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Genome-wide association study of self-reported
walking pace suggests beneficial effects of brisk
walking on health and survival
Iain R. Timmins1, Francesco Zaccardi 2, Christopher P. Nelson3,4, Paul Franks 5, Thomas Yates2,4 &

Frank Dudbridge 1✉

Walking is a simple form of exercise, widely promoted for its health benefits. Self-reported

walking pace has been associated with a range of cardiorespiratory and cancer outcomes, and

is a strong predictor of mortality. Here we perform a genome-wide association study of self-

reported walking pace in 450,967 European ancestry UK Biobank participants. We identify

70 independent associated loci (P < 5 × 10−8), 11 of which are novel. We estimate the SNP-

based heritability as 13.2% (s.e.= 0.21%), reducing to 8.9% (s.e.= 0.17%) with adjustment

for body mass index. Significant genetic correlations are observed with cardiometabolic,

respiratory and psychiatric traits, educational attainment and all-cause mortality. Mendelian

randomization analyses suggest a potential causal link of increasing walking pace with a

lower cardiometabolic risk profile. Given its low heritability and simple measurement, these

findings suggest that self-reported walking pace is a pragmatic target for interventions aiming

for general benefits on health.
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Walking is a simple and convenient form of exercise that
is widely promoted for its benefit to physical fitness
and overall health1. The public health recommenda-

tions for walking focus particularly on increasing the time spent
walking and the number of steps walked, with walking at a faster
pace receiving less emphasis2.

However, recent studies have observed a brisk habitual walking
pace, self-reported through questionnaire or verbal interview, to
be associated with reduced risk of a range of cardiorespiratory
and cancer outcomes2,3. Most notably, self-reported habitual
walking pace has been identified as one of the strongest predictors
of all-cause mortality4, even when adjusting for the effects of
established risk factors such as body mass index (BMI)5 and other
lifestyle behaviours including smoking6.

Despite the strong associations of self-reported walking pace
with health and survival, it is unclear whether these associations
arise from common biological processes, including genetic pre-
disposition, nor whether there are causal effects of walking pace
on health outcomes. These questions can be addressed with
knowledge of the genetics of walking pace. To date, studies
examining the genetic component of walking pace have analysed
objectively measured gait speed, where speed is assessed by timing
participants to walk a distance of up to 8 m. These studies
focussed on older adults, giving insight into the biological
mechanisms underlying age-related diseases and physical mobi-
lity7,8. Genome-wide significant markers of objectively measured
gait speed were not identified in these studies, which had a
maximum sample size of 31,479.

To examine the genetic component of self-reported walking
pace, we performed a genome-wide association study (GWAS) in
UK Biobank, a prospective study of approximately 450,000 adults
of European descent, in addition to approximately 50,000 parti-
cipants of other ethnicities, aged between 40 and 69 years at
baseline9. Participants self-reported their walking pace as “slow”,
“steady/average” or “brisk”. We aimed to identify associated
genetic variants and their possible function, quantify the genetic
correlation of walking pace with other complex traits, and assess
the potential of self-reported walking pace as a modifiable health-
related exposure. Through these analyses we identify 70 genetic
loci for self-reported walking pace and show that this trait shares
its genetic architecture with other cardiometabolic risk factors,
including educational attainment and cognitive outcomes. Using
Mendelian randomisation (MR) we find evidence in favour of
causal relationships between self-reported walking pace and
several traits associated with mortality. This suggests that self-
reported walking pace may indeed be a logical target of health
interventions.

Results
GWAS of self-reported walking pace identifies 70 associated
loci. We performed a GWAS of self-reported walking pace in
450,967 individuals of European ancestry from UK Biobank (full
details in Methods). The phenotype was coded 0, 1 and 2 for self-
reported slow, steady/average and brisk walking pace, and the
characteristics of participants across these categories are sum-
marised in Supplementary Data 1. We used a linear mixed model
with covariates for age, sex, genotyping array and 20 principal
components of ancestry implemented in BOLT-LMM v2.3.310.
After quality control 10,061,374 imputed variants were analysed
(Fig. 1). We identified 144 independent significant SNPs across 70
genomic loci (Table 1), indexed by 75 lead SNPs (Supplementary
Data 2).

We estimated an inflation in the test statistics (λGC= 1.597,
mean χ2= 1.767) but, similarly to other phenotypes analysed in
UK Biobank11, the LD score intercept of 1.058 (s.e.= 0.0120)

suggests that the inflation is largely due to polygenic signal and
the large sample size rather than population substructure.

As there is a clear negative association between BMI and self-
reported walking pace (Supplementary Data 1), we were
concerned that the results may simply reflect genetic associations
with BMI, which have been extensively described12. We therefore
performed a sensitivity analysis by including BMI as a covariate in
the model (Fig. 1). Of the 70 associated loci only 15 retained
genome-wide significance following adjustment for BMI, whilst 45
loci in total maintained a suggestive significance level (P < 10−5).
In addition, using LD score regression13 we observed a strong
genetic correlation between self-reported walking pace with and
without adjustment for BMI (rg= 0.83, s.e.= 0.0073), suggesting
that much of the genetic component of walking pace is
independent of BMI.

Post-GWAS annotation, gene-based analysis and tissue-
enrichment analyses. A detailed annotation catalogue of candi-
date SNPs in the associated genomic loci is presented in Sup-
plementary Data 3. Of the 70 independently associated genomic
loci, 59 have previously reported suggestive associations for other
traits and diseases (Supplementary Data 4). The strongest over-
laps with the self-reported walking pace include 28 shared loci
with BMI, 20 loci associated with educational attainment and 13
loci associated with hand grip strength.

Using positional mapping and expression quantitative trait loci
(eQTL) mapping, we identified a total of 535 genes associated
with genome-wide significant SNPs (Supplementary Data 5). We
also performed a genome-wide gene-based association study
(GWGAS) that identified 255 genes associated with self-reported
walking pace (Supplementary Data 6), of which 152 were
implicated through positional or eQTL mapping.

The strongest self-reported walking pace signals were identified
within SLC39A8 on chromosome 4, which has previously been
associated with metabolic traits14, FTO on chromosome 16,
strongly associated with fat mass and obesity15, and TCF4 on
chromosome 18, linked to neurocognitive traits and psychiatric
disease16. Of these, SLC39A8 and TCF4 remained genome-wide
significant after adjustment for BMI, while the association of FTO
was attenuated as expected but remained nominally associated
(Supplementary Data 2).
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Fig. 1 Miami plot of self-reported walking pace GWAS results with and
without adjustment for BMI. The x-axis is ordered by chromosome and
base position. On the y-axis the −log10(P-value) is shown, where P-values
are from a Wald test in the BOLT-LMM mixed model test of association
(N= 450,967 individuals). A genome-wide significance threshold of P <
5 × 10−8 is indicated by the red dotted line.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-01357-7

2 COMMUNICATIONS BIOLOGY |           (2020) 3:634 | https://doi.org/10.1038/s42003-020-01357-7 | www.nature.com/commsbio

www.nature.com/commsbio


T
ab

le
1
S
ev

en
ty

in
de

pe
nd

en
t
lo
ci

as
so
ci
at
ed

w
it
h
se
lf
-r
ep

or
te
d
w
al
ki
ng

pa
ce

at
ge

no
m
e-
w
id
e
si
gn

ifi
ca
nc
e
(P

<
5
×
10

−
8
).

S
N
P

C
hr

P
os
it
io
n

Im
pl
ic
at
ed

ge
ne

Fu
nc
ti
on

EA
/

N
EA

M
A
F

S
el
f-
re
po

rt
ed

w
al
ki
ng

pa
ce

S
el
f-
re
po

rt
ed

w
al
ki
ng

pa
ce

ad
ju
st
ed

fo
r
B
M
I

N
ov

el

B
et
a

P
-v
al
ue

B
et
a

P
-v
al
ue

rs
12
73

9
9
9
9

1
32

,2
0
7,
9
9
0

A
D
G
RB

2
In
tr
on

ic
G
/A

0
.1
7

0
.0
11
6

3.
4
4
×
10

−
12

0
.0
0
8
4

1.
58

×
10

−
7

N
o

rs
11
38

25
4
10

1
4
0
,0
57

,5
4
3

PA
BP

C
4

In
te
rg
en

ic
A
/G

0
.2
2

0
.0
0
9
8

5.
52

×
10

−
11

0
.0
0
6
8

1.
8
7
×
10

−
6

N
o

rs
6
9
9
78

5
1

11
7,
20

0
,7
50

IG
SF
3

In
tr
on

ic
G
/A

0
.2
4

−
0
.0
0
8
2

2.
29

×
10

−
8

−
0
.0
0
6
6

2.
9
4
×
10

−
6

Y
es

rs
11
26

4
30

2
1

15
5,
0
28

,5
22

A
D
A
M
15

In
tr
on

ic
G
/A

0
.4
7

0
.0
0
71

2.
53

×
10

−
8

0
.0
0
55

5.
31

×
10

−
6

Y
es

rs
11
54

8
20

0
1

15
6
,2
9
0
,6
56

C
C
T3

Ex
on

ic
T
/C

0
.0
7

0
.0
15
6

5.
51

×
10

−
10

0
.0
11
1

4
.6
7
×
10

−
6

N
o

rs
10
79

79
9
9

1
18
5,
13
7,
6
28

SW
T1

In
tr
on

ic
C
/T

0
.4
1

−
0
.0
0
72

1.
4
2
×
10

−
8

−
0
.0
0
54

8
.8
4
×
10

−
6

N
o

rs
12
12
70

73
1

24
3,
6
14
,7
0
5

SD
C
C
A
G
8

In
tr
on

ic
C
/G

0
.1
1

−
0
.0
14
1

1.
4
0
×
10

−
12

−
0
.0
11
5

1.
6
0
×
10

−
9

N
o

rs
15
31
13
3

2
4
6
,8
4
3,
6
31

PI
G
F

In
tr
on

ic
A
/G

0
.4
2

−
0
.0
0
71

2.
4
6
×
10

−
8

−
0
.0
0
51

2.
79

×
10

−
5

N
o

rs
13
0
0
54

9
5

2
6
0
,1
57

,0
9
7

BC
L1
1A

nc
R
N
A

T
/G

0
.4
2

0
.0
0
72

1.
16

×
10

−
8

0
.0
0
54

1.
0
7
×
10

−
5

N
o

rs
55

6
8
0
12
4

2
10
5,
9
8
4
,6
24

FH
L2

nc
R
N
A

C
/T

0
.1
6

0
.0
10
2

2.
57

×
10

−
9

0
.0
0
72

1.
0
9
×
10

−
5

N
o

rs
17
6
9
8
6
30

2
13
5,
6
9
1,
72

5
C
C
N
T2

In
tr
on

ic
A
/G

0
.1
8

−
0
.0
0
9
7

3.
12

×
10

−
9

−
0
.0
0
74

1.
9
2
×
10

−
6

N
o

rs
50

26
76

0
2

14
4
,1
37

,3
53

A
RH

G
A
P1
5

nc
R
N
A

A
/G

0
.1
7

−
0
.0
0
9
6

1.
6
4
×
10

−
8

−
0
.0
0
8
3

3.
0
2
×
10

−
7

N
o

rs
20

54
0
79

2
22

6
,4
8
6
,7
52

N
Y
A
P2

In
tr
on

ic
C
/T

0
.3
2

−
0
.0
0
8
4

4
.3
0
×
10

−
10

−
0
.0
0
6
9

6
.6
8
×
10

−
8

N
o

rs
6
22

4
6
31
4

3
9
,5
0
4
,0
9
9

SE
TD

5
In
tr
on

ic
G
/A

0
.1
0

0
.0
11
4

4
.1
0
×
10

−
8

0
.0
0
73

2.
52

×
10

−
4

N
o

rs
29

20
50

3
3

12
,3
24

,2
30

PP
A
RG

In
te
rg
en

ic
C
/T

0
.2
9

−
0
.0
0
78

2.
9
1
×
10

−
8

−
0
.0
0
51

1.
4
9
×
10

−
4

N
o

rs
22

8
0
4
0
6

3
4
9
,9
4
1,
4
36

M
ST

1R
U
T
R
5

G
/A

0
.4
9

0
.0
10
1

6
.1
0
×
10

−
16

0
.0
0
4
8

6
.8
1
×
10

−
5

N
o

rs
6
79

8
9
4
1

3
52

,8
9
3,
4
6
5

ST
IM

A
TE

In
tr
on

ic
C
/T

0
.3
0

0
.0
0
8
6

3.
32

×
10

−
10

0
.0
0
51

8
.0
9
×
10

−
5

N
o

rs
8
30

6
27

3
71
,6
75

,2
70

FO
X
P1

In
te
rg
en

ic
G
/A

0
.4
2

−
0
.0
0
76

2.
9
3
×
10

−
9

−
0
.0
0
59

1.
0
5
×
10

−
6

N
o

rs
11
4
54

76
9
0

3
8
8
,1
0
0
,2
10

C
G
G
BP

1
In
te
rg
en

ic
A
/G

0
.1
2

0
.0
11
0

1.
38

×
10

−
8

0
.0
0
6
3

5.
53

×
10

−
4

N
o

rs
6
76

32
9
2

3
12
9
,0
4
4
,7
0
5

H
1F
X

nc
R
N
A

A
/G

0
.2
2

−
0
.0
0
9
8

5.
8
1
×
10

−
11

−
0
.0
0
9
8

1.
19

×
10

−
11

N
o

rs
9
8
4
4
6
6
6

3
13
5,
9
74

,2
16

PC
C
B

U
T
R
5

G
/A

0
.2
4

0
.0
0
8
1

2.
9
7
×
10

−
8

0
.0
0
4
7

7.
76

×
10

−
4

N
o

rs
79

8
75

0
4

1,
71
7,
17
1

TM
EM

12
9

In
te
rg
en

ic
G
/A

0
.3
8

0
.0
0
72

1.
8
2
×
10

−
8

0
.0
0
6
5

8
.8
4
×
10

−
8

N
o

rs
36

23
0
7

4
3,
24

1,
8
4
5

H
TT

U
T
R
3

C
/T

0
.0
8

0
.0
14
6

1.
11
×
10

−
9

0
.0
0
9
4

3.
75

×
10

−
5

N
o

rs
72

6
36

70
0

4
6
8
,0
19
,5
0
9

C
EN

PC
In
te
rg
en

ic
T
/C

0
.1
7

0
.0
0
9
2

3.
57

×
10

−
8

0
.0
0
79

7.
9
2
×
10

−
7

N
o

rs
13
10
73

25
4

10
3,
18
8
,7
0
9

SL
C
39

A
8

Ex
on

ic
C
/T

0
.0
7

0
.0
24

0
6
.3
1
×
10

−
24

0
.0
15
3

2.
22

×
10

−
11

N
o

rs
11
52

0
22

26
4

13
3,
8
0
2,
75

7
PC

D
H
10

nc
R
N
A

A
/G

0
.0
1

−
0
.0
4
8
9

1.
6
2
×
10

−
8

−
0
.0
39

9
1.
4
8
×
10

−
6

Y
es

rs
57

8
0
0
8
57

4
14
0
,8
6
3,
36

5
M
A
M
L3

In
tr
on

ic
A
/C

0
.3
7

−
0
.0
0
8
5

6
.3
8
×
10

−
11

−
0
.0
0
56

6
.0
2
×
10

−
6

N
o

rs
4
13
4
9
4
3

6
20

,4
8
3,
4
0
7

E2
F3

In
tr
on

ic
C
/T

0
.2
0

−
0
.0
0
9
1

4
.9
9
×
10

−
9

−
0
.0
0
79

1.
6
2
×
10

−
7

N
o

rs
9
36

6
6
51

6
26

,3
36

,6
9
6

BT
N
3A

2
In
te
rg
en

ic
G
/T

0
.4
9

−
0
.0
0
9
3

2.
0
0
×
10

−
13

−
0
.0
0
76

3.
0
4
×
10

−
10

N
o

rs
10
6
18
0
1

6
33

,2
8
2,
33

8
Z
BT

B2
2

U
T
R
3

G
/A

0
.1
9

0
.0
0
8
7

4
.6
1
×
10

−
8

0
.0
0
52

6
.1
0
×
10

−
4

N
o

rs
20

52
6
2

6
34

,5
6
3,
16
4

C
6o
rf
10
6

In
tr
on

ic
A
/G

0
.2
7

0
.0
0
8
8

4
.1
1
×
10

−
10

0
.0
0
35

9
.2
0
×
10

−
3

N
o

rs
4
71
52

0
8

6
50

,8
29

,4
71

TF
A
P2
B

In
te
rg
en

ic
A
/G

0
.2
5

0
.0
0
8
9

1.
0
4
×
10

−
9

0
.0
0
33

1.
9
4
×
10

−
2

N
o

rs
11
15
29

8
9

6
9
6
,9
36

,0
6
1

U
FL
1

nc
R
N
A

C
/T

0
.3
1

0
.0
0
8
0

3.
13

×
10

−
9

0
.0
0
6
2

1.
6
9
×
10

−
6

Y
es

rs
4
8
39

8
9
8

6
9
7,
54

6
,7
59

K
LH

L3
2

In
tr
on

ic
G
/A

0
.1
1

−
0
.0
13
0

1.
9
5
×
10

−
10

−
0
.0
10
6

5.
58

×
10

−
8

N
o

rs
78

0
4
77

4
7

6
6
,9
0
3,
0
28

TY
W
1

In
te
rg
en

ic
A
/G

0
.1
9

−
0
.0
0
8
9

3.
24

×
10

−
8

−
0
.0
0
8
1

1.
4
9
×
10

−
7

Y
es

rs
10
4
52

73
8

7
6
9
,4
53

,7
14

A
U
TS

2
In
tr
on

ic
A
/G

0
.3
2

0
.0
0
8
5

2.
9
9
×
10

−
10

0
.0
0
6
3

8
.2
3
×
10

−
7

N
o

rs
77

9
53

9
4

7
11
3,
56

0
,6
0
7

PP
P1
R3

A
In
tr
on

ic
T
/A

0
.3
8

−
0
.0
0
9
0

2.
4
3
×
10

−
12

−
0
.0
0
59

1.
57

×
10

−
6

N
o

rs
12
4
31
8
4

10
21
,9
31
,9
37

M
LL
T1
0

In
tr
on

ic
T
/C

0
.3
2

0
.0
0
9
6

8
.8
1
×
10

−
13

0
.0
0
59

5.
29

×
10

−
6

N
o

rs
79

24
0
36

10
6
5,
19
1,
6
4
5

JM
JD
1C

In
tr
on

ic
G
/T

0
.5
0

−
0
.0
0
9
3

1.
15

×
10

−
13

−
0
.0
0
6
8

1.
19

×
10

−
8

N
o

rs
24

39
8
23

10
9
9
,7
78

,2
26

C
RT

A
C
1

In
tr
on

ic
A
/G

0
.4
5

0
.0
0
72

1.
12

×
10

−
8

0
.0
0
36

2.
9
2
×
10

−
3

N
o

rs
10
8
8
36

18
10

10
3,
11
7,
6
53

BT
RC

In
tr
on

ic
G
/A

0
.3
7

−
0
.0
0
8
2

4
.1
0
×
10

−
10

−
0
.0
0
6
3

4
.1
1
×
10

−
7

N
o

rs
4
10
9
29

2
10

12
6
,7
10
,6
54

C
TB

P2
In
tr
on

ic
G
/A

0
.4
9

−
0
.0
0
73

7.
8
2
×
10

−
9

−
0
.0
0
4
9

4
.0
2
×
10

−
5

N
o

rs
11
0
39

32
4

11
4
7,
6
6
5,
6
8
6

M
TC

H
2

In
te
rg
en

ic
G
/A

0
.4
0

0
.0
10
0

3.
9
4
×
10

−
15

0
.0
0
53

1.
4
4
×
10

−
5

N
o

rs
10
75

0
0
25

11
11
3,
4
24

,0
4
2

D
RD

2
In
te
rg
en

ic
C
/T

0
.3
2

0
.0
0
8
6

2.
0
3
×
10

−
10

0
.0
0
75

6
.9
9
×
10

−
9

N
o

rs
10
8
6
22

20
12

8
1,
4
30

,5
9
9

A
C
SS
3

In
tr
on

ic
T
/G

0
.3
2

−
0
.0
0
8
4

2.
50

×
10

−
10

−
0
.0
0
72

1.
0
9
×
10

−
8

N
o

rs
6
53

9
77

1
12

8
4
,0
77

,4
4
3

TM
TC

2
In
te
rg
en

ic
C
/T

0
.3
6

0
.0
0
8
1

7.
51

×
10

−
10

0
.0
0
6
5

2.
33

×
10

−
7

N
o

rs
6
19
54

9
74

12
12
3,
0
74

,1
6
9

K
N
TC

1
In
tr
on

ic
T
/C

0
.2
6

0
.0
0
8
7

1.
76

×
10

−
9

0
.0
0
4
5

9
.7
6
×
10

−
4

N
o

rs
12
8
8
37

8
8

14
33

,3
0
3,
54

0
A
K
A
P6

In
te
rg
en

ic
C
/T

0
.4
6

0
.0
0
74

2.
4
3
×
10

−
9

0
.0
0
4
1

5.
0
3
×
10

−
4

N
o

rs
8
0
0
51
31

14
33

,5
9
1,
10
5

N
PA

S3
In
tr
on

ic
G
/C

0
.3
4

−
0
.0
0
73

4
.6
9
×
10

−
8

−
0
.0
0
76

2.
0
5
×
10

−
9

Y
es

rs
8
0
10
77

3
14

4
6
,9
56

,8
6
3

RP
L1
0
L

nc
R
N
A

T
/C

0
.3
8

0
.0
0
78

1.
12

×
10

−
9

0
.0
0
51

2.
8
9
×
10

−
5

N
o

rs
4
55

8
38

4
5

14
57

,8
58

,1
9
4

N
A
A
30

Ex
on

ic
C
/G

0
.0
3

0
.0
20

5
1.
0
3
×
10

−
8

0
.0
18
2

1.
0
2
×
10

−
7

Y
es

rs
8
0
11
8
70

14
8
0
,1
73

,3
9
7

N
RX

N
3

nc
R
N
A

G
/A

0
.2
9

0
.0
0
77

3.
16

×
10

−
8

0
.0
0
6
3

2.
4
8
×
10

−
6

Y
es

rs
74

9
25

6
5

14
10
0
,9
8
5,
57

7
W
D
R2

5
In
tr
on

ic
G
/T

0
.3
9

0
.0
0
78

9
.3
7
×
10

−
10

0
.0
0
76

7.
53

×
10

−
10

N
o

rs
11
6
36

6
0
0

15
75

,6
0
9
,4
8
8

A
N
P3
2B

P1
In
te
rg
en

ic
G
/A

0
.1
3

0
.0
12
2

9
.7
3
×
10

−
11

0
.0
10
7

2.
74

×
10

−
9

Y
es

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-01357-7 ARTICLE

COMMUNICATIONS BIOLOGY |           (2020) 3:634 | https://doi.org/10.1038/s42003-020-01357-7 | www.nature.com/commsbio 3

www.nature.com/commsbio
www.nature.com/commsbio


To prevent against the potential pleiotropic effects of adiposity-
related SNPs in the gene analysis, we further assessed genes that
remained prioritised following adjustment for BMI. Of the 152
genes implicated by both the gene mapping and gene-based
analyses, 78 remained significantly associated with self-reported
walking pace following BMI adjustment. These genes included
GDF5, ACBD4, H1FX, PTPN9, FAM83C and UQCC1 which have
previously been associated with height17–20; MMP24, NCOA6,
PIGU, GSS and PLCD3, associated with lean body mass21,22;
MAPT, TRPC4AP, DCAKD, GGT7 and PROCR, associated with
heel bone mineral density23, and several genes linked to
educational attainment24 and cognitive function25 (SDCCAG8,
BTN3A2, TCF4, HIST1H4H, ABT1, TXNL1, NYAP2 and
ZNF322).

We assessed whether tissue types from the GTEx database26

were enriched for differences in self-reported walking pace. Genes
that were associated with self-reported walking pace had
increased expression in the brain (P= 9.6 × 10−4) and pituitary
(P= 3.1 × 10−6), with tissue-specific enrichments found in the
cerebellar hemisphere (P= 5.4 × 10−7) and cerebellum (P= 2.1 ×
10−6) (Supplementary Data 7).

Interpretable SNP-heritability estimates. To provide an inter-
pretable heritability estimate for an ordinal outcome, we para-
meterised self-reported walking pace on the liability scale. Self-
reported walking pace on the observed scale y takes the values 0, 1
and 2 with frequencies πj for the three ordered categories. The
underlying latent variable l ~N(0, 1) is related to the observed
scale through thresholds t1 and t2 in the equation

y ¼ 1 l>t1f g þ 1 l>t2f g:
The heritabilities on the observed and liability scales are related

using the result

h2l ¼ h2o
V0

ðz1 þ z2Þ2
ð1Þ

derived by Gianola27, where zj is the standard normal density
at threshold tj and Vo = ∑3k=1 k2 πk −(∑3k=1 kπk)2 (see
Supplementary Note 1).

We used BOLT-REML28 adjusting for age, sex, genotyping
array and 20 principal components to first estimate the SNP-
heritability on the observed scale. Then, using Eq. (1) to convert
between scales, we estimated the SNP-heritability for self-
reported walking pace on the liability scale as 13.2% (s.e.=
0.21%). With BMI included as a covariate, the heritability is
reduced to 8.9% (s.e.= 0.17%).

Genetic overlap with other traits and diseases. We assessed
whether self-reported walking pace has a shared genetic basis
with other complex traits, which may reflect common biological
mechanisms or causal effects in either direction. We examined
genetic correlations rg between self-reported walking pace and a
range of 53 traits using LD score regression13. The traits were
assorted into categories including anthropometric traits, cardio-
metabolic traits, cognition and educational attainment, and
aging-related traits. We observed significant genetic correlations
with 39 traits based on a Bonferroni corrected threshold (P <
9.4 × 10−4), with results summarised in Fig. 2 and Supplementary
Data 8.

The genetic architecture of self-reported walking pace overlaps
highly with traits relating to adiposity (BMI, rg=−0.52, P= 4.7 ×
10−179), education and cognition (years of schooling, rg= 0.51,
P= 3.4 × 10−170; intelligence rg= 0.34, P= 3.1 × 10−72) and
longevity (parentsʼ age at death, rg= 0.54, P= 3.9 × 10−12).
Overall, traits related to cardiometabolic risk, lung function,T
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psychiatric disease and muscular strength show genetic correla-
tions with self-reported walking pace. The genetic correlations also
support many of the phenotypic associations that have been
observed across categories of walking pace in external cohorts29,30.
Traits that remained genetically correlated with self-reported
walking pace after adjusting for BMI included hand grip strength,
measures of lung function such as forced vital capacity (FVC) and
forced expiratory volume in 1 s (FEV1), years of schooling,
intelligence, insomnia and depressive symptoms. Genetic correla-
tions with adiposity-related traits and glycemic traits were
attenuated following adjustment for BMI.

Polygenic risk score association with all-cause mortality. We
explored whether the strong associations that exist between self-
reported walking pace and survival2 can be explained partly
through genetic predisposition. Cox proportional hazard models
were used to test the association of genetically predicted walking
pace, estimated through polygenic risk scores (PRS) with a range
of P-value thresholds, and all-cause mortality. We conducted our
analyses using sex-stratified GWAS results for self-reported
walking pace (see “Methods”) to control for sample overlap.

We observed a significant association between genetic variants
associated with self-reported walking pace and all-cause mortality
in males (PRS with P < 10−2; hazard ratio (HR)= 0.95; 95% CI:
0.92–0.97; P= 1.93 × 10−5) and females (PRS with P < 10−2;
HR= 0.95; 95% CI 0.92–0.98; P= 2.70 × 10−3) (Table 2). We
performed further analyses to examine the possibility of BMI
acting as a mediator of the associations. When we adjusted for BMI
in the model, the association with all-cause mortality remained
significant both in males (PRS with P < 10−2; HR= 0.96; 95% CI
0.93–0.98; P= 4.40 × 10−4) and females (PRS with P < 10−2;
HR= 0.95; 95%CI 0.92–0.98; P= 2.24 × 10−3), which suggests
the effect of the genetic variants on mortality is partly independent
of BMI.

Mendelian randomisation. We performed MR to test for cred-
ible causal associations between walking pace and genetically

correlated traits. We tested 21 traits for causal relationships with
self-reported walking pace at a Bonferroni significance threshold
of P < 2.3 × 10−3, using only GWAS data from large scale, pub-
lished studies of European ancestry that do not include partici-
pants from the UK Biobank cohort. The 75 lead SNPs for self-
reported walking pace were used as genetic instruments within a
two-sample MR, with walking pace as the exposure.

Genetically predicted self-reported walking pace was associated
with a range of cardiometabolic, respiratory, psychiatric and
sleeping traits (Supplementary Data 9). An increase in genetically
predicted walking pace is associated with lower BMI (βIVW=
−1.37, PIVW= 6.7 × 10−12), lower risk of coronary artery disease
(odds ratio (OR)= 0.34, PIVW= 3.1 × 10−8), higher HDL cho-
lesterol levels (βIVW= 0.95, PIVW= 3.3 × 10−9) and higher FEV1
(βIVW= 0.35, PIVW= 2.9 × 10−5). We found no evidence of
directional pleiotropy by testing the intercept of MR-Egger
analysis (Supplementary Data 9).

To examine the potential pleiotropic effects of adiposity-related
SNPs on the MR results, we conducted two sensitivity analyses
accounting for the effects of BMI.

Firstly, largely similar results were found when we excluded 28
SNPs that were previously associated with BMI (Supplementary
Data 10). Similar magnitude associations remained between
increased genetically predicted walking pace and lower risk of
coronary artery disease (OR= 0.37, PIVW= 1.5 × 10−5) and
higher FEV1 (βIVW= 0.33, PIVW= 1.6 × 10−3), though a weaker
effect was observed on lowering BMI (βIVW=−0.55,
PIVW= 2.1 × 10−6). Associations were substantially weakened
following the exclusion of adiposity-related SNPs between
genetically predicted walking pace and glycemic traits such as
fasting insulin, HOMA-IR (homeostasis model assessment of
insulin resistance index) and type 2 diabetes, suggesting a
contribution of pleiotropy that confounds the MR results in
these cases.

Secondly, we included both self-reported walking pace and
BMI in a multivariable MR (Supplementary Data 11). After the
inclusion of BMI as an exposure, only the association between
genetically predicted walking pace and waist-to-hip ratio
remained significant. This may suggest that the observed
associations found between genetically predicted walking pace
on lower cardiovascular risk and improved lung function are
pleiotropically mediated through BMI. Alternatively, because the
multivariable MR tests the direct causal effect of walking pace
while holding BMI constant, the analysis may have limited power
to detect such an effect when the causal effect of walking pace is
substantially mediated through BMI.

Discussion
We present a GWAS of self-reported walking pace using data
from 450,967 individuals of European ancestry in the UK Bio-
bank cohort. We identified 70 independent genomic loci asso-
ciated with self-reported walking pace, of which 59 have
previously reported associations in published GWAS for other
traits and diseases, and 11 are currently unique to self-reported
walking pace.

We estimated the SNP-heritability of self-reported walking
pace as 13.2% on the liability scale, showing only a modest genetic
component, suggesting that self-reported walking pace is largely
modifiable. We showed that there are many significant genetic
correlations with cardiometabolic traits and diseases, including
BMI, coronary heart disease, type 2 diabetes and lipid levels, with
respiratory traits and other lifestyle behaviours such as sleep.
These could be due either to causal associations between self-
reported walking pace and those traits, in either direction, or
through pleiotropic effects whereby genetic variants influence
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Psychiatric
Other
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Self−reported walking pace 

 adjusted for BMI
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Fig. 2 Summary of significant genetic correlations between self-reported
walking pace and other phenotypes. rg, genetic correlation estimated by
LD score regression. Horizontal bars represent 95% confidence intervals
for the rg estimates. A Bonferroni threshold was used to test 53 phenotypes
(P < 9.4 × 10−4). Complete results are shown in Supplementary Data 8.
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multiple phenotypes through possibly independent biological
pathways31. We showed also that polygenic scores predicting self-
reported walking pace are inversely associated with all-cause
mortality risk, and this association is independent of BMI. Future
work examining the genetic relationship between walking pace
and survival could focus on the biological mechanisms underlying
these associations.

By performing MR analyses we provide evidence that a
genetically elevated self-reported walking pace is linked to a lower
cardiometabolic risk profile, suggesting that increasing walking
pace could act as a beneficial intervention for a range of health
outcomes. This is consistent with findings from randomised
controlled trials in cardiovascular disease patients, which have
shown that exercise-based interventions have beneficial effects on
survival32. Our results suggest that such interventions may also be
effective in the general population of adults. MR depends upon a
number of assumptions to draw causal inferences, with many
methods available to vary the required assumptions31. An
exhaustive analysis of every causal association is beyond the scope
of this study, but we have allowed for the impact of pleiotropy
with MR-Egger and weighted median methods, and further
sensitivity analyses to examine the effect of adiposity-related
SNPs. As self-reported walking pace is a general indicator of an
individual’s perceived health, there are likely to be many different
biological and psychological mechanisms underlying it. The
specific mechanisms are unclear though, as is the extent to which
they might invalidate the MR results. By using a range of MR
estimators, which depend on different, though related sets of
assumptions, we can increase the reliability of our causal infer-
ences. We believe that the ensemble of significant MR results
across phenotypes, with effects in biologically plausible directions,
is sufficient to conclude with confidence that increasing self-
reported walking pace would cause certain aspects of health to
improve, and thus is likely to be a suitable target for intervention.
In addition, because the phenotype is a self-reported measure, our
results may also support a causal link between positive self-
perceptions of health and overall health status.

To better understand the relationship between self-reported
walking pace and BMI we performed several sensitivity analyses.
The high genetic correlation between self-reported walking pace
with and without adjustment for BMI (rg= 0.83, s.e.= 0.0073)
suggests a substantial component of the genetic architecture of
self-reported walking pace is independent of BMI. This was
supported by genetic correlations between self-reported walking
pace and a range of complex traits and diseases that were largely
robust to adjustment for BMI. In comparison with the genome-

wide correlations, a more marked effect of BMI was noted at the
genomic loci associated with self-reported walking pace. Only 15
of the 70 loci survived the adjustment for BMI at the genome-
wide significance level, whilst 45 loci in total retained a suggestive
level of P < 10−5. The attenuation of top hits may partly reflect a
mediated effect of BMI on the causal pathway between genotype
and self-reported walking pace. To explore this, we performed
multivariable MR which is a valid form of mediation analysis33.
Following the inclusion of BMI as a secondary exposure alongside
self-reported walking pace, we found that across a range of out-
comes there was weak evidence of an indirect causal effect
(independent of BMI) of self-reported walking pace. One possible
explanation to note however for this finding is the limited sta-
tistical power available to accurately detect both direct and
indirect causal effects in a multivariable MR setting.

We found that a self-reported walking pace has a strong genetic
overlap with increased years in education and greater intelligence.
Hypotheses have been proposed to explain the association
between walking pace and both educational and cognitive out-
comes34. Firstly, educational attainment may be associated with
positive lifestyle choices regarding physical activity and diet, and
in addition, a higher education is associated with a greater ability
to self-manage health such as by using health services effectively.
The importance of walking pace as a measure of overall health
status is further supported by previous evidence showing this
phenotype is correlated highly with objective measures of physical
fitness1. A faster walking pace may also reflect psychological
factors relating to increased motivation and internal “drive”,
which are plausibly linked to educational attainment and cogni-
tion. In addition, it has been observed that in old age there is a
parallel decline of walking pace and cognition, and our results
may provide some evidence of a genetic basis to this association.
Future work could explore this further through joint analysis of
walking pace and age-related neurological diseases associated
with loss of cognition.

A strong genetic correlation was also observed between self-
reported walking pace and hand grip strength, a proxy for overall
muscle strength35. In addition, 13 genome-wide significant loci
for hand grip strength overlapped with our 70 self-reported
walking pace loci. Similar to walking pace, hand grip strength is
known to decline with age, whilst increasing muscular strength
has been shown to improve functional capacity36. These results
indicate a shared genetic basis to the associations that both hand
grip strength and walking pace display towards age-related phe-
notypes. There is however potential for pleiotropic effects that act
through the same genetic variants on distinct biological pathways,

Table 2 Association between genetically determined self-reported walking pace and all-cause mortality, stratified by sex. PRS,
polygenic risk score. Hazard ratios are per 1 standard deviation increased PRS.

Association with mortality Number of SNPs Hazard ratio 95% CI P-value

Males (N= 186,015)
PRS (P < 10−2) 24,982 0.95 0.92–0.97 1.93 × 10−5

PRS (P < 10−3) 4280 0.96 0.93–0.98 3.36 × 10−4

PRS (P < 10−4) 841 0.96 0.94–0.98 1.64 × 10−3

PRS (P < 5 × 10−5) 523 0.96 0.93–0.98 4.65 × 10−4

PRS (P < 8 × 10−8) 16 0.98 0.96–1.01 0.17
PRS (P < 10−2) with adj. for BMI 24,982 0.96 0.93–0.98 4.40 × 10−4

Females (N= 223,646)
PRS (P < 10−2) 23,851 0.95 0.92–0.98 2.70 × 10−3

PRS (P < 10−3) 3831 0.96 0.93–0.99 1.51 × 10−2

PRS (P < 10−4) 689 0.95 0.92–0.98 1.16 × 10−3

PRS (P < 5 × 10−5) 420 0.95 0.92–0.98 1.26 × 10−3

PRS (P < 8 × 10−8) 12 0.97 0.94–1.00 3.27 × 10−2

PRS (P < 10−2) with adj. for BMI 23,851 0.95 0.92–0.98 2.24 × 10−3
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and further work is needed on the biological mechanisms relating
to the self-reported walking pace loci to understand their rele-
vance to muscular strength.

Further work may also include bidirectional MR analyses and
mediation analyses to understand the relative importance of
walking pace and adiposity on health and survival outcomes. The
release of detailed data acquired by accelerometer devices on a
subset of participants37 presents further opportunities to compare
self-reported walking pace with objective measures of physical
activity at both a phenotypic and genotypic level.

Our analysis revealed challenges that are introduced when
analysing an ordered categorical phenotype. Rather than the
classical modelling approach of an ordinal logistic regression, we
assigned weights to the ordered categories and used a linear
mixed model. The linear scale makes strong assumptions about
the distances between the categories of self-reported walking pace.
Whilst recently developed ordinal logistic regression methods
have been applied to non-imputed data at UK Biobank scale38,
they are not yet computationally tractable on densely imputed
GWAS datasets. Analysing ordered categorical variables on the
linear scale proves problematic when interpreting SNP effect
sizes, SNP-heritability and causal effect estimates in MR. We
converted heritability estimates from the observed scale to the
liability scale, which is more interpretable as it models self-
reported walking pace as a continuous trait. This unobserved
latent scale is not the actual walking pace, which can be measured
under controlled conditions7, but reflects genetic and environ-
mental factors that influence the self-reported category.

There are several limitations to note. First, the associated loci
must be accepted tentatively until validated in an independent
cohort. We were specifically interested in the self-reported phe-
notype owing to its ease of measurement, but while similar
measures are available in some prospective cohorts, we were
unable to obtain the relevant data during the course of this study.
In particular, it is important to confirm the results in a separate
demographic, since the UK Biobank participants are known to be
healthier than the general population39. Second, self-reported
walking pace is known to be a crude measure in comparison to
objective assessments, which raises the possibility of mis-
classification bias40. In particular, it is thought that self-reported
walking pace reflects both actual walking pace in daily life as well
as a sense of self-rated health41,42. Nonetheless, previous studies
have indicated a reasonably close association exists between self-
reported and objectively measured usual walking pace43,44, and
work by Murtagh et al.45 showed that issuing a simple instruction
to walk “briskly” prompted more vigorous activity in participants
across all fitness levels. Third, this work is limited in scope by the
lack of questionnaire data on the specific context of the walking
behaviour, as walking pace is known to differ across domains (e.g.
exercise, travel, domestic, leisure)46.

Therefore, the genetic associations and possible causal effects
we report here may not hold for more specific measures of gait.
Nevertheless, the strong association of self-reported walking pace
with health outcomes and mortality warrants study in its own
right. Despite the inherent limitations described, our results
highlight the value of studying subjective, self-reported measures
of physical activity. We are able to utilise a simple measure of self-
reported walking pace to infer that walking at a speed that is brisk
in one’s own estimation has important benefits to health and
longevity. Arguably this could provide the basis for health advice
that is easier to understand and follow compared to walking at or
above a precisely defined speed. Nevertheless, further investiga-
tion is needed into the generalisability of our findings to inter-
ventions aimed at increasing objectively assessed walking pace.

In conclusion, we have identified 70 genetic loci associated with
self-reported walking pace and shown that its strong associations

with cardiorespiratory and mortality outcomes is partly explained
by genetic correlations. MR arguments augment the results of
trials on cardiovascular patients32 to suggest that self-reported
walking pace may be a beneficial target for intervention in the
general population. Given its ease of measurement, by definition
by individuals themselves, it may be entirely feasible to develop
pragmatic interventions on walking pace that have beneficial
effects on health.

Methods
Study population. The UK Biobank study is a large cohort of 501,726 British
residents aged between 40 and 69 at recruitment. The participants attended
assessment visits across 23 study centres in the UK, through which extensive
phenotypic data were collected. Participants provided informed consent to parti-
cipate, and the UK Biobank study has ethics approval from the North West
National Research Ethics Committee (REC reference 11/NW/0274). This work has
been conducted under UK Biobank application 33266.

Genotype, imputation and quality control. The initial genotyping, imputation
and quality control were conducted centrally by the UK Biobank, and have been
described in detail elsewhere9. Genotyping was performed using the UK BiLEVE
Axiom Array and the UK Biobank Axiom arrays, with imputation to the Haplotype
Reference Consortium panel47 which has approximately 96 million variants.

Phenotype. Self-reported walking pace was ascertained using the ACE touchscreen
question “How would you describe your usual walking pace?” with response
options of “slow”, “steady/average”, “brisk”, “None of the above” or “Prefer not to
answer”. If the participant activated the “Help” button they were shown the
message: “Slow pace is defined as less than 3 miles per hour. Steady average pace is
defined as between 3-4 miles per hour. Fast pace is defined as more than 4 miles
per hour.” We excluded participants whose answers were “None of the above”
(n= 1,426) or “Prefer not to answer” (n= 519). The low numbers of these
exclusions suggest minimal impact of any informative missingness. The responses
“slow”, “steady/average” and “brisk” were coded as 0, 1 and 2 for our analyses.

Genome-wide association analysis. Association analysis was carried out in a set
of 450,967 individuals of European ancestry with non-missing phenotypes, where
ancestry was defined by the K-means clustering of the first two principal com-
ponents48. A linear mixed non-infinitesimal model for self-reported walking pace
was implemented in BOLT-LMM v2.3.210 under an additive genetic model. The
model included covariates for age, sex, genotyping array and the first 20 principal
components of ancestry. We additionally carried out a sensitivity analyses to
explore the effect of using BMI as a covariate. Following association analysis, only
biallelic SNPs were retained with a minor allele frequency ≥0.005, imputation
quality ≥0.60 and maximum per SNP missingness of 10%. In total, 10,061,374
variants were analysed. To estimate the linear mixed model parameters further QC
was performed to remove variants with a minor allele frequency <1% and deviation
from Hardy-Weinberg equilibrium (P < 10−6).

Genomic risk loci were derived using the Functional Mapping and Annotation
of genetic associations (FUMA) platform49. Independent significant SNPs were
defined using a genome-wide significance threshold of P < 5 × 10−8, independent
from each other at r2 < 0.6. Lead SNPs were further identified as a subset of the
independent significant SNPs that are in linkage disequilibrium (LD) at r2 < 0.1.
Genomic loci were defined by merging lead SNPs that are located within 250 kb of
each other.

Interaction effects for the lead SNPs by sex were investigated by carrying out the
BOLT-LMM analyses stratified by sex. The strata were ensured to be approximately
independent by excluding individuals related to 3rd degree or above (kinship
coefficient <0.044) using the software KING50. In each 3rd degree related pair, we
retained the individual with the lower genotyping missingness rate.

The effect of confounding by population structure was estimated using the
intercept of the LD score regression, which estimates the inflation in test statistics
due to confounding of the association between walking pace and genotype13.

Sensitivity analysis. Because we used a linear model to test association with an
ordinal categorical trait, we assessed the sensitivity of the results to different coding
schemes of the self-reported walking pace phenotype, and compared statistical
power when using an ordinal logistic and linear model. We partitioned the GWAS
SNPs into 6 minor allele frequency bins where we randomly selected 1000 SNPs
from each, and compared the P-value of association for these SNPs under both the
linear and ordinal logistic models (Supplementary Fig. 1). We additionally com-
pared SNP effect sizes under both the linear and ordinal logistic models for the
75 independent lead SNPs (Supplementary Fig. 2). We used a sample of 373,414
unrelated individuals, such that no pair are related to 3rd degree or above, cor-
responding to a KING kinship coefficient50 of <0.044. We fitted both linear
and ordinal logistic models with covariates for age, sex, genotyping array and
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20 principal components using PLINK1.951 for the linear model and the Julia
package OrdinalGWAS.jl38 for the ordinal logistic model.

Genetic correlations. The genetic correlations rg between self-reported walking
pace and 53 traits were estimated using LD Score regression performed through the
LDSCv1.0.1 software13. The set of traits includes anthropometric, cardiometabolic,
educational, bone mineral density, aging and other categories for which summary
statistic data was publicly available. Genetic correlations were tested for significance
using a Bonferroni correction of P < 9.4 × 10−4.

Post-GWAS annotation and functional mapping. The functional annotation of
SNPs associated with self-reported walking pace was carried out using FUMA49.
Annotations include ANNOVAR categories, CADD scores, RegulomeDB scores
and chromatin states. All candidate SNPs in the genomic risk loci (SNPs with r2 ≥
0.6 with the lead SNPs and a suggestive significance level P < 5 × 10−5) were
annotated.

Positional mapping and eQTL mapping were used to link self-reported walking
pace genomic loci to genes. We used the prioritised genes from the positional and
eQTL mapping to perform gene-set enrichment analysis against gene sets defined
by traits in the GWAS catalogue. Additionally, gene-based analysis was performed
with MAGMA through the FUMA platform52. MAGMA combines the P-values for
SNPs within a gene to create gene-based P-values for 19,834 protein-coding genes.
A Bonferroni corrected threshold of P < 2.52 × 10−6 was used to determine
significantly associated genes. Finally, we used FUMA to perform tissue-
enrichment analysis of 30 broad tissue types and 54 specific tissue types from the
GTEx database26.

GWAS catalogue lookup. We identified SNPs with previously reported (P < 10−5)
phenotypic associations in published GWAS in the NHGRI-EBI catalogue which
overlap with SNPs in LD (r2 > 0.6) with the independent significant SNPs.

Polygenic risk score association with all-cause mortality. Cox proportional
hazard models were used to investigate the association between genetically deter-
mined self-reported walking pace with all-cause mortality, using age as time scale.
Analyses were stratified by sex. For males there were 7049 all-cause mortality cases
(n total= 186,015) and for females 4546 cases (n total= 223,646). To test for
association with all-cause mortality in males, we computed genetic risk scores
weighted by effect sizes estimated from the independent sample of females, and vice
versa. The polygenic risk scores were constructed using PRSice v2.2.3 software53 for
a range of P-value thresholds between 5 × 10−8 and 10−2, using approximately
independent genetic markers obtained by clumping the SNPs with an r2 threshold
of 0.1 and a window size of 250 kb. To examine the robustness of these associations
to adiposity as a mediator, we included covariate adjustment for BMI.

Analyses were performed with Stata 16.0. Mortality status was obtained from
the UK Biobank through the National Health Service (NHS) Information Centre
and the NHS Central Register, Scotland with detailed information on the data
linkage procedure available online.

MR analyses. To investigate whether walking pace has a causal effect on different
outcomes, we performed two-sample MR analyses testing 21 traits identified in the
genetic correlation analysis. We used only GWAS data from large scale, previously
published studies of European ancestry that do not include participants from the
UK Biobank cohort. The inverse variance weighted approach was used as the
primary method to infer causal effect estimates. The potential effect of pleiotropy
was evaluated using the MR-Egger and weighted median estimate methods54,55.
MR-Egger requires the InSIDE assumption to hold (Instrument Strength Inde-
pendent of Direct Effect), whilst the weighted median approach requires no more
than 50% of the weighted instruments to be invalid due to horizontal pleiotropy.
The 75 independent lead SNPs were used as instrumental variables, using proxies
in strong LD (r2 > 0.80) if the SNPs were unavailable in the outcome GWAS.

We conducted further sensitivity analyses to explore the effect of pleiotropy due
to BMI, as several of the SNP associations for self-reported walking pace are shared
with BMI. Firstly, we conducted the MR analyses with the 28 lead SNPs previously
associated with BMI excluded. Secondly, we performed multivariable MR by
including both self-reported walking pace and BMI as exposures56. Estimates in
this case correspond to the direct causal effect of walking pace with BMI being
fixed. The summary statistic data on BMI was obtained from The Genetic
Investigation of Anthropometric Traits (GIANT) consortium12.

MR analyses were performed using the MendelianRandomisation57 package
implemented in R software.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The GWAS summary statistics for self-reported walking pace are available via Figshare at
https://doi.org/10.6084/m9.figshare.12967088.v158. The GWAS summary statistics for

self-reported walking pace, adjusted for BMI, are available via Figshare at https://doi.org/
10.6084/m9.figshare.12967091.v159. Individual-level genotype data are available by
application to the UK Biobank.
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