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Accelerating invasion potential of disease
vector Aedes aegypti under climate change
Takuya Iwamura 1✉, Adriana Guzman-Holst 2 & Kris A. Murray 3,4,5✉

Vector-borne diseases remain a major contributor to the global burden of disease, while

climate change is expected to exacerbate their risk. Characterising vector development rate

and its spatio-temporal variation under climate change is central to assessing the changing

basis of human disease risk. We develop a mechanistic phenology model and apply it to

Aedes aegypti, an invasive mosquito vector for arboviruses (e.g. dengue, zika and yellow

fever). The model predicts the number of life-cycle completions (LCC) for a given location

per unit time based on empirically derived biophysical responses to environmental conditions.

Results suggest that the world became ~1.5% more suitable per decade for the development

of Ae. aegypti during 1950–2000, while this trend is predicted to accelerate to 3.2–4.4% per

decade by 2050. Invasion fronts in North America and China are projected to accelerate from

~2 to 6 km/yr by 2050. An increase in peak LCC combined with extended periods suitable for

mosquito development is simulated to accelerate the vector’s global invasion potential.
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Vector-borne diseases continue to be a major contributor to
the global burden of disease, annually causing more than 1
billion infections, 1 million deaths, and accounting for

around 17% of all lost life, illness and disability globally1,2. Insect
vectors cannot regulate their internal temperature and are
therefore responsive to shifts in climatic conditions over short
(e.g. daily weather), medium (e.g. seasons) and long (e.g. El Niño,
climate change) time frames1,3. Understanding how vectors
respond to climatic factors is thus central to characterising the
spatio-temporal distributions of vector-borne diseases and
anticipating and responding to potential shifts in risk due to
climate change.

Although complete congruence cannot be assumed, the inci-
dence and distributions of vector-borne diseases are often con-
ditioned by the distribution and abundance of their primary
vectors1,4,5. In practice, estimating a species’ distribution or
abundance is often achieved by estimating some form of envir-
onmental suitability6–10, which broadly defines how favourable a
location is for the species with respect to environmental covari-
ates (e.g. temperature, rainfall, habitat). Such an index can take on
many forms but is generally derived via either statistical models,
which correlate observational records of a species’ occurrence
with available environmental covariates11,12, or mechanistic/
process-based models, which make use of a species’ physiological
responses to specific environmental parameters (e.g. temperature,
rainfall, humidity, photoperiod; see ref. 13) typically derived under
controlled experimental conditions14–16. In both cases, the rela-
tionships derived are then projected into geographic space with
meteorological (or other environmental) data to assess the
changing suitability of landscapes or regions for the species17,18.

While correlative methods have proved useful for modelling
species’ distributions on the basis of species’ reported occurrence
data, when considering potentially invasive disease vectors
mechanistic approaches have a number of important advantages
in terms of applicability to novel environments19–21. In particular,
mechanistic models isolate specific biophysical causal pathways
that can link an organism’s key life-history traits (e.g. develop-
ment rates, mortality) to its environment, so avoiding reliance on
correlations between observed occurrences (which may them-
selves be inherently biased by e.g. observation effort), environ-
mental covariates and their statistical extrapolation, such as into
unoccupied areas or under scenarios of climatic change.

Previous studies have developed mechanistic, temperature-
sensitive population dynamics models across multiple life stages
for invasive disease vectors, including the Asian tiger mosquito,
Aedes albopictus22 and the yellow fever mosquito, Aedes aegypti23.
However, these approaches have rarely been incorporated into
distribution estimates, particularly at large spatial and temporal
scales to evaluate species’ responses to long-term environmental
change (but see refs. 16,24). This is an important research gap given
a growing number of primarily statistical studies that have sug-
gested that global climate change may be facilitating the expansion
or re-establishment of mosquito vector populations and the dis-
eases they transmit into new or previously occupied regions.

Here, we explore the use of an alternative type of mechanistic
model, termed a phenology model25,26, to examine environ-
mental suitability for the development of the invasive arboviral
vector Aedes aegypti. Phenology models have been used for pre-
dicting invasive pest establishments in agriculture25,27,28 but they
have not, to our knowledge, been applied to invasive human
disease vectors. This class of models is characterised by explicitly
modelling an organism’s physiological development across life-
stage transitions according to empirically derived responses to
environmental conditions29. These responses are used to estimate
development rates and critical thresholds, typically from con-
trolled experiments on the species of interest30. One advantage of

phenology models over other mechanistic models is that they can
be used to calculate the number of successful life-cycle comple-
tions (LCC) (i.e. the number of generations) per time period,
while relying on relatively simple laboratory experiments of
temperature-dependent development rates25.

The objectives of the study are to design, develop and validate a
phenology model incorporating the development of each life stage
of Ae. aegypti and apply it to explore changes in LCC intensity for
this vector in response to past and projected climate changes
globally. In addition to the annual minimum temperature and
precipitation requirements, the phenology modelling framework
allows us to use daily climatic inputs to capture the fine scale
effects of daily temperature variation on key development rates of
mosquitoes at different stages31,32. Then, the model makes
mechanistic historical projections of LCC intensity over a 100-
year period (1950–2050) under RCP 4.5 and RCP 8.5 climate
change scenarios, which reflect differences in the degree to which
greenhouse gas emissions and consequent climatic changes may
be curbed by the middle of this century33. Our model predicts
increasing and accelerating trends in the LCC of Ae. aegypti in the
future, as a result of both elevated seasonal peaks in LCC and
extended periods of suitable conditions. Invasion frontiers,
defined by the climatic suitability at current range margins, in
Europe, USA and China are predicted to advance faster in the
future into currently unoccupied areas. Determining novel ways
to predict and control arthropod vectors and their associated
diseases over the coming decades and understanding how deeper
emissions cuts could potentially translate into averting increased
disease risk are central to supporting adaptation and mitigation
strategies to improve global health, socio-economic development
and biosecurity strategies in the face of rapid, large scale envir-
onmental change1.

Results
Model validation. We conducted model validation at the two
levels—one at the global scale from the occurrence point datasets
and another at a local scale using a mosquito abundance dataset.
The results showed that our model could broadly reproduce the
current known distribution of Ae. aegypti globally. Overall, LCC
intensity for the midpoint of the time series (2000s as defined by
the 2000–2004 average) was highly correlated with the global
geographic distribution of Ae. aegypti (Fig. 1a), with the vast
majority (99.9%) of occurrence records falling in locations with
LCC ≥ 1 (Fig. 1b–d). The area under the receiver operating
characteristic curve (AUC) was 0.92 at the global scale. Kappa
based on the confusion matrix was 0.80 when a LCC > 10 is set as
a threshold.

At the country level, AUC was calculated for 12 countries with
more than 150 occurrence records (Supplementary Table 1). Even
though the model is developed for global-scale study and may
lack the ability to consider country-specific situations, in eight of
these countries the model predicted national level gradients in
occurrence well, with AUCs ranging from 0.63 (moderate;
Malaysia) to 0.99 (very good; Taiwan). Higher AUC values were
generally obtained in countries with stronger temperature
gradients, while in the remaining countries performance was no
better than random likely due to being more homogenously
suitable and/or poor coverage of observations (e.g. Cuba: 0.47,
Indonesia: 0.49) or where lack of available human hosts in remote
regions may be limiting (e.g. India: 0.55). Brazil shows low AUC
(0.35) likely due to the expanse of the Amazon basin which has a
highly suitable climate for Ae. aegypti but very low human
population densities.

At finer spatial scales, validation tests showed the LCC output
had strong ability to provide an index predictive of mosquito
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abundance as determined from robust and consistent abundance
samples. Model outputs were strongly correlated with the
abundance data (Pearson’s r= 0.752, r2= 0.571, p= 0.011;
Supplementary Fig. 1) reported for Mexico in 201134,35 (for site
details see Supplementary Table 2). These tests suggest that the
LCC model output yields process-based information relevant to
both occurrence and the population dynamics of this species,
which together may underpin establishment risk given successful
dispersal into currently uninvaded areas.

Global trends in Ae. aegypti development intensity. The LCC
intensity estimated by the phenology model successfully repro-
duced the spatial patterns of current Ae. aegypti observations as
well as local-level abundance (Fig. 1a–d and Supplementary
Table 1, see ‘Model validation’ above for further details). Globally,
LCC increased from 7.08 (95% CI across global circulation
models (GCMs) 6.96–7.19) per year in the 1950s (1950–1954
average) to 7.62 (7.42–7.82) per year at the turn of the century
(2000–2004 average), broadly indicating that the world became
~7.0% (3.1–12.4%) more suitable for the development of this
species over this period. Future projections suggest this trend will
accelerate, with the average number of generations per year
predicted to increase by a further 17.1% (12.4–21.8%) by the
2050s under RCP 4.5 and 24.3% (18.5–30.0%) under RCP 8.5.
These changes reflect an acceleration in the increase of global
suitability for Ae. aegypti development from 1.5% (0.6–2.4%) per
decade between the 1950s and 2000s to 3.2% (2.4–4.0%) and 4.4%

(3.5–5.4%) per decade between the 2000s and 2050s under RCPs
4.5 and 8.5, respectively. This amounts to a total predicted change
in development intensity of 26.0% (22.1–29.9%) under RCP 4.5
and 33.8% (28.8–38.8%) under RCP 8.5 over the 100-year period
considered (1950–2050). Estimations using 10-year averages
yielded similar results (see Supplementary Table 3).

Figure 2 illustrates LCC changes with respect to the 2000s
average. LCC increased up to 6 LCC per year in tropical areas
since the 1950s and a further 6–10 LCC per year is expected by
the 2050s in some areas. The greatest increase is predicted under
RCP 8.5. Similar increases are estimated using 10-year averages
(Supplementary Table 4). The overall suitability, the increase in
mean and rates of simulated LCC differ significantly across
geographic and climatic regions36 (Fig. 3, see Supplementary
Fig. 2 for the regions). South East Asia, South America and West
Central Africa, historically the most suitable regions, are
projected to see the greatest increases albeit with higher inter-
annual variability, while in Europe, North America and West and
Central Asia suitability increases are less pronounced and variable
(Fig. 3a). This appears primarily linked to the climatic zones
encompassed by these regions, with tropical areas showing
particularly high suitability and strong increases in LCC,
temperate areas showing marked gains, while arid, polar and
boreal climatic zones show low suitability and no or weaker gains
(Fig. 3b).

Non-parametric seasonal Kendall trend tests for three monthly
time-series datasets (historical 1950–2000, and projected
2000–2050 under RCP 4.5 and RCP 8.5) stratified by latitude
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Fig. 1 Distribution of annual LCC of Ae. aegypti with occurrence data overlaid. Maps indicate the total number of LCC per year at the global scale (a),
Central America (b), West Africa (c) and South East Asia (d). Colour represents the number of LCC. Areas in which LCC < 10, corresponding to the
threshold used in subsequent analysis (i.e. Fig. 4), are shown with a darker palette (indigo-black, note legend). Grey colour represents unsuitable areas for
Ae. aegypti development. Magenta dots represent presence records of Ae. aegypti (refs. 49,84).
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similarly show accelerating future trends relative to the more
moderate increases in LCC observed in our results during the
historical period. Significant increases in LCC through time since
1950 are observed at all latitudes between 40°N and 40°S, with the
slope (rate of change) of these increases growing under future
projections, towards the tropics, and under the higher emissions
scenario (RCP 8.5) (see Supplementary Fig. 3). For example, the
rate of change in LCC per year at 0–10°S in the period
2000–2050, as indicated by the Sen slope estimator, is projected
to increase 2.5- and 3.9-fold relative to the historical increase
(1950–2000) for RCPs 4.5 and 8.5, respectively (see Supplemen-
tary Fig. 4).

Invasion frontiers. Contour lines indicating invasion frontiers
(≥10 LCC; see “Methods”) were used to examine expansion in
suitable areas in the three focal regions over multiple periods
(Fig. 4). In the USA, the model suggests that the south-eastern
states (i.e. Florida, Arizona, Texas) have already seen the
advancement of an invasion frontier, as is also supported by
observations of Ae. aegypti occurrence expanding there. The
model confirms relatively slow invasion frontier expansion in
China, but predicts more rapid advancement under future cli-
mates, including in recent dengue outbreak hotspots (Guangzhou
and Guandong provinces)37. In Europe, this suitability threshold
is patchier, restricted to the southern margins historically, yet
clearly increasing suitability in other places (e.g. over the Medi-
terranean basin) in the future. Continuous stretches of suitability

across Europe are not observed even under RCP 8.5 by 2050
(Fig. 4).

In China, there was only minor change in LCC historically
(1950–2000), with the suitability contour line expanding at ~1.58
km year−1 (95% CI= 1.41–1.75) km across all the leading edges
of the invasion frontier); however, the area predicted to be
suitable for population establishment is predicted (2000–2050) to
rapidly expand by approximately 5.59 (5.20–5.98) km year−1 with
a clear north-eastern shift (Fig. 4a). By 2050, much of the
populated part of China (south eastern half) is predicted to
support ≥10 LCC irrespective of which RCP scenario is
considered. In Northern America, a gradual (2.29 (2.12–2.46)
km year−1) northward expansion of highly suitable areas was
predicted historically (1950–2000), while strong future expansion
in the USA is also predicted, particularly under RCP 8.5 (5.52
(5.23–5.81) km year−1) (Fig. 4b). While Ae. aegypti is already
present in south-eastern USA, parts of the west are also predicted
to become suitable by the 2050s. In Europe, overall suitability
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Fig. 2 Changes of LCC of Ae. aegypti between 1950, 2000 and 2050.
Differences in LCC relative to LCC in 2000s (2000–2004 average).
a Comparison with 1950s (1950–1954 average); b comparison with 2050s
(2050–2054 average) under RCP 4.5; and c under RCP 8.5. Decreases in
LCC are shown in ‘cool’ colours (blue and green) and the increases in
‘warm’ colours (orange and red).
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Fig. 3 Continental and climatic regional averages of annual LCC
1950–2050. The annual LCC at each location was averaged over
continental regions (a) and climatic regions (b) between 1950 and 2050.
Data were calculated for each year with two climatic scenarios—solid lines
represent the LCC prediction under RCP 4.5 scenario and dotted lines are
under RCP 8.5 scenario. Confidence intervals indicating variability due to
the underlying GCMs are not shown here to avoid overplotting and retain
clarity of the mean trends—see text for 95% CIs on percentage change
statistics over the time series and Fig. 5 for CIs on seasonal trends.
Continental regions include Central Asia, East Asia, South Asia, South East
Asia, West Asia, Central America, North America, South America, East
Africa, East South Africa, West Central Africa, Europe and Oceania. The
climatic regions include arid, boreal, equatorial, temperate and polar.
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remains low but southern margins across the Iberian Peninsula,
Italy and Greece are predicted to be able to support ≥10 LCC per
year from the 2030s, particularly under RCP 8.5 (Fig. 4c).

Seasonality of average LCC. Seasonal profiles of LCC for Ae.
aegypti differed markedly between latitudinal bands (Fig. 5).
Overall, seasonality profiles of simulated LCCs suggest increases
in development intensity through time during all months and
these changes are most pronounced under RCP 8.5. In particular,
higher latitudes (20–40°N and S, Fig. 5a, b, e, f) exhibit more
significant increases in the duration of the most favourable per-
iods. In addition to surpassing a minimum threshold to support
LCC, the expansion in the number of favourable months per year
may therefore be a key parameter of interest when considering
future mosquito establishment in historically less favourable
regions (e.g. outside of the tropics). In contrast, the strongest

increases in peak LCC occur in currently more suitable areas,
suggesting these areas may become even more conducive to
supporting large mosquito populations.

The lowest and higher latitudes are also predicted to become
more favourable during shoulder periods, translating into
expanded seasonal profiles in regions outside the tropics. In
equatorial regions, while seasonality remains irregular, LCC
exhibits a general increase across all months and this is predicted
to accelerate by 2050. Importantly, focusing on the comparisons
of historical (1950–2000) versus predicted (2000–2050) changes
in LCC, historical changes are primarily observable near the
equator (0–10°N and S, Fig. 5d, h), while the models indicate
future climate changes are predicted to affect all latitudinal bands.
The middle latitudes (10–20 and 20–30°N and S) will be most
affected with seasonal changes in LCC, with a more significant
increase under RCP 8.5 (Fig. 5b, c, f, g).
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Fig. 4 Expansion of invasion frontiers of Ae. aegypti in China, USA and Europe from 1950–2050 under RCPs 4.5 and 8.5. Invasion frontiers of Ae.
aegypti were estimated at decadal intervals for China, USA and Europe based on LCC predictions. The frontier threshold was set at ≥10 LCC based on the
frequencies of LCC values extracted to the historical occurrence records of Ae. aegypti. The colour scheme represents the frontier contour lines in separate
decadal intervals (1950, 1970, 1990, 2010, 2030 and 2050). Shifts in the invasion frontiers are shown for: (a) China under RCP 4.5, (b) USA under RCP
4.5, (c) Europe under RCP 4.5, (d) China under RCP 8.5, (e) USA under RCP 8.5 and (f) Europe under RCP 8.5.
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Discussion
Climate change is one of the most daunting 21st century global
health challenges along with other global environmental and
social changes (e.g. land-use changes and accelerated human
movement), where expanding distributions and/or increasing
abundance of vectors has already begun to reshape certain
infectious disease risks32,38–41. Here, we sought to translate
relatively ‘hard’ biophysical responses at a very fine temporal
resolution (daily) into long-term, global predictions of mosquito
LCC to evaluate the response of mosquito development intensity
to historical and future climate change. Our model suggests
consistent increases in suitability for the LCC of Ae. aegypti since
1950, both within the current range (primarily tropics, sub-
tropics) and in currently marginal or uninvaded areas (primarily
uninvaded subtropical, currently unsuitable temperate regions),
and accelerating increases in suitability to 2050. Increases of LCC
in the order of 7% (95% CI 3.1–12.4) globally were predicted by
2000 relative to a 1950s baseline, increasing to 17–24% by 2050
depending on the emissions scenario used. Differences in the
LCC under the scenarios RCP 4.5 and RCP 8.5 are expected to
diverge even further in future as the effect of cumulative emis-
sions differences become more apparent in the longer term.

The model also sheds light on the idiosyncrasies among regions
in the way changing environmental conditions will facilitate
vector invasion. Our results predict that invasion frontiers,
representing expanding regions that are environmentally suitable
for this species, in China and USA are predicted to advance
2.4–3.5 times faster by 2050 (5.2–6.0 km year−1) than was esti-
mated through historical projections (1950–2000). Europe is
expected to experience isolated areas of sustained suitability for
Ae. aegypti in Spain, Portugal, Greece and Turkey by 2030. In
China, our model predicts expansion of frontiers into the
Guangzhou and Guangdong provinces, where dengue outbreaks
have been reported recently37. These patterns imply that sudden
shifts in invasion frontiers should be expected as changing
underlying suitability interacts non-linearly with human intro-
duction and dispersal processes (but see ref. 42 for localised speed
of the importation of Ae. aegypti within established species
range).

The seasonal trend analysis further indicates shifting patterns
under changing climates in the seasonality of mosquito LCC,
whereby both longer periods of favourable conditions and higher
intensity in peak LCC are observed in both historical and future
projections. Since the duration of favourable periods contributes
to cumulative LCC, elongated peak periods could serve an
important function in bolstering mosquito abundance in areas
with historically stronger seasonality, while increases in peak
values could translate to changes in maximum mosquito abun-
dance in favourable periods. These impacts are not uniform but
vary considerably across latitudes, with the strongest gains
observed in the tropics and subtropics. In contrast to the stron-
gest increases of peak LCC in the equatorial regions, middle
latitudes (10–30°N and S) exhibit more significant increases in the
duration of the most favourable periods. In addition to surpassing
a minimum threshold to support LCC, the expansion in the
number of favourable months per year may therefore be a key
parameter of interest when considering future mosquito estab-
lishment in historically less favourable regions (e.g. outside of the
tropics).

Although the trends we report here are clear and validation
tests indicate the model performs well in mechanistically repli-
cating observed spatial patterns of Ae. aegypti at a global scale,
our study has some important limitations. For example, in some
regions the model predicts climatic suitability increasing in the
future where Ae. aegypti has already been observed to be wide-
spread historically (e.g. the Mediterranean and Black Sea region)

or established more recently (resurgence in Black Sea region,
parts of the USA including California and Arizona)43,44. Ae.
aegypti was previously introduced into the Americas and the
Mediterranean, likely from Africa45–47, where it vectored out-
breaks of yellow fever and dengue (in Europe most recently in
Athens during 1927–2848) but it had largely retracted from
Europe by the 1950s49–51. These observations suggest that our
model could be too conservative in identifying establishment
thresholds in some regions. For example, while at least 1 LCC is
broadly predicted across these regions at the beginning of our
time series in 1950, theoretically permitting population growth at
certain times of the year, it is clear that these regions would not
have been reaching a LCC ≥ 10 until significant warming had
taken place.

We propose several possible explanations to resolve such
inconsistencies. First, areas with low LCC estimates are likely to
broadly represent climatically marginal zones for the long-term
persistence of Ae aegypti. In these areas, extrinsic factors such as
management interventions52 or environmental stochasticity53

could tip the balance in favour of population extinction more
frequently than in highly suitable habitats. This could be the
case in Europe, where sporadic observations occur (e.g. Nether-
lands54) and where control measures and cooler winters have
previously been hypothesised as causes of 20th century range
retractions55,56. Second, there are several mechanisms that could
result in a mismatch between predicted mosquito responses to
climatic variables and what is observed in the field. These include
dispersal constraints57, microclimates (e.g. human infrastructure)
and behavioural thermoregulation that would allow species to
exploit them58,59, species interactions (competition, predation)60,
other environmental constraints (e.g. humidity), differences in
mosquito responses to climatic constraints (e.g. lineage variation
in acclimation ability, tolerance to extremes) or more subtle
details of mosquito life-history responses than what is currently
captured in our model (e.g. differences in growing degree days
(GDD) requirements, development or mortality rates in fluctu-
ating versus mean thermal regimes61,62). These can be considered
some of the most important areas for future research that could
result in further improvements to our model. It is also important
to note here that while climate conditions might be suitable for
the development and survival of a vector, the conditions for
effective disease transmissions may be different. Integrating a
disease transmission component into our models or, conversely,
integrating our phenology model into existing disease transmis-
sion models could help bridge the gap between predicting global
change impacts on vectors versus the realized health impacts.

Globally, average temperature increases of over 1 °C have
already occurred since the industrial revolution, with even greater
warming observed over continental land masses. Our results
highlight how such changes have likely already enhanced the
potential for Ae. aegypti, if introduced, to complete its life cycle in
areas with sufficient precipitation and availability of human hosts.
Investigations into recent trends in viral disease emergence linked
to this vector species, such as the sixfold increase in dengue
incidence from 1990 to 201363, the establishment and spread of
Zika virus in the Americas64 and recent yellow fever outbreaks in
Angola, the Democratic Republic of the Congo and Brazil65

would be incomplete without closer scrutiny of the role of climate
change in bolstering mosquito development or establishment risk
alongside other better studied risk factors such as human travel,
migration and urbanisation.

Without drastic reduction of greenhouse gas emissions, global
temperatures will continue to rise considerably over the coming
decades. Our results further suggest that this will continue to
favour mosquito development in many regions, both currently
inhabited and as yet uninhabited by this invasive species. Such
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changes in mosquito population dynamics seem likely to con-
tribute to intensified arboviral disease transmission risks for
diseases of considerable public health importance, including
dengue, zika, chikungunya and yellow fever. Phenology models
provide an additional tool with which to assess the changing basis
of arthropod vector population dynamics under climate change.

Methods
Study species. Aedes aegypti is the primary vector for several important viruses of
global health concern, including dengue, zika, yellow fever and chikungunya.
Previous studies have suggested that climate change may have already influenced
or will influence the distribution of suitable environments in which Ae. aegypti can
thrive, resulting in changes in disease risk50,66. Beyond its health relevance, Ae.
aegypti is an ideal species to use for exploring the utility of phenology models for
human disease vectors because appropriate data for model parameterisation and
validation are broadly available in the literature. This mosquito vector develops
from the egg through a number of larval instars before emerging into adults that
are only then able to transmit pathogens as the females seek blood meals to support
egg development67.

Model overview. Individual life stages and the population dynamics of Ae. aegypti
are sensitive to environmental conditions, including temperature and rainfall1,3,68,
which can impact the distribution, abundance and invasion potential of the vector.
In order to incorporate the environmental sensitivity of development responses of
Ae. aegypti, we developed a spatially explicit phenology model incorporating each
life stage of this mosquito species, following an existing phenology modelling
framework25. Our model calculates viability for the completion of each develop-
ment stage (e.g. larvae, pupae, adult) and determines the total number of successful
LCC (i.e. generations) possible per time step (e.g. month, year) given gridded
climate data input. This output can be considered a development intensity index
that theoretically relates to a species’ probability of occurrence, abundance and
establishment potential (given successful dispersal) in specific locations. Model
building and all subsequent statistical analyses were performed in R, version 3.6.1.

Model structure. The model incorporates the two main life-cycle periods of Ae.
aegypti, the aquatic period (immature development) and the aerial period (adult
development). The aquatic period is comprised of four stages for growth (eggs,
larvae, pupae and adult emergence), while the aerial period is comprised of four
adult stages (mating, blood feeding, gestating and oviposition). To simplify the life
cycle, the model merges and re-divides development into four sub-stages: (1) egg
hatching, (2) immature development (larvae+ pupae), (3) blood feeding and (4)
oviposition. These four main development stages were formulated into the model
based on temperature thresholds and development rates during Ae. aegypti
development (Supplementary Fig. 5). Only females were considered in the model as
they are the egg producing sex. The model, similar to other studies69, therefore
assumes that there are always sufficient males to fertilize females to allow full LCC
if environmental conditions allow.

The model comprises two distinct components, GDD (growing degree days)
and thresholds, which together determine if and when the development of each life
stage (see Rectangles in Supplementary Fig. 5) starts and completes according to
prevailing environmental conditions (see diamonds in Supplementary Fig. 5).
Thresholds define upper or lower limit conditions that must be met in order for the
model to progress or otherwise stop. In contrast, GDD refers to the accumulation
of daily mean temperature values over a baseline temperature and below a cut-off
temperature beyond which there is no additional benefit70,71. GDD calculations
include a temperature threshold to mark the point at which development can
occur, but thresholds are also applied elsewhere in the model on their own (e.g.
heat kill, cold kill, see below). GDD is calculated based on temperature input using
the formula

GDD ¼
X

i

Ti � Tthrð Þ; ð1Þ
Ti ¼ 35; when above 35;
GDD ¼ 0; when below 0;

where i is the number of days at a particular life stage, T is the daily average
temperature of the ith day since the start of the life stage (capped at 35 °C), and thr
is the lower temperature threshold of development. On any given day, if Ti < Tthr
then Ti− Tthr is set =0 to reflect that the accumulation of GDD cannot be negative.
In components of the model that utilise GDD, if the calculated degree day (from
the input climate data) is larger than the established degree day required for
development/life-stage completion (derived from the literature), then development
is successful and the model moves on to the next life stage. Where this condition is
not met, the model cannot progress to complete a full life cycle and this failure is
recorded. Conditions derived from the literature used to parameterize this
component of the model for each life stage are presented below (each stage
numbered in Supplementary Fig. 5):

(1) Egg hatching: A temperature-dependent egg hatching time was set
considering the lower temperature threshold (baseline temperature) and

GDD. Based on estimates from the literature, if the minimum temperature
of the day is ≥14.59 °C and GDD since oviposition is 42.4, then the egg
hatches31,32,67. The hatch time–temperature relationship consists of faster
hatching times during warmer temperatures.

(2) Immature development (larvae, pupae): After completion of the egg
hatching condition, the larvae must undergo a specific amount of GDD in
order to complete the aquatic immature stage and emerge as an adult. We
set the baseline temperature as 11.78 °C and 126.38 GDD67.

(3) Blood feeding: The pre-blood meal period is the time from adult emergence
until the first blood meal. This period is temperature sensitive and can be as
short as 1 day. It was conditioned as follows: at <20 °C, 4 days; at >20 °C,
2 days; at >26 °C, 1 day, at >35 °C, 2 days (adapted from ref. 67).

(4) Oviposition: After feeding on the first blood meal, the adult undergoes a
temperature-sensitive gonotrophic cycle (GC) to gestate and lay eggs. This
period is temperature sensitive and can be as short as 2 days. It was
conditioned as follows: at <26 °C, 8 days; at >26 °C, 3 days; at >30 °C, 2 days,
at >35 °C, 4 days52,56.

At the oviposition stage we also imposed a cold-kill condition, considering
winter temperature is a key limiting factor for Ae. aegypti eggs to persist in the
environment56,72. To mark the beginning of a period of unsuitably cold
temperatures, a condition is imposed on both temperature and duration of the cold
period. If the average daily temperature is lower than the set ‘cold-kill’ temperature
threshold for a specific number of days, then the egg dies and cannot proceed with
the life cycle. The baseline model was set with the condition of <0 °C for 152 days,
based on general consensus from the literature56,72,73.

In addition to the model stages considered, we imposed a heat-kill condition
that applied to all stages outlined above. We set an upper temperature threshold,
above which development at any stage (e.g. immature and oviposition) fails to
progress. Data from the literature31,32,74–76 for the upper temperature thresholds
for egg hatching and larval development are ≥36 and ≥36.5 °C, respectively. The
heat-kill condition for the adult lifespan is >37 °C31. Therefore, we set the overall
heat-kill condition to any daily temperature above 38 °C for 1 day, applied at any
life stage.

In addition to the temperature-dependent parameters, we included a
precipitation constraint. After the temperature-sensitive conditions are met, the
model imposes a precipitation constraint that removes areas considered too dry to
support this species. Based on the Köppen–Geiger climate classification77 for dry
regions and the literature78,79, the precipitation threshold was set to less than 200
mm of annual rainfall, which contains 99% of observation records. We also
examined the model outputs with 900 mm rainfall (95% observation records) as a
sensitivity analysis (see Supplementary Table 4), which indicates the general trends
are maintained with the higher threshold.

Sensitivity analyses. Given that each of our parameters are derived by integrating
values from the literature, which contain inherent uncertainties related to, for
example, mosquito strain, different methodologies and so on, we conducted sen-
sitivity analyses to explore the effects of using higher or lower values for each
parameter (see Supplementary Fig. 6a–c for oviposition, heat-kill, cold-kill ana-
lyses, and Supplementary Table 4 for varying the rainfall threshold analysis).

Climate data. Gridded climate data were obtained from the NASA Earth Exchange
Global Daily Downscaled Projections (NEX-GDDP) dataset80. This database
provides daily minimum and maximum near-surface air temperature and pre-
cipitation from 1950 through 2100 with a spatial resolution of 0.25°, corresponding
to about 30 × 30 km grid cells at the equator. Its daily temporal resolution matches
the resolution at which mosquitos develop according to prevailing conditions, and
for its global coverage, relatively high spatial resolution and bias-corrected climate
change projections81. NEX-GDDP utilises the Coupled Model Intercomparison
Project Phase 5 (CMIP5) GCMs and provides projections for two of four green-
house gas emissions scenarios corresponding to two levels of radiative forcing
(W/m2) by 2100, RCPs 4.5 and 8.582,83. RCP 4.5 represents a middle-of-the-road
‘stabilization’ scenario by 2100 and corresponding mean global warming of around
2.4 °C, while RCP 8.5 represents a ‘business-as-usual’ scenario with rising emis-
sions, no stabilization and corresponding warming of around 4.9 °C by 210033. We
took an ensemble/consensus approach32,38,82,83, averaging outputs from four
commonly used GCMs for each RCP scenario to capture inter-model
variability32,38: the Beijing Climate Center Climate System Model, China (BCC-
CSM1.1); the National Institute for Environmental Studies Climate Model, Japan
(MIROC-ESM-CHEM); the Institut Pierre-Simon Laplace Climate Model, France
(IPSL-CM5A-LR) and the National Center for Atmospheric Research’s Commu-
nity Climate System Model, United States (CCSM 4). We chose these GCMs to
cover both ‘warm’ and ‘cold’ models, which are available from the NEX-GDDP.
Equilibrium climate sensitivity (ECS) is at the highest in the MIROC-ESM (ECS
4.7) among all 21 GCMs from CMIP5, while it is among the lowest in BCC1-
CSM1.1 (ECS 2.8) and CCSM 4 (ECS 2.9). IPSL-CM5A-LR provides an inter-
mediate (ECS 4.1). An alternative high quality gridded climate dataset, the
ECMWF ERA5 hourly climate data, is available and more directly based on
observation records; however, at the timing of writing it only covers the period
from 1979 to 2019 and use of inconsistent datasets for historical and future cli-
mates makes comparisons between these two periods difficult. As such, we present
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results from the NASA NEX-GDDP data (1950–2050) but provide sensitivity
analyses (long-term trends and spatial averages) to compare the two gridded cli-
mate datasets for the period 1980–2005 (see Supplementary Figs. 7 and 8).

Model validation. We assumed that LCC is a minimum requirement for estab-
lishment and hence occurrence, and that a greater number of LCC should correlate
with both higher probability of occurrence and greater abundance. Before applying
the model, the ability for the model to predict locations where Ae. aegypti can
theoretically complete full life cycles was therefore validated using (1) existing Ae.
aegypti occurrence records and (2) regional-scale abundance data.

The model output (i.e. LCC) was first evaluated against occurrence records of
Ae. aegypti84, which includes a global geographic dataset of occurrence records for
Ae. aegypti derived from both published and unpublished sources, including
national entomology surveys and expert communications. This is currently the
largest available standardised global dataset for Ae. aegypti, with about 40,000
georeferenced observations84. The predicted LCC results averaged over the years
2001–2010 were compared with known observation records of Ae. aegypti
restricted to the same period and summary statistics computed. AUC was
examined for the model’s ability to discriminate areas of occurrences from areas
where it has not been observed based on the observation of other mosquito species
as pseudo-absence points, following the same methods as in ref. 49. For this
analysis, AUC, Kappa based on confusion matrix and Pearson correlation between
observation and absence were calculated at the global-scale analysis. To calculate
the AUC, the life-cycle values were first standardised on a 0–1 scale, where 1
equates the maximum number of life cycles. For Kappa, we set the LCC threshold
to consider presence as 10 LCC, which we defined as invasion frontier. In addition
to the global-scale validation, we also calculated country-level metrics to see if our
global model can be informative at the local scale.

Second, we compared LCC predictions with Ae. aegypti abundance data from
Lozano-Fuentes et al.34, who conducted Ae. aegypti abundance surveys in villages
distributed across a large elevational gradient (0–2000 m) in central Mexico34,35.
This study was conducted in 2011 and represents the best available case study that
we are aware of focusing on Ae. aegypti abundance. The surveys spanned a
relatively large geographic area (300 × 100 km) and, critically, employed the same
sampling methodology across all surveys. We utilised data from all villages in the
study, excluding Orizaba and its ‘dormitory’ city of Rio Blanco35, leaving surveys
from ten villages for analysis (see Supplementary Table 2). For the validation
analysis, we extracted the average LCC of our model at the locations for these
villages in the same year of the sampling effort (2011) and correlated these values
against abundance estimates from the surveys (adult mosquitos). As such our
comparison is relative rather than absolute.

Global spatial and temporal trends in LCC intensity. Spatially explicit historical
and future projections under the two RCP scenarios (4.5, 8.5) over the 100-year
period (1950–2050) were conducted to evaluate whether and where environmental
suitability for the LCC of Ae. aegypti has changed through time due to recent and
projected climate change. In addition to presenting the gridded global LCC output
maps for comparison with Ae. aegypti occurrence records and across select time
periods, we averaged LCC over a number of relevant spatial (e.g. continental,
climate type, latitudinal bands; Supplementary Fig. 2) and temporal (e.g. yearly,
monthly; see below) scales in order to assess overall changes of LCC intensity at
these scales through time. Throughout the analysis, we used 5-year averages to
define and better assess key time periods: we refer to the 1950s as the 1950–1954
average, the 2000s as the 2000–2004 average and the 2050s as the 2050–2054
average.

Invasion frontiers. Ae. aegypti has expanded its global range in recent decades,
with changes in environmental suitability at invasion fronts likely facilitating this
spread in some instances. We thus investigated how changes in predicted LCC due
to climate change at three focal invasion fronts (USA, China, Europe) could
contribute to expanding ranges. To do this, we defined an invasion frontier contour
as a contour line representing the LCC value below which 2.5% of Ae. aegypti
occurrence records globally occurred, representing uncommon but demonstrated
establishment at the lower end of the LCC distribution. Globally, this 2.5% contour
line corresponds with the areas ≤10 LCC per year, so this was set as the invasion
frontier threshold. We then tracked this invasion frontier contour through time to
illustrate which new areas could become suitable for future establishment and by
when. Invasion speed was estimated by average minimum distance between
sampled points on a leading edge of an invasion frontier contour of a target year
(e.g. 2050) to comparative invasion frontier contour of a previous period (e.g.
2000). The number of sampled points ranged from 300–700, depending on the
shape and length of an invasion frontier contour.

Seasonality of LCC intensity. In many parts of the world, mosquito population
dynamics are strongly seasonal, contributing to temporal variations in risk for
vector-borne diseases85. In particular, mosquito populations may be influenced by
the seasonal effects in both peak development and the overall duration of periods in
which development is enhanced. To evaluate potential changes in the seasonality of
development intensity for Ae. aegypti under climate change, we estimated LCC for

each grid cell monthly for each year in the analysis. We summarised these results in
latitudinal categories (0–10, 10–20, 20–30 and 30–40°, N and S) to facilitate
interpretation. We also used seasonal Kendall trend tests and Sen slope estimation
implemented with the EnvStats package in R to evaluate and compare long-term
trends across periods and latitudinal bands accounting for seasonality.

Data availability
The daily temperature and precipitation data that support the findings of this study are
available in NEX-GDDP (https://dataserver.nccs.nasa.gov/thredds/catalog/bypass/NEX-
GDDP/catalog.html).

Code availability
All of our code including estimating and analysing LCC are freely available at the GitHub
repository (https://github.com/takuyaiwamura/vector_lcc). A demo package including
a small scale test dataset is available at the Zenodo repository (https://doi.org/10.5281/
zenodo.3701852).
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