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Abstract 

Objective: To compare the performance of logistic regression and boosted trees for predicting patient 

mortality from large sets of diagnosis codes in electronic healthcare records. 

Study Design and Setting: We analysed national hospital records and official death records for 

patients with myocardial infarction (n=200,119), hip fracture (n=169,646), or colorectal cancer 

surgery (n=56,515) in England in 2015-17. One-year mortality was predicted from patient age, sex, 

and socioeconomic status, and 202 to 257 International Classification of Diseases 10th Revision codes 

recorded in the preceding year or not (binary predictors). Performance measures included the c-

statistic, scaled Brier score, and several measures of calibration. 

Results: One-year mortality was 17.2% (34,520) after myocardial infarction, 27.2% (46,115) after hip 

fracture, and 9.3% (5,273) after colorectal surgery. Optimism-adjusted c-statistics for the logistic 

regression models were 0.884 (95% CI 0.882, 0.886), 0.798 (0.796, 0.800), and 0.811 (0.805, 0.817). 

The equivalent c-statistics for the boosted tree models were 0.891 (95% CI 0.889, 0.892), 0.804 

(0.802, 0.806), and 0.803 (0.797, 0.809). Model performance was also similar when measured using 

scaled Brier scores. All models were well calibrated overall. 

Conclusion: In large datasets of electronic healthcare records, logistic regression and boosted tree 

models of numerous diagnosis codes predicted patient mortality comparably. 
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What is new? 

Key findings 

• Logistic regression and boosted trees predicted one-year mortality from large sets of 

diagnosis codes comparably, in three large and diverse clinical populations 

What this adds to what was known 

• Machine learning approaches have been used to model interactions between many diagnosis 

codes in large datasets of electronic healthcare records 

• No previous studies have directly compared regression and machine learning approaches 

for modelling large sets of individual International Classification of Diseases (ICD) codes 

What should change now? 

• Our results suggest that there is little or no advantage to using machine learning rather than 

regression approaches in this particular study context 
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1. Introduction 

Machine learning has received increasing interest from epidemiologists, clinicians, and health services 

researchers in recent years.1-3 Related methods have been applied to various types of data, including 

gene sequences, medical images, and electronic healthcare records.4-6 While some commentators have 

emphasised the promise of these methods,7,8 others have focused on associated challenges.9,10 

One area where the value of machine learning is particularly unclear is clinical prediction 

modelling.11-13 Prediction models can be used to inform clinical decisions and the design of preventive 

interventions, and they can also contribute to risk adjustment and causal inference methods.14,15 

Predicting future events is a traditional focus of machine learning methods, which typically estimate 

relationships between variables more flexibly than conventional regression.16 While this may reduce 

bias in predictions, it could also increase the risk of modelling associations in the data that exist only 

by chance such that a model’s predictions do not work well for future patients (‘overfitting’).11 

Electronic healthcare records offer growing opportunities to develop prediction models using machine 

learning, as large populations can often be studied using these records and larger samples reduce the 

risk of model overfitting.11,17 Several models have been developed with related methods and large 

datasets of electronic healthcare records.18-22 These models often include variables for hundreds of 

diagnosis codes to better capture the complexities of patient morbidity, including potential 

interactions across many conditions that may be best modelled by flexible methods.23,24 Regression 

models with many additive coefficients may be liable to predict some values that are too extreme. 

However, it is often unclear how conventional regression methods would have performed if directly 

compared to the machine learning methods used in these studies. A recent systematic review25 of 

prognostic modelling studies that compared logistic regression and machine learning methods was 

limited by the small sample sizes and few predictor variables used in these studies. The review 

recommended that future research should examine the specific study contexts in which different 

approaches are suitable, particularly using large datasets and more predictors.25 
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In this study, we compared the performance of logistic regression and boosted tree models for 

predicting patient outcomes from large sets of diagnosis codes given in electronic healthcare records. 

Such models have been used to measure patient comorbidity and to adjust measures of healthcare 

quality for patient case-mix, for example.23,26 To do this, we analysed linked national datasets of 

routinely collected hospital data and official death records from England. 

The study populations were patients admitted for acute myocardial infarction, hip fracture, or major 

surgery for colorectal cancer. We chose these populations partly because they represent many 

admissions, thus providing relevance to a wide audience and allowing robust internal validation of the 

models. These populations also vary in terms of clinical specialty, co-existing conditions, and 

mortality, which helped to assess the consistency of results across diverse groups. 

We focused on boosted trees as the machine learning approach because they are often used for 

prediction modelling in large routinely collected healthcare datasets,6,22,27 they are well-established as 

a leading approach to tabular data in machine learning competitions,28 and they can be used widely 

without advanced computing facilities due to quick fitting procedures.29 

2. Methods 

2.1 Study populations 

We analysed Hospital Episode Statistics Admitted Patient Care data—administrative data for all 

inpatient hospital care funded by the National Health Service (NHS) in England.30 Each record relates 

to an ‘episode’ of care under the same senior clinician and contains 20 fields for International 

Classification of Diseases 10th Revision (ICD-10) codes31 relevant to that episode. The first field 

contains the primary diagnosis—the main condition treated. 

Myocardial infarction (I21-2232,33) and hip fracture (S72.0-S72.234,35) patients were identified from 

ICD-10 codes recorded as the primary diagnosis in the first episode of each admission. Colorectal 
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surgery patients were identified from any episode with both a relevant primary diagnosis (ICD-10: 

C18-20) and main procedure (OPCS-4: H04-11, H29, H33, X14).36-39 

We included patients aged 18 years or older or, for hip fracture, only patients aged 60 years or older35 

whose admission was from 1 January 2015 to 31 December 2017. If a patient had two or more 

admissions for the same index condition in this period (myocardial infarction, hip fracture, or 

colorectal surgery), only the first was included in the analysis. 

2.2 Outcome 

The outcome was death up to and including 365 days after the date of admission or, for colorectal 

surgery, the date of procedure. Mortality is the outcome most often used to assess models of diagnosis 

codes in hospital settings and to develop prediction models using electronic healthcare records.17,24,40 

We analysed 365-day mortality, rather than in-hospital or 30-day mortality for example, to increase 

the effective sample size (which is related to the number of outcome events41). 

We used dates of death recorded in Office for National Statistics mortality data42 up to 31 December 

2018, providing complete follow-up for the outcome. These official records were linked to Hospital 

Episode Statistics based on each patient’s unique NHS identifier, date of birth, sex, and postcode.43 

2.3 Predictors 

We defined a binary predictor for each ICD-10 code that denoted whether it was recorded or not in 

each patient’s index episode or up to 365 days before. We analysed the first three characters of these 

codes (excluding fourth characters) as coding choices at this level will be less variable than with four 

characters.23 The first three characters define single conditions or other health-related attributes; 

fourth characters define sites, subtypes, and causes.44 

In each population, we excluded three-character codes recorded for less than 0.5% of patients in the 

365-day ‘look-back period’ as these codes were so rare that they were unlikely to improve model 
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performance.6,26,45 We used a 365-day period, rather than only using codes from the index episode, as 

this improved model performance in some published studies.24 

Patient age, sex, and socioeconomic status were also included as predictors, as is common when 

examining models of ICD codes.24,40 Socioeconomic status was measured by the national Index of 

Multiple Deprivation rank of each residential area (with 1000 to 3000 residents in each of 32 482 

areas)46; we excluded patients with missing data for this variable (1.2%; 5346/431 626). 

2.4 Model estimation 

We first estimated associations between the outcome and predictors (age, sex, socioeconomic status, 

and ICD codes) as the maximum likelihood estimates of a logistic regression model. We did not fit 

non-linear associations for age or socioeconomic status or use penalised estimation, as these choices 

had minimal effects on model performance in our previous analysis of the same data.47 

We used the XGBoost29 algorithm to develop gradient boosted tree models,48-50 using all predictors as 

before. This algorithm fits a series of tree models to the data sequentially with each tree attempting to 

improve on predictions from the previous tree.51 These models fit many interactions between 

predictors without these terms having to be pre-specified (unlike in conventional regression). 

Five boosted tree models were fitted in each population using 100, 200, 300, 400, and 500 boosting 

iterations. Further tuning parameters were held fixed as various combinations of these parameters 

gave similar maximum performance across this range of boosting iterations (see Appendix A1). The 

learning rate, maximum tree depth, minimum node weight, and subsample fraction took the values of 

0.1, 5, 100, and 1, respectively (see Appendix A1 for definitions). 

2.5 Model performance 

Overall model performance was measured using Brier scores.52 These scores equalled the mean of 

squared differences between predicted probabilities of death and observed outcomes. We scaled these 

scores from 0–100% (0% for a non-informative model and 100% if perfect).53 
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To assess discrimination, we calculated the c-statistic. This equalled the probability that a randomly 

chosen patient who died had a greater predicted probability of death than a randomly chosen patient 

who did not.54 The c-statistic equals one for perfect models and 0.5 for predictions made at random. 

To assess calibration, we calculated the integrated calibration index (ICI),55 calibration-in-the-large, 

and calibration slopes.56 ICI and calibration-in-the-large assess the calibration of model predictions 

across their range and overall, respectively; perfect models have values of zero. Calibration slopes 

equal one in perfect models, with smaller values indicating overfitting. 

For each model in each population, we first calculated the above measures in the original data used to 

fit the models (‘apparent performance’). We then repeated all modelling steps in each of 250 

bootstrap samples and, for each sample, calculated the performance of the resulting model in this 

sample and the original data; the difference in performance values between the bootstrap sample and 

original data defined the ‘optimism’. Finally, an optimism-adjusted value of each performance 

measure was calculated as the apparent performance value minus the mean optimism.54,57,58 This is the 

bootstrap validation approach given in the TRIPOD guidelines.59 

2.6 Secondary analyses 

We conducted a secondary analysis using a 1825-day (five-year) look-back period. This analysis also 

accounted for the exact number of days since each ICD-10 code was last recorded rather than just 

whether it was recorded or not in a given time period (see Appendix A2 for details). This analysis, in 

addition to the main analysis, was pre-specified in a published protocol.60 We have previously 

reported a separate study that was specified in the same protocol.47 

We conducted two post-hoc analyses (also described in Appendix A2). In the first analysis, we 

examined whether the calibration of the logistic regression models at high predicted probabilities 

could be improved. We used splines to fit non-linear associations for age and socioeconomic status 

and included interactions between three selected predictors. In the second analysis, we assessed the 
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performance of two additional machine learning approaches—random forests and neural networks. 

Data preparation was done using Stata (v15). R (v3.5) was used for all analysis; code to implement 

the different estimation methods is given in Appendix A3. 

In response to a peer reviewer’s suggestion, we conducted two additional analyses. First, we added 

500 extra boosting iterations (1000 in total) and used other combinations of tuning parameters to see 

if this improved the boosted trees’ performance. Second, we examined the performance of the 

regression and boosted tree models when only ICD codes with frequencies less than 0.1% (rather than 

0.5%) were excluded from the set of predictor variables. 

3. Results 

The percentage of patients who died within one year was 17.2% (34 520/200 119) after myocardial 

infarction, 27.2% (46 115/169 646) after hip fracture, and 9.3% (5273/56 515) after colorectal 

surgery. In each population, between 202 and 257 ICD-10 codes were recorded for at least 0.5% of 

patients within one year before their admission or procedure. This provided 168 (34 520/205; 

myocardial infarction), 177 (46 115/260; hip fracture), and 25 (5273/212; colorectal surgery) deaths 

per predictor variable. Most ICD-10 codes had low frequencies (see Table 1). 

The distributions of predicted probabilities were similar between the logistic regression and boosted 

tree models overall (Figure 1; see Figure 2 for distributions by outcome). The most ‘important’ 

variables were also similar between models (Appendix A4). Age and metastatic cancer in the 

respiratory and digestive organs were important predictors of death in each population. 

The overall optimism-adjusted performance of the boosted trees was slightly better than that of 

logistic regression, as measured by Brier scores, in the myocardial infarction and hip fracture 

populations (Table 2). The absolute differences in scaled Brier scores were 1.9% (95% CI: 1.7% to 

2.1%) and 1.2% (95% CI: 1.0% to 1.4%) respectively. Logistic regression had a slightly superior 



10 

score in the colorectal surgery population (difference=1.5%; 95% CI: 0.8% to 2.1%). Model 

discrimination, as measured by the c-statistic, followed the same pattern with a minimum value of 

0.798 (95% CI: 0.796 to 0.800) across models and populations (see Table 2). 

Both the boosted trees and regression models were well calibrated overall. Values of calibration-in-

the-large and calibration slopes were close to their respective ideal values of 0 and 1 (Table 2). 

However, logistic regression predictions of very high probabilities of death were too high on average, 

particularly in the colorectal surgery population (see calibration plots in Figure 3). In contrast, the 

predictions of the boosted trees closely agreed with observed outcomes across the range of predicted 

probabilities. Several ICD-10 codes were frequent amongst patients with very high predicted risks of 

death and these codes were almost identical for the boosted trees and regression models (see 

Appendix A5 for code frequencies in the top 5% of predicted risks). The inclusion of splines and 

interactions between selected codes in the logistic regression models did not correct for the worse 

calibration observed at high predicted risks in each population (Appendix A6). 

For the boosted tree models, the maximum scaled Brier scores were attained with 500 boosting 

iterations in the myocardial infarction and hip fracture populations and 200 iterations in the colorectal 

surgery population (Appendix A7). These numbers of iterations also provided the models whose 

calibration slopes were closest to 1 (the ideal value). The differences between apparent and optimism-

adjusted performance (optimism) were typically small for the boosted tree models but the 

corresponding differences for logistic regression were even smaller (Appendix A7). 

The models estimated in the secondary analysis using a five-year look-back period generally 

performed similarly to or not as well as those from the main analysis (Appendix A8). The random 

forest models did not attain scaled Brier scores or c-statistics that were greater than those for both the 

logistic regression and boosted tree models in any of the populations, while the neural networks were 

the worst-performing models in each population (see Appendix A8 for results). Using up to 1000 

boosting iterations for the boosted tree models and other combinations of tuning parameters did not 
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improve prediction performance, neither did using a 0.1% (versus 0.5%) frequency threshold for 

including ICD codes as predictors (Appendix A9). 

4. Discussion 

In large datasets of electronic healthcare records, logistic regression and boosted tree models of 

numerous diagnosis codes predicted one-year mortality comparably. This was consistent across the 

three populations of acute myocardial infarction, hip fracture, and colorectal surgery patients. Both 

the logistic regression and boosted tree models had good discrimination and were well calibrated 

overall, though the boosted trees were better calibrated at high predicted probabilities of death. 

4.1 Interpretation of results 

A potential strength of boosted trees is that they include many interactions between predictors by 

design. Interactions across many conditions were plausible given relationships between disorders and 

their management. Several authors have advocated modelling interactions between conditions for this 

reason.23,24,61 However, the boosted trees performed comparably to logistic regression models without 

interactions, suggesting that interactions were unimportant overall in this context. 

This finding may be partly explained by the low frequencies of most ICD codes. Two codes may not 

be recorded together very often which reduces the potential for their interaction to improve overall 

model performance, even if the interaction has a large true prognostic effect. It may also be difficult to 

reliably estimate interactions between codes that are not often recorded together. 

Clinical prediction problems have been described as having unfavourable ‘signal-to-noise’ ratios that 

question the potential benefits of using more flexible estimation methods that fit many interactions.62 

Misclassification error in the recording of diagnosis codes may add to the ‘noise’ and result in biased 

estimates of true interactions. In addition, more flexible methods may be more likely to capture 

spurious relationships in the data that have arisen by chance. However, the values of optimism for the 
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boosted trees were reasonably small in the current study which is partly explained by the large sample 

sizes and the shrinkage included in the boosting process to prevent model overfitting. 

Larger study populations reduce the potential for overfitting and can thereby improve the performance 

of more flexible methods.63 We used three years of national data to provide large samples, but many 

investigators do not have access to such large databases.11 In smaller populations or when the study 

outcome occurs less frequently, any benefits of boosted trees over logistic regression in terms of 

prediction performance are likely to reduce. In addition, important interactions may already be known 

such that they could be pre-specified in regression models. 

One benefit of the boosted trees was that very high predicted probabilities were better calibrated than 

when logistic regression was used. This was not fully explained by the splines or interactions that 

were added to the regression models, which may be because interactions between many codes needed 

to be added. Boosted trees fit interactions in each iteration to improve predictions where the existing 

model works less well, such as extreme cases. In contrast, logistic regression models may fit well 

overall but are not designed to capture unusual cases with very high risks of death because the many 

patients at low risk dominate model estimates. However, interactions fitted by boosted trees may not 

be generalisable to other datasets which could reduce this benefit. 

4.2 Relation to existing literature 

To our knowledge, no previous studies have directly compared regression and machine learning 

approaches for modelling large sets of individual ICD codes specifically. In a previous study of 

Hospital Episode Statistics data (up to 2013), logistic regression models had similar discrimination to 

support vector machines, neural networks, and random forests when predicting in-hospital mortality 

using small sets of comorbidities.64 Using the same datasets as in the current study, we have 

previously found that large sets of individual ICD codes can predict patient outcomes better than 

traditional sets of comorbidities,47 which is consistent with other studies.23,26,65 
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Many analyses have compared logistic regression with boosted trees and other machine learning 

approaches in various large datasets of electronic healthcare records, with differing results (for 

example22,27,62,66,67). Two studies22,27 in which boosted trees performed better than regression analysed 

large primary care datasets, which may suggest that boosted trees have an advantage in very 

heterogeneous populations. This contrasts to our analysis which was done within populations defined 

by an index condition. It is difficult to draw general conclusions from such studies, as results may be 

sensitive to the specific prediction problem (such as sample size, predictors, and data quality) and the 

exact implementation of algorithms. One approach will not work best across all contexts.68,69 

A recent systematic review25 of studies that compared logistic regression and machine learning for 

clinical prediction modelling stated that ‘Future research should focus more on delineating the type of 

predictive problems in which various algorithms have maximal value’ (p.18). Our study aligns with 

this call and suggests that logistic regression and boosted trees predict patient mortality comparably 

from numerous diagnosis codes in large electronic healthcare datasets. 

4.3 Limitations of the study 

Our study focused on diagnosis codes given their central role in analysing patient morbidity using 

electronic healthcare records. In addition, the ICD-10 coding system has a standardised core format 

internationally which may improve the generalisability of our results to other countries. Future work 

could include other predictors that are likely to have strong effects but may be recorded variably or 

not at all in the datasets of different countries, such as the hospitalisation pathway. Some variables 

modelled in other studies using boosted trees, including laboratory test values and prescription 

information,21,27 are not recorded in Hospital Episode Statistics data. 

Future research should conduct similar comparisons for other populations, outcomes, and datasets to 

see whether our results apply more generally. For example, in study populations without a defined 

index condition, interactions between primary and secondary diagnosis codes may improve prediction 

performance. In large datasets with greater frequencies of ICD codes, possibly in older populations, 

interactions between codes may be estimated with greater precision. The external validity of models 
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produced using regression and machine learning approaches should also be compared when 

investigators intend to use the models in another dataset or context. 

4.4 Implications for research 

Many studies use diagnosis codes from electronic healthcare records to model patient morbidity.70 

Our results suggest that there is little or no advantage to using machine learning rather than regression 

approaches in the particular context examined. Investigators may prefer to use regression instead if 

they require a model that is transparent, easily interpreted, and familiar to a wide audience. We have 

previously reported a regression-based approach for selecting small sets of ICD codes with high 

prediction performance.47 

Electronic healthcare records are increasing in volume and scope, presenting growing opportunities to 

use large sets of predictors and model their relationships with more flexible methods.17 High-quality 

comparisons in large datasets are required to determine the contexts in which these methods should be 

used and when more conventional approaches are sufficient.25 In the context of the study presented 

here, our results suggest that regression approaches perform well.  
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Table 1. Descriptive statistics for outcome and predictor variables, by population 

 

Acute myocardial 

infarction Hip fracture 

Major colorectal 

cancer surgery 

Number of patients 200 119 169 646 56 515 

Number who died within 1 year (%) 34 520 (17.2) 46 115 (27.2) 5273 (9.3) 

Patient characteristics    

  Median age (IQR) 70 (58 to 80) 84 (77 to 89) 70 (62 to 78) 

  Male (versus female) (%) 132 162 (66.0) 48 622 (28.7) 32 004 (56.6) 

  Median socioeconomic status (IQR)a 4.8 (2.4 to 7.3) 5.4 (2.9 to 7.7) 5.7 (3.3 to 7.9) 

ICD-10 codes    

  Number of codes includedb 202 257 209 

  Median frequency (%) of codes (IQR) 1.6 (0.8 to 3.4) 1.8 (0.8 to 4.2) 1.6 (0.9 to 4.5) 

  Median number of codes per patient (IQR) 6 (4 to 10) 9 (6 to 14) 7 (4 to 11) 

  Median agreement between codes (IQR)c 0.01 (0.00 to 0.02) 0.01 (0.00 to 0.01) 0.01 (0.00 to 0.01) 

IQR=interquartile range. aScaled such that the most deprived area of residence nationally had a value of 0 and the least 

deprived area had a value of 10. bRelative frequency of each three-character code was at least 0.5% in the given population. 
cMedian values of Cohen’s kappa coefficient across all unique pairs of codes (1 = perfect agreement, 0 = chance agreement). 
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Table 2. Prediction performance of the logistic regression and boosted tree models, corrected for 

optimism using 250 bootstrap samples (with 95% confidence intervals) 

 Acute myocardial 

infarction 
Hip fracture 

Major colorectal 

cancer surgery 

Scaled Brier score (%)    

Logistic regression 34.6 (34.2 to 35.1) 22.8 (22.4 to 23.2) 17.2 (16.1 to 18.2) 

Boosted trees 36.5 (36.1 to 37.0) 24.0 (23.6 to 24.4) 15.7 (14.8 to 16.6) 

c-statistic    

Logistic regression 0.884 (0.882 to 0.886) 0.798 (0.796 to 0.800) 0.811 (0.805 to 0.817) 

Boosted trees 0.891 (0.889 to 0.892) 0.804 (0.802 to 0.806) 0.803 (0.797 to 0.809) 

Calibration-in-the-large    

Logistic regression -0.001 (-0.017 to 0.015) 0.000 (-0.013 to 0.013) 0.000 (-0.032 to 0.031) 

Boosted trees 0.000 (-0.016 to 0.016) 0.001 (-0.012 to 0.014) 0.002 (-0.028 to 0.033) 

Calibration slope    

Logistic regression 0.993 (0.984 to 1.003) 0.989 (0.977 to 1.002) 0.961 (0.936 to 0.987) 

Boosted trees 1.003 (0.993 to 1.013) 1.006 (0.993 to 1.018) 0.988 (0.963 to 1.013) 

Integrated calibration index    

Logistic regression 0.012 (0.011 to 0.013) 0.015 (0.014 to 0.017) 0.007 (0.006 to 0.009) 

Boosted trees 0.002 (0.001 to 0.003) 0.004 (0.002 to 0.006) 0.001 (0.000 to 0.003) 

Results for boosted trees correspond to models with 500 boosting iterations in the myocardial infarction and hip fracture 

populations and 200 iterations in the colorectal surgery population.  



22 

Figure 1. Frequency distributions of predicted probabilities of death, by population and method 

 

MI: myocardial infarction; HF: hip fracture; CR: colorectal surgery. In the MI population, 5% of patients had 

predicted probabilities equal to or greater than 72.5%. The corresponding values in the HF and CR populations 

were 73.9% and 35.7%, respectively.  
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Figure 2. Frequency distributions of predicted probabilities of death, by population, outcome, and 

method 

 

LR: logistic regression; BT: boosted trees. Boxes are drawn from the lower to upper quartile of predicted 

probabilities with a white horizontal line at the median value. Annotated values and white dots correspond to 

mean values. Whiskers are drawn to the most extreme predicted probabilities that are no more than 1.5 times the 

interquartile range from the box.  
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Figure 3. Calibration plots for the logistic regression and boosted tree models, by population, 

corrected for optimism using 250 bootstrap samples (shown with line of perfect calibration) 

 

MI: myocardial infarction; HF: hip fracture; CR: colorectal surgery. In the MI and HF populations, 3.5% of 

predicted probabilities were equal to or greater than 80%. In the CR population, 2.8% of predicted probabilities 

were equal to or greater than 50%. The black 45° line represents perfect calibration. 
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Appendix A1. Tuning parameters of boosted regression trees 

Boosted trees are an ensemble of individual trees whose predictions are passed to the next tree in the 

sequence to improve upon. The number of trees included in the ensemble is a parameter that can be 

tuned to improve performance. Each tree is developed by splitting a predictor at the best cut-point at 

each level of the tree. The maximum number of levels, or ‘depth’, of each tree is another tuning 

parameter, as are the minimum number of observations allowed to be at the end of one part of the tree 

and the observations used to fit each tree. The contribution of each tree to the overall ensemble is 

shrunk to reduce model overfitting; this shrinkage factor or ‘learning rate’ must also be tuned. 

The study protocol1 stated that the boosted trees would be tuned by varying these five parameters (see 

table below) and selecting the model with the smallest negative log-likelihood across cross-validation 

folds. These results showed that different combinations of parameters generally gave similar 

minimum values of the negative log-likelihood across the range of boosting iterations (1 to 500). The 

final results were therefore obtained varying the number of boosting iterations only (see far right 

column below), using 250 bootstrap samples to calculate optimism and 95% confidence intervals. 

Parameter Description Values tested in 

cross-validation 

Values used in 

final models 

Number of iterations Maximum number of boosting iterations 1 and 25 to 500 

(in steps of 25) 

100 to 500 (in 

steps of 100) 

Learning rate Scales the contribution of each tree’s predictions 

by this value when added to the existing model 

0.05 and 0.1 0.1 

Maximum tree depth Highest level of predictor interactions allowed in 

a tree 

3 and 5 5 

Minimum node 

weight 

Stops tree splitting if the sum of observation 

weights in a node is less than this parameter 

10 and 100 100 

Subsample fraction Fraction of observations in the training dataset 

randomly chosen to fit the next tree 

0.5 and 1 1 

The scaled Brier scores and c-statistics obtained from the models tuned using cross-validation are 

shown below and were similar to those obtained using bootstrapping (given in the main text). 

  Acute myocardial 

infarction 

Hip fracture Major colorectal 

cancer surgery 

Scaled Brier score (%)       

Logistic regression 34.4 22.8 17.0 

Boosted trees 35.6 23.6 15.2 

c-statistic       

Logistic regression 0.883 0.798 0.809 

Boosted trees 0.888 0.802 0.799 

1. Cowling TE, Cromwell DA, Sharples LD, van der Meulen J. Protocol for an observational study evaluating 

new approaches to modelling diagnostic information from large administrative hospital datasets. medRxiv 

2019:19011338. doi: 10.1101/19011338.  
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Appendix A2. Methods of the secondary analyses 

Five-year look-back period 

The main analysis defined a binary predictor for each ICD-10 code based on whether it was recorded 

or not within one year before the index date. A secondary analysis extended this ‘look-back period’ to 

five years (1825 days) to account for more diagnostic information. The frequency threshold for 

including ICD-10 codes was set at 1% so that the numbers of ICD-10 code predictors were similar to 

in the main analysis (which had a 0.5% threshold but shorter look-back period). 

 

Acute myocardial 

infarction Hip fracture 

Major colorectal 

cancer surgery 

ICD-10 codes in 1-year look-back period    

Number of codes included* 202 257 209 

Median frequencies (%) of codes (IQR) 1.6 (0.8 to 3.4) 1.8 (0.8 to 4.2) 1.6 (0.9 to 4.5) 

Median number of codes per patient (IQR) 6 (4 to 10) 9 (6 to 14) 7 (4 to 11) 

ICD-10 codes in 5-year look-back period    

Number of ICD-10 codes included* 206 251 182 

Median frequencies (%) of codes (IQR) 2.7 (1.5 to 5.4) 3.3 (1.7 to 7.1) 2.7 (1.6 to 6.6) 

Median number of codes per patient (IQR) 9 (5 to 15) 13 (8 to 21) 8 (5 to 13) 

Median number of days to last record of a   

given code (IQR) 

0 (0 to 506) 2 (0 to 548) 4 (0 to 136) 

IQR=interquartile range. *Relative frequency of each three-character code was at least 0.5% (one-year look-back) or 1% 

(five-year look-back) in the given population. 

We first estimated associations between the outcome and predictors (now defined using a five-year 

look-back period) using logistic regression. We then supplemented this model with an extra variable 

for each ICD-10 code which recorded the number of days before the index date that each code was 

last recorded (if at all). The resulting models assumed linear associations for these timing variables 

and were again estimated using logistic regression (see protocol1 for model equation). To model non-

linear associations for the timing variables, we also fitted generalised additive models with smoothing 

splines (with three degrees of freedom) for the continuous variables. 

For the gradient boosted trees, a single predictor for each ICD-10 code was used which recorded the 

number of days before the index date that the code was last recorded (from 0 to 1825 days). If a 

patient did not have a given code recorded, the value of the variable for that code was set to a number 

(2000) that was arbitrarily larger than the maximum recorded value of 1825; the exact larger number 

chosen was arbitrary as trees dichotomise variables at optimal cut points. The trees were again fitted 

using the XGBoost algorithm and the tuning parameter values in Appendix A1. 
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Restricted cubic splines and interaction terms in logistic regression models 

In each population, we added restricted cubic splines with three knots for the age and socioeconomic 

status variables in the logistic regression models. In the same models, we also included two-way 

interactions between three predictors. In the myocardial infarction population, these predictors were 

age, heart failure (I50), and cardiac arrest (I46). In the hip fracture population, the relevant predictors 

were age, sex, and other medical care (Z51). In the colorectal surgery population, the relevant 

predictors were age, secondary cancer of the lymph nodes (C77), and secondary cancer of the 

respiratory and digestive organs (C78). These variables were chosen as they were important predictors 

(Appendix A4) and were relatively frequent among patients whose predicted risks of death were in the 

top 5% (Appendix A5); this part of the predicted risk distribution was poorly calibrated in the logistic 

regression models that did not include interactions. To assess the effects on calibration, we plotted 

calibration curves for these models without and with splines and interactions (Appendix A6). 

Random forests and neural networks 

In addition to boosted trees, random forests and neural networks are two of the most popular machine 

learning approaches for analysing structured healthcare data. Like boosted trees, they model 

interactions between predictors by design but differ in how the model is constructed. 

Random forests are an ensemble of individual trees in which predictions are averaged over all trees. A 

key difference to boosted trees is that random forest algorithms do not pass the predictions of one tree 

to the next tree in a sequence of trees. A defining characteristic of random forests is that the predictors 

used to split the tree are chosen at random at each split. This decorrelates trees to reduce the variance 

of their averaged predictions. The number of predictors to be randomly sampled at each split is a 

tuning parameter often set as the square root of the total number of predictors; we also tested twice the 

square root as an alternative value of this parameter. The other tuning parameter we varied was the 

minimum number of observations allowed to be in an end ‘node’ of the tree, which we set at 10 and 

100. We fitted 500 trees in each random forest model as default in the ranger package in R. 

Neural networks model an outcome using an intermediate set of unobserved, or ‘hidden’, variables 

which themselves are linear combinations of the original predictors. The number of intermediate 

layers of hidden variables can be varied, as can the number of variables in each layer, to improve 

performance. We fitted models with a single intermediate layer and two or four hidden variables in 

this layer. As neural networks are highly flexible, they tend to over-fit the relationship between 

predictors and the outcome. To address this, a penalisation term, or ‘weight decay’, can be used. We 

tested weight decays of 0 (no decay) and 0.1 in each model. All predictors were mean-standardised 

before fitting the models using the nnet package in R. 

The values of tuning parameters that minimised the negative log-likelihood across five repeats of 5-

fold cross-validation were used to develop the final random forest and neural network models. 

1. Cowling TE, Cromwell DA, Sharples LD, van der Meulen J. Protocol for an observational study evaluating 

new approaches to modelling diagnostic information from large administrative hospital datasets. medRxiv 

2019:19011338. doi: 10.1101/19011338.  
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Appendix A3. R code used to implement the different estimation methods 

The data were stored in the data frame ‘dfModel’ with the outcome status (‘mort’) recorded in the first 

column. The predictor variables (age, sex, socioeconomic status and ICD-10 code predictors) were 

recorded in the other columns of the data frame. 
 
 
Logistic regression 
 
logreg <- glm(mort ~ ., family = "binomial", data = dfModel) 
 
 
Boosted trees 
 
library(xgboost) 
 
tune <- list(eta = 0.1, max_depth = 5, min_child_weight = 100, 
             objective = "binary:logistic", eval_metric = "logloss") 
 
trees <- xgboost(data = as.matrix(dfModel[, -1]), label = dfModel$mort, 
                 params = tune, nrounds = 500) 
 
 
Random forests 
 
library(ranger) 
library(caret) 
 
ctrl <- trainControl(summaryFunction = mnLogLoss, 
                     method = "repeatedcv", 
                     number = 5, 
                     repeats = 5, 
                     classProbs = TRUE) 
   
vars <- floor(sqrt(ncol(dfModel) - 1)) 
   
rangerGrid <- expand.grid(mtry = c(vars, 2 * vars), splitrule = "gini", 
                          min.node.size = c(10, 100)) 
   
set.seed(145134) 
rangerTune <- train(mort ~ ., 
                    method = "ranger", 
                    data = dfModel, 
                    tuneGrid = rangerGrid, 
                    trControl = ctrl, 
                    metric = "logLoss", 
                    maximize = FALSE) 
 
 
Neural networks 
 
library(nnet) 
library(caret) 
 
ctrl <- trainControl(summaryFunction = mnLogLoss, 
                     method = "repeatedcv", 
                     number = 5, 
                     repeats = 5, 
                     classProbs = TRUE) 
 
nnetGrid <- expand.grid(size = c(2, 4), decay = c(0, 0.1)) 
   
set.seed(145134) 
nnetTune <- train(mort ~ ., 
                  method = "nnet", 
                  data = dfModel, 
                  tuneGrid = nnetGrid, 
                  trControl = ctrl, 
                  metric = "logLoss", 
                  maximize = FALSE, 
                  preProc = c('center', 'scale'), 
                  MaxNwts = 2000)  
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Appendix A4. Important predictors in the logistic regression and boosted tree models 

Logistic regression 

 
Myocardial infarction   Hip fracture   Colorectal surgery 

 
  

χ2 
  

χ2 
  

χ2 

Age  21.2 Age  18.3 C78 

Secondary malignant 

neoplasm of respiratory 

and digestive organs 

27.9 

I46 Cardiac arrest 14.1 Z51 
Other medical care (e.g. 

chemotherapy) 
5.9 Age  7.9 

R57 
Shock, not elsewhere 

classified 
4.9 F03 Unspecified dementia 5.0 I46 Cardiac arrest 7.0 

Z51 
Other medical care 

(e.g. chemotherapy) 
3.9 Sex  3.0 C77 

Secondary and 

unspecified malignant 

neoplasm of lymph nodes 

5.4 

I50 Heart failure 2.9 I46 Cardiac arrest 2.9 K65 Peritonitis 3.0 

G93 Other disorders of brain 1.7 C78 

Secondary malignant 

neoplasm of respiratory 

and digestive organs 

2.4 Z51 
Other medical care (e.g. 

chemotherapy) 
2.5 

N17 Acute renal failure 1.5 F01 Vascular dementia 2.4 D12 

Benign neoplasm of 

colon, rectum, anus, and a

nal canal 

1.6 

C78 

Secondary malignant 

neoplasm of respiratory 

and digestive organs 

1.4 C34 
Malignant neoplasm of 

bronchus and lung 
1.9 C79 

Secondary malignant 

neoplasm of other sites 
1.5 

C34 
Malignant neoplasm of 

bronchus and lung 
0.9 C79 

Secondary malignant 

neoplasm of other sites 
1.8 K55 

Vascular disorders of 

intestine 
1.1 

F03 Unspecified dementia 0.8 I50 Heart failure 1.7 I48 
Atrial fibrillation and 

flutter 
0.9 

The variable importance measure, χ2, is the partial Wald chi-square statistic for a given variable as a percentage of the 

statistic for the overall model. 

Boosted trees 

Myocardial infarction Hip fracture Colorectal surgery 

  Gain   Gain   Gain 

Age  38.9 Age  21.4 C78 

Secondary malignant 

neoplasm of respiratory 

and digestive organs 

27.2 

I46 Cardiac arrest 11.6 Z51 
Other medical care (e.g. 

chemotherapy) 
8.1 Age  17.1 

N17 Acute renal failure 6.3 J18 
Pneumonia, organism 

unspecified 
6.8 K65 Peritonitis 5.1 

I50 Heart failure 5.6 F03 Unspecified dementia 6.7 N17 Acute renal failure 5.1 

Z51 
Other medical care (e.g. 

chemotherapy) 
3.9 I50 Heart failure 4.3 C77 

Secondary and 

unspecified malignant 

neoplasm of lymph nodes 

4.8 

R57 
Shock, not elsewhere 

classified 
3.9 Sex  3.9 E87 

Other disorders of fluid, 

electrolyte, and acid-

base balance 

3.8 

E87 

Other disorders of fluid, 

electrolyte, and acid-

base balance 

3.0 W19 Unspecified fall 2.9 
Socio. 

status 
 3.5 

J18 
Pneumonia, organism 

unspecified 
2.2 I46 Cardiac arrest 2.8 Z51 

Other medical care (e.g. 

chemotherapy) 
2.8 

C78 

Secondary malignant 

neoplasm of respiratory 

and digestive organs 

1.5 N17 Acute renal failure 2.6 A41 Other septicemia 2.8 

N18 Chronic renal failure 1.4 G30 Alzheimer's disease 2.5 J96 
Respiratory failure, not 

elsewhere classified 
2.3 

The variable importance measure, ‘Gain’, is the percentage contribution of each variable to the model based on the total gain 

from this variable’s splits in the trees in minimising the negative log-likelihood.  
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Appendix A5. Frequent ICD-10 codes recorded for patients whose predicted risks of death were 

in the top 5% of predictions, by method 

Myocardial infarction (n=10 006) 

Logistic regression - Prob(death) ≥ 0.725 Boosted trees - Prob(death) ≥ 0.721 

Code n % Code n % 

I10 Essential (primary) hypertension 6527 65.2 I10 Essential (primary) 

hypertension 

6016 60.1 

I50 Heart failure 6280 62.8 I50 Heart failure 5506 55.0 

I25 Chronic ischemic heart disease 5691 56.9 I25 Chronic ischemic heart 

disease 

5320 53.2 

N17 Acute renal failure 5033 50.3 N17 Acute renal failure 4536 45.3 

Z86 Personal history of certain other 

diseases 

4364 43.6 Z86 Personal history of certain 

other diseases 

4040 40.4 

I48 Atrial fibrillation and flutter 4180 41.8 I46 Cardiac arrest 3802 38.0 

N18 Chronic renal failure 3834 38.3 I48 Atrial fibrillation and flutter 3747 37.4 

I46 Cardiac arrest 3647 36.4 N18 Chronic renal failure 3381 33.8 

E11 Non-insulin-

dependent diabetes mellitus 

3537 35.3 E11 Non-insulin-

dependent diabetes mellitus 

3212 32.1 

E87 Other disorders of fluid, electrolyte, 

and acid-base balance 

3495 34.9 Z92 Personal history of medical 

treatment 

3076 30.7 

 

Hip fracture (n=8483) 

Logistic regression - Prob(death) ≥ 0.739 Boosted trees - Prob(death) ≥ 0.731 

Code n % Code n % 

I10 Essential (primary) hypertension 5069 59.8 I10 Essential (primary) 

hypertension 

4686 55.2 

W19 Unspecified fall 5035 59.4 W19 Unspecified fall 4668 55.0 

J18 Pneumonia, organism unspecified 4368 51.5 J18 Pneumonia, organism 

unspecified 

4129 48.7 

I48 Atrial fibrillation and flutter 4216 49.7 I48 Atrial fibrillation and flutter 3953 46.6 

Z86 Personal history of certain other 

diseases 

3855 45.4 Z51 Other medical care (e.g. 

chemotherapy) 

3586 42.3 

N17 Acute renal failure 3748 44.2 N17 Acute renal failure 3506 41.3 

R29 Other symptoms and signs involving 

the nervous and musculoskeletal 

systems 

3537 41.7 Z86 Personal history of certain 

other diseases 

3429 40.4 

I50 Heart failure 3483 41.1 I50 Heart failure 3172 37.4 

N18 Chronic renal failure 3381 39.9 N18 Chronic renal failure 3134 36.9 

Z51 Other medical care (e.g. 

chemotherapy) 

3257 38.4 R29 Other symptoms and signs 

involving the nervous and 

musculoskeletal systems 

2997 35.3 
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Colorectal surgery (n=2826) 

Logistic regression - Prob(death) ≥ 0.357 Boosted trees - Prob(death) ≥ 0.354 

Code n % Code n % 

C78 Secondary malignant neoplasm of 

respiratory and digestive organs 

1679 59.4 C78 Secondary malignant 

neoplasm of respiratory and 

digestive organs 

1720 60.9 

I10 Essential (primary) hypertension 1594 56.4 I10 Essential (primary) 

hypertension 

1596 56.5 

C77 Secondary and unspecified 

malignant neoplasm of lymph nodes 

1220 43.2 C77 Secondary and unspecified 

malignant neoplasm of lymph 

nodes 

1171 41.4 

Z86 Personal history of certain other 

diseases 

996 35.2 N17 Acute renal failure 958 33.9 

N17 Acute renal failure 858 30.4 Z86 Personal history of certain 

other diseases 

953 33.7 

E87 Other disorders of fluid, electrolyte, 

and acid-base balance 

812 28.7 E87 Other disorders of fluid, 

electrolyte, and acid-

base balance 

874 30.9 

Z92 Personal history of medical treatment 809 28.6 I48 Atrial fibrillation and flutter 804 28.5 

I48 Atrial fibrillation and flutter 791 28.0 K56 Paralytic ileus and intestinal 

obstruction without hernia 

778 27.5 

K56 Paralytic ileus and intestinal 

obstruction without hernia 

784 27.7 J18 Pneumonia, organism 

unspecified 

749 26.5 

K63 Other diseases of intestine 723 25.6 K63 Other diseases of intestine 719 25.4 
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Appendix A6. Optimism-adjusted calibration plots and performance measures for the logistic 

regression models of the main analysis and with splines and selected interactions 

 

 Myocardial infarction Hip fracture Colorectal surgery 

Scaled Brier score (%)    

No splines or interactions 34.6 22.8 17.2 

With splines and interactions 34.9 22.9 17.9 

c-statistic    

No splines or interactions 0.884 0.798 0.811 

With splines and interactions 0.885 0.799 0.810 

 

MI: myocardial infarction; HF: hip fracture; CR: colorectal surgery. Two-way interactions were included 

between: age, cardiac arrest (I46), and heart failure (I50) in the MI population; age, sex, and other medical care 

(Z51) in the HF population; and age, nodal metastases (C77), and respiratory/digestive metastases (C78) in the 

colorectal surgery population. Age and socioeconomic status were modelled using restricted cubic splines with 

three knots.  
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Appendix A7. Apparent and optimism-adjusted prediction performance of the logistic 

regression and boosted tree models as estimated using 250 bootstrap samples 

 Myocardial infarction Hip fracture Colorectal surgery 

 App. Opt. Adj. App. Opt. Adj. App. Opt. Adj. 

Scaled Brier score (%)          

Logistic regression 34.9 0.3 34.6 23.1 0.3 22.8 18.5 1.3 17.2 

Boosted trees:          

100 iterations 36.0 0.8 35.1 23.9 0.9 22.9 17.5 1.9 15.6 

200 iterations 37.4 1.3 36.0 25.1 1.5 23.6 18.7 3.0 15.7 

300 iterations 38.0 1.7 36.3 25.8 2.0 23.8 19.3 3.7 15.6 

400 iterations 38.5 2.1 36.4 26.3 2.4 23.9 19.8 4.3 15.5 

500 iterations 38.9 2.4 36.5 26.7 2.7 24.0 20.3 4.8 15.5 

c-statistic          

Logistic regression 0.885 0.001 0.884 0.800 0.002 0.798 0.819 0.008 0.811 

Boosted trees:          

100 iterations 0.888 0.003 0.886 0.803 0.005 0.798 0.813 0.011 0.802 

200 iterations 0.893 0.004 0.889 0.809 0.008 0.801 0.820 0.017 0.803 

300 iterations 0.895 0.005 0.890 0.813 0.010 0.803 0.824 0.021 0.803 

400 iterations 0.897 0.006 0.890 0.815 0.012 0.803 0.827 0.024 0.802 

500 iterations 0.898 0.007 0.891 0.818 0.014 0.804 0.829 0.027 0.803 

Calibration-in-the-large          

Logistic regression 0 0.001 -0.001 0 0.000 0.000 0 0.000 0.000 

Boosted trees:          

100 iterations 0.000 0.000 0.000 0.000 -0.001 0.001 0.000 -0.002 0.001 

200 iterations 0.000 0.000 0.000 0.000 -0.001 0.001 0.000 -0.002 0.002 

300 iterations 0.000 0.000 0.000 0.000 -0.001 0.001 0.000 -0.003 0.003 

400 iterations 0.000 0.000 0.000 0.000 -0.001 0.001 0.000 -0.003 0.003 

500 iterations 0.000 0.000 0.000 0.000 -0.001 0.001 0.000 -0.004 0.004 

Calibration slope          

Logistic regression 1 0.007 0.993 1 0.011 0.989 1 0.039 0.961 

Boosted trees:          

100 iterations 1.120 0.020 1.100 1.173 0.036 1.138 1.109 0.057 1.052 

200 iterations 1.079 0.031 1.048 1.120 0.052 1.068 1.073 0.086 0.988 

300 iterations 1.066 0.040 1.026 1.103 0.066 1.037 1.078 0.107 0.970 

400 iterations 1.059 0.048 1.011 1.096 0.078 1.018 1.085 0.124 0.961 

500 iterations 1.058 0.055 1.003 1.094 0.089 1.006 1.096 0.139 0.957 

Integrated calibration index          

Logistic regression 0.012 0.000 0.012 0.015 0.000 0.015 0.007 0.000 0.007 

Boosted trees:          

100 iterations 0.011 0.001 0.010 0.019 0.002 0.017 0.007 0.002 0.005 

200 iterations 0.008 0.002 0.006 0.014 0.004 0.011 0.005 0.004 0.001 

300 iterations 0.006 0.002 0.004 0.012 0.005 0.007 0.005 0.005 0.000 

400 iterations 0.006 0.003 0.003 0.012 0.006 0.005 0.005 0.006 -0.001 

500 iterations 0.005 0.003 0.002 0.011 0.007 0.004 0.006 0.007 -0.001 
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Appendix A8. Results of the secondary analyses 

Five-year look-back period 

The boosted trees attained the largest scaled Brier scores and c-statistics in each population, while the 

logistic regression models that did not account for the timings had the lowest scores (see table below). 

However, the boosted trees performed comparably to those from the main analysis (which only used a 

one-year look-back period). This may be partly because most ICD-10 codes were last recorded within 

a few days of the index dates (see Appendix A2). The approach may work better for non-hospitalised 

populations with more variation in the times since diagnosis codes were last recorded. 

  

Acute myocardial 

infarction  Hip fracture 

Major colorectal 

cancer surgery  

Scaled Brier score (%)       

Boosted trees 36.2 24.1 17.2 

Generalised additive models 34.4 23.1 15.1 

Logistic regression with time effects 33.7 22.2 14.9 

Logistic regression 32.2 20.8 14.8 

c-statistic       

Boosted trees 0.889 0.804 0.807 

Generalised additive models 0.883 0.799 0.796 

Logistic regression with time effects 0.880 0.794 0.797 

Logistic regression 0.876 0.789 0.800 

 

Random forests and neural networks 

The random forest models did not perform better than both the logistic regression and boosted tree 

models in any of the populations. Neural networks consistently performed worse than other models. 

  

Acute myocardial 

infarction  Hip fracture 

Major colorectal 

cancer surgery  

Scaled Brier score (%)       

Random forests 35.1 22.1 16.1 

Neural networks 32.2 17.4 11.1 

c-statistic       

Random forests 0.887 0.795 0.808 

Neural networks 0.878 0.774 0.784 
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Appendix A9. Results of additional analyses in response to peer reviewers 

Further combinations of tuning parameters 

The main analysis fitted boosted tree models with a maximum tree depth (‘Max Tree Depth’) of 5, 

learning rate (‘eta’) of 0.1, minimum node weight (‘min_child_weight’) of 100, and up to 500 

boosting iterations (Appendix A1). Results for this combination can be seen as the pink line in the 

bottom left-hand panel of each figure below. The figures present the scaled Brier scores (estimated 

using five-fold cross-validation) when these tuning parameters were combined with different values. 

In each population, the maximum performance values were relatively insensitive to the choice of 

different combinations provided that the number of boosting iterations was tuned appropriately. 

 

Myocardial infarction: 
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Hip fracture: 

 

Colorectal surgery: 
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Frequency threshold of 0.1% for ICD codes 

When only ICD codes with frequencies less than 0.1% (rather than 0.5%) were excluded from the set 

of predictor variables, the number of included ICD codes approximately doubled in each population. 

However, the performance of the resulting models in the original data (‘apparent performance’) 

hardly changed, as shown below by population and frequency threshold (0.5% or 0.1%). 

 Myocardial infarction Hip fracture Colorectal surgery 

 0.5% 0.1% 0.5% 0.1% 0.5% 0.1% 

Number of ICD codes 202 440 257 522 209 434 

Scaled Brier score (%):       

Logistic regression 34.9 35.7 23.1 24.0 18.5 20.0 

Boosted trees:       

100 iterations 36.0 36.0 23.9 23.8 17.5 17.5 

200 iterations 37.4 37.3 25.1 25.1 18.7 18.7 

300 iterations 38.0 38.0 25.8 25.8 19.3 19.3 

400 iterations 38.5 38.4 26.3 26.2 19.8 19.8 

500 iterations 38.9 38.8 26.7 26.7 20.3 20.3 

c-statistic:       

Logistic regression 0.885 0.887 0.800 0.805 0.819 0.827 

Boosted trees:       

100 iterations 0.888 0.888 0.803 0.803 0.813 0.813 

200 iterations 0.893 0.893 0.809 0.810 0.820 0.820 

300 iterations 0.895 0.895 0.813 0.813 0.824 0.824 

400 iterations 0.897 0.896 0.815 0.816 0.827 0.827 

500 iterations 0.898 0.898 0.818 0.818 0.829 0.829 

 

 


