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Abstract

Background: As global progress to reduce malaria transmission continues, it is increasingly important to track
changes in malaria incidence rather than prevalence. Risk estimates for Africa have largely underutilized available
health management information systems (HMIS) data to monitor trends. This study uses national HMIS data,
together with environmental and geographical data, to assess spatial-temporal patterns of malaria incidence at
facility catchment level in Uganda, over a recent 5-year period.

Methods: Data reported by 3446 health facilities in Uganda, between July 2015 and September 2019, was analysed.
To assess the geographic accessibility of the health facilities network, AccessMod was employed to determine a
three-hour cost-distance catchment around each facility. Using confirmed malaria cases and total catchment
population by facility, an ecological Bayesian conditional autoregressive spatial-temporal Poisson model was fitted
to generate monthly posterior incidence rate estimates, adjusted for caregiver education, rainfall, land surface
temperature, night-time light (an indicator of urbanicity), and vegetation index.

Results: An estimated 38.8 million (95% Credible Interval [CI]: 37.9–40.9) confirmed cases of malaria occurred over
the period, with a national mean monthly incidence rate of 20.4 (95% CI: 19.9–21.5) cases per 1000, ranging from
8.9 (95% CI: 8.7–9.4) to 36.6 (95% CI: 35.7–38.5) across the study period. Strong seasonality was observed, with
June–July experiencing highest peaks and February–March the lowest peaks. There was also considerable
geographic heterogeneity in incidence, with health facility catchment relative risk during peak transmission months
ranging from 0 to 50.5 (95% CI: 49.0–50.8) times higher than national average. Both districts and health facility
catchments showed significant positive spatial autocorrelation; health facility catchments had global Moran’s I = 0.3
(p < 0.001) and districts Moran’s I = 0.4 (p < 0.001). Notably, significant clusters of high-risk health facility catchments
were concentrated in Acholi, West Nile, Karamoja, and East Central – Busoga regions.
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Conclusion: Findings showed clear countrywide spatial-temporal patterns with clustering of malaria risk across
districts and health facility catchments within high risk regions, which can facilitate targeting of interventions to
those areas at highest risk. Moreover, despite high and perennial transmission, seasonality for malaria incidence
highlights the potential for optimal and timely implementation of targeted interventions.
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Background
The global burden of malaria has declined since 2000
primarily due to the scale-up of control interventions,
including long-lasting insecticidal nets (LLINs), indoor
residual spraying with insecticide (IRS), and use of
artemisinin-based combination therapy (ACT) [1–3].
Nevertheless, incidence rates in sub-Saharan Africa
remained high at an estimated 219 cases per 1000 in
2017–2018 [3]. The incidence estimates used to monitor
trends across sub-Saharan Africa are typically generated
using parasite prevalence in children 2–10 years fitted in
prevalence-to-incidence models [3]. Though informative,
the surveys included happen infrequently [4] and may be
limited in scale. Derived burden estimates, therefore,
cannot adequately support day-to-day monitoring for
decision making at national or sub-national levels [5].
National malaria control programmes typically depend

on routine health management information systems
(HMIS) data to guide programme decisions in control
and elimination efforts. With the advent and extended
access to web-based health information systems, such as
the District Health Information System - version 2
(DHIS-2), timely access to nation-wide HMIS data and
quality of these data have been shown to have greatly
improved in sub-Saharan Africa [6, 7]. As such, the
WHO has reiterated that timely and high-quality HMIS-
based burden estimates are achievable, and can be used
to inform on-going decision making [8]. Despite this,
HMIS remains underutilized, especially for risk mapping,
due to concerns over incompleteness and delayed
reporting [3, 9, 10]. Whilst HMIS has had, and still
needs, improvement, substantial discrepancies between
estimates of malaria burden from the current
prevalence-to-incidence model approach and HMIS-
based reports persist among at least 30 high burden
countries [3]. Thus, questions remain as to the reliability
of HMIS-based estimates and their corresponding repre-
sentation of fine-scale spatial distribution of risk to sup-
port evidence-based decision making by country-level
programme managers.
Small area space-time disease models fitted to rou-

tinely reported data have been widely implemented to
accurately identify contextually important risk factors
and unpack spatial-temporal patterns of infectious dis-
eases, including tuberculosis and malaria [11–15]. These

models have the capacity to explain the spatial autocor-
relation in disease data, and can provide robust means of
understanding ecological connectivity and relationships
[16] that are critical for control processes in high malaria
or other disease burden countries. Moreover, foci of high
malaria risk or burden are pertinent to the principle of
strategic information to drive impact under the global
high burden to high impact initiative, for effective target-
ing of interventions [17]. This study therefore, aims to
investigate a pragmatic novel small-area space-time ap-
proach using a nationwide network of health facilities in
estimating malaria incidence from HMIS data, in order
to identify areas of high malaria burden and risk across
Uganda and assess malaria seasonality.

Methods
Summary
In brief, the study applied a Bayesian space-time Poisson
regression model to assess the spatiotemporal variability
of incidence of confirmed malaria (as reported through
the national HMIS) at a fine spatial scale (health facility
catchment, 3446 catchments with contiguous neighbours
ranging from 0 to 11 (Fig. S16, Additional file 1)) by
month (July-2015 to September-2019, 51 months), in-
cluding primary caregiver education, rainfall, land sur-
face temperature, night-time light, vegetation index, and
spatial random effects to account for inherent correl-
ation. To do this, health facility catchment cartographies
and demographics were developed using multiple
sources as described below.

Study setting
Uganda was estimated to be the 3rd highest contributor
of Plasmodium falciparum malaria cases globally in
2018, with incidence rates of > 250 cases per 1000 popu-
lation at risk within a perennial transmission setting
[18]. Located between − 10 and 40 latitudes, it covers a
total area of ≈241,500 km2 that was divided into 15 non-
administrative regions (comprised of between one to 13
districts each) considered to be the malaria endemicity
zones under the Uganda Demographic and Health Sur-
vey (UDHS) Program by 2018 [19]. Nested within these
regions were 128 districts (as they were known in 2018),
representing the second administrative level of
government.
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Data and population
Health management information systems data
In Uganda, all health facilities are required to submit
monthly reports from their out-patients department
(OPD) registers on all reported diseases to the Depart-
ment of Health information of the Ministry of Health
(MoH). Health facilities are either private-for-profit
(PFP) or public comprised of the government owned
and private-not-for-profit (PNFP) facilities. HMIS was
introduced in 1997 as a paper-based reporting system
from each health facility to the Ministry of Health. In
2012, however, a web-based reporting version, the
DHIS-2, was implemented with full roll-out across the
country in 2013 [20]. In this system, health facility data
was either entered directly among high-level facilities or
sent as paper reports from lower-level facilities to the
districts for entry into the online system.
For this study, HMIS data consisted of monthly counts

of all reported and confirmed malaria cases from study
facilities, defined here as reporting facilities with avail-
able geo-coordinates. Reported malaria cases were
defined as all cases reported, regardless of confirmation
status, while confirmed malaria were laboratory
confirmed cases using either blood slide microscopy (B/
S) or rapid diagnostic test for malaria (RDT) – per
national guidelines. Whereas the recruited reporting fa-
cilities with available geo-coordinates represented 3453/
7029 (49.1%) of all facilities included within the DHIS-2,
2656/7029 (37.8%) neither reported nor were geolocated
and were therefore not recruited (Fig. S1,
Additional file 1). Whilst majority of reporting geolo-
cated facilities were publicly owned, the majority of non-
geolocated health facilities were private for profit (PFP)
commonly located in urban areas and these were
excluded. Notably, the two districts of Kampala and
Wakiso that together formerly comprised the capital
city, contributed 49% of these excluded facilities (Fig. S4,
Additional file 1). All reporting facilities that were not
geolocated or geolocated facilities without a matching
reporting health facility were excluded from this study.
A total of 3446 geo-located health facilities constituted
the study facilities for this work (Fig. 1).

Ancillary data
To define accessibility to health facilities, four categories
of single timepoint ancillary data were incorporated to
develop a cost-distance surface (Table 1). First, a digital
elevation model (DEM) provided a measure of penalty
on travel speed depending on direction of travel along
the elevation. Second, a land use and land cover raster
data set from 2016 was used to define diversity of land
cover across which, travel speed would be affected.
Third, wetlands, lakes, and rivers were identified as

barriers for travel. Lastly, road networks were incorpo-
rated and categorized by feasible travel speed class.
To generate predicted incidence rates, accounting for

spatially variable risk factors, ancillary data sets at multi-
time points were considered and utilized (Table 1). Not-
ably, whilst vegetation quantities (NDVI) were quantified
as the first 10 days (dekad) per month and rainfall as
monthly estimates, monthly night-light emissivity was
projected using 2012 and 2016 data sets, and the mean
number of years of attending school among childbearing
women published in [21] were included as a single
estimate.

Health facility catchments
Currently, the HMIS is used to report malaria burden
down to the district level, limiting the ability to observe
and act upon heterogeneity at finer spatial scales. In
part, this is because of limited information on health
facility catchments. Considering proximity as the most
important determinant of health facility access and
utility [22, 23], health facility catchments were defined
based on a cost-distance surface generated using a
WHO supported tool known as AccessMod [24] as
described in (Section D, Additional file 1). This tool has
been widely used in assessments for general and emer-
gency care accessibility, and the estimation of care
utilization for febrile illnesses, among others [25–27].
Using the cost-distance surface generated based on an-

isotropic (direction dependent) analysis, with direction
of travel considered as ‘towards the health facility’ in the
geographic accessibility model, three-hour travel catch-
ment buffers were generated for each health facility in-
cluded in the study, given the distribution of travel time
(Fig. S5, Additional file 1). To delineate each facility’s
catchment area, the intersection polygon between the
three-hour travel buffer and a Thiessen polygon around
each health facility, generated using ESRI ArcGIS 10.5
Thiessen polygon tool (ESRI 1995–2016; Redlands, CA,
USA), was derived. This intersection polygon constituted
the catchment area for each health facility covering
majority of the country.

Population data
Population estimates for the country were obtained
from gridded population surfaces generated by the
WorldPop project whose estimates are based on
national census estimates and other factors, accessible
from www.worldpop.org. Annual gridded population
surfaces were obtained for the duration between 2014
and 2019 and population estimates per year extracted
as summary statistics for each calendar year of the
study duration 2015 to 2019. These estimates were
extracted using ESRI ArcGIS 10.5 Zonal Statistics tool
at the level of the defined catchment area for each
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Fig. 1 Map of Uganda showing locations of study health facilities within their defined catchment areas. The orange points are the relative geo-
locations of the study health facilities recruited from across the country, each situated in a grey background representative of the exclusive
catchment area for each facility. The catchment areas were constituted using a three-hour cost distance surface towards each health facility.
These are overlaid with the regional boundaries (dark green) defining the 15 endemicity regions across the country. This map was created using
open source QGIS 3.12.2 (QGIS.org, 2020. QGIS Geographic Information System. QGIS Association. http://www.qgis.org)
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study health facility, regardless of administrative
boundaries, given that care seeking is not restricted
by these boundaries in Uganda.

Spatial, temporal, and spatial-temporal analyses
The primary outcome in this analysis was monthly
malaria incidence rate, derived from HMIS data as the
number of new confirmed cases per facility catchment
divided by the total population of the catchment per
month (a proxy for person-time).
Inherent spatial correlation of malaria infections is

unexplained within classical regression approaches
though remains in the residuals and induces spatial
autocorrelation in the response even after known avail-
able risk factors are accounted for [28]. Using condi-
tional autoregressive models, however, explains this
autocorrelation in the outcome using random effects
within a Bayesian framework that uses prior distribution,
maximum likelihood, and neighbourhood predicts a
more reliable outcome [29, 30]. As such, a Bayesian
space-time model employing BYM (Besag, York and
Mollie) conditional autoregressive random effects and
using integrated nested Laplace approximation (INLA)
(www.r-inla.org), was fitted to the monthly crude con-
firmed case rates in R [31]. The model included struc-
tured and unstructured spatial effects, as well as
structured and unstructured temporal effects, to explain
measured (structured) and unmeasured (unstructured)
risk factor impacts on the posterior estimates of

incidence. The unobserved spatial correlation in the
form of noise, attributable to independent health facility
catchments, was accounted for through random effects.
This model can be summarized as =μ + βxi + bi + ci,
with y denoting the posterior estimates of incidence
rates, μ the crude incidence rates (correlated with the
posterior estimates (Fig. S6 and Fig. S7, Additional file 1)),
xi the covariates estimating the risk factors, bi and ci the
overall spatial and temporal random effects respectively,
that are also determined conditional on random effects
of neighbouring catchments [32]. Also, to avoid overfit-
ting, a time restriction using a random walk of the first
order was included.
Candidate covariates had been used in other studies,

given their association with malaria transmission, includ-
ing rainfall, temperature, vegetation index, night-time
lights (a proxy for urbanicity), and caregiver education
[13, 33–35]. For inclusion in the final model, covariates
quantities were evaluated for impact on a linear regres-
sion model of crude incidence rates, considering lower
Akaike’s information criteria values (Table S2,
Additional file 1). The final covariate list included catch-
ments estimates of mean years of education for women
of childbearing age, mean of current and 3months’ lags
for both rainfall and land surface temperature estimates,
mean monthly night-time light emissivity, and mean of
current and 1month’s lag of vegetation amounts. All
these were significantly associated with crude incidence
estimates (Table S3, Additional file 1). Both β and b

Table 1 Description of ancillary data sets and the sources of these covariates

Data set Data
type

Data source

Single time point data sets

National geo-located health facilities Vector https://figshare.com/articles/Public_health_facilities_in_sub_Saharan_Africa/7725374
Accessed September-2019.

Digital elevation model Raster https://www.rcmrd.org/ Accessed October-2019.

Land use and land cover Raster http://geoportal.rcmrd.org/layers/servir%3Auganda_sentinel2_lulc2016 Accessed
October-2019.

National wetlands Vector http://maps.nema.go.ug/layers/geonode%3Augandawetlands2008 Accessed
September-2019.

Lakes and rivers Vector https://geodata.lib.berkeley.edu/catalog/stanford-fh022bz4757 Accessed
September-2019.

Road network Vector http://cod.humanitarianresponse.info/sites/default/files/uganda_roads_feb2009.zip
Accessed September-2019 and from KEMRI.

Multi-time point data sets

Land surface temperature Raster https://earlywarning.usgs.gov/fews/ewx/index.html?region=af Accessed
October-2019.

Normalized difference vegetation
index (NDVI)

Raster

Rainfall Raster https://www.tamsat.org.uk/data/archive Accessed September-2019.

Night-light emissivity Raster https://earthobservatory.nasa.gov/features/NightLights Accessed November-2019.

Mean years of education for women of
childbearing age over 2000–2015

Raster http://ghdx.healthdata.org/record/africa-educational-attainment-geospatial-estimates-2000-2015
Accessed November-2019.
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were assigned monthly informative Gaussian distribu-
tions over the full 51 months length of the study dur-
ation. The full model was validated by withholding 20%
of data points at random and comparing the model
predicted values with the actual observed values using
scatter plots and spearman’s correlation coefficients
(Section F, Additional file 1).
The relative risk of malaria at district and health facil-

ity catchment levels was derived as the respective pre-
dicted incidence rate divided by the overall predicted
mean incidence rate at the national level per calendar
month of the study duration. All maps of the posterior
estimates of incidence rates and relative risk of malaria
were generated using R (R Foundation for Statistical
Computing, Vienna, Austria).
Spatial clustering in the modelled outcome was further

investigated using the global Moran’s Index statistic
within the spatial dependence (spdep) package of R. This
was coupled with visual examination of Moran’s scatter
plots of incidence and risk estimates, at both district and
health facility catchment resolutions. To identify cluster
locations, the local Moran’s Index using ESRI ArcGIS
10.5 Cluster and Outlier Analysis (Anselin Local Moran’s
I) tool was used, set for first order queen contiguity,
running 999 permutations and clusters evaluated at 0.01
level of significance.
Also, study model estimates of confirmed malaria cases

were compared with estimates from both the WHO’s re-
cent reports [3, 18, 36] and Malaria Atlas Project (MAP)
estimates for the same period from https://malariaatlas.
org/trends/country/UGA (Section I, Additional file 1) and
relationship between MIS regional prevalence estimates
[19] and estimated relative risk examined using visual in-
spection of scatter-plots (Fig. S12, Additional file 1).

Results
Study population
The total population identified within the health facility
catchments, considered at risk of malaria infection and
likely to seek care from the associated geo-located pub-
licly reporting health facility, were considered the study
population of interest. The total population was esti-
mated at 34.9 and 39.6 million in 2015 and 2019, re-
spectively, with ≈2.8% of the population located outside
of the defined catchments (Section C, Additional file 1).

HMIS data summary
Between 62.2 and 88.7% of nationally reported cases of
malaria annually were diagnostically confirmed cases in
2015 and 2019, respectively (Fig. S2, Additional file 1).
Whilst these proportions increased across the 15 regions
of the country over time, Kampala recorded marginal
improvements. Moreover, the majority of confirmed
malaria cases in Kampala (ranging from 61.8 to 81.0% in

2015 and 2018, respectively) were unaccounted for due
to exclusion of facilities, leaving only up to 38% of the
burden in this metropolitan district estimated (Table S1,
Additional file 1). Excluding Kampala, however, results
showed that estimates accounted for between 67 to 96%
of the routine HMIS-based burden of malaria among the
remaining 14 regions, over the study duration. More-
over, in these regions, average annual proportion of re-
ported confirmed cases excluded from the study ranged
from 5.3 to 19.8% in Karamoja and Tooro, respectively.
Diagnostic testing of suspected malaria cases across the
country was conducted either by microscopy or rapid
diagnostic tests and reported as a single total.

Mean incidence rates, seasonality, and risk of malaria
The highest burden regions and districts also hosted
health facilities with the highest number of confirmed
malaria cases reported. For instance, Bala health centre
(HC) III in Kole district of the Lango region reported
3317 cases during November 2015, while Bira HCII in
Adjumani district of the West Nile region reported 6697
cases during June 2016. Moreover, Barakala HCIII (high-
est for two consecutive years) also from West Nile in
Yumbe district, reported 9654 cases during October
2017 and 9246 cases during July 2018. Lastly, Matany
hospital in Napak district of Karamoja region reported
8089 confirmed cases during September 2019.
This study showed spatial and temporal variation in

incidence rates between regions and districts in any
given region, as well as between health facility catch-
ments within districts, both during the low (Fig. S8,
Additional file 1) and high burden seasons (Fig. 2).

National incidence rates
The model estimated 38.8 (95% CI: 37.9–40.9) million
confirmed malaria cases over the study period of July,
2015 to September, 2019, highest in 2016 with 10.3 (95%
CI: 9.9–10.7) million cases and lowest in 2018 with 6.5
(95% CI: 6.4–6.9) million cases among complete calen-
dar years (Table S4, Additional file 1). Annual incidence
rates reduced from 281.7 (95% CI: 274.9–296.7) in 2016
to 170.0 (95% CI: 165.9–178.8) cases per 1000 in 2018.
Monthly incidence rates showed a general declining

trend in the burden of malaria from 2015 to 2019, stron-
gest through 2018 followed by an increase in 2019
(Fig. 3). In all the years of the study, the incidence rates
consistently peaked in June and July, reaching a max-
imum of 36.6 (95% CI: 35.7–38.5) cases per 1000 in June
2017 (Table S5, Additional file 1), at regional (Fig. 3)
and district (Fig. S11, Additional file 1) spatial scales.
Conversely, low risk periods were less consistent, al-
though often lowest in February and March, reaching a
minimum of 8.9 (95% CI: 8.7–9.4) in February 2018.
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Spatial distribution of incidence rates across the country
Overall, mean monthly regional incidence rates were
highest in Acholi region (Northern Uganda) at 52.3 (95%
CI: 50.3–59.6) cases per 1000 per month and lowest in
Kigezi region (South Western Uganda) at 7.9 (95% CI:
7.6–8.2) cases per 1000 per month (besides Kampala).
Consistent with national trend assessments, monthly

trends in regional incidence rates showed the highest
peaks in June–July, highest in June, 2017 (Range: 13.4–
95.6 cases per 1000) and July, 2019 (Range: 13.5–95.5
cases per 1000 in Kigezi and Acholi, respectively) and
the lowest troughs in February–March of each calendar
year (Fig. 3). These trends showed that Acholi, West
Nile, Karamoja, East Central – Busoga, and Teso persist-
ently recorded the highest monthly incidence rates
across the entire study duration. Moreover, the greatest
variability in incidence rates was also observed among
these five highest burden regions of with respective esti-
mated mean monthly incidence rates of 52.3 (SD: 17.8),

43.3 (13.9), 30.3 (10.4), 26.3 (8.6), and 23.5 (8.0) cases
per 1000 per month.
Within these regions, high burden and risk districts

were also identified, both during the highest and lowest
burden months. During June 2017 district monthly inci-
dence reached the maximum in Lamwo of Acholi, Moyo
of West Nile, Kaabong of Karamoja, Namayingo of East
Central - Busoga, and Katakwi of Teso regions, at 167.6
(95% CI: 165.6–169.8), 192.5 (95% CI: 189.9–195.1), 81.1
(95% CI: 79.6–82.5), 73.1 (95% CI: 71.9–75.0), 72.0 (95%
CI: 70.9–73.1), cases per 1000 per month, respectively
(Table S6, Additional file 1).
Monthly incidence rate trends among districts showed

that Moyo, Lamwo, Adjumani, Pader, Nwoya, and
Maracha persistently recorded the highest monthly inci-
dence rates across the study duration (Fig. 3). Moreover,
higher incidence rates were also associated with higher
variability in monthly incidence rates with the mean
monthly estimate in Moyo at 115.8 (SD: 36.5) and lower

Fig. 2 Spatial distribution of malaria incidence rates during high burden months of study duration. Columns A, B, and C represent regions,
districts, and heath facility catchments respectively, while the rows correspond to the respective highest burden month of each year. The lighter
the shade of colour, the lower the incidence rates within a region, district, or catchment and the darker the colour, the higher the incidence rates
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rates less variability with Rubanda at 1.6 (SD: 0.5) cases
per 1000 (Figs. S10 and S11, Additional file 1).
Within individual districts, a wide distribution of inci-

dence rates was estimated among health facility catch-
ments both during the lowest and highest burden months.
From the 3446 catchment areas identified across the
country, mean monthly incidence rate reached a max-
imum of 569.8 (95% CI: 555.2–584.3) cases per 1000 per
month in Namayingo district of East Central – Busoga
region and minimum of 0.13 (95% CI: 0.10–0.17) cases
per 1000 per month in Rukungiri district of Kigezi region,
excluding Kampala. Also, higher incidence rates within
catchments were associated with higher viability in
monthly incidence rates and lower incidence rates with
less variability (Fig. S9, Additional file 1). Among health
facility catchments, variability in incidence rates reached a
maximum standard deviation (SD) = 142.4 cases per 1000
in highest incidence rate catchment located in Namayingo
and a minimum SD= 0.1 among the lowest burden catch-
ments in Arua and Kasese districts.

Spatial distribution of relative risk across the country
Consistent with incidence rates, relative risk of malaria
was highest among the highest burden regions of Acholi,
West Nile, Karamoja, East Central – Busoga, and Teso,
both during the lowest (Fig. S13, Additional file 1) and
highest (Fig. S14, Additional file 1) burden months,
maintaining their rank of risk at both times (Table S7,
Additional file 1). During the highest burden month of
June 2017, the relative risk of malaria among these
regions ranged from 1.18 (95% CI: 1.17–1.19) to 2.6
(95% CI: 2.6–2.8)-times higher than national average in
Teso and Acholi, respectively. Moreover, while mean
relative risk among districts within these regions was
higher during the highest burden month at 1.8 (95% Con-
fidence Interval:1.5–2.1) than the lowest at 1.7 (95% Conf.
I:1.4–2.0), the difference was not significant (p = 0.676) by
a two-sample t-test.
Spatial and temporal variation in relative risk observed

between regions, and districts within regions (largely
informative at programmatic or NMCP levels), was also

Fig. 3 National and regional trends in mean monthly malaria incidence rates July 2015 – September 2019. Trend plots of incidence rates
(confirmed malaria cases / 1000) over study time (x-axis) – monthly. The top plot shows the national mean incidence rates per month (blue line)
with a linear trend-line (dashed red). The bottom plot shows the trends for the 15 endemicity regions that comprise the country. This Figure was
generated using STATA 15 (Stata Corporation, College Station, TX)
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present between catchments within districts (informative
for district health managers). Relative risk remained con-
sistent among the 15 regions, between low and high bur-
den seasons, but showed additional variability among
districts and health facility catchments across the two
seasons (Fig. 4).
Results showed that catchment risk ranged from 0 to

24.9 (95% CI: 24.4–24.9) times higher than national
average during the highest burden month and from 0
to 50.5 (95% CI: 49.0–50.8) during the lowest burden
month. Moreover, a non-linear association of catch-
ment risk was observed between the lowest and highest
burden months further confirming this rising risk
during lower burden months (Fig. S15, Additional file 1).
However, the highest risk catchments at the two time
points were neither identical nor located in the same
district or region.

Spatial clustering of risk
Assessment for spatial autocorrelation of incidence
and/or risk showed consistent levels of moderate glo-
bal autocorrelation between both districts (Moran’s I
range by month: 0.4 to 0.6, p < 0.001) and health
facility catchments (0.3 to 0.5, p < 0.001). Both during
the highest (June-2017) and lowest (February-2018)
burden months, global autocorrelation between dis-
tricts was very similar (Moran’s I = 0.5, p < 0.001)
(Figs. 17 and 18, Additional file 1) but slight difference
between health facility catchments (Moran’s I = 0.4
and 0.3, p < 0.001, respectively) (Figs. S19 and S20,
Additional file 1).
Analysis of local spatial autocorrelation at two levels of

significance (p < =0.05 and p < =0.01) identified substan-
tial significant high-high clustering in Acholi and West
Nile regions in the North, as well as East Central –

Fig. 4 Spatial distribution of the relative risk of malaria during lowest and highest burden months of the study duration. The left column shows,
from top to bottom, relative risk by region, district, and health facility catchment for the lowest risk month of February 2018 while the right
column shows a similar arrangement for the highest risk month of June 2017. For each row, the same levels (region, district, or health facility
catchment) are side-by-side. Green areas are locations with relative risk of malaria lower than the national average where the darker the colour
the lower levels of risk below national average. Red coloured areas are locations with relative risk of malaria higher than national average, where
the darker the colour the high the risk
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Fig. 5 Spatially significant clusters of malaria risk for the highest and lowest burden months between 2015 and 2019, across Uganda. The map at
the top represents the distribution of significant clusters of malaria risk across the 15 regions of the country during the highest risk month of
June 2017. The map at the bottom represents a similar distribution but for the lowest risk month of February 2018. High-High Clusters: The black
and dark red areas represent the clusters of high-risk health facility catchments that are spatially located next to other high-risk catchments, with
significant positive spatial autocorrelation at <=0.01 and < =0.05 levels of significance, respectively. This spatial autocorrelation was observed both
during the lowest (Fig. S17, Additional file 1) and highest (Fig. S18, Additional file 1) burden seasons. High-Low Outliers: These orange areas
represent high-risk clusters that are significantly disparate from their surrounding low-risk catchments. These outliers have significant negative
spatial autocorrelation. Low-High Outliers: These blue areas represent the low-risk clusters that are significantly disparate from their surrounding
high-risk catchments. These outliers also have significant negative spatial autocorrelation. Low-Low Clusters: These green areas represent the
clusters of low-risk health facility catchments that are spatially located next to other low-risk catchments, with significant positive spatial
autocorrelation. Not significant: The light grey areas represent the health facility catchments that did not show any significant spatial
autocorrelation or clustering of either high, low or outlier distribution of risk of malaria. They are areas of highly random spatial distribution of risk
of malaria
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Busoga region in the South East of the country, both
during the highest and lowest burden seasons (Fig. 5).
Similarly, large low-low clustering was identified in the
Southern regions of the country. Moreover, outlier
catchments typically had significantly lower risk than
their neighbours in the north, and higher risk than their
neighbours in the rest of the country. Significant
monthly high-high clusters were comprised of between
191 health facility catchments during February 2018 and
236 during June 2017 and 2019 (Fig. S21,
Additional file 1).

Discussion
Results from this innovative, large-scale, longitudinal
observational study suggest that with improved HMIS
reporting, credible high-risk areas at both high and low
spatial scales were identifiable. The study revealed a dis-
tinct monthly spatial distribution of malaria incidence
across the 15 regions of Uganda, in a concurrent multi-
resolution assessment, including coarse (regional) down
to fine (health facility catchment) spatial resolutions.
Moreover, whilst Uganda is considered a perennial
transmission setting, this study revealed a nation-wide
seasonal pattern in incidence rates with two peaks
(major and minor), the highest during June–July and
the minor peak during October. This approach may
facilitate efficient implementation and optimization of
targeted control activities that can leverage existing
health facility systems [37]. It may also improve man-
agers’ understanding of the heterogeneity and/or clus-
tering of malaria burden within districts that
currently form the lowest level of malaria burden as-
sessments, though acknowledged as difficult to use or
unusable for control planning [5].
This study showed that the risk of malaria by regional

rank, among the highest and lowest risk regions, had
minimal temporal variability. These regions maintained
their status both during low and high burden seasons.
These findings were consistent with extant UDHS re-
gional stratification of Uganda where Acholi, West Nile,
and Karamoja were among the highest transmission re-
gions, and Ankole and Kigezi among the lowest. This
stratification supports tailored approaches for long-term
malaria control efforts aiming at elimination, as advo-
cated in the global ‘high burden to high impact’ initiative
[17] that was recently adopted as central to onward na-
tional malaria control strategies for Uganda [38]. Whilst
targeted interventions, including IRS [39] and larval
source management [40] have been used, further
emphasis is necessary [17, 41] with implementation tak-
ing greater account of local context. Importantly, how-
ever, temporal variability of risk among many regions
highlights the continued vital role of routine surveillance
for planning and timely action towards control.

Moreover, higher risk among high burden locations dur-
ing the lowest than highest burden seasons suggests per-
sistent high-risk in these locations, the identification of
which could facilitate high precision targeted actions for
effective control.
This study also identified several distinct clusters of

high-risk health facility catchments, which were consist-
ent over time though largest during the highest burden
seasons and smallest at the lowest. The largest high-risk
clusters were concentrated in the West Nile and Acholi
regions in Northern Uganda, although smaller clusters
were noted in the recognised high transmission regions
of Karamoja and East-Central Busoga [19]. Conversely,
the most notable low-risk health facility catchment clus-
ters could be grouped into three categories: highland
regions (e.g. Kigezi, Ankole and Bugisu) [42, 43]; regions
with recent intense targeted multi-year IRS activity asso-
ciated with high impacts on transmission (e.g. Bukedi,
Teso, and Lango) [4, 19, 44, 45]; and, large urban muni-
cipalities (e.g. Southern Buganda) with urbanization
associated with reduced transmission [46, 47]. These
findings provide further evidence of identifiable candi-
date locations for targeted control interventions among
the high-risk clusters and an approach for assessment of
possible impacts of previous interventions.
Trends in annual confirmed malaria cases in

Uganda declined between 2016 and 2018, despite
increased reporting and proportions of confirmed
cases over time, consistent with MIS findings between
2014 and 2018 [4, 19], before a sharp increase in
2019. Moreover, the relationship between regional
relative risk and prevalence of malaria (among
children under 5 years of age from the 2018 MIS)
showed that small changes in parasite prevalence were
associated with sharp increases in relative risk among
regions at lower than national average risk. However,
large changes in parasite prevalence were associated
with small changes in relative risk among regions at
higher than national average risk. This further
confirms the variability of risk among many regions
while pointing to strong effects of age on malaria [48].
Besides the estimated confirmed cases being lower than
estimates reported by WHO and MAP per year (pos-
sibly due to study design of excluding some facilities),
trends were also dissimilar with WHO and MAP cases
increasing between 2016 and 2017 [18], unlike in this
present study. Nevertheless, such dissimilarities have
been documented [3] and are likely explained by the
use in global assessment for sub-Saharan Africa of
prevalence surveys that to date, are predominantly con-
ducted among children [49]. With estimates for the
whole population generated from these surveys, despite
shifts in malaria burden from children to the older
population following effective control interventions
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[48], the dynamic effects on burden may not be
adequately accounted for in the prevalence-to-
incidence models used.
The observed seasonality with June–July peaks and

February–March troughs was consistent with reports
from south western Uganda, where epidemics followed
a regular July pattern except during El-nino in 1998
[5, 50] and in Gulu district (Northern Uganda) where
between 2006 and 2015 biannual peaks of malaria
were reported during June–July and October–Novem-
ber [51]. One study however, reported two peaks of
malaria during April–May and September–November
in Northern Uganda following the rain seasons,
though unsubstantiated [52]. Findings from this
present study may inform optimal timing for control
activities, including IRS, mass drug administration
(MDA), or community mobilization campaigns
towards increased malaria risk awareness for control
vigilance.
PFP facilities, a small majority of which do not

report to the HMIS and were therefore excluded from
this study, limit the utility of focal analyses such as
presented here. This highlights an important missed
surveillance opportunity. The limited capacity to
detect outbreaks in settings largely served by PFP
may exacerbate the severity of malaria outcomes
among their most vulnerable residents, coupled with
increased case management costs [53]. There are sev-
eral possible initiatives to increase reporting in these
facilities where a small majority seek care for febrile
illnesses [4, 19, 54]. First, provision of guarantees on
exclusive use of data for public health not revenue
monitoring, may improve confidence and alleviate any
fears of punitive intensions in their reporting. Second,
ensured availability of standardized reporting tools,
may offset running costs of stationery in the private
facilities while it enables improved documentation of
health records. Third, training of PFP managers and
owners on the benefits of surveillance and/or report-
ing may increase their involvement. Lastly, implemen-
tation of regular feedback mechanisms may provide a
means of continued evaluation that fosters risk and
other assessments that are mutually beneficial.
Given that policymakers’ remediating responses as well as

policy formulation processes are informed by pooled infor-
mation from diverse sources, including but not limited to
research, political, and funding provisions, it is unrealistic to
expect these technocrats to be expert generators of the
evidence from these multi-disciplinary sources. Whilst there
are no simple solutions to the implementation of analyses
such as in this present study, interpretation of contemporary
outputs is nowhere nearly as demanding, highlighting the
criticality of partnerships between policy and research
dimensions for malaria and other disease control efforts.

This study had limitations. First, the disproportionately
low proportion of geolocated reporting private facilities
impacted on the estimates of malaria burden, especially
among highly urban locations, including Kampala and
Wakiso districts and others across the country. Results
for the Kampala region (and Wakiso district) in this
study, represent only a small proportion of the burden
and were excluded from results discussions. Moreover,
exclusion of non-geolocated reporting public health
facilities (such as in Kitgum district), impacted on the
estimates of incidence due to unidentified catchments in
those places. Nevertheless, there was wide coverage of
health facilities across the country with a small propor-
tion of districts under-represented, minimizing effects of
this constraint. Second, the study did not account for
level of health facility and other population level factors
that impact on differential health seeking behaviour,
which may have inflated incidence rates and risk, where
a given level or type of facility is preferred. However, in
this analysis it was assumed that for uncomplicated mal-
aria, people attend the closest health facility and some
important factors such as urbanicity and primary care
giver education were accounted for, though further
research may be required to better understand impacts
of level of health facility on care seeking for uncompli-
cated malaria. Third, the study did not account for stock
levels of antimalarials or test kits, variations of which
may impact on the number of cases recorded between
seasons of full stock versus stockouts. A better under-
standing of the linkage between logistics management
and HMIS may be required, given known associations
between stockouts and increased under-five mortality or
compromised treatment practices like dosage rationing
and use of less effective remedies [55]. Fourth, given that
health facility recruitment into the study was not dy-
namic, any increase in number of facilities reporting
could have had impacts on study findings. Moreover, the
systematic exclusion of non-geolocated facilities, may
have biased study results towards more long-term estab-
lished than newer health facilities, but duration of facility
existence was beyond the scope of this study.

Conclusion
Assessment of malaria burden and/or risk in high burden
countries using routine surveillance data is highly achiev-
able. Using national routine data, this study provided
needed evidence of vital concurrent assessment of malaria
risk and burden among regions, districts, and health facil-
ity catchments with identifiable significant spatial cluster-
ing of risk. Targeting hotspots as an intervention
approach has been shown to yield modest and transient
impacts on malaria prevalence [56]. However, locations
with persistently high-risk of malaria that are potential
candidates for health facility-based interventions such as
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community outreaches, provision of LLINs, mass drug
administration and enhanced case management were
identified, an approach that may be beneficial beyond iso-
lated health facility catchments. Furthermore, whilst
extensive geo-spatial analytical output with scales either
too large (region or district) or too fine (pixel or neigh-
bourhood) may be challenging for control programmes to
use [57], this study provides evidence of HMIS-based
assessments at practical scales for districts to implement
and assess intervention impacts. Moreover, in perennial
settings, the identifiable strong seasonal patterns as seen
with June–July highest peaks and February–March lowest
troughs in Uganda, provide vital information for interven-
tion timing. Taken together, these results show the poten-
tial in routine HMIS surveillance data for pragmatic
timely identification of high-risk areas and with further
research, the assessments for optimal implementation of
targeted control activities and their impacts.
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