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Most studies aiming to construct reference or standard charts use a
cross-sectional design, collecting one measurement per participant. Reference
or standard charts can also be constructed using a longitudinal design, collect-
ing multiple measurements per participant. The choice of appropriate statistical
methodology is important as inaccurate centiles resulting from inferior meth-
ods can lead to incorrect judgements about fetal or newborn size, resulting in
suboptimal clinical care.

Reference or standard centiles should ideally provide the best fit to the data,
change smoothly with age (eg, gestational age), use as simple a statistical model
as possible without compromising model fit, and allow the computation of
Z-scores from centiles to simplify assessment of individuals and enable compari-
son with different populations. Significance testing and goodness-of-fit statistics
are usually used to discriminate between models. However, these methods tend
not to be useful when examining large data sets as very small differences are
statistically significant even if the models are indistinguishable on actual cen-
tile plots. Choosing the best model from amongst many is therefore not trivial.
Model choice should not be based on statistical considerations (or tests) alone as
sometimes the best model may not necessarily offer the best fit to the raw data
across gestational age. In this paper, we describe the most commonly applied
methodologies available for the construction of age-specific reference or stan-
dard centiles for cross-sectional and longitudinal data: Fractional polynomial
regression, LMS, LMST, LMSP, and multilevel regression methods. For illustra-
tion, we used data from the INTERGROWTH-21st Project, ie, newborn weight
(cross-sectional) and fetal head circumference (longitudinal) data as examples.
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1 INTRODUCTION

A reference or standard chart depicts a family of curves representing a few selected centiles of the distribution of some
physical characteristic of the reference population as a function of age. Growth charts aid clinical judgements and are
primarily used: to compare attained size with reference data when gestational age (GA) is known at a specified time,1 to
estimate GA from attained size (eg, crown-rump length, fetal head circumference (FHC), etc),2-4 and to assess a fetus's
growth between two time points (velocity).5,6

The choice of analysis is usually informed by study design. Reference or standard charts, eg, fetal and newborn charts,
are mostly based on cross-sectional data because single-visit data is easiest to collect7; each fetus or newborn is measured
only once. A variety of statistical methods for constructing reference or standard charts has been suggested, including
parametric, semiparametric, and nonparametric techniques. Detailed overviews and comparisons of different approaches
can be found in the literature.8-12 However, longitudinal data are becoming more common and analysis of repeated mea-
sures data pose analytical challenges that require different analysis techniques to single measure data, because such data
deviate from the independence of observations assumption that most classical statistical methods are based on.

Growth charts are used as a screening tool in the identification of fetuses or newborns as small, appropriate, or large
for a specified GA, based on specified centiles on a reference or standard chart.13,14 Early detection of fetal growth restric-
tion or macrosomia may decrease associated morbidity and mortality whereas accurate information on GA may prevent
unnecessary obstetric interventions at the time of delivery. For example, a fetus classified as being >97th centile according
to an estimated fetal weight chart would help clinicians in making judgements as to whether to deliver early or consider a
caesarean section to avoid complications that are associated with delivering a large baby. Values outside extreme centiles
are indicative of growth restriction, excessive growth, or other clinical complications affecting growth.

The aim of this paper is to give a brief overview of common methodology used for deriving reference or standard charts
of attained size based on a cross-sectional design and an extension of methodology for longitudinal data. We demonstrate
and compare statistical methodologies for constructing GA-related size charts from cross-sectional data using fractional
polynomial (FP) regression,15 LMS,11 LMST, LMSP methods,16,17 and multilevel regression methods for longitudinal data.
Multilevel models that account for data dependency with varying complexity are used. These approaches are compared
by evaluating model fit using goodness-of-fit statistics and diagnostic plots.

The statistical methods adopted to create centile curves as a function of age should fulfil certain criteria, ie, (i) the
centiles should change smoothly with age; (ii) the fitted curves should be a good fit to the data, especially the outer centiles
(eg, the 3rd and 97th centiles) where uncertainty is greatest and the regions between and outside the centile curves should
contain the appropriate fractions of the reference sample at all ages, eg, the proportion of data below the 3rd and 97th

centiles is expected to be 3%; (iii) centiles should never cross; (iv) ideally Z-scores and centiles can be obtained simply for
future individuals; (v) apply continuous age smoothing, not age binning; (vi) for nonnormal data at each age, there should
be flexibility to account for skewness and kurtosis; and (vii) the models should be as simple as possible consistent with
the aforementioned requirements. The principle of smooth centiles according to GA relies on the underlying distribution
moments being smooth. For example, the LMS method11 achieves this by assuming that the measurement at each GA can
be transformed to a normal distribution using a Box-Cox transformation, and just three parameters (the Box-Cox power
λ, the median μ, and the coefficient of variation σ) to summarise the distribution. The three quantities are allowed to
change smoothly with age, reflecting the changing underlying distribution. In addition, modelling approaches should be
able to account for increasing variability with GA, which is a phenomenon usually observed in growth data.15

In this paper, we describe and compare some, but not all, existing statistical methods that can achieve the aforemen-
tioned goals. Issues dealing with the assessment and impact of ignoring data dependency for longitudinal data are not
discussed as they are beyond the scope of this paper.

2 METHODOLOGY BACKGROUND

2.1 A parametric approach
A parametric approach relies on making inferences from a known distribution and captures all its information about the
data within its parameters. These approaches are based on certain assumptions about the distribution of the data, eg,
normality of observations or transformation of the observations to a normal distribution. By making reference to a certain
distribution, say the normal, we rely on parameters that define that distribution, eg, the mean and standard deviation.
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A normality assumption is the basis of most statistical methods and is thus commonly applied in data analysis. In the
current context, the issue is whether the measurements of fetuses or newborns are normally distributed at a specific GA.

When the normality assumption is violated, logarithmic transformation is commonly used due to its desirable math-
ematical properties of back-transformation to original values,18 ease of fit, and variance stabilisation.19 Logarithmic
transformation can be extended to the shifted logarithmic transformation of the form log ( y + k). This involves simply
adding or subtracting a constant, k, to all observations, its sign related to whether the distribution of the dependent vari-
able is negatively or positively skewed. Although it is rarely used in practise, a good example was in the National Study
of Growth and Health by Rona and Altman where they modelled weight as log (weight – constant (k)) for boys and girls
separately, and k varied by age.20 To obtain estimates in the original scale, the final model is first back-transformed using
antilog, then the constant, k, is subtracted. The more recent generalised additive modelling of location, scale, and shape
technique (GAMLSS) offers a wide variety of distributional forms, of which the normal distribution is the simplest with
just two parameters, location (mean, μ) and scale (SD, σ).

New approaches for fetal and neonatal size reference construction extend these two-parameter models to three- and
four-parameter models by exploring more flexible distributions that may offer a better representation of the data. Of note
is the following: the quantitative element of model comparison relates to the ubiquitous trade-off between parsimony
and goodness-of-fit. Whilst highly complex models may offer the best fit to the data, an objective assessment of the gain
in model fit versus model complexity ought to be considered also. The importance of parsimony is key to good scientific
principles and one such famous principle by Ptolemy is widely known as Occam's razor.

Data that is not normally distributed can be modelled by complex models which in addition to modelling μ and σ, model
shape parameters also, ie, ν, for measuring skewness, and τ, for measuring kurtosis. Both skewness and kurtosis mainly
affect the most extreme tails of the distribution. Skewness rather than kurtosis has been shown to be common with growth
data21,22 and therefore should be considered during modelling. A common methodology that accounts for skewness but
not kurtosis is the LMS method.11 Generalised additive modelling of location, scale, and shape is an extension of the
LMS and has the advantage of adjusting for kurtosis as well as skewness.23 However, for growth data, kurtosis have little
influence on fitted centiles as was demonstrated by the WHO in the construction of child growth standards.24

A justification for sometimes considering multiple models with the same complexity, ie, same number of parameters is
because different distributions model either skewness or both skewness and kurtosis. For example, the power exponential
distribution25 is a three-parameter distribution (μ, σ, and τ), and is suitable for data with higher kurtosis (leptokurtic) and
lower kurtosis (platykurtic) than the normal distribution. The four parameter Box-Cox t-distribution is best for leptokurtic
data whereas the Box-Cox Power Exponential distribution models both leptokurtic and platykurtic data. Further details
of the various distributions, their respective number of parameters, and whether they are suitable for modelling skew-
ness (positive or negative) or kurtosis (leptokurtosis or platykurtosis) or both are presented in the GAMLSS instructions
manual.26

2.2 A nonparametric approach
A nonparametric approach does not make any distributional assumptions about the data and thus can capture more
subtle aspects of the data. Inevitably, situations may arise when data are nonnormal even after transformation. In such
situations, it would be desirable to consider alternative methods of estimating reference curves that impose less stringent
global hypotheses on the form of the conditional distributions. One such approach is the use of quantile regression for
reference models, as described by Wei et al,12 based on the work by Koenker and Bassett.27 Advances brought by computer
power have made it possible to estimate the distributions directly by estimating their quantiles. Quantile regression is
now a well-established technique, and statistical software is available to fit quantile regression models.28 There are many
applications of quantile regression techniques for modelling growth data and these have been shown to perform equally
well as parametric methods.12,29-32 These methods allow quantiles to be estimated as a smooth function of age without
making any distributional assumptions. Nonparametric methods lack a simple closed formula that can be easily written
down and therefore limits its use clinically. For this reason, we did not consider nonparametric models and we do not
discuss them further.

2.3 Statistical methods
Parametric approaches are common and preferred because of their properties and ease of understanding. Several methods
are available for the construction of age-related centiles, each with advantages and limitations.33 No single method is
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likely to be able to overcome all of the data modelling challenges associated with such data. Although some methods will
be suitable for most situations, inevitably specific features unique to different methods will sometimes be desirable.

For example, it is well established that, on average, attained fetal size increase monotonically during pregnancy. The
between-subject variability of fetal dimensions also tends to increase with GA. It is therefore crucially important to con-
sider both the relation between the average attained fetal size and GA, and how variability (SD) changes with GA.10 The FP
regression approach offer nonlinear functions of GA for most fetal dimensions. Therefore, one of the most used method for
construction of attained size charts fits separate models for the mean and SD using FPs. This approach assumes normality
of fetal dimensions conditional on GA.34

In January 2003, the WHO convened a group of statisticians and child growth experts to review available methods
for constructing age-related centiles and develop a strategy for assessing their strengths and weaknesses.35 The group
reviewed 30 methods for attained growth curves and agreed on four methods, ie, FP regression method,34 LMS (λ, μ, and σ)
method,11,21,35 LMST16 method, and LMSP17 method. All four methods are parametric or semiparametric. In addition, we
consider multilevel models for longitudinal data.

Based on the aims and considerations of the preferred modelling methods, coupled with findings from the WHO review
and our systematic review of the methodological quality of studies designed to create fetal and neonatal anthropometric
charts, we decided to focus on the most commonly used methods by summarising the underlying principles of each in
turn. We further present the application of one method for analysing cross-sectional data and another for longitudinal
data using the INTERGROWTH-21st newborn weight and FHC data to illustrate and compare the methods.7-10,15,33,36

2.4 Analytical approaches for cross-sectional data
2.4.1 Fractional polynomial regression
Fractional polynomial regression is one of the most common parametric approach for modelling growth data especially
during the prenatal period.15 It is based on the assumption that at each GA the measurement of interest has a normal
distribution and that the mean and SD vary smoothly with GA. The Cα centile curve is estimated using

C100α (t) = μ(t) + Zα × σ(t),

where C100α (t) is the expected value of a given centile 100α of the biometric trait at a given GA, Zα is the normal equivalent
deviate of size α (SD score or z-score) corresponding to a particular centile, eg, Zα = 1.88 for the 97th centile and −1.88
for the 3rd centile, and μ(t) and σ(t) are the age-specific mean and standard deviation, respectively, at the required GA for
the reference population.

Originally, this approach involved several steps, ie, grouping age into groups (bins of age), which were then regressed on
the mean age in each group using conventional polynomials of the form Y = β0 + β1*X1

p
1 + β2*X2

p
2 + β3*X3

p
3 + ..., where

the exponents of X are nonnegative integers. Royston and Wright37 proposed starting with a cubic polynomial, and then
reducing the number of terms sequentially if the regression coefficient of the highest term is not significantly different
from zero. Once a suitable mean model is selected, a separate analysis is performed to model the variability around the
mean. If the variable has a normal distribution at all ages, then the residuals should have a normal distribution and the
absolute values of residuals should have the half normal distribution. In 1993, Altman proposed the regression of absolute
residuals on length of gestation as a continuous variable hence avoiding the need to create GA groups. The age specific
estimated SD can then be obtained by multiplying the fitted values by

√
𝜋

2
as the values of absolute residuals should

follow a half normal distribution.38 He further attempted to reweight the analysis for the mean using the fitted SD and
this showed to only have little effect.

The FP regression method is based on least squares regression analysis, modelling the mean and SD centile curves as
separate polynomial functions of GA. The FP regression method fits separate models for the mean and SD to account
for the increasing variability with GA that is typical of fetal and newborn data. The method requires the assumption of a
normal distribution.

Although conventional polynomials are popular, for growth data where variability increases with age, they suffer from
many deficiencies. They offer only a few model shapes (low order polynomials), which often do not fit the data well, espe-
cially near the ends of the data range (high-order polynomials). In addition, polynomial functions do not have asymptotes,
so they can't model this type of behaviour. Royston and Altman34 and Royston and Sauerbrei38 introduced a generali-
sation of the polynomial function known as FPs, which is an extended family of curves.34 Fractional polynomials have
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the advantage of (i) parsimony, ie, they offer similar model fits as conventional polynomials but with fewer terms; (ii)
flexibility as they provide a wide range of curve shapes, and (iii) the ability to approximate asymptotes.39

The linear predictor for a FP of order m for covariate X, denoted as FPm (X) with power terms p = ( p1 ≤ … ≤ pm),
is given by FPm (X) = β0 + β1*Xp

1 + β2*Xp
2 + … + βm*Xp

m where powers p1,… , pm are selected from a restricted set
{−2,−1,−0.5,0,0.5,1,2,3} where x 0 denotes log (x) rather than x0 = 1. The degree of an FP model, m, is defined as the
number of powers, p, of the explanatory variable, X. For example, a first-order FP (FP1) with p1 = 0 will be of the form
β0+ β1log(X). A second-order FP (FP2) with p1 = −2 and p2 = 1 will be of the form β0+ β1X −2 + β2 X, and a third-order
FP, which also involves repeat powers, p = (0, 2, 2), will be given by β0 + β1log(X) + β2X 2 + β3X 2 log(X).

Fractional polynomials have been shown to perform well due to their great flexibility in allowing noninteger powers,
logarithms, and repetition of powers,34,40 a wide range of curve shapes, and because they have been shown to fit fetal
data very well.4,10,15,34,41-44 Usually, an FP of order m = 1 or m = 2 is sufficient for obtaining a good fit as they offer a wide
variety of nonlinear (and linear) curves. The FP1 functions are always monotonic whereas FP2 regression models are
either monotonic or nonmonotonic. Another advantage for FP2 over FP1 is the variety of models, ie, 32 possible models
under FP2 compared to eight under FP1 regression models. For most applications, FP1 or FP2 regression models would
suffice.34 The selection of the best FP powers can be obtained using an automated algorithm already implemented in the
statistical software programmes STATA and R.

2.4.2 LMS method
Van't Hof et al45 first suggested a method to deal with nonnormal anthropometry data. Using skewed skinfold data as an
example, they suggested a power transform46 at each age to remove skewness, making the data approximately normally
distributed. The proposed method consists of seven steps, which allows the power transform to change smoothly with
age and to vary from one age to another. Cole35 generalised this method using three parameters λ, μ, and σ, the initials of
which are, respectively, L, M, and S, giving rise to the name LMS method. The LMS method assumes that at each age the
(biometric) measurement of interest follows a normal distribution after a Box-Cox power transformation, λ. Therefore,
data can be summarised by three age-dependent functions λ, μ, and σ, such that the transformed outcome is a Z-score with
distribution close to N (0, 1). The location parameter, M(t), is the median rather than the mean (though for the normal
distribution of course the two coincide), and S(t) represent the coefficient of variation (SD/median), of each biometric
trait at each age. L(t) represents the value of the power needed to normalise the data at each age.

The three curves L(t), M(t), and S(t) are fitted using cubic splines by nonlinear regression and by maximising the
penalised likelihood. Three smoothing parameters for the three curves are obtained (ie, equivalent (effective) degrees of
freedom (edf)) from each fitted curve. The edf of each L(t), M(t), and S(t) curve is a measure of complexity and is inter-
preted as the dimensionality of the fitted function.47 For example, edf = 1 indicates a constant, edf = 2 refers to a straight
line, edf= 3 is a quadratic curve, and edf∼ 4 refers to more complex curve shapes. The choice of edf is somewhat subjective
and is an indication of how well the data has been smoothed. It is desirable to strike a balance between model complexity
(in terms of smoothing) and model fit to the raw data. The three curves together allow any centile to be calculated

C100α (t) = M (t) (1 + L (t) ∗ S (t) ∗ Zα)(1∕L(t))
, L (t) ≠ 0

or
C100α (t) = M (t) exp (S (t) ∗ Zα) , L (t) = 0,

where C100α (t) is the expected value of a given centile 100α of the biometric trait at a given age, M(t) is the median, S(t)
is the coefficient of variation, L(t) is the power transform, and Zα is the normal equivalent deviate of size α (SD score or
z-score). SD scores (SDSs) are recommended for making direct comparisons between different anthropometric measures
and can also be used to compare different populations.11,35

The SDS values for an individual can similarly be obtained

SDS =
[
y (t) ∕M (t)

](L(t) − 1∕L (t) ∗ S (t) , L (t) ≠ 0

or
SDS = log

[
y (t) ∕M (t)

]
∕S (t) , L (t) = 0,

where y(t) is the measured anthropometry at age t, M(t) is the median, S(t) is the coefficient of variation, and L(t) is the
power transform at that age.11
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2.4.3 LMS extensions: the LMST and LMSP methods
The LMST method proposed by Rigby and Stasinopolous16 is an extension of the LMS method that models both skew-
ness and kurtosis using the Box-Cox t-distribution. It can be used to model excess kurtosis over the normal distribution
(leptokurtic data) when the Box-Cox transformation fails to transform the data close to normality due to the presence of
kurtosis. Similarly, the LMSP method proposed by Rigby and Stasinopolous17 is another extension of the LMS method
that models both skewness and kurtosis. Unlike the LMST method, which can only model leptokurtic data, the LMSP
method can model any type of kurtosis, ie, leptokurtosis, platykurtosis, or mesokurtosis. The LMSP achieves this greater
utility by using the more flexible Box-Cox power exponential distribution.

2.4.4 Multilevel models
Multilevel linear models (also commonly referred to as hierarchical or mixed-effect models) account for the dependence
of observations by considering the hierarchical structure of the data and the correlation between measurements from the
same fetus at different GAs, and also, if relevant, at the same GA for multiple measurements taken at each visit. They
are regression equations that include both fixed and random components.48 The fixed components are the same for every
subject and the random components differ between subjects. These methods allow each subject's growth pattern over
time to be characterised. The between-subject variability in the specified population can thus be quantified.

Multilevel models can vary in complexity and therefore account for the multilevel structure of the data in different
ways. For example, the longitudinal design of the INTERGROWTH-21st FHC data resulted in a three-level hierarchical
data structure for FHC, ie, measurements within visits within participants. Level 1 is the triplicate measurements taken at
each visit, FHC1, FHC2, and FHC3. Level 2 is the repeated ultrasound measurements taken for each woman over multiple
visits during pregnancy. Level 3 is the measurements taken from many women in the eight recruitment sites (country).

In this paper, we therefore evaluated various multilevel models with increasing complexity, ie, a two-level random
intercept model, a two-level random intercept and slope model, and a three-level random intercept and slope model.

Model selection and diagnostics
Model comparison is as important as it is challenging. Here, we discuss several procedures for model comparison, with an
emphasis on a trade-off between model complexity (goodness of fit) and parsimony. The desire for centiles that are both
smooth and precise is a tradeoff between the statistically best model and complexity of the model. Model choice should
therefore not be based on statistical considerations alone.

The classical methods for selecting best models from regression analysis involve an assessment of the amount of vari-
ability in the data that is explained by the fitted model (R2 statistic). This approach has the limitation of not accounting
for the modelling of the SD, which is crucial for growth data. Goodness of fit of the resultant models can be assessed by a
plot of the residuals (observed values minus fitted values) according to age. A plot of the residuals against age shows how
variability changes with increasing age. Formal statistical testing such the Akaike information criteria (AIC) and Bayesian
information criteria (BIC), also called the Schwarz Bayesian criterion, can be considered when deciding whether to select
a more complex model. The BIC penalises the deviance by log n units for each extra degrees of freedom (df), leading to
optimal spline curves and a parsimonious final model. The AIC penalises the deviance by 2 units per extra df, which is a
special case of the generalised AIC [k] or GAIC [k], where the penalty is k units of deviance per df.49 In addition, model
fit can be visually evaluated using quantile-quantile (Q-Q) plots of the residuals, which can reveal any departures from
normality; plots of residuals vs. fitted values; and the distribution of fitted Z-scores against GA. Other approaches include
a comparison of the estimated proportions of observations falling below a specified centile, eg, the 3rd centile or above the
97th centile to the expected proportions of 3%.

The worm plot introduced by van Buuren and Fredriks50 is a diagnostic tool for checking the residuals for different
nonoverlapping ranges of the explanatory variable and can either consist of a collection of detrended Q-Q plots, each of
which applies to a specified age group, or a single worm plot, representing the entire age interval. Residuals are calculated
according to age to identify regions or age intervals within which the model fails to fit the data adequately. The shape
of the worm indicated how the data differ from the assumed underlying distribution. If the model fits the data well, the
worm resembles a flat wormlike string indicating that the data follow the assumed distribution in that age group. Any
sudden changes in the shape and location of the worm represent regions where the data has been inadequately modelled.
The vertical axis of the worm plot portrays, for each observation, the difference between its location in the theoretical and
empirical distributions.
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Other types of diagnostics checks though not considered in this paper, as they are not commonly applied in the context of
constructing reference centiles include visual predictive checks and normalised prediction distribution errors (NPDE).51

Visual predictive checks are simulation-based diagnostics commonly employed in the field of pharmacometrics to eval-
uate mixed effects models. Typical summary measures of the distribution are the median and an interval defined by the
lower 5% and upper 5% of the values. The NPDE tests for differences from a perfect fit of the model to the data.

Application 1: Modelling newborn weight (cross-sectional design)

Data
The data considered here are from the newborns of women who met strict individual eligibility criteria for a pop-

ulation at low risk of fetal growth impairment from the Newborn Cross-Sectional Study (NCSS) component of the
INTERGROWTH-21st Project.52 Anthropometric measurements were taken at birth using an electronic scale (Seca,
Germany) to measure birthweight, a specifically designed Harpenden infantometer (Chasmors Ltd, UK) to measure
length, and a metallic nonextendable tape (Chasmors Ltd, UK) to measure head circumference (HC).53 The NCSS enrolled
59 137 pregnant women at the eight study sites, of whom 20 486 (34.6%) met the individual clinical and demographic
eligibility criteria for inclusion in the newborn standards, had a reliable ultrasound estimate of GA, and delivered a live
singleton without a congenital malformation. These newborns constituted the NCSS prescriptive subpopulation, and the
methods and modelling approaches for cross-sectional data are illustrated with newborn weight data for boys and girls.

Statistical modelling

In this section, multilevel models are not considered because the study is cross-sectional (newborn weight data for boys
and girls) rather than longitudinal. All statistical approaches modelled parameters of the distributions as continuous func-
tions of GA using either FPs or spline methods. Seven candidate models were created with the FP regression method (one
two-parameter model, two three-parameter models, and four four-parameter models). One candidate three-parameter
model was created with the LMS method. Two candidate four-parameter models were created with the LMS extension
methods (one LMST and one LMSP). The best model within each class of models was identified, ie, the best two-, three-,
and four-parameter models were each identified. Using this information, the single best model across the classes created
by a particular approach (either the FP regression method or the LMS method and its extensions) was identified in an
add-up stepwise fashion, starting from the simplest class.

The AIC, BIC, and generalised AIC (GAIC) were used to compare the fit of the models within and across classes.54

However, model choice was not based on AIC, BIC, and GAIC alone as other criteria were also considered. For example,
how well the fitted models represent the raw data was also considered. In addition, simpler models that showed equally
good model fits when compared to more complex models that resulted in small differences in AIC, BIC, or GAIC were
preferred. Desirability of having models with the same distribution for the males and females data was also considered.
Models that fitted well across the entire GA range were deemed to be better that models with a smaller AIC, BIC, or GAIC
but showed inadequate fit or unexpected shifts in centiles, especially at either ends of the distribution.

Application 2: Modelling FHC (longitudinal design)

Data

The FHC data from the Fetal Growth Longitudinal Study of the INTERGROWTH-21st Project were obtained prospec-
tively using ultrasound from 14+0 weeks until birth (obtained every 5 weeks (± 1 week)) in a cohort of women with optimal
health and adequate nutritional status who were at low risk of intrauterine growth restriction. At each visit, FHC was
measured three times from three separately obtained ultrasound images in a blinded fashion, ie, previous measurements
of each structure were not available to the assessor through suppressed display.1 The decision to take triplicate measure-
ments was made at the design stage following advice from an expert ultrasonographer. The study recruited 4233 women
who each visited one to six times during pregnancy (95% visited at least four times), giving 20 030 women visits. With
three ultrasounds at each visit, 59 973 FHC observations were made across the eight participating sites (117 ultrasound
measures were missing).

Statistical modelling

Previous studies have shown that the distribution of fetal dimensions is close to normal for any GA10 and was the case
for FHC data. Therefore, we assumed that, for each GA, FHC had a normal distribution with a mean and SD that varied
smoothly with GA.34 The best-fitting powers for the median FHC were obtained by modelling FHC as a function of GA
using FPs as previously described. The best FP powers for FHC were provided by an FP2, which takes the general form
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β0 + β1*X1
p

1 + β2*X1
p

2 where powers p1,… , pm are selected from a restricted set {−2,−1,−0.5,0,0.5,1,2,3} and x 0 denotes
log (x) rather than x0 = 1. This functional form was then incorporated in a multilevel framework to account for repeated
measures.55,56 The effect of fitting various multilevel models is evaluated by fitting a two-level random intercept model, a
two-level random intercept and slope model, and a three-level random intercept and slope model.

The FHC data had three levels that can be expressed by a simple linear regression model. For a given FHC measurement
yi (i = 1, 2, 3) of subject j ( j = 1, 2, ..., 4233 subjects) taken on visit k (k = 1, 2, … ,7 visits)

𝑦ijk = β0+β1X1
p

1ijk + β2X1
p

2ijk + εijk. (1)

Equation (1) represents the regression of the FHC, y, on the independent variable, GA, in weeks, X. In a typical regression
model, the errors, εijk, are assumed to be independent and normally distributed with mean, 0, and variance, σ2. However,
the independence assumption does not hold for the FHC data set, as it includes repeated measurements of each fetus.
Equation (1) assumes that growth across time is the same for all fetuses, ie, that β0, β1, and β2 do not vary by fetus. We
therefore included individual-specific effects to account for data dependency and characterise the difference in growth
between individual fetuses. We used three approaches to factor in these fetus-specific effects and the resulting variation,
resulting in three models of increasing complexity.

Two-level random intercept model
In the first multilevel model, the first level of the data was collapsed by taking the average of the triplicate FHC measure-
ments taken at each visit, FHC1, FHC2, and FHC3. The data then comprised two levels, one ultrasound measurement at
each visit for each subject during pregnancy (level 1) and all of the measurements from the women at each of the eight
sites (level 2). Exploring the influence of each woman on their repeated FHC measurements led to

𝑦jk = β0+β1X1
p

1jk + β2X1
p

2jk + υ0𝑗 + εjk, (2)

where υ0j is the influence of individual j on their repeat measurements taken on visit k. For a given group j, the intercept
is β0 + υ0j. The model in Equation (2) is often partitioned into two components in a multilevel framework. The fixed
component (within-subject, level 1) is β0 + β1Xp

1jk + β2Xp
2jk and the random component (between-subject, level 2) is

υ0j + εij. Equation (2) indicates that a subject's initial FHC measurement at GA (time), k, is influenced by that subject's
initial level β0 + υ0j and the population's slope β1 and β2. Using this relation, each individual has their own initial level.
The resulting model is commonly referred to as the random intercept model.57 This model was created using Equation (2),
averaging the triplicate FHC measurements taken at each visit (N = 20 030).

Two-level random intercept and slope model
The model in Equation (2) uses the same slope, equal to the population slope β1 and β2, for every fetus. This assumption is
too simplistic for our situation, as it is unlikely that every fetus will have the same rate of growth in FHC by GA. Therefore,
we relax this assumption and assign each fetus its own initial level (intercept) and slope that vary with GA

𝑦jk = β0+β1X1
p

1jk + β2X1
p

2jk + υ0𝑗 + υ1𝑗Xjk + εjk. (3)

Equations (2) and (3) model the first level in the same way. Equation (3) includes the term 𝜐1j, which represents the
slope deviation for each subject j from the average regression slope β1 and β2. As before, εjk is an independent error term
distributed normally with mean 0 and variance σ2.

Using Equation (3), we can obtain two models, ie, by averaging the triplicate FHC measurements taken at each visit or
by randomly selecting one of FHC1, FHC2, and FHC3 in each triplicate at each visit. These two models, though different,
are based on the same sized data set (N = 20 030).

Three-level random intercept and slope model
So far, we have considered models with only two data levels. The full FHC data set has three levels, ie, triplicate mea-
surements collected at each visit, FHC1, FHC2, and FHC3 (level 1); repeated ultrasound measurements for each woman
across multiple visits during the pregnancy (level 2); and measurements taken from many women (level 3). Considering
all three data levels, Equation (3) becomes

𝑦ijk = β0+β1X1
p

1ijk + β2X1
p

2ijk + υ0jk + υ1jkXijk + εijk. (4)
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The model developed using Equation (4) considers all levels of data hierarchy (N= 59 973). For all the multilevel models,
to assess model fit, the proportion of measurements <3rd or >97th centiles and maximum absolute differences of selected
smoothed centiles (ie, 3rd, 50th, and 97th) and empirical centiles were calculated. We discriminated between the models
using the respective proportion below the 3rd or above the 97th centiles by comparing the proportions based on the fitted
models. The expected proportions were based on the assumption of a normal distribution for FHC at any GA. Model fit
was also compared visually using plots of fitted smoothed centiles, Q-Q plots of residuals against normal scores, and plots
of residuals against predicted values.

Software implementation

An automated algorithm for selecting FP powers is available in STATA (xrigls and xriml routines),58,59 SAS, and R.60

An R package for the LMS method is also available (lmsqreg).61 The models were fitted using the GAMLSS framework,62

available in the statistical software package R.63 The GAMLSS model allows the distribution parameters μ, σ, ν, and τ to be
modelled as linear, nonlinear, parametric, and nonparametric (smooth) functions of GA. The GAMLSS package provides
a comprehensive framework with great flexibility and options for using different methodologies (eg, FP regression and
the LMS method), distributions (eg, the skew t-distribution type 3 and power exponential distribution), smoothing tech-
niques (eg, penalised splines and cubic splines), and diagnostics (eg, worm plots). Multilevel models were fitted using the
runmlwin package in STATA.56 All analyses were performed in STATA version 14 (StataCorp LP, College Station, Texas,
USA) and R statistical software version 3.4.2.

3 RESULTS

3.1 Modelling newborn weight (cross-sectional design)
Table 1 summarises the number of birthweight measurements according to GA for all of the newborns, divided into
boys and girls. Scatter plots of the raw newborn size measurements of birthweight by GA for boys and girls are shown
in Figure 1. The distributions of measurements were fairly similar for boys and girls across GA, except at 33 weeks
(Table 1 and Figure 1). Figure 2 summarises the statistical methods discussed, associated distributions, smoothing tech-
niques, and diagnostic tests used to evaluate model fit. The newborn data were close to being conditionally normal (“well
behaved”) on GA and thus the different methods gave similar results, as Table 2 shows. The decision to model boys and
girls data separately was decided a priori due to the expected large sample size to model each precisely.64 Table 2 shows the
20 models tested from the four methodological approaches (10 for boys and 10 for girls) and how well each model fitted
the newborn weight data. For boys and girls, the lowest AIC, BIC, and global deviance for the FP regression models (M1
to M7) were those based on the skew exponential power type 3 (model M5) and skew t-distribution type 3 (model M6) dis-
tributions (Table 2). Figure 3 compares fitted centiles using FP of selected distributions (ie, normal distribution, Box-Cox
Cole and Green distribution, skew exponential power type 3, and the LMS method (LMS BCCG)).

TABLE 1 Number of birthweight measurements by gestational age for boys and girls

Birthweight
Boys Girls

Gestational age (completed weeks) Number of observations Number of observations

33 34 17
34 48 65
35 128 114
36 323 293
37 857 803
38 2045 1802
39 3009 2869
40 2568 2523
41 1179 1195
42 206 224

Total 10 397 9905



3516 OHUMA AND ALTMAN

FIGURE 1 Scatter plot of birthweight measurements according to gestational age for boys (left, blue), girls (middle, pink), and girls and
boys superimposed (right) [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 2 A summary of the most commonly used statistical methodology for analysing growth data. BCCG, Box-Cox Cole and Green;
BCPE, Box-Cox power exponential distribution; BCT, Box-Cox t-distribution; NO, normal distribution; PE, power exponential; SEP3, skew
exponential power type 3; ST3, skew t-distribution type 3; Q-Q, quantile-quantile [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 3 A comparison of fitted centiles for Male birthweight using fractional polynomial regression of selected distributions (ie, normal
distribution, Box-Cox Cole and Green distribution (BCCG), skew exponential power type 3 (ST3)), and the LMS method (LMS (BCCG))
[Colour figure can be viewed at wileyonlinelibrary.com]

We use Figure 4 for male birthweight (fractional polynomial regression method) as a representative example. The top
left panel shows the fitted 3rd, 50th, and 97th smoothed centiles according to GA. It provides a visual assessment of whether
the smooth centiles offer a good representation of the raw data overall and at both ends of GA. In this plot, one can
see a tendency for slight deviations of model fit for the 97th centile to areas with no data at GA <35 weeks, ie, some
overestimation. The top right panel shows a worm plot. The red curve in the plot is a penalised spline polynomial fitted to
the points on the plot. In this plot, the worm plot is flat for most of the middle age range, but changes shape and deviates
from the expected zero line at lower and upper GAs. This is a clear indication of inadequate model fit for male birthweight
data. The bottom left plot shows a distribution of residuals as a function of GA. The bottom right plot shows a normal Q-Q
plot of Z-scores. It evaluates whether the residuals have a close-to-normal distribution represented by a straight diagonal
line cutting through the plot. In this plot, similar to deductions made from the worm plot, there is deviation from a normal
distribution at the bottom and top ends of the distribution, representing the lower and upper ranges of GA. However, the
number of observations away from the line are a small percentage of the total sample.

The skew t-distribution type 3 distribution provided the best fit for boys and girls, judging by the fitted smoothed centiles,
which offer a good representation of the data; the completely flat worm plots; and the Q-Q plots following a straight line
on the expected line (Figures 5A and 5B).

3.2 Modelling FHC (longitudinal design)
Table 3 shows a descriptive summary of the number of women and the number of follow-up visits each woman attended
during pregnancy. Most of the women (93%) attended at least four follow-up visits during pregnancy. Figure 6 shows a
scatterplot of the raw FHC data by GA collected from all women from all eight sites. Figure 7 shows the variance of each
set of triplicate measurements at each visit for all women according to gestational age.

Table 4 contains the specifications and goodness of fit of the four multilevel models fitted to the FHC data. An FP with
two powers for the mean was first fit for FHC data, and then modelled within a multilevel framework to account for

http://wileyonlinelibrary.com
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(A) (B)

(C) (D)

FIGURE 4 The fractional polynomial regression method: fractional polynomial fit of a two-parameter model assuming a normal
distribution (two powers for the mean and one for the SD) for male birthweight (Model: M1_B, Table 2). The plot shows (A) the fitted 3rd,
50th, and 97th smoothed centiles according to gestational age (top left panel), (B) a worm plot (top right panel), (C) a scatter plot of the
residuals according to gestational age (bottom left panel), and (D) normal quantile-quantile (Q-Q) plots of the distribution of Z-scores
(bottom right panel) [Colour figure can be viewed at wileyonlinelibrary.com]

repeated measures. The four multilevel models, though formulated differently, had reasonably similar results. Figure 8
shows the fitted 3rd, 50th, and 97th smoothed centiles across GA of a three-level random intercept and slope multi-
level model applied to all FHC triplicate measurements taken at each visit, intercept, and slope residuals according to
gestational age.

The random intercept model differed by at most 3.4 mm and 3.8 mm at the 3rd centile from the random intercept
and slope two-level models. The two two-level random intercept and slope models were very similar, with a maximum
absolute difference of <0.5 mm at the extreme centiles. The two-level random intercept model differed by 4.7 mm at the
3rd centile from the three-level random intercept and slope model and by 2.4 mm at the 97th centiles from the two-level
random intercept and slope model based on randomly selecting one FHC measurement from each triplicate. However, it
is worth noting that the models all differ in terms of precision.

The final model chosen for FHC was the three-level random intercept and slope model with an FP2 model for the mean
FHC and an third-order FP for the SD1 (Figure 8, Table 4). The resulting equations for FHC was

Fetal head Circumference (FHC) Mean −28.2849 + 1.69267*GA2–0.397485*GA2 *log (GA)
SD 1.98735 + 0.0136772*GA3–0.00726264*GA3*log (GA) + 0.000976253*GA3*log (GA) 2

All log are natural logarithms. GA = exact gestational age in weeks.

4 DISCUSSION

We have described the principal methodologies available for the construction of age-specific reference or standard cen-
tiles using cross-sectional and longitudinal data. We have demonstrated their application using the recently published

http://wileyonlinelibrary.com
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FIGURE 5 Panel A is MALES and panel B is FEMALES the fractional polynomial regression method: fractional polynomial fit of a
four-parameter model assuming a skew t-distribution type 3 distribution (two powers for the mean, one for the SD, one for skewness, and one
for kurtosis) for male birthweight (Model: M6_B, Table 2). The plot shows (a) the fitted 3rd, 50th, and 97th smoothed centiles according to
gestational age (top left panel), (b) a worm plot (top right panel), (c) a scatter plot of the residuals according to gestational age (bottom left
panel), and (d) normal quantile-quantile (Q-Q) plots of the distribution of Z-scores (bottom right panel) [Colour figure can be viewed at
wileyonlinelibrary.com]

INTERGROWTH-21st newborn data for weight52 and FHC.3 The choice of methodology is important as inaccurate centiles
resulting from inferior methods can lead to incorrect judgements about fetal size development, resulting in suboptimal
clinical care.37

Choosing the best model from amongst many is not trivial, especially when dealing with large data sets such as the
INTERGROWTH-21st data. Significance testing and goodness-of-fit statistics like the likelihood ratio test, BIC, or the AIC
are usually used to discriminate between models. However, these methods tend not to be useful when examining large

TABLE 3 Summary of the number of women at each visit and the total number of follow-up visits
at which fetal head circumference was measured

Number of Number of women Percentage Number of women Percentage
follow up visits (X) who visited only who visited at least

X times X times

1 39 0.9 4233 100.00
2 55 1.3 4194 99.1
3 203 4.8 4139 97.8
4 810 19.1 3936 93.0
5 2724 64.4 3126 73.8
6 402 9.5 402 9.5

Total 4233 100.00 20 030 100.00

http://wileyonlinelibrary.com
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FIGURE 6 Scatter plots of the raw fetal head circumference measurements by gestational age for all of the sites combined [Colour figure
can be viewed at wileyonlinelibrary.com]
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FIGURE 7 Variance of each set of triplicate measurements at each visit for all women according to gestational age [Colour figure can be
viewed at wileyonlinelibrary.com]

data sets, as very small differences are statistically significant even though the models are indistinguishable on actual
centile plots. Reference or standard centiles should ideally be produced that have the best fit to the data and change
smoothly with GA, using as simple a statistical model as possible that can easily be transformed into Z-scores (SDS scores),
to ensure comparability and usability. The expected distribution of SDS is normally distributed with μ = 0, and σ = 1. The
mean, μ = 0, represents the expected average growth. Similarly, values outside ±2SDS are usually indicative of excessive
growth (≥ +2SDS) or inadequate growth (≤ -2SDS). These values are usually indicative of growth restriction or other
clinical complications affecting growth hence warranting further investigations.

Model choice should not be based on statistical considerations alone, however, but also on the quality of the fit to the
data, ie, model fit across the GA range. For cross-sectional data, we explored a variety of methods and models for fitting
reference or standard centiles based on the modelling framework that was used in the INTERGROWTH-21st Project.
Royston and Altman demonstrated the utility and flexibility of FPs for modelling growth data that is typically nonlinear.40

http://wileyonlinelibrary.com
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3522 OHUMA AND ALTMAN

TABLE 4 Model details and results of the multilevel modelling

Fractional Goodness of fit
polynomial powers

Model specification Detail N Median SD Deviance Observations Observations
<3rd centile >97th centile

Random intercept Take the mean of the 20 030 2, 2 1 136 690 638 (3.2%) 647 (3.2%)
two-level model triplicate FHC

measurements
for each visit

Random intercept Take the mean of the 20 030 2, 2 1 132 845 866 (4.3%) 923 (4.6%)
and slope triplicate FHC
two-level model measurements

for each visit
Random intercept Randomly select 20 030 2, 2 1 135 710 926 (4.6%) 1009 (5.0%)
slope and one of the three FHC
two-level model measurements

for each visit
Random intercept Consider all 59 973 2, 2 3, 3, 3 346 036 2993 (5.0%) 3231(5.4%)
and slope three data levels
three-level model
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FIGURE 8 Fitted 3rd, 50th, and 97th smoothed centile curves (dashed blue lines) for fetal head circumference (mm) by ultrasound according
to gestational age (weeks), showing the actual observations (open grey circles) (top left), plot of intercept residuals against gestational age
(top right), and slope residuals against gestational age (bottom left), of a three-level random intercept and slope multilevel model applied to
all fetal head circumference triplicate measurements taken at each visit [Colour figure can be viewed at wileyonlinelibrary.com]

Fractional polynomial regression wase used to obtain the respective FP powers relating FHC as a function of GA by
modelling the mean and SD. These powers were then incorporated in a GAMLSS framework to model skewness and
kurtosis. The values for skewness and kurtosis were constant but nonzero, as they did not vary with GA. In selecting
the best model, model fit was evaluated both visually and formally using statistical tests.10,15,64 Considerations such as
identifying a common distribution for boys and girls that best represents the birthweight data were taken into account.
We preferred to use the same distribution for boys and girls, even though their data were modelled separately.

http://wileyonlinelibrary.com
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Based on these considerations, a skew t-distribution (type 3)65 with four parameters (μ, σ, υ, and τ) was selected as
the most appropriate distribution for constructing birthweight curves for boys and girls. We had not anticipated that
modelling the birthweight data would need a more complex distribution than the normal distribution. We believe the
requirement for more complex distributions can be explained by our carefully selected population of healthy women.
These women primarily had good pregnancy outcomes. This led to what is commonly referred to as “data heaping,” ie,
very few deliveries were observed in early gestation (<34 weeks) as most of the women had term deliveries (≥37 weeks).
This data heaping posed challenges for the data modelling due to the nonuniform distribution of the data across GA.
Having significantly more data points in late gestation affected the fit at the bottom end of the distribution. A more
complex distribution that accounted for skewness and kurtosis was therefore required. Data heaping can also be overcome
by selecting a subsample of observations to artificially construct a database with a balanced number of observations over
the range of GA or weight measurements. However, this method discards and wastes data, and is not recommended given
the time and cost associated with obtaining the data.66

The LMS method is widely used for modelling anthropometric data due to its flexibility, ability to account for skewness,
and closed formulation to the normal distribution based on the L, M, and S curves. The LMS method provided excellent
summary statistics though it did not perform well with the sparse data near the end of the age range (due to edge effects)11

as depicted by the diverging worm plot beyond ±3SD. However, it is worth noting that ±3SD corresponds to the 0.1th and
99.9th centiles, which are far more extreme centiles than the 3rd and 97th, and therefore, judgements on overall model fit
should be interpreted with caution.

Similarly, for longitudinal data, we used multilevel models that account for subject-specific variations in growth by
allowing subject-specific random effects.67 Other multilevel modelling approaches that have been applied in a similar
context include the brokenstick model by van Buuren,68 and linear spline models discussed in the work of Howe et al.69 We
identified modelling approaches that offered a good fit to the raw data and accounted for increasing variability with GA,
which is a phenomenon observed in growth data. We analysed FHC data and modelled the data using multilevel models
with increasing levels of complexity that accounted for the data hierarchy in different ways. One limitation observed
with the multilevel approach is the tendency for bias as evaluated by the number of observations <3rd or > 97th centiles
compared to the expected proportion of 3%. The degree of bias increased with complexity of the mixed effects model.
Villamor and Bosch70 and Cole and Cortina Borja71 have also demonstrated through simulation studies that the median
of three replicates is a robust approach, even in the presence of high levels of contamination, to combine participants' raw
data values for use in analyses as opposed to the mean. We only considered the mean of the triplicate measurements and
therefore acknowledge this is a possible limitation of our analyses.

In summary, during study planning, the overall goal of the study must be determined and an appropriate study design
must be chosen to answer the specific questions or hypotheses that avoids either wasted effort or later data wastage. For
example, if a study aims to develop references or standards, a well-designed cross-sectional study with data collected
specifically for this purpose is sufficient. Model choice is dependent on the study aim and the question one is trying to
answer rather than the richness of the data that could be collected.

We have described the FP regression, LMS, LMST, and LMSP methods and illustrated them using birthweight data from
the INTERGROWTH-21st Project. The methodology and statistical considerations discussed here were also applied to the
newborn birth length and birth HC data. These considerations and methodology were key to developing the international
newborn standards.52 We have also demonstrated modelling repeated measures data using FHC data collected in the Fetal
Growth Longitudinal Study component of the INTERGROWTH-21st Project. These methods are not restricted to fetal
data and can be applied to other repeated measures data. The methodology and statistical considerations discussed here
were also applied to other commonly measured fetal dimensions, such as biparietal diameter, occipito-frontal diameter,
abdominal circumference, and femur length.
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