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Abstract: A family of lifetime distributions is considered. Two measures of reliability are 

considered, 𝑅(𝑡) = 𝑃(𝑋 > 𝑡) and 𝑃 = 𝑃(𝑋 > 𝑌).  Point estimation and testing procedures 

are developed for 𝑅(𝑡) and 𝑃 based on records. Two types of point estimators are developed - 

uniformly minimum variance unbiased estimators (UMVUES) and maximum likelihood 

estimators (MLES). A comparative study of different methods of estimation is done through 

simulation studies. Testing procedures are developed for the hypothesis related to different 

parametric functions. 
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1. Introduction  

The reliability function 𝑅(𝑡) is defined as the probability of failure-free operation until time 

𝑡. Thus, if the random variable (𝑟𝑣) 𝑋 denotes the lifetime of an item or a system, then 

𝑅(𝑡) =  𝑃(𝑋 > 𝑡). Another measure of reliability under stress-strength setup is the 

probability 𝑃 = 𝑃(𝑋 > 𝑌), which represents the reliability of an item or a system of random 

strength 𝑋 subject to random stress 𝑌. In engineering, stress is a solid body (liquids do not 

admit engineering stress) arises due to applied loads and is defined as "the force per unit area 

that one part of the body exerts on adjacent parts". Psychological stress is another type of 

stress. A lot of work has been done in the literature for the point estimation and testing of 

𝑅(𝑡) and 𝑃. For example, Pugh (1963), Basu (1964), Bartholomew (1957, 1963), Tong 

(1974, 1975), Johnson (1975), Kelley, Kelley and Schucany (1976), Sathe and Shah (1981), 

Chao (1982), Chaturvedi and Surinder (1999) developed inferential procedures for 𝑅(𝑡) and 

𝑃 for exponential distribution. Constantine, Karson and Tse (1986) derived UMVUE and 

MLE for 𝑃 associated with gamma distribution. Awad and Gharraf (1986) estimated 𝑃 for 

Burr distribution. For estimation of 𝑅(𝑡) corresponding to Maxwell and generalized Maxwell 

distributions, one may refer to Tyagi and Bhattacharya (1981) and Chaturvedi and Rani 

(1998), respectively. Inferences have been drawn for 𝑅(𝑡) and 𝑃 for some families of lifetime 

distributions by Chaturvedi and Rani (1997), Chaturvedi and Tomer (2003), Chaturvedi and 

Singh (2006, 2008) and Chaturvedi and Kumari (2015). Chaturvedi and Tomer (2002) 

derived UMVUE for 𝑅(𝑡) and 𝑃 for negative binomial distribution. For exponentiated 

Weibull and Lomax distributions, the inferential procedures are available in Chaturvedi and 

Pathak (2012, 2013, 2014). 

 

Chandler (1952) introduced the concept of record values. Based on records, inferential 

procedures for the parameters of different distributins  have been developed by Glick (1978), 

Nagaraja (1988a,1988b), Balakrishan, Ahsanullah and Chan (1995), Arnold, Balakrishan and 

Nagaraja (1992), Habibi Rad, Arghami and Ahmadi (2006), Arashi and Emadi (2008), 

Razmkhah and Ahmadi (2011), Arabi Belaghi, Arashi and Tabatabaey (2015) and others. 
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No one can resist being interested in record values. The hottest day ever, the longest winning 

streak in professional basketball, the lowest stock market figure, these we cannot resist. To 

the best of the knowledge of authors, no inferential procedures are available in the literature 

for the estimation and testing of reliability functions based on records. The records take 

values in life-testing experiments also. 

 

The purpose of this paper is many-fold. We consider a family of lifetime distributions, which 

covers as many as fourteen distributions as its specific cases. We develop point estimation 

and testing procedures based on records. As far as point estimation is concerned, we derive 

UMVUES and MLES. A new technique of obtaining these estimators is developed, in which 

first of all the estimators of powers of parameter are obtained. These estimators are used to 

obtain estimators of 𝑅(𝑡). Using the derivatives of the estimators of  𝑅(𝑡), the estimators of 

sampled probability density function (𝑝𝑑𝑓), at a specified point, are obtained which are 

subsequently used to obtain estimators of 𝑃. The estimators of 𝑃 are derived for the cases 

when 𝑋 and 𝑌 belong to the same and different families of distributions. Test procedures are 

developed for different hypotheses.  

 

In Section 2, we give the family of lifetime distributions. In Section 3 and Section 4, 

respectively, we develop point estimation procedures and testing procedures. Finally, in 

Section 5, we present numerical findings. 

 

2. The Family of Lifetime Distributions 

Let the 𝑟𝑣 𝑋 follow the distribution having the 𝑝𝑑𝑓 

𝑓(𝑥; 𝑎, 𝜆, 𝜃) =
𝐺′(𝑥; 𝑎, 𝜃)

𝜆
exp (−

𝐺(𝑥; 𝑎, 𝜃)

𝜆
) ; 𝑥 > 𝑎 ≥ 0, 𝜆 > 0.                                        (2.1) 

Here, 𝐺(𝑥; 𝑎, 𝜃) is a function of 𝑥 and may also depend on the parameters 𝑎 and 𝜃. 𝜃 may be 

vector valued. Moreover, 𝐺(𝑥; 𝑎, 𝜃) is a monotonically increasing function in 𝑥 

with 𝐺(𝑎; 𝑎, 𝜃) = 0, 𝐺(∞; 𝑎, 𝜃) =  ∞  and 𝐺′(𝑥; 𝑎, 𝜃) denotes the derivative of  

𝐺(𝑥; 𝑎, 𝜃) with respect to 𝑥.  

 

We note that (2.1) represents a family of lifetime distributions since it covers the following 

lifetime distributions as specific cases: 

I. For 𝐺(𝑥; 𝑎, 𝜃) = 𝑥 and 𝑎 = 0, we get the one-parameter exponential distribution 

[Johnson and Kotz (1970, p.166)]. 

II. For 𝐺(𝑥; 𝑎, 𝜃) = 𝑥𝑝 (𝑝 > 0) and 𝑎 = 0, it turns out to be Weibull distribution 

[Johnson and Kotz (1970, p.250)]. 

III. For 𝐺(𝑥; 𝑎, 𝜃) = 𝑥2 and 𝑎 = 0, it gives Rayleigh distribution [Sinha (1986, p.200)]. 

IV. For 𝐺(𝑥; 𝑎, 𝜃) = log(1 + 𝑥𝑏) , 𝑏 > 0 and 𝑎 = 0, it leads us to  Burr distribution [Burr 

(1942) and Cislak and Burr (1968)]. 

V. For (𝑥; 𝑎, 𝜃) = 𝑙𝑜𝑔 (
𝑥

𝑎
) , we get Pareto distribution [Johnson and Kotz (1970, p.233)]. 
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VI. For 𝐺(𝑥; 𝑎, 𝜃) = 𝑙𝑜𝑔 (1 +
𝑥

𝜈
) , 𝜈 > 0 and 𝑎 = 0, it is called Lomax (1954) 

distribution. 

VII. For 𝐺(𝑥; 𝑎, 𝜃) = 𝑙𝑜𝑔 (1 +
𝑥𝑏

𝜈
) , 𝑏 > 0, 𝜈 > 0 and 𝑎 = 0, it becomes Burr distribution 

with scale parameter ν (> 0) [Tadikamalla (1980)]. 

VIII. For 𝐺(𝑥; 𝑎, 𝜃) = 𝑥𝛾 exp(𝜈𝑥) , 𝛾 > 0, 𝜈 > 0 and 𝑎 = 0, it gives the modified Weibull 

distribution of Lai et al (2003). 

IX. For 𝐺(𝑥; 𝑎, 𝜃) = (𝑥 − 𝑎) +
𝜈

𝜆
𝑙𝑜𝑔 (

𝑥+𝜈

𝑎+𝜆
) , 𝜈 > 0, 𝜆 > 0, we get the generalised Pareto 

distribution of  Ljubo (1965). 

X. For 𝐺(𝑥; 𝑎, 𝜃) = 𝑏𝑥 +
𝜃

2
𝑥2, 𝜃 > 0, 𝑏 > 0 and 𝑎 = 0, we get the linear exponential 

distribution [Mahmoud and Al-Nagar (2009)].  

XI. For 𝐺(𝑥; 𝑎, 𝜃) = (1 + 𝑥𝑏)𝜃 − 1, 𝑏 > 0, 𝜃 > 0 and 𝑎 = 0, we get the generalised 

power Weibull distribution [Nikulin and Haghighi (2006)]. 

XII. For 𝐺(𝑥; 𝑎, 𝜃) =
𝛽

𝑏
(𝑒𝑏𝑥 − 1), 𝛽 > 0, 𝑏 > 0 and 𝑎 = 0, we get the Gompertz 

distribution [Khan and Zia (2009)]. 

XIII. For 𝐺(𝑥; 𝑎, 𝜃) = (𝑒𝑥
𝑏
− 1) , 𝑏 > 0 and 𝑎 = 0, this gives Chen (2000) distribution. 

XIV. For 𝐺(𝑥; 𝑎, 𝜃) = (𝑥 − 𝑎), we get the two-parameter exponential distribution 

[Ahsanullah (1980)]. 

 

3. Point Estimation Procedures 

Let 𝑋1, 𝑋2, … be an infinite sequence of independent and identically distributed (𝑖𝑖𝑑) rvs from 

(2.1). An observation 𝑋𝑗 will be called an upper record value (or simply a record) if its value 

exceeds that of all previous observations. Thus 𝑋𝑗 is a record if 𝑋𝑗 > 𝑋𝑖 for every 𝑖 < 𝑗. 

The record time sequence {𝑇𝑛 , 𝑛 ≥ 0} is defined as: 

{
𝑇0 = 1           ; 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1

𝑇𝑛 = 𝑚𝑖𝑛{𝑗 ∶ 𝑋𝑗 > 𝑋𝑇𝑛−1} ; 𝑛 ≥ 1
 

The record value sequence {𝑅𝑛} is then defined by: 

𝑅𝑛 = 𝑋𝑇𝑛  ; 𝑛 = 0,1,2,… 

The likelihood function of the first 𝑛 + 1 upper record values 𝑅0, 𝑅1, 𝑅2, … , 𝑅𝑛 is: 

𝐿(𝜆|𝑅0, 𝑅1, 𝑅2, … , 𝑅𝑛) = 𝑓(𝑅𝑛; 𝑎, 𝜆, 𝜃)∏
𝑓(𝑅𝑖; 𝑎, 𝜆, 𝜃)

1 − 𝐹(𝑅𝑖; 𝑎, 𝜆, 𝜃)

𝑛−1

𝑖=0

 

where  𝐹(𝑥; 𝑎, 𝜆, 𝜃) is the distribution function of 𝑋. It is easy to see that  

𝐿(𝜆|𝑅0, 𝑅1, 𝑅2, … , 𝑅𝑛) =

𝑒𝑥𝑝 (
−𝐺(𝑅𝑛; 𝑎, 𝜃)

𝜆
)

𝜆𝑛+1
∏𝐺′(𝑅𝑖; 𝑎, 𝜃

𝑛

𝑖=0

).                                             (3.1) 

The following theorem provides UMVUES of powers of λ. These estimators will be utilized 

to obtain the UMVUE of reliability functions. 

 

Theorem 1: For 𝑝 ∈ (−∞,∞), 𝑝 ≠ 0, the UMVUE of 𝜆−𝑝 is given by: 
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𝜆−�̃� = {
{
𝛤(𝑛 + 1)

𝛤(𝑛 − 𝑝 + 1)
} (𝐺(𝑅𝑛; 𝑎, 𝜃))

−𝑝
;  𝑛 > 𝑝 − 1

                                                          0   ;   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Proof: It follows from (3.1) and factorisation theorem [see Rohtagi and Saleh (2012, p.361)] 

that 𝐺(𝑅𝑛; 𝑎, 𝜃) is a sufficient statistic for λ and the pdf of 𝐺(𝑅𝑛; 𝑎, 𝜃) is: 

ℎ(𝐺(𝑟𝑛; 𝑎, 𝜃)|𝜆)

=
𝐺(𝑟𝑛; 𝑎, 𝜃)

𝑛

𝛤(𝑛 + 1)𝜆𝑛+1
exp {

−𝐺(𝑟𝑛; 𝑎, 𝜃)

𝜆
}                                                              (3.2) 

From (3.2), since the distribution of 𝑅𝑛 belongs to exponential family, it is also complete 

[see Rohtagi and Saleh (2012, p.367)]. The result now follows from (3.2) that 

𝐸[𝐺(𝑅𝑛; 𝑎, 𝜃)
−𝑝
] = {

𝛤(𝑛 − 𝑝 + 1)

𝛤(𝑛 + 1)
} 𝜆−𝑝 

In the following theorem, we obtain UMVUE of the reliability function. 

 

Theorem 2: The UMVUE of the reliability function is  

�̃�(𝑡) = {
[1 −

𝐺(𝑡;𝑎,𝜃)

𝐺(𝑅𝑛;𝑎,𝜃)
]
𝑛

 ;    𝐺(𝑡; 𝑎, 𝜃) < 𝐺(𝑅𝑛; 𝑎, 𝜃)

0       ;         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

Proof: It is easy to see that 

𝑅(𝑡) = 𝑒𝑥𝑝 {
−𝐺(𝑡; 𝑎, 𝜃)

𝜆
} 

          = ∑
(−1)𝑖

𝑖!

∞

𝑖=0

{
𝐺(𝑡; 𝑎, 𝜃)

𝜆
}

𝑖

                                                                                                       (3.3) 

Applying Theorem 1, it follows from (3.3) that  

�̃�(𝑡) =∑
(−1)𝑖

𝑖!

∞

𝑖=0

{𝐺(𝑡; 𝑎, 𝜃)}
𝑖
𝜆−�̃� 

          = ∑(−1)𝑖 (
𝑛

𝑖
)

𝑛

𝑖=0

{
𝐺(𝑡; 𝑎, 𝜃)

𝐺(𝑅𝑛; 𝑎, 𝜃)
}

𝑖

 

and the theorem follows. 

 

The following corollary provides UMVUE of the sampled 𝑝𝑑𝑓. This estimator is derived 

with the help of Theorem 2. 

 

Corollary 1: The UMVUE of the sampled pdf (2.1) at a specified point 𝑥 is 

𝑓(𝑥; 𝑎, 𝜆, 𝜃) 

= {

𝑛𝐺′(𝑥; 𝑎, 𝜃)

𝐺(𝑅𝑛; 𝑎, 𝜃) 
 [1 −

𝐺(𝑥; 𝑎, 𝜃)

𝐺(𝑅𝑛; 𝑎, 𝜃)
]

n−1

; 𝐺(𝑥; 𝑎, 𝜃) < 𝐺(𝑅𝑛; 𝑎, 𝜃)

0                                     ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                              

 

Proof: We note that the expectation of ∫ 𝑓
∞

𝑡
(𝑥; 𝑎, 𝜆, 𝜃)𝑑𝑥 with respect to 𝑅𝑛 is 𝑅(𝑡). Hence,  
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�̃�(𝑡) = ∫ 𝑓(𝑥; 𝑎, 𝜆, 𝜃)𝑑𝑥
∞

𝑡

 

The result follows from Theorem 2. 

  

In the following theorem, we obtain expression for the variance of �̃�(𝑡), which will be 

needed to study its efficiency. 

 

Theorem 3: The variance of �̃�(𝑡) is given by: 

𝑉𝑎𝑟{�̃�(𝑡)} =
1

𝑛!
{
𝐺(𝑡; 𝑎, 𝜃)

𝜆
}

(𝑛+1)

𝑒𝑥𝑝 {
−𝐺(𝑡; 𝑎, 𝜃)

𝜆
} [

𝜆𝑎𝑛

𝐺(𝑡; 𝑎, 𝜃)

− 𝑎𝑛−1𝑒𝑥𝑝 {
𝐺(𝑡; 𝑎, 𝜃)

𝜆
}𝐸𝑖 (

−𝐺(𝑡; 𝑎, 𝜃)

𝜆
)

+∑𝑎𝑖 { ∑
(𝑚 − 1)!

(𝑛 − 𝑖 − 1)!

𝑛−𝑖−1

𝑚=1

(
−𝐺(𝑡; 𝑎, 𝜃)

𝜆
)

𝑛−𝑖−𝑚−1𝑛−2

𝑖=0

−
1

(𝑛 − 𝑖 − 1)!
(
−𝐺(𝑡; 𝑎, 𝜃)

𝜆
)

𝑛−𝑖−1

𝑒𝑥𝑝 (
𝐺(𝑡; 𝑎, 𝜃)

𝜆
)𝐸𝑖 (

−𝐺(𝑡; 𝑎, 𝜃)

𝜆
)}

+ ∑ 𝑎𝑖(𝑖 − 𝑛)! (
𝜆

𝐺(𝑡; 𝑎, 𝜃)
)

2𝑛

𝑖=𝑛+1

𝑖−𝑛+1

∑
1

𝑟!

𝑖−𝑛

𝑟=0

(
𝐺(𝑡; 𝑎, 𝜃)

𝜆
)

𝑟

]

− 𝑒𝑥𝑝 {
−2𝐺(𝑡; 𝑎, 𝜃)

𝜆
} ,                                                                                          (3.4) 

where 𝑎𝑖 = (−1)
𝑖(2𝑛

𝑖
) and −𝐸𝑖(−𝑥) = ∫

𝑒−𝑢

𝑢

∞

𝑥
𝑑𝑢. 

Proof: Using (3.2) and Theorem 2, 

𝐸{�̃�(𝑡)2}  

=
1

𝛤(𝑛 + 1)𝜆𝑛+1
∫ [1 −

𝐺(𝑡; 𝑎, 𝜃)

𝐺(𝑟𝑛; 𝑎, 𝜃)
]

∞

𝐺(𝑡;𝑎,𝜃)

2𝑛

{𝐺(𝑟𝑛; 𝑎, 𝜃)}
𝑛
𝑒𝑥𝑝 {

−𝐺(𝑟𝑛; 𝑎, 𝜃)

𝜆
} 𝑑𝐺(𝑟𝑛; 𝑎, 𝜃) 

=
1

𝛤(𝑛 + 1)
(
𝐺(𝑡; 𝑎, 𝜃)

𝜆
)

𝑛+1

 𝑒𝑥𝑝 (
−𝐺(𝑡; 𝑎, 𝜃)

𝜆
)∫

𝑢2𝑛

(1 + 𝑢)𝑛
𝑒𝑥𝑝 (

−𝐺(𝑡; 𝑎, 𝜃)

𝜆
𝑢)

∞

0

𝑑𝑢 

       

=
1

𝛤(𝑛 + 1)
(
𝐺(𝑡; 𝑎, 𝜃)

𝜆
)

𝑛+1

 𝑒𝑥𝑝 (
−𝐺(𝑡; 𝑎, 𝜃)

𝜆
) 𝐼,   (𝑠𝑎𝑦)                                                      (3.5) 

where  

𝐼 =∑𝑎𝑖

𝑛

𝑖=0

∫
1

(𝑢 + 1)𝑛−𝑖

∞

0

exp(
−𝐺(𝑡; 𝑎, 𝜃)

𝜆
𝑢)𝑑𝑢 

+ ∑ 𝑎𝑖∫(𝑢 + 1)
𝑖−𝑛𝑒𝑥𝑝 (

−𝐺(𝑡; 𝑎, 𝜃)

𝜆
𝑢)

∞

0

2𝑛

𝑖=𝑛+1

𝑑𝑢                                                                      (3.6) 
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Using a result of Erdélyi (1954) that 

∫
exp (−𝑢𝑝)

(𝑢 + 𝑎)𝑛

∞

0

𝑑𝑢 = ∑
(𝑚 − 1)! (−𝑝)𝑛−𝑚−1

(𝑛 − 1)! 𝑎𝑚

𝑛−1

𝑚=1

−
(−𝑝)𝑛−1

(𝑛 − 1)!
exp(𝑎𝑝) 𝐸𝑖(−𝑎𝑝) 

we have 

∫
1

(𝑢 + 1)𝑛−𝑖

∞

0

exp(
−𝐺(𝑡; 𝑎, 𝜃)

𝜆
𝑢)𝑑𝑢 

= ∑
(𝑚 − 1)!

(𝑛 − 1)!

𝑛−𝑖−1

𝑚=1

(
−𝐺(𝑡; 𝑎, 𝜃)

𝜆
)

𝑛−𝑖−𝑚−1

 

−
1

(𝑛−𝑖−1)!
(
−𝐺(𝑡;𝑎,𝜃)

𝜆
)
𝑛−𝑖−1

𝑒𝑥𝑝 (
𝐺(𝑡;𝑎,𝜃)

𝜆
)𝐸𝑖 (

−𝐺(𝑡;𝑎,𝜃)

𝜆
) , 𝑖 = 0,1,2, … 𝑛 − 2                           (3.7)   

 

Furthermore, 

∫
1

(1 + 𝑢)

∞

0

exp(
−𝐺(𝑡; 𝑎, 𝜃)

𝜆
𝑢)𝑑𝑢 

= 𝑒𝑥𝑝 (
𝐺(𝑡; 𝑎, 𝜃)

𝜆
)∫

1

1 + 𝑢

∞

0

𝑒𝑥𝑝(
−𝐺(𝑡; 𝑎, 𝜃)

𝜆
(1 + 𝑢))𝑑𝑢 

= 𝑒𝑥𝑝 (
𝐺(𝑡; 𝑎, 𝜃)

𝜆
) ∫

𝑒−𝑧

𝑧
𝑑𝑧

∞

(
𝐺(𝑡;𝑎,𝜃)

𝜆
)

 

= −𝑒𝑥𝑝 (
𝐺(𝑡; 𝑎, 𝜃)

𝜆
)𝐸𝑖 (

−𝐺(𝑡; 𝑎, 𝜃)

𝜆
).                                                                                        (3.8) 

We have 

∫ 𝑒𝑥𝑝 (
−𝐺(𝑡; 𝑎, 𝜃)

𝜆
𝑢)𝑑𝑢 =

∞

0

(
𝐺(𝑡; 𝑎, 𝜃)

𝜆
)                                                                                  (3.9) 

Finally, 

∫(1 + 𝑢)𝑖−𝑛𝑒𝑥𝑝 (
−𝐺(𝑡; 𝑎, 𝜃)

𝜆
𝑢)

∞

0

𝑑𝑢 =∑(
𝑖 − 𝑛

𝑟
)

𝑖−𝑛

𝑟=0

∫ 𝑢𝑖−𝑛−𝑟exp (
−𝐺(𝑡; 𝑎, 𝜃)

𝜆
𝑢)

∞

0

𝑑𝑢 

                                                                            = ∑(
𝑖 − 𝑛

𝑟
)

𝑖−𝑛

𝑟=0

{
𝜆

𝐺(𝑡; 𝑎, 𝜃)
}

𝑖−𝑛−𝑟+1

𝛤(𝑖 − 𝑛 − 𝑟 + 1). (3.10) 

The theorem now follows on making substitutions from (3.7), (3.8), (3.9) and (3.10) in 

(3.6) and then using (3.5). 

 

Let 𝑋 and 𝑌 be two independent 𝑟𝑣𝑠 following the families of distributions 𝑓1(𝑥; 𝑎1, 𝜆1, 𝜃1) 

and 𝑓2 (𝑦; 𝑎2, 𝜆2, 𝜃2) respectively. We consider the case when 𝑋 and 𝑌 belong to different 

families of distributions, i.e.  



7 

 

𝑓1 (𝑥; 𝑎1, 𝜆1, 𝜃1) =
𝐺′ (𝑥; 𝑎1, 𝜃1)

𝜆1
exp{

−𝐺 (𝑥; 𝑎1, 𝜃1)

𝜆1
} ;                      𝑥 > 𝑎1 ≥ 0, 𝜆1 > 0 

and  

𝑓2 (𝑦; 𝑎2, 𝜆2, 𝜃2) =
𝐻′ (𝑦; 𝑎2, 𝜃2)

𝜆2
exp{

−𝐻 (𝑦; 𝑎2, 𝜃2)

𝜆2
} ;                      𝑦 > 𝑎2 ≥ 0, 𝜆2 > 0 

Let {𝑅𝑛} and {𝑅𝑚
∗ } be the record value sequences for 𝑋′𝑠 and 𝑌′𝑠 respectively. 

 

The following theorem provides the UMVUE of 𝑃 when 𝑋 and 𝑌 belong to different families 

of distributions. 

 

Theorem 4: The UMVUE of 𝑃 is given by  

�̃� =

{
 
 
 
 
 

 
 
 
 
 

𝑚 ∫ (1 − 𝑧)𝑚−1

[
 
 
 
 

1 −

𝐺 (𝐻−1 (𝑧𝐻 (𝑅𝑚
∗ ; 𝑎2, 𝜃2)))

𝐺 (𝑅𝑛; 𝑎1, 𝜃1)
]
 
 
 
 
𝑛

𝐻(𝑅𝑛;𝑎2,𝜃2)

𝐻(𝑅𝑚
∗ ;𝑎2,𝜃2)

0

𝑑𝑧 ;  𝑅𝑛 < 𝑅𝑚
∗

𝑚∫(1 − 𝑧)𝑚−1

[
 
 
 
 

1 −

𝐺 (𝐻−1 (𝑧𝐻 (𝑅𝑚
∗ ; 𝑎2, 𝜃2)))

𝐺 (𝑅𝑛; 𝑎1, 𝜃1)
]
 
 
 
 1

0

𝑛

𝑑𝑧          ;        𝑅𝑚
∗ < 𝑅𝑛

 

It follows from Corollary 1 that the UMVUES of 𝑓1(𝑥; 𝑎1, 𝜆1, 𝜃1) and 𝑓2 (𝑦; 𝑎2, 𝜆2, 𝜃2) at 

specified points 𝑥 and 𝑦 are respectively: 

𝑓1̃ (𝑥; 𝑎1, 𝜆1, 𝜃1) 

=

{
 
 

 
 𝑛𝐺′ (𝑥; 𝑎1, 𝜃1)

𝐺 (𝑅𝑛; 𝑎1, 𝜃1) 
 [1 −

𝐺 (𝑥; 𝑎1, 𝜃1)

𝐺 (𝑅𝑛; 𝑎1, 𝜃1)
]

n−1

; 𝐺 (𝑥; 𝑎1, 𝜃1) < 𝐺 (𝑅𝑛; 𝑎1, 𝜃1)

0                                     ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                              

  

and  

𝑓2̃ (𝑦; 𝑎2, 𝜆2, 𝜃2) 

=

{
 
 

 
 𝑚𝐻′ (𝑦; 𝑎2, 𝜃2)

𝐻 (𝑅𝑚
∗ ; 𝑎2, 𝜃2)

 [1 −
𝐻 (𝑦; 𝑎2, 𝜃2)

𝐻 (𝑅𝑚
∗ ; 𝑎2, 𝜃2)

]

m−1

;

                   

𝐻 (𝑦; 𝑎2, 𝜃2) < 𝐻 (𝑅𝑚
∗ ; 𝑎2, 𝜃2)

0                                       ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

From the arguments similar to those used in the proof of Corollary 1, 

�̃� = ∬ 𝑓1̃ (𝑥; 𝑎1, 𝜆1, 𝜃1)

∞  ∞

𝑦=𝑎2  𝑥=𝑦

𝑓2̃ (𝑦; 𝑎2, 𝜆2, 𝜃2) 𝑑𝑥 𝑑𝑦 
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    =  ∫ �̃�1

∞

𝑦=𝑎2

(𝑦) {−
𝑑

𝑑𝑦
�̃�2(𝑦)} 𝑑𝑦 

    = 𝑚 ∫ [1 −
𝐺 (𝑦; 𝑎1, 𝜃1)

𝐺 (𝑅𝑛; 𝑎1, 𝜃1) 
]

min[𝑅𝑛,𝑅𝑚
∗ ]

𝑦=𝑎2

𝑛

{
𝐻′ (𝑦; 𝑎2, 𝜃2)

𝐻 (𝑅𝑚
∗ ; 𝑎2, 𝜃2)

} [1 −
𝐻 (𝑦; 𝑎2, 𝜃2)

𝐻 (𝑅𝑚
∗ ; 𝑎2, 𝜃2)

]

m−1

𝑑𝑦 

The theorem now follows on considering the two cases and putting 

𝐻 (𝑅𝑚
∗ ; 𝑎2, 𝜃2)

−1
𝐻 (𝑦; 𝑎2, 𝜃2) = 𝑧 

 

In the following theorem, we obtain the UMVUE of 𝑃 when 𝑋 and 𝑌 belong to same families 

of distributions. 

 

Theorem 5: When 𝑋 and 𝑌 belong to same families of distributions, 

�̃� =

{
  
 

  
 
∑

(−1)𝑖𝑚!𝑛!

(𝑚 − 𝑖 − 1)! (𝑛 + 𝑖 + 1)!
{
𝐺 (𝑅𝑛; 𝑎1, 𝜃1)

𝐺 (𝑅𝑚
∗ ; 𝑎1, 𝜃1)

}

𝑖+1

; 𝑅𝑛 < 𝑅𝑚
∗

𝑚−1

𝑖=0

∑
(−1)𝑖𝑛!𝑚!

(𝑛 − 𝑖)! (𝑚 + 𝑖)!
{
𝐺 (𝑅𝑚

∗ ; 𝑎1, 𝜃1)

𝐺 (𝑅𝑛; 𝑎1, 𝜃1)
}

𝑖

                      ;

𝑛

𝑖=0

 𝑅𝑚
∗ < 𝑅𝑛

 

Proof:  Taking 𝐺(∙) = 𝐻(∙) in Theorem 4, for 𝑅𝑛 < 𝑅𝑚
∗ ,  

�̃� = 𝑚 ∫ (1 − 𝑧)𝑚−1 {1 −
𝑧𝐺 (𝑅𝑚

∗ ; 𝑎1, 𝜃1)

𝐺 (𝑅𝑛; 𝑎1, 𝜃1)
}

𝑛

𝑑𝑧

𝐺(𝑅𝑛;𝑎1,𝜃1)

𝐺(𝑅𝑚
∗ ;𝑎1,𝜃1)

0

 

    = 𝑚{
𝐺 (𝑅𝑛; 𝑎1, 𝜃1)

𝐺 (𝑅𝑚
∗ ; 𝑎1, 𝜃1)

}∫{1 −
𝑢𝐺 (𝑅𝑛; 𝑎1, 𝜃1)

𝐺 (𝑅𝑚
∗ ; 𝑎1, 𝜃1)

}

𝑚−1

(1 − 𝑢)𝑛𝑑𝑢 

1

0

 

    = 𝑚 ∑(−1)𝑖 (
𝑚 − 1

𝑖
)

𝑚−1

𝑖=0

{
𝐺 (𝑅𝑛; 𝑎1, 𝜃1)

𝐺 (𝑅𝑚
∗ ; 𝑎1, 𝜃1)

}

𝑖+1

∫𝑢𝑖(1 − 𝑢)𝑛𝑑𝑢

1

0

 

and the first assertion follows. Similarly, we can prove the second assertion. 

 

The following theorem provides the MLE of 𝑅(𝑡). 

 

Theorem 6: The MLE of 𝑅(𝑡) is given by: 

�̂�(𝑡) = 𝑒𝑥𝑝 {
−(𝑛 + 1)𝐺(𝑡; 𝑎, 𝜃)

𝐺(𝑅𝑛; 𝑎, 𝜃)
} 

Proof: It can be easily seen from (3.1) that the MLE of λ is �̂� =
𝐺(𝑅𝑛;𝑎,𝜃)

𝑛+1
. The theorem now 

follows from invariance property of MLE. 
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In the following corollary, we obtain the MLE of sampled 𝑝𝑑𝑓 with the help of Theorem 6. 

This will be used to obtain MLE of 𝑃.  

 

Corollary 2: The MLE of 𝑓(𝑥; 𝑎, 𝜆, 𝜃) at a specified point 𝑥 is  

𝑓(𝑥; 𝑎, 𝜆, 𝜃) =
(𝑛 + 1)𝐺′(𝑥; 𝑎, 𝜃)

𝐺(𝑅𝑛; 𝑎, 𝜃)
𝑒𝑥𝑝 {

−(𝑛 + 1)𝐺(𝑥; 𝑎, 𝜃)

𝐺(𝑅𝑛; 𝑎, 𝜃)
} 

Proof: The result follows from Theorem 6 on using the fact that  

 𝑓(𝑥; 𝑎, 𝜆, 𝜃) = −
𝑑

𝑑𝑡
�̂�(𝑡). 

 

In the following theorem, we obtain the expression for variance of �̂�(𝑡). 

 

Theorem 7: The variance of �̂�(𝑡) is given by: 

𝑉𝑎𝑟{�̂�(𝑡)} =
2

𝑛!
{
2(𝑛 + 1)𝐺(𝑡; 𝑎, 𝜃)

𝜆
}

𝑛+1
2

𝐾𝑛+1 (2√
2(𝑛 + 1)𝐺(𝑡; 𝑎, 𝜃)

𝜆
)

− [
2

𝑛!
{
(𝑛 + 1)𝐺(𝑡; 𝑎, 𝜃)

𝜆
}

𝑛+1
2

𝐾𝑛+1 (2√
(𝑛 + 1)𝐺(𝑡; 𝑎, 𝜃)

𝜆
)]

2

 

where 𝐾𝑟(∙) is modified Bessel function of second kind of order 𝑟. 

Proof: Using (3.2) and Theorem 6, we have  

𝐸{�̂�(𝑡)} 

=
1

𝜆𝑛+1𝛤(𝑛 + 1)    
∫ 𝑒𝑥𝑝 [− {

𝐺(𝑅𝑛; 𝑎, 𝜃)

𝜆
+
(𝑛 + 1)𝐺(𝑡; 𝑎, 𝜃)

𝐺(𝑅𝑛; 𝑎, 𝜃)
}]

∞

0

{𝐺(𝑅𝑛; 𝑎, 𝜃)}
𝑛
𝑑𝐺(𝑅𝑛; 𝑎, 𝜃) 

=
1

𝛤(𝑛 + 1)
∫ 𝑒𝑥𝑝 [− {𝑦 +

(𝑛 + 1)𝐺(𝑡; 𝑎, 𝜃)

𝜆𝑦
}] 𝑦𝑛𝑑𝑦                                                           (3.11)

∞

0

 

Applying a result of Watson (1952) that  

∫ 𝑢−𝑚
∞

0

𝑒𝑥𝑝 {− (𝑎𝑢 +
𝑏

𝑢
)} 𝑑𝑢 = 2 (

𝑎

𝑏
)

𝑚−1
2
𝐾𝑚−1(2√𝑎𝑏) 

[it is to be noted that 𝐾−𝑚(∙) = 𝐾𝑚(∙) for 𝑚 = 0,1,2,… ], we obtain from (3.11) that 

𝐸{�̂�(𝑡)} =
2

𝑛!
{
(𝑛 + 1)𝐺(𝑡; 𝑎, 𝜃)

𝜆
}

𝑛+1
2

𝐾𝑛+1(2√
(𝑛 + 1)𝐺(𝑡; 𝑎, 𝜃)

𝜆
) 

Similarly, we can obtain the expression for 𝐸{�̂�(𝑡)2} and the result follows. 

 

The following theorem provides MLE of 𝑃 when 𝑋 and 𝑌 belong to different families of 

distributions. 

 

Theorem 8: The MLE of 𝑃 when 𝑋 and 𝑌 belong to different families of distributions, is 
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�̂� = ∫ 𝑒−𝑧𝑒𝑥𝑝 {
−(𝑛 + 1)

𝐺 (𝑅𝑛; 𝑎1, 𝜃1)
𝐺 (𝐻−1 (

𝑧𝐻(𝑅𝑚
∗ ; 𝑎2, 𝜃2

𝑚+ 1
))}𝑑𝑧

∞

0

 

Proof: We have, 

�̂� = ∬ 𝑓1̂ (𝑥; 𝑎1, 𝜆1, 𝜃1)

∞  ∞

𝑦=𝑎2  𝑥=𝑦

𝑓2̂ (𝑦; 𝑎2, 𝜆2, 𝜃2) 𝑑𝑥 𝑑𝑦  

= ∫ �̂�1

∞

𝑦=𝑎2

(𝑦; 𝑎1, 𝜃1) {−
𝑑

𝑑𝑦
�̂�2 (𝑦; 𝑎2, 𝜃2)} 𝑑𝑦 

= ∫ 𝑒𝑥𝑝 {
−(𝑛 + 1)𝐺(𝑦; 𝑎1, 𝜃1)

𝐺(𝑅𝑛; 𝑎1, 𝜃1)
}

∞

𝑦=𝑎2

{
(𝑚 + 1)𝐻′ (𝑦; 𝑎2, 𝜃2)

𝐻 (𝑅𝑚
∗ ; 𝑎2, 𝜃2)

} 𝑒𝑥𝑝 {
−(𝑚 + 1)𝐻 (𝑦; 𝑎2, 𝜃2)

𝐻 (𝑅𝑚
∗ ; 𝑎2, 𝜃2)

}𝑑𝑦 

The result now follows on putting {
(𝑚+1)𝐻(𝑦;𝑎2,𝜃2)

𝐻(𝑅𝑚
∗ ;𝑎2,𝜃2)

} = 𝑧. 

 

The following theorem provides MLE of 𝑃 when 𝑋 and 𝑌 belong to same families of 

distributions. The result follows from Theorem 8. 

 

Theorem 9: When 𝑋 and 𝑌 belong to same families of distributions, the MLE of 𝑃 is given 

by 

�̂� =
(𝑚 + 1)𝐺(𝑅𝑛; 𝑎, 𝜃)

(𝑚 + 1)𝐺(𝑅𝑛; 𝑎, 𝜃) + (𝑛 + 1)𝐺(𝑅𝑚
∗ ; 𝑎, 𝜃)

 

 

4. Test Procedures For Various Hypotheses  

Suppose we have to test the hypothesis 𝐻ₒ: 𝜆 = 𝜆ₒ against 𝐻1: 𝜆 ≠ 𝜆ₒ. It follows from (3.1) 

that, under 𝐻ₒ, 

sup
𝛩ₒ
𝐿(𝜆|𝑅0, 𝑅1, … , 𝑅𝑛) =

1

𝜆ₒ𝑛+1
𝑒𝑥𝑝 {

−𝐺(𝑅𝑛; 𝑎, 𝜃)

𝜆ₒ
}∏𝐺′(𝑅𝑖; 𝑎, 𝜃)

𝑛

𝑖=0

;  𝛩ₒ = {𝜆 ∶ 𝜆 = 𝜆ₒ} 

and 

sup
𝛩
𝐿(𝜆|𝑅0, 𝑅1, … , 𝑅𝑛) = {

𝑛 + 1

𝐺(𝑅𝑛; 𝑎, 𝜃)
}

𝑛+1

𝑒𝑥𝑝(−(𝑛 + 1))∏𝐺′(𝑅𝑖; 𝑎, 𝜃)

𝑛

𝑖=0

;  𝛩 = {𝜆 ∶ 𝜆 > 0} 

Therefore, the likelihood ratio (LR) is given by: 

∅(𝑅0, 𝑅1, … , 𝑅𝑛) =

sup
𝛩ₒ
𝐿(𝜆|𝑅0, 𝑅1, … , 𝑅𝑛)

sup
𝛩
𝐿(𝜆|𝑅0, 𝑅1, … , 𝑅𝑛)

   

                              = {
𝐺(𝑅𝑛; 𝑎, 𝜃)

(𝑛 + 1)𝜆ₒ
}

𝑛+1

𝑒𝑥𝑝 {
−𝐺(𝑅𝑛; 𝑎, 𝜃)

𝜆ₒ
+ (𝑛 + 1)}                                 (4.1) 

We note that the first term on the right hand side of (4.1) is monotonically increasing and the 

second term is monotonically decreasing in 𝐺(𝑅𝑛; 𝑎, 𝜃). It follows from (3.2) that 

2𝜆ₒ−1𝐺(𝑅𝑛; 𝑎, 𝜃)~𝜒2(𝑛+1)
2 .Thus, the critical region is given by {0 < 𝐺(𝑅𝑛; 𝑎, 𝜃) < 𝑘ₒ} ∪



11 

 

{𝑘ₒ′ < 𝐺(𝑅𝑛; 𝑎, 𝜃) < ∞}, where 𝑘ₒ  and 𝑘ₒ′ are obtained such that 𝑘ₒ =
𝜆ₒ

2
𝜒2(𝑛+1)
2 (

𝛼

2
) and 

𝑘ₒ′ =
𝜆ₒ

2
𝜒2(𝑛+1)
2 (1 −

𝛼

2
). 

An important hypothesis in life-testing experiments is 𝐻ₒ: 𝜆 ≥ 𝜆ₒ against 𝐻1: 𝜆 < 𝜆ₒ. It 

follows from (3.1) that for 𝜆1 > 𝜆2,  

𝐿(𝜆1|𝑅0, 𝑅1, … , 𝑅𝑛)

𝐿(𝜆2|𝑅0, 𝑅1, … , 𝑅𝑛)
= (

𝜆2
𝜆1
)
𝑛+1

𝑒𝑥𝑝 {(
1

𝜆2
−
1

𝜆1
)𝐺(𝑅𝑛; 𝑎, 𝜃)}                                                 (4.2) 

It follows from (4.2) that the family of distributions 𝑓(𝑥; 𝑎, 𝜆, 𝜃) has monotone likelihood 

ratio in 𝐺(𝑅𝑛; 𝑎, 𝜃). Thus, the uniformly most powerful critical region for testing 𝐻ₒ against 

𝐻1 is given by [see Lehmann (1959, p.88)] 

∅(𝑅0, 𝑅1, … , 𝑅𝑛) = {
1      ;   𝐺(𝑅𝑛; 𝑎, 𝜃) ≤ 𝑘ₒ′′

0     ;                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

where 𝑘ₒ′′ = 
𝜆ₒ

2
𝜒2(𝑛+1)
2 (𝛼). 

It can be seen that when 𝑋 and 𝑌 belong to same families of distributions, 

𝑃 =
𝜆1

𝜆1 + 𝜆2
 

Suppose we want to test 𝐻ₒ: 𝑃 = 𝑃ₒ against 𝐻1: 𝑃 ≠ 𝑃ₒ. It follows that 𝐻ₒ is equivalent to 

𝜆1 = 𝑘𝜆2 where 𝑘 =
𝑃ₒ

1−𝑃ₒ
. Thus, 𝐻ₒ: 𝜆1 = 𝑘𝜆2 and 𝐻1: 𝜆1 ≠ 𝑘𝜆2. 

It can be shown that, under 𝐻ₒ, 

�̂�1 = 
𝐺(𝑅𝑛; 𝑎, 𝜃) + 𝑘𝐻(𝑅𝑚

∗ ; 𝑎, 𝜃)

𝑛 + 𝑚 + 2
 

and 

�̂�2 = 
𝐺(𝑅𝑛; 𝑎, 𝜃) + 𝑘𝐻(𝑅𝑚

∗ ; 𝑎, 𝜃)

𝑘(𝑛 + 𝑚 + 2)
 

For a generic constant 𝐾, 

𝐿(𝜆1, 𝜆2|𝑅0, 𝑅1, … , 𝑅𝑛, 𝑅0
∗ , 𝑅1

∗, … , 𝑅𝑚
∗ ) =

𝐾

𝜆1
𝑛+1𝜆2

𝑚+1 𝑒𝑥𝑝 {−(
𝐺(𝑅𝑛; 𝑎, 𝜃)

𝜆1
+
𝐻(𝑅𝑚

∗ ; 𝑎, 𝜃)

𝜆2
)} 

                                                                                                                                                                             

 Thus, 

sup
𝛩ₒ
𝐿(𝜆1, 𝜆2|𝑅0, 𝑅1, … , 𝑅𝑛, 𝑅0

∗ , 𝑅1
∗, … , 𝑅𝑚

∗ ) 

=
𝐾

{
𝐺(𝑅𝑛; 𝑎, 𝜃)

𝑘
+ 𝐻(𝑅𝑚

∗ ; 𝑎, 𝜃)}

𝑛+𝑚+2 𝑒𝑥𝑝{−(𝑛 + 𝑚 + 2)}; 𝛩0 = {𝜆1, 𝜆2: 𝜆1 = 𝑘𝜆2}     (4.3) 

and 

  

sup
𝛩
𝐿(𝜆1, 𝜆2|𝑅0, 𝑅1, … , 𝑅𝑛, 𝑅0

∗ , 𝑅1
∗, … , 𝑅𝑚

∗ ) 

=
𝐾

{𝐺(𝑅𝑛; 𝑎, 𝜃)}
𝑛+1

{𝐻(𝑅𝑚
∗ ; 𝑎, 𝜃)}

𝑚+1 𝑒𝑥𝑝{−(𝑛 +𝑚 + 2)}; 𝛩 = {𝜆1, 𝜆2: 𝜆1 > 0,  𝜆2 > 0}            (4.4) 

From (4.3) and (4.4), the LR is: 



12 

 

∅(𝑅0, 𝑅1, … , 𝑅𝑛, 𝑅0
∗ , 𝑅1

∗, … , 𝑅𝑚
∗ ) =

𝐾 {
𝐻(𝑅𝑚

∗ ; 𝑎, 𝜃)

𝐺(𝑅𝑛; 𝑎, 𝜃)
}

𝑚+1

{1 +
𝑘𝐻(𝑅𝑚

∗ ; 𝑎, 𝜃)

𝐺(𝑅𝑛; 𝑎, 𝜃)
}

𝑛+𝑚+2 

Denoting by 𝐹𝑎,𝑏(∙), the 𝐹 − Statistic with (𝑎, 𝑏) degrees of freedom and using the fact that 

𝐺(𝑅𝑛;𝑎,𝜃)

𝐻(𝑅𝑚
∗ ;𝑎,𝜃)

~
(𝑛+1)𝜆1

(𝑚+1)𝜆2
𝐹2(𝑛+1),2(𝑚+1), the critical region is given by {

𝐺(𝑅𝑛;𝑎,𝜃)

𝐻(𝑅𝑚
∗ ;𝑎,𝜃)

< 𝑘2} ∪

{
𝐺(𝑅𝑛;𝑎,𝜃)

𝐻(𝑅𝑚
∗ ;𝑎,𝜃)

> 𝑘2′}, where 𝑘2 =
𝑘(𝑛+1)

(𝑚+1)
𝐹2(𝑛+1),2(𝑚+1) (

𝛼

2
) and 𝑘2′ =

𝑘(𝑛+1)

(𝑚+1)
𝐹2(𝑛+1),2(𝑚+1) (1 −

𝛼

2
). 

 

5. Numerical Findings 

5.1 Real Data 

We consider the real data set which was also used in Lawless (1982, p. 185). These data are 

from Nelson (1982), concerning the data on time to breakdown of an insulating fluid between 

electrodes at a voltage of 34 kV (minutes). The 19 times to breakdown are: 

 

0.96 4.15 0.19 0.78 8.01 31.75 7.35 6.50 8.27 33.91 32.52 3.16 4.85 2.78 4.67 1.31 12.06 

36.71 72.89 

 

Therefore, we observe the following 7 upper record values: 

 

0.96 4.15 8.01 31.75 33.91 36.71 72.89 

 

We first apply Kolmogorov-Smirnov (K-S) test and Chi-Square test to check whether for a 

fixed voltage level, time to breakdown has a Weibull distribution. Considering Weibull 

distribution as a lifetime model for the complete data, the computed K-S statistic is 0.1616 

with a 𝑝 −value of 0.6462. The computed Chi-Square statistic is 0.5369 with a 𝑝 −value 

of0.4637. Both the tests indicate that Weibull Distribution is suitable for the data.  

Using the method of Profile Log-likelihood before applying Newton-Raphson method, the 

Maximum Likelihood estimates of the parameters of Weibull distribution with scale 

parameter 𝜆 and shape parameter 𝑝 obtained are �̂� = 0.7708, �̂� = 6.8865. Based on these 

upper record values, 𝑅𝑛 = 𝑅6 = 72.89, 𝐺(𝑅𝑛) = 𝐺(𝑅6) = 27.2762, reliability function 

𝑅(𝑡)𝑡=2 = 0.7894, UMVUE of reliability function, �̃�(𝑡)𝑡=2 = 0.7345,  and MLE of 

reliability function, �̂�(𝑡)𝑡=2 = 0.7041. 

 

Now we present a data analysis of the strength data reported by Badar and Priest(1982). This 

data represents the strength measured in GPA for single carbon fibers and impregnated 1000-

carbon fiber tows. Single fibers were tested under tension at gauge lengths of 20mm (Data 

Set 1) and 10mm (Data Set 2) with sample sizes 69 and 63 respectively. These data have been 

used previously by Raqab and Kundu (2005), Kundu and Gupta (2006), Kundu and Raqab 

(2009) and Asgharzadeh et al (2011). Kundu and Gupta (2006) analyzed these data sets using 

two-parameter Weibull distribution after subtracting 0.75 from both these data sets. After 

subtracting 0.75 from all the points of these data sets, Kundu and Gupta (2006) observed that 

the Weibull distributions with equal shape parameters fit to both these data sets. 
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Data Set 1 (gauge length of 20 mm): 

 

1.312 1.314 1.479 1.552 1.700 1.803 1.861 1.865 1.944 1.958 1.966 1.997 2.006 2.021 2.027 

2.055 2.063 2.098 2.140 2.179 2.224 2.240 2.253 2.270 2.272 2.274 2.301 2.301 2.359 2.382 

2.382 2.426 2.434 2.435 2.478 2.490 2.511 2.514 2.535 2.554 2.566 2.570 2.586 2.629 2.633 

2.642 2.648 2.684 2.697 2.726 2.770 2.773 2.800 2.809 2.818 2.821 2.848 2.880 2.954 3.012 

3.067 3.084 3.090 3.096 3.128 3.233 3.433 3.585 3.585 

 

Data Set 2 (gauge length of 10 mm): 

 

1.901 2.132 2.203 2.228 2.257 2.350 2.361 2.396 2.397 2.445 2.454 2.474 2.518 2.522 2.525 

2.532 2.575 2.614 2.616 2.618 2.624 2.659 2.675 2.738 2.740 2.856 2.917 2.928 2.937 2.937 

2.977 2.996 3.030 3.125 3.139 3.145 3.220 3.223 3.235 3.243 3.264 3.272 3.294 3.332 3.346 

3.377 3.408 3.435 3.493 3.501 3.537 3.554 3.562 3.628 3.852 3.871 3.886 3.971 4.024 4.027 

4.225 4.395 5.020 

Therefore, we observe the following upper record values: 

 

Set of 66 record values from data set 1: 

 

1.3120 1.3140 1.4790 1.5520 1.7000 1.803 1.8610 1.8650 1.9440 1.9580 1.9660 1.9970 

2.0060 2.0210 2.0270 2.0550 2.0630 2.098 2.1400 2.1790 2.2240 2.2400 2.2530 2.2700 

2.2720 2.2740 2.3010 2.3590 2.3820 2.4260 2.4340 2.4350 2.4780 2.4900 2.5110 2.5140 

2.5350 2.5540 2.5660 2.5700 2.5860 2.6290 2.6330 2.6420 2.6480 2.6840 2.6970 2.7260 

2.7700 2.7730 2.8000 2.8090 2.8180 2.8210 2.8480 2.8800 2.9540 3.0120 3.0670 3.0840 

3.0900 3.0960 3.1280 3.2330 3.4330 3.5850 

Set of 62 record values from data set 2: 

 

1.9010 2.1320 2.2030 2.2280 2.2570 2.3500 2.3610 2.3960 2.3970 2.4450 2.4540 2.4740 

2.5180 2.5220 2.5250 2.5320 2.5750 2.6140 2.6160 2.6180 2.6240 2.6590 2.6750 2.7380 

2.7400 2.8560 2.9170 2.9280 2.9370 2.9770 2.9960 3.0300 3.1250 3.1390 3.1450 3.2200 

3.2230 3.2350 3.2430 3.2640 3.2720 3.2940 3.3320 3.3460 3.3770 3.4080 3.4350 3.4930 

3.5010 3.5370 3.5540 3.5620 3.6280 3.8520 3.8710 3.8860 3.9710 4.0240 4.0270 4.2250 

4.3950 5.0200 

Using the method of Profile Log-likelihood before applying Newton-Raphson method, the 

Maximum Likelihood estimates of the parameters of Weibull distribution fitting data set 1 

with scale parameter 𝜆𝑥 and shape parameter 𝑝𝑥 are  𝜆�̂� = 214.1314 and  𝑝�̂� =
5.5049 respectively. Similarly, the Maximum Likelihood estimates of the parameters of 

Weibull distribution fitting data set 2 with scale parameter 𝜆𝑦 and shape parameter 𝑝𝑦 are 

𝜆�̂� = 424.5736 and  𝑝�̂� = 5.0494  respectively. Based on the upper record values, 𝑅𝑛 =

𝑅65 = 3.5850,   𝐺(𝑅𝑛) = 𝐺(𝑅65) =  2.1872𝑒 + 03,𝑅𝑚 = 𝑅61 = 5.02,   𝐺(𝑅𝑚) = 𝐺(𝑅61) =
 9.4361𝑒 + 03.The UMVUE of stress-strength reliability,�̃� = 0.1772   and MLE of stress-

strength reliability,  �̂� = 0.1788. 

5.2 Simulation Studies 
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In order to obtain estimates under this scheme, we have generated (by inverse cumulative 

density method) 10, 00,000 samples of size 100 each from the distribution given in (2.1) 

with (𝑥; 𝑎, 𝜃) = 𝑥𝑝, 𝑎 = 0, 𝑝 = 2, 𝜆 = 5 . Assuming the data represents the life-span of 

items in hours, for 𝑡 = 1 and fixing the no. of record values to be 7 (𝑛 = 6), the no. of 

samples obtained are 1,18,282.  𝐺(𝑅𝑛) = 25.9493  , 𝑅(𝑡) = 0.8187, MLE of 𝜆: �̂� =

5.1899 , UMVUE of 𝜆: �̃� = 5.1899 ,MLE of 𝑅(𝑡): �̂�(𝑡) = 0.8545 , UMVUE of 𝑅(𝑡): �̃�(𝑡) =

0.8247 , Variance of UMVUE of 𝑅(𝑡): 𝑉𝑎𝑟[�̃�(𝑡)] =  0.003508,

MSE of MLE of 𝑅(𝑡): 𝑀𝑆𝐸[�̂�(𝑡)] =  0.006613.  

In order to obtain the estimate of 𝑃 under this scheme, we have generated 10,000 samples of 

size 100 each from the distribution of 𝑋 and 𝑌 when they belong to the same family of 

distributions. The samples are independently generated from (2.1) with 𝐺(𝑥; 𝑎, 𝜃) = 𝑥𝑝,

𝑎 = 0, 𝑝 = 2, 𝜆 = 5.5. Fixing the no. of records from distribution of 𝑋 to be 𝑛 = 5 and the 

no. of records from distribution of 𝑌 to be 𝑚 = 7. It can be easily shown that 𝑃 =

𝑃(𝑋 > 𝑌) =
1

2
.  The UMVUE of 𝑃: �̃� = 0.5543 and  MLE of 𝑃: �̂� = 0.5447. Now, when 𝑋 

and 𝑌 belong to different families of distributions, samples are independently generated from 

(2.1) with 𝐺 (𝑥; 𝑎1, 𝜃1) = 𝑥
𝑝1 ,  𝑎1 = 0, 𝑝1 = 2, 𝜆1 = 5,𝐻 (𝑦; 𝑎2, 𝜃2) = 𝑦

𝑝2 , 𝑎2 = 0, 𝑝2 = 3,

𝜆2 = 7. Fixing the no. of records from distribution of 𝑋 to be 𝑛 = 10 and the no. of records 

from distribution of 𝑌 to be 𝑚 = 12. It can be easily shown that 𝑃 =
𝑝2

𝜆2
∫ 𝑦𝑝2−1exp (−

𝑦𝑝2

𝜆2
−
𝑦𝑝1

𝜆1
)

∞

𝑦=0
𝑑𝑦 = 0.5632. The UMVUE of 𝑃: �̃� =

0.5301 and  MLE of 𝑃: �̂� = 0.5209. 

In order to investigate the performance of the estimators obtained under this scheme, we have 

evaluated 𝑉𝑎𝑟(�̃�(𝑡))  and MSE(�̂�(𝑡)) for 𝐺(𝑥; 𝑎, 𝜃) = 𝑥𝑝, 𝑎 = 0, 𝑝 = 0.77, 𝜆 = 6.88. 

Table 1 gives 𝑉𝑎𝑟(�̃�(𝑡))  and 𝑀𝑆𝐸(�̂�(𝑡)) for 𝑡 = 1(1)30 and 𝑛 = 8(1)17. Figure 1 

compares the variance UMVUE of reliability function with the mean square error of MLE of 

reliability function calculated in Table 1 as time 𝑡 increases for 𝑛 = 17.  
 

In the theory developed in Section 4, for testing the hypothesis 𝐻ₒ: 𝜆 = 𝜆ₒ against 𝐻1: 𝜆 ≠ 𝜆ₒ 
under this scheme, we have considered the following sample. 

 

Sample 1: 

 

61.0260   67.1303   70.4844   81.8177  101.8750  105.5080 110.9864  123.1468  164.0256  

200.8713  281.5592  295.6992 303.7137  318.1099  368.2300 

 

Now with the help of Chi-Square tables at 5% level of significance, we obtained 𝑘ₒ =
57.7602 and 𝑘ₒ′ = 161.6086. Hence, in this case we may accept 𝐻ₒ at  5% level of 

significance since 𝐺(𝑅14)  = 94.6045. 
 

Again, for testing 𝐻ₒ: 𝜆 ≤ 𝜆ₒ against 𝐻1: 𝜆 > 𝜆ₒ. we have considered the above Sample 1. 

Now at 5% level of significance we obtained 𝑘ₒ′′ = 63.6147 and hence, in this case we may 

accept 𝐻ₒ at  5% level of significance since 𝐺(𝑅14)  = 94.6045. 
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In order to test 𝐻ₒ: 𝑃 = 𝑃ₒ against 𝐻1: 𝑃 ≠ 𝑃ₒ.under this scheme, we have considered the 

following Sample 𝑋 and Sample 𝑌.  
 

Sample 𝑋: 
 

1.3557    2.0975    2.1051    2.1916    2.3850    2.4133 2.4296    2.5964    2.7435    2.8080    

2.8404    2.8719 2.9337    3.0365 

 

Sample 𝑌: 
 

0.9105    1.4416    1.5719    1.8083    1.8614    1.8779 1.8879    1.8998    1.9696    2.1518    

2.2026    2.2114 2.2599    2.2639    2.2695    2.3423    2.3466    2.3479 2.5674    2.5716 

 

For these two samples we obtained 
𝐺(𝑅𝑛)

𝐺(𝑅𝑚
∗ )
= 0.7559. Now, with the help of 𝐹 − tables at 5% 

level of significance, we obtained 𝑘2 = 0.2506 and 𝑘2
′ = 1.0069. Hence, in this case we may 

accept 𝐻ₒ at 5% level of significance. 
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Table 1: Mean Square Error of MLE and UMVUE of Reliability function

n

t Var[UMVUE(R(t))] MSE[MLE(R(t))] Var[UMVUE(R(t))] MSE[MLE(R(t))] Var[UMVUE(R(t))] MSE[MLE(R(t))] Var[UMVUE(R(t))] MSE[MLE(R(t))] Var[UMVUE(R(t))] MSE[MLE(R(t))]

1 0.00216 0.00642 0.00190 0.00684 0.00170 0.00272 0.00153 0.00336 0.00140 0.00203

2 0.00497 0.01471 0.00439 0.01595 0.00393 0.00606 0.00356 0.00767 0.00325 0.00457

3 0.00758 0.02236 0.00671 0.02460 0.00602 0.00900 0.00546 0.01159 0.00499 0.00681

4 0.00979 0.02891 0.00869 0.03222 0.00781 0.01136 0.00710 0.01488 0.00650 0.00864

5 0.01160 0.03430 0.01032 0.03868 0.00929 0.01319 0.00844 0.01752 0.00774 0.01006

6 0.01302 0.03861 0.01160 0.04403 0.01045 0.01453 0.00951 0.01957 0.00873 0.01112

7 0.01410 0.04197 0.01257 0.04834 0.01134 0.01546 0.01033 0.02109 0.00948 0.01186

8 0.01488 0.04450 0.01328 0.05175 0.01200 0.01606 0.01093 0.02217 0.01004 0.01235

9 0.01541 0.04633 0.01377 0.05436 0.01244 0.01638 0.01135 0.02287 0.01043 0.01262

10 0.01572 0.04755 0.01406 0.05629 0.01271 0.01648 0.01160 0.02325 0.01067 0.01272

11 0.01585 0.04827 0.01419 0.05761 0.01284 0.01641 0.01172 0.02339 0.01079 0.01268

12 0.01584 0.04856 0.01419 0.05844 0.01285 0.01619 0.01174 0.02331 0.01080 0.01253

13 0.01571 0.04851 0.01408 0.05883 0.01275 0.01588 0.01166 0.02306 0.01073 0.01230

14 0.01548 0.04817 0.01388 0.05886 0.01258 0.01548 0.01150 0.02268 0.01059 0.01201

15 0.01518 0.04759 0.01361 0.05858 0.01234 0.01502 0.01129 0.02219 0.01040 0.01166

16 0.01481 0.04683 0.01329 0.05805 0.01205 0.01452 0.01103 0.02162 0.01016 0.01128

17 0.01440 0.04591 0.01293 0.05731 0.01173 0.01399 0.01073 0.02099 0.00989 0.01088

18 0.01395 0.04487 0.01253 0.05640 0.01137 0.01344 0.01040 0.02032 0.00959 0.01046

19 0.01348 0.04374 0.01211 0.05534 0.01099 0.01288 0.01006 0.01961 0.00928 0.01003

20 0.01300 0.04254 0.01167 0.05417 0.01060 0.01232 0.00970 0.01889 0.00895 0.00960

21 0.01250 0.04128 0.01123 0.05291 0.01020 0.01176 0.00934 0.01815 0.00861 0.00917

22 0.01200 0.04000 0.01078 0.05159 0.00979 0.01121 0.00897 0.01742 0.00827 0.00875

23 0.01150 0.03869 0.01033 0.05021 0.00938 0.01068 0.00859 0.01668 0.00793 0.00833

24 0.01100 0.03737 0.00989 0.04880 0.00898 0.01015 0.00823 0.01596 0.00759 0.00793

25 0.01052 0.03606 0.00945 0.04737 0.00858 0.00965 0.00786 0.01525 0.00725 0.00754

26 0.01004 0.03475 0.00902 0.04592 0.00819 0.00916 0.00750 0.01455 0.00692 0.00716

27 0.00957 0.03346 0.00860 0.04447 0.00781 0.00869 0.00716 0.01387 0.00660 0.00679

28 0.00912 0.03219 0.00820 0.04302 0.00744 0.00824 0.00682 0.01322 0.00629 0.00644

29 0.00868 0.03094 0.00780 0.04159 0.00708 0.00781 0.00649 0.01258 0.00598 0.00611

30 0.00825 0.02972 0.00742 0.04017 0.00674 0.00739 0.00617 0.01197 0.00569 0.00579

8 9 10 11 12
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n

t Var[UMVUE(R(t))] MSE[MLE(R(t))] Var[UMVUE(R(t))] MSE[MLE(R(t))] Var[UMVUE(R(t))] MSE[MLE(R(t))] Var[UMVUE(R(t))] MSE[MLE(R(t))] Var[UMVUE(R(t))] MSE[MLE(R(t))]

1 0.00128 0.00146 0.00119 0.00143 0.00110 0.00129 0.00103 0.00130 0.00097 0.00214

2 0.00299 0.00328 0.00277 0.00327 0.00258 0.00297 0.00242 0.00300 0.00227 0.00496

3 0.00460 0.00490 0.00427 0.00497 0.00398 0.00451 0.00372 0.00458 0.00350 0.00758

4 0.00599 0.00623 0.00556 0.00640 0.00518 0.00582 0.00486 0.00593 0.00457 0.00981

5 0.00714 0.00727 0.00663 0.00757 0.00619 0.00689 0.00580 0.00704 0.00546 0.01163

6 0.00806 0.00805 0.00749 0.00849 0.00699 0.00772 0.00656 0.00792 0.00617 0.01306

7 0.00877 0.00861 0.00815 0.00919 0.00761 0.00836 0.00714 0.00859 0.00672 0.01414

8 0.00929 0.00899 0.00864 0.00969 0.00807 0.00883 0.00758 0.00908 0.00714 0.01491

9 0.00965 0.00922 0.00898 0.01004 0.00839 0.00914 0.00788 0.00943 0.00743 0.01542

10 0.00988 0.00933 0.00919 0.01025 0.00860 0.00934 0.00807 0.00964 0.00761 0.01572

11 0.00999 0.00934 0.00930 0.01035 0.00870 0.00943 0.00817 0.00975 0.00770 0.01583

12 0.01000 0.00926 0.00932 0.01035 0.00872 0.00943 0.00819 0.00976 0.00772 0.01580

13 0.00994 0.00913 0.00926 0.01028 0.00867 0.00937 0.00815 0.00971 0.00768 0.01564

14 0.00982 0.00895 0.00915 0.01015 0.00856 0.00925 0.00805 0.00959 0.00759 0.01539

15 0.00964 0.00873 0.00898 0.00997 0.00841 0.00909 0.00791 0.00943 0.00746 0.01506

16 0.00942 0.00848 0.00878 0.00976 0.00822 0.00889 0.00773 0.00923 0.00730 0.01467

17 0.00917 0.00821 0.00855 0.00951 0.00801 0.00866 0.00753 0.00900 0.00711 0.01423

18 0.00890 0.00793 0.00830 0.00924 0.00777 0.00842 0.00731 0.00874 0.00690 0.01377

19 0.00861 0.00765 0.00802 0.00895 0.00752 0.00815 0.00707 0.00847 0.00667 0.01327

20 0.00830 0.00735 0.00774 0.00865 0.00725 0.00788 0.00682 0.00819 0.00644 0.01277

21 0.00799 0.00706 0.00745 0.00834 0.00698 0.00760 0.00657 0.00790 0.00620 0.01225

22 0.00767 0.00677 0.00716 0.00804 0.00671 0.00732 0.00631 0.00761 0.00596 0.01174

23 0.00736 0.00648 0.00686 0.00773 0.00643 0.00704 0.00605 0.00731 0.00571 0.01122

24 0.00704 0.00620 0.00657 0.00742 0.00616 0.00676 0.00579 0.00702 0.00547 0.01071

25 0.00673 0.00592 0.00628 0.00711 0.00589 0.00648 0.00554 0.00673 0.00523 0.01022

26 0.00643 0.00565 0.00599 0.00681 0.00562 0.00621 0.00529 0.00644 0.00499 0.00973

27 0.00613 0.00539 0.00572 0.00652 0.00536 0.00594 0.00504 0.00616 0.00476 0.00926

28 0.00584 0.00514 0.00544 0.00623 0.00510 0.00568 0.00480 0.00589 0.00453 0.00880

29 0.00555 0.00490 0.00518 0.00595 0.00486 0.00542 0.00457 0.00562 0.00431 0.00835

30 0.00528 0.00466 0.00493 0.00568 0.00462 0.00518 0.00434 0.00536 0.00410 0.00793

13 14 15 16 17
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Figure 1: Mean Square Error of MLE and UMVUE of Reliability function for sample size 

𝑛 = 17. 

Discussion  

 

A lot of work has been done in the literature to estimate and test the hypotheses for the 

reliability functions. In the present paper, we have proposed a family of lifetime distributions 

which covers as many as fourteen distributions as specific cases, which are useful in 

reliability theory. Based on record values, estimation and testing procedures are developed 

for this family of lifetime distributions. Thus, a unified theory is developed.  

From Table 1, it is clear that at any given time 𝑡 and for any sample size 𝑛, the variance 

UMVUE of reliability function is always less than the mean square error of MLE of 

reliability function.  

 

Conclusion  

 

In Table 1, a comparative study of efficiencies of UMVUE and MLE of reliability function 

based on record values has been performed. It is clear from simulation results that UMVUES 

of the reliability function are more efficient than MLE of reliability function. Thus, a 

comparison between efficiencies of UMVUES and MLES has been discussed by estimating 

the sampled pdf to obtain the variance and mean square error of estimators and an 

interrelationship between efficiencies of the two estimators has been established by 

performing simulation studies. 
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