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Abstract

Purpose: Recent evidence from US claims data suggests use of high-dimensional pro-

pensity score (hd-PS) methods improve adjustment for confounding in non-

randomised studies of interventions. However, it is unclear how best to apply hd-PS

principles outside their original setting, given important differences between claims

data and electronic health records (EHRs). We aimed to implement the hd-PS in the

setting of United Kingdom (UK) EHRs.

Methods: We studied the interaction between clopidogrel and proton pump inhibi-

tors (PPIs). Whilst previous observational studies suggested an interaction (with

reduced effect of clopidogrel), case-only, genetic and randomised trial approaches

showed no interaction, strongly suggesting the original observational findings were

subject to confounding. We derived a cohort of clopidogrel users from the UK Clini-

cal Practice Research Datalink linked with the Myocardial Ischaemia National Audit

Project. Analyses estimated the hazard ratio (HR) for myocardial infarction

(MI) comparing PPI users with non-users using a Cox model adjusting for con-

founders. To reflect unique characteristics of UK EHRs, we varied the application of

hd-PS principles including the level of grouping within coding systems and adapting

the assessment of code recurrence. Results were compared with traditional analyses.

Results: Twenty-four thousand four hundred and seventy-one patients took clopidogrel,

of whom 9111 were prescribed a PPI. Traditional PS approaches obtained a HR for the

association between PPI use and MI of 1.17 (95% CI: 1.00-1.35). Applying hd-PS modifi-

cations resulted in estimates closer to the expected null (HR 1.00; 95% CI: 0.78-1.28).

Conclusions: hd-PS provided improved adjustment for confounding compared with

other approaches, suggesting hd-PS can be usefully applied in UK EHRs.
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1 | INTRODUCTION

Electronic Health Records (EHRs) are increasingly used for research

investigating the effects of medications.1,2 Adequate adjustment for

confounding remains a key issue and incorrect conclusions can be

drawn amid concerns of residual or unmeasured confounding.3,4

Developed in US claims data to improve confounder adjustment,

the high-dimensional propensity score (hd-PS) approach treats infor-

mation stored within healthcare databases as proxies for key underly-

ing confounders.5 Some proxies may be strongly correlated with

variables typically included in a traditional propensity score

(PS) analysis; others may represent information about patients that is

otherwise unmeasured, for example, frailty.5

Despite application in various settings (including UK EHRs),6-9

detailed guidance on how to apply the hd-PS outside US claims data

is lacking. Important differences between data sources mean that

careful consideration is needed when implementing hd-PS principles

to ensure source-specific characteristics are handled appropriately.

We propose a series of modifications to the hd-PS that aim to

characterise key features of UK EHRs whilst adhering to the underly-

ing principles.5,6

2 | PROPENSITY SCORES

The PS is the conditional probability of being treated given a set of

observed covariates.10-12

PSs model the treatment allocation process and therefore offer

advantages over multivariable analysis in EHRs, since investigators are

forced to consider indications for treatment use and can convert large

amounts of confounder information into a single number.4

At a particular value of the PS, the distribution of observed

covariates is balanced between treated and untreated individuals, all-

owing consistent estimation of treatment effects, assuming all con-

founders are included in the model.13

3 | DESCRIPTION OF THE hd-PS
APPROACH AND UNDERLYING PRINCIPLES

3.1 | Preliminary steps

Demographics (d) and clinical factors believed to be important con-

founders (l) are forced into the PS model.5 A baseline time-window

for assessing patient confounder information is established (often

1 year before study entry date).

3.2 | Identification of most relevant covariates

Relevant information in the database is separated into p dimensions.5

The underlying principle is that each dimension should represent a dif-

ferent aspect of care relevant to the healthcare system under

investigation (principle 1). For example, in US claims data, it is typical

to separate information pertaining to diagnoses, procedures and

prescribing.5

Healthcare databases typically store information in the form of

thousands of discrete codes which vary by database. To avoid spar-

sity, information is often grouped at a granularity level set by the

investigator that captures related aspects of health status and care

(principle 2). We illustrate this using an example from the International

Classification of Diseases (ICD-10).14 The ICD-10 coding system is

hierarchical meaning that all information pertaining to one concept,

for example type 2 diabetes mellitus (T2DM), begins with the same

3-character code (E11 for T2DM).

Code groups are ranked by prevalence and investigators pre-

specify a number to be selected from each dimension.5

Code frequency is then assessed for each individual; measuring

the recurrence of identified codes in the baseline time-window. This

is summarised by three indicator variables:

Once: Code is recorded ≥ once.

Sporadic: Code is recorded ≥ the median

Frequent: Code is recorded ≥ the 75th percentile

This classification assumes that frequency of recording relates to

the importance of a code as a descriptor a patient's health status (prin-

ciple 3).

3.3 | Prioritisation

The steps so far generate a large pool of potential confounders.

Attempting to include all of these variables in the PS model would

often lead to concerns of overfitting therefore a variable selection

step is necessary to ensure statistical stability.

KEY POINTS

1. High-dimensional propensity score (hd-PS) approaches

are a popular method for confounder adjustment in

healthcare databases.

2. Whilst the performance of hd-PS is well established in

US claims data, there is a lack of guidance for applying

hd-PS principles in other settings.

3. We propose modifications to better tailor the hd-PS to

UK electronic health records and apply these to a recent

cohort study where results strongly suggested residual

confounding.

4. The modified hd-PS achieved results closer to those

obtained by a randomised controlled trial.

5. We have demonstrated that hd-PS approaches can be

usefully applied in UK electronic health records to

achieve improved confounder adjustment.
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The hd-PS uses the Bross formula to prioritise covariates across

dimensions by their potential to bias the treatment-outcome relation-

ship.5,15,16 This has three components. Firstly, it takes the confounded

apparent relative risk (ARR) for a particular binary covariate as a func-

tion of the relative risk (RR) in the absence of confounding by this

covariate. Secondly, the imbalance in prevalence amongst the exposed

(PC1) and unexposed (PC0) patients. Thirdly, the independent associa-

tion between a confounder and the study outcome (RRCD):

ARR=RR× biasM

where biasM =
PC1 RRCD−1ð Þ+1
PC0 RRCD−1ð Þ+1for all RRCD:

Each dimension is sorted in descending order by the magnitude

of jlog(biasM)j. This bias term takes a larger value the greater the

potential a covariate has to bias the relationship of interest. Therefore,

the top k empirical covariates are included in the PS. Typically several

hundred covariates are selected.

3.4 | Estimation of the hd-PS

The selected empirical covariates are added to the predefined vari-

ables before estimating the PS. Traditional PS methods are then used

to estimate the treatment effect.12 The final principle is that after

accounting for the top k empirically selected covariates, residual con-

founding effects are assumed to be negligible (principle 4).

4 | PROPOSED IMPLEMENTATION OF hd-
PS PRINCIPLES TO UK EHRS

In this section, issues surrounding the translation of hd-PS principles

to UK EHRs are discussed alongside our proposed modifications

(summarised in Figure 1).

4.1 | Principle 1: Identification of dimensions

There are important differences between insurance claims and EHR

data in terms of data availability, structure and the reasons for data

recording.17,18 This necessitated the identification of clinically rele-

vant dimensions based on patient contact with primary care services

in the UK. Since previous applications of hd-PS in UK EHRs have not

reached a consensus about what these dimensions should be, we

drew on general practitioner (GP) experience within our research

team.9,19 We proposed three dimensions separating clinical, referral

and prescription information (summarised in Table 1).

4.2 | Principle 2: Code granularity

Data in the clinical and referral dimension are recorded using the Read

code system.20 Read codes are less structured than coding systems

used in claims databases (eg, ICD-1014). Consequently, the Read cod-

ing system does not fully capture distinct concepts at any level of

granularity. For example, whilst the Read code 1434.00 relates to

F IGURE 1 Flowchart depicting hd-PS steps, underlying principles and adaptations for translating to UK electronic health records. GP, general
practitioner; hd-PS, high-dimensional propensity score; ICD-10, International Classification of Disease; T2DM, type 2 diabetes mellitus

TAZARE ET AL. 3



history of diabetes mellitus, grouping codes at the three-digit level

(eg, 143) would capture concepts in addition to diabetes such as

codes relating to thyroid disorder. Therefore, two codes with the

same three-digit Read code may capture disparate clinical concepts,

whereas conversely, two codes capturing similar concepts may have

different three-digit Read codes.

A manual solution to group all Read codes at a level capturing dis-

tinct medical concepts is not practical, therefore we mapped Read

codes to the ICD-10 coding system. This was achieved using cross

maps developed by NHS Digital21 and allowed replication of the

approach taken by Schneeweiss et al,5 which hierarchically grouped

distinct medical concepts at a certain granularity level.

For the prescription dimension the British National Formulary

(BNF) coding system is used. We classified prescriptions at the BNF

paragraph level which typically groups prescriptions by indication

rather than mechanism of action.22

4.3 | Principle 3: Code recurrence

Code frequency is assessed by the hd-PS to provide an indicator of a

patient's underlying health.5 In claims data all relevant information is

recorded at each instance a claim is completed which leads to an

intrinsic link between disease severity and code frequency.

EHRs exist for clinical record keeping which means that such a

link is harder to discern since all relevant information will not neces-

sarily be recorded at each consultation. Frequency of recording is

instead likely to be a function of several factors including severity of

illness, frequency of consultation and GP preference.

We classified the frequency of codes in a pre-specified baseline

time-window, 1 year prior to study entry. Recognising the variability

in recording we replaced the “Once” indicator with an “Ever” indicator

which captured whether a code had been recorded during a patient's

entire history. The remaining frequency indicators were assessed dur-

ing the baseline time-window.

We hypothesised that the degree to which information is

recorded at each consultation was likely to vary by dimension, with

more complete recording likely in the prescription and referral dimen-

sions. However, in the clinical dimension relevant information is often

not re-recorded at each consultation. For example, a patient receiving

prescriptions relating to a diagnosis of T2DM will have this diagnosis

recorded but not necessarily at each relevant consultation.

To investigate whether this information was likely to be over-

looked when assessing information in a narrow time-window we

extended the baseline time-window for the Clinical dimension.

Acknowledging the fact that patients will have varying lengths of

baseline information available we classified the frequency of codes by

assessing rates in instead of counts. We used three indicators to clas-

sify our revised frequency assessment (see Figure 1 for full definition).

4.4 | Principle 4: Selected number of variables

The capacity of the hd-PS to control for confounding can be sensitive

to the number of covariates selected.23,24 Whilst in claims data inves-

tigators typically specify 500 empirical covariates it is unclear if this is

appropriate in UK EHRs. We investigated the impact of selecting

100, 250, 500 and 750 covariates.

5 | APPLICATION TO EXAMPLE IN CPRD

5.1 | Data

The Clinical Practice Research Datalink (CPRD) is a de-identified pri-

mary care database broadly representative of patients registered at

GPs in the UK. It includes data pertaining to prescribing, diagnosis,

referrals and some lifestyle factors for approximately 9% of the UK

population.20

A recent cohort study using the CPRD linked with the Myocardial

Ischaemia National Audit Project (MINAP) investigated the combined

use of proton pump inhibitors (PPI) with clopidogrel and aspirin. A

possible interaction whereby PPIs may reduce the conversion of

clopidogrel to its active metabolite had been suggested, raising con-

cerns that combined use may lead to a reduction in clopidogrel effec-

tiveness and an increased risk of vascular events. The cohort analysis

found that combined use was indeed associated with an increased risk

of myocardial infarction (MI).3

The pattern of associations found strongly suggested that residual

confounding between patients may have explained the results as they

were not specific to MI and were found for both strong and weak

inhibitors of cytochrome P450 3A4 (the mechanism proposed for the

drug interaction). Furthermore, a self-controlled case series (SCCS)

analysis25 conducted on the same data found no evidence of

increased risk.

The authors concluded that the results from the cohort study

reflect confounding in the cohort estimate. In addition, unconfounded

studies based on genetic instrumental variable approaches using

genetic effects on drug metabolism pathways also suggested no evi-

dence of increased risk.26 A randomised double-blind trial has

TABLE 1 Summary of dimensions for UK electronic health
recordss

Dimension Information included Health status and care

Clinical Diagnoses, signs and

symptomsa
Indicates underlying

health of patient and

frequency of contact

with healthcare system

Referral Referrals to specialists Indicates escalation in

care or investigation

Prescriptions Drug prescriptions

issued in primary

care

Frequency and patterns

of drug usage

aThe clinical dimension also contains information relating to administrative

codes or references to measurements that occurred without results.
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subsequently also suggested a lack of clinical effect of PPIs on MI risk,

when used in combination with clopidogrel (HR = 0.92; 95% CI: 0.44-

1.90).27

5.2 | Design

We summarise the original study design conducted by Douglas et al.3

Patients had to be present in the CPRD with at least 12 months of

prior registration before first prescription for clopidogrel. Study entry

was defined as the latest of first recorded clopidogrel prescription in

combination with aspirin or 1 January 2003. Patients were censored

at the earliest of stopping treatment for aspirin or clopidogrel, death,

transferring out of the practice, last data collection date for the prac-

tice, 31 July 2009 or an occurrence of MI. Exposure was defined as

any prescription for a PPI. We focus on the incident MI outcome

which was ascertained using the MINAP database.

5.3 | Statistical analysis

The original study analysed the hazard ratio (HR) for the association

between PPI treatment and MI using Cox models, adjusting for

14 selected confounders. Missing data for body mass index, smoking

and alcohol consumption were handled using missing categories.

These conditions were applied consistently across all analyses.

We reanalysed the original data taking an intent-to-treat

approach that classified patients according to original exposure status

and incorporated baseline confounder information using PSs. We esti-

mated the PS using multivariable logistic regression to model the rela-

tionship between treatment and potential confounders. Inverse

probability of treatment weights (IPTW) were calculated from the PS

which essentially constructs two synthetic samples representing the

scenarios in which everyone had been treated and everyone had been

untreated.11 A weighted Cox model incorporating the IPTWs was

used to model the outcome.

Unless otherwise stated, all hd-PS analyses defined the three

aforementioned dimensions and assessed patient confounder infor-

mation recorded in the year prior to cohort entry. The top 200 most

prevalent codes were selected from each dimension and

500 covariates were included in the PS model.

We performed a standard hd-PS analysis which implemented the

algorithm using Read codes (classified at three-character Read code

granularity) for the clinical and referral dimensions. All Read codes

were included regardless of whether they map to ICD-10 to represent

the default position of applying the method wholesale to the coded

data in these dimensions. We then applied our modifications: mapping

the clinical and referral dimensions to ICD-10 and extending the fre-

quency assessment.

A sensitivity analysis extended the baseline time-window to

3 and 5 years for the Clinical dimension. We also investigated the

impact of selecting 100, 250 and 750 covariates on confounding

control.

All HR results are presented with 95% confidence intervals in

parentheses. Analyses were conducted using Stata 14.28

6 | RESULTS

Demographics and clinical characteristics for the cohort study are

summarised in Table 2. Twenty-four thousand four hundred and

seventy-one patients took clopidogrel, of whom 9111 were pre-

scribed a PPI. Of PPI users, 313 (3.4%) had an incident MI vs

421 (2.7%) in the non-users. Users of PPIs were older and were more

likely to have had a history of cancer, diabetes or peripheral vascular

disease compared to non-users (Table 2).

TABLE 2 Baseline characteristics by proton pump inhibitor status
amongst clopidogrel and aspirin users

Clopidogrel and aspirin users

No PPI PPI

N = 15 360 N = 9111

Demographics N (%) N (%)

Median age (years) 68.9 71.1

Sex

Male 10 007 (65.1) 5323 (58.4)

Body mass index (kg/m2)

<20 480 (3.1) 429 (4.7)

20-25 3987 (26.0) 2339 (25.7)

>25 10 004 (65.1) 5809 (63.8)

Missing 889 (5.8) 534 (5.9)

Smoking status

Non-smoker 4781 (31.1) 2780 (30.5)

Current 2760 (18.0) 1503 (16.5)

Ex-smoker 7777 (50.6) 4799 (52.7)

Missing 42 (0.3) 29 (0.3)

Alcohol status

Non-drinker 1528 (9.9) 1080 (11.9)

Ex-drinker 938 (6.1) 687 (7.5)

Amount not specified 399 (2.6) 254 (2.8)

<2 units/d 3060 (19.9) 1908 (20.9)

3–6 units/day 7488 (48.8) 4106 (45.1)

>6 units/d 1180 (7.7) 606 (6.7)

Status unknown 767 (5.0) 470 (5.2)

History of

Diabetes 4404 (28.7) 3090 (33.9)

Peripheral vascular disease 1629 (10.6) 1095 (12.0)

Coronary heart disease 12 198 (79.4) 7292 (80.0)

Ischaemic stroke 1571 (10.2) 954 (10.5)

Cancer 2038 (13.3) 1381 (15.2)

Abbreviation: PPI, proton pump inhibitor.
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For the modified analyses, we mapped the clinical and referral

dimensions from Read code to ICD-10. A large number of Read codes

represent non-clinical information, for example, codes relating to

administrative procedures. Since the aim of the mapping procedure is

solely to capture clinically relevant information unmapped Read codes

were expected. Upon inspection, the resulting unmapped codes could

generally be categorised as either administrative information (eg, a let-

ter), an indicator of a completed test without the result (eg, “blood

pressure reading was taken”) or coarse information we would typically

include more granularly in the pre-defined covariates (eg, broad

smoking terms). We include a sample of the most frequently occurring

unmapped Read codes in the Supporting Information.

Results for all analyses are presented in Table 3. Using the con-

founders originally identified by Douglas et al3 we obtained a HR for

the association between PPI use and MI of 1.17 (1.00-1.35).

Applying our modifications reduced the HR for the association

between PPI use and MI moving it towards a null result (Figure 2).

The fully modified hd-PS obtained an HR of 1.00 (0.78 to 1.28).

In sensitivity analyses, extending the baseline time-window for

the Clinical dimension lead to point estimates further from the null.

Varying the number of covariates did not meaningfully alter point esti-

mates. However, selecting fewer than 500 variables did improve the

precision of effect estimates (Table 3).

We investigated the estimated PS distributions by treatment

group obtained from investigator led and hd-PS analyses (Figure 3).

These distributions compare the characteristics of patients in the

populations under investigation. Compared to the investigator led

approach, the hd-PS exposed greater variation between the treatment

groups and captured extra predictors of prescribing which were also

causing confounding bias.

7 | DISCUSSION

In this study, we aimed to optimise the application of hd-PS principles

in UK EHR data. To investigate the potential of the hd-PS to account

for residual confounding we took a study where the authors were

confident the result obtained was subject to strong between patient

confounding. We aimed to get an improved point estimate, closer to

the expected null result, with similar precision to the original study.

After mapping Read to ICD-10 codes, changing the frequency assess-

ment, selecting 500 variables for inclusion and having a 1 year assess-

ment period for covariates, our final hd-PS model obtained an HR for

the association between MI and PPI use of 1.00 (0.78-1.28), com-

pared to 1.17 (1.00-1.35) using confounders selected using an investi-

gator led approach. Our modifications therefore achieved results

closer to those obtained by a randomised double-blind trial, although

the precision does not rule out results obtained from other studies.3,27

Sensitivity analyses suggested that extending the covariate assess-

ment period for the Clinical dimension to 3 or 5 years might not be

helpful in this setting.

The authors of the original study had suspected unmeasured

frailty or comorbidity severity was different between PPI users and

non-users. Here, we have demonstrated that differences between PPI

users and non-users are more apparent when using hd-PS than with

traditional approaches. This highlights the potential for hd-PS

approaches to include proxies for influential but unmeasured informa-

tion regarding a patient's underlying health status.

Our adaptations aimed to tailor the hd-PS to UK EHRs and should

be considered when applying the hd-PS in UK EHR data. The mapping

of clinical and referral information to ICD-10 allows for the identifica-

tion of homogeneous clinically meaningful proxies to be included in

the hd-PS, although we acknowledge that information contained in

F IGURE 2 Empirical performance of
hd-PS across our implemented
adaptations. hd-PS, high-dimensional
propensity score; ICD-10, International
Classification of Disease
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the unmapped codes is lost in this process. The inclusion of an Ever

category to the frequency assessment of the hd-PS also more accu-

rately captures recording practice in EHRs. Selecting 500 variables for

inclusion in the final hd-PS model performed well, however selecting

fewer variables obtained a very similar result with improved precision.

The framework we have built could also be extended to include labo-

ratory test results and free text information, the latter of which has

been previously explored.6

Whilst there have been several developments to the hd-PS since

its inception,6 there has been little exploration of how to translate the

algorithm beyond claims data. Much of this development work for

hd-PS has been focussed on demonstrating it obtains known associa-

tions, such as the effect of non-steroidal anti-inflammatory drugs on

the risk of gastrointestinal bleed.5,9,24,29 However, these results have

also been obtained through traditional methods of confounder adjust-

ment. In the case study we present, a hd-PS approach has removed a

known confounded association discovered using traditional methods.

Future applications of the hd-PS in this context will benefit from

updates to the cross-map between Read and ICD-10. In the literature

accompanying these cross-maps NHS Digital state that not every con-

cept in one coding system can or should be represented in another.21

NHS Digital's intention was to map clinically meaningful terms only,

and it was reassuring to observe that the majority of unmapped Read

codes were clinically uninformative and would typically be discarded

in an investigator analysis (see Supporting Information).

When calculating the SEs for treatment effects we have ignored

variable selection or estimation of the PS. Theoretically, this is likely to

result in narrower confidence intervals,30 although the practical conse-

quences are yet to be fully explored. We obtained a bias-corrected

bootstrap 95% CI based on 1000 replications for our final model of

0.70 to 1.30 (final model: [HR = 1.00; 95% CI: 0.78-1.28]).

Our results highlight the potential benefit of employing hd-PS

approaches in EHR studies, especially to overcome intractable con-

founding. However, the hd-PS is not a panacea and we acknowl-

edge that in studies where the confounding structure is relatively

simple, the robustness of results is unlikely to differ between tradi-

tional and hd-PS methods. We recognise the need for further explo-

ration of the hd-PS in this setting, via both controlled conditions

and case studies. One outstanding issue surrounds the transparency

of reporting when using hd-PS approaches and there is a need for

tools to better communicate proxies included in the final hd-PS

model.

This study has shown that the application of hd-PS methods out-

side the context of claims data requires careful consideration of how

to optimally apply hd-PS principles. By adapting hd-PS principles to

the UK EHR setting we have demonstrated the potential for hd-PS to

improve confounder adjustment in EHRs.
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