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Abstract

We consider two measures of reliability functions namely R(t) = P (X > t) and
P = P (X > Y ) for the Moore and Bilikam (1978) family of lifetime distributions which
covers fourteen distributions as specific cases. For record data from this family of dis-
tributions, preliminary test estimators (PTEs) and preliminary test confidence interval
(PTCI) based on uniformly minimum variance unbiased estimator (UMVUE), maximum
likelihood estimator (MLE), empirical Bayes estimator (EBE) are obtained for the pa-
rameter. The bias and mean square error (MSE) (exact and asymptotic) of the proposed
estimators are derived to study their relative efficiency and through simulation studies we
establish that PTEs perform better than ordinary UMVUE, MLE and EBE. We also ob-
tain the coverage probability (CP) and the expected length of the PTCI of the parameter
and establish that the confidence intervals based on MLE are more precise. An application
of the ordinary preliminary test estimator is also considered. To the best of the knowl-
edge of the authors, no PTEs have been derived for R(t) and P based on records and thus
we define improved PTEs based on MLE and UMVUE of R(t) and P . A comparative
study of different methods of estimation done through simulations establishes that PTEs
perform better than ordinary UMVUE and MLE.

Keywords: empirical Bayes estimator, Monte Carlo simulation, Moore and Bilikam family of
lifetime distribution, preliminary test confidence interval, preliminary test estimator, record
values.

1. Introduction

In statistical inference, we often come across problems where some prior information on the
parameters (often regarded as constraints) is available, which give rise to restricted models. As
the name suggests, the estimators obtained from restricted (unrestricted) models are known
as restricted (unrestricted) estimators. Naturally, the validity of a restricted estimator will
be questionable and hence it is required to perform a preliminary test on the restrictions.
Due to past knowledge or experience, the experimenter may be in a position to make an
initial guess on some of the parameters of interest. In such cases, we can provide an improved

http://www.ajs.or.at
http://www.ajs.or.at/
http://dx.doi.org/10.17713/ajs.v48i4.844
www.osg.or.at


Austrian Journal of Statistics 59

estimator by incorporating the prior information on the parameters. The usage of this prior
information on some or all of the parameters of a statistical distribution usually leads to
an improved inferential study. The efficiency and validity of restricted model analysis are
higher over a restricted parametric space induced by the constraints, while the same holds
for unrestricted model analysis over the entire parametric space. Thus, an analysis resulting
from restricted or unrestricted models may be subject to a loss in efficiency against the
validity of constraints while choosing between two inferential techniques. Hence it is wise
to adopt restricted estimation procedures when we have sufficient confidence in the prior
information. Bancroft (1944) introduced the use of PTEs and eventually further advancements
were proposed by Saleh and Sen (1978), Saleh and Kibria (1993),Kibria (2004), Saleh (2006),
Kibria and Saleh (1993, 2004, 2005, 2006, 2010) and Belaghi, Arashi, and Tabatabaey (2014,
2015).

Until now, in the literature of inferential reliability, the researchers have developed PTEs
of the parameters of different distributions. However, to the best of the knowledge of the
authors, PTEs are not available for reliability functions R(t) and P . In the present paper,
we derive PTEs for the powers of the parameter and two measures of reliability functions,
namely R(t) and P . The reliability function R(t) is defined as the probability of failure-free
operation until time t. Thus, if the random variable (RV) X denotes the lifetime of an item or
a system, then R(t) = P (X > t). Another measure of reliability under stress-strength setup
is the probability P = P (X > Y ), which represents the reliability of an item or a system of
random strength X subject to random stress Y . A lot of work has been done in the literature
for the point estimation and testing of R(t) and P based on record values. For a brief review,
one may refer to Chaturvedi and Malhotra (2017a,b).

Chandler (1952) introduced the concept of record values. Based on records, inferential pro-
cedures for the parameters of different distributions have been developed by Glick (1978),
Nagaraja (1988a,b), Balakrishnan, Ahsanullah, and Chan (1995), Arnold, Balakrishnan, and
Nagaraja (1992), Habibi, Arghami, and Ahmadi (2006), Arashi and Emadi (2008), Razmkhah,
Morabbi, and Ahmadi (2012) and others.

Let X be a RV from the Moore and Bilikam (1978) family of lifetime distributions with
probability density function (PDF)

f(x;β, θ) =
β

θ
g′(x)gβ−1(x)e−

gβ(x)
θ ; x, β, θ > 0 (1.1)

and cumulative distribution function (CDF)

F (x;β, θ) = 1− e−
gβ(x)
θ ; x, β, θ > 0 (1.2)

Here, g(x) is a real-valued, strictly increasing function of x with g(0+) = 0, g(∞) = ∞, and
g′(x) denotes the derivative of g(x) with respect to x. The PDF in (1.1) representing a family
of lifetime distributions covers the following probabilistic models as specific cases

I Exponential distribution g(x) = x
(Johnson and Kotz (1970), p.166) and β = 1

II Weibull distribution g(x) = x
(Johnson and Kotz (1970), p.250)

III Burr type XII distribution g(x) = log(1 + xb)
(Burr (1942), Burr and Cislak (1968)) b > 0 and β = 1

IV Pareto distribution g(x) = log
(
x
a

)
(Johnson and Kotz (1970), p.233) and β = 1

V Rayleigh distribution g(x) = x
(Johnson and Kotz (1970), p.200) and β = 2

VI Lomax (1954) distribution g(x) = log
(
1 + x

ν

)
ν > 0 and β = 1
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VII Burr distribution with scale parameter ν g(x) = log
(

1 + xb

ν

)
Tadikamalla (1980) b > 0, ν > 0 and β = 1

VIII modified Weibull distribution of Lai, Xie, and Murthy (2003) g(x) = xγeνx

γ > 0, ν > 0 and β = 1

IX generalised Pareto distribution of Ljubo (1965) g(x) = (x− a) + ν
λ log

(
x+ν
a+λ

)
ν > 0, λ > 0 and β = 1

X linear exponential distribution g(x) = bx+ λ
2x

2

Mahmoud and Al-Nagar (2009) λ > 0, b > 0 and β = 1
XI generalised power Weibull distribution g(x) = (1 + xb)λ − 1

Nikulin and Haghighi (2006) b > 0, λ > 0 and β = 1
XII Gompertz distribution g(x) = α

b (ebx − 1)
Khan and Zia (2009) α > 0, b > 0 and β = 1

XIII Chen (2000) distribution g(x) = (ex
b − 1)

b > 0 and β = 1
XIV two-parameter exponential distribution g(x) = (x− a)

Ahsanullah (1980) and β = 1

Let X1, X2, ... be an infinite sequence of independent and identically distributed (iid) RVs
from (1.1). An observation Xj will be called an upper record value (or simply a record) if
its value exceeds that of all previous observations. Thus Xj is a record if Xj > Xi for every
i < j. The record time sequence Tn, n ≥ 0 is defined as{

T0 = 1, with probability 1

Tn = min{j|Xj > XTn−1}, n ≥ 1

The record value sequence {Rn} is then defined as

Rn = XTn , n = 0, 1, 2, ...

The likelihood function of the first n+ 1 upper record values R0, R1, R2, . . . , Rn is

L(θ|R0, R1, R2, . . . , Rn) = f(Rn;β, θ)

n−1∏
i=0

f(Ri;β, θ)

1− F (Ri;β, θ)
(1.3)

Belaghi, Arashi, and Tabatabaey (2014, 2015) constructed PTEs and PTCIs based on record
values for the Burr XII model. In this paper we construct some PTEs on the basis of records
for the powers of the parameter and reliability functions of Moore and Bilikam (1978) family
of lifetime distribution which covers as many as fourteen distributions as its specific cases, in
two different situations.

In Section 2, we assume that the shape parameter β is known and propose three different
PTEs for the powers of the scale parameter θ and the reliability functions R(t) and P . Then
bias and MSE of the proposed estimators are obtained. We then obtain confidence intervals
based on the PTEs of the parameter and hence obtain its CP and expected length (EL). Also
the superiority intervals of our new estimators are tabulated. We shall observe that near the
null hypothesis, the relative efficiency of PTEs increases and thus the proposed estimators
dominate the usual estimators. In Section 3 we consider the case where β is unknown while θ
is known. In Section 4, we suppose that both the parameters β and θ are unknown and follow
an approach by Gulati and Padgett (1994b,a, 1995). In this case, using asymptotic normality
of the MLE, we obtain superiority conditions for the proposed PTE. Also, asymptotic bias,
MSE and asymptotic relative efficiency of the proposed PTE of the parameter are obtained.
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2. Estimation of parametric functions when the shape parameter is known

The importance of discussion of this case lies in the derivation of UMVUE of parameter θ
with the help of complete and sufficient statistics of the parameter θ which exists only when
the shape parameter β is assumed to be known.

2.1. Proposed preliminary test estimators

Assuming the shape parameter β to be known, it follows from (1.3) that

L(θ|R0, R1, R2, ..., Rn) =

(
β

θ

)n+1

exp

(
−gβ(Rn)

θ

) n∏
i=0

g′(Ri)g
β−1(Ri) (2.1)

We now estimate the powers of the parameter. The reason for estimating the powers of the
parameter being that it takes place in the expressions for the moments and hazard rate of
the distribution. Thus by estimating the powers of parameter, one can easily develop PTEs
for the moments and hazard rate. Then, for p ∈ (−∞,∞), p 6= 0 the MLE of θp is

θ̂pML =

(
gβ(Rn)

n+ 1

)p
(2.2)

where gβ(Rn) is the complete and sufficient statistic of θ and has gamma distribution with
parameters (n+ 1, θ). Further, the UMVUE of θp is

θ̂pU =
Γ(n+ 1)

Γ(n+ p+ 1)

(
gβ(Rn)

)p
(2.3)

Now, if we consider conjugate prior distribution of θ to be inverted-gamma distribution with
parameters (µ, ν) and

π(θ) =
µν

Γ(ν)θν+1
e−

µ
θ , µ, θ > 0 and ν is a positive integer (2.4)

then the posterior distribution of θ given R0, R1, R2, . . . , Rn is

π(θ|R0, R1, R2, ..., Rn) =

(
gβ(Rn) + µ

)n+ν+1

Γ(n+ ν + 1)θn+ν+2
e−

(gβ(Rn)+µ)
θ (2.5)

Under squared error loss function, the Bayes estimator of θp is

θ̂pB =
Γ(n+ ν − p+ 1)

Γ(n+ ν + 1)

(
gβ(Rn) + µ

)p
, ν > −(n− p+ 1) (2.6)

Also, the marginal distribution of R0, R1, R2, . . . , Rn given µ and ν is

m(R0, R1, R2, . . . , Rn|µ, ν) =

∫ ∞
0

π(θ)L(β, θ|R0, R1, R2, . . . , Rn)dθ

=
µνΓ(n+ ν + 1)

(gβ(Rn) + µ)n+ν+1Γ(ν)
βn+1

n∏
i=0

gβ−1(Ri)g
′(Ri)

Taking the natural logarithm l of the above marginal distribution, the MLE of µ and ν can
be obtained from the solution of the following system

∂l

∂µ
=
ν

µ
=

n+ ν + 1

gβ(Rn) + µ
= 0
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and

∂l

∂ν
= log(µ) +

∂

∂ν

[
log

(
Γ(n+ ν + 1)

Γ(ν)

)]
− log

(
gβ(Rn) + µ

)
= 0

Denoting the MLE of µ and ν by µ̂ML and ν̂ML respectively, there exists a relation between
them given by

µ̂ML =
gβ(Rn)ν̂ML

n+ 1

Therefore from (2.6), the EBE of θp is

θ̂pEB =
Γ(n+ ν̂ML − p+ 1)

Γ(n+ ν̂ML + 1)

(
gβ(Rn) + µ̂ML

)p
, ν̂ML > −(n− p+ 1) (2.7)

Sometimes, due to past knowledge or experience, the experimenter may be able to make an
initial guess on some of the parameters of interest. This prior information can be expressed
in the form of the following hypothesis

H0 : θ = θ0

H1 : θ 6= θ0

Then based on classical hypothesis testing, the critical region is given by

{0 < gβ(Rn) < k0} ∪ {k′0 < gβ(Rn) <∞}

where k0 and k′0 are obtained such that k0 = θ0
2 χ

2
2(n+1)

(
α
2

)
, k′0 = θ0

2 χ
2
2(n+1)

(
1− α

2

)
, and α

is the level of significance. Or, equivalently we reject H0 if

2gβ(Rn)

θ0
< C2 or

2gβ(Rn)

θ0
> C1 (2.8)

where C1 = χ2
2(n+1)

(
1− α

2

)
and C2 = χ2

2(n+1)

(
α
2

)
.

We can now define the three PTEs for θp based on UMVUE, MLE and EBE respectively as

θ̂pPT−U = θ̂pU − (θ̂pU − θ
p
0)I(A) (2.9)

θ̂pPT−ML = θ̂pML − (θ̂pML − θ
p
0)I(A) (2.10)

θ̂pPT−EB = θ̂pEB − (θ̂pEB − θ
p
0)I(A) (2.11)

where I(A) is the indicator function of the set

A = {χ2
2(n+1)|C2 ≤ χ2

2(n+1) ≤ C1}

The MLE and UMVUE of R(t) are respectively given by

R̂(t) = exp

{
−(n+ 1)gβ(t)

gβ(Rn)

}
(2.12)

and

R̃(t) =

{[
1− gβ(t)

gβ(Rn)

]n
, gβ(t) < gβ(Rn)

0, otherwise
(2.13)

Thus, we define two different PTEs of R(t) based on MLE and UMVUE as follows:

R̂(t)PT−ML = R̂(t)−
(
R̂(t)−R0(t)

)
I(A) (2.14)

R̃(t)PT−U = R̃(t)−
(
R̃(t)−R0(t)

)
I(A) (2.15)
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where R0(t) = exp
(
−gβ(t)

θ0

)
is the hypothesized value of R(t).

Let X and Y be two independent RVs from the same family of lifetime distributions with
parameters θ1 and θ2 respectively and β1 = β2. Let R0, R1, . . . , Rn be n + 1 record values
from distribution of X and R∗0, R

∗
1, . . . , R

∗
m be m + 1 records from distribution of Y . Then,

P = θ1
θ1+θ2

. Suppose we want to test

H0 : P = P0

H1 : P 6= P0

Note that H0 is equivalent to θ1 = kθ2 where k = P0
1−P0

. Thus, H0 : θ1 = kθ2 and H1 : θ1 6=
kθ2. Since gβ(Rn) and gβ(R∗m) follow gamma distribution with parameters (n + 1, θ1) and

(m + 1, θ2) respectively, it is easy to see that (m+1)θ2gβ(Rn)
(n+1)θ1gβ(R∗m)

∼ F2(n+1),2(m+1) and the critical

region is given by {
gβ(Rn)

gβ(R∗m)
< k1

}
∪
{
gβ(Rn)

gβ(R∗m)
> k′1

}
where k1 = k(n+1)

(m+1) F2(n+1),2(m+1)

(
α
2

)
and k′1 = k(n+1)

(m+1) F2(n+1),2(m+1)

(
1− α

2

)
. Thus, we define

two PTEs of P based on MLE and UMVUE of P as follows:

P̂PT−ML = P̂ −
(
P̂ − P0

)
I(B) (2.16)

P̃PT−U = P̃ −
(
P̃ − P0

)
I(B) (2.17)

where I(B) is the indicator function of the set

B = {F2(n+1),2(m+1)|C4 < F2(n+1),2(m+1) < C3}

Here, C3 = F2(n+1),2(m+1)

(
1− α

2

)
, C4 = F2(n+1),2(m+1)

(
α
2

)
and P̂ and P̃ are the MLE and

UMVUE of P respectively defined as

P̂ =
(m+ 1)gβ(Rn)

(m+ 1)gβ(Rn) + (n+ 1)gβ(R∗m)
(2.18)

and

P̃ =


∑m−1

i=0
(−1)im!n!

(m−i−1)!(n+i+1)!

{
gβ(Rn)
gβ(R∗m)

}i+1
, gβ(Rn) < gβ(R∗m)∑n

i=0
(−1)im!n!

(n−i)!(m+i)!

{
gβ(R∗m)
gβ(Rn)

}i
, gβ(R∗m) < gβ(Rn)

(2.19)

The expressions for MLE and UMVUE of R(t) and P can be derived on the same lines as the
proofs of theorems 2, 5, 6 and 9 in Chaturvedi and Malhotra (2017a).

2.2. Bias and mean square error

In this section we derive bias and MSE of PTEs based on UMVUE, MLE and EBE.

Assuming λ = θ0
θ , we have

Bias(θ̂pPT−U ) =E[θ̂pU − (θ̂pU − θ
p
0)I(A)− θp]

=θp0 [{H2n+2(λC1)−H2n+2(λC2)}

−
(

1

λ

)p
{H2(n+p+1)(λC1)−H2(n+p+1)(λC2)}

]
where Hγ(.) stands for the CDF of χ2 distribution with γ degrees of freedom.
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Since

V ar(θ̂pPT−U ) =V ar(θ̂pU ) + V ar
(

(θ̂pU − θ
p
0)I(A)

)
− 2Cov

(
θ̂pU , (θ̂

p
U − θ

p
0)I(A)

)
=θ2p

[
Γ(n+ 2p+ 1)Γ(n+ 1)

Γ2(n+ p+ 1)
− 1

]
+ θ2pΓ(n+ 2p+ 1)Γ(n+ 1)

Γ2(n+ p+ 1)
{H2(n+2p+1)(λC1)−H2(n+2p+1)(λC2)}

− θ2p{H2(n+p+1)(λC1)−H2(n+p+1)(λC2)}2

+ θ2p
0 {H2n+2(λC1)−H2n+2(λC2)}[1− {H2n+2(λC1)−H2n+2(λC2)}]

− 2θp0θ
p{H2(n+p+1)(λC1)−H2(n+p+1)(λC2)}

× [1− {H2n+2(λC1)−H2n+2(λC2)}]

− 2θ2pΓ(n+ 2p+ 1)Γ(n+ 1)

Γ2(n+ p+ 1)
{H2(n+2p+1)(λC1)−H2(n+2p+1)(λC2)}

+ 2θp0θ
p{H2(n+p+1)(λC1)−H2(n+p+1)(λC2)}

+ 2θ2p{H2(n+p+1)(λC1)−H2(n+p+1)(λC2)}
− 2θpθp0{H2n+2(λC1)−H2n+2(λC2)},

the MSE of PTE of θp based on UMVUE can be simplified to be

MSE(θ̂pPT−U ) =θ2p

[
Γ(n+ 2p+ 1)Γ(n+ 1)

Γ2(n+ p+ 1)
− 1

]
− θ2pΓ(n+ 2p+ 1)Γ(n+ 1)

Γ2(n+ p+ 1)

× {H2(n+2p+1)(λC1)−H2(n+2p+1)(λC2)}

+ (θ2p
0 − 2θpθp0){H2n+2(λC1)−H2n+2(λC2)}

+ 2θ2p{H2(n+p+1)(λC1)−H2(n+p+1)(λC2)} (2.20)

Now, the bias of PTE of θp based on MLE is

Bias(θ̂pPT−U ) =

(
θ

n+ 1

)p Γ(n+ p+ 1)

Γ(n+ 1)

× [1− {H2(n+p+1)(λC1)−H2(n+p+1)(λC2)}]
+ θp0{H2n+2(λC1)−H2n+2(λC2)} − θp (2.21)

Then the MSE of PTE of θp based on MLE is obtained as

MSE(θ̂pPT−ML) =

{(
θ

n+ 1

)p Γ(n+ p+ 1)

Γ(n+ 1)

}2 [
Γ(n+ 2p+ 1)Γ(n+ 1)

Γ2(n+ p+ 1)
− 1

]
−
(

θ

n+ 1

)2p Γ(n+ 2p+ 1)

Γ(n+ 1)
{H2(n+2p+1)(λC1)−H2(n+2p+1)(λC2)}

−
{(

θ

n+ 1

)p Γ(n+ p+ 1)

Γ(n+ 1)

}2

{H2(n+p+1)(λC1)−H2(n+p+1)(λC2)}2

+ θ2p
0 {H2n+2(λC1)−H2n+2(λC2)}[1− {H2n+2(λC1)−H2n+2(λC2)}]

− 2θp0

(
θ

n+ 1

)p Γ(n+ p+ 1)

Γ(n+ 1)
{H2(n+p+1)(λC1)−H2(n+p+1)(λC2)}
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× [1− {H2n+2(λC1)−H2n+2(λC2)}]

+ 2θp0

(
θ

n+ 1

)p Γ(n+ p+ 1)

Γ(n+ 1)
[{H2(n+p+1)(λC1)−H2(n+p+1)(λC2)}

− {H2n+2(λC1)−H2n+2(λC2)}]

+ 2

{(
θ

n+ 1

)p Γ(n+ p+ 1)

Γ(n+ 1)

}2

{H2(n+p+1)(λC1)−H2(n+p+1)(λC2)}

+

[(
θ

n+ 1

)p Γ(n+ p+ 1)

Γ(n+ 1)
[1− {H2(n+p+1)(λC1)−H2(n+p+1)(λC2)}]

+θp0{H2n+2(λC1)−H2n+2(λC2)} − θp]2 (2.22)

Before deriving bias and MSE for PTE of θp based on EBE, for the sake of simplicity we
define the following:

ϕ1 =

∫ ∞
0

(y + µ̂ML)pyne−
y
θ dy, ϕ2 =

∫ ∞
0

(y + µ̂ML)2pyne−
y
θ dy

ϕ3 =

∫ θ0C1
2

θ0C2
2

(y + µ̂ML)pyne−
y
θ dy, ϕ4 =

∫ θ0C1
2

θ0C2
2

(y + µ̂ML)2pyne−
y
θ dy

Therefore, we have

Bias(θ̂pPT−EB) =
Γ(n+ ν̂ML − p+ 1)

Γ(n+ ν̂ML + 1)Γ(n+ 1)θn+1
(ϕ1 − ϕ3)

+ θp0{H2n+2(λC1)−H2n+2(λC2)} − θp (2.23)

and

MSE(θ̂pPT−EB) =

{
Γ(n+ ν̂ML − p+ 1)

Γ(n+ ν̂ML + 1)

}2 (ϕ2 − ϕ4)

Γ(n+ 1)θn+1

−
[

Γ(n+ ν̂ML − p+ 1)

Γ(n+ ν̂ML + 1)Γ(n+ 1)θn+1

]2

(ϕ1 − ϕ3)2

+ θ2p
0 {H2n+2(λC1)−H2n+2(λC2)}[1− {H2n+2(λC1)−H2n+2(λC2)}]

+ 2θp0
Γ(n+ ν̂ML − p+ 1)

Γ(n+ ν̂ML + 1)Γ(n+ 1)θn+1

× (ϕ3 − ϕ1){H2n+2(λC1)−H2n+2(λC2)}

+

[
Γ(n+ ν̂ML − p+ 1)

Γ(n+ ν̂ML + 1)Γ(n+ 1)θn+1
(ϕ1 − ϕ3)

+θp0{H2n+2(λC1)−H2n+2(λC2)} − θp]2 (2.24)

Now, we derive bias and MSE expressions of PTEs of R(t) based on MLE and UMVUE.

For the sake of simplicity, we define the following:

ϕ5 =

∫ C1
2

C2
2

zn

n!
exp

[
−
(
z +

(n+ 1)gβ(t)

θz

)]
dz,

ϕ6 =

∫ C1
2

C2
2

zn

n!
exp

[
−
(
z +

2(n+ 1)gβ(t)

θz

)]
dz

Then, the bias of PTE of R(t) based on MLE is as follows:

Bias(R̂(t)PT−ML) =
1

Γ(n+ 1)

∫ ∞
0

exp

[
−
{
y +

(n+ 1)gβ(t)

θy

}]
yndy

− ϕ5 +R0(t){H2n+2(λC1)−H2n+2(λC2)} −R(t) (2.25)
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Applying the result of Watson (1952) given by∫ ∞
0

u−m exp

{
−
(
au+

b

u

)}
du = 2

(a
b

)m−1
2
Km−1(2

√
ab)

[it is to be noted that K−m(·) = Km(·) for m = 0, 1, 2, . . .], we obtain from (2.25) that

Bias(R̂(t)PT−ML) =
2

n!

{
(n+ 1)gβ(t)

θ

}n+1
2

Kn+1

(
2

√
(n+ 1)gβ(t)

θ

)
− ϕ5 +R0(t){H2n+2(λC1)−H2n+2(λC2)} −R(t) (2.26)

Following which, the MSE of PTE of R(t) based on MLE is

MSE(R̂(t)PT−ML) =
2

n!

{
2(n+ 1)gβ(t)

θ

}n+1
2

Kn+1

(
2

√
2(n+ 1)gβ(t)

θ

)

−

 2

n!

{
(n+ 1)gβ(t)

θ

}n+1
2

Kn+1

(
2

√
(n+ 1)gβ(t)

θ

)2

+ ϕ6 − ϕ2
5 +R0(t){H2n+2(λC1)−H2n+2(λC2)}

× {1− {H2n+2(λC1)−H2n+2(λC2)}}

+ 2

 2

n!

{
(n+ 1)gβ(t)

θ

}n+1
2

Kn+1

(
2

√
(n+ 1)gβ(t)

θ

)ϕ5

+ 2R0(t){H2n+2(λC1)−H2n+2(λC2)}

×

 2

n!

{
(n+ 1)gβ(t)

θ

}n+1
2

Kn+1

(√
(n+ 1)gβ(t)

θ

)
− ϕ5


+

 2

n!

{
(n+ 1)gβ(t)

θ

}n+1
2

Kn+1

(
2

√
(n+ 1)gβ(t)

θ

)

− ϕ5 +R0(t){H2n+2(λC1)−H2n+2(λC2)} −R(t)

]2

(2.27)

Denoting by

ϕ7 =

∫ C1

C2

(
1− 2gβ(t)

θu

)2n
une−

u
2

2n+1n!
du and ϕ8 =

∫ C1

C2

(
1− 2gβ(t)

θu

)n
une−

u
2

2n+1n!
du

then, the bias of PTE of R(t) based on UMVUE is

Bias(R̃(t)PT−U ) = R0(t){H2n+2(λC1)−H2n+2(λC2)} − ϕ8 (2.28)

We have obtained the variance of UMVUE of R(t) as follows:

V ar{R̃(t)} =
1

n!

{
gβ(t)

θ

}(n+1)

exp

{
−g

β(t)

θ

}[
θan
gβ(t)

− an−1 exp

{
gβ(t)

θ

}
Ei

(
−g

β(t)

θ

)
+

n−2∑
i=0

ai

{
n−i−1∑
m=1

(m− 1)!

(n− i− 1)!

(
−g

β(t)

θ

)n−i−m−1

− 1

(n− i− 1)!

(
−g

β(t)

θ

)n−i−1

exp

(
gβ(t)

θ

)
Ei

(
−g

β(t)

θ

)}

+

2n∑
i=n+1

ai(i− n)!

(
θ

gβ(t)

)i−n+1 i−n∑
r=0

1

r!

(
gβ(t)

θ

)r]
− exp

(
−2gβ(t)

θ

)
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where ai = (−1)i
(

2n
i

)
and −Ei(−x) =

∫∞
x

e−u

u du. Then the MSE of PTE of R(t) based on
UMVUE is

MSE(R̃PT−U ) =R− ϕ7 − ϕ2
8

+R0(t){H2n+2(λC1)−H2n+2(λC2)}{1− {H2n+2(λC1)−H2n+2(λC2)}}
+ 2ϕ8R(t) + 2R0(t){H2n+2(λC1)−H2n+2(λC2)}(ϕ8 −R(t))

+ [R0(t){H2n+2(λC1)−H2n+2(λC2)} − ϕ8]2 (2.29)

Now, we derive bias and MSE expressions of PTEs of P based on MLE and UMVUE.

Bias(P̂PT−ML) =E(P̂ )− E(P̂ I(B)) + P0E(I(B))− P

E(P̂ ) =E

(
θ̂1

θ̂1 + θ̂2

)
= E(Q̂)(say)

Following the approach by Constantine, Tse, and Karson (1986), we obtain the PDF of Q̂ by

transformation into two new independent RVs r > 0 and θ ∈
(
0, π2

)
where θ̂1 = θ1r sin2 θ

n+1 and

θ̂2 = θ2r cos2 θ
m+1 . Here r and θ are polar coordinates representing the distance from the origin

and the angle between the line segment from the origin and the positive x-axis respectively.

Putting ϕ = cos2 θ and ρ = θ2
θ1

, the PDF of Q̂ =
[
1 + ρ

(
n+1
m+1

)(
ϕ

1−ϕ

)]−1
is

g(q) =
1

B(n+ 1,m+ 1)

[
ρ

(
n+ 1

m+ 1

)]n+1

× qn(1− q)m

(1 + εq)n+m+2
, 0 < q < 1, ε = ρ

(
n+ 1

m+ 1

)
− 1 (2.30)

where B(a, b) is the Beta function with parameters a and b.

When ε = 0, (2.30) gives

E(Q̂l) =
B(n+ l + 1,m+ 1)

B(n+ 1,m+ 1)
(2.31)

When ε 6= 0, (2.30) yields on substituting 1 + εq = t,

E(Q̂l) =
1

B(n+ 1,m+ 1)

[
ρ

(
n+ 1

m+ 1

)]n+1 1

εn+m+l+1

×
∫ ω

1
(t− 1)n+l(ω − t)mt−(n+m+2)dt (2.32)

where ω = 1 + ε. Two binomial expansions further simplify (2.32) to

E(Q̂l) =
(−1)n+1ω−l(1− ω−1)−n−m−l−1

B(n+ 1,m+ 1)

m∑
j=0

(−1)j
(
m

j

)
ω−j

×
n+l∑
k=0

(−1)k
(
n+ l

k

)
I(w; j + k − n−m− 2) (2.33)

where

I(ω; z) =

{
ωz+1−1
z+1 , z 6= −1

log(ω), z = −1

Thus,

E(P̂ ) =

{
n+1

n+m+2 , ω = 1

ϕ9, ω 6= 1
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where

ϕ9 =
(−1)n+1ω−1(1− ω−1)−n−m−2

B(n+ 1,m+ 1)

m∑
j=0

(−1)j
(
m

j

)
ω−j

×
n+1∑
k=0

(−1)k
(
n+ 1

k

)
I(ω; j + k − n−m− 2)

Now,

E(P̂ I(B)) =
1

B(n+ 1,m+ 1)

(
n+ 1

m+ 1

)n+1 ∫ C3

C4

un
(

1 +
(
n+1
m+1

)
u
)−n−m−2(

1 + θ2
θ1u

) du

=ϕ10, (say)

then the bias of PTE of P based on MLE is

Bias(P̂PT−ML) =

{
−ϕ10 + P0{F2(n+1),2(m+1)(C3)− F2(n+1),2(m+1)(C4)}, ω = 1

ϕ9 − ϕ10 + P0{F2(n+1),2(m+1)(C3)− F2(n+1),2(m+1)(C4)} − P, ω 6= 1

(2.34)

and the MSE of PTE of P based on MLE is

MSE(P̂PT−ML) =
(

n+1
n+m+2

)2 [(
n+2
n+1

)(
n+m+2
n+m+3

)
− 1
]
− ϕ11 + 2P (ϕ10 − P0P (B)) + P 2

0P (B), ω = 1

ϕ12 − ϕ11 + 2P (ϕ10 − P0P (B)) + P 2
0P (B) + P

(
P − 2

(
n+1

n+m+2

))
, ω 6= 1

(2.35)

where

P (B) ={F2(n+1),2(m+1)(C3)− F2(n+1),2(m+1)(C4)}

ϕ11 =
1

B(n+ 1,m+ 1)

(
n+ 1

m+ 1

)n+1 ∫ C3

C4

un
(

1 +
(
n+1
m+1

)
u
)−n−m−2

(
1 + θ2

θ1u

)2 du

ϕ12 =
(−1)nω−2(1− ω−1)−n−m−3

B(n+ 1,m+ 1)

m∑
j=0

(−1)j
(
m

j

)
ω−j

×
n+2∑
k=0

(−1)k
(
n+ 2

k

)
I(ω; j + k − n−m− 2)

It is easy to see that the bias of PTE of P based on UMVUE is

Bias(P̃PT−U ) =

{
P0P (B)− ϕ13, v ≤ 1

P0P (B)− ϕ14, v > 1
(2.36)

where V = gβ(Rn)
gβ(R∗n)

.

Denoting by ϕ13 =
∑m−1

i=0
(−1)im!n!

(m−i−1)!(n+i+1)!

(
θ1(n+1)
θ2(m+1)

)i+1 ∫ C3

C4
ui+1φ1(u)du, where φ1(·) is the

PDF of F - distribution with (2(n+1), 2(m+1)) degrees of freedom and ϕ14 =
∑n

i=0
(−1)in!m!

(n−i)!(m+i)!
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×
(
θ2(m+1)
θ1(n+1)

)i ∫ C3

C4
uiφ2(u)du, where φ2(·) is the PDF of F - distribution with (2(m+1), 2(n+1))

degrees of freedom. To obtain the MSE of PTE of P based on UMVUE, consider

E(P̃ 2) =E

m−1∑
i=0

m−1∑
j=0

aiajV
i+j+2

∣∣∣∣∣∣V ≤ 1

P (V ≤ 1)

+ E

 n∑
i=0

n∑
j=0

bibjV
−(i+j)

∣∣∣∣∣∣V > 1

P (V > 1)

where, ai = (−1)im!n!
(m−i−1)!(n+i+1)! , bi = (−1)in!m!

(n−i)!(m+i)! .

An explicit expression of V ar(P̃ ) depends on the evaluation of E(V l|V ≤ 1)P (V ≤ 1) and
E(V −l|V > 1)P (V > 1) for l ≥ 0. To evaluate them we first obtain the PDF of V . We have,

V = gβ(Rn)
gβ(R∗m)

which implies, (m+1)θ2
(n+1)θ1

V = ρ (m+1)
(n+1) V ∼ F2(n+1),2(m+1). Thus we obtain the PDF

of V as

h(v) =
ρn−1

B(n+ 1,m+ 1)
vn(1 + ρv)−n−m−2, v > 0

For l > 0,

E(V l|V ≤ 1)P (V ≤ 1) =

∫ 1

0

ρn−1

B(n+ 1,m+ 1)
vn+l(1 + ρv)−n−m−2dv

Substituting r = (1 + ρv)−1, the binomial expansion of the integrand yields,

E(V l|V ≤ 1)P (V ≤ 1) =
ρ−l

B(n+ 1,m+ 1)

n+l∑
k=0

(−1)k
(
n+ l

k

)∫ 1

Q
rm−l+kdr

where

∫ 1

Q
rm−l+kdr =

{
1−Qm−l+k+1

m−l+k+1 , k 6= l −m− 1

− log(Q), k = l −m− 1

and Q = 1
1+ρ .

Similarly we can obtain

E(V −l|V > 1)P (V > 1) =
ρl

B(n+ 1,m+ 1)

m+l∑
k=0

(−1)k
(
m+ l

k

)∫ 1

1−Q
rn−l+kdr

where

∫ 1

1−Q
rn−l+kdr =

{
1−(1−Q)n−l+k+1

n−l+k+1 , k 6= l −m− 1

− log(1−Q), k = l −m− 1

Thus, V ar(P̃ ) = ϕ17 − P 2 and V ar(P̃ I(B)) =

{
ϕ15 − ϕ2

13, v ≤ 1

ϕ16 − ϕ2
14, v > 1
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where

ϕ15 =
m−1∑
i=0

m−1∑
j=0

aiaj

(
θ1(n+ 1)

θ2(m+ 1)

)i+j+2 ∫ C3

C4

ui+j+2φ1(u)du,

ϕ16 =
n∑
i=0

n∑
j=0

bibj

(
θ2(m+ 1)

θ1(n+ 1)

)i+j ∫ C3

C4

ui+jφ2(u)du,

ϕ17 =
m−1∑
i=0

m−1∑
j=0

aiajρ
−(i+j+2)

B(n+ 1,m+ 1)

n+i+j+2∑
k=0

(−1)k
(
n+ i+ j + 2

k

)∫ 1

Q
rm+k−i−j−2dr

+
n∑
i=0

n∑
j=0

bibjρ
i+j

B(n+ 1,m+ 1)

m+i+j∑
k=0

(−1)k
(
m+ i+ j

k

)∫ 1

1−Q
rn+k−i−jdr

Thus, we obtain the MSE of PTE of P based on UMVUE as

MSE(P̃PT−U ) =

{
ϕ17 − P 2 − ϕ15 + 2P (ϕ13 − P0P (B)) + P 2

0P (B), v ≤ 1

ϕ17 − P 2 − ϕ16 + 2P (ϕ14 − P0P (B)) + P 2
0P (B), v > 1

(2.37)

Comparing the performance of the proposed PTEs analytically is a complicated task because
of their formulations. Therefore several figures as well as some numerical results are presented
to discuss their performance. The relative efficiency of PTE of some parameter τ denoted by
τ̂PT−δ over its regular estimator denoted by τ̂δ is defined as follows;

e(τ̂PT−δ|τ̂δ) =
MSE(τ̂δ)

MSE(τ̂PT−δ)

where δ ∈ {U,ML,EB}.

2.3. Proposed preliminary test confidence interval

In this section we construct PTCI of the scale parameter θ. Suppose for known value of the
shape parameter β, we are interested in testing the hypothesis

H0 : θ = θ0

H1 : θ 6= θ0

Since gβ(Rn) follows gamma distribution with parameters (n+ 1, θ), it is easy to obtain the
100(1− α)% equal tail confidence interval (ETCI) of θ as

IETCI =

(
2gβ(Rn)

χ2
2(n+1)

(
1− α

2

) , 2gβ(Rn)

χ2
2(n+1)

(
α
2

))

From (2.2) and (2.3), for p = 1, we obtain the same expression for the MLE and UMVUE of

θ as θ̂ = gβ(Rn)
n+1 . Then we can re-write IETCI as

IETCI =
(
C5θ̂, C6θ̂

)
Accordingly, we can define the PTCI of θ as

IPTCI =
(
C5θ̂PT , C6θ̂PT

)
where θ̂PT is the PTE of θ as defined in (2.9) and (2.10).
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If we let λ = θ
θ0

and T = 2gβ(Rn)
θ , then the CP of PTCI of θ is defined as

P (θ ∈ IPTCI) =P

(
θ ∈ (C5θ0, C6θ0)

∣∣∣∣χ2
2(n+1)

(α
2

)
<

2gβ(Rn)

θ0
< χ2

2(n+1)

(
1− α

2

))
+ P

(
θ ∈ (C5θ̂U , C6θ̂U )

∣∣∣∣2gβ(Rn)

θ0
< χ2

2(n+1)

(α
2

))
+ P

(
θ ∈ (C5θ̂U , C6θ̂U )

∣∣∣∣2gβ(Rn)

θ0
> χ2

2(n+1)

(
1− α

2

))

=P

(
(C5 < λ < C6)

∣∣∣∣χ2
2(n+1)

(
α
2

)
λ

< T <
χ2

2(n+1)

(
1− α

2

)
λ

)

+ P

(
χ2

2(n+1)

(α
2

)
< T < χ2

2(n+1)

(
1− α

2

)
, T <

χ2
2(n+1)

(
α
2

)
λ

)

+ P

(
χ2

2(n+1)

(α
2

)
< T < χ2

2(n+1)

(
1− α

2

)
, T >

χ2
2(n+1)

(
1− α

2

)
λ

)

= P

(
χ2

2(n+1)

(
α
2

)
λ

< T <
χ2

2(n+1)

(
1− α

2

)
λ

)
I(C5, C6)(λ)

+ P

(
χ2

2(n+1)

(α
2

)
< T < min

{
χ2

2(n+1)

(
1− α

2

)
,
χ2

2(n+1)

(
α
2

)
λ

})

+ P

(
max

{
χ2

2(n+1)

(α
2

)
,
χ2

2(n+1)

(
1− α

2

)
λ

}
< T < χ2

2(n+1)

(
1− α

2

))

Denoting the first term of the above equation by C, we obtain the CP of PTCI of θ as

P (θ ∈ IPTCI) =



C + 1− α, 0 < λ ≤
χ2
2(n+1)(

α
2 )

χ2
2(n+1)(1−α

2 )
or λ >

χ2
2(n+1)(1−α

2 )
χ2
2(n+1)(

α
2 )

C + P

(
χ2

2(n+1)

(
α
2

)
< T <

χ2
2(n+1)(

α
2 )

λ

)
,

χ2
2(n+1)(

α
2 )

χ2
2(n+1)(1−α

2 )
< λ ≤ 1

C + P

(
χ2
2(n+1)(1−α

2 )
λ < T < χ2

2(n+1)

(
1− α

2

))
, 1 < λ ≤

χ2
2(n+1)(1−α

2 )
χ2
2(n+1)(

α
2 )

In order to find the EL of PTCI of θ, we first obtain the length of PTCI of θ which is given
by the following RV

LPT =

{
θ0(C6 − C5), χ2

2(n+1)

(
α
2

)
< 2gβ(Rn)

θ < χ2
2(n+1)

(
1− α

2

)
θ̂U (C6 − C5), 2gβ(Rn)

θ0
< χ2

2(n+1)

(
α
2

)
or 2gβ(Rn)

θ0
> χ2

2(n+1)

(
1− α

2

)
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Then the EL of the PTCI is given by

E(LPT ) =E

(
LPT

∣∣∣∣χ2
2(n+1)

(α
2

)
<

2gβ(Rn)

θ0
< χ2

2(n+1)

(
1− α

2

))
× P

(
χ2

2(n+1)

(α
2

)
<

2gβ(Rn)

θ0
< χ2

2(n+1)

(
1− α

2

))
+ E

(
LPT

∣∣∣∣2gβ(Rn)

θ0
< χ2

2(n+1)

(α
2

)
or

2gβ(Rn)

θ0
> χ2

2(n+1)

(
1− α

2

))
× P

(
2gβ(Rn)

θ0
< χ2

2(n+1)

(α
2

)
or

2gβ(Rn)

θ0
> χ2

2(n+1)

(
1− α

2

))
=θ0(C6 − C5)

[
H2n+2

(
χ2

2(n+1)

(
1− α

2

)
λ

)
−H2n+2

(
χ2

2(n+1)

(
α
2

)
λ

)

+λ

{
H2n+4

(
χ2

2(n+1)

(
α
2

)
λ

)
+ 1−H2n+4

(
χ2

2(n+1)

(
1− α

2

)
λ

)}]

2.4. Numerical findings

In this section we consider Weibull distribution by substituting g(x) = x in (1.1) and taking
β = 3. Since the relative efficiencies e(θ̂pPT−U |θ̂

p
U ) and e(θ̂pPT−ML|θ̂

p
ML) depend on the sample

size (n + 1) and level of significance α, Table 1 shows the relative efficiency of θpPT−U over

θpU and the interval of λ = θ0
θ for which this efficiency is greater than 1. Similarly, Table

2 shows the relative efficiency of θ̂pPT−ML over θ̂pML and the interval of λ for which this ef-

ficiency is greater than 1. Unlike, e(θ̂pPT−U |θ̂
p
U ) and e(θ̂pPT−ML|θ̂

p
ML), the relative efficiency

e(θ̂pPT−EB|θ̂
p
EB) does not have a closed form and thus we use Monte Carlo simulation tech-

nique that involves the following steps:

I. For given values of µ and ν, generate one sample from Inverted-Gamma (µ, ν) and denote
it as θ∗.

II. For a specified value of n, generate m random samples from Gamma (n+ 1, θ∗) to obtain
Yj , j = 1, 2, ...,m.

III. Compute, θ̂pEB(j) = Γ(n+ν−p+1)
Γ(n+ν+1) (Yj + µ)p, j = 1, 2, ...,m.

IV. For a specified value of θ0, if we wish to test the hypothesis H0 : θ = θ0, then using the
test statistic (2.8) we get

θ̂pPT−EB(j) = θ̂pEB(j)− (θ̂pEB(j)− θp0)I(A), j = 1, 2, ...,m.

V. Compute MSE = 1
m

∑m
j=1(δ(j)−θ∗p)2, where δ(j) ∈ {θ̂pEB(j), θ̂pPT−EB(j)}, j = 1, 2, ...,m

For µ = 2, ν = 4 and m = 1000, Table 3 shows the relative efficiency of θ̂pPT−EB over θ̂pEB
and the interval of λ for which this efficiency is greater than 1. For a particular sample size
and level of significance, Figures 1, 2 and 3 show the relative efficiency of θ̂pPT−U over θ̂pU ,

θ̂pPT−ML over θ̂pML and θ̂pPT−EB over θ̂pEB respectively, with respect to λ = θ/θ0. From Tables
1, 2 and 3 and Figures 1, 2 and 3, we observe that irrespective of the sample sizes and level of
significance, the PTEs of θp based on MLE, UMVUE and EBE are more efficient estimators
compared to their usual estimators respectively whenever λ is close to 1 or in other words,
the true value of the parameter is close to its guess value θ0.

For a fixed sample size n = 5, Figure 4 shows the relative efficiency of R̂(t)PT−ML over
R̂(t) and the relative efficiency of R̃(t)PT−U over R̃(t) for different time points and level of

significance 0.05 with respect to λ = R0(t)
R(t) . From this figure, it is clear that PTEs of R(t)
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based on MLE and UMVUE outperform the usual estimators of R(t) whenever R(t) is close
to R0(t).

Now we study the efficiency of PTEs of P based on MLE and UMVUE over the usual esti-
mators of P based on MLE and UMVUE. Suppose for different values of θ1 and θ2 we want
to test the hypothesis H0 : P = P0 against H1 : P 6= P0 for fixed sample sizes n = 5 and
m = 7. Then in Figure 5, relative efficiencies of PTEs of P based on MLE and UMVUE over
its usual estimators based on MLE and UMVUE respectively have been demonstrated with
respect to λ = P0

P . From this figure, it is clear that PTEs of P based on MLE and UMVUE
are more efficient than the usual estimators of P based on MLE and UMVUE respectively in
a small neighbourhood around λ = 1, i.e. when the true value P is close to the hypothesized
value P0.

In Figure 6, we show the CP of PTCI of the parameter θ with respect to λ = θ0
θ for a fixed

sample size and level of significance. From the figure and the derived expression of the CP of
PTCI of θ, we observe that as the value of λ tends to 0 or ∞, the CP of PTCI of θ tends to
1−α and for some interval of λ, the CP of PTCI of θ is greater than 1−α. This domination
interval is larger for smaller values of sample size. Thus, we can conclude that the CP of
PTCI of θ is greater than the CP of ETCI of θ for some values of λ in a specific interval
around λ = 1.

In Figure 7, we compare the scaled EL of PTCI of θ with the ETCI of θ with respect to
λ = θ0

θ . We observe from this figure that there exists an interval of λ for which the EL of
PTCI of θ is lower than its ETCI. This interval of λ for which EL of PTCI of θ is lower
decreases with an increase in sample size. We also note that as λ tends to 0 or ∞, the EL of
PTCI of θ tend to be close to the EL of ETCI of θ.

Table 1: The relative efficiency of θ̂pPT−U over θ̂pU and the interval of λ = θ0
θ for which this

efficiency is greater than 1

α 0.01 0.05 0.1
n Efficiency(Interval) Efficiency(Interval) Efficiency(Interval)
7 9.7788 [0.9231 6.1516] 3.1332 [1.0966 4.5794] 2.0417 [1.2029 3.9731]
8 9.9641 [0.7584 4.4983] 3.1742 [0.8939 3.4238] 2.0629 [0.9761 3.0010]
9 10.119 [0.6697 3.6031] 3.2083 [0.7839 2.7928] 2.0807 [0.8527 2.4685]
10 10.25 [0.6320 3.1292] 3.2371 [0.7353 2.4626] 2.0957 [0.7972 2.1920]
12 10.46 [0.5809 2.5135] 3.2833 [0.6691 2.0263] 2.1197 [0.7214 1.8240]
15 10.687 [0.5603 2.0853] 3.3332 [0.6378 1.7254] 2.1458 [0.6832 1.5723]
20 10.936 [0.3972 1.2441] 3.3875 [0.4458 1.0593] 2.1742 [0.4738 0.9786]
α 0.15 0.2 0.25
n Efficiency(Interval) Efficiency(Interval) Efficiency(Interval)
7 1.6332 [1.2799 3.6332] 1.4168 [1.3437 3.3969] 1.2835 [1.4000 3.2157]
8 1.6476 [1.0354 2.7614] 1.4277 [1.0843 2.5937] 1.2923 [1.1274 2.4644]
9 1.6597 [0.9021 2.2831] 1.4368 [0.9427 2.1527] 1.2996 [0.9784 2.0516]
10 1.6699 [0.8414 2.0362] 1.4446 [0.8777 1.9261] 1.3058 [0.9095 1.8404]
12 1.6863 [0.7585 1.7062] 1.457 [0.7888 1.6222] 1.3158 [0.8152 1.5566]
15 1.7041 [0.7151 1.4820] 1.4705 [0.7411 1.4171] 1.3267 [0.7636 1.3660]
20 1.7234 [0.4934 0.9303] 1.4853 [0.5092 0.8952] 1.3386 [0.5228 0.8674]

2.5. An example on real data

Now we consider a real data set which was also used in Lawless (1982). This data is concerning
the data on time to breakdown of an insulating fluid between electrodes at a voltage of 34 kV
(minutes). The 19 times to breakdown are

0.96 4.15 0.19 0.78 8.01 31.75 7.35 6.50 8.27 33.91

32.52 3.16 4.85 2.78 4.67 1.31 12.06 36.71 72.89
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Table 2: The relative efficiency of θ̂pPT−ML over θ̂pML and the interval of λ = θ0
θ for which this

efficiency is greater than 1

α 0.01 0.05 0.1
n Efficiency(Interval) Efficiency(Interval) Efficiency(Interval)
7 10.15 [0.8288 5.5230] 3.2341 [0.9846 4.1114] 2.101 [1.0800 3.5671]
8 10.3 [0.7604 4.5098] 3.2659 [0.8962 3.4326] 2.1169 [0.9787 3.0087]
9 10.426 [0.6518 3.5068] 3.2923 [0.7629 2.7181] 2.1302 [0.8300 2.4025]
10 10.533 [0.6813 3.3733] 3.3146 [0.7927 2.6547] 2.1414 [0.8594 2.3630]
12 10.704 [0.5683 2.4589] 3.3503 [0.6546 1.9823] 2.1594 [0.7057 1.7844]
15 10.889 [0.5412 2.0145] 3.3889 [0.6162 1.6668] 2.1788 [0.6600 1.5189]
20 11.093 [0.4143 1.2977] 3.431 [0.4650 1.1050] 2.1999 [0.4943 1.0208]
α 0.15 0.2 0.25
n Efficiency(Interval) Efficiency(Interval) Efficiency(Interval)
7 1.677 [1.1491 3.2619] 1.4522 [1.2064 3.0498] 1.3134 [1.2569 2.8871]
8 1.6875 [1.0380 2.7685] 1.46 [1.0871 2.6004] 1.3196 [1.1303 2.4708]
9 1.6963 [0.8780 2.2221] 1.4665 [0.9175 2.0951] 1.3247 [0.9522 1.9968]
10 1.7037 [0.9070 2.1951] 1.472 [0.9462 2.0763] 1.329 [0.9804 1.9840]
12 1.7157 [0.7420 1.6691] 1.4808 [0.7717 1.5870] 1.336 [0.7975 1.5228]
15 1.7286 [0.6908 1.4317] 1.4904 [0.7159 1.3690] 1.3435 [0.7377 1.3196]
20 1.7426 [0.5146 0.9704] 1.5008 [0.5311 0.9338] 1.3518 [0.5453 0.9048]

Table 3: The relative efficiency of θ̂pPT−EB over θ̂pEB and the interval of λ = θ0
θ for which this

efficiency is greater than 1

α 0.01 0.05 0.1
n Efficiency(Interval) Efficiency(Interval) Efficiency(Interval)
7 8.1221 [0.4643 3.0938] 4.08 [0.5515 2.3031] 2.8903 [0.6050 1.9982]
8 7.502 [0.4822 2.8599] 3.9047 [0.5683 2.1768] 2.7584 [0.6206 1.9079]
9 7.0921 [0.4982 2.6806] 3.7608 [0.5832 2.0778] 2.659 [0.6344 1.8365]
10 6.6345 [0.5127 2.5389] 3.5683 [0.5966 1.9980] 2.6337 [0.6468 1.7785]
12 5.9842 [0.5375 2.3257] 3.2739 [0.6191 1.8749] 2.4609 [0.6675 1.6877]
15 5.1106 [0.5672 2.1111] 3.145 [0.6457 1.7467] 2.3188 [0.6916 1.5917]
20 4.2836 [0.6049 1.8944] 2.8152 [0.6789 1.6131] 2.1749 [0.7216 1.4902]
α 0.15 0.2 0.25
n Efficiency(Interval) Efficiency(Interval) Efficiency(Interval)
7 2.5383 [0.6437 1.8272] 2.2744 [0.6758 1.7084] 2.0812 [0.7041 1.6173]
8 2.4285 [0.6583 1.7556] 2.1807 [0.6894 1.6490] 2.0004 [0.7167 1.5668]
9 2.355 [0.6711 1.6986] 2.1497 [0.7014 1.6015] 1.9416 [0.7279 1.5264]
10 2.2755 [0.6827 1.6521] 2.0786 [0.7121 1.5627] 1.8906 [0.7379 1.4932]
12 2.1534 [0.7018 1.5787] 1.9599 [0.7299 1.5010] 1.784 [0.7543 1.4403]
15 2.0116 [0.7240 1.5003] 1.8595 [0.7503 1.4346] 1.7273 [0.7731 1.3829]
20 1.873 [0.7513 1.4166] 1.7361 [0.7754 1.3632] 1.619 [0.7961 1.3209]
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Figure 1. Relative efficiency of θ̂PT−U with respect to λ = θ0
θ

Therefore, we observe the following 7 upper record values

0.96 4.15 8.01 31.75 33.91 36.71 72.89

We first apply Kolmogorov-Smirnov (K-S) test and chi-square test to check whether for a fixed
voltage level, time to breakdown has a Weibull distribution. Considering Weibull distribution
as a lifetime model for the complete data, the computed K-S statistic is 0.1616 with a p-value
of 0.6462. The computed chi-square statistic is 0.5369 with a p-value of 0.4637. Both the
tests indicate that Weibull Distribution is suitable for the data at 5% level of significance.

Using the method of Profile log-likelihood before applying Newton-Raphson method, the
maximum likelihood estimate of the parameter of Weibull distribution with shape parameter
β is β̂ = 0.7708. Based on these upper record values we have θ̂ML = 3.8962. Consider the
hypothesis

H0 : θ = 3.5

H1 : θ 6= 3.5

The computed test-statistic is 2gβ̂(Rn)
θ0

= 15.5850 which lies in the confidence interval (5.6286
26.1189). Thus, we do not reject the null hypothesis at 5% level of significance which indicates
that θ̂PT−ML = 3.5. The estimated value of λ is λ̂ = θ0

θ̂ML
= 0.8983, which falls in its range

(0.5360 2.4872). We can also verify that the value of θ0 falls in the interval (2.3249 10.7880).
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Figure 2. Relative efficiency of θ̂PT−ML with respect to λ = θ0
θ

2.6. Discussion on the proposed estimation methods

In Section 2, we exhibited various PTEs for estimation of the powers of the parameter of
interest and reliability functions of the Moore and Bilikam (1978) family of lifetime distribu-
tion. The exact bias and MSE expressions have been derived. Also, a real example has been
analyzed to illustrate the performance of the classical PTE. It can be concluded that all of the
proposed PTEs dominate their corresponding usual estimators such as UMVUE, MLE and
EBE in the neighbourhood of null hypothesis. The PTEs of R(t) perform better than their
usual estimators and similarly, for P, the PTEs turn out to be better in the neighbourhood
of the null hypothesis. Whenever the true value of the parameter is close to hypothesized
value, the PTCI of the parameter have a greater CP and a smaller EL compared to their
ETCI. Thus, we were able to establish improved estimators and confidence intervals of the
parameters.

3. Estimation of parametric functions when the scale parameter is known

From (2.1), the log-likelihood function of parameter β given R0, R1, . . . , Rn is

k(β) = (n+ 1) log β − (n+ 1) log θ − gβ(Rn)

θ
+

n∑
i=0

log (g
′
(Ri)g

β−1(Ri)) (3.1)

Now, for known value of θ we obtain the MLE of β by employing Newton-Raphson iterative
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Figure 3. Relative efficiency of θ̂PT−EB with respect to λ = θ0
θ

method which gives the (l + 1)th iterate of β̂ as

β̂l+1 = β̂l −
n+1
β̂l
− gβ̂l (Rn)

θ log (g(Rn)) +
∑n

i=0 log (g(Ri))

−n+1
β̂2
l

− gβ̂l (Rn)
θ {log(g(Rn))}2

where β̂l is the value of β̂ at the lth iteration.

Now, the Fisher information matrix is constructed as

I(β) = E

[
−∂

2k(β)

∂β2

]
Since it is a complicated task to obtain the above expected value, we use the observed Fisher
information matrix by dropping the expectation sign, i.e.

I(β̂) =
n+ 1

β̂2
+
gβ̂(Rn)

θ
{log(g(Rn))}2

where β̂ is the MLE of β obtained by the above Newton Raphson algorithm.

Since the analysis and construction of PTEs of the parametric functions are similar to that
of the previous section, therefore, we skip this part and consider a more general case in the
following section.
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Figure 4. Relative efficiency of R̂(t)PT−ML over R̂(t) and R̃(t)PT−U over R̃(t) with respect

to λ = R0(t)
R(t)

4. Estimation of parametric functions when both parameters are unknown

In this section we consider the case when both the parameters θ and β are unknown. Thus,
the MLE of θp and β are a solution of two nonlinear equations and we get

θ̂p =

(
gβ̂(Rn)

n+ 1

)p
where β̂ is the MLE of β that can be obtained by Newton-Raphson algorithm.

Now, we obtain the asymptotic bias and MSE of the estimators as it is difficult to obtain their
exact expressions. In this regard, we compute the variance-covariance matrix of the MLE of
θ and β with the help of Fisher information matrix as

Iij = E

[
−∂

2k(θ, β)

∂θ∂β

]
, i, j = 1, 2

where k(θ, β) is the same expression as k(β) in Section 3, except that the parameter θ is now
unknown. Since it is a complicated task to obtain the expected values, we approximate the
variance-covariance matrix of the MLEs, which is obtained by simply dropping the expectation
sign of the Fisher information matrix and inverting it. Thus,

[
V ar(θ̂) Cov(θ̂, β̂)

Cov(β̂, θ̂) V ar(β̂)

]
=

[
−∂2k(θ,β)

∂2θ
−∂2k(θ,β)

∂θ∂β

−∂2k(θ,β)
∂β∂θ −∂2k(θ,β)

∂2β

]−1

θ̂,β̂
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Figure 5. Relative efficiency of R̂PT−ML over P̂ and P̃PT−U over P̃ with respect to λ = P0
P

where the elements are given by

−∂
2k(θ, β)

∂2θ

∣∣∣∣
θ̂,β̂

=
(n+ 1)3

{gβ̂(Rn)}2

−∂
2k(θ, β)

∂θ∂β

∣∣∣∣
θ̂,β̂

= −∂
2k(θ, β)

∂β∂θ

∣∣∣∣
θ̂,β̂

=
−(n+ 1)2 log (g(Rn))

gβ̂(Rn)

−∂
2k(θ, β)

∂2β

∣∣∣∣
θ̂,β̂

=
n+ 1

β̂2
+ (n+ 1){log(g(Rn))}2

4.1. Proposed preliminary test estimator

When both the parameters θ and β are unknown, the exact distribution of the test statis-
tics cannot be achieved and so we follow an approach by Gulati and Padgett (1994b,a,
1995). Suppose we have m independent samples of upper record values of size n + 1 as
Rj0, Rj1, . . . , Rjn, j = 1, 2, . . .m. Then the MLE of the parameter θp is given by

θ̂pR =

(∑m
j=1 g

β̂(Rjn)

m(n+ 1)

)p
(4.1)

Further suppose that there exists some prior information on the parameter in the form of
θ = θ0 and we are interested in estimating θ by incorporating such information. So we
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consider the following simple hypothesis to check the validity of this information:

H0 : θ = θ0

H1 : θ 6= θ0

Under H0,
√
m(θ̂R−θ0)√
V ar(θ̂R)

asymp−→ N(0, 1) and the test statistic is defined as

Lm−θ =

√m(θ̂R − θ0)√
V ar(θ̂R)

2

(4.2)

Under H0, Lm−θ converges to central χ2distribution with 1 degree of freedom as m → ∞
while under the local alternative of the form

Hm : θ = θ0 +
δθ√
m

(4.3)

Lm−θ converges to non-central χ2 distribution with non-centrality parameter

∆2
θ =

√m(θ − θ0)√
V ar(θ̂R)

2

Based on the asymptotic distribution of Lm−θ, the critical region is given by Lm−θ > χ2
1(α)

where α is the level of significance. Thus, we define PTE of θp as
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for α = 0.05

θ̂pPR−R = θ̂pR − (θ̂pR − θ
p
0)I(Lm−θ < χ2

1(α)) (4.4)

It is worthwhile to note that when the both parameters are unknown, we can construct the
PTE based on Wald statistics. In this case the PTE can be defined as

η̂PT = η̂ − (η̂ − η0)I(Wm < wm,α) (4.5)

where Wm = m(η̂−η0)T I−1
ij (η̂−η0), η̂ =

(θ̂R
β̂R

)
, η0 =

(
θ0
β0

)
, wm,α is the α level critical value using

the distribution of Wm, and Iij is the Fisher information matrix which can be approximated
by the observed Fisher information matrix

I(θ̂R, β̂R) =

[
−∂2k(θ,β)

∂2θ
−∂2k(θ,β)

∂θ∂β

−∂2k(θ,β)
∂β∂θ −∂2k(θ,β)

∂2β

]
θ̂R,β̂R



82 Preliminary Test Estimators and Confidence Intervals

and whose elements are given by

−∂
2k(θ, β)

∂2θ

∣∣∣∣
θ̂R,β̂R

=

(
m(n+ 1)∑m
j=1 g

β̂R(Rjn)

)2 [
2m(n+ 1)gβ̂R(Rn)∑m

j=1 g
β̂(Rjn)

− (n+ 1)

]

−∂
2k(θ, β)

∂θ∂β

∣∣∣∣
θ̂R,β̂R

= −∂
2k(θ, β)

∂β∂θ

∣∣∣∣
θ̂R,β̂R

=
−(m(n+ 1))2gβ̂R log (g(Rn))

(
∑m

j=1 g
β̂R(Rn))2

−∂
2k(θ, β)

∂2β

∣∣∣∣
θ̂R,β̂R

=
n+ 1

β̂2
R

+
m(n+ 1)gβ̂R(Rn){log(g(Rn))}2∑m

j=1 g
β̂R(Rjn)

Next, by invariance property of MLE, the MLE of the reliability function R(t) under this
approach is given by

R̂(t)R = exp

(
−gβ̂(t)

θ̂R

)
(4.6)

Further suppose that there exists some prior information on R(t) in the form of R(t) = R0

and we consider the following simple hypothesis to check the validity of this information:

H0 : R(t) = R0

H1 : R(t) 6= R0

Under H0,
√
m(R̂(t)R−R0)√
V ar(R̂(t)R)

asymp−→ N(0, 1) and the test statistic is defined as

Lm−R(t) =

√m(R̂(t)R −R0)√
V ar(R̂(t)R)

2

(4.7)

Under H0, Lm−R(t) converges to central χ2distribution with 1 degree of freedom as m → ∞
while under the local alternative of the form

Hm : R(t) = R0 +
δR(t)√
m

(4.8)

Lm−R(t) converges to non-central χ2 distribution with non-centrality parameter

∆2
R(t) =

√m(R(t)−R0)√
V ar(R̂(t)R)

2

Based on the asymptotic distribution of Lm−R(t), the critical region is given by Lm,R(t) > χ2
1(α)

where α is the level of significance. Thus, we define PTE of R(t) as

R̂(t)PT−R = R̂(t)R − (R̂(t)R −R0)I(Lm−R(t) < χ2
1(α)) (4.9)

Finally, by invariance property of MLE, the MLE of the reliability function P under this
approach is given by

P̂R =
θ̂1R

θ̂1R + θ̂2R

(4.10)

where θ̂1R =
∑m
j=1 g

β̂(Rjn)

m(n+1) and θ̂2R =
∑m
j=1 g

β̂(R∗jr)

m(r+1) such that we have m independent samples of

r + 1 upper record values R∗j0, . . . , R
∗
jr, j = 1, 2, . . . ,m from the same family of distributions



Austrian Journal of Statistics 83

with β1 = β2 = β. Further suppose that there exists some prior information on P in the
form of P = P0 and we consider the following simple hypothesis to check the validity of this
information:

H0 : P = P0

H1 : P 6= P0

Under H0,
√
m(P̂R−P0)√
V ar(P̂R)

asymp−→ N(0, 1) and the test statistic is defined as

Lm−P =

√m(P̂R − P0)√
V ar(P̂R)

2

(4.11)

Under H0, Lm−P converges to central χ2distribution with 1 degree of freedom as m → ∞
while under the local alternative of the form

Hm : P = P0 +
δP√
m

(4.12)

Lm−P converges to non-central χ2 distribution with non-centrality parameter

∆2
P =

√m(P − P0)√
V ar(P̂R)

2

Based on the asymptotic distribution of Lm−P , the critical region is given by Lm,P > χ2
1(α)

where α is the level of significance. Thus, we define PTE of P as

P̂PT−R = P̂R − (P̂R − P0)I(Lm−P < χ2
1(α)) (4.13)

4.2. Asymptotic bias and mean square error

We derive the asymptotical distributional bias (ADB) and asymptotical distributional mean
square error (ADMSE) of the proposed estimators in (4.1) and (4.4) under the local alternative
given by (4.3). Following Saleh (2006) for any estimator θ̂ of θ we consider the following
definitions of ADB (B) and ADMSE (M)

B(θ̂) = lim
m→∞

E[
√
m(θ̂ − θ)] (4.14)

M(θ̂) = lim
m→∞

E[(
√
m(θ̂ − θ))2] (4.15)

Lemma 4.1 (Saleh, 2006): If Z ∼ N(∆, 1) and ϕ(.) is a Borel measurable function, then

1.E[Z.ϕ(Z2)] = ∆E[ϕ(χ2
3(∆2))]

2.E[Z2.ϕ(Z2)] = E[ϕ(χ2
3(∆2))] + ∆2E[ϕ(χ2

5(∆2))]

where χ2
d(∆

2) is the non-central χ2 RV with d degrees of freedom and non centrality parameter
∆2.

From (4.14), the ADB of θ̂R and θ̂PT−R are obtained as follows:

B1(θ̂R) = 0

B2(θ̂PT−R) = lim
m→∞

E[
√
m(θ̂PT−R − θ)]

= lim
m→∞

E[
√
m(θ̂R − (θ̂R − θ0)I(Lm−θ < χ2

1(α))− θ)]

= lim
m→∞

[−E{
√
m(θ̂R − θ0)I(Lm−θ < χ2

1(α))}]

= −
√
V ar(θ̂R) lim

m→∞
E

√m(θ̂R − θ0)√
V ar(θ̂R)

I

√m(θ̂R − θ0)√
V ar(θ̂R)

2

< χ2
1(α)
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Since
√
m(θ̂R−θ0)√
V ar(θ̂R)

asymp−→ N(∆θ, 1), then by applying Lemma 4.1, taking ϕ(.) to be an indicator

function, we have

B2(θ̂PT−R) = −δθH3(χ2
1(α),∆2

θ)

where Hd(.,∆
2
θ) is the CDF of non-central χ2 distribution with d degrees of freedom and

non-centrality parameter ∆2
θ. Also, for ADMSE of θ̂R and θ̂PT−R we get

M1(θ̂R) = lim
m→∞

E[(
√
m(θ̂R − θ))2] = V ar(θ̂R)

and

M2(θ̂PT−R) = lim
m→∞

E[(
√
m(θ̂PT−R − θ))2]

= V ar(θ̂R) + V ar(θ̂R) lim
m→∞

E

√m(θ̂R − θ0)√
V ar(θ̂R)

2

I

√m(θ̂R − θ0)√
V ar(θ̂R)

2

< χ2
1(α)


− 2 lim

m→∞
E[
√
m(θ̂R − θ){

√
m((θ̂R − θ0)I(Lm−θ < χ2

1(α)))}]

= V ar(θ̂R) + V ar(θ̂R) lim
m→∞

E

√m(θ̂R − θ0)√
V ar(θ̂R)

2

I

√m(θ̂R − θ0)√
V ar(θ̂R)

2

< χ2
1(α)


+ 2V ar(θ̂R) lim

m→∞

√m(θ − θ0)√
V ar(θ̂R)

E

√m(θ̂R − θ)√
V ar(θ̂R)

 I(Lm−θ < χ2
1(α))


− 2V ar(θ̂R) lim

m→∞
E

√m(θ̂R − θ)√
V ar(θ̂R)

2

I(Lm−θ < χ2
1(α))


From Lemma 4.1, we get

M2(θ̂PT−R) = V ar(θ̂R)[1−H3(χ2
1(α),∆2

θ) + ∆2
θ{2H3(χ2

1(α),∆2
θ)−H5(χ2

1(α),∆2
θ)}]

The ADB and ADMSE of the proposed estimator in (4.5) can be obtained following Saleh
(2006). Such PTEs may arise in situations where both the parameters are equally important
for the experimenter. Since the theory of multivariate analysis using records needs more
considerations, we leave the above idea for further research.

On similar lines we obtain from (4.14), the ADB of R̂(t) and R̂(t)PT−R as follows:

B1(R̂(t)R) = 0

B2(R̂(t)PT−R) = lim
m→∞

E[
√
m(R̂(t)PT−R −R(t))]

= lim
m→∞

E[
√
m(R̂(t)R − (R̂(t)R −R0)I(Lm−R(t) < χ2

1(α))−R(t))]

= −δR(t)H3(χ2
1(α),∆2

R(t))

Also, for ADMSE of R̂(t)R and R̂(t)PT−R we get

M1(R̂(t)R) = lim
m→∞

E[(
√
m(R̂(t)R −R(t)))2] = V ar(R̂(t)R)

and from Lemma (4.1)

M2(R̂(t)PT−R) = lim
m→∞

E[(
√
m(R̂(t)PT−R −R(t)))2]

=V ar(R̂(t)R)
[
1−H3(χ2

1(α),∆2
R(t)) + ∆2

R(t){2H3(χ2
1(α),∆2

R(t))

−H5(χ2
1(α),∆2

R(t))}
]
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Finally, the ADB of P̂R and P̂PT−R are obtained as follows:

B1(P̂R) = 0

B2(P̂PT−R) = lim
m→∞

E[
√
m(P̂PT−R − P )]

= lim
m→∞

E[
√
m(P̂R − (P̂R − P0)I(Lm−P < χ2

1(α))− P )]

= −δPH3(χ2
1(α),∆2

P )

Also, for ADMSE of P̂R and P̂PT−R we get

M1(P̂R) = lim
m→∞

E[(
√
m(P̂R − P ))2] = V ar(P̂R)

and from lemma (4.1)

M2(P̂PT−R) = lim
m→∞

E[(
√
m(P̂PT−R − P ))2]

= V ar(P̂R)[1−H3(χ2
1(α),∆2

P ) + ∆2
P {2H3(χ2

1(α),∆2
P )−H5(χ2

1(α),∆2
P )}]

4.3. Comparison

In this section we analyze the ADMSE of the proposed estimators to study their relative
performance. From (4.4) we see that if Lm−θ → 0 then θ̂PT−R → θ0 while θ̂PT−R → θ̂R as
Lm−θ →∞. The asymptotic relative efficiency (ARE) of θ̂PT−R over θ̂R is

ARE(θ̂PT−R|θ̂R) =
M1(θ̂R)

M2(θ̂PT−R)

=[1−H3(χ2
1(α),∆2

θ) + ∆2
θ{2H3(χ2

1(α),∆2
θ)

−H5(χ2
1(α),∆2

P )}]−1

Thus we can conclude that θ̂PT−R is a better estimator of θ than θ̂R whenever

0 ≤ ∆2
θ ≤

H3(χ2
1(α),∆2

θ)

2H3(χ2
1(α),∆2

θ)−H5(χ2
1(α),∆2

θ)

By the asymptotic normality of MLE for the parameter β, one may obtain similar results.

On similar lines, the ARE of R̂(t)PT−R over R̂(t)R is

ARE(R̂(t)PT−R|R̂(t)R) =[1−H3(χ2
1(α),∆2

R(t)) + ∆2
R(t){2H3(χ2

1(α),∆2
R(t))

−H5(χ2
1(α),∆2

R(t))}]
−1

and we can conclude that R̂(t)PT−R is a better estimator of R(t) than R̂(t)R whenever

0 ≤ ∆2
R(t) ≤

H3(χ2
1(α),∆2

R(t))

2H3(χ2
1(α),∆2

R(t))−H5(χ2
1(α),∆2

R(t))

Similarly, P̂PT−R is a better estimator of P than P̂R whenever

0 ≤ ∆2
P ≤

H3(χ2
1(α),∆2

P )

2H3(χ2
1(α),∆2

P )−H5(χ2
1(α),∆2

P )
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5. Conclusion

In this paper we proposed improved PTEs for estimation of the powers of the parameter
of interest and the reliability functions of the Moore and Bilikam (1978) family of lifetime
distribution. These estimators were derived for different cases when certain parameters are
known and unknown. In order to check the relative efficiency of these new estimators, the
exact bias and MSE expressions were derived. The conclusion of our extensive study is that
all the proposed PTEs are superior to their corresponding usual estimators such as UMVUE,
MLE and EBE whenever the true value of the parametric function is close to its prior guess
value. In this study we also constructed PTCI for the parameter of the model under the
assumption that shape parameter is known. We can easily conclude that the PTCI of the
parameter have a greater coverage probability and a smaller expected length compared to
their ETCI in the neighbourhood of the null hypothesis. Thus, we were able to establish
improved estimators and confidence intervals of the parameters whenever the experimenter
has some prior knowledge of the model parameters.

PTEs were also derived for a more general case when all the parameters were unknown.
Studying the ARE of these PTEs with their corresponding usual estimators, we were able to
establish the interval in which the proposed PTEs proved to be more efficient.

Interested researchers are recommended to develop asymptotic distributional bias and asymp-
totic distributional mean square error of PTE based on Wald statistics in the case when both
the parameters are unknown. Such estimation procedures are more advantageous in situations
where both the parameters are equally important for the experimenter. Since the theory of
multivariate analysis needs more considerations, we leave the above idea for future research.
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