tion, accident rates may consider the road classification (expressways, arterials, collectors, ramps),
the designed speed, the surface condition, and visibility (Saccomanno and Chan, 1985).

Considering the weather and time of day (e.g., daylight or night) is also important. Weather
affects not only the transit time but also the risk of an accident. This includes the risk of the harm
that a hazardous spill can do to the nearby population (Akgün et al., 2007). Moreover, other risks
that may be addressed are the probability of an accident or delay at a facility, the accident rate en
route, and the probability of an accident due to speed and road condition (Batta and Chiu, 1988).

Therefore, to minimize the spoilage and breakage of vaccines, the methodology used for haz-
ardous materials was applied and vehicles and road were classified according to their conditions,
assigning corresponding penalties to each. The corresponding objective function representing risk
is the minimization of the sum of these penalties.
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3.4. Exact methods and heuristics for solving vehicle routing problems

The VRP is in general NP-hard and is difficult to solve exactly for instances with more than 50
customers (Laporte et al., 2002). Exact methods that guarantee an optimal solution usually start
with a relaxation of the linear problem, followed by a presolve phase to reduce the problem. Then
they apply branch-and-bound, branch-and-cut, or cutting-plane algorithms to solve the problem
exactly (Martin, 2010; Forrest et al., 2018; GNU, 2019; Gurobi, 2019). Research on solving large-
scale VRPs often focuses on heuristic solution approaches, which do not guarantee optimality but
can find good solutions quickly to large-scale problems. Cordeau et al. (2002) and Vidal et al.
(2013) present extensive comparisons of heuristics applied to solve VRPs. Common heuristics are
tabu search, genetic algorithms, and greedy randomized adaptive search procedure (GRASP) (Kon-
toravdis and Bard, 1995; Taillard et al., 1997; Gendreau et al., 1999; Berbeglia et al., 2010; Vidal
et al., 2012; Grasas et al., 2014; Hanson et al., 2017).

To address large-scale problems, this paper applies a variant of the VeRSA presented in Zabin-
sky et al. (2020). VeRSA is an exact method that embeds an indexing rule to prioritize pickups on
different routes in a branch-and-bound framework, dynamically constructing the branches to be
traversed. Therefore, it is possible to reach a near-optimal feasible solution quickly, while guaran-
teeing an optimal solution if the user runs it long enough. In Zabinsky et al. (2020), the performance
of VeRSA compared favorably to a commercial solver and a genetic algorithm. In this paper, we
adapted the indexing algorithm used in VeRSA to our vaccine distribution and routing problem,
as discussed in Section 6.

4. Description of the route optimization tool

4.1. Model approach

The routing optimization model in RoOT is a mixed integer program (MIP) with two objectives
and constraints tailored to the vaccine distribution problem in Mozambique. The participation of
all team members in the modeling effort aided in identifying important considerations. Discussions
of how to incorporate data from existing sources into Excel spreadsheets were also critical for the
light-touch tool to be accepted and used.

In every province in Mozambique, vaccine distribution is done by district to respect political
boundaries. Three datasets are included in this paper, with one district in each of three provinces
(Tete, Maputo, and Sofala). For example, one district in the Sofala province has 16 health centers,
5 vehicles, and 13 products.

From discussions with the stakeholders, it was decided that the model should consider the fol-
lowing:

• Multiple objectives with different weights. The users agreed that two objectives are important. The
first is to minimize total transit time and the second is to minimize the penalties for using vehicles
or roads that are not in good condition. The users can decide how to combine the two objective
functions by choosing an appropriate set of weights. The penalty parameter was also discussed.
Penalty parameters are used to represent unreliable vehicles and poor road conditions that can
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jeopardize the delivery of viable vaccines (breakage and temperature range). Since it is difficult
for users to scale penalty parameters appropriately, the Excel input file has drop-down menus
and the users select the appropriate vehicle and road condition (e.g., there are four options for a
vehicle ranging from very reliable to unreliable). The penalty parameter values are determined in
the Python code to maintain appropriate scaling.

• Supply and demand issues. It was discussed that the demand projections can exceed the supply,
and also that demand can exceed the storage capacity at a health center. Usually, vaccines are dis-
tributed once a month in Mozambique, so it was agreed that if there is insufficient supply to meet
all of the monthly demand, then the input demand will be scaled back until it reaches the avail-
able supply. In this case, the recommendation is to do more than one delivery during the month,
when the products arrive. Sometimes the demand at a health center exceeds the current storage
capacity at the center, however, it is anticipated that there will be sufficient storage when needed
(perhaps a refrigerator is awaiting repair). In this case, a warning is issued but the optimization
can still be run.

• Allow multiple routes per vehicle. The user inputs all available vehicles, and each vehicle is assigned
a route. In addition, each route has a maximum duration time (typically eight hours, specified by
the user). If needed to achieve the complete distribution, vehicles can be assigned more than one
route, however, all available vehicles should be used before one is reused. For example, if two
vehicles are available, with available drivers, each will be assigned a route that may be completed
on the same day. However, if the two vehicles do not have enough carrying capacity or time to
deliver all of the vaccines, they can be assigned an additional route to complete on another day.

• Cost. Although the users do not want to necessarily minimize cost in the objective function, they
are still interested in the cost of the routes and distribution plan. Cost calculations are provided
in the output file based on input cost parameters. It should be noted that the costs are calculated
after defining the routes, and are not part of the optimization model.

4.2. Usability

It is important that the tool should be easy to use, and usability of the RoOT led to the decision
to use Excel spreadsheets for inputs and outputs. The optimization algorithm is run by clicking on
executable Python code, which allows a user to browse and select an input file. An Excel output file
is created containing the routes with details on the types and quantities of vaccines and medical
supplies to be delivered.

VillageReach evaluated the first prototype according to usability, using methods from Nielsen
and Mack (1994). As a result, it was determined that there were too many possibilities for ty-
pos by the users, so drop-down menus were incorporated in the input file for many parameters.
Adding a new health center necessitates changes in several of the spreadsheets, so the input file
was designed so that a user only enters the name of the new health center once, and it is au-
tomatically replicated to the other sheets to avoid errors. Similarly, new vaccines, medical sup-
plies, or vehicles are input only once and then automatically replicated to sheets with connect-
ing cells. Worksheets and cells with calculations that are used by the Python program but are not
important to the user are locked and hidden. Sections 3.4 and 3.5 present the input and output
files.
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Fig. 2. Parameters sheet—input.

4.3. Input file

The input file is an Excel file with seven spreadsheets. Each sheet has brief instructions in the first
line. The headings that are highlighted in yellow require input from the user, and some of the
input cells have drop-down menus. The seven input sheets are named parameters, products, cen-
ter_capacities, demand, vehicle, distance_data, and road_condition.

The parameters sheet (Fig. 2) defines the general parameters of the VRP, including run descrip-
tion, start and final location, start time and return time for the route, drop-off time, and weights
for each objective function. The weights are used to balance the objective of minimizing transit
time with the objective of minimizing penalties for using roads or vehicles that can be risky to the
product due to their condition. Any number between 0 and 10 will balance minimizing transit time
and risk. The total is always 10. For example, the user can input 6 for the transit time weight, and
the sheet automatically calculates 4 for the weight on the penalties. If the user enters 10, the model
will only minimize transit time. If the user enters 0, the model will only minimize the penalties for
roads and vehicles (risk to vaccines).

In the products sheet (Fig. 3), the user enters the products to be distributed and their volume and
storage characteristics, such as doses per vial or number of syringes. The user also specifies if the
product needs cold storage.

The center_capacities sheet (Fig. 4) has health center information (name and type), and storage
capacities for cold and dry products. When a user enters a new center name on this sheet, it is
automatically added to the other sheets.

In the demand sheet (Fig. 5), the user enters the demand for each product to be distributed to
each center, in doses or units. If the demand exceeds the center capacity, the warning column will
turn from green to red. If there is a warning, the user should adjust the demand or increase the
storage capacity to make sure the center can store the delivered vaccines and supplies. Note that
the optimization can still be run even if there is a warning.

The vehicle sheet (Fig. 6) has the vehicle information that is used for delivering vaccines, their
availability, and their characteristics, such as average velocity, fuel consumption, fuel costs, storage
capacity, and personnel per diem costs for distribution.
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Fig. 3. Product sheet—input.

Fig. 4. center_capacities sheet—input.

The distance_data sheet (Fig. 7) displays the distance between centers as a matrix. To provide
flexibility in representing one-way roads, the distance matrix does not need to be symmetric.

Finally, the road_condition sheet (Fig. 8) defines the condition of the road between centers using
a drop-down menu, for the model to assess the risk of using that road. Options include fully paved,
partially paved, dirt road (good quality), dirt road (rough quality), boat access only, foot access
only, and not accessible.
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Fig. 5. Demand sheet—input.

Fig. 6. Vehicle sheet—input.

Fig. 7. distance_data sheet—input.

© 2020 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies



2346 L.P.G. Petroianu et al. / Intl. Trans. in Op. Res. 28 (2021) 2334–2358

Fig. 8. road_condition sheet—input.

Fig. 9. Routes sheet—output.

4.4. Output file

The Excel output file has two sheets: routes and products to be delivered. The routes sheet, in Fig. 9,
gives the recommended routes, including the distances traveled, fuel and personnel costs, utilized
vehicle and its condition, utilized capacity per vehicle, dry and cold capacities, and the centers
visited, giving the time to leave each of the centers and the road condition between them. In Fig. 9,
three routes are recommended. The summary description for all three routes is shown at the top,
and the details for the first route are also shown.

The products sheet gives the quantity of each product distributed to each center in each route,
by dose or unit. It also provides the utilized capacity, dry and cold, by center. In Fig. 10, the infor-
mation of the route is given at the top and the details of the products delivered at the first center on
the route, Center J, and its utilized capacity are also shown.
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Fig. 10. Products sheet—output.

4.5. Use cases

While developing the tool, VillageReach team members shared questions or use cases that the
Mozambican government users often asked. RoOT was designed so that these questions can be
easily answered. The questions include:

• What if my main distribution center changes location?
• What if a new vaccine is added for distribution?
• What if a new facility is added to my current list?
• What if one of my vehicles breaks down?
• What if I add a new vehicle to my fleet?
• What if the cold storage capacity at a health center is reduced?
• What if new refrigerators arrive?
• What if there is an outbreak and a need for immediate distribution?
• What if a road is unavailable?

The user guide explains how to address each of these use cases. The need to easily add a health
center, a new vehicle, a new product, or change capacities was instrumental in designing the input
sheets. The Excel input file allows the addition in one place that is replicated across sheets.

© 2020 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies



2348 L.P.G. Petroianu et al. / Intl. Trans. in Op. Res. 28 (2021) 2334–2358

Table 3
Model notation—sets, parameters, and variables

Sets

Health centers—C i ∈ C, o is the supply node
Vehicles—V v ∈ V
Refrigerated products—Pr p ∈ Pr

Nonrefrigerated (dry) products—Pd p ∈ Pd

Products—P p ∈ P
Decision variables
yi jv Binary variable: equals 1 if products are transported

from i to j using vehicle v; and equals 0 otherwise
xi jvp Quantity of product p transported from i to j using vehicle v
tiv Time that vehicle v leaves health center i
Parameters
Wt Weight for minimizing the total transit time, in [0,1] interval
Wp Weight for minimizing the total penalties, Wp = 1 − Wt

μh Average of all transit times, μh = ∑
v∈V

∑
i, j∈C 2hi jv/|V | |C|2

μβ Average of all vehicle penalties, μβ = ∑
v∈B βv/|V |

μγ Average of all road penalties, μγ = ∑
i, j∈C γi j/|C|2

dip Demand at health center i for product p
hi jv Average transit time between i and j using vehicle v
cr

v Transportation capacity of vehicle v carrying cold products r
cd

v Transportation capacity of vehicle v carrying dry products d
l Maximum time for a route
kp Volume of product p
ai j Route availability: equals 1 if route (i, j) is available;

and equals 0 otherwise
γi j Penalty for driving between i and j
βv Penalty for driving with vehicle v
W Time for product drop-off
M Big number

When the user updates the input file to answer one of these questions by changing vehicle, center,
product, or road information, the newly created input file should be saved with a new descriptive
name representing the new analysis. Also, the “run description” in the parameters input sheet may
be used to describe the changes in parameters, or the question to be addressed. The run description
is repeated in the output file to aid in linking input and output files. The output filename has
the same name as the input file with “_result_YYYY-MM-DD.xlsx” appended. This can assist in
keeping track of changes during analysis.

5. Mathematical model

The mathematical optimization model defining the problem is described in this section. Table 3
presents the sets, decision variables, and parameters of the model. It is based on the preliminary
work presented in Petroianu et al. (2019).
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In preliminary computational experiments, the number of products adversely affected the com-
putation time. To speed up computation, products are classified as needing refrigeration (cold)
or not needing refrigeration (dry) in a pre-processing phase. By grouping products into only two
categories, the number of variables in the model is reduced and so is the computation time. This
preprocessing, and similar postprocessing is invisible to the user. The inputs can allow any number
of products, and the outputs describe the products delivered along each route:

min Wt

∑

i∈C

∑

j∈C

∑

v∈V

e−hi jv/μhyi jv + Wp

∑

i∈C

∑

j∈C

∑

v∈V

(e−γi j/μγ + e−βv/μβ )yi jv (1)

subject to
∑

i∈C

∑

v∈V

xi jvp − xjivp = d j p ∀ j ∈ C, p ∈ P (2)

∑

j∈C\{o}

∑

p∈Pr

xojvpkp ≤ cr
v ∀v ∈ V (3)

∑

j∈C\{o}

∑

p∈Pd

xojvpkp ≤ cd
v ∀v ∈ V (4)

t jv − tiv + M(1 − yi jv) ≥ hi jv + W ∀i ∈ C\{ j}, j ∈ C\{o}, v ∈ V (5)

tiv + W (1 − yiov) + yi jv(hi jv + h jov) ≤ l ∀i ∈ C, j ∈ C, v ∈ V (6)
∑

i∈C

∑

j∈C

yi jv − Myojv ≤ 0 ∀v ∈ V (7)

∑

i∈C

∑

j∈C

xi jvp − Mxojvp ≤ 0 ∀v ∈ V, p ∈ P (8)

∑

i∈C

yi jv − y jiv = 0 ∀ j ∈ C, v ∈ V (9)

yiiv = 0 ∀i ∈ C, v ∈ V (10)

yi jv ≤ ai j ∀i ∈ C\{ j}, j ∈ C, v ∈ V (11)

Myi jv − xi jvp ≥ 0 ∀i ∈ C, j ∈ C, v ∈ V, p ∈ P (12)

yi jv ∈ {0, 1} ∀i ∈ C, j ∈ C, v ∈ V (13)

xi jvp ≥ 0 ∀i ∈ C, j ∈ C, v ∈ V, p ∈ P (14)

tiv ≥ 0 ∀i ∈ C, v ∈ V. (15)

The objective function (1) is a weighted sum of total transit time and total sum of all penalties
for chosen vehicles and roads during transit. In the objective function, the exponential and the
division by the means are used to normalize the parameter values and consider them in the same
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scale. Constraints in (2) guarantee that the center demand at each center is met. Constraints in (3)
and (4) limit the amount or quantity that vehicle v can carry of cold and dry products, respectively.
Constraints in (5) give the time sequence between two sequential health centers. This means that if
health center j follows i, the time that vehicle v leaves j has to be greater than the time that it passed
by i plus the transit time between the centers and the time for product drop-off. Constraints in (6)
guarantee that the vehicle will always have time to return to the supply node o, while respecting
the maximum time for the route l . Constraints in (7) and (8) ensure that each vehicle must depart
from the main health center o. In these constraints, M is a large number. Constraints in (9) require
that if a vehicle enters a health center, it has to leave it, and constraints in (10) forbid a vehicle
from returning to a center immediately after leaving it. Constraints in (11) limit the routes to the
available routes, and constraints in (12) ensure that a vehicle v traverses arc (i, j) whenever products
are carried between them. Constraints in (13)–(15) define binary variables yi jv and nonnegative
variables xi jvp and tiv.

6. Indexing method

The indexing algorithm used in RoOT is a variation of VeRSA, presented in Zabinsky et al. (2019,
2020). A detailed description of VeRSA and the variation used in this work can be found in
Petroianu (2020). To summarize, VeRSA uses an indexing method to quickly construct a feasi-
ble solution. By incorporating aspects of the objective function into the index, the feasible solution
typically has good performance.

The indexing method created for this problem is based on the mathematical model objective
functions and constraints. It is divided into two stages. The first stage defines which vehicle will be
used. The index value for choosing a vehicle is calculated according to

e−βv/μβ + ecr
v/μcr + ecd

v /μcd + evv/μv, (16)

where βv is the penalty for vehicle v, cr
v is the capacity of vehicle v for refrigerated vaccines, cd

v is the
capacity of vehicle v for dry goods, and μβ, μcr, μcd , and μv are the averages, respectively, to scale
appropriately. The vehicle with the largest index value is assigned a route next. The index prioritizes
vehicles with lower penalties and higher capacities and velocity. When all available vehicles are
assigned a route, in order of the index, then they may be assigned a second route.

After deciding the vehicle, its route is created using the index calculated in

Wte−hi jv/μh + Wpe−γi j/μγ , (17)

where i is the current center, j is the next center to visit, v is vehicle, hi jv is the transit time from i to
j using vehicle v, γi j is the penalty for road (i, j), βv is the vehicle penalty, and Wt and Wp are the
weights for transit time and penalty objective functions, respectively. The averages, μh, μγ , and μβ

are used to scale appropriately. The node with the highest index value is added to the route. This
index prioritizes closer centers and those roads and vehicles with low penalty values.

The choices of vehicle and next node to add to the route have to respect vehicle capacities, time
limits, and road availability. These constraints are considered in a feasibility check that is performed
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Fig. 11. Example of how to construct a feasible solution using the index.

every time a new node or vehicle is added to the route. The indexing algorithm constructs a feasible
solution by assigning routes until the delivery of products is complete.

The indexing algorithm allows multiple routes per vehicle, but it uses all available vehicles before
reusing any of them. This constraint does not appear in the mathematical model (1)–(15). However,
in the numerical results, the vehicles were similar, and due to the sizes of the problems, each vehicle
was used at most one time. Therefore, the results are comparable.

To illustrate how to construct a feasible solution using the index, consider an example with four
health centers (o, a, b, c), where o is the supply node (i.e., depot). Figure 11a gives the transit time,
hi jv, and the penalties, γi j , between centers. In this example, there is one vehicle with penalty, βv,
equal to 1.

In Fig. 11b, the index values calculated using (17) leaving node o and going to a, b, c are shown in
the first row. The largest value, 0.49, indicates that node b is visited next, as illustrated in Fig. 11c.
Then the index from b to a, c is calculated, and the largest value of 0.46 indicates that node a
is added to the route. Every time that a center is added, the index is calculated for all remaining
centers, and the feasible center with highest index is added to the route, as shown in Fig. 11.

In the indexing algorithm presented in this paper, the algorithm traverses the tree by calculating
an incumbent solution for each initial branch of the tree, a depth evaluation of the branch. Then it
creates an elite set with 12% of the incumbent solutions. This elite set is divided into two blocks of
solutions. From its total, 50% come from the best incumbent solutions and 50% are solutions con-
sidering the largest solution uncertainty intervals. The uncertainty interval is the local best solution
minus local lower bound. Each solution of this elite set represents a complete branch that will be
explored in search of better solution and will help to traverse the tree. The global lower bound of
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Table 4
Size of test datasets

Dataset Number of centers Number of vehicles Number of variables Number of constraints

District A-small 8 1 200 1165
District B-small 8 2 400 2330
District C-small 8 3 600 3495
District A 11 1 374 2260
District B 16 2 1568 9766
District C 13 6 3120 19,140
50 centers simple 50 5 24,200 157,025
50 centers modified 50 5 24,200 157,025

the problem is defined as a minimum spanning tree in which the cost is related to the index in (17).
The local lower bound is calculated exploring the current branch up to the its current level.

This indexing algorithm presents good results in comparison to the solvers for the same math-
ematical model, finding the optimal solution promptly for small datasets, and obtaining better
optimality gaps for larger sets, as is demonstrated in Section 7.

7. Numerical results

In this section, three realistic datasets with information from Mozambican provinces were used as
inputs to perform computational experiments. District A has 11 health centers, 13 products, and
1 vehicle. District B has 16 health centers, 13 products, and 2 vehicles. District C has 13 health
centers, 12 products, and 6 vehicles, as shown in Table 4. The three datasets have the same penalties
for all vehicles and roads. As mentioned in Section 4, the products are grouped into two types:
refrigerated and nonrefrigerated. Therefore, the models consider only two types of products while
optimizing the routes. It is valid for all datasets.

The computational experiments compared the runtime and solution found by solving the same
MIP by Gurobi 8.0.1, CBC, GLPK, and RoOT. All the tests were run on a Dell XPS13 computer,
Intel CORE i7, with 16 GB of RAM. The weighted objective function used Wt = Wp = 0.5 for
all tests.

Due to the problem sizes, optimality can be found in less than four hours only for District A.
Therefore, three smaller datasets were created to check if the indexing algorithm could discover an
optimal solution that was confirmed using Gurobi. The smaller datasets are based on a subset of
centers in each district, called District A-small, District B-small, and District C-small. The size of
each dataset is given in Table 4.

Two large test datasets with 50 health centers and 5 vehicles were also created to compare the
solvers on large instances. The first large instance, called 50 centers simple, has identical vehicles
and the penalties for all the roads are same. The second instance, called 50 centers modified, has
five different vehicles and different penalties for the roads. All the instances are available online, see
Petroianu (2019a).

For the small datasets, Gurobi was able to solve the MIP to optimality, as shown in Table 5. The
indexing algorithm in RoOT found the same optimal solutions quickly for the three small datasets,
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Table 5
Computational comparison for the small datasets

Optimal
solution

MIP Gurobi
a

(seconds)
MIP CBC

b

(seconds)
MIP GLPK

b

(seconds)
RoOT

b

(seconds)

District A-small 5.90 3.48 13.23 4.40c 1.02
District B-small 6.69 4.31 100.61 60.00 1.88
District C-small 6.20 12.35 13.23 540.20 0.90

aTime for optimal solution.
bTime to first discover the optimal solution.
cGLPK gave a different solution in comparison to the other three solvers: 4.63. However, its solution is infeasible, and does not
visit one of the health centers.

Fig. 12. Solution comparison: District A (GLPK gave an infeasible solution smaller weighted objective function than
the optimal calculated by Gurobi).

Fig. 13. Solution comparison: District B.

but did not confirm optimality within 30 minutes of runtime. The open-source solver CBC also
discovered the same optimal solutions, although taking more time, and did not confirm optimality
within 30 minutes of runtime. The other open-source solver GLPK was able to discover the same
optimal solutions for two of the three datasets, but reported an infeasible solution as “optimal” for
the District A-small dataset, its solution does not visit one of the health centers.

The realistic datasets (District A, District B, and District C) were tested running the solvers for 30
minutes (i.e., 1800 seconds). Figures 12–14 provide plots of solution versus runtime (in seconds) for
District A, District B, and District C, respectively. Note that the runtime is plotted in logarithmic
scale. An end user typically expects a near-optimal solution in less than two minutes (i.e., 120
seconds). Table 6 summarizes the best solution found in 30 minutes, with its lower bound, to provide
the optimality gap.
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Fig. 14. Solution comparison: District C.

Table 6
Computational comparison for five datasets

District A District B District C 50 centers simple 50 centers modified

Best
solution

Lower
bound

Best
solution

Lower
bound

Best
solution

Lower
bound

Best
solution

Lower
bound

Best
solution

Lower
bound

RoOT 8.57 6.16 14.24 6.11 10.23 2.93 40.46 21.36 42.73 16.03
Gurobi 7.93 7.93 14.06 10.11 10.24 8.03 40.24 24.26 44.81 21.05
CBC 8.57 4.69 14.40 2.47 11.05 1.29 – – – –
GLPK 7.30

a
4.81 16.13 7.93 12.34 1.07 – – – –

aGLPK gave a solution smaller than the optimal calculated by Gurobi, however, its solution is infeasible.

Fig. 15. Solution comparison: 50 centers simple.

Gurobi found the optimal solution for District A, and RoOT had a performance similar to the
CBC solver for that instance. For dataset District B, Gurobi, CBC, and RoOT had similar perfor-
mances running for 30 minutes. For dataset District C, containing six vehicles, RoOT had better
performance than all solvers, with small improvement over Gurobi.

However, as discussed in Section 3.4, VRPs are difficult to solve for large instances. To test the
performance of RoOT in this situation, we created two test datasets with 50 centers and 5 vehicles.
The distances are from the instance belgium-road-km-d2-n50-k10 (Smet, 2017).

The first dataset had five identical vehicles with the same penalty values, and all the roads also
had the same penalty values. Figure 15 shows solver performances. CBC and GLPK could not find
a feasible solution in 30 minutes. RoOT found a feasible solution earlier than Gurobi, and Gurobi
only reached the RoOT solution after 8.33 minutes (i.e., 500 seconds). However, Gurobi improved
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Fig. 16. Solution comparison: 50 centers modified.

RoOT’s solution and had a better solution at the end of 30 minutes. The difference in Gurobi’s
solution and RoOT’s solution at 30 minutes was not significant (Fig. 15).

The second dataset had five different vehicles, with different capacities and penalties. Moreover,
the penalties for the roads were also different. Again CBC and GLPK could not find a solution in
30 minutes. RoOT found a feasible solution and converged earlier than Gurobi, and by the end of
the 30 minutes, Gurobi had not reached the RoOT solution (Fig. 16).

8. Conclusion

The main goal of this project is to create an easy-to-use routing tool that meets the needs of the
users. The interactions between team members from the UW, VillageReach, and the Mozambican
MoH were essential to reach this objective. Through many discussions and meetings, we devel-
oped the tool presented in this paper. RoOT is available on GitHub in English and Portuguese
(Petroianu, 2019a, 2019b) as an open source for all users, especially those from NGOs, govern-
ment, and academia. MoH users were trained to use the tool in January and February 2020, and
the feedback received was favorable. However, full deployment has been interrupted due to the
coronavirus pandemic.

RoOT gives good solutions in a timely manner. The final users do not have time or resources
available to run an optimization model for hours or days to find the optimal solution. They want a
good solution in one or two minutes, and RoOT is capable of that, as shown in this paper. Moreover,
RoOT obtained good solutions within two minutes on the 50 center datasets. Scalability and speed
are important factors for the users.

RoOT can be used for analysis, to evaluate changes in the situation (e.g., new vehicles or centers).
RoOT can also be used operationally, or in emergencies, and in pandemics, such as COVID-19, and,
in addition, it can distribute other medical supplies, not only vaccines.

9. Future work

Considerations for future route optimization versions of RoOT include multiple day routes, with
mixed transportation modes (e.g., land vehicles and boats) and island deliveries. This will require
discussion on how intermediary storage of vaccines may be handled over multiple days. There is a
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risk of breakage and temperature range violation when unpacking and repacking vaccines in mid-
route for intermediary refrigeration. Mixed modes also present issues of coordination of timing as
well as capacity issues.

One of the main challenges in preparing the data for the tool is to define the distance matrix.
There is an opportunity to develop another tool that uses information from mapping and map
APIs to populate the matrix, using names of locations, postal codes, or geographic coordinates.

The computational experience with RoOT has provided insights and ideas for future improve-
ments. We will continue improving the indexing algorithm used in RoOT, to find better solutions
faster and reducing the optimality gap with a tighter lower bound. We intend to test RoOT to
evaluate its performance on more complex datasets with hundreds of centers.
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