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Abstract. The inverse Weibull distribution has the ability to model failure rates which are quite common in reliability 
and biological studies. A three parameters generalized inverse Weibull distribution with decreasing and unimodal failure 
rate is studied. Two measures of reliability are discussed, namely   and .  Point and 
interval estimation procedures are developed for the parameters,  and  based on records. Two point estimators are 
developed, namely uniformly minimum variance unbiased estimators (UMVUE) and maximum likelihood estimators 
(MLE). A comparison of different methods of estimation is done through simulations and asymptotic confidence 
intervals of the parameters based on MLE and log transformed MLE are constructed. Confidence intervals for the MLE 
and UMVUE of the parametric functions are obtained. Testing procedures are also developed for various hypotheses. 

INTRODUCTION  

The reliability function  is defined as the probability of system survival until time . Thus, if the random 
variable ( )  denotes the lifetime of an item or a system, then . Another well known measure of 
reliability under stress-strength setup is the probability , which represents the reliability of an item or 
a system of random strength  subject to a random stress n the literature, a lot of work has been done in the 
estimation and testing of  and . For example, Bartholomew (1957, 1963), Pugh (1963), Basu (1964), Tong 
(1974, 1975), Johnson (1975), Kelley, Kelley and Schucany (1976), Sathe and Shah (1981), Chao (1982), 
Chaturvedi and Surinder (1999) developed inferential procedures for  and  for exponential distribution. 
Constantine, Karson and Tse (1986) derived UMVUE and MLE of of the gamma distribution. Awad and Gharraf 
(1986) estimated  of Burr distribution. For estimation of  of Maxwell and generalized Maxwell distributions, 
one may refer to Tyagi and Bhattacharya (1981) and Chaturvedi and Rani (1998), respectively. Inferences have been 
drawn for  and  for some families of lifetime distributions by Chaturvedi and Rani (1997), Chaturvedi and 
Tomer (2003), Chaturvedi and Singh (2006, 2008), Chaturvedi and Kumari (2015) and Chaturvedi and Malhotra 
(2016, 2017). Chaturvedi and Tomer (2002) derived UMVUE of  and  of negative binomial distribution. For 
exponentiated Weibull and Lomax distributions, the inferential procedures are available in Chaturvedi and Pathak 
(2012, 2013, 2014). 

 Chandler (1952) introduced the concept of record values. Based on records, inferential procedures for the 
parameters of different distributions have been developed by Glick (1978), Nagaraja (1988a,1988b), Balakrishan, 
Ahsanullah and Chan (1995), Arnold, Balakrishan and Nagaraja (1992), Habibi, Arghami and Ahmadi (2006), 
Arashi and Emadi (2008), Razmkhah and Ahmadi (2011), Belaghi, Arashi and Tabatabaey (2015) and others. To the 
best of our knowledge, no inferential procedures are available for the reliability functions of three parameter 
generalized inverse Weibull distribution based on record values. 
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 The rest of the paper is organized as follows. In Section 2, a three parameter generalized inverse Weibull 
distribution is discussed. In Section 3, we develop point estimation procedures based on record values when one 
parameter is unknown while the remaining are known and also discuss the case when all the parameters are 
unknown. As far as point estimation is concerned, we derive UMVUES and MLES. A new technique is developed 
for obtaining these estimators of  and , in which initially the estimators of powers of parameter are obtained. 
These estimators are used to obtain the estimators of . Using the derivatives of the estimators of   with 
respect to time , the estimators of sample probability density function at a specified point, are obtained which are 
further used to obtain the estimators of . We also obtain expressions for the variance of the MLE and UMVUE of 

 which are used to compare the performance of these estimators of . In Section 4, asymptotic confidence 
intervals (CIs) for the parameters and reliability function are constructed. We also obtain confidence intervals based 
on log transformation of MLES of the parameter which have a better coverage probability. Confidence intervals for 
the MLES and UMVUES of the parametric functions are also obtained. In Section 5, testing procedures are 
developed for various hypotheses and finally, in Section 6, we present numerical findings. 

THE GENERALIZED INVERSE WEIBULL DISTRIBUTION  

The inverse Weibull distribution (IWD) has received some attention in the literature. Keller and Kamath (1982) 
studied the shapes of the density and failure rate functions for the basic inverse model. A  follows IWD if its 
cumulative distribution function  and probability distribution function take the following form 
respectively: 

 

and 

 

The IWD is also a limiting distribution of the largest order statistic. Gusm o et al. (2009) introduced and studied 
a three parameter generalized inverse Weibull distribution (GIWD) whose  is defined by elevating  to the 
power Hence, the and of GIWD take the following form respectively: 

  (1) 

 
and 

  (2) 

From equation (2)  the reliability function at a specified time  is 

  (3) 

From equations (1) and (3), the hazard rate is given by 

  (4) 

It follows from equation (4) and Figure 1 that the hazard rate for every value of the parameters and , 
initially increases with time and then decreases as time  increases. 
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FIGURE 1. Hazard rate for several values of  where . 

 

POINT ESTIMATION PROCEDURES 

Let  be an infinite sequence of independent and identically distributed  from equation (1). An 
observation  will be called an upper record value (or simply a record) if its value exceeds all the previous 
observations. Thus  is a record if  for every . The record time sequence  is defined as 

 

The record value sequence  is then given by 
 

The likelihood function of  given the first  upper record values  is 

 

where we assume that  and  are known. It is easy to see that  

  (5) 

The following theorem provides UMVUE of powers of . This estimator will be utilized to obtain the UMVUE 
of reliability functions. For simplicity, we define 

 
Theorem 1. For  the UMVUE of  is given by 

 

Proof: It follows from  and factorisation theorem [see Rohtagi and Saleh (2012, p.361)] that  is a 
sufficient statistic for  and the  of  is 

  (6) 

020001-3



From equation (6), since the distribution of  belongs to the exponential family, it is also complete [see 
Rohtagi and Saleh (2012, p.367)]. The result now follows from (6) that 

 

In the following theorem, we obtain UMVUE of the reliability function. 
Theorem 2: The UMVUE of the reliability function is  

 

Proof: It is easy to see that 
 

  (7) 

Applying Theorem 1, it follows from (7) that 
∞

 

and the theorem follows. 
 The following corollary provides UMVUE of the sampled . This estimator is derived with the help of 

Theorem 2. 
Corollary 1: The UMVUE of the sampled  in (1) at a specified point  is 

 

Proof: We note that the expectation of  with respect to  is . Hence,  
∞

 

The result follows from Theorem 2. 
 In the following theorem, we obtain expression for the variance of , which will be needed to study its 

efficiency. 
Theorem 3: The variance of  is given by 

 

 

(8) 
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where  and ∞ . 
Proof: Using equation (6) and Theorem 2, 

∞

 

∞

 

∞

 

∞

 

  (9) 

where 

 
∞ ∞

 (10) 

 
Using a result of Erdélyi (1954)  

∞

 

we have 
∞

 

 

 
 

 

(11) 

 
Furthermore, 

∞ ∞

 

  (12) 

 
 

We have 

 
∞

 (13) 

Finally, 
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∞ ∞

 

  (14) 

The theorem now follows on making substitutions from equations (11), (12), (13) and (14) in (10) and then using 
(9). 

Theorem 4: The MLE of  is given by 

 

Proof: It can be easily seen from equation (5) that the MLE of  is . The theorem now follows from 
invariance property of MLE. 

 In the following corollary, we obtain the MLE of sampled  with the help of Theorem 4. This will be 
used to obtain MLE of .  

Corollary 2: The MLE of  at a specified point  is  

 

Proof: The result follows from Theorem 4 on using the fact that  
. 

 In the following theorem, we obtain the expression for variance of . 
Theorem 5: The variance of  is given by 

 

where  is modified Bessel function of second kind of order . 
Proof: Using equation (6) and Theorem 4, we have  

 

  
       

(15) 

 
Applying a result of Watson (1952) 

 

[it is to be noted that  for , we obtain from (15) that 

 

Similarly, we can obtain the expression for  and the result follows. 
 Let  and  be two independent  from generalized inverse Weibull distribution with 

 and  respectively, i.e.  

 

and  
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Let  and  be the record value sequences for  and  respectively. For simplicity, we define 

and . 
Theorem 6: The UMVUE of  is given by  

 

Proof: It follows from Corollary 1 that the UMVUES of  and  at specified points  
and  are respectively 

 

and  

 

From the arguments similar to those used in the proof of Corollary 1, 

 

 

 

The theorem now follows on considering the two cases and putting  
Theorem 7: The MLE of  is 

 

Proof: We have, 

 

 

 

The result now follows on putting . 
Now we consider the case when all the parameters  are unknown. From (5),the log-likelihood function 

is given by 
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 (16) 

The MLES of  are the solutions of the three simultaneous equations given below 

 (17) 

 (18) 

and 

(19) 

From (17) we get 

 
(20) 

where   and  are the MLES of   and  respectively. Since these non-linear equations do not have a 
closed form solution, therefore we apply Newton Raphson algorithm to compute MLES of  and . These values of 
MLES of  and so obtained can be substituted in (20) to obtain MLE of  It is to be noted that from Theorem 4, 
Theorem 7 and invariance property of MLE that the MLE of  is 

 

where  whereas the MLE of  is given by

 

where ,  

CONFIDENCE INTERVALS 

The Fisher information matrix of  is 

where  

 

, 
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and 

 

 
 Since it is a complicated task to obtain the expectation of the above expressions, therefore we use observed 

Fisher information matrix which is obtained by dropping the expectation sign. The asymptotic variance-covariance 
matrix of the MLES is the inverse of . After obtaining the inverse matrix, we get variance of  and . We use 
these values to construct confidence intervals (CIs) of  respectively. Assuming asymptotic normality of 
the MLES, CIs for and  are constructed. Let and  be the estimated variances of  and 

 respectively. Then asymptotic CIs for and  are respectively given by 

 and  

where  is the upper  percentile point of standard normal distribution. Using these CIs, one can easily 
obtain the  asymptotic CI for  as follows: 

 

 
 Meeker and Escober  reported that the asymptotic CI based on log transformed MLE has better 

coverage probability. An approximate  CIs for  and  are 

, 

 

 

 

where  is the estimated variance of  and is approximated by . Similarly, 

and  are the estimated variance of and  and are approximated by 

 and  respectively. Hence, approximate  CI for and  are 

 and  

 Now, we construct interval estimates of UMVUE and MLE of . From (6) it follows that 

. Thus   CI for  and are respectively obtained as 

 and  

Similarly, we construct interval estimates of UMVUE and MLE of  Thus   CI for  and 
are respectively obtained as 
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and 

 

 

TESTING OF HYPOTHESES 

For known and suppose we have to test the hypothesis  against . It follows from (5) 
that, under , 

 

and 

 

Therefore, the likelihood ratio (LR) is given by 

 

  
    

(21) 

We note that the first term on the right hand side of (21) is monotonically increasing and the second term is 

monotonically decreasing in . It follows from (6) that .Thus, the critical region is given by  

, 

where   and  are obtained such that  and . 
 An important hypothesis in life-testing experiments is  against . It follows from (5) 

that for ,  

  
   

(22) 

It follows from (22) that  has monotone likelihood ratio in . Thus, the uniformly most powerful 
critical region for testing  against  is given by [see Lehmann (1959, p.88)] 

 

where . 
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NUMERICAL FINDINGS 

In this section we use Monte Carlo simulation techinque to obtain estimates under this scheme. It involves the 
following steps: 

1. For known values of , we generate  samples each from distribution of 
 for specified values of  to obtain 

, respectively. 
2. Compute  

For specified value of  compute  for  and hence compute MLE and UMVUE of . It can 

be easily shown that . 
 In Table 1, for  we have shown MLE and UMVUE of 

 for several values of For  and the MLE and UMVUE of  are shown in Table 1 for 
several values of    by the above expression and the MLE and UMVUE of  are shown in Table 1 
for several values of    

TABLE 1. MLE and UMVUE of  and  

        
10,10 0.50252 0.45684 0.03165 0.02886 0.00535 0.00472 
10,20 0.50010 0.45463 0.03150 0.02872 0.00521 0.00467 
10,50 0.50062 0.45511 0.03153 0.02875 0.00532 0.00481 

10,100 0.49313 0.44831 0.03107 0.02832 0.00519 0.00471 
20,10 0.49988 0.47608 0.03149 0.03003 0.00533 0.00492 
20,20 0.49972 0.47593 0.03148 0.03002 0.00533 0.00500 
20,50 0.49929 0.47552 0.03145 0.03000 0.00526 0.00498 

20,100 0.50727 0.48312 0.03194 0.03047 0.00538 0.00511 
50,10 0.50045 0.49064 0.03152 0.03092 0.00523 0.00497 
50,20 0.49793 0.48817 0.03137 0.03077 0.00521 0.00503 
50,50 0.49764 0.48789 0.03135 0.03075 0.00518 0.00505 

50,100 0.50067 0.49086 0.03154 0.03094 0.00528 0.00516 
100,10 0.50021 0.49526 0.03151 0.03120 0.00532 0.00510 
100,20 0.50104 0.49608 0.03156 0.03126 0.00534 0.00520 
100,50 0.50149 0.49653 0.03159 0.03128 0.00529 0.00520 

100 ,100 0.49728 0.49237 0.03133 0.03102 0.00522 0.00515 
 
In order to investigate the performance of the estimators obtained under this scheme, we have evaluated 

  and MSE  for . Table 2 shows   and  for 
 and  Figure 2 compares the variance UMVUE of reliability function with the mean 

square error of MLE of reliability function calculated in Table 2 as time  increases for  
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TABLE 2. Mean Square Error of MLE  and UMVUE of Reliability function. 

 5 10 20 40 
         

5 2.17E-04 0.84550 9.79E-05 0.88259 4.66E-05 0.87962 2.27E-05 0.86917 
6 3.69E-05 0.93542 1.65E-05 0.95143 7.82E-06 0.95021 3.81E-06 0.94576 
7 8.03E-06 0.96969 3.58E-06 0.97729 1.70E-06 0.97672 8.27E-07 0.97462 
8 2.13E-06 0.98436 9.47E-07 0.98830 4.49E-07 0.98801 2.19E-07 0.98692 
9 6.58E-07 0.99130 2.93E-07 0.99350 1.39E-07 0.99333 6.75E-08 0.99273 

10 2.30E-07 0.99485 1.02E-07 0.99616 4.84E-08 0.99606 2.36E-08 0.99570 
11 8.87E-08 0.99680 3.94E-08 0.99761 1.87E-08 0.99755 9.10E-09 0.99733 
12 3.72E-08 0.99793 1.65E-08 0.99845 7.83E-09 0.99841 3.81E-09 0.99827 
13 1.67E-08 0.99861 7.42E-09 0.99896 3.52E-09 0.99894 1.71E-09 0.99884 
14 7.96E-09 0.99904 3.54E-09 0.99928 1.68E-09 0.99927 8.17E-10 0.99920 
15 3.99E-09 0.99932 1.78E-09 0.99949 8.41E-10 0.99948 4.10E-10 0.99943 
16 2.09E-09 0.99951 9.31E-10 0.99963 4.41E-10 0.99962 2.15E-10 0.99959 
17 1.14E-09 0.99964 5.08E-10 0.99973 2.41E-10 0.99972 1.17E-10 0.99970 
18 6.45E-10 0.99973 2.87E-10 0.99980 1.36E-10 0.99979 6.62E-11 0.99977 
19 3.76E-10 0.99979 1.67E-10 0.99984 7.91E-11 0.99984 3.85E-11 0.99983 
20 2.25E-10 0.99984 1.00E-10 0.99988 4.74E-11 0.99988 2.31E-11 0.99987 
21 1.38E-10 0.99987 6.14E-11 0.99991 2.91E-11 0.99990 1.42E-11 0.99989 
22 8.67E-11 0.99990 3.86E-11 0.99993 1.83E-11 0.99992 8.90E-12 0.99992 
23 5.56E-11 0.99992 2.47E-11 0.99994 1.17E-11 0.99994 5.70E-12 0.99993 
24 3.63E-11 0.99994 1.61E-11 0.99995 7.65E-12 0.99995 3.73E-12 0.99995 
25 2.42E-11 0.99995 1.07E-11 0.99996 5.09E-12 0.99996 2.48E-12 0.99996 
26 1.63E-11 0.99996 7.25E-12 0.99997 3.44E-12 0.99997 1.67E-12 0.99996 
27 1.12E-11 0.99996 4.97E-12 0.99997 2.36E-12 0.99997 1.15E-12 0.99997 
28 7.78E-12 0.99997 3.46E-12 0.99998 1.64E-12 0.99998 7.98E-13 0.99998 
29 5.48E-12 0.99997 2.43E-12 0.99998 1.15E-12 0.99998 5.62E-13 0.99998 
30 3.90E-12 0.99998 1.73E-12 0.99998 8.22E-13 0.99998 4.00E-13 0.99998 
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FIGURE 2. Mean Square Error of MLE and UMVUE of Reliability function for  

 
Figure 3 shows the  plot of  and also displays the MLE and 

UMVUE of sampled . 

 
FIGURE 3. MLE and UMVUE of sampled  
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TABLE 3. CI and length of CI based on MLE and log transformed MLE of  at  level of significance. 

 
     

  95% 90% 95% 90% 95% 90% 95% 90% 

5 [0.4339 
1.5660] 

[0.5249 
1.4750] 

[0.5677 
1.7612] 

[0.6218 
1.6080] 

[0.3994 
3.6005] 

[0.6567 
3.3432] 

[0.8983 
4.4524] 

[1.0217 
3.9148] 

1.1320 0.9500 1.1935 0.9862 3.2011 2.6865 3.5540 2.8931 

10 [0.5814 
1.4185] 

[0.6487 
1.3512] 

[0.6579 
1.5198] 

[0.7037 
1.4208] 

[0.8172 
3.1827] 

[1.0074 
2.9925] 

[1.1071 
3.6128] 

[1.2175 
3.2852] 

0.8372 0.7026 0.8618 0.7171 2.3654 1.9851 2.5057 2.0676 

15 [0.6535 
1.3464] 

[0.7092 
1.2907] 

[0.7071 
1.4140] 

[0.7476 
1.3374] 

[1.0200 
2.9799] 

[1.1775 
2.8224] 

[1.2252 
3.2646] 

[1.3256 
3.0173] 

0.6929 0.5815 0.7069 0.5897 1.9599 1.6448 2.0393 1.6916 
 

20 
[0.6900 
1.3099] 

[0.7399 
1.2600] 

[0.7335 
1.3632] 

[0.7709 
1.2970] 

[1.1234 
2.8765] 

[1.2643 
2.7356] 

[1.2903 
3.1000] 

[1.3845 
2.8891] 

  0.6198 0.5201 0.6297 0.5260 1.7530 1.4712 1.8097 1.5046 
 

 
TABLE 4. CI and length of CI based on MLE and log transformed MLE of and  CI and length of CI of  at  

level of significance. 

 
    

  95% 90% 95% 90% 95% 90% 
5 [0.7993 7.2006] [1.3139 6.6860] [1.7970 8.9035] [2.0437 7.8287] [0.1043 0.2600] [0.1067 0.2584] 

6.4012 5.3720 7.1064 5.7850 0.1557 0.1517 
10 [1.6361 6.3638] [2.0162 5.9837] [2.2152 7.2228] [2.4359 6.5681] [0.1090 0.2456] [0.1124 0.2271] 

4.7276 3.9675 5.0076 4.1321 0.1366 0.1146 
15 [2.0400 5.9599] [2.3551 5.6448] [2.4505 6.5292] [2.6513 6.0345] [0.1126 0.2258] [0.1161 0.2103] 

3.9199 3.2897 4.0786 3.3832 0.1132 0.0941 

20 [2.2469 5.7530] [2.5287 5.4712] [2.5806 6.2000] [2.7690 5.7782] [0.1148 0.2156] [0.1184 0.2021] 
  3.5060 2.9424 3.6194 3.0091 0.1007 0.0836 

 
 

For computations shown in Table 3 and Table 4, we have considered  For 
 From Table 3 and Table 4 we observe that as sample size increases, the length of CIs based on 

MLE and log-transformed MLE decreases. As reported by Meeker and Escober we too observe that asymptotic CIs 
based on log-transformed MLE have better coverage probability. 

For computations shown in Table 5 and Table 6, we have considered  For 
 and we compute point estimate and interval estimate (CI) of UMVUE and MLE of  and  

From Table 5 and Table 6 we observe that as sample size increases, the length of CI of UMVUE and MLE of  and 
 decreases. 
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TABLE 5. Point estimate, Interval estimate and length of CI of UMVUE and MLE of  at  level of significance. 

 
 

 
 

 
 

  95% 90% 95% 90% 
5 5.6523 [2.9995 15.8954] [3.3292 13.3944] 6.7828 [3.5994 19.0744] [3.9950 16.0733] 

12.8958 10.0652 15.4750 12.0783 
10 5.6819 [3.8063 12.7477] [4.1268 11.3470] 6.2501 [4.1869 14.0225] [4.5395 12.4817] 

8.9414 7.2202 9.8355 7.9422 
15 6.5640 [4.2441 11.4812] [4.5460 10.4623] 7.0016 [4.5270 12.2466] [4.8490 11.1598] 

7.2371 5.9163 7.7195 6.3107 
20 7.0067 [4.5324 10.7697] [4.8172 9.9488] 7.3571 [4.7590 11.3082] [5.0581 10.4462] 
    6.2373 5.1315   6.5492 5.3881 

 
 

TABLE 6. Point estimate, Interval estimate and length of CI of UMVUE and MLE of  at  level of 
significance. 

 
 

    
  95% 90% 95% 90% 
5 0.9266 [0.7037 1.0000] [0.7459 0.9999] 0.9129 [0.7263 0.9989] [0.7626 0.9969] 

0.2963 0.2540 0.2726 0.2342 
10 0.8985 [0.7709 0.9978] [0.7997 0.9947] 0.8946 [0.7784 0.9935] [0.8048 0.9888] 

0.2269 0.1949 0.2150 0.1839 
15 0.9235 [0.8003 0.9920] [0.8232 0.9869] 0.9195 [0.8040 0.9878] [0.8254 0.9820] 

0.1916 0.1636 0.1838 0.1565 
20 0.9325 [0.8176 0.9865] [0.8370 0.9806] 0.9292 [0.8197 0.9829] [0.8381 0.9767] 
    0.1688 0.1436   0.1632 0.1386 

 
 In the theory developed in Section 5, we have considered record values from 

 
 
19.63889    23.03414    24.51706    50.14350   198.77064   312.60405   328.34775   857.29468     1397.77133    

9088.19426    13213.86061 

 
The MLE and UMVUE of  are obtained as  . For testing the hypothesis 

 against  under this scheme, with the help of Chi-Square tables at  level of significance, 
we obtained  and . Hence, in this case we may accept  at   level of significance since 

 Again, for testing  against .8, we obtained  and 
hence, in this case we may accept  at   level of significance. Now, for testing the hypothesis  
against  under this scheme, with the help of Chi-Square tables at  level of significance, we 
obtained  and . Hence, in this case we may accept  at   level of significance since 

 Again, for testing  against .2, we obtained  and 
hence, in this case we may accept  at   level of significance.  
 

020001-15



ACKNOWLEDGMENTS 

The authors are grateful to the reviewers for their valuable comments. 

REFERENCES 

 
1. Arnold, B. C., Balakrishan, N. and Nagaraja, H. N., A First Course in Order Statistics (John Wiley & Sons, 

New York, 1992). 
2. Arashi, M. and Emadi, M., Stat. Papers 13(8), 380-210 (2008). 
3. Awad, A. M. and Gharraf, M. K., Commun. Statist. - Simul. 15(2), 389-403 (1986). 
4. Balakrishan, N., Ahsanullah, M. and Chan, P. S., J. App. Statist. Scien. 2, 233-248 (1995). 
5. Bartholomew, D. J., J. Amer. Statist. Assoc. 52, 350-355 (1957). 
6. Bartholomew, D. J., Technometric 5(3), 361-374 (1963). 
7. Basu, A. P., Technometrics 6, 215-219 (1964). 
8. Belaghi, R. A., Arashi, M. and Tabatabaey, S. M. M., "On the Construction of Preliminary Test Estimator 

Based on Record Values for the Burr XII Model", Commun. Statist. - Theo. Meth. 44(1), 1-23 (2015). 
9. Constantine, K., Karson, M. and Tse, S. K., "Estimation of P(Y<X) in the gamma case", Commun. Statist. - 

Simul. 15(2), 365-388 (1986). 
10. Chandler, K. N., J. Royal Statist. Socie. Series B 14, 220-228 (1952). 
11. Chao, A., IEEE Trans.   Reliability R-26, 389-392 (1982). 
12. Chaturvedi, A. and Kumari, T., "Estimation and testing procedures for the reliability   functions of a family of 

lifetime distributions", interstat.statjournals.net/ YEAR/ 2015/ abstracts/ 1306001.php (2015). 
13. Chaturvedi, A. and Malhotra, A., Int. J. Syst. Assur. Eng. Manag. DOI:10.1007/s13198-016-0531-2 (2016). 
14. Chaturvedi, A. and Malhotra, A., Appl. Math. Inf. Scien. 11(3), 837-849 (2017). 
15. Chaturvedi, A., Pathak, A., J. Stat. & Appl. 7, 1-8 (2012). 
16. Chaturvedi, A. and Pathak, A., "Bayesian estimation procedures for three parameter exponentiated Weibull 

distribution under entropy loss function and type II censoring", interstat. statjournals. 
net/YEAR/2013/abstracts/1306001.php (2013). 

17. Chaturvedi, A. and Pathak, A., IJSER 5(1), 1171-1180 (2014). 
18. Chaturvedi, A. and Rani, U., Metrika 46, 213-219 (1997). 
19. Chaturvedi, A. and Rani, U., J. Statist. Res. 32, 113-120 (1998). 
20. Chaturvedi, A. and Singh, K. G., Metron 64(2), 179-198 (2006). 
21. Chaturvedi, A. and Singh, K. G., J. Appl. Statist. Sci. 16(2), 35-50 (2008). 
22. Chaturvedi, A. and Surinder, K., Brazilian J. Prob. Statist. 13, 29-39 (1999). 
23. Chaturvedi. A. and Tomer, S. K.,  J. App. Statist. Scien. 11, 33-43 (2002). 
24. Chaturvedi, A. and Tomer, S. K., Statist. Papers 44(3), 301-313 (2003). 
25. Erdelyi, A.(Ed)., Tables of Integral Transforms (McGraw-Hill, 1, 1954). 
26. Glick, N., Amer. Mathe. Month. 85, 543-551 (1978). 
27. Gusm o, F. R. S. de., Ortega, E. M. M. and Cordeiro, G. M., Statist. Papers, DOI: 10.1007/s00362-009-0271-3 

(2009). 
28. Habibi Rad, A., Arghami, N. R. and Ahmadi, J., Commun. Stat. Theo. Meth. 35(11), 1971–1983 (2006). 
29. Johnson, N. L., Technometrics 17, 393 (1975). 
30. Keller, A. Z. and Kamath, A. R., "Reliability analysis of CNC machine tools", Reliab. Eng. 3, 449-473 (1982).  
31. Kelly, G. D., Kelly, J. A. and Schucany, W. R., "Efficient estimation of P(Y<X) in the exponential case", 

Technometrics 18, 359-360 (1976). 
32. Lehmann, E. L., Testing Statistical Hypotheses (John Wiley and Sons, New York, 1959). 
33. Meeker, W. Q. and Escober, L. A., Statistical Methods for Reliability Data (John Wiley and Sons, New York, 

1998). 
34. Nagaraja, H. N., "Record values and related statistics - A review", Commun. Statist. Theo. Meth. 17, 2223-

2238 (1988a). 
35. Nagaraja, H. N., "Some characterizations of continuous distributions based on regressions of adjacent order 

statistics and record values", Sankhya, Series A 50, 70-73 (1988b).   
36. Pugh, E. L., "The best estimate of reliability in the exponential case", Operations Research 11, 57-61 (1963). 

020001-16

https://doi.org/10.1080/03610918608812514
https://doi.org/10.1080/01621459.1957.10501394
https://doi.org/10.1080/00401706.1963.10490104
https://doi.org/10.1080/00401706.1964.10490165
https://doi.org/10.1080/03610926.2012.733473
https://doi.org/10.1080/03610918608812513
https://doi.org/10.1080/03610918608812513
https://doi.org/10.1109/TR.1982.5221387
https://doi.org/10.1007/s13198-016-0531-2
https://doi.org/10.18576/amis/110324
https://doi.org/10.1007/BF02717175
https://doi.org/10.1007/s00362-003-0157-8
https://doi.org/10.1007/s00362-009-0271-3
https://doi.org/10.1080/03610920600762780
https://doi.org/10.1080/00401706.1975.10489360
https://doi.org/10.1016/0143-8174(82)90036-1
https://doi.org/10.1080/03610928808829743
https://doi.org/10.1287/opre.11.1.57


37. Razmkhah, M. and Ahmadi, J., "Comparing two sampling schemes based on entropy of record statistics", 
Statist. Papers 53, 95-106 (2011). 

38. Rohtagi, V. K. and Saleh, Eh. A. K. Md., An Introduction to Probability and Statistics, Second Edition (John 
Wiley & Sons, U.K, 2012). 

39. Sathe, Y. S. and Shah, S. P., "On estimating P(X<Y) for the exponential distribution", Commun. Statist. Theo. 
Meth. A10, 39-47 (1981). 

40. Tong, H., "A note on the estimation of P(Y<X) in the exponential case", Technometrics 16, 625 (1974). 
41. Tong, H., "Letter to the editor", Technometrics 17, 393 (1975). 
42. Tyagi, R. K. and Bhattacharya, S. K., "A note on the MVU estimation of reliability for the Maxwell failure 

distribution", Estadistica 41, 73-79 (1989). 
43. Watson, R. I., "Research design and methodology in evaluating the results of psychotherapy", J. Clin. Psychol. 

8, 29-33 (1952). 

020001-17

https://doi.org/10.1007/s00362-010-0316-7
https://doi.org/10.1080/03610928108828018
https://doi.org/10.1080/03610928108828018
https://doi.org/10.1002/1097-4679(195201)8:1%3C29::AID-JCLP2270080107%3E3.0.CO;2-O
https://doi.org/10.1080/00401706.1975.10489361



