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Abstract

Background

Mass drug administration (MDA) can rapidly reduce the burden of Plasmodium falciparum

(Pf). However, concerns remain about its contribution to select for antimalarial drug

resistance.

Methods

We used Sanger sequencing and real-time PCR to determine the proportion of molecular

markers associated with antimalarial resistance (k13, pfpm2, pfmdr1 and pfcrt) in Pf isolates

collected before (n = 99) and after (n = 112) the implementation of two monthly MDA rounds

with dihydroartemisinin–piperaquine (DHAp) for two consecutive years in Magude district of

Southern Mozambique.

Results

None of the k13 polymorphisms associated with artemisinin resistance were observed in the

Pf isolates analyzed. The proportion of Pf isolates with multiple copies of pfpm2, an amplifi-

cation associated with piperaquine resistance, was similar in pre- (4.9%) and post-MDA
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groups (3.4%; p = 1.000). No statistically significant differences were observed between

pre- and post-MDA groups in the proportion of Pf isolates neither with mutations in pfcrt and

pfmdr1 genes, nor with the carriage of pfmdr1 multiple copies (p>0.05).

Conclusions

This study does not show any evidence of increased frequency of molecular makers of anti-

malarial resistance after MDA with DHAp in southern Mozambique where markers of anti-

malarial resistance were absent or low at the beginning of the intervention.

Introduction

The administration of drugs to whole populations irrespective of disease status aims to prevent

and reduce morbidity on the one hand and reduce transmission on the other, altogether

improving global health [1]. This strategy, known as mass drug administration (MDA), is rec-

ommended by the World Health Organization (WHO) to control or eliminate several

neglected tropical pathogens, including bacteria and helminths. Recent studies suggest that

MDA, when used as part of a comprehensive and well-organized elimination programme, can

be a useful additional tool to accelerate the path towards malaria elimination [2–6].

The selection and subsequent spread of drug resistance is a major concern when adminis-

tering any antimicrobial agent on a mass scale, especially if the pathogen is being targeted with

only a single drug [1]. However, evidence for the establishment of drug resistance at large scale

driven by MDA is limited, in part due to the scarcity of programmes which have monitored

changes in drug efficacy or potential drug resistance [1]. Few reports have shown emergence

of azithromycin-resistant Treponema pallidum [7] and temporary increases in carriage of

macrolide-resistance following azithromycin MDAs [8,9], although no evidence of drug resis-

tance has been documented after long-term MDA in other situations [1,10]. With regards to

anti-malarial MDAs, circumstantial evidence has linked indirect MDA using medicated salts

to the emergence of chloroquine (CQ) resistance in the 1980s [5].

Concerns remain as to whether current MDA strategies based on the use of artemisinin-

based combination therapies (ACT) might contribute to the emergence and spread of antima-

larial drug resistance [4,5]. MDA leads to opposing forces on the selection for resistance and it

is not at all that obvious that MDA would always lead to resistance evolution. On the one

hand, MDA drastically decreases total number of malaria parasites, which reduces to probabil-

ity of de novo resistance mutations. However, it would also maximize selective pressure for any

resistant mutant that exists or does arise [11]. How both these forces play out in different epi-

demiological contexts is not yet known. Mathematical models have estimated that the imple-

mentation of MDA with atovaquone–proguanil would lead to rapid selection for high-level

resistance, even after a single round of MDA [12]. Modeling predictions suggested reduction

in the effectiveness of subsequent rounds of treatment, with total loss of efficacy within 4–5

years, although mutations in cytochrome b gene were later found to be lethal in the mosquito

host [13] and thus to impede transmission of resistant parasites. The same models suggested a

lower risk in the selection of drug resistance by ACTs such as dihydroartemisinin-piperaquine

(DHAp), due to the weaker resistance phenotype resulting from artemisinin resistant muta-

tions known to date [14–16].

Several polymorphisms in the kelch13 (k13) propeller gene of P. falciparum have been asso-

ciated with artemisinin resistance [14–17]. The reduced copy number of P. falciparummulti-

drug resistance 1 (pfmdr1) gene has also been linked to increased sensitivity to artemisinin of
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trophozoite stages [18], on the contrary, multiple pfmdr1 copies associated with declining effi-

cacy of mefloquine–artesunate in the Thai–Myanmar border [19]. Recently, plasmepsin-2
(pfpm2) copy number and polymorphisms in P. falciparum chloroquine resistance transporter

(pfcrt) gene (H97Y, C101F, F145I, M343L or G353V) have been associated with decreased

piperaquine sensitivity and high DHAp treatment failure rates in settings where artemisinin

resistance is common [20–25]. In addition, evidence suggests that the presence of 86N and

184F alleles in pfmdr1 gene may reduce the susceptibility to piperaquine in parasites expressing

the CVIET haplotype in the pfcrt gene [26].

A before-after study was conducted in southern Mozambique to evaluate the impact of a

package of interventions with the aim to interrupt Plasmodium falciparum (Pf) malaria trans-

mission [27]. Two rounds of MDA with DHAp per year over 2015 and 2017, together with

annual indoor residual spraying (IRS), programmatically distributed long-lasting insecticide

treated nets (LLINs) and standard case management, lead to a 71.3% reduction of all-age para-

site prevalence by rapid diagnostic test (from 9.1% to 2.6%), and a 61.5% reduction in case

incidence at health facility level (from 195 to 75 cases per 1000). Here we aimed to determine

the effect of MDA with DHAp on the selection of dihydroartemisinin and piperaquine resis-

tance at the population level. To achieve this, we assessed molecular markers of resistance

(k13, pfmdr1, pfcrt and pfpm2) among the circulating parasite population before and after the

implementation of MDA with DHAp in Magude district in southern Mozambique.

Material and methods

Study site

Two MDA rounds separated by a period of 4–6 weeks were deployed at the beginning of the

rainy seasons of 2015–16 (November and January-February) and 2016–17 (December and Jan-

uary-February) in Magude District (Southern Mozambique). The MDAs were targeted to the

entire population of Magude (48,488 residents, 10965 households in 2015) and reached 72.3%,

58%, 66.6% and 64.8% of the population in each of the four rounds, respectively [27].

Sample collection and study design

Blood samples were collected on Whatman 3mm filter papers from a random subsample of

individuals during the first MDA round in November 2015 prior to drug administration

(n = 6858) as well as from 3752 of the 3865 individuals participating in an age-stratified cross-

sectional survey conducted during May 2017 (after the four rounds of MDA) among all-age

individuals randomly selected from the Magude population census. qPCR was conducted on a

random selection of 1271 samples collected in November 2015 and in all samples collected

during May 2017.

DNA extraction and P. falciparum detection by real time quantitative PCR

(qPCR)

DNA was extracted from a half cut of the dried blood spot (corresponding to approximately

25μL blood) by using a QIAamp DNA Mini kit (Qiagen), as per the manufacturer’s instruc-

tions, with a final elution in 100μL of elution buffer. The ABI PRISM 7500 HT Real-Time Sys-

tem (Applied Biosystems) was used to amplify purified parasite DNA templates, using a

previously described method that targets the 18S rRNA gene [28,29]. A standard curve was

prepared from a synchronized in vitro culture of 3D7 strain containing known numbers of

ring-infected erythrocytes and performed in triplicate for each test with five serially diluted

points. P. falciparum parasitemia was quantified in the samples by interpolating the Ct values
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against the standard curve. DNAs extracted from post-MDA samples with low parasitemia

(less than 5 parasites/μl) were pre-amplified using PicoPLEX™ WGA Kit as per the manufac-

turer’s instructions (Rubicon Genomics). Amplified samples were not used for copy number

estimations using qPCR. PCR amplification and Sanger sequencing were performed on 21 ran-

domly selected samples before and after pre-amplification, to confirm that the pre-amplifica-

tion step was not affecting allele frequencies obtained by Sanger sequencing.

Analysis of molecular markers of antimalarial resistance

To assess polymorphisms in k13, pfcrt and pfmdr1 genes, purified DNA templates were ampli-

fied using 2720 Thermal Cycler (Applied Biosystems) following protocols described elsewhere

for k13 (aminoacids 427–709 of 3D7 [30,31]), pfcrt (aminoacids 35–120 [30]), and pfmdr1
(two separate fragments covering aminoacids 45–209 and 984–1277 [30]) and sent to Genewiz

for bi-directional sequencing. Six positive controls with known k13 alleles and four parasite

lines (3D7, 7G8, Dd2 and V1/S) with known pfcrt and pfmdr1 alleles [30], as well as a negative

control (water instead of template DNA), were also included. The variations in the test

sequences of k13, pfcrt and pfmdr1 were identified by sequence alignment against PF3D7_13

43700, PF3D7_0709000 and PF3D7_0523000 reference sequence of 3D7 respectively, retrieved

from PlasmoDB. Polymorphisms were confirmed in both sequences obtained using forward

and reverse primers. Isolates with mixed alleles were considered as mutant-type for the pur-

poses of polymorphism frequency estimation.

pfpm2 and pfmdr1 copy number

A qPCR was used to assess variations in the copy number of pfpm2 and pfmdr1 genes as

described elsewhere [30]. For each run, the pfpm2 and pfmdr1 copy numbers of each sample

were measured in triplicate and the pfβ-tubulin gene was used as an endogenous control. The

PCR efficiencies of the pfpm2, pfmdr1 and pfβ-tubulin genes were measured using ten-fold

dilutions of 3D7 DNA. The specificity of three primer pairs against human gDNA was also

determined. Along with no template control, positive controls with the known copies (3–4) of

pfpm2 [30] and pfmdr1 (Dd2 parasite line) were also included. All samples with Ct >35 for

pfpm2, pfmdr1 and pfβ-tubulin were not considered for the copy number analysis. The copy

number of pfmdr1 and pfpm2 genes was estimated as described previously [23]. Samples with

estimated copy number values above 1.5 were defined as having multiple copies and confirmed

in independent qPCRs [30].

Data analysis

Sex and residence area of pre- and post-MDA study participants were compared by Fisher’s

exact test, while age and log-transformed qPCR parasite densities were compared using Stu-

dent t test. The proportion of mutant alleles for each specific gene was calculated based on the

frequencies of samples with wild-type and mutant alleles. The percentage of isolates with mul-

tiple copy numbers was also determined. Fisher’s exact test was used to compare the propor-

tion of Pf isolates with resistant genotypes, as well as with multiple gene copy number, before

and after MDA. The statistical significance was defined as a p-value<0.05.

Ethics

Study ethical approval was obtained from the National Mozambican Ethical Review Commit-

tee (Mozambique), pharmaceutical department of the MoH (IRB), and Hospital Clı́nic
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(Barcelona, Spain) ethics review committees, and signed written informed consent was

obtained from all participants or from guardians/parents in the case of minors.

Results

Study participants and samples analyzed

Dried blood spots (DBS) were collected from a random selection of consenting MDA1 partici-

pants and from individuals included in an age-stratified community-based cross-sectional sur-

vey, conducted in May 2017 (three months after MDA4 round). A further random selection of

1271 (November 2015) and 3752 (May 2017) DBS analyzed by qPCR targeting Pf 18S rRNA

identified 168 and 139 Pf infections, respectively. Among these, samples which successfully

amplified k13 gene (99 and 112 pre- and post-MDA, respectively) were further selected for the

analysis of molecular markers of resistance.

DNAs extracted from samples with low parasitemia (less than 5 parasites/μl, n = 29) in

post-MDA isolates, were pre-amplified using PicoPLEX™ WGA Kit before PCR amplification

of targeted genes. Allele frequencies were similar in the 21 Pf isolates that were tested with and

without pre-amplification, meaning that pre-amplification was not affecting allele frequencies

(S1 Fig). Study participants pre- and post-MDA were similar in area of residence, age, sex and

qPCR-determined Pf densities (S1 Table).

k13 polymorphisms

The sequences of k13 were successfully determined in 99 (100%) and 107 (96%) pre- and post-

MDA isolates, respectively. As expected, all positive controls sequencing analysis revealed the

existence of wild-type and mutant alleles of k13 polymorphisms. k13 polymorphisms reported

in Cambodian isolates [15] were absent in the Pf isolates analyzed in this study. However, 2

novel synonymous polymorphisms were observed at amino acid positions 477 (0.9% [1/107])

and 548 (1.9% [2/107]), as well as a non-synonymous mutation from “aspartic acid” to “aspar-

agine” at codon 641 (2% [2/99]). The polymorphism G690G previously described in Pf field

isolates collected in 2015 from Mozambique [30] was also observed in the studied isolates

(1.9% [2/107]). No statistically significant difference was noticed when the frequency of poly-

morphisms was compared between pre- and post-MDA groups (p>0.05; Table 1; Fig 1).

pfmdr1 polymorphisms

The sequences of pfmdr1 were successfully determined in 93 (94%) and 105 (94%) pre- and

post-MDA isolates, respectively. All positive controls sequencing analysis revealed the exis-

tence of pfmdr1 wild- and mutant-type alleles. Nine polymorphisms (2 [22%] non-synony-

mous) in pre-MDA and thirteen polymorphisms (8 [61.5%] non-synonymous) in post-MDA

groups were identified in the pfmdr1 gene (Table 2). Y184F was the most common

Table 1. Proportion of P. falciparum isolates with k13 gene polymorphisms in pre- and post-MDA groups.

Pre-MDA (n = 99) Post-MDA (n = 107)

n(%) n(%) p�

S477S 0 (0) 1 (0.9) 1.000

G548G 0 (0) 2 (1.9) 0.498

D641N 2 (2) 0 (0) 0.230

G690G 0 (0) 2 (1.9) 0.498

� Fisher’s exact test.

https://doi.org/10.1371/journal.pone.0240174.t001
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Fig 1. Distribution of Plasmodium falciparum k13, pfmdr1 and pfcrt polymorphism frequencies among pre- and post-MDA isolates.

https://doi.org/10.1371/journal.pone.0240174.g001

Table 2. Proportion of P. falciparum isolates with pfmdr1 gene polymorphisms in pre- and post-MDA groups.

Pre-MDA (n = 93) Post-MDA (n = 105)

n(%) n(%) p�

T70T 1 (1.1) 0 (0) 0.470

N86Y 0 (0) 1 (1.0) 1.000

G102G 3 (3.2) 3 (2.9) 1.000

E160K 0 (0) 4 (3.8) 1.000

G182G 5 (5.4) 6 (5.7) 1.000

Y184F 57 (61.3) 53 (50.5) 0.152

L1030L 1 (1.1) 0 (0) 0.470

S1034C 0 (0) 3 (2.9) 0.249

N1042D 0 (0) 2 (1.9) 0.499

T1069T 5 (5.4) 1 (1.0) 0.101

S1137S 1 (1.1) 0 (0) 0.470

D1179D 2 (2.2) 2 (1.9) 1.000

Q1195Q 0 (0) 2 (1.9) 0.499

Y1197N 1 (1.1) 2 (1.9) 1.000

S1214L 0 (0) 2 (1.9) 0.499

D1246Y 0 (0) 2 (1.9) 0.499

� Fisher’s exact test.

https://doi.org/10.1371/journal.pone.0240174.t002
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polymorphism, observed at a frequency of 61.3% (57/93) and 50.5% (53/105) in pre- and post-

MDA samples, respectively (p = 0.152). The rest of non-synonymous mutations were at fre-

quencies less than 5%, with no evidence of statistically significant differences between pre- and

post-MDA groups (Table 2; Fig 1).

pfcrt polymorphisms

The sequences of pfcrt were successfully determined in 88 (89%) and 104 (93%) pre- and post-

MDA isolates, respectively. Wild-type and mutant pfcrt polymorphisms present in positive

controls were successfully detected. All Pf isolates carried wild-type allele at codon 72 (C), 74

(M), 75 (N), 76 (K), 97 (H) and 101 (C) in pre-MDA isolates. P. falciparum isolates collected

post-MDA presented M74I, N75E and K76T polymorphisms along with newly identified I66T

and K120E polymorphisms with allele frequencies <2%. No statistically significant differences

were observed in polymorphism frequencies between pre- and post-MDA groups (Table 3;

Fig 1).

P. falciparum gene copy number

Sixty-one (62%) pre-MDA and 59 (53%) post-MDA isolates were successfully analyzed for

copy number variation of pfpm2 and pfmdr1 genes. All positive control copy numbers for

pfpm2 and pfmdr1 genes were estimated between 3–4 copies. The lowest to highest range of

estimated copy numbers were 0.61 to 2.4 (pfpm2) and 0.63 to 2.1 (pfmdr1) for pre-MDA iso-

lates, and 0.59 to 1.56 (pfpm2) and 0.60 to 1.89 (pfmdr1) for post-MDA isolates. Using a copy

number threshold of 1.5 to define multiple gene copies isolates [30], 3/61 (4.9%) and 2/59

(3.4%) of Pf isolates had multiple copies of pfpm2 in pre- and post-MDA isolates, respectively

(Fig 2). Similarly, 3/61 (4.9%) and 4/59 (5.1%) of Pf isolates had multiple copies of pfmdr1 in

pre- and post-MDA isolates, respectively (S2 Table). No statistically significant differences

were noticed in the proportion of Pf isolates with multiple copies of pfpm2 (p = 1.000) and

pfmdr1 (p = 1.000) between pre- and post-MDA groups.

Discussion

Although the use of MDA as a tool to rapidly reduce malaria transmission has become increas-

ingly more popular [4,32–36], the question remains as to whether the distribution of antima-

larial drugs at a population level could lead to an increase in drug resistance [37]. This study

revealed that there was no emergence of drug resistance after the implementation of four

MDA rounds with moderate coverage levels (58–72%). Therefore, there is no evidence that

Table 3. Proportion of P. falciparum isolates with pfcrt gene polymorphisms in pre- and post-MDA groups.

Pre-MDA (n = 88) Post-MDA (n = 104)

n(%) n(%) p�

I66T 0 (0) 1 (1.0) 1.000

M74I 0 (0) 2 (1.9) 0.501

N75E 0 (0) 2 (1.9) 0.501

K76T 0 (0) 2 (1.9) 0.501

H97Y 0 (0) 0 (0) NA

C101F 0 (0) 0 (0) NA

K120E 0 (0) 1 (1.0) 1.000

� Fisher’s exact test; NA–not applicable.

https://doi.org/10.1371/journal.pone.0240174.t003
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effectively implemented MDA with an ACT in low- to moderate-endemic settings will lead to

drug resistance, and therefore supports the use of DHAp as a drug for future MDAs in areas

with no detectable markers of resistance at the start of the intervention.

In line with previous studies conducted in Mozambique [30], polymorphisms in k13 gene

associated with artemisinin resistance were not found in the Pf isolates collected in Magude

district, while the proportion of multiple pfpm2 copies was below 5% (4.9% before MDA and

4.3% post-MDA). Other markers of piperaquine resistance in pfcrt gene (present in the 35–120

aminoacid region of the protein) were completely absent in these isolates. The absence or low

levels of molecular markers of parasite resistance against artemisinin and piperaquine suggests

good efficacy of these drugs against Pf isolates circulating in the study area. This is aligned

with the substantial reduction in malaria incidence achieved with the MDA rounds conducted

in Magude, together with annual indoor residual spraying, programmatically distributed long-

lasting insecticide treated nets and standard case management [27]. Although comforting at

this stage, piperaquine resistance may spread in Mozambique if piperaquine drug pressure

increases and artemisinin resistance emerges, subsequently facilitating selection of resistance

to ACT partner drugs, as observed in Southeast Asia [23,38,39]. However, no statistically sig-

nificant differences in the proportion of k13, pfcrt and pfmdr1 polymorphisms and multiple

copies of pfpm2 and pfmdr1 genes were observed between pre- and post-MDA Pf isolates.

These results are in line with reports from other settings where artemisinin and piperaquine

resistance is higher compared to Mozambique. Data from Myanmar show a stable proportion

of k13 wild-type parasites and no piperaquine resistance during a three-year period in which

intense DHAp deployment for targeted MDA substantially decreased malaria incidence [40].

Similarly, no statistical differences were observed in the proportion of k13 polymorphisms in

Pf isolates collected before and after 3 monthly MDA rounds in Comoros [32]. In Cambodia,

transmission of multidrug-resistant Pf parasites was interrupted using MDA with high cover-

age [36], and no reports of clinical cases were reported for at least 1 year. Similarly, other com-

munity-based trials of MDA with DHAp have demonstrated this drug to be efficacious,

effective and safe in killing malaria parasites in pre-elimination settings [2,33,35,41,42], with-

out any suggestion of decreased effectiveness due to expansion of antimalarial resistance. A

recent study in South-East Asia has also shown that DHAp mass treatments have not selected

resistance further in areas with high frequencies of parasites carrying mutations associated

with DHAp resistance [43], thus supporting the use of targeted mass treatment. To our knowl-

edge, recent studies describing MDA with DHAp implemented in Africa have not assessed the

Fig 2. Copy number of pfpm2 and pfmdr1 genes in P. falciparum isolates from pre- and post-MDA groups.

https://doi.org/10.1371/journal.pone.0240174.g002
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molecular markers of DHAp resistance [44]. In contrast to the lack of studies reporting the

molecular markers of DHAp resistance in Africa, seasonal malaria chemoprevention trial has

reported the frequency of molecular markers of sulfadoxine-pyrimethamine (SP) plus amodia-

quine (AQ) resistance, which did not increase significantly over the study period [45].

The absence of a signature of resistance evolution following MDA with DHAp in southern

Mozambique and in other endemic settings could be explained by several factors. First, initial

signals of artemisinin resistance characterized by slow parasite clearance [46] before the

appearance of in vivo resistance [47] may lower the probability of successful transmission of a

resistant parasite strains present in a population receiving MDA. This transmission may be

further reduced by strong vector control approaches. Second, the administration of drugs with

a fairly short half-life, such as derivatives of artemisinin, have lower risk compared to longer

acting drugs of selecting resistant parasites, as subtherapeutic concentrations are expected to

be available for the parasites for only a limited period of time. Additionally, although MDA

will expose many asymptomatic infections to the antimalarial used, the low parasite burdens

and the effective host defense mechanisms in these subclinical carriers will reduce the risk of

emergence of resistance and the transmission potential of any recurrent infection [11]. Fourth,

the homogeneity in the population’s drug concentration profiles after MDA, which is given to

everyone at the same time, reduces the opportunity for selection of a higher level of resistance

as parasites are less likely to encounter high drug concentrations in the next host. Lastly, MDA

decreases the incidence of symptomatic malaria in the overall population, which results in less

use of the antimalarial, lower parasite biomass exposed to the antimalarials and thus fewer

opportunities for the selection of drug resistance.

Mathematical modeling suggests that the spread of drug resistance is strongly dependent

on treatment coverage, whereby initial allele frequencies and frequency of treatment play key

roles as well [48]. Poor coverage, poor adherence or substantial migration, and therefore

reduced effectiveness of MDA, will probably increase the probability of selecting resistance.

The risk of selecting resistance may be likely reduced if MDAs are deployed when the parasite

biomass is at the lowest levels (i.e., during the dry season in areas of low seasonal transmission)

and when there is good adherence to the treatment provided. Therefore, areas with malaria

elimination strategies in place that reduces malaria transmission, and hence immunity [49],

may be are more susceptible to a rapid emergence and spread of resistant parasites [50]. In this

situation, MDA could select for resistant mutants that are introduced in the population (such

as migration). Further studies would be needed to understand if parasite adaptations and com-

pensatory responses to stress situations driven by steep reductions in malaria transmission,

such as increased parasite investment on gametocyte production to maximize transmission

[51,52], or reductions in the intensity of between-genotype competition within hosts [53], may

have a long-term impact on the emergence and spread of antimalarial resistance.

The results of this study are subject to several limitations. First, there is a possibility the

intervention did lead to some evolution of resistance, but this was too rare to be detected with

the relatively low number of samples analyzed in this study. Furthermore, the presence of mul-

tiple clones in each infection may limit the chances to detect mutant alleles is these constitute a

minor fraction in the infection. However, the description of DHAp molecular markers will

provide the baseline information to identify the potential expansion of resistant parasites if

malaria resurges in the area. Second, this study may have missed the emergence of mutations

at densities below the sensitivity limit of the PCRs and Sanger sequencing assays. Third, DNA

degradation during sample storage, processing, freezing and thawing could potentially have

biased the assays towards the detection of wild type polymorphisms if parasites carrying muta-

tions associated with resistance are more frequently being degraded due to their lower densi-

ties. Fourth, our sequencing approach [30] did not include polymorphisms in codons 145, 343
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or 353 of pfcrt, which have been associated with decreased piperaquine sensitivity and high

DHAp treatment failure rates in settings where artemisinin resistance is common [20–25].

Lastly, we cannot discard the possibility of emerging resistance following MDA if conducted

on a much larger scale, although this study demonstrates the likelihood of such an event hap-

pening is relatively low.

Overall, this study shows that in sub-Saharan setting with absent or low background levels

of artemisinin and piperaquine resistance, two monthly MDA rounds with DHAp moderate

coverage levels for two consecutive years would not increase the frequency of molecular mak-

ers of antimalarial resistance in the general Pf parasite population. Based on the findings of the

present study and other previous studies, there is no suggestion that a well-implemented MDA

with an ACT has led to drug resistance [3,5]. Therefore, DHAp proves to be safe and effective

tool in reducing the malaria burden [2,35,36,40,54] and could be useful for future MDAs fol-

lowing WHO recommendations for MDA implementation. Enabling good molecular surveil-

lance systems should be a prerequisite for the use of community-wide distribution of

antimalarials aiming the interruption of malaria transmission.
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