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Understanding of spatiotemporal transmission of infectious dis-
eases has improved significantly in recent years. Advances in
Bayesian inference methods for individual-level geo-located epi-
demiological data have enabled reconstruction of transmission
trees and quantification of disease spread in space and time, while
accounting for uncertainty in missing data. However, these meth-
ods have rarely been applied to endemic diseases or ones in which
asymptomatic infection plays a role, for which additional estima-
tion methods are required. Here, we develop such methods to
analyze longitudinal incidence data on visceral leishmaniasis (VL)
and its sequela, post–kala-azar dermal leishmaniasis (PKDL), in a
highly endemic community in Bangladesh. Incorporating recent
data on VL and PKDL infectiousness, we show that while VL cases
drive transmission when incidence is high, the contribution of
PKDL increases significantly as VL incidence declines (reaching
55% in this setting). Transmission is highly focal: 85% of mean
distances from inferred infectors to their secondary VL cases were
<300 m, and estimated average times from infector onset to sec-
ondary case infection were <4 mo for 88% of VL infectors, but up
to 2.9 y for PKDL infectors. Estimated numbers of secondary cases
per VL and PKDL case varied from 0 to 6 and were strongly cor-
related with the infector’s duration of symptoms. Counterfactual
simulations suggest that prevention of PKDL could have reduced
overall VL incidence by up to 25%. These results highlight the
need for prompt detection and treatment of PKDL to achieve
VL elimination in the Indian subcontinent and provide quantita-
tive estimates to guide spatiotemporally targeted interventions
against VL.

visceral leishmaniasis | post–kala-azar dermal leishmaniasis | spatiotempo-
ral transmission | transmission tree | Bayesian inference

Spatiotemporal heterogeneity in incidence is a hallmark
of infectious diseases. Insight into this heterogeneity has

increased considerably in recent years due to greater availabil-
ity of geo-located individual-level epidemiological data and the
development of sophisticated statistical inference methods for
partially observed transmission processes (1–6). These meth-
ods have been developed for epidemics, in which the immune
status of the population is known, and for diseases with a
short time course that are relatively easily diagnosed, such
as measles, influenza, and foot-and-mouth disease (3, 4, 7).
Here, we extend these methods to a slowly progressing endemic
disease of humans in which asymptomatic infection plays an
important role.

We analyze detailed longitudinal individual-level data on inci-
dence of visceral leishmaniasis (VL) and its sequela, post–kala-
azar dermal leishmaniasis (PKDL), in a highly endemic commu-

nity in Fulbaria, Bangladesh (8). VL, also known as kala-azar, is
a lethal sandfly-borne parasitic disease targeted for elimination
as a public health problem (<1 case per 10,000 people per year at
subdistrict/district level depending on the country) in the Indian
subcontinent (ISC) by 2020 (9). It has a disproportionate impact
among the most vulnerable groups in the population in the ISC
(10). PKDL is a nonlethal skin condition that occurs after treat-
ment for VL in 5 to 20% of cases in the ISC and less frequently in
individuals who report no history of prior VL (8, 11). It is char-
acterized by skin lesions of differing severity and parasite load,
ranging from macules and papules (least severe, lowest load) to
nodules (most severe, highest load) (12). We estimate the rel-
ative contributions of different disease states (VL, PKDL, and
asymptomatic infection) to transmission and quantify the rate
of spread of infection around infected individuals in space and
time by reconstructing transmission trees. Our analysis provides
insight into the spatiotemporal spread of visceral leishmaniasis
as well as quantitative estimates that can guide the targeting of

Significance

Methods for analyzing individual-level geo-located disease
data have existed for some time, but have rarely been used
to analyze endemic human diseases. Here we apply such
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interventions, such as active case detection and indoor residual
spraying (IRS) of insecticide, around VL and PKDL cases.

PKDL cases are believed to play a role in transmission of VL
as historical and recent xenodiagnosis studies have shown that
all PKDL forms are infectious toward sandflies (12–14), and a
1992 study in West Bengal, India, suggested that PKDL cases are
capable of initiating a VL outbreak in a susceptible community
(15). Furthermore, PKDL cases typically have long durations of
symptoms before treatment and often go undiagnosed as the dis-
ease is not systemic (16, 17). While VL incidence has declined
considerably throughout the ISC since 2011 (by >85%, from
∼37,000 cases in 2011 to ∼4,700 in 2018) (18, 19), reported num-
bers of PKDL diagnoses increased from 590 in 2012 to 2,090 in
2017 before falling to 1,363 in 2018 (19, 20). PKDL has therefore
been recognized as a major potential threat to the VL elimina-
tion program in the ISC (11), which has led to increased active
PKDL case detection. Nevertheless, the contribution of PKDL to
transmission in field settings still urgently needs to be quantified.

Although the incidence of asymptomatic infection is 4 to 17
times higher than that of symptomatic infection in the ISC
(21), the extent to which asymptomatic individuals contribute
to transmission is still unknown (22, 23). What is clear is that
asymptomatic infection plays a role in transmission through gen-
erating herd immunity, since a significant proportion of asymp-
tomatically infected individuals develop protective cell-mediated
immunity against VL following infection, as measured by posi-
tivity on the leishmanin skin test (LST) (24–27). Several studies
have shown that asymptomatic infection is spatiotemporally clus-
tered (25, 28), and therefore immunity is also likely to be spatially
clustered, but so far no transmission models have accounted
for this (23). Since most surveillance data and data from epi-
demiological studies do not contain information about numbers
of asymptomatically infected individuals over space and time
(e.g., from longitudinal serological testing), accounting for the
role of asymptomatic infection in transmission at the individual
level represents a substantial missing data problem. The endemic
nature of the disease and high asymptomatic infection poten-
tial mean that it is necessary to infer initial infection statuses
for individuals without symptomatic disease, unlike for many
epidemic diseases where individuals can be assumed to be sus-
ceptible or are known to have been vaccinated. Coupled with
the long and variable incubation period of VL [lasting anywhere
between weeks and years but typically 2 to 6 mo (29)] and lack of
data on the flight range of the Phlebotomus argentipes sandfly vec-
tor, these factors make inference of spatiotemporal transmission
of VL particularly challenging.

By combining data from a recent xenodiagnosis study in
Bangladesh (12) with geo-located data on incidence and dura-
tion of symptoms of VL and different forms of PKDL from the
community study in Bangladesh and fitting them to an individual-
level spatiotemporal VL transmission model, this study provides
detailed insight into the changing roles of VL, PKDL, asymp-
tomatic infection, and immunity in transmission over the course
of an epidemic and estimates of numbers of secondary cases
and infections generated by individual VL and PKDL cases. The
Bayesian data augmentation framework that we develop to fit the
model accounts for the unobserved infection times of VL cases,
the missing data on asymptomatic infections, individuals’ unob-
served initial infection statuses, migration of individuals, and
uncertainty in infection sources and could be readily adapted to
analyze spatiotemporal transmission of other endemic diseases
in which asymptomatic infection plays a hidden role.

Study Data. We analyze detailed demographic and disease data
on 24,781 individuals living in 5,118 households in 19 paras (ham-
lets) situated in two large clusters in a 12 × 12-km area in
Fulbaria Upazila, Mymensingh district, Bangladesh from 2002
to 2010 (Fig. 1A). The data from this study are fully described

A

B

Fig. 1. (A) Map of the study area showing the households that had VL cases
(red), PKDL cases (blue), and no cases (white with gray outline) with onset
between 2002 and 2010. Household locations are jittered slightly to preserve
patient anonymity. (B) Observed incidence of VL and PKDL for the whole
study area by month of onset, 2002 to 2010.

elsewhere (8, 30). Briefly, month of onset of symptoms, treat-
ment, relapse, and relapse treatment were recorded for VL cases
and PKDL cases with onset between 2002 and 2010 (retrospec-
tively for cases with onset before 2007), and year of onset was
recorded for VL cases with onset before 2002. There were 1,018
VL cases and 190 PKDL cases with onset between January 2002
and December 2010 in the study area and 413 VL cases with
onset before January 2002.

Over the whole study area, VL incidence followed an epidemic
wave, increasing from approximately 40 cases per 10,000/y in
2002 to ∼90 cases per 10,000/y in 2005 before declining to <5
cases per 10,000/y in 2010 (Fig. 1B). PKDL incidence followed
a similar pattern but lagging VL incidence by roughly 2 y, peak-
ing at 30 cases per 10,000/y in 2007. However, VL and PKDL
incidence varied considerably across paras (average para-level
incidences: VL, 18 to 124 cases per 10,000/y; PKDL, 0 to 31 cases
per 10,000/y; SI Appendix, Table S6) and time (range of annual
para-level incidences: VL, 0 to 414 cases per 10,000/y; PKDL, 0
to 120 cases per 10,000/y; SI Appendix, Fig. S18).

Results
Model Comparison. Different versions of the spatiotemporal
transmission model described in Materials and Methods, in which
decrease in infection risk with distance from an infectious
individual is characterized by an exponentially decaying spa-
tial kernel function, were fitted to the data. These comprised
models with and without extra within-household transmission
(over and above that from being at zero distance from an
infectious individual) and with different presymptomatic and
asymptomatic relative infectiousness. Models with additional
within-household transmission fitted the data significantly bet-
ter than those without according to a version of the deviance
information criterion (DIC) appropriate for missing-data models
(SI Appendix) (31). The range of presymptomatic and asymp-
tomatic relative infectiousness tested (0 to 2% of that of VL
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cases) was chosen based on the 95% confidence interval of the
probability that asymptomatic individuals can transmit to sand-
flies (0,0.023) from a xenodiagnosis study in India in which 0
of 183 asymptomatic individuals infected sandflies (32). Apart
from the spatial transmission rate constant, which decreased
with increasing presymptomatic/asymptomatic infectiousness,
estimates of the transmission parameters were highly consistent
across this presymptomatic/asymptomatic infectiousness range
(SI Appendix, Table S4). Here we present the results from the
model with 2% presymptomatic/asymptomatic infectiousness,
since there is evidence from outbreak investigations suggesting
that asymptomatic individuals can, at least on occasion, infect
sandflies (27, 33) and because it represents the most conservative
assumption in terms of our aim of estimating the contribution of
PKDL to transmission.

Parameter Estimates. We estimated the transmission model
parameters and unobserved data using the Markov chain Monte
Carlo (MCMC) algorithm described in Materials and Methods
and SI Appendix. The posterior distributions obtained for the
model parameters are shown in SI Appendix, Fig. S6 and the cor-
responding posterior modes and 95% credible intervals (CI) are
given in Table 1.

Based on the relative infectiousness of VL and the differ-
ent types of PKDL from the xenodiagnostic data (SI Appendix,
Table S1), in the absence of any other sources of transmission,
the estimated probability of being infected and developing VL if
living in the same household as a single symptomatic individual
for 1 mo following his/her onset was 0.018 (95% CI: 0.014, 0.026)
for VL and ranged from 0.009 to 0.023 (95% CIs: (0.007,0.014)
to (0.017, 0.033)) for macular/papular PKDL to nodular PKDL.
Living in the same household as a single asymptomatic individ-
ual, the monthly risk of VL was only 0.00037 (95% CI: 0.00027,
0.00053), if asymptomatic individuals are 2% as infectious as VL
cases.

The risk of infection if living in the same household as an infec-
tious individual was estimated to be more than 10 times higher
than that if living directly outside the household of an infectious
individual (hazard ratio = 11.6), with a 95% CI well above 1

(7.3, 16.6). The estimated spatial kernel (SI Appendix, Fig. S19)
around each infectious individual shows a relatively rapid decay
in infection risk with distance outside the individual’s household,
the risk halving over a distance of 87 m (95% CI: 73, 101 m).

The inferred prevalences of the different infection states in the
model illustrate the increasing level of immunity in the popula-
tion over the course of the epidemic generated by asymptomatic
infection (SI Appendix, Fig. S20).

Contribution of PKDL and Asymptomatic Infection to Transmission.
We assess the contribution of different infectious groups to
transmission in terms of their relative contribution to the trans-
mission experienced by susceptible individuals (Fig. 2A and SI
Appendix, Fig. S21). The contribution of VL cases was fairly
stable at around 75% from 2002 to the end of 2004 before
decreasing steadily to 0 at the end of the epidemic, while the
contribution of PKDL cases increased from 0 in 2002 to ∼75%
in 2010 (95% CI: 63, 81%). Only a small proportion of the total
infection pressure on susceptible individuals, varying between 8
and 15% over the course of the epidemic, was estimated to have
come from asymptomatic and presymptomatic individuals.

Fig. 2B shows the breakdown of the individual infection pres-
sures on VL cases at their infection times and indicates that the
contribution of PKDL to these infection pressures grew from 0%
at the start of the epidemic to approximately 55% (95% CI: 2,
92%) for the cases with onset in 2010. Unsurprisingly, given the
uncertainty in the infection times of the VL cases, the credible
intervals for the relative contributions of each infection source
to the infection pressures on the cases at their infection times
are very broad.

Reconstructing the Transmission Tree. By sampling 1,000 trans-
mission trees from the joint posterior distribution of the trans-
mission parameters and the unobserved data (as described in
Materials and Methods), we can build a picture of the most likely
source of infection for each case and how infection spreads in
space and time. Fig. 3 shows the transmission tree at different
points in time in part of the southeast cluster of villages. Early in
the epidemic and at its peak (Fig. 3 A and B), most new infections

Table 1. Transmission parameter estimates from the spatiotemporal model

Parameter Mode 95% CI*

Risk of developing VL† if living for 1 mo in the same household as a
VL case 0.018 (0.014, 0.026)
PKDL case

Macular/papular 0.009 (0.007, 0.014)
Plaque‡ 0.017 (0.012, 0.023)
Nodular 0.023 (0.017, 0.033)

Asymptomatic individual 0.00037 (0.00027, 0.00053)
Risk of asymptomatic infection† if living for 1 mo in the same household as a

VL case 0.099 (0.074, 0.140)
PKDL case

Macular/papular 0.053 (0.039, 0.074)
Plaque‡ 0.092 (0.067, 0.127)
Nodular 0.125 (0.095, 0.175)

Asymptomatic individual 0.0021 (0.0015, 0.0030)
Risk of developing VL from background transmission each month 6.6× 10−5 (3.4× 10−5, 10× 10−5)
Risk of asymptomatic infection from background transmission each month 3.7× 10−4 (1.9× 10−4, 5.9× 10−4)
Decrease in risk of infection with distance from an infectious individual (per 100 m)§ 57.7% (52.0%, 63.1%)
Hazard ratio for increase in infection risk from living in the same household 11.6 (7.3, 16.6)

as an infectious individual compared with living just outside

*CI, credible interval, calculated as the 95% highest posterior density interval.
†Risk of subsequent VL/asymptomatic infection if susceptible.
‡Based on assumed infectiousness.
§In the absence of background transmission and relative to living directly outside the case household.
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Fig. 2. (A and B) Contributions of background transmission, asymptomatic
(Asx) individuals, presymptomatic (Presx) individuals, VL cases, and PKDL
cases to (A) the total infection pressure on susceptible individuals and (B)
the individual infection pressures on VL cases at their infection times (in rel-
ative terms). Note that time is nonlinear in B since cases are ordered by their
onset time. Solid lines show modes in A and medians in B; shaded regions
show 95% CIs. The relative contribution of PKDL to the infection pressure
on the seven VL cases with onset in 2010 in B is lower than to the infection
pressure on susceptible individuals in 2010 in A since the 2010 VL cases all
had onset before May and were therefore most likely infected in 2009 when
the relative contribution of VL was higher.

were due to VL cases. Toward the end of the epidemic, some
infections were most likely due to PKDL cases and there was
some saturation of infection around VL cases (Fig. 3C). The
inferred patterns of transmission suggest that disease did not
spread radially outward from index cases over time, but instead
made a combination of short and long jumps around cases
with long durations of symptoms and households with multiple
cases.

Transmission Distances and Times. Having reconstructed a set of
samples of the transmission tree as described above, we can use
them to calculate the mean distance from each VL/PKDL infec-
tor to the VL-case infectees and the mean times between the
onset and the infections of the VL infectees, to assess how far

and how quickly interventions need to be performed around VL
and PKDL cases.

Fig. 4A shows that the mean distances to VL infectees for
VL and PKDL cases are mostly within 500 m but tend to be
greater for PKDL cases (median 221 m, interquartile range
[IQR]: 163, 314 m) than VL cases (median 167 m, IQR: 106,
236 m), reflecting the fact that around PKDL cases there has typ-
ically already been considerable transmission from prior VL and
therefore development of immunity in asymptomatically infected
individuals. However, the mean times between infector onset
and VL-infectee infections are much greater for PKDL cases
(median 5.6 mo, IQR: 3.0, 9.7 mo) than for VL cases (median
1.9 mo, IQR: 1.4, 2.7 mo) (Fig. 4B). Thus, while a similar inter-
vention radius around new VL/PKDL cases of ∼500 m may be
sufficient to capture most secondary VL cases, the time win-
dow within which interventions need to be performed to prevent
secondary cases is much narrower for VL cases than for PKDL
cases.

Numbers of Secondary Infections. Since we infer the unobserved
infection times of VL cases and asymptomatic individuals as part
of the MCMC algorithm, we can calculate the probability that
each individual was infected by another individual conditional on
the individual’s estimated infection month. Using these probabil-
ities, we can then estimate the numbers of secondary infections
generated by each infectious individual.

The mean numbers of secondary infections per VL case and
per PKDL case (Fig. 5A) show large variation, ranging from
0.4 to 28.6 for VL and 0.2 to 58.5 for PKDL (see SI Appendix,
Fig. S22 for the posterior distributions of the number of sec-
ondary infections generated by each VL and PKDL case), and
are overdispersed, with shape parameters for fitted gamma dis-
tributions of 2.00 (95% confidence interval: 1.84, 2.17) and 1.21
(95% confidence interval: 1.01, 1.45), respectively. This indicates
that some cases generate far more secondary infections than oth-
ers, a phenomenon known as “superspreading,” which has been
observed for a variety of diseases (34, 35) and hypothesized for
VL (22, 36). The estimated mean numbers of secondary infec-
tions for asymptomatic individuals are much lower, ranging from
0 to 0.94. While the numbers of secondary infections for VL and
PKDL may seem high, we note that they are the number of new
presymptomatic and asymptomatic infections generated by each
case and that only approximately one in seven new infections
were estimated to have led to VL (29), so the estimated numbers
of secondary VL cases per case are much lower (Fig. 4C).

As expected, the mean numbers of secondary infections gen-
erated by infectious individuals are strongly positively correlated
with their durations of infectiousness (Fig. 5B). In particular,
many PKDL cases had very long durations of symptoms (>1 y)
and generated large numbers of secondary infections (>5).

The median effective reproduction number Re(t)—the aver-
age number of secondary infections generated by individuals who
became infectious in a given month t , which must remain above
1 for the disease to persist—appears to have decreased over the
course of the epidemic (Fig. 5C), from being mostly above 1
(range: 0.4, 3.7) in 2003 to 2006 to below 1 in 2007 to 2010. We
note though that in later years our estimate of Re(t) is subject
to some downward bias due to right censoring of onsets of some
VL cases infected toward the end of the study (Discussion).

Impact of Preventing/Limiting PKDL. To investigate the potential
impact of stopping PKDL from occurring or reducing the dura-
tion of infectiousness of PKDL cases on incidence of VL, we
created a simulation version of the transmission model and used
the parameter estimates and inferred initial statuses of individ-
uals obtained from the MCMC algorithm to run counterfactual
simulations of the epidemic in the study area (see Materials and
Methods and SI Appendix for further details). Based on these
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Fig. 3. (A–C) Inferred transmission tree in part of the southeast cluster
of villages at different stages of the epidemic: (A) December 2003, (B)
December 2005, and (C) December 2009. Dots show individuals colored
by their infection state (see key). Arrows show the most likely source of
infection for each case infected up to that point in time over 1,000 sam-
pled transmission trees and are colored by the type of infection source and
shaded according to the proportion of trees in which that individual was
the most likely infector (darker shading indicating a higher proportion).
Asymptomatic infections are not shown for clarity. S/A, susceptible or asymp-
tomatic; E, presymptomatic; I, VL; R, recovered; D, dormantly infected; P,

simulations, if there had been no PKDL, the total number of
VL cases from 2002 to 2010 would have been 25% lower (95%
CI: 5, 43%) (see SI Appendix, Fig. S23 and Table S7 for the
para-level impact). This is the hypothetical maximum proportion
of VL cases that could have been averted over the whole study
period by preventing any PKDL, e.g., if a vaccine had been avail-
able that prevented progression to PKDL (37). However, even
if the mean duration of infectiousness of PKDL had been only
halved (from 18 to 9 mo)—which represents a more realistically
achievable target in the near future through improved active case
detection—the simulations suggest the total number of VL cases
would have been 9% lower (95% CI: −15, 29%). If we con-
sider only the last 4 y of the study—the period in which PKDL
cases became the dominant source of transmission—the results
suggest complete prevention of PKDL and halving the duration
of infectiousness of PKDL cases would have reduced VL inci-
dence by 46% (95% CI: 18, 70%) and 17% (95% CI: −21, 47%)
respectively.

Discussion
In this study we have estimated the contribution of PKDL to
transmission of VL accounting for spatiotemporal clustering of
VL and PKDL and unobserved asymptomatic infection. We have
combined infectiousness data from xenodiagnostic studies with
geo-located VL and PKDL incidence data to reconstruct trans-
mission trees of the spread of VL through a community and
estimate individual-level numbers of secondary infections.

Our results support the conclusion that PKDL poses a signifi-
cant threat to the VL elimination program in the Indian subcon-
tinent. While VL cases drive transmission when VL incidence
is high during the peak years of an epidemic, the contribution
of PKDL to transmission increases as VL prevalence decreases
and PKDL prevalence increases in the downward phase of an
epidemic (SI Appendix, Fig. S20B). This mirrors the current sit-
uation in Bangladesh and India, where VL incidence has been
decreasing since 2011 (18, 19), but reported numbers of PKDL
cases suggest PKDL prevalence is higher than VL prevalence in
some areas (19).

In the study area in Bangladesh the contribution of PKDL (in
terms of contribution to new symptomatic infections) grew from
close to 0% in the upward phase of the epidemic in 2002 to 2005
to approximately 55% at the end of the epidemic in 2010. In
light of the current low VL incidence and considerable numbers
of PKDL cases being reported in much of the Indian subconti-
nent, this suggests that measures need to be taken to ensure all
PKDL cases are detected and treated to maintain reduced trans-
mission. This will require improvements in both active PKDL
case detection, e.g., through comprehensive long-term follow-up
of VL cases, and diagnostic tests and algorithms and treatment
regimens for PKDL (11, 17).

There is considerable heterogeneity in the estimated contri-
bution of individual VL cases and PKDL cases to transmission
in terms of the numbers of secondary infections they generate,
which is chiefly driven by variation in their onset-to-recovery
times (Fig. 5B). As expected, individuals with long onset-to-
recovery times contribute most to new infections, acting as
superspreaders who generate many times more infections than
the average case. These individuals play an important role in
maintaining transmission of VL—keeping the effective repro-
duction number above 1—as the average number of secondary
VL cases (the main drivers of transmission) generated by each
VL/PKDL case is typically less than 1 (Fig. 4C). The times after
onset of symptoms in the infector at which secondary VL cases

PKDL (SI Appendix). GPS locations of individuals are jittered slightly so that
individuals from the same household are more visible. An animated version
showing all months is provided in Movie S1.
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Fig. 4. (A) Mean distances from VL and PKDL infectors to their VL infectees.
(B) Mean times from symptom onset of VL and PKDL infectors to the infec-
tions of their VL infectees. (C) Distributions of mean numbers of secondary
VL cases per VL case and PKDL case.

become infected are typically longer for PKDL infectors than for
VL infectors (Fig. 4B), due to their longer durations of infection
and generally lower infectiousness, so there is greater opportu-
nity to intervene to prevent onward transmission from PKDL

cases. Model simulations suggest that incidence of VL could
be reduced by faster detection and treatment of PKDL cases.
Depending on the relative prevalence of VL and PKDL, the
reduction could be anywhere in the range of 9 to 17% if the aver-
age duration of PKDL infectiousness were halved and 25 to 46%
if PKDL were completely prevented.

The spatiotemporal patterns of transmission inferred from
reconstructing the transmission tree suggest that infection makes
both short and long jumps in space within each infection genera-
tion (SI Appendix, Fig. S15). This is consistent with findings from
a spatial analysis of occurrence of VL cases around index cases
in Muzaffarpur, Bihar, India (38), which found a combination
of short and long distances (from tens to hundreds of meters)
from the closest index case for secondary VL cases diagnosed
close together in time. The inferred transmission distances are
also consistent with limited available data on the flight range of
the P. argentipes sandfly vector, which suggests a short-term (0.5
to 2.5 d) flight range of around 300 m (39), and with the flight
range of fed females of a species in the same genus of a few hun-
dred meters (up to a maximum of nearly 1 km) (40). Considering
that index cases are often detected after a longer delay than sub-
sequent cases and there will be some delay in mounting reactive
interventions, such as active case detection and/or targeted IRS
around the index case(s), interventions will need to be applied in
a large radius (up to 500 m) around index cases to be confident
of capturing all secondary cases and limiting transmission.

Our results demonstrate the importance of accounting for
spatial clustering of infection and disease when modeling VL
transmission. Previous VL transmission dynamic models (23,
41) have significantly overestimated the relative contribution of
asymptomatic infection to transmission (as up to 80%), despite
assuming asymptomatic individuals are only 1 to 3% as infec-
tious as VL cases, by treating the population as homogeneously
mixing, such that all asymptomatic individuals can infect all
susceptible individuals via sandflies. In reality, asymptomatic
individuals do not mix homogeneously with susceptible individ-
uals as they are generally clustered together around or near VL
cases (25, 28), who are much more infectious and therefore more
likely to infect susceptible individuals around them, even if they
are outnumbered by asymptomatic individuals. Asymptomatic
infection also leads to immunity and therefore local depletion
of susceptible individuals around infectious individuals. Hence,
for the same relative infectiousness, the contribution of asymp-
tomatic individuals to transmission is much lower when spatial
heterogeneity is taken into account.

The spatiotemporal data on incidence and duration of symp-
tomatic infection used in this study provided insufficient informa-
tion to estimate the relative infectiousness of asymptomatically
and presymptomatically infected individuals, so we tested the
sensitivity of model parameter estimates to the uncertainty in
their estimated infectiousness from a xenodiagnostic study in
India (32) and found high consistency in all but the spatial
transmission rate constant. Although the failure of asymptomatic
individuals to infect sandflies in the Indian xenodiagnosis study
seems to suggest that they are not infectious (32), historical
(13, 42) and experimental (43) data show that provision of
a second blood meal and optimal timing of sandfly examina-
tion are critical to maximizing xenodiagnostic sensitivity. These
data suggest that recent xenodiagnosis studies (12, 32), in which
dissection occurred within 5 d of a single blood meal, may
underestimate the potential infectiousness of symptomatic and
asymptomatic infected individuals. Occurrence of VL in isolated
regions where there are asymptomatically infected individuals,
but virtually no reported VL cases (27, 33), also seems to sug-
gest that asymptomatic individuals may occasionally generate VL
cases. However, it is also possible that some individuals who
developed VL during the study went undiagnosed and untreated
and that we have inferred transmissions from asymptomatic
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Fig. 5. (A) Distributions of mean numbers of secondary infections per
VL and PKDL case. (B) Relationship between mean number of secondary
infections and onset-to-recovery time for VL and PKDL cases and infection-
to-recovery time for asymptomatic individuals. (C) Effective reproduction
number Re(t) with contributions from asymptomatic individuals, VL and
PKDL cases. Solid lines show medians and shaded bands 95% CIs.

individuals in locations where cases were missed. The potential
role of underreporting will be investigated in future work.

The analysis presented here is not without limitations. As can
be seen from the model simulations (SI Appendix, Fig. S23), the
model is not able to capture the full spatiotemporal heterogene-
ity in the observed VL incidence when fitted to the data from
the whole study area, as it underestimates the number of cases in
higher-incidence paras (e.g., paras 1, 4, and 12). There are vari-
ous possible reasons why the incidence in these paras might have
been higher, including higher sandfly density, lower initial lev-
els of immunity, variation in infectiousness between cases and
within individuals over time, dose dependence in transmission
[whereby flies infected by VL cases are more likely to create VL
cases than flies infected by asymptomatic individuals (22)], and
variation in other unobserved risk factors (such as bed net use).
It was not possible to include sandflies explicitly in the model
due to an absence of data on sandfly abundance and gaps in
understanding of P. argentipes bionomics (10). We were unable
to incorporate variation in infectiousness between individuals in
the same disease state and over time within disease states due
to the relatively limited xenodiagnostic data available on infec-
tiousness of VL and PKDL and lack of data on variation in
infectiousness of individuals over time (e.g., from serial para-
site load measurements or serial xenodiagnosis). We were also
not able to consider the role of HIV-VL coinfected individuals
in transmission as there were no data on HIV infection in the
study population, but other data suggest they may contribute sig-
nificantly with prevalences of HIV coinfection of up to 6% in
India (44) and higher infectiousness toward sandflies (45). Fur-
ther laboratory and field studies are needed to quantify these
sources of heterogeneity to be able to parameterize variation in
transmission intensity between locations.

Another limitation of our analysis is that it does not account
for the fact that some VL cases infected before the end of the
study may not have developed symptoms until after the study fin-
ished and therefore not been observed. Adapting our MCMC
algorithm to infer infection times of such cases is nontrivial and
would require incorporating reversible jumps for adding and
removing “hidden” infections (4), so we defer this to future work.
Our estimates of the effective reproduction number toward the
end of the study and in particular the contribution of PKDL cases
to transmission as the main drivers of transmission at the end of
the epidemic are thus likely to be biased downward. However,
our approach does account for unobserved asymptomatic infec-
tions up to the end of the study and these constitute the vast
majority (∼85%) of infections, so the bias in the effective repro-
duction number is likely to be relatively small. There were also
only seven VL cases with onset in 2010, all of whom had onset
before May, despite intensive follow-up to the end of Decem-
ber 2010, suggesting that transmission had substantially declined
by 2010 and that the number of right-censored VL onsets may
have been small. The overall contribution of PKDL to transmis-
sion, and therefore the potential impact of PKDL control, may
still be underestimated, however, as 51 PKDL cases (27%) were
untreated and still had unresolved lesions in December 2010, so
may have infected other individuals after the end of the study.

We cannot discount the possibility of inaccuracy in our esti-
mates due to recall bias, given some data were collected ret-
rospectively and complete house-to-house searches were con-
ducted only annually. However, the villages in the study area
were visited continuously on a roving schedule over the prospec-
tive part of the study and participants were encouraged to self-
report lesions and febrile illness (8), which should have mitigated
some of this bias.

Despite these limitations, our analysis provides unique insights
into how visceral leishmaniasis spreads in space and time and
the role played by PKDL and asymptomatic infection in this
process. We have developed a MCMC data augmentation
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framework to account for the endemic nature of the disease and
high proportion of asymptomatic infection and used it to gen-
erate quantitative estimates for guiding targeted interventions
around VL and PKDL cases. In future work we will predict the
impact of different spatiotemporally targeted interventions on
VL incidence using the simulation model developed here.

Materials and Methods
Data Collection. The data used in this study were collected in a highly VL-
endemic community in Fulbaria Upazila, Mymensingh district, Bangladesh,
through a combination of four household surveys conducted between July
2007 and December 2010 and continuous follow-up by fieldworkers (for
full details of the study protocol and case definitions see refs. 8 and 30).
Each survey consisted of a complete house-to-house search for new (and
past, in the case of the baseline survey) VL and PKDL cases over the whole
study area, along with a census update to record any births, deaths, and
migration into/out of/within the study area. A total of 138 of the 190 PKDL
cases identified during the study were examined by an experienced physi-
cian to determine lesion extent and severity (see SI Appendix for further
details). The global positioning system (GPS) coordinates of all households
were recorded using a Garmin 76 GPS receiver.

Transmission Model. We developed a discrete-time individual-level spatial
kernel transmission model for VL by extending our previous individual-level
model (46) to explicitly include asymptomatic infection and PKDL. In the
model, the infection pressure on susceptible individual i in month t is given
by the sum of the individual infection pressures on the individual from
surrounding infectious individuals (j∈ Inf(t)), which are a function of their
distance dij from i and their relative infectiousness (compared with VL cases)
hj(t), plus a background transmission rate ε to account for unexplained
infections,

λi(t) =
∑

j∈Inf(t)

(βK(dij) + δ1ij)hj(t) + ε, [1]

where K(d)∝ e−d/α is the spatial kernel function that determines how
transmission risk decreases with distance (with distance decay rate 1/α), β is
the spatial transmission rate constant, δ is the extra within-household trans-
mission rate, and 1ij is an indicator function that is 1 if i and j share the same
household and 0 otherwise. A proportion pI of infections lead to VL follow-
ing a negative-binomially distributed NB(r, p) incubation period, while the
remaining infections are asymptomatic with geometric Geom(p2) duration.
We use pI = 0.15, r = 3, and p2 = 1/5 based on previous analyses (29, 46)
and estimate p along with the transmission parameters.

We assume lifelong immunity for individuals who recover from infection,
regardless of whether they have recovered from VL, PKDL, or asymptomatic
infection. While there is some uncertainty about whether individuals can be
reinfected, particularly asymptomatically infected individuals, available evi-
dence suggests that repeat episodes of VL are relatively rare and are due
to relapse and not reinfection (47) and that in highly endemic settings a
high proportion of asymptomatically infected individuals develop long-term
protective cell-mediated immunity following infection (24, 26). This assump-
tion is therefore not unrealistic and makes it feasible to infer the model
parameters and missing data, which would be considerably more challeng-
ing if it was necessary to account for the possibility of multiple infections
for asymptomatic individuals.

We assume individuals’ relative infectiousnesses hj(t) remain constant
within each infection state, and parameterize those of VL and PKDL cases
using data from a recent xenodiagnosis study in Bangladesh (12), and those
of asymptomatic and presymptomatic individuals based on an estimate from
a xenodiagnosis study in India that the probability of an asymptomatic indi-
vidual infecting a sandfly is at most 2.3% (32) and estimates from previous
modeling studies (23, 41). Given the uncertainty in the infectiousness of
asymptomatic and presymptomatic individuals and the absence of experi-
mental data on their infectiousness relative to each other, we assume they
are equally infectious and test the sensitivity of the model parameter esti-
mates to values of their infectiousness (relative to VL cases) of 0 to 2% (SI
Appendix). We also compare the fit of models without and with additional
within-household transmission (δ= 0 vs δ > 0) using a version of the deviance
information criterion designed for latent variable models (SI Appendix).

Bayesian Data Augmentation. We estimated the parameters in the transmis-
sion model, θ= (β,α, ε, δ, p), the unobserved infection times of VL cases
and infection and recovery (seroreversion) times of asymptomatic individ-
uals, and individuals’ unobserved initial statuses by sampling from the joint

posterior distribution of θ and the missing data X given the observed
data Y (months of birth, migration, and death; VL and PKDL onset and
recovery times; etc.), P(θ, X|Y)∝ L(θ; Y, X)P(θ), where L(θ; Y, X) denotes the
complete data likelihood and P(θ) is the prior distribution for θ, using a
Bayesian data augmentation framework (see SI Appendix for full details).
MCMC methods were used to obtain the joint posterior distribution by
iteratively sampling from the posterior distribution of the parameters
given the observed data and current value of the missing data, P(θ|Y, X),
and the posterior distribution of the missing data given the observed data
and the current values of the parameters, P(X|Y, θ). Relatively uninforma-
tive gamma distributions were used for the priors for the transmission
parameters (β, α, ε, and δ), and a relatively informative conjugate beta
prior was used for the incubation period distribution parameter p based
on a previous estimate of the mean incubation period and its uncertainty
(29) (see SI Appendix for further details). To validate the inference proce-
dure we simulated data for part of the study area using known parameter
values and verified that the MCMC algorithm could recover the true param-
eter values and unobserved data (SI Appendix). Code is available online at
https://github.com/LloydChapman/VLSpatiotemporalModelling.

Once the posterior distribution of the parameters and missing data was
obtained from the MCMC, 1,000 samples were drawn from the posterior
distribution and the posterior predictive distributions of infection sources
for all infectees derived for each sample. These were used to draw an infec-
tor for each infectee to reconstruct the transmission tree. Thus we obtained
a set of 1,000 possible transmission trees that accounted for uncertainty in
the parameter values, infection times, infection sources, and individuals’ ini-
tial statuses. The mean distance from each infector to his/her infectees and
time from his/her onset to the infections of his/her infectees were calculated
for each tree and then averaged over all trees in which that individual was
an infector to obtain distributions of mean distances and times to infectees
across all infectors (Fig. 4 A and B). The posterior predictive distributions of
infection sources were also used to estimate the number of secondary infec-
tions for each asymptomatic individual, VL case, and PKDL case (Fig. 5 A and
B and SI Appendix, Fig. S22) and the time-dependent effective reproduction
number (Fig. 5C).

Model Simulations. We implemented a simulation version of the trans-
mission model (full details in SI Appendix) to assess the ability of the
model to reproduce the observed data and to investigate the counter-
factual impact of different hypothetical interventions against PKDL on
VL incidence. One hundred samples of the parameters and individuals’
infection statuses in December 2002 were drawn from the posterior distri-
bution obtained from the MCMC and 100 simulations of the model were
run for each sample starting from January 2003 (at which point all but
one of the paras had had at least one VL case since January 2002), to
give 10,000 realizations of the epidemic under “normal” interventions.
This process was then repeated with PKDL infectiousness set to zero (to
simulate no development of PKDL) and then again with the mean dura-
tion of PKDL infectiousness halved (to simulate more rapid detection and
treatment of PKDL), and the percentage difference in the total number
of cases in each “alternative-intervention” simulation from that in each
“normal-intervention” simulation was calculated.

Ethical Approval. This study was approved by the institutional review boards
of the International Center for Diarrheal Disease Research, Bangladesh
(protocol 2007-003) and the Centers for Disease Control and Prevention
(protocol 5065), and informed consent was obtained from all participants
or parents/guardians in the case of children.

Data Availability. Code is available online at https://github.com/
LloydChapman/VLSpatiotemporalModelling. The analyzed data contain
personally identifiable information and cannot be made publicly available.
Individuals who wish to access the analyzed data should contact caryn.
bern2@ucsf.edu.
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