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Abstract

Analysis of genetic polymorphism is a powerful tool for epidemiological surveillance and

research. Powerful inference from pathogen genetic variation, however, is often

restrained by limited access to representative target DNA, especially in the study of obli-

gate parasitic species for which ex vivo culture is resource-intensive or bias-prone. Mod-

ern sequence capture methods enable pathogen genetic variation to be analyzed directly

from host/vector material but are often too complex and expensive for resource-poor set-

tings where infectious diseases prevail. This study proposes a simple, cost-effective

‘genome-wide locus sequence typing’ (GLST) tool based on massive parallel amplifica-

tion of information hotspots throughout the target pathogen genome. The multiplexed

polymerase chain reaction amplifies hundreds of different, user-defined genetic targets in

a single reaction tube, and subsequent agarose gel-based clean-up and barcoding com-

pletes library preparation at under 4 USD per sample. Our study generates a flexible

GLST primer panel design workflow for Trypanosoma cruzi, the parasitic agent of Chagas

disease. We successfully apply our 203-target GLST panel to direct, culture-free metage-

nomic extracts from triatomine vectors containing a minimum of 3.69 pg/μl T. cruzi DNA

and further elaborate on method performance by sequencing GLST libraries from T. cruzi

reference clones representing discrete typing units (DTUs) TcI, TcIII, TcIV, TcV and

TcVI. The 780 SNP sites we identify in the sample set repeatably distinguish parasites

infecting sympatric vectors and detect correlations between genetic and geographic dis-

tances at regional (< 150 km) as well as continental scales. The markers also clearly sep-

arate TcI, TcIII, TcIV and TcV + TcVI and appear to distinguish multiclonal infections
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within TcI. We discuss the advantages, limitations and prospects of our method across a

spectrum of epidemiological research.

Author summary

This study details a rapid and cost-effective amplicon sequencing-based approach to mea-

suring genome-wide DNA polymorphism in pathogenic microorganisms. Library prepa-

ration is completed in two simple polymerase chain reactions and thus avoids significant

costs and biases of cell purification and culturing procedures typically involved prior to

the sequencing of obligate parasite genomes. An emphasis on reaction multiplexability

during primer panel design enables efficient genome-wide target amplification directly

from infection source DNA. We provide proof-of-principle by genotyping hundreds of

single-nucleotide polymorphisms in the Chagas disease agent Trypanosoma cruzi using

metagenomic DNA extracts from infected triatomine (kissing bug) intestinal material col-

lected in Colombia, Venezuela and Ecuador. We also evaluate method performance using

reference clone DNA. Results distinguish T. cruzi population structure and diversity pat-

terns from within-city to cross-country scales and recapitulate ancestral relationships

among the sub-lineages TcI, TcIII, TcIV, TcV and TcVI. Unbalanced alternate allele fre-

quency distributions repeatedly measured in a subset of samples also suggest potential to

distinguish co-infection by multiple TcI strains. We discuss further applications as well as

possibilities for method refinement.

Introduction

Genome-wide single nucleotide polymorphism (SNP) analysis is a powerful and increasingly

common approach in the study and surveillance of infectious disease. Understanding patterns

of SNP diversity within pathogen genomes and across pathogen populations can resolve fun-

damental biological questions (e.g., reproductive mechanisms in T. cruzi [1]), reconstruct past

[2] and present transmission networks (e.g., Staphylococcus infections within hospitals [3]) or

identify the genetic bases of virulence [4,5] and resistance to drugs (see examples from Plasmo-
dium spp. [6,7]). A number of obstacles, however, complicate access to representative,

genome-wide SNP information using modern sequencing tools. Pathogens are often sampled

in low quantities and together with large amounts of host/vector tissue, microbiota or environ-

mental DNA. Sequencing is rarely viable directly from the infection source and studies have

often found it necessary to isolate and culture the target organism to higher densities before

extracting DNA. These additional steps, however, are resource-intensive and bias-prone. Path-

ogen isolation is less often attempted on asymptomatic infections and is less likely to succeed

when levels of parasitaemia in a sample are low. Genomic sequencing data on the protozoan

parasite Leishmania infantum, for example, has for such reasons come to exhibit considerable

selection bias towards aggressive strains isolated by invasive sampling from canine hosts. Vec-

tor-isolated genomes have yet to be reported from the Americas and only a single study claims

to have sequenced L. infantum from asymptomatic hosts [8]. Selection bias also often occurs

due to competition among isolated strains. Studies on the related, Chagas disease parasite Try-
panosoma cruzi, for example, are time and again confounded by growth and survival rate dif-

ferences among genotypes in culture [9–11], with gradual reductions in genetic diversity often

observed over time [12]. Karyotypic changes also arise during T. cruzi micromanipulation and
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axenic growth [13,14]. These effects in culture have confounded efforts to associate genetic

variability and sub-lineage taxonomy to important clinical and eco-epidemiological traits (see

further below) [15].

A variety of approaches therefore aim to obtain genome-wide SNP information without

first performing pathogen isolation and culturing steps. Some studies separate target sequences

from total DNA or RNA by exploiting base modifications or transcriptional properties specific

to the pathogen [16], vector [17] or host [18,19]. Others describe the use of biotinylated

hybridization probes [20–23] or selective whole-genome amplification, for example, based on

the strand displacement function of phi29 DNA polymerase [24]. Such techniques are costly

and often excessive when a study’s primary objective is to evaluate genetic distances and diver-

sity among samples rather than to reconstruct complete haplotypes or investigate structural

genetic traits. Epidemiological tracking, (sub-) lineage typing and source attribution studies,

for example, often benefit little from measuring large invariant sequence areas or defining the

complete architecture of sample genomes. It is nevertheless quite common to see such studies

undertake expensive WGS procedures only for final analyses to take place ‘post-VCF’ [25], i.e.,

using a list of diagnostic markers compiled from a small fraction of polymorphic reads.

Highly multiplexed polymerase chain reaction (PCR) amplicon sequencing offers an effi-

cient alternative when obtaining genome-wide SNP information is the primary goal. First mar-

keted under the name Ion AmpliSeq by Thermo Fisher Scientific [26], the method consists in

the simultaneous amplification of dozens to hundreds of DNA targets known or hypothesized

to contain sequence polymorphism in the sample set. Each sample’s resultant amplicon pool is

then prepared for sequencing by index/adaptor ligation or in a subsequent ‘barcoding’ PCR.

Panel construction is highly flexible, requiring only that the primers exhibit similar melting/

annealing temperatures and a low propensity to cross-react. As such, target selection can be

tailored to specific research goals, for example, to profile resistance markers [27] or to geno-

type neutral SNP variation for landscape genetic techniques [28]. The potential to isolate and

genotype pathogen DNA at high-resolution directly from uncultured sample types by multi-

plexed amplicon sequencing has however received little attention thus far. Simultaneous PCR-

based detection of multiple pathogen species or genotypes is certainly common [29], but mul-

tiplexable primer panels are rarely designed for subsequent sequencing and polymorphism

analysis. The Ion AmpliSeq brand currently offers pre-designed panels for studies on ebola

[30] and tuberculosis [31] but the use of custom panels for other pathogen species (e.g., Bifido-
bacterium [32] or human papilloma virus [33]) remains surprisingly rare in the literature.

The present work describes the design and implementation of a large multiplexable primer

panel for T. cruzi [34], a zoonotic parasite endemic to many tropical and subtropical areas of

the American continent. T. cruzi is transmitted through the contact of abraded skin or mucosa

with the feces of blood-sucking reduviid insects called triatomines. Congenital transmission

and infection via contaminated food, blood or organ donations can also occur. While human

infection often remains asymptomatic, 30–40% of cases involve life-threatening cardiovascular

and/or gastrointestinal syndromes. This extensive clinical variability is loosely associated to

genetic differences within and among the parasite’s six major sub-lineages, known as ‘discrete

typing units’ (DTUs) TcI–TcVI [15]. TcI is the most widespread and genetically diverse DTU

[35]. Previously considered less pathogenic than other DTUs during chronic stages of infec-

tion, it has become increasingly associated with severe chronic cardiomyopathy in areas North

of the Amazon [15]. TcII, TcV and TcVI appear to predominate in central and southern South

America [35], where infections causing megacolon and megaesophagus are more frequently

observed [15]. TcIII and TcIV are rarely detected in domestic cycles although TcIV has been

implicated in several food-borne outbreaks in Venezuela and Brazil [36,37]. Accessible, high-
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resolution genetic profiling methods are essential for a better understanding of these associa-

tions and other important T. cruzi traits.

In contrast to past multi-locus sequence typing (MLST) methods involving at most a few

dozen (individually amplified) gene fragments [38], our ‘genome-wide locus typing’ (GLST)

tool simultaneously amplifies 203 sequence targets across 33 (of 47) T. cruzi chromosomes.

We apply GLST to metagenomic DNA extracts from TcI-infected triatomine vectors collected

in Colombia, Venezuela and Ecuador and further describe method sensitivity/specificity by

sequencing GLST libraries for T. cruzi clones representing TcI, TcIII, TcIV, TcV and TcVI.

The 780 SNP sites identified via GLST repeatably distinguish parasites infecting sympatric vec-

tors and detect correlations between genetic and geographic distances at regional (< 150 km)

and continental scales. The markers also clearly separate TcI, TcIII, TcIV and TcV + TcVI and

appear to distinguish multiclonal infections within TcI. We discuss advantages and limitations

of our method for epidemiological studies in resource-poor settings where Chagas disease and

other ‘neglected tropical diseases’ prevail.

Methods

Ethics statement

Triatomine sampling occurred in accordance to guidelines set by Autoridad Nacional de

Licencias Ambientales permit number 63257–2014 granted to Universidad del Rosario, Minis-

terio del Ambiente de Ecuador permit number MAE-DNB-CM-2015-0030 granted to Pontifi-

cia Universidad Católica del Ecuador and Ministerio del Poder Popular para Ciencia y

Tecnologı́a permit number CEC-IMT 19/2009 granted to Universidad Central de Venezuela.

Triatomine samples and T. cruzi reference clones

TcI-infected intestinal tract and/or faeces samples of Panstrongylus chinai and Rhodnius ecua-
doriensis were collected by the Centro de Investigación para la Salud en América Latina

(CISeAL) in Loja Province, Ecuador, following protocols described in Grijalva et al. 2012 [39].

DNeasy Blood and Tissue Kit (Qiagen) was used to extract metagenomic DNA. TcI-infected

intestinal material of P. geniculatus, R. pallescens and R. prolixus from northern Colombia was

also collected in previous projects [40–42], likewise using DNeasy Blood and Tissue Kit to

extract metagenomic DNA. TcI-infected P. geniculatus specimens from Caracas, Venezuela

were collected by the citizen science triatomine collection program (http://www.chipo.chagas.

ucv.ve/vista/index.php) at Universidad Central de Venezuela. This program has supported

various epidemiological studies in the capital district [43–45]. DNA was extracted from the

insect faeces by isopropanol precipitation. Geographic coordinates and ecotypes (domestic,

peri-domestic or sylvatic) of the sequenced samples are provided in S1 Table.

T. cruzi epimastigote DNA from reference clones CHILE_C22 (TcI) ARMA18_CL1

(TcIII), SAIMIRI3_CL8 (TcIV), PARA7_CL3 (TcV), CHACO9_COL15 (TcVI) and

CLBRENER (TcVI) was obtained from the London School of Hygiene & Tropical Medicine

(LSHTM). DNA extractions at LSHTM followed Messenger et al. 2015 [46].

Uninfected R. prolixus gut tissue samples used for mock infections (see ‘Wet lab method

development and library preparation’) were also provided by LSHTM. Insects were euthanized

with CO2 and hindguts drawn into 5 volumes of RNAlater (Sigma-Aldrich) by pulling the

abdominal apex toward the posterior with sterile watchmaker’s forceps.

T. cruzi TcI X10/1 Sylvio reference clone (‘TcI-Sylvio’) epimastigotes used for mock infec-

tions and various other stages of method development were obtained from CISeAL. Cryo-pre-

served cells were returned to log-phase growth in liver infusion tryptose (LIT) and quantified

by hemocytometer before pelleting at 25,000 g. Pellets were washed twice in PBS and parasites
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killed by resuspension in 10 volumes of RNAlater. DNA from these T. cruzi cells (and their

dilutions with preserved R. prolixus intestinal tissue) was extracted by isopropanol

precipitation.

Isopropanol precipitation was also used to extract DNA from T. cruzi plate clone

TBM_2795_CL2. This sample was previously analyzed by WGS [1] and served as a control for

GLST method development in this study.

GLST target and primer selection

We began our GLST sequence target selection process by screening single-nucleotide variants

previously identified in T. cruzi populations from southern Ecuador [1]. Briefly, Schwabl et al.
sequenced genomic DNA from 45 cloned and 14 non-cloned T. cruzi field isolates on the Illu-

mina HiSeq 2500 platform and mapped resultant 125 nt reads to the TcI-Sylvio reference

assembly using default settings in BWA-mem v0.7.3 [47]. Single-nucleotide polymorphisms

(SNPs) were summarized by population-based genotype and likelihood assignment in Genome

Analysis Toolkit v3.7.0 (GATK) [48], excluding sites with low cumulative call confidence

(QUAL< 1,500) and/or aberrant read-depth (< 10 or> 100) as well as those belonging to clus-

ters of three or more SNPs. A ‘virtual mappability’ mask [49] was also applied to avoid SNP

inference in areas of high sequence redundancy in the T. cruzi genome. Read-mapping and var-

iant exclusion criteria were verified by subjecting TcI-Sylvio Illumina reads from Franzen et al.
2012 [50] to the same pipelines as the Ecuadorian dataset. An additional mask was set around

small insertion-deletions detected in these reads based on the assumption that the reference

sample should not present alternate genotypes in high-quality contigs of the assembled genome.

We extracted 160 nt segments from the T. cruzi reference genome (.fasta file) whose inter-

nal sequence (positions 41 to 120) contained between one and ten of 75,038 SNPs identified in

the above WGS dataset. These 56,428 segments were further filtered for orthology between T.

cruzi and Leishmania major genomes as defined by the OrthoMCL algorithm [51] at https://

tritrypdb.org. Such conserved segments may be least prone to repeat-driven nucleotide diver-

sity and as such most amenable to PCR [52]. The 6,259 orthology segments found by

OrthoMCL therefore proceeded to primer search with the high-throughput primer design

engine BatchPrimer3 [53]. As target SNPs did not occur in the outer 40 nt of each orthology

segment, these flanking regions provided additional flexibility to identify primers matching

the criteria listed in Table 1.

Table 1. Primer selection criteria specified in BatchPrimer3.

Criterion Value

minimum primer size 24 nt

maximum primer size 35 nt

optimal primer size 24 nt

minimum product size 120 nt

maximum product size 160 nt

optimal product size 120 nt

minimum melting temperature 63˚C

maximum melting temperature 65˚C

optimal melting temperature 63˚C

maximum self-complementarity 4 nt

maximum 3’ self-complementarity 2 nt

maximum length of mononucleotide repeats 3 nt

minimum GC content 40%

maximum GC content 60%

https://doi.org/10.1371/journal.pgen.1009170.t001
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Each of 286 forward primer candidates output by BatchPrimer3 received the additional 5’

tag sequence 5’-ACACTGACGACATGGTTCTACA-3’ and reverse primer candidates

received the 5’ tag sequence 5’-TACGGTAGCAGAGACTTGGTCT-3’. These tag sequences

enable single-end barcode and Illumina P5/P7 adaptor attachment in second-round PCR.

Next, we determined binding energies (ΔG) for all possible primer-pairs using the primer

compatibility software MultiPLX v2.1.4 [54]. We discarded primers with inter-quartile ranges

crossing a threshold of ΔG = -12.0 kcal/mol. Primers with 20 or more interactions showing ΔG

� -12.0 kcal/mol were also disallowed. The remaining 248 primer-pairs (median ΔG = -9.0)

underwent a last filtering step by screening for perfect matches in raw WGS sequence files

(.fastq). Low match frequency led to the elimination of 45 additional primer pairs. WGS align-

ments corresponding to the 203 sequence regions targeted by this final primer set were visual-

ized in Belvu v12.4.3 [55]. The 403 SNPs occurring within these sequence regions distributed

evenly across individuals in Loja Province. Using the ‘nj’ function from the ‘ape’ package v5.0

[56] in R v3.4.1 [57], the 403 SNPs also reproduced neighbor-joining relationships observed

based on total polymorphism identified by WGS (S1 Fig). These observations lent further sup-

port to the suitability of the GLST marker panel for the analysis of genetic differentiation at the

landscape-scale. The GLST sequence target selection process described above is summarized

in Fig 1.

Wet lab method development and library preparation

The 203 primers pairs designed above (S2 Table) were purchased from Eurofins Genomics

(Ebersberg, Germany) at 200 μM concentration in salt-free, 96-well plate format. Primer pairs

were first tested individually to establish cycling conditions for PCR (S2 Fig). Optimal target

amplification occurred with an initial incubation step at 98˚C (2 min); 30 amplification cycles

at 98˚C (10 s), 60˚C (30 s) and 72˚C (45 s); and a final extension step at 72˚C (2 min). The

10 μl reactions contained 5 μl Q5 High-Fidelity Master Mix (New England Biolabs), 1 μl for-

ward primer [10 μM], 1 μl reverse primer [10 μM] and 3 μl TcI-Sylvio epimastigote DNA. The

multiplexed, first-round ‘GLST’ PCR reaction was prepared by combining all 406 primers in

equal proportions and diluting the combined mix to 50.75 μM, resulting in individual primer

concentrations of 50.75 μM / 406 = 125 nM. GLST reactions incorporated 2 μl of this primer

mix rather than two separate 1 μl forward/reverse primer inputs as above.

We first tested GLST PCR on DNA extracts from mock infections, each consisting of 104,

105 or 106 TcI-Sylvio epimastigote cells and one uninfected R. prolixus intestinal tract (S3 Fig).

Amplicons from lower concentration epimastigote dilutions gave weaker signals in gel electro-

phoresis, suggesting lower infection load thresholds at which vector gut DNA becomes unsuit-

able for GLST. Most vector gut DNA extracts obtained for this study represented donated

material of limited quality and infection load, some also without signal in PCR spot tests for

the presence of high frequency ‘TcZ’ [58] satellite DNA (commonly targeted to diagnose

human T. cruzi infections).

We therefore first used qPCR to identify vector gut samples containing T. cruzi DNA quan-

tities within ranges successfully visualized from GLST reactions on epimastigote DNA quanti-

fied by Qubit fluorometry (Invitrogen) and serially diluted from 1.35 ng/μl to 2.50 pg/μl in

dH2O (S4 Fig). Each 20 μl qPCR reaction consisted of 10 μl SensiMix SYBR Low-ROX reagent

(Bioline), 1 μl TcZ [58] forward primer (5’-GCTCTTGCCCACAMGGGTGC-3’) [10 μM], 1 μl

TcZ [58] reverse primer (5’-CCAAGCAGCGGATAGTTCAGG-3’) [10 μM], 7 μl dH2O and

1 μl vector gut DNA. Samples were amplified together with a 15-step standard curve contain-

ing between 0.30 pg and 4.82 ng T. cruzi epimastigote DNA. Reaction conditions consisted of

an initial incubation step at 95˚C (10 min) and 40 amplification cycles at 95˚C (15 s), 55˚C (15
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s) and 72˚C (15 s). Fluorescence acquisition occurred at the end of each cycle and final product

dissociation was measured in 0.5˚C increments between 55 and 95˚C.

Vector gut samples suggested to contain at least 1.0 pg/μl T. cruzi concentrations based on

qPCR proceeded to final library construction (S1 Table) alongside DNA from T. cruzi clones

TBM_2795_CL2 (TcI), CHILE_C22 (TcI) ARMA18_CL1 (TcIII), SAIMIRI3_CL8 (TcIV),

PARA7_CL3 (TcV), CHACO9_COL15 (TcVI) and CLBRENER (TcVI). Several samples were

processed in 2–4 replicates beginning with the first-round GLST PCR reaction step. First-

round PCR products were electrophoresed in 0.8% agarose gel to separate target bands

(mode = 164 nt) from primer polymers quantified with the Agilent Bioanalyzer 2100 System

(see 78 nt primer peak in S5 Fig). Excised target bands were re-solubilized with the PureLink

Quick Gel Extraction Kit (Invitrogen) to create input for subsequent barcoding PCR. This sec-

ond PCR reaction consisted of an initial incubation step at 98˚C (2 min); 7 amplification cycles

at 98˚C (30 s), 60˚C (30 s) and 72˚C (1 min); and a final extension step at 72˚C (3 min). Only 7

amplification cycles were used given polymer ‘daisy-chaining’ observed when cycling at 13

and 18x (S6 Fig). The barcoding reaction adds Illumina flow cell and sequencing primer bind-

ing sites to each first-round PCR product. A different reverse primer is used for each sample.

The reverse primer (5’-CAAGCAGAAGACGGCATACGAGAT�X�TACGGTAGCAGAGA

CTTGGTCT-3’) contains a 10 nt barcode (�X�) to distinguish reads from different samples

during pooled sequencing. It also contains CS2 (sequencing primer binding sites). A single

forward primer (5’-AATGATACGGCGACCACCGAGATCTACACTGACGACATGGTT

CTA-3’) containing CS1 is used for all samples. Each 20 μl barcoding reaction contained 10 μl

Q5 High-Fidelity Master Mix (New England Biolabs), 0.8 μl forward (universal) primer

[10 μM], 0.8 μl (barcoded) reverse primer [10 μM], 5.4 μl dH2O and 3 μl (gel-purified) first-

round PCR product. Barcoding primers were purchased from Eurofins Genomics at 100 μM

concentration in HPLC-purified, 96-well plate format. Barcoded amplicons (e.g., S7 Fig) were

quantified by Qubit fluorometry (Thermo Fisher Scientific), pooled at equimolar concentra-

tions, gel-excised, re-solubilized and verified by microfluidic electrophoresis (S8 Fig) as above.

GLST amplicon sequencing and variant discovery

The GLST pool was sequenced twice on an Illumina MiSeq instrument. We first used the

pool to ‘spike’ additional base diversity into a collaborator’s 16S amplicon sequencing run.

16S samples were loaded to achieve 80% sequence output whereas GLST and PhiX DNA

were each loaded at 10%. This first run occurred in 500-cycle format using MiSeq Reagent

Kit v2. The second run occurred in 300-cycle format using MiSeq Reagent Micro Kit v2 and

was dedicated solely to GLST (also no PhiX DNA). Both runs were performed at Glasgow

Polyomics using Fluidigm Access Array sequencing primers FL1 (CS1 + CS2) and CS2rc

[59].

Demultiplexed sequence reads were trimmed to 120 nt and mapped to the TcI-Sylvio refer-

ence assembly using default settings in BWA-mem v0.7.3 [47]. Mapped reads with poor align-

ment scores (AS< 100) were discarded to decontaminate samples of non-T.cruzi sequences

sharing barcodes with the GLST dataset. Identical results were achieved using BWA-sw in

DeconSeq v0.4.3 [60] to decontaminate reads. After merging alignment (.bam) files from

sequencing runs 1 and 2, SNPs were identified in each sample using the ‘HaplotypeCaller’

Fig 1. GLST sequence target selection from preliminary genomic data. Nine steps of primer panel construction and validation run

clockwise from top left. Various methods and criteria can be applied to complete many of these steps. Those specific to this study are

asterisked, e.g., we used BWA [47] in step 1 and GATK [48] in step 2. Abbreviations: SRA, Sequence Read Archive at www.ncbi.nlm.

nih.gov/sra; ENA, European Nucleotide Database at www.ebi.ac.uk/ena; WGS, whole-genome sequencing; SNP, single-nucleotide

polymorphism; MAF, minor allele frequency; PCR, polymerase chain reaction; VCF, variant call format; NJ, neighbor-joining.

https://doi.org/10.1371/journal.pgen.1009170.g001
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algorithm in GATK v3.7.0 [48]. Population-based genotype and likelihood assignment fol-

lowed using ‘GenotypeGVCFs’. We excluded SNP sites with QUAL < 80, D< 10, mapping

quality (MQ) < 80 and or Fisher strand bias (FS) > 10. Individual genotypes were set to miss-

ing (./.) if they contained < 10 reads and set to reference (0/0) if they contained only a single

alternate read (i.e., if they were classified as heterozygotes based on minor allele

frequencies� 10%). These filtering thresholds were cleared by all expected SNPs (i.e., SNPs

also found in prior WGS sequencing) but not by all new SNPs found using GLST (e.g., see

comparison of QUAL density curves in S9 Fig). SNP calling with GATK [48] was also per-

formed separately for sequencing runs 1 and 2 in order to exclude SNP sites uncommon to

both analyses from the merged dataset described above.

GLST repeatability, population genetic and spatial analyses

A phylogenetic tree was built from the filtered SNP dataset by counting the number of non-ref-

erence alleles (0, 1 or 2) in each genotype at all biallelic sites with the VCFtools v0.1.13 [61]

function ‘--012’, summing pairwise Euclidean distances and plotting neighbor-joining rela-

tionships with the ‘nj’ function from the ‘ape’ package v5.0 [56] in R v3.4.1[57]. Only sites with

genotypes called in all individuals (i.e., ‘non-missing sites’) were included in analysis.

Genetic differences at non-missing sites were also visualized as a median-joining network,

i.e., a minimum spanning tree composed of observed sequences and unobserved (recon-

structed) sequence nodes [62]. In order to account for both biallelic and polyallelic sites, we

first created a multi-SNP alignment by applying the ‘vcf-to-tab’ script from VCFtools v0.1.13

[61] and concatenating each sample’s output fields. For example, genotypes ‘A/C’, ‘A/T’ and

‘G/G’ (ordered by genomic position) become ‘ACATGG’ for sample X. Mismatching align-

ment positions were then counted for each sample pair in the network construction program

PopART v1.7 [63]. For biallelic sites, the distance calculated between two samples using this

unphased alignment method is equivalent to that obtained by recoding all genotypes to non-

reference allele counts and summing absolute differences (i.e., 0, 1 or 2 per site) as in neigh-

bor-joining construction above. For polyallelic sites, the method allows for genotypes with

equivalent alternate allele counts but distinct allelic identities to be distinguished. For example,

if the reference allele is ‘A’ and sample X’s genotype ‘A/C’ is compared with sample Y’s geno-

type ‘A/G’, the difference between X and Y is 1. If sample Z’s genotype is ‘C/C’, the difference

between X and Z is 1 and the difference between Y and Z is 2.

Linkage and neutrality statistics were calculated using VCFtools [61] functions ‘--geno-r2’

(calculates correlation coefficients between genotypes following Purcell et al. 2007 [64]), ‘--het’

(calculates inbreeding coefficients using a method of moments [65]) and ‘--hwe’ (filters sites

by deviation from Hardy-Weinberg Equilibrium following Wigginton et al. 2005 [66]). FST dif-

ferentiation was calculated using ARLSUMSTAT v3.5.2 [67]. These calculations considered

only the first replicate of individuals present in multiple replicates.

Correlations between geographic and genetic differences among samples from Colombia,

Venezuela and Ecuador were measured using a Euclidean genetic distance matrix calculated

from non-reference allele counts at biallelic sites as described for neighbor-joining construc-

tion above. The ‘mantel’ function from the ‘vegan’ package v2.4.4 [68] in R v3.4.1 [57] was

used to test significance of the Mantel statistic by permuting geographic distances and re-mea-

suring correlations to genetic distances 999 times. SNP sites in which genotypes were missing

in> 10% individuals were excluded from analysis. Replicates 2–4 were also excluded as before.

Geographic distances were measured by projecting sample latitude/longitude (WGS 84) coor-

dinates into a common xy plane (EPSG code 3786) selected following Šavrič et al. 2016 [69]

(S1 Table).
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The decision to exclude SNP sites with missing genotypes from several analyses initially led

to significant information loss due to the presence of two outlier samples, ARMA18_CL1_rep2

and COL253, libraries of which had been sequenced despite poor target visibility in gel electro-

phoresis (i.e., final PCR product banding appeared similar to that of ECU2 in S7 Fig). Read-

depths for the two samples averaged 1.2 interquartile ranges below the sample set median and

precluded genotype assignment at> 25% SNP sites. We therefore excluded them from all

analyses.

Results

SNP polymorphism and repeatability

GLST amplicons contained a total of 780 SNP sites, 387 polymorphic among TcI samples and

393 private to non-TcI reference clones (Fig 2). Seven hundred and seventy-three of these sites

were biallelic, and seven contained one additional alternate allele. Median read-depth per indi-

vidual genotype was 267x, and 90% of genotypes were represented by� 20 reads (S10 Fig). Of

403 loci targeted from the WGS dataset [1], 97% (391) were recovered by GLST and 82 con-

tained polymorphism outside of Ecuador. GLST recovered 80 of 87 SNPs previously identified

in TBM_2795_CL2 using WGS. Minimum parasite DNA concentration successfully geno-

typed from metagenomic DNA was 3.69 pg/μl (sample ECU36–see S11 Fig).

The TBM_2795_CL2 control sample underwent GLST in four replicates. These replicates

were identical at all 561 SNP sites for which genotypes were called in all samples of the dataset.

Median number of allelic differences (AD = 0, 1 or 2 per site) at non-missing sites between

other replicate pairs was 3 (Table 2). Pairwise AD did not correlate to minimum, maximum or

difference in mean read-depth between the two replicates (p< 0.80).

Variant calling was highly consistent: prior to variant filtration, only 10 SNP sites were

called from run 1 that were not also called from run 2 (these were excluded from analysis–see

Methods). Read-mapping coverage was also strongly correlated between sequencing runs

(Pearson’s r = 0.93, p< 0.001) (S12 Fig), but marker quantity appeared insufficient for chro-

mosomal copy number estimation (S13 Fig).

Differentiation among T. cruzi individuals, sampling areas and DTUs

Sampling sites in Colombia, Venezuela and Ecuador are plotted in Fig 3, and a median-joining

network of allelic differences among GLST genotypes is shown in Fig 4. GLST clearly distin-

guished TcI individuals at common collection sites in Soata (COL466 vs. COL468, AD = 37),

Paz de Ariporo (COL133 vs. COL135, AD = 33), Tamara (COL154 vs. COL155, AD = 107)

and Lebrija (COL77 vs. COL78, AD = 43) municipalities of Colombia but not in the commu-

nity of Bramaderos (ECU3 vs. ECU8 vs. ECU10, AD = 0) in Loja Province, Ecuador. Samples

from nearby sites within Caracas, Venezuela were also clearly distinguished by GLST (e.g.,

VZ16816 vs. VZ17114, AD = 43). Nucleotide diversity (π = mean pairwise AD) was higher in

samples from Caracas (π = 29.0) than in those from Loja Province (π = 22.8) but not in those

from Colombia (π = 43.2) (Table 3). Hardy-Weinberg ratios, linkage and inbreeding coeffi-

cients are also listed in Table 3.

Genetic distances increased with spatial distances among samples (Mantel’s r = 0.89,

p = 0.001), but the correlation coefficient was largely driven by high FST between sample sets

from Colombia/Venezuela and Ecuador (Table 3 and Fig 5A): Mantel’s r decreased to 0.30

(p = 0.001) after restricting analysis to sample pairs separated by< 250 km (Fig 5B). Within-

country spatio-genetic correlation appeared stronger for samples separated by < 150 km

(Mantel’s r = 0.48, p = 0.002) given a lack of correlation observed at higher distance classes

within the Colombian dataset (Fig 5B).
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GLST also clearly separated DTUs TcI, TcIII, TcIV and TcV + TcVI in network (Fig 4) and

neighbor-joining tree construction (Fig 6). AD between reference clones of different DTUs

ranged from 153 (ARMA18_CL1 (TcIII) vs. PARA7_CL3 (TcV)) to 472 (CHILE_C22 (TcI) vs.

SAIMIRI3_CL8 (TcIV)).

Heterozygosity and allele frequency distributions

Alternate allele frequencies measured in heterozygous genotypes at biallelic sites were distrib-

uted with a single strong mode near 50% in most samples (Fig 7A, S15–S17 Figs, S3 Table),

suggesting many strains were predominantly diploid and potentially monoclonal. In a limited

number of samples, alternate allele frequency distributions (AFDs) showed secondary modes

Fig 2. Variant loci detected in T. cruzi I samples and reference clones of other DTUs. The genome-wide distribution of polymorphic segments genotyped using

GLST is shown relative to the TcI-Sylvio reference assembly. Blue diamonds represent 303 SNPs detected only in TcI samples and pink diamonds represent 393 SNPs

detected only in non-TcI reference clones. Black diamonds represent 84 SNPs detected in both TcI samples and non-TcI reference clones. The close-up illustrates how

diamonds representing nearby SNPs (e.g., those occurring on the same GLST target segment) overlap in genome-wide view. Chromosomes 17, 20, 22, 29, 30, 34, 35, 38,

40, 42, 45, 46 and 47 were not targeted by GLST. Chromosome 6 contains one target segment but this segment showed no polymorphism in the sample set.

https://doi.org/10.1371/journal.pgen.1009170.g002
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and/or no clear mode near 50% but these irregularities diminished after excluding genotypes

represented by� 200 reads (e.g., see COL_468 in Fig 7B). Irregular AFDs observed for repli-

cates of ECU4, COL78, COL133, COL135, COL169 (S15–S17 Figs) and VZ17114 (Fig 7C),

however, showed no substantial change after this exclusion and were highly consistent between

available replicates. AFDs in these six individuals, all of which had substantial median read-

depth (253�MRD� 924), did not appear symptomatic of frequent copy number variation at

heterozygous sites (i.e., no strong peaks at 25%, 33%, 67% or 75% as might occur if many loci

existed in three or four copies instead of two). Possibly representing multiclonal infections, this

group of samples showed a higher median rate of heterozygosity per polymorphic genotype

(HPG, S3 Table) than did the remainder of the dataset (71% vs. 50%) (Wilcoxon test, W = 144,

p = 0.002). HPG in replicates of presumably monoclonal TcI clones TBM_2795_CL2 and Chi-

le_C22, by contrast, ranged between 39% and 44% (S3 Table). Excluding highly heterozygous

TcV and TcVI clones (S3 Table), median number of heterozygous SNPs (i.e., absolute counts as

opposed to HPG) was also higher in these six samples than in the remainder of the dataset (Wil-

coxon test, W = 127.5, p = 0.002). Despite these possible signs of multiclonality, however, we

found little evidence for within-sample polyallelism across the 26,042 sites targeted by GLST.

Table 2. Allelic differences between GLST replicates. Eighteen samples were processed in 2–4 replicates after DNA

extraction. A single SNP locus can differ by 0, 1 or 2 between two replicates (i.e., replicates can match at both, one or

neither allele). The AD measurement represents the total number of pairwise differences across all loci for which geno-

types are called in all individuals (n = 561). The discrepancy between VZ35814 replicates likely represents barcode con-

tamination with VZ16816 (see close similarity in Fig 4).

Replicate comparison AD

COL319_rep1 vs. COL319_rep2 0

ECU10_rep1 vs. ECU10_rep2 0

TBM_2795_CL2_rep1 vs. TBM_2795_CL2_rep2 0

TBM_2795_CL2_rep1 vs. TBM_2795_CL2_rep3 0

TBM_2795_CL2_rep1 vs. TBM_2795_CL2_rep4 0

TBM_2795_CL2_rep2 vs. TBM_2795_CL2_rep3 0

TBM_2795_CL2_rep2 vs. TBM_2795_CL2_rep4 0

TBM_2795_CL2_rep3 vs. TBM_2795_CL2_rep4 0

VZ13516_rep1 vs. VZ13516_rep2 0

COL154_rep1 vs. COL154_rep2 1

COL466_rep1 vs. COL466_rep2 1

ECU3_rep1 vs. ECU3_rep2 1

COL135_rep1 vs. COL135_rep2 2

COL468_rep1 vs. COL468_rep2 2

ECU4_rep1 vs. ECU4_rep2 2

COL155_rep1 vs. COL155_rep2 3

COL466_rep1 vs. COL466_rep3 3

COL468_rep1 vs. COL468_rep3 3

COL468_rep2 vs. COL468_rep3 3

VZ6616_rep1 vs. VZ6616_rep2 3

COL466_rep2 vs. COL466_rep3 4

VZ1016B_rep1 vs. VZ1016B_rep2 4

CLBRENER_rep1 vs. CLBRENER_rep2 7

COL133_rep1 vs. COL133_rep2 9

ECU9_rep1 vs. ECU9_rep2 10

COL78_rep1 vs. COL78_rep2 12

VZ35814_rep1 vs. VZ35814_rep2 49

https://doi.org/10.1371/journal.pgen.1009170.t002
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Between zero and ten sites (0.04%) showed reads representing more than two alleles within any

single TcI sample–the maximum observed in VZ1016B_rep2 (S3 Table). Within-sample polyal-

lelism in non-TcI clones ranged from one (in ARMA18_CL1_rep1) to 28 (in PARA7_CL3) (S3

Table).

Discussion

Principle results

The GLST primer panel design and amplicon sequencing workflow outlined in this study

aimed to profile T. cruzi genotypes at high resolution directly from infected triatomine intesti-

nal content by simultaneous amplification of 203 genetic target regions that display sequence

polymorphism in publicly available WGS reads. Mapped GLST amplicon sequences generated

from T. cruzi reference clones and from metagenomic intestinal DNA extracts containing a

Fig 3. Map of vector sampling sites. A) Sampling in Colombia involved a larger spatial area than that in Venezuela and Ecuador. T. cruzi-infected intestinal material

was collected from Panstrongylus and Rhodnius vectors in Arauca, Casanare, Santander and Boyacá. COL253 is asterisked because low read-depth led to the exclusion of

this sample from all analyses. B) P. geniculatus material from Venezuela was collected within the Metropolitan District of Caracas. C) P. chinai and R. ecuadoriensis
material from Ecuador was collected in Loja Province. S1 Table lists coordinates and other sample details.

https://doi.org/10.1371/journal.pgen.1009170.g003
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Fig 4. Allelic Differences among T. cruzi I samples and reference clones of other DTUs as a median-joining network. A single SNP locus can differ by 0, 1 or 2

between two individuals (i.e., the individuals match at both, one or neither allele). The AD measurement indicated on each edge of the network represents the total

number of differences across all loci for which genotypes were called in all individuals of the dataset (n = 561). Red edges indicate differences of 30 and above. Technical

replicates are represented by circles of the same fill color. Larger circles represent the occurrence of identical GLST genotypes. Edge length is not directly proportional to

AD.

https://doi.org/10.1371/journal.pgen.1009170.g004
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minimum of 3.69 pg/μl T. cruzi DNA achieved high target specificity (< 1% off-target map-

ping) and yield (391 of 403 target SNP sites mapped). Mapping depth variation across target

loci was highly repeatable between sequencing runs. Three hundred and eighty-seven SNP

sites were identified among T. cruzi I samples and 393 SNP sites were identified in non-TcI

reference clones. These markers showed low levels of linkage disequilibrium at fine spatial

scales (e.g., within Caracas) and clearly separated T. cruzi individuals within and across DTUs,

for the most part also individuals collected at the same or closely separated localities in Colom-

bia, Venezuela and Ecuador. An increase in pairwise genetic differentiation was observed with

increasing geographic distance in analyses within and beyond 150 km. Finally, we observed

similar abundances of reads representing alternate and reference alleles at heterozygous sites

in monoclonal TcI reference clones. Distinct alternate allele frequency distributions in a subset

of field samples suggested the detection of multiclonal infections using GLST.

Cost-effective spatio-genetic analysis

GLST achieved an important resolution benchmark in recovering isolation-by-distance (IBD)

[70] at less than 150 km. These correlations indicate the potential of GLST in spatially explicit

epidemiological studies which, for example, aim to identify environmental variables or land-

scape features that modify IBD [28]. High spatial sampling effort is typically required by such

studies and often limits budget for genotyping tools. GLST appears promising in this context as

it bypasses pathogen culture and library preparation (< 4 USD per sample (see cost summary

in S4 Table)) can be completed comfortably in two days. The first-round PCR reaction requires

very low primer concentrations (0.125 μM) such that a single GLST panel purchase (0.01 μmol

production scale) enables> 100,000 reactions and can be shared by several research groups.

Sequencing represents a substantial cost but is highly efficient due to short fragment sizes and

few off-target reads. High library complexity also promotes the use of GLST libraries as an alter-

native to PhiX, i.e., as a spike-in to enhance complexity and thus read quality in a different

sequencing run. Our study easily decontaminated reads from a spiked amplicon pool sharing

barcodes with GLST (run 1). Alternatively, i.e, when GLST is sequenced alone (run 2), one Illu-

mina MiSeq run can generate> 70x median genotype read-depth for 100 samples using

Reagent Micro Kit v2 (starting at ca. 1,500 USD, depending on provider–see S4 Table). Read-

depth can likely be elevated substantially by improving normalization and clean-up steps.

GLST in relation to multi-locus microsatellite typing

We consider multi-locus microsatellite typing (MLMT) as the primary alternative for high-res-

olution T. cruzi genotyping directly from metagenomic DNA. MLMT has revolutionized the-

ory on T. cruzi ecology and microevolution, for example, on the role of disparate transmission

cycles [71,72], ecological host-fitting [73] and ‘cryptic sexuality’ [74] in shaping population

genetic structure in TcI. In some cases [75,76] (but others not [72,73,77]), the hypervariable,

Table 3. Basic diversity statistics for T. cruzi I samples from Colombia (COL), Venezuela (VZ) and Ecuador (ECU).

Group (n) PS PS in HWE FIS (Q1, M, Q3) r2 (Q1, M, Q3) π FST to COL FST to VZ FST to ECU

COL (11) 175 169 -0.19, 0.13, 0.24 0.03, 0.07, 0.19 43.2 0.000 0.136 0.595

VZ (7) 147 143 -0.35, -0.19, 0.11 0.02, 0.09, 0.27 29.0 0.136 0.000 0.632

ECU (9) 148 142 -0.20, -0.09, 0.18 0.04, 0.17, 0.36 22.8 0.595 0.632 0.000

Abbreviations: n, sample size; PS, polymorphic sites; HWE, Hardy-Weinberg equilibrium; FIS, inbreeding coefficient; r2, linkage coefficient; π, nucleotide diversity; Q,

quartile; M, median; FST, between-group fixation index.

https://doi.org/10.1371/journal.pgen.1009170.t003
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Fig 5. Spatio-genetic correlation among T. cruzi I samples. A) Each circle represents geographic and genetic distances between two TcI samples.

Positive correlation in the multi-country dataset (Mantel’s r = 0.89, p = 0.001) is driven by divergence between samples from Ecuador and

Colombia/Venezuela (see two clusters at top right). B) Nevertheless, this relationship remains significant for within-country comparisons at< 250

km (Mantel’s r = 0.30, p = 0.009) and< 150 km (Mantel’s r = 0.48, p = 0.002). Green, cyan and yellow fill colors represent comparisons within

Colombia, Ecuador and Venezuela, respectively. Each of the above Mantel tests remains significant when sample pairs with genetic distances< 2 are

removed. Only variant sites with� 10% missing genotypes (n = 285) are used in analysis. Only the first replicate is used for samples represented by

multiple replicates.

https://doi.org/10.1371/journal.pgen.1009170.g005
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polyallelic nature of microsatellites allows every sample in a dataset to be distinguished with a

different multi-locus genotype (MLG). This depends on panel size and spatial scale but also on

local reproductive modes–for example, sampling from clonal sylvatic vs. non-clonal domestic

transmission cycles has correlated with the presence or absence of repeated MLGs [72]. In this

study, we found two identical GLST genotypes shared among five samples from southern

Ecuador. All other samples appeared unique, including those from Venezuela, where triato-

mine collection occurred at seven domestic localities within the city of Caracas. The small sub-

set of repeated genotypes found in this study may reflect patchy, transmission cycle-dependent

clonal/sexual population structure in southern Ecuador (see Schwabl et al. 2019 [1] and

Ocaña-Mayorga et al. 2010 [72]) but may also represent a weakness in GLST compared to

MLMT in tracking individual parasite strains. The use of large MLMT panels, however, is

Fig 6. Neighbor-joining relationships among T. cruzi I samples and reference clones of other sub-lineages. Genetic distances are based on 556 biallelic SNP sites

for which genotypes are called in all individuals. Results indicate high repeatability among most technical replicates (see ‘rep1–4’ suffices) and clearly separate TcI,

TcIII, TcIV and TcV + TcVI. The tree also contains TBM_2795_CL2_wgs. This control sample was genotyped at the same 556 GLST loci using whole-genome

sequencing (Illumina HiSeq) data from Schwabl et al. 2019 [1]. See S14 Fig for a tree with additional reference clones (genotypes generated in silico by subsetting

WGS variant calls to GLST targets).

https://doi.org/10.1371/journal.pgen.1009170.g006
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significantly more resource-intensive because each microsatellite marker requires a separate

PCR reaction and capillary electrophoresis cannot be highly multiplexed. MLMT data are

poorly archivable across studies and may also be less suitable for inter-lineage phylogenetic

analyses due to unclear mutational models and artefactual similarity from saturation effects

[78]. Although our GLST panel was designed for TcI, its focus on orthologous sequence

regions enabled efficient co-amplification of non-TcI DNA. GLST clearly separated TcI sam-

ples from all non-TcI reference clones, with highest divergence observed in SAIMIRI3_CL8.

Interestingly, large MLMT panels have shown comparatively little differentiation between this

sample and TcI, also more generally suggesting that TcIV and TcI represent monophyletic sis-

ter clades [78]. By detecting substantially higher heterozygosity in TcV and TcVI clones, GLST

also showed its potential to distinguish hybrid genotypes in a sample set. These DTUs are

known to originate from ancient hybridization events between progenitors of TcII and TcIII

[79].

Adjustment and transferability

Considering the great variety of sample types to which studies have successfully applied PCR

[80–84], we expect that GLST can be applied to metagenomic DNA from many host/vector tis-

sue types, not only from triatomine intestine as shown here. Further tests are required to deter-

mine whether low T. cruzi DNA concentrations in chronic infections or sparsely infected

organs (e.g., liver and heart [85]) are also amenable to GLST. We predominantly analyzed T.

cruzi DNA concentrations of at least ten picograms (this equates to approximately 80 parasites

in the case of TcI [86]) per microliter metagenomic DNA without heavily investigating options

to enhance sensitivity or sensitivity measurement, for example, by additional removal of PCR

inhibitors, improved primer purification (e.g., HPLC vs. salt-free), post-PCR probe-hybridiza-

tion [87] or barcoding/sequencing of samples with unclear first-round PCR amplicon bands.

Even relatively aggressive processing methods may be tolerable given that DNA fragmentation

is unlikely to compromise the 120–160 nt size range targeted by GLST. Increasing sensitivity

by increasing PCR amplification cycles, however, is less advised. PCR error appeared relevant

with as little as 30x (+ 7x barcoding) amplification in this study as we observed noise among

replicates despite high read-depth and SNP-call overlap between sequencing runs. Rates of

error were, however, well within margins expected for methods involving PCR [88]. We also

note that the exceptional discrepancy between VZ35814 replicates unlikely represents system-

atic error but barcode contamination with VZ16816. Such error is perhaps less likely if primers

are kept in separate vials instead of in the plate format which we have used here.

Wet lab aside, the main objective of this study was to provide a transparent bioinformatic

workflow for highly multiplexable primer panel design using freely available softwares and

publicly archived WGS reads (https://github.com/fishntryps/glst). Importantly, we show that

knowledge of polymorphic genetic regions in parasite genomes from one small study area

(Loja Province, Ecuador) can suffice to guide variant discovery at distant, unassociated sam-

pling sites. Our demonstration using T. cruzi should be easily transferable to any other patho-

genic species with a published reference genome. Target selection can also be tailored to a

variety of objectives. For example, while landscape genetic studies on dispersal often focus on

Fig 7. Alternate allele frequency distributions of heterozygous genotypes at biallelic sites. A) Alternate allele frequency (i.e., the number of

non-reference reads divided by the total number of reads representing each genotype) had a mode near 50% in most samples, e.g., see

TBM_2795_CL2. B) Distinct and/or additional modes frequently diminished when excluding genotypes represented by� 200 reads (black vs.

blue plot). C) For approximately one third of samples, distinct allele frequency distributions did not change after setting this exclusion. S15–S17

Figs provide plots for the full sample set. Plots were generated using the ‘density’ function in R. Abbreviations: MRD, median read-depth of

heterozygous genotypes; hets., heterozygous genotypes.

https://doi.org/10.1371/journal.pgen.1009170.g007
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neutral or non-coding sequence variation [89], experimental (e.g., drug testing) studies may

seek to detect single-nucleotide changes in coding regions, perhaps in genes belonging to spe-

cific ontology groups or associated with results of high-throughput proteomic screens [90].

The candidate SNP pool can easily be filtered for such criteria during GLST panel design, e.g.,

using SnpEff [91] or BEDTools [92] and data mining strategies at EuPathDB [93]. Candidate

SNP filtering by minor allele frequency (MAF) may also be useful when the target population

is closely related to that of the WGS dataset guiding panel design. Placing a minimum thresh-

old on MAF (using VCFtools [61], etc.), for example, may improve analyses of population

structure and genealogy whereas a focus on low-frequency variants may help in tracking indi-

viduals or recent gene flow at the landscape scale [94]. It may also be possible to refine panel

design towards markers that meet model assumptions in later analysis. Hardy-Weinberg Equi-

librium (HWE), for example, is a common requirement in demographic modelling [95–97],

Bayesian clustering [98], admixture/migration [99,100] and hybridization tests [101]. Devia-

tion from HWE may occur more frequently in specific genetic regions (e.g., near centromeres

[102]), and SNPs in these regions could be excluded from the target pool. Numerous other fil-

tering options–e.g., based on allele count (to enhance resolution per SNP), distance to inser-

tion-deletions (to improve target alignment) or percent missing information (to avoid poorly

mapping regions)–are easily implemented with common analysis tools [103].

GLST is also highly scalable because increasing panel size does not lead to more laboratory

effort or processing time. Sequencing depth requirements and thermodynamic compatibilities

among primers are more relevant in limiting panel size. However, it is also possible to divide

large GLST panels into two or more PCR multiplexes based on ΔG-based partitioning in Mul-

tiPLX [54]. Unintended primer affinities (i.e., polymer formations) can also be removed by gel

excision, e.g., as we have done using the PureLink Quick Gel Extraction Kit.

Prospects

This study sought to provide a framework for various epidemiological research but remains

tentative with its own inferences on T. cruzi ecology because only few samples (low-quality

remainders from different projects) were analyzed from each study area. Samples were also

aggregated either to domestic or to sylvatic ecotopes. More extensive, purposeful sampling

could have, for example, helped explore whether COL468’s position deep within the Cordillera

Oriental contributes to its divergence to samples such as COL135 or COL319, these perhaps

more closely related due to lower ‘cost-distances’ [104] of dispersal along the basin range. On

the other hand, could relatively low divergence between geographically distant Colombian

samples (e.g., differentiation between COL135 and COL319 (separated by ca. 100 km) appears

similar to that between VZ1214D and VZ13516 within Caracas (AD = 60 and 61, respectively))

reflect long-range, human-associated dispersal events? Or could restraints to polymorphism

within core sequence regions be limiting divergence within TcI? Achieving better resolution of

genetic differentiation and dispersal in wild vs. domestic T. cruzi populations using neutral

genetic markers is an exciting new direction for GLST. Fuelled with high GLST sample sizes,

landscape genetic simulators such as CDMetaPOP [97] could be especially powerful to this

end. It would also be interesting, for example, to extend this study’s sampling to cover gradi-

ents along the perimeter of Caracas and adjacent El Ávila National Park. Sylvatic P. geniculatus
vector populations appear to be rapidly adapting to habitats within Caracas [45,105] but paral-

lel changes in the distribution of T. cruzi genetic diversity have yet to be tracked. The low cost

of GLST also makes it more feasible for studies to simultaneously assess genetic polymorphism

in each vector individual from which parasite markers were amplified. Such coupled genotyp-

ing would enhance resolution of parasite-vector genetic co-structure and thus, for example,
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help quantify rates of parasite transmission from domiciliating vectors or determine whether

parasite gene flow proxies for (or improves understanding of) dispersal patterns in more

slowly evolving vectors or hosts. It would also be interesting to test whether deep-sequenced

GLST libraries could be used to reconstruct distinct MLGs from multiclonal T. cruzi infections

without the use of cloning tools. Multiclonality has important implications for public health

[106,107] but its potential prevalence in T. cruzi vectors and hosts [108–110] is difficult to

describe from cultured cells [108,111]. In this study, alternate allele frequency modes (at het-

erozygous sites) were either consistently similar or consistently dissimilar to 50%, suggesting

that read-depth ratios generated by GLST are informative of initial allelic ratios and can distin-

guish monoclonal from multiclonal infections. Whether sequencing coverage and other set-

tings can be optimized to clearly parse (low-frequency) MLGs, however, remains to be

established (e.g., using experimental co-infections).

The potential to assess karyotypic variability on the basis of GLST read-depth statistics like-

wise requires further investigation. A reduced number of PCR cycles and a significantly larger

number of markers may be necessary based on relationships between copy number measure-

ment accuracy and genome coverage recently described in work on Leishmania parasites [20].

Future applications of GLST will help refine the method as well as clarify its limitations and

its areas of greatest impact. We see a particular benefit to population and landscape genetic

studies, in which prudent spatial and genetic sampling design is often key to meaningful infer-

ence. The low cost and high flexibility of our pipeline can help researchers achieve these

requirements without extensive technical know-how and within reasonable costs and time.

Supporting information

S1 Fig. Phylogenetic resolution at GLST loci in silico. The green tree shows neighbor-joining

(NJ) relationships calculated from 106,007 SNP sites identified from whole-genome sequenc-

ing (WGS) of 45 TcI clones in southern Ecuador [1]. Sites missing genotypes in� 10% indi-

viduals are excluded. Less than 45 km separate the most distant sampling sites within the study

region. Several pairs of clones also represent the same host/vector individual (see first seven

characters of IDs). NJ was repeated after abridging the WGS dataset to contain only SNPs

within the 203 sequence targets proposed by GLST (also excluding sites missing� 10% geno-

types). This resultant tree (blue, at right) uses 391 SNP sites and recreates clusters A–K

observed in WGS.

(TIF)

S2 Fig. Individual primer pair validation. Primer pairs were first applied individually to pure

TcI epimastigote DNA to confirm product amplification within the expected size range (164–

204 bp). The figure shows the electrophoresed products of 17 different primer pairs in 0.8%

agarose gel as well as DNA ladder (L) and no-template control (NTC). All other primer pairs

achieved similar results using an initial incubation step at 98˚C (2 min); 30 amplification cycles

at 98˚C (10 s), 60˚C (30 s) and 72˚C (45 s); and a final extension step at 72˚C (2 min).

(TIF)

S3 Fig. Preliminary GLST (multiplex) trials on T. cruzi I mock infections. We created mock

infections by mixing 104, 105 and 106 RNAlater-preserved TcI-Sylvio epimastigote (epi) cells

with uninfected R. prolixus vector gut (UVG). DNA extracted from these mock infections was

subjected to the multiplexed, 203-target GLST reaction (using the same cycling conditions as

for single-target reactions–see Methods or S2 Fig legend) and products were electrophoresed

in 0.8% agarose gel. Fainter banding of GLST products from lower concentration mock infec-

tions encouraged follow-up on sensitivity thresholds using additional dilution curves and
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qPCR. Next to DNA ladder (L) and no-template control (NTC), the gel also contains TcZ

primer product from pure TcI epimastigote DNA. TcZ primers provide a highly sensitive posi-

tive control (PC) as they target 195 bp satellite DNA repeats that make up ca. 5% of the T. cruzi
genome.

(TIF)

S4 Fig. T. cruzi I DNA dilutions and GLST product visibility in 0.8% agarose gel. The left

side shows electrophoresed GLST amplicons generated from 3 μl pure TcI epimastigote (epi)

DNA with concentrations between 1.35 ng/μl and 2.50 pg/μl (see cycling conditions in Meth-

ods or S2 Fig legend). Lanes on the right contain amplicons from seven random metagenomic

samples that tested positive for T. cruzi satellite DNA. DNA ladders (L) and no-template con-

trol (NTC) are indicated left and right. Poor amplicon visibility occurs at� 30 pg epimastigote

DNA input (3 μl). Gut DNA amplicon visibility is also limited but whether this relates to low

T. cruzi content or amplification interference is unclear without qPCR.

(TIF)

S5 Fig. First-round (unbarcoded) PCR product size composition measurement using

microfluidic electrophoresis. The figure plots fragment sizes (calculated based on migration

times relative to those of standards) and fluorescence intensity (FU) of first-round PCR prod-

ucts (see cycling conditions in Methods or S2 Fig legend) measured with the Agilent Bioanaly-

zer 2100 System. The first peak represents primer polymerization that is removed in

subsequent gel excision/re-solubilization steps. The second peak matches expectations for the

multi-target GLST product (164–204 bp).

(TIF)

S6 Fig. Large polymer formation from excessive amplicon barcoding. The second (barcod-

ing) PCR reaction uses an initial incubation step at 98˚C (2 min); 7 amplification cycles at

98˚C (30 s), 60˚C (30 s) and 72˚C (1 min); and a final extension step at 72˚C (3 min). Seven

amplification cycles were chosen because unwanted polymers formed at 13 and 18x. The cen-

ter lanes in the 0.8% agarose gel at left (red border) show electrophoresed GLST products from

reference clones after eighteen cycles of barcoding PCR. Large, non-target banding occurs

at� 300 bp. Unbarcoded products from TcI epimastigote (epi) DNA are also shown at left. No

template controls from barcoding (NTC) and first-round + barcoding PCR (NTC�) occur next

to the DNA ladder (L) on the right side of the gel. The smaller image (green border) to the

right shows how unwanted banding becomes less pronounced at 13x and largely disappears at

7x. This 0.8% agarose gel also contains NTC� samples, i.e., negative controls carried through

both first and second-round PCR.

(TIF)

S7 Fig. Barcoded GLST products ready for final pooling and purification. The 0.8% agarose

gel shows a subset of fifteen GLST products from the second-round (barcoding) PCR reaction

(see cycling conditions in Methods or S6 Fig legend) prior to equimolar pooling and final gel

excision/re-solubilization steps. Products from ECU6 and ECU2 occur in this gel but were not

included in the final pool. The gel also contains DNA ladder (L) and no-template controls

from barcoding (NTC) and first-round + barcoding PCR (NTC�).

(TIF)

S8 Fig. Final (barcoded) GLST pool size composition measurement using microfluidic

electrophoresis. The figure plots fragment sizes (calculated based on migration times relative

to those of standards) and fluorescence intensity (FU) of the final GLST pool measured with

the Agilent Bioanalyzer 2100 System. The large peak matches expectations for the multi-target

PLOS GENETICS Genome-wide locus sequence typing (GLST)

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009170 December 16, 2020 22 / 32

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009170.s004
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009170.s005
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009170.s006
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009170.s007
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009170.s008
https://doi.org/10.1371/journal.pgen.1009170


GLST product pool (224–264 bp). Left and right peaks labelled in green and purple represent

standards of known size. A small non-target peak remaining near 151 bp encourages improve-

ment of prior size selection steps.

(TIF)

S9 Fig. Quality scores at previously identified vs. unidentified variant sites. The GLST

primer panel was designed based on single-nucleotide polymorphisms (SNPs) in Ecuadorian

TcI clones. It was applied, however, to samples from distant geographic locations as well as to

non-TcI clones. Additional, previously unidentified SNP sites (PU) were thus expected to be

found but we needed to distinguish true PU from PCR and sequencing error. We reasoned

that quality statistics (e.g., mapping quality, strand bias, minor allele frequency, etc.–see Meth-

ods) at previously identified SNP sites (PI) could help calibrate quality filters applied to the

wider dataset. This strategy finds support in the above density plot of QUAL scores computed

by GATK [48]. The plot suggests that, prior to variant filtration, lower QUAL scores occur

more often at PU (red) than at PI (black). We thus imposed the most stringent filtering criteria

possible without losing PI.

(TIF)

S10 Fig. Histogram of read-depths per genotype. Median read-depth is 267x including zero-

depth genotypes (6% of total) and 309x excluding zero-depth genotypes.

(TIF)

S11 Fig. GLST sample selection and sensitivity estimation via qPCR. We used T. cruzi satel-

lite DNA qPCR to identify vector gut samples with T. cruzi DNA quantities within ranges suc-

cessfully visualized in GLST reactions using epimastigote DNA (S4 Fig). The qPCR reaction

used an initial incubation step at 95˚C (10 min) and 40 amplification cycles at 95˚C (15 s),

55˚C (15 s) and 72˚C (15 s). The plot shows baseline-corrected fluorescence (dR) for seven

sample duplicates. Following the regression equation from the standard curve (see inset), the

three samples with highest cycle thresholds (Ct values) in this example represent gut extracts

with 0.05 to 0.14 ng/μl T. cruzi DNA. Such samples with T. cruzi DNA concentrations above

0.01 ng/μl were prioritized for GLST and none failed in library construction. ECU36, with a

mean Ct value of 18.68 in the plot, was also successfully sequenced. A Ct value of 18.68 repre-

sents 3.69 pg/μl T. cruzi DNA. Not all samples with concentrations at single-digit picogram

levels (per μl) were successful and we did not troubleshoot those with substantially lower con-

centrations based on qPCR.

(TIF)

S12 Fig. Similar read-depth distribution between separate sequencing runs. We sequenced

the same GLST pool in two separate Illumina MiSeq runs. Run 1 involved GLST as a spike to a

collaborator’s 16S amplicon library, whereby GLST reads were subsequently decontaminated

from (barcode-sharing) 16S reads by alignment to the TcI-Sylvio reference genome. GLST

libraries were sequenced alone in run 2. Read-depths at each GLST base position (purple

points) are highly correlated between the two runs (Pearson’s r = 0.93, p< 0.001). Run 1 had

higher sequencing output than run 2. Values are square-root transformed and represent the

control sample TBM_2975_CL2_rep1.

(TIF)

S13 Fig. Target coverage in control replicates confirms expectations that the GLST panel

applied in this study is unreliable for chromosome copy number estimation. We adapted

methods from Schwabl et al. 2019 [1] to derive somy estimates for each base position within

GLST amplicons. Briefly, we calculated median-read-depth of all target bases for each
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chromosome. We let the median of these chromosomal medians (the ‘inter-chromosomal

median’) represent expectations for the disomic state, estimating copy number per base posi-

tion by dividing each position’s read-depth by the inter-chromosomal median and multiplying

by two. Boxplots show median and interquartile ranges of these site-wise somy estimates for

each chromosome in TBM_2975_CL2 control replicates. TBM_2795_CL2 did not show chro-

mosomal amplifications in whole-genome analysis [1]. Not unexpectedly for a PCR-based

method, somy values estimated from GLST read-depths differ substantially among replicates

and are unrealistically high/low on many chromosomes. Estimates on chromosomes with few

GLST targets appear especially unreliable–e.g., see chromosomes 8, 28, 33, 39 and 43. These

chromosomes contain� 2 GLST targets each. Horizontal cyan lines mark y = 1.5 and y = 2.5.

(TIF)

S14 Fig. Neighbor-joining relationships among T. cruzi I samples and additional reference

clones. The tree uses seven reference clones (red font with WGS run accessions) in addition to

those from Fig 6. We genotyped these clones in silico by subsetting genome-wide variant calls

to retain only those occurring within GLST target regions (excluding primer binding sites). Of

these, 585 were biallelic and had genotypes called in all individuals. These 585 sites were used

for the Euclidean distance matrix of alternate allele counts underlying the tree. The two clones

from Colombia and Venezuela represent members of the widespread human-associated ‘TcI-

DOM’ genotype [71]. The close clustering of these two clones is consistent with previous WGS

analyses showing low diversity among geographically disparate TcIDOM isolates [52]. No other

TcI samples of the dataset appear to belong to the TcIDOM genotype. The addition of TcII (S11

and Y strain cl. 4) [14], TcIII (strain 231) [112], TcV (92–80 cl. 2) and TcVI (Tulahuen cl. 2)

(Washington University School of Medicine) demonstrates limited GLST target differentiation

between TcV and TcVI relative to that within TcI and among other DTUs.

(TIF)

S15 Fig. Alternate allele frequency distributions of heterozygous genotypes at biallelic

sites. Alternate allele frequency (i.e., the number of non-reference reads divided by the total

number of reads representing each genotype) had a mode near 50% in most samples. Distinct

and/or additional modes frequently diminished when excluding genotypes represented

by� 200 reads (black vs. blue plots). For approximately one third of samples, distinct allele fre-

quency distributions did not change after setting this exclusion. Alternate allele frequency bins

are shown on the x-axis and densities are plotted on y. Abbreviations: MRD, median read-

depth of heterozygous genotypes; hets., heterozygous genotypes.

(TIF)

S16 Fig. Alternate allele frequency distributions of heterozygous genotypes at biallelic

sites. Alternate allele frequency (i.e., the number of non-reference reads divided by the total

number of reads representing each genotype) had a mode near 50% in most samples. Distinct

and/or additional modes frequently diminished when excluding genotypes represented

by� 200 reads (black vs. blue plots). For approximately one third of samples, distinct allele fre-

quency distributions did not change after setting this exclusion. Alternate allele frequency bins

are shown on the x-axis and densities are plotted on y. Abbreviations: MRD, median read-

depth of heterozygous genotypes; hets., heterozygous genotypes.

(TIF)

S17 Fig. Alternate allele frequency distributions of heterozygous genotypes at biallelic

sites. Alternate allele frequency (i.e., the number of non-reference reads divided by the total

number of reads representing each genotype) had a mode near 50% in most samples. Distinct

and/or additional modes frequently diminished when excluding genotypes represented
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by� 200 reads (black vs. blue plots). For approximately one third of samples, distinct allele fre-

quency distributions did not change after setting this exclusion. Alternate allele frequency bins

are shown on the x-axis and densities are plotted on y. Abbreviations: MRD, median read-

depth of heterozygous genotypes; hets., heterozygous genotypes.

(TIF)

S1 Table. Details on T. cruzi-infected metagenomic triatomine gut samples from Colombia

(COL), Venezuela (VZ) and Ecuador (ECU).

(PDF)

S2 Table. GLST primer sequences. The 3’ end of each first-round PCR primer is target-spe-

cific. The 5’ end of each forward primer contains CS1. The 5’ end of each reverse primer con-

tains CS2. These sequencing primer binding sites are shown in pink. In subsequent barcoding

PCR, the reverse primer consists of 5’-CAAGCAGAAGACGGCATACGAGAT�X�TACGGT

AGCAGAGACTTGGTCT-3’, where �X� is a unique 10 nt barcode used to label each sample’s

sequence reads. The reverse barcoding primer also contains CS2. The forward barcoding

primer (5’-AATGATACGGCGACCACCGAGATCTACACTGACGACATGGTTCTA-3’)

contains CS1 and is the same for all samples.

(PDF)

S3 Table. Heterozygosity and allele frequency metrics. T. cruzi samples/clones are listed in

ascending order of total number of heterozygous genotypes (i.e., heterozygosity count in col-

umn 2). High heterozygosity counts in PARA7_CL3, CLBRENER and CHACO9_COL15 is

consistent with TcV and TcVI originating via hybridization between progenitors of TcII and

TcIII [79]. In fact, all 194–210 heterozygous sites found in these three clones match sites at

which TcII (variants called from publicly available WGS reads (run accession SRR6357355)

[14]) differs from ARMA18_CL1 (TcIII). Heterozygosity per polymorphic genotype refers to

the number of heterozygous genotypes divided by the total number of polymorphic genotypes

per sample/clone. The fifth column indicates the proportion of all GLST sites (26,042 bp) at

which reads representing > 2 alleles were detected with GATK [48] ‘HaplotypeCaller’ algo-

rithm set to ‘-ploidy 4’. This setting allows for tri- and tetra-allelic genotype calls. None

occurred.

(PDF)

S4 Table. Summary of GLST library preparation and sequencing costs. Green dots indicate

items/costs related to first-round PCR and clean-up. Blue dots indicate items/costs related to

barcoding PCR and clean-up. The cost summary does not consider qPCR materials because

we applied qPCR only for purposes of method development.

(PDF)
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