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BACKGROUND: Land-use changes in city fringes due to urbanization can lead to a reduction of greenspace that may reduce its associated health benefits.

OBJECTIVES:We evaluated the association between changes in residential surrounding built-up land use and cardiometabolic risk factors in an urban-
izing peri-urban area of south India and explored the mediating roles of air pollution, physical activity, and stress in these associations.

METHODS: We analyzed data on 6,039 adults from the third follow-up of the Andhra Pradesh Children and Parent Study (APCAPS) cohort (2010–
2012). We generated trajectories of change in residential surrounding built-up land use (buffer areas) from 1995–2009 (stable, slow increase, fast
increase) using remote sensing data and image classification methods. We estimated associations between built-up land use trajectories and natural
log-transformed blood pressure, waist circumference, triglycerides, fasting glucose, and non–high-density lipoprotein (non-HDL) cholesterol using
linear mixed models. We accounted for multiple mediators and the multilevel structure of the data in mediation analyses.

RESULTS: We observed positive associations between a fast increase in built-up land use within 300 m of the home and all cardiometabolic risk factors.
Compared with participants with stable trajectories, those with the largest increase in built-up land use had 1.5% (95% CI: 0.1, 2.9) higher systolic blood
pressure, 2.4% (95%CI: 0.6, 4.3) higher diastolic blood pressure, 2.1% (95%CI: 0.5, 3.8) higher waist circumference, and 1.6% (95% CI: −0:6, 3.8) higher
fasting glucose in fully adjusted models. Associations were positive, but not statistically significant, for triglycerides, fasting glucose, and non-HDL cho-
lesterol. Physical activity and ambient particulate matter ≤2:5 lm in aerodynamic diameter (PM2:5) partially mediated the estimated associations.
Associations between fast build-up and all cardiometabolic risk factors except non-HDL cholesterol were stronger in women thanmen.
DISCUSSION: Increases in built-up land use surrounding residences were consistently associated with higher levels of cardiometabolic risk factors. Our
findings support the need for better integration of health considerations in urban planning in rapidly urbanizing settings. https://doi.org/10.1289/EHP5445

Introduction
India is undergoing an epidemiologic transition: The contribution
of noncommunicable diseases to the total burden of disease in
India (measured in disability-adjusted life years) increased from
31% in 1990 to 55% in 2016, led by cardiovascular diseases (14%
of total burden in 2016) (India State-Level Disease Burden
Initiative Collaborators 2017). Despite wide geographic heteroge-
neity within the country (Geldsetzer et al. 2018), prevalence of
cardiovascular diseases is generally high in both urban and rural
areas and is expected to increase in the future (Prabhakaran et al.
2016). The main risk factors for cardiovascular diseases in India
in 2016 were diet and high levels of systolic blood pressure
(SBP), total cholesterol, plasma glucose, and body mass index as
well as high levels of ambient air pollution (India State-Level
Disease Burden Initiative CVD Collaborators 2018).

The proportion of the Indian population living in urban areas
is projected to increase from 33% in 2015 to 53% by 2050 (UN
DESA 2018). Previous remote sensing studies in India have iden-
tified a decrease in natural and agricultural areas with increasing

urbanization in large cities and medium-sized settlements
(Gibson et al. 2015; Roy et al. 2015) that may lead to poorer air
quality (Larkin et al. 2016). Remote sensing data are able to cap-
ture land-use changes over time and space (Rogan and Chen
2004), thus fostering opportunities for research on the health
impacts of land-use change around the globe.

Greenspace has been linked to numerous health benefits. An
accumulating body of evidence has associated this exposure with a
lower risk of cardiovascular mortality (Gascon et al. 2016; Twohig-
Bennett and Jones 2018), cardiometabolic risk factors such as blood
pressure (Twohig-Bennett and Jones 2018), and possibly fasting
glucose and obesity (James et al. 2015; Twohig-Bennett and Jones
2018). Possible mechanisms linking greenspace and cardiovascular
disease include mitigation of environmental hazards (e.g., air pollu-
tion), stress reduction, and promotion of physical activity
(Markevych et al. 2017; Twohig-Bennett and Jones 2018).

Despite the growing literature on the health effects of green-
space exposure, or its converse—built-up areas consisting of
non-vegetated, human-constructed elements—evidence from
low- and middle-income countries (LMICs) remains limited
(Corlin et al. 2018; Lane et al. 2017). Generalizability of findings
from high-income countries (HICs) to LMICs is challenging due
to different definitions of greenspace (Taylor and Hochuli 2017).
Indeed, previous studies from HICs focusing on urban green-
space (e.g., parks, urban forests, gardens) may have limited
applicability to settings where greenspace largely represents
farmland and bare, open areas (Taylor and Hochuli 2017).

We investigated the association between changes in residen-
tial surrounding built-up land use and cardiometabolic risk fac-
tors in an urbanizing area in the south of Hyderabad, India. Our
objectives were to a) estimate associations between change
(1995–2009) in residential surrounding built-up land use and car-
diometabolic risk factors (2010–2012) and b) explore the media-
ting roles of air pollution, physical activity, and stress.
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Methods

Study Population and Area
We used data from the third follow-up of the Andhra Pradesh
Children and Parent Study (APCAPS) (Kinra et al. 2014).
APCAPS was approved by the London School of Hygiene &
Tropical Medicine (London, UK) and the National Institute of
Nutrition (Hyderabad, India). Signed consent forms were
obtained from all participants. APCAPS builds on the Hyderabad
Nutrition Trial (1987–1990), which included all newborns (index
children) in 28 villages in a peri-urban area south of Hyderabad,
India (Figure 1A). The third follow-up of APCAPS (2010–2012)
recruited adult index children born during the original trial
(n=1,360) and their parents and siblings (n=5,584), yielding a
total sample size of 6,944 participants (see Figure S1). Nearly all
(95%) index children lived in the same village in APCAPS
follow-up 3 (2010–2012) as during the original trial (1987–
1990). Participants were representative of the total village popu-
lation in terms of sex, age, and education level (Curto et al.
2019). The coordinates of the front door of the participants’ resi-
dences were recorded with a Global Positioning System (GPS)
device (accuracy of ∼ 4 m) as part of a built environment survey

in 2012–2013; village boundaries were traced from aerial im-
agery. The study area covered approximately 700 km2, encom-
passing part of the Hyderabad ring road, dispersed villages, and
small towns, farmland, and sparsely vegetated and barren land
(Figure 1A). Aerial images of one of the study area villages in
2003 and 2011 are shown in Figure S2A,B.

Data Collection and Covariates
Participants visited clinics established in the study villages as
part of the APCAPS (2010–2012), where they responded to a
questionnaire and underwent a standardized physical examina-
tion. The questionnaire included questions about demographics,
household characteristics, health behaviors (physical activity,
diet, smoking), and medical history. Physical activity over the
past week was evaluated by an interviewer-administered ques-
tionnaire [APCAPS–Physical Activity Questionnaire (APCAPS-
PAQ)]. The APCAPS-PAQ evaluates physical activity in six
domains (work, travel to and from work, leisure, household, sed-
entary, and sleep), and within each domain the average amount
of time spent on specific activities and the frequency of these
activities were collected. We calculated the total physical activity
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Figure 1. (A) Study area map and (B) distribution of trajectories of residential surrounding built-up land use by village (300-m buffer). Red polygons (in A)
represent APCAPS villages. OpenStreetMap was used as background map (in A) under the Open Database License (https://www.openstreetmap.org/
copyright). Note: APCAPS, Andhra Pradesh Children and Parent Study; % participants, percentage participants.
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for each participant by summing daily metabolic equivalent unit
values (METs). METs were attributed to each activity using the
approach reported in the APCAPS-PAQ validation, which used
the standard guidelines for MET assignment and a correction fac-
tor for occupational activities considered “more strenuous than
walking” (Matsuzaki et al. 2016). Dietary intake over the past
year was evaluated through a semi-quantitative food frequency
questionnaire (FFQ). We obtained average daily consumption of
sugar and sweets, alcohol, fruits, and carbohydrates from the
FFQ. We used an algorithm developed during the validation of the
FFQ in the APCAPS area to link information from the FFQ to nu-
trient databases, retrieving the average nutrient and food group
consumption per day (Bowen et al. 2012). Smoking status was
evaluated by the following self-reported question: “Have you ever
used tobacco on a regular basis (at least weekly)?” Participants
were asked about smoked, chewed, and snuffed tobacco. There
were three possible answers used to classify the participants smok-
ing status: never, former (stopped>6months), and current (regular
use in the last 6 months). We classified those on current use as
active smokers, and we created two dummy indicators: active
tobacco smokers and other active tobacco users (chew/snuff).
From the participants’ medical histories, we used information
about current medication use gathered from the following self-
reported questions with yes/no answer options: “Have you been
diagnosed with any of the following conditions? 1) High blood
pressure; 2) Diabetes (High blood sugar)” and “Are you on regular
medication for your high blood pressure?; Are you on regular tab-
lets for your diabetes?”A standard of living index (SLI) was calcu-
lated from self-reported household assets (Kinra et al. 2014). We
derived a stress indicator using nine self-reported questions about
physical, personal, and financial worries in the previous 4 weeks
using psychosocial stressors items from the Brief Patient Health
Questionnaire (Spitzer et al. 2000). Each question had three possi-
ble answers: not bothered (1 point), bothered a little (2 points), and
bothered a lot (3 points). We summed the points of the nine ques-
tions to derive a score (range: 9–27 points), with higher scores indi-
catingmore sources and/or intensity of stress.

Outcomes
We collected data on six components of metabolic syndrome
(Alberti et al. 2009): SBP and diastolic blood pressure (DBP),
waist circumference, triglycerides, fasting glucose, and non–high-
density lipoprotein (non-HDL) cholesterol. Participants were
asked to fast overnight. SBP and DBP were defined as the average
of three consecutive readings using an oscillometric device (HEM
7300; Omron); room temperature was recorded for purposes of
adjusting in analyses of blood pressure outcomes.Waist circumfer-
ence was calculated as the average of two consecutive measures of
the natural waist (metallic tape; ADE). We performed assays for
triglycerides, HDL, and total cholesterol (C311; Roche), and glu-
cose [using the glucose oxidase/peroxidase-4-aminophenazone-
phenol (GOD-PAP) enzymatic method]. Non-HDLwas derived as
the difference between total and HDL cholesterol. We also derived
a composite cardiometabolic outcome using the INTERHEART
modifiable risk score (IHMRS, version accounting for cholesterol),
a globally validated risk score that includes age, sex, non-HDL and
HDL cholesterol, tobacco smoking, secondhand smoking, diabe-
tes, and high blood pressure (McGorrian et al. 2011). Missing indi-
vidual components of the scorewere set to 0.

Ambient Fine Particulate Matter
Wecollected ambient fine particulatematter [PM≤2:5 lm in aero-
dynamic diameter (PM2:5)] concentrations (during 2015–2016) at
23 sites in the APCAPS study area within the Cardiovascular

Health effects of Air pollution in Telangana, India (CHAI) project
(Tonne et al. 2017) and developed local land-use regression (LUR)
models (Sanchez et al. 2018) using geographical predictors col-
lected during a built environment survey (in 2012–2013). The
PM2:5 model had an adjusted R2 of 58% and included regional pre-
dictors (Sanchez et al. 2018). We used the model to predict PM2:5
annual exposure at the residence for all APCAPS participants.

Exposure Assessment
We characterized changes of land use over our study area for the
period 1995–2009 from remote sensing data and derived three tra-
jectories of residential surrounding built-up land use (stable, slow
increase, and fast increase) for each participant in 300- and 500-m
buffers. Buffers larger than 500 m generally included the entire vil-
lage, limiting the within-village exposure variability. Previous
analyses of GPS data in a subsample of the APCAPS participants
found that 80% of the daytime (72% men, 87% women) was spent
within 400 m of the residence, whereas daytime spent within
100 m of the residence was <67% for men (Sanchez et al. 2017).
Theworkflow to obtain exposures involved the following steps:
1) We listed all available Landsat 5 and 7 images of the study

area (spatial resolution: 30 m) available between 1995 and
2009 and filtered out those with clouds over the study area.
We downloaded the selected surface reflectance products
(Masek et al. 2006) from the U.S. Geological Survey
EarthExplorer platform (https://earthexplorer.usgs.gov/).

2) We defined built-up training areas from the urban core of
Hyderabad and village centers in the study area already built
up in 1995. Training areas for greenspace were traced from
2009 high-resolution imagery available in Google Earth and
included bare areas, crops, vegetation, and water bodies.We
used the same training areas to classify all images under the
hypothesis of monotonic greenspace to built-up transition.

3) We trained random forest (RF) models (Hastie et al. 2001) to
classify each pixel as either built-up or greenspace for each
image separately. We used the blue, green, red, near infrared
(NIR) and the two shortwave infrared (SWIR1 and SWIR2)
spectral bands, as well as the normalized difference vegeta-
tion index [NDVI= ðNIR− redÞ=ðNIR+ redÞ] and the nor-
malized difference built index [NDBI= ðSWIR1−NIRÞ=
ðSWIR1+NIRÞ], as input data.

4) We evaluated the predictive ability of the RF models by
applying 10-fold spatial cross-validation (Brenning 2012).
Accuracy was calculated as the percentage of pixels cor-
rectly classified. Models with accuracy below 85% were
discarded; if more than one model for the year same
remained, the one with the highest accuracy was retained.
Table S1 shows the details of the selected images; most of
which corresponded to the post-monsoon season when
contrast between built-up and greenspace was stronger.

5) We generated binary maps (1= built-up, 0 greenspace) for
the selected models (see Figure S3) and extracted an aver-
age built-up proportion in a buffer around the home
(300-m and 500-m buffers).

6) Raw built-up trajectories were generated by grouping the
generated exposures by household at different points in time
(see Figure S4A). We individually smoothed them using
local linear regression models (Hastie et al. 2001) (see
Figure S4B) to reduce noise. Because our focus was on
change over time in land use, we subtracted the mean of all
trajectories in order to center them at 0 (see Figure S4C).

7) We grouped the smoothed trajectories by using a longitudi-
nal implementation of the k-means algorithm (Genolini and
Falissard 2011). We used Euclidian distances and tried dif-
ferent starting points to avoid local maximums. The number
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of clusters was chosen according to the Cali�nski and
Harabasz (1974) criterion, which suggested two or three
groups. We chose three categories because we were inter-
ested in evaluating the impact of variation in the rate of
change in the built environment (see Figure S4D). The
resulting groups were labeled as stable, slow increase, and
fast increase in built-up land use.

Alternative Exposure Indices
We generated three alternative built-up indices (image dated 27
October 2009, buffer 300 m) for sensitivity analysis to explore
cross-sectional associations rather than a dynamic exposure, cap-
turing change over time. Alternative indices included additive
inverse NDVI, NDBI (Estoque and Murayama 2015), and urban
index (UI) (Estoque and Murayama 2015). We also considered
the proportion of built-up land use within 300 m extracted from
the RF-classified image (dated 27 October 2009) as an additional
cross-sectional exposure.

Analyses
All cardiometabolic risk factors were right-skewed; we applied a
natural log-transformation to better meet the assumption of

normally distributed residuals from regression models. IHMRSs
were kept in the original scale. We log-transformed diet covari-
ates and categorized SLI and alcohol intake variables into tertiles
to account for nonlinear effects identified in exploratory analyses.

We restricted analyses to nonpregnant participants >18 years
of age with nonmissing exposure, sex, and age [6,039/6,944
(87%)]. We excluded participants with missing or invalid meas-
urements for each outcome (i.e., the number of participants
included in each analysis varied by outcome; Table 1). For exam-
ple, when analyzing the outcome SBP and DBP, we excluded
participants who were taking hypertensive medication (3.1%),
were missing information on room temperature (0.1%), or had
measurements taken on the left arm (0.3%); when analyzing the
outcome fasting glucose, we excluded participants who were tak-
ing diabetes medication (1.5%), had not fasted for 8 h (5.9%), or
were missing information for the fasting period (1.8%).

We imputed missing data in covariates using the method of
chained equations (n=20) (van Buuren and Groothuis-Oudshoorn
2011) using the same analysis data set, including village identifiers,
as input for the imputation.We assumed certain data to be missing
at random (MAR) because missing entries were mostly corre-
lated with the village of the participant. We imputed binary cova-
riates using logistic regression; occupation was imputed using a

Table 1. Characteristics of the study population by residential surrounding built-up land use (300-m buffer) trajectory.

Variable All (n=6,039) Stable (n=3,615) Slow increase (n=1,888) Fast increase (n=536) Missing [n (%)]

Sex {male [n (%)]} 3,232 (53.5) 1,936 (53.6) 1,036 (54.9) 260 (48.5) 0 (0)
Age [AM (SD)] 36.2 (13.8) 36.4 (13.9) 36.1 (13.7) 35.1 (13.1) 0 (0)
Occupation [n (%)] 2 (0)
Unskilled manual 2,734 (45.3) 1,663 (46) 889 (47.1) 182 (34) —
Skilled manual 1,371 (22.7) 854 (23.6) 393 (20.8) 124 (23.1) —
Nonmanual 347 (5.7) 207 (5.7) 94 (5) 46 (8.6) —
Unemployed 1,585 (26.3) 891 (24.6) 510 (27) 184 (34.3) —
Education [n (%)] 2 (0)
Illiterate 2,959 (49) 1,770 (49) 938 (49.7) 251 (46.8) —
Primary school 793 (13.1) 459 (12.7) 265 (14.1) 69 (12.9) —
Secondary school 1,813 (30) 1,089 (30.1) 547 (29) 177 (33) —
Superior studies 472 (7.8) 297 (8.2) 136 (7.2) 39 (7.3) —
Standard of living index (SLI) {tertiles [n (%)]} 0 (0)
Low (<24:6) 1,781 (29.5) 1,114 (30.8) 549 (29.1) 118 (22) —
Medium (24.6–31.4) 1,893 (31.3) 1,159 (32.1) 599 (31.7) 135 (25.2) —
High (>31:4) 2,365 (39.2) 1,342 (37.1) 740 (39.2) 283 (52.8) —
Primary cooking fuel {gas/electricity [n (%)]} 2,490 (42.4) 1,329 (38.3) 848 (45.6) 313 (58.4) 172 (2.8)
Active smoker (combustion) 921 (15.3) 564 (15.6) 288 (15.3) 69 (12.9) 3 (0)
Active smoker (chew, snuff) 638 (10.6) 381 (10.5) 210 (11.1) 47 (8.8) 3 (0)
Physical activity {METs [AM (SD)]} 1.62 (0.21) 1.63 (0.21) 1.62 (0.22) 1.56 (0.18) 319 (5.3)
Stress {score [AM (SD)]} 10.6 (1.9) 10.6 (1.9) 10.7 (2) 10.6 (2.1) 14 (0.2)
Alcohol intake tertiles {g/d [n (%)]} 11 (0.2)
Low (<9:4) 1,886 (31.3) 1,123 (31.1) 608 (32.3) 155 (28.9) —
Medium (9.4–45.1) 1,975 (32.8) 1,166 (32.3) 603 (32) 206 (38.4) —
High (>45:1) 2,167 (35.9) 1,320 (36.6) 672 (35.7) 175 (32.6) —
Salt intake {g/d [GM (GSD)]} 5.7 (1.6) 5.7 (1.6) 5.6 (1.6) 5.9 (1.6) 11 (0.2)
Fruit and vegetables intake {g/d [GM (GSD)]} 171.1 (2) 170.4 (1.9) 167.1 (2) 191.1 (1.9) 11 (0.2)
Total energy intake {kcal/d [GM (GSD)]} 2,125.8 (1.5) 2,129.6 (1.5) 2,109.5 (1.5) 2,157.7 (1.5) 11 (0.2)
Energy from carbohydrates {% [AM (SD)]} 68.1 (9.5) 68.4 (9.3) 67.9 (9.5) 66.8 (10.2) 11 (0.2)
Energy from fat {% [AM (SD)]} 17.2 (5.5) 17 (5.4) 17.2 (5.5) 17.8 (5.6) 11 (0.2)
PM2:5 ambient air pollution {lg=m3 [AM (SD)]} 32.9 (2.7) 32.3 (2.8) 33.3 (2.4) 35 (1.7) 11 (0.2)
Cardiometabolic risk factors [GM (GSD)]
SBP (mmHg) 118.8 (1.1) 118.7 (1.1) 118.8 (1.1) 119.3 (1.1) 213 (3.5)a

DBP (mmHg) 77.6 (1.2) 77.3 (1.2) 77.9 (1.2) 78.6 (1.2) 213 (3.5)a

Waist circumference (cm) 72 (1.1) 71.7 (1.1) 72 (1.2) 73.9 (1.2) 15 (0.2)
Triglycerides (mg/dL) 108.6 (1.7) 107.4 (1.7) 111 (1.7) 108.1 (1.7) 203 (3.4)
Fasting glucose (mg/dL) 91.8 (1.2) 91.7 (1.2) 91.3 (1.2) 94 (1.2) 610 (10.1)b

Non-HDL cholesterol (mg/dL) 117.4 (1.4) 114.9 (1.4) 121.2 (1.3) 121.5 (1.3) 173 (2.9)
IHMRS [AM (SD)] 4.82 (4.32) 4.69 (4.27) 4.9 (4.32) 5.46 (4.62) 0 (0)

Note:—, No data; AM, arithmetic mean; DBP, diastolic blood pressure; GM, geometric mean; GSD, geometric standard deviation; HDL, high-density lipoprotein; IHMRS, INTERHEART
modifiable risk score;MET,metabolic equivalent unit value; PM2:5, particulatematter≤2:5 lm in aerodynamic diameter; SBP, systolic blood pressure; SD, standard deviation.
aWhen analyzing the outcomes SBP and DBP, we classified data as missing when participants were taking hypertensive medication (3.1%), were missing information on room temper-
ature (0.1%), or had measurement taken on the left arm (0.3%).
bWhen analyzing the outcome fasting glucose, we classified data as missing when participants were taking diabetes medication (1.5%), had not fasted for 8 h (5.9%), or were missing
information for the fasting period (1.8%).
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multinomial logit model, education and alcohol tertiles were
imputed using proportional odds models, and predictive mean
matching was used for the rest of the continuous variables. We
checked each of the equations to avoid having highly collinear
variables in the same model, we assessed the convergence of the
chains, and we verified the plausibility of the imputed values by
comparing the densities of the observed and imputed values.

We analyzed the cross-sectional associations between built-up
trajectories and cardiometabolic risk factors using linear mixed
models with nested random intercepts to account for the clustered
structure of the data (households within villages). We fitted regres-
sion models in each of the imputed data sets, and then pooled them
using Rubin’s rules (Rubin 2004). We defined potential mediators
and confounders of the exposure–outcome associations via a
directed acyclic graph (see Figure S5).We considered three sequen-
tial sets of confounders: Model 1 was adjusted for baseline (1995)
built-up area, sex, age (continuous, linear, and quadratic terms) and
room temperature (continuous, for blood pressure outcomes only).
Model 2 was further adjusted for health behaviors: smoking (no
smoking/chew or snuff/combustion); salt, fruit and vegetables, and
total energy intake (natural log-transformed, continuous); alcohol
consumption (in tertiles); and percentage of energy coming from fat
and carbohydrates (continuous). Model 3 also included socioeco-
nomic confounders: education (illiterate/primary education/second-
ary education/superior studies), SLI (in tertiles), and primary
cooking fuel (gas or electricity/biomass or coal). We fitted models
to the whole sample and in sex and age (younger/older than 30 years
of age) subgroups. As sensitivity analyses, we fitted the models
using a) complete cases data sets, b) built-up trajectories based on
500-m buffers, c) village identifiers as a fixed effect (within-village
models), d) difference in built-up land use (300 m) between 2009
and 1995 as an alternative continuous exposure, and e) alternative
exposure indices (RF, NDVI, NDBI, UI) from2009.

We performed mediation analyses to explore the influence of
physical activity and PM2:5 ambient air pollution on the associa-
tion between 300-m–buffer built-up trajectories (as the exposure)
and the six cardiometabolic outcomes. We also evaluated stress
as a potential mediator a priori but did not include it in our medi-
ation analysis because it was not associated with the exposure
(see Figure S9) and was only weakly associated with the out-
comes (see Figure S10). We computed indirect, direct, and total
effects, adapting the multilevel mediation framework (Krull and
MacKinnon 2001) to two mediators (MacKinnon 2012). That is,
we fitted the following regression equations for each outcome y:

yvhi = h0 + h1 ×BUslowvh + h2 ×BUfastvh + confvhi + uv +wvh + evhi

ð1Þ

yvhi = b0 + b1 ×BUslowvh + b2 ×BUfastvh + b3 × physicalvhi
+ b4 × pm2:5vh + confvhi + uv +wvh + evhi ð2Þ

physicalvhi = c0 + c1 ×BUslowvh + c2 ×BUfastvh + confvhi
+ uv +wvh + evhi ð3Þ

pm2:5vh = d0 + d1 ×BUslowvh + d2 ×BUfastvh + evh ð4Þ

where v, h, and i are the indices for village, household, and indi-
vidual; and uv andwvh are random intercepts at the village and
household level, respectively. BUslow and BUfast refer to slow
and fast built-up trajectories respectively, and conf refers to con-
founders. Equation 1 corresponds to the estimation of the expo-
sure–outcome relationship; Equation 2 estimates the mediator–
outcome associations while adjusting for exposure and other

mediators; Equations 3 and 4 estimate the exposure–mediator
associations. Equations 1–3 were adjusted for all confounders
included in Model 3 of the main analysis. We estimated the
effects for the fast built-up trajectory (reference: stable; the slow
trajectory was not statistically significantly associated with any
of the outcomes) as follows: We computed the indirect mediated
effects for physical activity and air pollution as b3c2 and b4d2,
respectively. The total effect was estimated as h2 and the direct
effect as b2. We applied this analysis to each imputed data set
and averaged point estimates across them to obtain pooled esti-
mates of the effects. Percentile 95% confidence intervals (CIs)
were derived by nonparametric bootstrapping (100 replications of
each of the 20 imputed data sets, resampling done at the house-
hold unit). We tested for exposure–mediator (alpha= 0:05, p
range: 0.49–0.9, tested in fully adjusted models) and mediator–
mediator (alpha = 0:05, p range: 0.12–0.99, tested in fully
adjusted models) interactions for the different outcomes but none
was statistically significant (data not shown).

We made the following assumptions when estimating the total,
direct, and indirect effects (VanderWeele 2016): a) exposure–out-
come confounding, b) mediator–outcome confounding, and c) ex-
posure–mediator confounding were adequately controlled for by
covariate adjustment. Moreover, we assumed that d) no mediator–
outcome confounder was affected by exposure, given that other-
wise the confounder would be both a mediator and a confounder.
Although there is no way to ensure that Assumptions a–c weremet,
we included a broad range of participant-level confounders that
accounted for all hypothesized confounding factors between expo-
sure and outcomes. Assumption d required further consideration
because inclusion of multiple mediators could violate the assump-
tion if mediators were correlated or if there were an interaction
between themediator effects on the outcome (VanderWeele 2016).
We tested these conditions empirically: Correlation between phys-
ical activity and ambient PM2:5 was weak (rPearson = − 0:08), and
the interactions between mediators in Equation 2 for the different
outcomes were not statistically significant. Therefore, we consid-
eredAssumption d to be reasonable.

Data cleaning, analyses, and figures were done in R (version
3.4.0; R Development Core Team) using several packages (Bates
et al. 2015; Genolini et al. 2015; Hijmans 2016; Liaw and Wiener
2002; Pebesma 2018; van Buuren andGroothuis-Oudshoorn 2011;
Wickham 2017;Wilke 2017).

Results
Figure 1 shows the spatial distribution of built-up trajectories.
Villages that were closer to the ring road and the two main roads
and with a larger area tended to have a faster transition from
greenspace to built-up land use. Median baseline built-up propor-
tion in 1995 was similar in the three groups (0.21, 0.26, and 0.22
for the stable, slow, and fast groups, respectively). Between 1995
and 2009, the median proportion of residential surrounding built-
up land use increased by 0.14 for the stable, 0.2 for the slow, and
0.35 for the fast groups (Figure 2).

Mean age of participants was 36 y (standard deviation 13.8)
and 54% were male (Table 1). Most participants had manual
occupations in agriculture, construction, or industry. The total
time per week spent on physical activity was higher for the work
domain and the total physical activity (in METs) was linearly
correlated mainly with time spent on work or travel even when
not accounting for time spent sitting at work (see Figure S6); rec-
reational physical activity was scant (79% of men and 96%
women did not report any time spent on recreational physical
activities). A 42.1% of participants had SBP levels >130mmHg
and/or DBP >80mmHg. Among males, 7.8% had waist circum-
ferences >90 cm; 17.7% of females had waist circumferences
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>80 cm. A 23.7% of participants had triglycerides >150 mg=dL
and 19.9% had fasting glucose levels >100 mg=dL. The fre-
quency of unskilled manual occupation and smoking was lower
in the fast built-up land-use group, whereas in the SLI, use of gas
or electric cooking fuels, fruit and vegetable intake, ambient
PM2:5, and most health outcomes levels were greater in the fast
compared with other groups.

We observed positive associations between a fast increase in
built-up land use within 300 m of the home and all cardiometa-
bolic risk factors (Table 2). Compared with participants with sta-
ble trajectories, those with the largest increase in built-up land
use had 1.5% (95% CI: 0.1, 2.9) higher SBP, 2.4% (95% CI: 0.6,
4.3) higher DBP, 2.1% (95% CI: 0.5, 3.8) higher waist circumfer-
ence, and 1.6% (95% CI: −0:6, 3.8) higher fasting glucose in the
fully adjusted models (Model 3). Associations were larger in
magnitude, but less precise, for triglycerides [4% (95% CI: −2:4,
10.8)] and non-HDL cholesterol [3.2% (95% CI: −0:9, 7.5)].
Associations for slow increases in built-up land use (compared
with stable) were positive, but not statistically significant, for tri-
glycerides and non-HDL; for other cardiometabolic risk factors,
associations were small, negative, and nonsignificant.

Models fit using data based on complete cases yielded similar
estimates (see Table S2). Results using trajectories based on 500-m
buffers around the home rather than 300-m buffers (see Table S3)
resulted in larger estimates for SBP, DBP, waist circumference, and
non-HDL for both slow and fast increases compared with stable
[e.g., 3.2% (95% CI: 1.3, 5.2) waist circumference increase for fast
group vs. stable]; however, effects for triglycerides and fasting glu-
cose were mostly null. Within-village analyses results showed posi-
tive, though not statistically significant, estimates for all outcomes in
the fast vs. the stable trajectory (see Table S4), suggesting that part
of the observed associations in the main models occurred within vil-
lage. Confidence intervals in thesemodelswerewider due to the lim-
ited exposure contrast within village (see Table S4). Associations
using the difference in built-up land use (300-m buffer) between
2009 and 1995 as a continuous exposure were mostly aligned with
the main results. We estimated nonlinear associations for SBP,

DBP, and waist circumference: Positive associations were found for
individuals with the highest increases in residential surrounding
built-up land use, whereas more modest increases resulted in null
associations (see Figure S7). Associations for triglycerides and fast-
ing glucose were positive and fairly linear, though not statistically
significant (see Figure S7). Alternative built-up indices generated
for 2009 yielded similar results for all indicators (see Figure S8):
Positive, small associations were found per interquartile range
(IQR) change in additive inverse NDVI for SBP [0.5% (95% CI: 0,
1)], DBP [0.7% (95%CI: 0.1, 1.4)], waist circumference [0.4% (95%
CI: −0:2, 1)], and triglycerides [1.7% (95% CI: −0:7, 4.2)] in fully
adjusted models. We estimated a higher IHMRS in areas with a fast
increase in built-up residential surrounding land use (300-m buffer)
compared with stable [0.75 points (95% CI: 0.29, 1.2) higher
IHMRS],whereas the association for the slow trajectorywas smaller
and not statistically significant (see Table S5).

Exposure–mediator associations revealed that fast built-up
trajectories (compared with stable) were associated with higher
long-term ambient PM2:5 [2:6 lg=m3 (95% CI: 2.2, 3)] and less
physical activity [−0:05 METs (95% CI: −0:07, −0:03)] (see
Figure S9). Furthermore, physical activity was negatively associ-
ated with all outcomes after confounder and other mediator
adjustment [e.g., −22:8% (95% CI: −22:7, −17:5) effect in tri-
glycerides per MET; see Figure S10]; estimates for ambient air
pollution were generally positive, but not statistically significant
[e.g., 0.11% (95% CI: −0:11, 0.32) effect in SBP per 1-lg=m3

increase]. The exposure was not associated with stress (see
Figure S9); stress also showed weak and inconsistent associations
with the outcomes (see Figure S10). Stress was therefore not con-
sidered further as a potential mediator.

Figure 3 and Table S6 show total, direct, and mediated effects
for physical activity and ambient PM2:5 on cardiometabolic risk
factors. Indirect effects for physical activity ranged from 0.18%
(95% CI: 0.08, 0.3) between fast vs. stable land-use change for
SBP to 1.31% (95% CI: 0.67, 1.92) for triglycerides. Estimated
indirect effects for ambient PM2:5 were less precise: 0.27% (95%
CI: −0:05, 0.84) between fast vs. stable land-use change for SBP,
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Figure 2.Median [interquartile range (IQR)] residential surrounding built-up land use proportion (300-m buffer) by year and exposure trajectory. Each median
is represented by a dark line, with a shaded area represented its IQR.
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0.24% (95% CI: −0:2, 0.96) for DBP, 0.47% (95% CI: 0, 0.91)
for waist circumference and 0.76% (95% CI: 0.17, 1.51) for fast-
ing glucose. Air pollution indirect effects for triglycerides and
non-HDL were mostly null.

Subgroup analysis (Figure 4; Table S7) suggested larger asso-
ciations in women in all outcomes except non-HDL cholesterol.
For example, fasting glucose was 4.7% (95% CI: 1.9, 7.6) higher
in fast vs. stable land-use change in women and −1:4% (95% CI:
−4:2, 1.5) in men. Results in age subgroups depended on the out-
come: Stronger associations were observed in the older group for
SBP, DBP, and fasting glucose [e.g., 3.7% (95% CI: 1.2, 6.3)
change in DBP in participants >30 years of age vs. 1.5% (95%
CI: −0:7, 3.6) for participants ≤30 years of age], whereas for
non-HDL and triglycerides, associations were stronger for the
younger group. Estimates for waist circumference were similar.

Discussion
Our results provide new evidence for the association between
changes in residential surrounding built-up land use and cardio-
metabolic risk factors in a representative sample of residents in
an urbanizing area of a LMIC. We estimated statistically signifi-
cant increases in SBP, DBP, and waist circumference for partici-
pants with fast vs. stable increase in residential surrounding
(300 m) built-up land use trajectories. Associations for fast vs.
stable trajectories were also positive, but not significant for tri-
glycerides, fasting glucose, and non-HDL cholesterol. Mediation
analysis suggested partial mediation by physical activity and am-
bient PM2:5. Subgroup analysis consistently suggested stronger
associations in women.

The transition from greenspace to built-up land use between
1995 and 2009 was more marked in larger villages located closer

Figure 3. Total, indirect (physical activity), indirect (air pollution), and direct effects and 95% confidence intervals (CIs) between fast increase in residential
surrounding built-up land use (300-m buffer) relative to reference (stable) and cardiometabolic risk factors (SBP, DBP, waist circumference, triglycerides, fast-
ing glucose, and non-HDL cholesterol). Calculation of the effects took into account the multilevel nature of the data, the two candidate mediators and the multi-
ply imputed data. CI was derived by bootstrapping. Percent difference in outcome associated with a given effect was calculated as ½exp ðbÞ-1�×100. A table
version of this figure is available in the Supplemental Material (see Table S6). Note: DBP, diastolic blood pressure; HDL, high-density lipoprotein; SBP, sys-
tolic blood pressure; % difference, percentage difference.

Table 2. Associations and 95% confidence intervals (CIs) between residential surrounding built-up land use trajectories (300-m buffer) relative to reference
(stable) and cardiometabolic risk factors.

Outcome Model 1 [percent difference (95% CI)] Model 2 [percent difference (95% CI)] Model 3 [percent difference (95% CI)]

SBP
Slow increase −0:47 (−1:33, 0.4) −0:49 (−1:35, 0.38) −0:51 (−1:36, 0.35)
Fast increase 1.67 (0.28, 3.09) 1.62 (0.23, 3.04) 1.52 (0.13, 2.92)
DBP
Slow increase 0.03 (−1:11, 1.19) 0 (−1:14, 1.16) −0:04 (−1:17, 1.1)
Fast increase 2.72 (0.86, 4.61) 2.59 (0.74, 4.48) 2.41 (0.57, 4.28)
Waist circumference
Slow increase −0:27 (−1:34, 0.81) −0:39 (−1:45, 0.68) −0:45 (−1:48, 0.58)
Fast increase 2.67 (0.93, 4.43) 2.45 (0.74, 4.2) 2.12 (0.46, 3.8)
Triglycerides
Slow increase 1.33 (−2:66, 5.49) 1.17 (−2:82, 5.32) 1.15 (−2:85, 5.31)
Fast increase 4.59 (−1:84, 11.43) 4.36 (−2:07, 11.2) 3.97 (−2:44, 10.81)
Fasting glucose
Slow increase −0:17 (−1:53, 1.21) −0:23 (−1:59, 1.15) −0:26 (−1:62, 1.12)
Fast increase 1.74 (−0:45, 3.97) 1.68 (−0:51, 3.91) 1.61 (−0:57, 3.84)
Non-HDL cholesterol
Slow increase 2.95 (0.28, 5.68) 2.70 (0.05, 5.43) 2.66 (0.01, 5.37)
Fast increase 4.00 (−0:18, 8.37) 3.53 (−0:64, 7.87) 3.20 (−0:94, 7.52)

Note: Mixed effects linear models with nested random intercepts (household within village) were used with the following adjustments: Model 1: baseline built-up land use+ sex+
age+ age2+ room temperature (for blood pressure outcomes only); Model 2: Model 1+ smoking+ salt + alcohol + fruit vegetables+ energy intake +% fat +% carbohydrates; Model 3:
Model 2+ education+SLI+ cooking fuel. Models were fit to multiply imputed data sets and pooled following Rubin’s rules. Percent difference in outcome associated with a given pre-
dictor calculated as ½exp ðbÞ-1�×100. DBP, diastolic blood pressure; HDL, high-density lipoprotein; SBP, systolic blood pressure; SLI, standard of living index; % carbohydrates, per-
centage carbohydrates; % fat, percentage fat.
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to the ring road and main roads. The loss of agricultural and bar-
ren areas and water bodies in the city fringe of Hyderabad has
been previously reported in the remote sensing literature (Gibson
et al. 2015; Roy et al. 2015; Wakode et al. 2014) and has been
mostly due to expansion of residential areas (Wakode et al.
2014).

We estimated moderate increases in cardiometabolic risk fac-
tors in participants living in areas rapidly building up compared
with areas where land use was stable. Our estimates for blood
pressure were comparable to those from a cross-sectional study
conducted in Chennai, India, evaluating the effect of residential
surrounding greenness and impervious surfaces on markers of
vascular aging (Lane et al. 2017). Lane et al. (2017) observed
increases of 3.4% in SBP and of 1.5% in DBP for a 1-IQR
decrease in NDVI. A recent meta-analysis showed a decrease in
DBP of 2mmHg in participants with the highest greenspace ex-
posure vs. the lowest, estimated from 9,695 participants of 12
studies conducted in HICs (Twohig-Bennett and Jones 2018).
Nevertheless, comparison of our results with studies included in
the meta-analyses is challenging given that the meaning of green-
space exposure is likely to differ between peri-urban India and
urban settings in HICs. The relationship between land use and
health is likely to vary considerably across context; however,
understanding of this context dependency is hampered by the
lack of available evidence from LMICs, particularly in rapidly
urbanizing areas.

The estimated effect of the 14-y change in built-up land use
and cardiometabolic risk factors was larger than cross-sectional
associations based on exposure metrics from a single year. This
suggests that dynamic changes in land use may be more relevant
for cardiometabolic health in urbanizing settings. Ji et al. (2019)
evaluated the association between change in residential surround-
ing greenness and mortality in oldest-old participants (>80 years

of age) in China and found no association. However, there are
important differences between our study and that of Ji et al.
(2019) in the demographics of the study population (adults vs. el-
der), as well as in the outcomes investigated (cardiometabolic
markers vs. mortality), that limit the comparability of results.

Physical activity appeared to partially mediate associations
with all cardiometabolic risk factors by a small extent. Partial
mediation by physical activity has been observed in some studies
conducted in HICs focusing on the association between green-
space and mortality (James et al. 2016). However, it is unclear
whether the hypothesized mechanism of greenspace facilitating
recreational physical activity in these studies would also apply to
the APCAPS and similar populations. Ambient PM2:5 appeared
to partially mediate associations for blood pressure, waist circum-
ference, and fasting glucose. Ambient PM2:5 has been previously
suggested to mediate the association between greenness and mor-
tality (James et al. 2016). We estimated large, although impre-
cise, direct effects, possibly reflecting the role of other important
pathways not included in our analysis, for example, social cohe-
sion and biodiversity, noise, and air pollutants other than PM2:5,
or heat.

Subgroup analysis by sex consistently suggested larger asso-
ciations in women. A possible explanation may be the differences
in mobility patterns in the population: daytime spent near the res-
idence was substantially longer for females (74%) than males
(52%) (Sanchez et al. 2017). Similarly, a study evaluating the
association between residential long-term ambient PM2:5 and
blood pressure in the same population observed stronger associa-
tions for women (Curto et al. 2019).

A major strength of our study is the exposure assessment: We
derived a spatially resolved dynamic exposure metric that captured
both the spatial and temporal components of variation in land use.
Other strengths include analysis of a range of cardiometabolic

A

B

Figure 4. Associations and 95% confidence intervals between change in residential surrounding built-up land use relative to reference (stable) and cardiometa-
bolic risk factors according to (A) sex and (B) age for SBP, DBP, waist circumference, triglycerides, fasting glucose, and non-HDL cholesterol. Mixed effects
linear models with nested random intercepts (household within village) adjusted for baseline built-up, sex, age, age2, room temperature (for blood pressure out-
comes only), smoking, salt, alcohol, fruit and vegetables, energy intake, percentage fat, percentage carbohydrates, education, SLI, and cooking fuel. Models fit
to multiply imputed data sets and pooled following Rubin’s rules. Percent difference in outcome associated with a given predictor was calculated as
½exp ðbÞ-1�×100. A table version of this figure is available in the Supplemental Material (see Table S7). Note: DBP, diastolic blood pressure; HDL, high-den-
sity lipoprotein; SBP, systolic blood pressure; SLI, standard of living index; % difference, percentage difference.
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outcomes in a relatively large sample representative of the general
population in a LMIC. We performed a formal mediation analysis
considering themultilevel structure of the data andmultiple media-
tors. The main limitation of our study was that cardiometabolic
risk factors and mediators were measured once; we were therefore
not able to estimate the effects of change in land use over time on
change in cardiometabolic risk. We considered a binary built-up/
greenspace classification of land use that did not allow differentiat-
ing the transition to built-up land use for different types of baseline
greenspace. We did not have information about pesticides, a
potentially harmful environmental exposure more prevalent in ag-
ricultural areas (Markevych et al. 2017). However, possible con-
founding by pesticide exposure could not explain the positive
associations we observed. Our LUR model was fit on air pollution
data (2015–2016) collected later than health outcomes (2010–
2012) and the last built-up exposure measurement (2009); we
therefore assumed the spatial pattern of ambient exposures to
remain constant within this period and used geographical predic-
tors in the LURmodel collected at most 3 y later (2012–2013) than
health outcomes. Our mediation analysis may have underestimated
the influence of air pollution and physical activity due to measure-
ment error in these variables. Finally, we cannot rule out the possi-
bility of residual confounding by unmeasured confounders or
confoundersmeasured with error.

India is experiencing fast increases of built-up land use in
urban fringes (Gibson et al. 2015; Roy et al. 2015). We provide
new evidence that these changes are associated with moderate
increases in several cardiometabolic risk factors. These relation-
ships appear to operate, in part, through reduced physical activity
and increased air pollution. Better integration of health into urban
planning in rapidly urbanizing settings is critical to reducing the
negative impacts and maximizing the benefits for health due to
urban development.
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