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Human movement affects malaria epidemiology at multiple geographical levels; however,

few studies measure the role of human movement in the Amazon Region due to the

challenging conditions and cost of movement tracking technologies. We developed an

open-source low-cost 3D printable GPS-tracker and used this technology in a cohort

study to characterize the role of human population movement in malaria epidemiology

in a rural riverine village in the Peruvian Amazon. In this pilot study of 20 participants

(mean age = 40 years old), 45,980 GPS coordinates were recorded over 1 month.

Characteristic movement patterns were observed relative to the infection status and

occupation of the participants. Applying two analytical animal movement ecology

methods, utilization distributions (UDs) and integrated step selection functions (iSSF),

we showed contrasting environmental selection and space use patterns according

to infection status. These data suggested an important role of human movement

in the epidemiology of malaria in the Peruvian Amazon due to high connectivity

between villages of the same riverine network, suggesting limitations of current

community-based control strategies. We additionally demonstrate the utility of this

low-cost technology with movement ecology analysis to characterize human movement

in resource-poor environments.
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INTRODUCTION

The Loreto Department of Peru, in the Amazon region, is the
most important malaria-endemic area of the country where
more than 95% of country-wide cases are transmitted. Most of
these cases are due to Plasmodium vivax (80%), followed by P.
falciparum (20%), and are mainly transmitted by Nyssorhynchus
(Anopheles) darlingi. Intensified control efforts targeted to high
incidence villages facilitated a reduction in malaria in the 2006–
2010 period (1). From 2011 to 2017, however, a dramatic
increase in the number of malaria cases has been observed in
Loreto. Although the large reservoir of asymptomatic infections
and decreasing political commitment toward malaria control
likely contributed to this resurgence, the impact of human
movement between areas of differing malaria transmission
remains poorly understood.

In the Peruvian Amazon, malaria transmission is complex,
occurring both in villages and along river networks with
dense forest coverage where occupation-related mobility brings
infected people into proximity with vector mosquitoes (1–3). In
these settings, highly heterogeneous patterns have been observed
in malaria infections and vector indexes (3–7). Although an
intense flow of parasite populations in these areas support
the hypothesis of high connectivity between villages at micro-
geographic scales (8–10), the magnitude and impact of human
movement in malaria epidemiology is poorly understood.

Human movement has been shown to affect malaria
epidemiology at multiple geographical levels (11–13), and recent
technological advances using mobile phones and GPS tracking
have led to new insights into fine-scale behaviors and movement
processes (14–18). However, environmental conditions and lack
of service networks (telephone, internet, etc.) prevents the use of
mobile cell phone technologies in rural Amazonia. Alternative
approaches to geo-reference self-reported trajectories seem to be
promising to overcome these limitations (19, 20). For example,
self-reported movement patterns showed high connectivity
among villages in a single watershed in Peru (20), consistent with
previous studies based on travel questionnaires (3), and showed
that travel outside the community was a risk factor for malaria
(3, 4, 20, 21). Portable Global Positioning System (GPS) tracking
devices have been utilized to collect detailed movement data in
peri-urban and rural settings (22, 23). By applying movement
ecology approaches, these data can be combined with spatial
and environmental data to relate the probability of an individual
using a particular space with characteristics of that location
(24); these approaches have been applied to examine fine-scale
movement into malaria vector habitats (25). However, they have
not been applied within a riverine setting, and the costs of
utilizing those devices at a population level (∼100 USD per
GPS tracker) remain prohibitively expensive for public health
programs in this region.

These previous findings indicate potential importance of
human mobility in the maintaining and spreading malaria
transmission in river networks in the Peruvian Amazon and
highlight the need for new tools to measure and characterize
these movement patterns. As a consequence of this knowledge
gap, the MoH remains focused on control activities in high-risk

communities as single entities, instead of encompassing highly
connected landscape units (i.e., communities within watersheds).
This study addresses this gap and aimed to develop a new
device to monitor and describe human movement patterns, as
a step to provide evidence of the role of human population
movement on malaria epidemiology in rural villages in the
Peruvian Amazon river networks. An open-source low-cost 3D
printable GPS tracker was developed and manufactured, tailored
for conditions in the watersheds, to collect fine-scale human
movement. Additional information on basic demographics
and malaria infection status was also collected. To identify
potential risk factors for infection associated with mobility,
novel movement ecology analytical approaches were applied
to describe heterogeneities in movement patterns by socio-
demographic characteristics and infection status of villagers.

METHODS

Ethics
This study was approved by the Ethics Review Board of the
Regional Health Directorate of Loreto and Universidad Peruana
Cayetano Heredia in Lima. IRB approval number #100469.
Participants were enrolled upon signed an informed consent.
All the methods were carried out in accordance with the
approved guidelines.

Study Design
We conducted a proof-of-concept study to quantify human
population movement in a riverine community, and its relative
contribution to malaria epidemiology in complex river networks,
the most common setting in the Peruvian Amazon. An
open-source 3D-printable GPS tracker was developed for this
context (no mobile or internet network, dense cloud coverage,
movements through water environments) and a weekly cohort
was carried out on June 04-27, 2018.

Study Site and Population
This study was carried out in Gamitanacocha (3.426◦S,
73.318◦W), district of Mazan, province of Maynas in the
Loreto Region (Figure 1). This village is located in the
Mazan River (north of Iquitos city, capital of Loreto) and
is only reachable by boat (∼ 6 h from Iquitos City). The
landscape is composed by dense primary and secondary
tropical forest, with a rainy season between November and
May, and a dry season between June and October. This
ecological setting is highly suitable forNyssorhynchus (Anopheles)
darling breeding, the primary vector of malaria in this
area (7, 26).

Gamitanacocha is a community classified as one of the
villages with the highest risk of malaria transmission along
the Mazan river with a population of 92 inhabitants (3).
Previous studies have described complex malaria dynamics
in this area associated with occupational-related mobility
(3, 4). Twenty GPS devices were manufactured for this
proof-of-concept study. Descriptive comparison between
participants with different infection status was aimed,
although no statistical tests were intended due to small
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FIGURE 1 | Study area in Mazan district, Loreto Region, Peruvian Amazon. (A) GPS tracks collected and location of Gamitanacocha (GC), main ports: Mazan (MZ)

and Indiana (IN), and Iquitos Capital City (IQT). Each color represents a participant. (B) Heatmap of transit based on GPS tracks. Maps were produced using QGIS

2.16 (QGIS Development Team, 2018. QGIS Geographic Information System. Open Source Geospatial Foundation Project. https://www.qgis.org/) based on public

geographic data extracted from © OpenStreetMap contributors (www.openstreetmap.org) under Open Data Commons Open Database License (ODbL) 1.0 (http://

openstreetmap.org/copyright).

sample size. A purposive sampling of 20 participants (40%
of inhabitants aged 18 years old or above in the community)
was carried out proportional on whether the participant
self-reported a travel in the previous month at the baseline
(Supplementary Table 1).

Device Development
For this study, the GPS-tracker was developed and manufactured
tailored for conditions in the Amazon rainforest. Main
characteristics includes: (1) Long-life battery (to collect data
of long-duration trajectories); (2) Capacity to store the GPS
coordinates and timestamp, as well as other key characteristics
such as the number of satellites, battery life status, quality
of the GPS signal, and assigned participant ID; (3) Set a
community boundary (i.e., study area) and report whether
the participant moved outside that boundary, herein referred
to as location status; (4) Block configuration commands, so
that only the research team can configure the settings of the
device; (5) Easy set-up in the field using a Laptop or Tablet.
Configurable features include participant ID label, community
boundary (i.e., centroid and radius), time interval for GPS
collection and time duration for active and sleep modes,
tolerance of GPS error (based on a predefined boundary
area or, otherwise, on a distance from previous correct
GPS coordinate).

Hardware Architecture and Code
Description
Full description of development and manufacturing are
presented in Supplementary Methods and printable files are
available at https://github.com/healthinnovation/gorgas_tracker.

Briefly, the GPS-tracker device was based on an open
hardware platform called RePhone, designed by SeeedStudio
as a new form of phone customization and a wearable/IoT
development board (27). RePhone Geo Kit was selected due
to the size of the modules and key features (e.g., real-time
geographic position, traveling speed and time information)
including its capacity to track 22 satellites in 66 channels
(Figure 2A).

An iterative case (container of the modules) design was
conducted. Computer-aided design (CAD) models of 6 case
prototypes are presented in Supplementary Figure 1. Each
iteration was made in order to fulfill the requirements of user
interaction, portability, and efficient tracking. The final model
included a bigger battery space and efficient printing of spare
parts (Figure 2B). An efficient power management algorithm
was developed to achieve more than 6 days of battery life
(Supplementary Methods 1.1).

In order to inspect the report of whether the participant had
moved outside the boundaries of the community, a new module
with RGB light-emitting diodes (LED) and two buttons, and
an algorithm were designed. The color code was red when the
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FIGURE 2 | Open-source 3D printable GPS-tracker design and development. (A) SeeedStudio-RePhone modules used for the construction of the device. (B) CAD

3D model of the GPS-tracker device. (C) Preview of the configuration tool. Map shown in the configuration tool was produced using QGIS 2.16 (QGIS Development

Team, 2018. QGIS Geographic Information System. Open Source Geospatial Foundation Project. https://www.qgis.org/) based on public geographic data extracted

from © OpenStreetMap contributors (www.openstreetmap.org) under Open Data Commons under Open Data Commons Open Database License (ODbL) 1.0 (http://

openstreetmap.org/copyright).
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participant moved outside the boundaries, green when they did
not register movement outside the boundaries, and blue when
incorrect GPS data was recorded at initialization. Importantly,
LED lights can only be activated by the research team to avoid
modifications in the participant’s movement.

The GPS-tracker algorithm workflow is described in
Supplementary Methods 1.2. A user interface was developed for
the sole use of the research team in a Laptop or Tablet via a USB
connection. A graphic interface was developed on Visual Studio
to visualize these datasets in a comprehensive way (Figure 2C).
The GPS-tracker baseline characteristics and configuration were
described in Supplementary Methods 1.3.

Epidemiologic and Socio-Demographic
Data
At the baseline, all villagers> 18 y (n= 50) self-reported whether
they traveled in the previous month (sample stratification
criteria), sex, age, migrant status (whether they were born in
a different village), and occupation. All occupation activities
were classified into two major groups according to where the
activities were carried out (inside or outside the community).
Loggers, fishermen, and traders were classified as out-community
occupation and all the others as in-community occupations.
Previous studies (3) in this area showed that ∼85% of infections
are submicroscopic (undetectable by microscopy but detectable
by molecular inspection), thus, to account for the overall burden
of malaria infections, the infection status was assigned according
to molecular (PCR) diagnostic at Plasmodium spp. genus level.
Participants were classified as infected if they had a positive
diagnostic at least at once during the study period, or non-
infected otherwise.

Human Movement Data
Upon enrollment, a unique code was assigned to each participant
and paired to the GPS-tracker device. A description of the
functions and use of the GPS-tracker devices were provided
to the participants by the fieldwork team. Also, a water-proof
case was provided with a buckle so they can carry it in the
arm, belt or pocket. During each weekly visit, the battery of
the GPS-tracker was replaced to maximize the activity period
of the devices and participants were screened and incentivized
to ensure compliance for device use. In addition, a standardized
travel questionnaire was conducted and compared with the GPS-
tracker device.

Blood Sample Collection
Blood samples on filter paper for PCR diagnostic were collected
by finger-prick if: (1) the participant self-reported travel outside
the village; (2) the GPS-tracker recorded travel outside the village;
(3) the participant presented clinical symptoms compatible with
malaria. A second blood sample was collected after 4 days
to avoid misclassification of infection status due to disease
progression (undetectable parasitemias at the beginning of
the infection). Plasmodium species-specific identification was
conducted using a modifiedMangold et al. (28) protocol. Further
details in Supplementary Methods 1.4.

Data Processing and Analyses
Fisher’s exact test for categorical variables and t-test for
continuous variables were used for significance testing between
villagers in Gamitanacocha that were included (n = 20) and not
included (n= 30) in this study.

A trajectory was defined as a single person-day follow-
up. Geo-processing and trajectory statistics were described in
Supplementary Methods 1.5. To characterize the total amount
of space used by participants in addition to the distance
traveled, we calculated the utilization distribution (UD) for
each individual, the probability of an individual being in a
specific location during the sampled time. Within movement
ecology, UDs are used to estimate the size of a home range
and characterize the frequency different areas are used; these
approaches have also been applied to understand space use of
hunter gather populations (24). UDs were estimated for each
individual using biased random bridges (BRBs) (29). In contrast
to kernel smoothing methods, BRBs estimate UDs using a
time-ordered series of points, allowing interpolation of missing
values and adjustment for spatial error and irregular sampling
times. To fit BRBs, we estimated the maximum time at which
movements were uncorrelated as 3 h, the minimum distance
below which an individual is considered stationary as 10m
and the minimum standard deviation in relocation uncertainty
as 30m. These parameters were chosen to account for GPS
recording error as well as typical movement patterns within
this region. Estimates of home range use were based on the
95th percentile, representing the area with a 95% cumulative
probability distribution of use by the individual during the
sampling period. We additionally evaluated the home range
core area, the area most commonly used by the individual,
based on the 50th percentile. We analyzed data separately
for each individual for all recorded movements and for only
movements occurring during peak mosquito biting periods (6
P.M.−6 A.M).

Travel categories (movement profiles) were derived from
travel distance and duration, and the infection status associated
with each timestamp. Each travel person-day were then
grouped and compared according to occupation categories. To
understand the environmental selection process by villagers
moving through the landscape, an integrated step-selection
function (iSSF) analysis was conducted with the “amt” package
in R (30). iSSF are commonly used to link environmental
covariates to animal tracks, however in this study was used
to make inference regarding environmental selection and
movement processes along a Euclidean gradient from their
home village comparing between infection status. Briefly,
iSSF are estimated by comparing observed steps connecting
successive locations to random steps, using a likelihood
equivalent of a Cox proportional hazards model (30, 31). The
underlying surface was constructed based on a raster with
the Euclidean distance from Gamitanacocha and categorized
in 10 equal-length intervals. A separate iSSF analysis was
conducted for each infection status. We demonstrate how
this data can be visualized to explore associations of risk
between either individual characteristics or specific movements
or trips.
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Maps were generated with QGIS 2.18 (QGIS Geographic
Information System, Open Source Geospatial Foundation
Project: http://www.qgis.org) and all analyses and visualizations
were produced using R v.3.6.0 (R Development Core Team, R
Foundation for Statistical Computing, Australia).

RESULTS

Baseline Characteristics
This study enrolled 20 participants between 18 and 77 (mean =

40) years old. Most (80%) self-reported travel within the previous
year, following the same proportion of travel-reporting at the
total population in the riverine community of Gamitanacocha
(sample-stratification criteria). The most common occupations
(logging, farming). take place outside the community (70%);
and 40% of participants were migrants (born in a different
village). A higher proportion of males (75%) was observed in
the sample in comparison to the general population (56%).
Gender and study level were the only variables with statistically
significant differences between participants included and non-
included in the study. Malaria infection status among the
enrolled villager was comparable to those not enrolled. Most
(60%) were infected at least once during the 1-month follow-up
period (Supplementary Table 1).

Human Movement Records
After initial cleaning, 45,980 GPS coordinates were processed
(Figure 1A). Movement tracking of 256 person-days were
collected (56% of total follow-up). The boundary box of the
human movements encompassed ∼2,150.900 km². As expected,
most of the movements were recorded around Gamitanacocha
village boundaries, however important areas were detected in
neighboring villages, and the Mazan city, capital of the Mazan
district and main port toward the Amazon River and Iquitos
City (Figure 1B). As expected, the number of coordinates,
step length, total length, and duration of the follow-up were
comparable between infected and non-infected participants.
Important differences were observed in the expected square
displacement, the duration of travels, and distance of travels
according to infection status with greater values observed in
infected compared with non-infected participants. The variability
was also greater in infected in comparison with non-infected
participants (Table 1).

Infection Status
Of the 20 participants followed, 11 (55%) recorded long-distance
movements (>5 km), 7 (35%) recorded maximum movements
between neighboring villages, and only 2 (10%) stayed in
the village during all the study period. In addition, single
infection 7-day windows aligned with participant’s movements
are shown in Supplementary Figure 2. Out of the 12 infected
participants, 4 (33%) carried out a long-distance movement
during the infection period (infection carriers), 3 (25%) carried
out movements to neighboring villages, and 5 (42%) remained in
the community or farms during the infection period. From the 11
participants recording long-distance movements along the study
period, the infection period encompasses only movements within T
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Gamitanacocha in 3 of them, movements between neighboring
villages in one of them, long-distance movements in 4 of them,
and 3 were not infected during the movements along the
study period.

Movement Profiles
Marked movement patterns were observed in this study
(Figure 3A). The most common pattern was short-distance
movements (<300m from Gamitanacocha) in long time
periods (> 5 h). The infection status was scattered distributed
across movement profiles, expected due to the 7-day window.
Importantly, a high proportion of long-distance travel (>
5 km from Gamitanacocha) were carried out by infected
participants, in comparison to short-distance movements where
not a clear pattern was observed (Figure 3A). Interestingly, the
greatest distances and periods were related to out-community
occupational-related activities (Figure 3B). Infected villagers
recorded more movements than non-infected villagers, and
in addition, the out-community movements were remarkably
higher in infected (by molecular test) than non-infected villagers
(Figure 3B).

iSSF and UD
This study used two analytical methods derived from the animal
movement ecology literature: utilization distributions (UDs) and
integrated step selection functions (iSSF). UDs describe the
probability of an individual being in a particular location during
the sampling period, based on the frequency of recorded visits to
these locations and the mean residence time per visit (29). Home
range estimates, areas with a cumulative probability of 95%
based on the UD, varied substantially by individual, from 2.51 to
1,652.18 hectares (ha) (mean: 349.63 ha) for all movements and
1.83 to 807.62 ha (mean: 77.47 ha) for movements only between
6 P.M. and 6A.M. Similarly, core home range estimates varied
from 0.48 to 14.24 ha (mean: 3.13 ha) for all movements and
0.38 to 6.93 ha (mean: 1.29 ha) for night-time movements. The
size of the area used was mostly higher for infected participants
compared to uninfected participants (Figures 3C,D). While men
tended to have larger home range estimates both during all
movements and night-time movements, statistical comparisons
could not be conducted due to the small sample size.

Using integrated step selection functions (iSSF) to examine
relationships between spatial distance from Gamitanacocha
and movement, Figure 3E shows the contrasting iSSF patterns
between infected and non-infected participants. A marked
increasing pattern was observed in infected participants along
Euclidian distance categories from Gamitanacocha, however,
due to the small sample size, confidence intervals included the
null hypothesis. Conversely, non-infected participants showed a
pattern most compatible with no environmental selection across
distance categories.

DISCUSSION

This study provides a field-deployable approach to obtaining
objective GPS data to characterize the role of human movement

in the epidemiology of malaria in river networks in the Peruvian
Amazon. Although human movement has previously been
indirectly pointed as important for malaria risk and exposure
based on epidemiologic, molecular and vector biology studies
(3, 4, 8, 9), and also portrayed using new geo-referencing
approached tailored to the lack of network accessibility in
these settings (19, 20), this study provides the basis to obtain
fine-scale resolution to obtain evidence regarding the influence
of human movement in malaria transmission. This study
additionally demonstrates the utility of a low-cost 3D printable
GPS technology combined with movement ecology analytical
approaches to collect and characterize human movement
patterns for disease studies.

The preliminary findings shown here suggest a higher
movement to other villages in the same watershed than
previously proposed. This movement inevitably increases the
importation risk (previously known as vulnerability) in settings
with heterogeneous malaria transmissions (32), this in turn
is a component of the malariogenic potential, that is defined
as the “likelihood of local transmission that is the product
of receptivity, risk of importation of malaria parasites and
infectivity of imported parasites” (32). Thus, as the landscape
of most malaria high-risk areas in Loreto are comparable to
the river network analyzed in this study, the high connectivity
between risk-heterogeneous units likely contributed to the
rapid rebound of malaria transmission observed after the
interruption of intervention coverage after 2010. However,
as we only sampled participants from one village, further
studies are needed to fully evaluate the connectivity between
villages within this watershed, including movements of other
populations into Gamitanacocha. Although this analysis clearly
demonstrates the movement of pathogens and people to
surrounding areas, further population-based longitudinal studies
are needed to characterize the roles of these movements in
malaria transmission.

These findings are consistent with previous studies in the
Amazon region that used self-reported travel questionnaires
(3) and participatory mapping (20). In comparison with the
aforementioned approaches, custom GPS monitors reported
in this study, were able to describe fine-scale resolution and
a larger variety of movement patterns, and this approach
has the advantage of avoiding recall bias. Trajectories
confirmed that villagers with occupational activities outside
the community were the most active movers, who were
also those who presented more malaria infections. These
preliminary results support the hypothesis of high importation
risk due to occupational activities. A higher sample size along
with genetic epidemiological data will be required to more
confidently delineate travel patterns that might predict local and
imported cases.

The movement of asymptomatic Plasmodium spp. carriers,
regardless of the location of infection acquisition, represent an
important barrier to current malaria control strategies in the
Peruvian Amazon. These findings are consistent with previous
molecular studies where high parasite population flow was
observed at micro-geographical scales and was hypothesized
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FIGURE 3 | Mobility patterns, Utilization Distributions (UDs) and Integrated Step-Selection Functions (iSSF) of Euclidean distance (ED) categories relative to infection

status of inhabitants of Gamitanacocha. (A) Distribution of profiles among categories of travel distance and time (X- and Y- axes in logarithmic scale). Each point

represents a trajectory (person-day travel) and colors represent infection status (dark = non-infected, white = Infected). (B) Travel patterns relative to infection status

and occupation activities. UDs estimates based on the cumulative probability of a Kernel Distribution (KD) at different percentiles. (C) Individual utilization distribution

calculated from GPS tracks. (D) Sample distribution of core (50) and home (95) range relative to infection status and time of movement. (E) iSSF, each color

represents a participant. Solid horizontal lines represent the population-level estimates and 95% confidence intervals are given by the light gray boxes. The dashed

horizontal line indicates no preference relative to Euclidian Distance (ED) category 1 [i.e., the community boundaries (the reference category)].
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to be due to high human movement (8–10). The concurrent
flow of human and parasite populations potentially increases
the diversity of strains with different drug-resistant profiles
(33), genome deletion that prevents the diagnostic capacity
(i.e., HRP-2 deletion) (34), and infectivity efficiency, defined
as the “ability of a given Plasmodium strain to establish
an infection in an Anopheles mosquito species and undergo
development until the mosquito has sporozoites in its salivary
glands”(32).

Movement ecology approaches shed light to the movement
processes. Analysis of space use (as measured by UD) revealed
substantial heterogeneity in individual movements, with
infected individuals primarily using larger geographic areas.
Importantly, similar trends were observed during peak
mosquito biting times at night, suggesting interventions
targeted only at households may not prevent malaria in these
individuals. Results from these analyses demonstrate how
low-cost GPS technology can be combined with movement
ecology approaches to quantitatively estimate human
space use and environmental selection for epidemiological
studies. A substantial variation in environmental selection
between individuals with different infection statuses was
observed, although no significant differences in environmental
selection between infected and non-infected individuals
were observed as consequence of the small sample size
and wide range. Of movement patterns for the same
participant; however marked patterns were observed in
infected participants than those non-infected during the
study period.

Taken together, these findings suggest that malaria
control efforts in Peruvian rural Amazon might prioritize
not only high-risk units (villages or districts), but also
include their highly connected units to address malaria
importation or exportation during transit or return to
those units. In this sense and taking into account the
topography of the Peruvian Amazon, river basins arise as
promising surveillance units. Further studies are suggested
to assess the effectiveness of such surveillance units as
new approach.

Despite fine spatio-temporal coverage of human movements
in the study, some limitations were recognized in this study.
First, it is recognized that human movement can vary seasonally
(13), especially in the Peruvian Amazon where particular
occupations, such as logging and fishing, depend on seasonal
environmental conditions (3, 4). It is expected that villagers
change their movement profiles to seek better conditions
to carry out their activities. This study only recorded the
human movement in 1-month surveillance and studies with
longer surveillance periods could capture the changes in the
movement profile relative to the changes in the malaria
transmission. Secondly, despite field-workers replacing battery
in the weekly visits, gaps in movement tracking were observed.
While analytic approaches developed to address these sampling
inaccuracies were applied (i.e., biased random bridges - BRBs),
periods without data could potentially bias this study. Finally,
the size and weight of the GPS tracker device are key
characteristics for a routine use of these devices in the Loreto

population (23). The device developed in this study has
a larger size and weight than previously reported as ideal
for these types of studies (23). Despite the fact that field-
workers encouraged participants for the continuous use of the
GPS tracking to minimize non-informative GPS tracks, few
(∼12.3 person-days of follow-up – 5% total follow-up period)
non-moving periods were detected and cleaned during the
geo-processing. Future work aimed to reduce the size and
weight of the device but maintaining the battery life and
characteristics described.

To conclude, this study developed an open-source low-cost
3D printable GPS tracker for epidemiological studies under
challenging environmental conditions such as the Amazon
jungle and provided evidence that suggest an important role
of human movement in the epidemiology of malaria in river
networks in the Peruvian Amazon. The collected fine-scale
movement patterns were observed relative to participant’s
infection status and occupation activities. This evidence suggests
that the commuting patterns between villages of the same
river network potentially jeopardizes the current control
strategies in these areas. Further studies are suggested to
evaluate a more comprehensive watershed-based approach
to improve the malaria control in the Peruvian Amazon
river networks.
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