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Abstract

This thesis aims to make a first step towards a foundation for a different,
more practical approach to employing the principles of optimal exper-
imental design in nonlinear mixed effects models. As an alternative to
approaches which aim to mathematically account for parameter uncertainty
and misspecification, it is proposed that the “space of possible parameter
guesses” is investigated more directly, by visualising the resulting optimal
designs and their relative performance. To provide some justification for
the computational choices made in the packages, the thesis provides a com-
parison of two linearisation-based approaches to approximating the Fisher
information matrix (First Order and Integrated First Order), a necessary
step in computing D-optimality objective functions. This comparison is per-
formed by utilising an approximation (Monte Carlo / Adaptive Gaussian
Quadrature) which is not based on linearisation and which theoretically al-
lows arbitrarily low error but at a high computational cost. It is concluded
that the computationally cheaper First Order approximation is likely to
be superior in all cases. A number of models taken from the applied and
theoretical literature are introduced. Through these examples, it is shown
how one can use the R-packages developed for this thesis (doptim and
randon) to check robustness of proposed designs against parameter mis-
specification, in terms of information lost. A gentle introduction to using
the packages is also provided, and it is demonstrated how to find D-, Ds-
and DA-optimal designs for nonlinear mixed effects models and, because
the objective functions are made available to the user, how custom objective
functions such as compound objective functions can also be generated and
optimised.
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has the form yi = η(β + bi, ξ) + εi. Here, it is as-
sumed that ξ ∈ [1, 7]5 and bi ∼ N2(0, diag{ω1, ω2})
and εi ∼ N5(0, σ2I5). The values of ω2 and σ2 are
fixed at values corresponding to a variance level of
ten percent. To interpret this plot, one must concur-
rently refer to Figure 2.11. Each curve is an efficiency
profile; the colour indicates the true value of ω1, the
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Figure 2.13 Design graphs generated from the (variant of a) ex-
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fects parameter vector is β = (89800, 187, 0.0163)>.
The NLME model which is used to generate this
design graph has the form yi = η(β + bi, ξ) + εi.
Here, it is assumed that ξ ∈ [2.2, 170]5 and bi ∼
N3(0, diag{ω1, ω2, ω3}) and εi ∼ N5(0, σ2I5). The
values of ω2, ω3 and σ2 are fixed at values corre-
sponding to a variance level of ten percent. A given
value on the x-axis corresponds to the true value of
ω1, given by the corresponding variance level. The
value on the y-axis of points with the same ω1-value
give the sampling times of the corresponding Ds-
optimal design. The number of sampling replicates
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fects parameter vector is β = (89800, 187, 0.0163)>.
The NLME model which is used to generate this
design graph has the form yi = η(β + bi, ξ) + εi.
Here, it is assumed that ξ ∈ [2.2, 170]5 and bi ∼
N3(0, diag{ω1, ω2, ω3}) and εi ∼ N5(0, σ2I5). The
values of ω2, ω3 and σ2 are fixed at values corre-
sponding to a variance level of ten percent. To inter-
pret this plot, one must concurrently refer to Figure
2.13. Each curve is an efficiency profile; the colour in-
dicates the true value of ω1, the x-axis value indicates
the D-optimal design which is being used (this can
be located at the corresponding x-axis value in Figure
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)−1

and

the fixed effects parameter vector is β = (2, 10)>.
The NLME model which is used to generate this
design graph has the form yi = η(β + bi, ξ) + εi.
Here, it is assumed that ξ ∈ [0.05, 0.3]5 and bi ∼
N2(0, diag{ω1, ω2}) and εi ∼ N5(0, σ2I5). The val-
ues of ω2 and σ2 are fixed at values corresponding to
a variance level of ten percent. A given value on the
x-axis corresponds to the true value of ω1, given by
the corresponding variance level. The value on the
y-axis of points with the same ω1-value give the sam-
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Figure 2.16 Efficiency profiles generated from the compartmen-
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tion is η(β, t) = β1β2t
(
[1− t][1 + (β2 − 1)t]

)−1

and

the fixed effects parameter vector is β = (2, 10)>.
The NLME model which is used to generate this
design graph has the form yi = η(β + bi, ξ) + εi.
Here, it is assumed that ξ ∈ [0.05, 0.3]5 and bi ∼
N2(0, diag{ω1, ω2}) and εi ∼ N5(0, σ2I5). The val-
ues of ω2 and σ2 are fixed at values corresponding
to a variance level of ten percent. To interpret this
plot, one must concurrently refer to Figure 2.15. Each
curve is an efficiency profile; the colour indicates
the true value of ω1, the x-axis value indicates the
D-optimal design which is being used (this can be
located at the corresponding x-axis value in Figure
2.15) and the y-value is the relative FO D-efficiency
of the chosen design relative to the FO D-optimal
design corresponding to the true variance level. . . .113
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Figure 2.17 Design graphs generated from the reaction network
model taken from Kitsos and Kolovos (2013), exam-
ple (28). The regression function is η(β, t) = β1

(
β1 +

β2 − β3
)−1
(

exp[−β3t]− exp[−(β1 + β2)t]
)

and the

fixed effects parameter vector is β = ( 1
4 , 1

2 , 1
2 )
>.

The NLME model which is used to generate this
design graph has the form yi = η(β + bi, ξ) + εi.
Here, it is assumed that ξ ∈ [0, 2]5 and bi ∼
N3(0, diag{ω1, ω2, ω3}) and εi ∼ N5(0, σ2I5). The
values of ω2, ω3 and σ2 are fixed at values corre-
sponding to a variance level of ten percent. A given
value on the x-axis corresponds to the true value of
ω1, given by the corresponding variance level. The
value on the y-axis of points with the same ω1-value
give the sampling times of the corresponding Ds-
optimal design. The number of sampling replicates
of a given sampling time is indicated by the colour
code used for the point. Thus, a single D-optimal
design is plotted per variance level, captured in the
set of points along the y-axis. . . . . . . . . . . . . . .114
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Figure 2.18 Efficiency profiles generated from the reaction net-
work model taken from Kitsos and Kolovos (2013),
example (28). The regression function is η(β, t) =

β1
(

β1 + β2− β3
)−1
(

exp[−β3t]− exp[−(β1 + β2)t]
)

and the fixed effects parameter vector is β =

( 1
4 , 1

2 , 1
2 )
>. The NLME model which is used to gen-

erate this design graph has the form yi = η(β +

bi, ξ) + εi. Here, it is assumed that ξ ∈ [0, 2]5 and
bi ∼ N3(0, diag{ω1, ω2, ω3}) and εi ∼ N5(0, σ2I5).
The values of ω2, ω3 and σ2 are fixed at values cor-
responding to a variance level of ten percent. To
interpret this plot, one must concurrently refer to
Figure 2.17. Each curve is an efficiency profile; the
colour indicates the true value of ω1, the x-axis value
indicates the D-optimal design which is being used
(this can be located at the corresponding x-axis value
in Figure 2.17) and the y-value is the relative FO
D-efficiency of the chosen design relative to the FO
D-optimal design corresponding to the true variance
level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
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Figure 2.19 Design graphs generated from Sigmoid Emax (γ =

1). The regression function is η(β, t) = 5 + β1t
(

β2 +

t
)−1 and the fixed effects parameter vector is β =

(30, 500)>. The NLME model which is used to gen-
erate this design graph has the form yi = η(β +

bi, ξ) + εi. Here, it is assumed that ξ ∈ [0, 1000]5 and
bi ∼ N2(0, diag{ω1, ω2}) and εi ∼ N5(0, σ2I5). The
values of ω2 and σ2 are fixed at values corresponding
to a variance level of ten percent. A given value on
the x-axis corresponds to the true value of ω1, given
by the corresponding variance level. The value on
the y-axis of points with the same ω1-value give the
sampling times of the corresponding Ds-optimal de-
sign. The number of sampling replicates of a given
sampling time is indicated by the colour code used
for the point. Thus, a single D-optimal design is plot-
ted per variance level, captured in the set of points
along the y-axis. . . . . . . . . . . . . . . . . . . . . . .116

Figure 2.20 Efficiency profiles generated from Sigmoid Emax
(γ = 1). The regression function is η(β, t) =

5 + β1t
(

β2 + t
)−1 and the fixed effects parameter

vector is β = (30, 500)>. The NLME model which
is used to generate this design graph has the form
yi = η(β + bi, ξ) + εi. Here, it is assumed that
ξ ∈ [0, 1000]5 and bi ∼ N2(0, diag{ω1, ω2}) and
εi ∼ N5(0, σ2I5). The values of ω2 and σ2 are fixed
at values corresponding to a variance level of ten
percent. To interpret this plot, one must concurrently
refer to Figure 2.19. Each curve is an efficiency pro-
file; the colour indicates the true value of ω1, the
x-axis value indicates the D-optimal design which is
being used (this can be located at the corresponding
x-axis value in Figure 2.19) and the y-value is the
relative FO D-efficiency of the chosen design relative
to the FO D-optimal design corresponding to the true
variance level. . . . . . . . . . . . . . . . . . . . . . . .117
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Figure 2.21 Design graphs generated from Sigmoid Emax (γ =

3). The regression function is η(β, t) = 5+ β
γ
1 tγ
(

β
γ
2 +

tγ
)−1 and the fixed effects parameter vector is β =

(30, 500)>. The NLME model which is used to gen-
erate this design graph has the form yi = η(β +

bi, ξ) + εi. Here, it is assumed that ξ ∈ [0, 1000]5 and
bi ∼ N2(0, diag{ω1, ω2}) and εi ∼ N5(0, σ2I5). The
values of ω2 and σ2 are fixed at values corresponding
to a variance level of ten percent. A given value on
the x-axis corresponds to the true value of ω1, given
by the corresponding variance level. The value on
the y-axis of points with the same ω1-value give the
sampling times of the corresponding Ds-optimal de-
sign. The number of sampling replicates of a given
sampling time is indicated by the colour code used
for the point. Thus, a single D-optimal design is plot-
ted per variance level, captured in the set of points
along the y-axis. . . . . . . . . . . . . . . . . . . . . . .118

Figure 2.22 Efficiency profiles generated from Sigmoid Emax
(γ = 3). The regression function is η(β, t) =

5 + β
γ
1 tγ
(

β
γ
2 + tγ

)−1 and the fixed effects parame-
ter vector is β = (30, 500)>. The NLME model
which is used to generate this design graph has
the form yi = η(β + bi, ξ) + εi. Here, it is assumed
that ξ ∈ [0, 1000]5 and bi ∼ N2(0, diag{ω1, ω2}) and
εi ∼ N5(0, σ2I5). The values of ω2 and σ2 are fixed
at values corresponding to a variance level of ten
percent. To interpret this plot, one must concurrently
refer to Figure 2.21. Each curve is an efficiency pro-
file; the colour indicates the true value of ω1, the
x-axis value indicates the D-optimal design which is
being used (this can be located at the corresponding
x-axis value in Figure 2.21) and the y-value is the
relative FO D-efficiency of the chosen design relative
to the FO D-optimal design corresponding to the true
variance level. . . . . . . . . . . . . . . . . . . . . . . .119

18



Figure 2.23 Design graphs generated from Sigmoid Emax (γ =

5). The regression function is η(β, t) = 5+ β
γ
1 tγ
(

β
γ
2 +

tγ
)−1 and the fixed effects parameter vector is β =

(30, 500)>. The NLME model which is used to gen-
erate this design graph has the form yi = η(β +

bi, ξ) + εi. Here, it is assumed that ξ ∈ [0, 1000]5 and
bi ∼ N2(0, diag{ω1, ω2}) and εi ∼ N5(0, σ2I5). The
values of ω2 and σ2 are fixed at values corresponding
to a variance level of ten percent. A given value on
the x-axis corresponds to the true value of ω1, given
by the corresponding variance level. The value on
the y-axis of points with the same ω1-value give the
sampling times of the corresponding Ds-optimal de-
sign. The number of sampling replicates of a given
sampling time is indicated by the colour code used
for the point. Thus, a single D-optimal design is plot-
ted per variance level, captured in the set of points
along the y-axis. . . . . . . . . . . . . . . . . . . . . . .120

Figure 2.24 Efficiency profiles generated from Sigmoid Emax
(γ = 5). The regression function is η(β, t) =

5 + β
γ
1 tγ
(

β
γ
2 + tγ

)−1 and the fixed effects parame-
ter vector is β = (30, 500)>. The NLME model
which is used to generate this design graph has
the form yi = η(β + bi, ξ) + εi. Here, it is assumed
that ξ ∈ [0, 1000]5 and bi ∼ N2(0, diag{ω1, ω2}) and
εi ∼ N5(0, σ2I5). The values of ω2 and σ2 are fixed
at values corresponding to a variance level of ten
percent. To interpret this plot, one must concurrently
refer to Figure 2.23. Each curve is an efficiency pro-
file; the colour indicates the true value of ω1, the
x-axis value indicates the D-optimal design which is
being used (this can be located at the corresponding
x-axis value in Figure 2.23) and the y-value is the
relative FO D-efficiency of the chosen design relative
to the FO D-optimal design corresponding to the true
variance level. . . . . . . . . . . . . . . . . . . . . . . .121
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Figure 2.25 Design graphs generated from the One-Compartment
model found in row one of Table 2.1. The

regression function is η(β, t) = µ2

[
µ3(µ2 −

µ1)

]−1[
exp (−µ1t)− exp(−µ2t)

]
with µj = exp(β j)

for j = 1, 2, 3. and the fixed effects parameter vec-
tor is β = (0, 1, 1)>. The NLME model which is
used to generate this design graph has the form
yi = η(β + bi, ξ) + εi. Here, it is assumed that
ξ ∈ [0, 4]5 and bi ∼ N3(0, diag{ω1, ω2, ω3}) and
εi ∼ N5(0, σ2I5). The values of ω2, ω3 and σ2 are
fixed at values corresponding to a variance level of
ten percent. A given value on the x-axis corresponds
to the true value of ω1, given by the corresponding
variance level. The value on the y-axis of points with
the same ω1-value give the sampling times of the
corresponding Ds-optimal design. The number of
sampling replicates of a given sampling time is indi-
cated by the colour code used for the point. Thus, a
single D-optimal design is plotted per variance level,
captured in the set of points along the y-axis. . . . . .122
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Figure 2.26 Efficiency profiles generated from the One-
Compartment model found in row one of Table

2.1. The regression function is η(β, t) = µ2

[
µ3(µ2 −

µ1)

]−1[
exp (−µ1t)− exp(−µ2t)

]
with µj = exp(β j)

for j = 1, 2, 3. and the fixed effects parameter vec-
tor is β = (0, 1, 1)>. The NLME model which is
used to generate this design graph has the form
yi = η(β + bi, ξ) + εi. Here, it is assumed that
ξ ∈ [0, 4]5 and bi ∼ N3(0, diag{ω1, ω2, ω3}) and
εi ∼ N5(0, σ2I5). The values of ω2, ω3 and σ2 are
fixed at values corresponding to a variance level of
ten percent. To interpret this plot, one must concur-
rently refer to Figure 2.25. Each curve is an efficiency
profile; the colour indicates the true value of ω1, the
x-axis value indicates the D-optimal design which is
being used (this can be located at the corresponding
x-axis value in Figure 2.25) and the y-value is the
relative FO D-efficiency of the chosen design relative
to the FO D-optimal design corresponding to the true
variance level. . . . . . . . . . . . . . . . . . . . . . . .123
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Figure 2.27 Design graphs generated from the tetracycline
metabolism model found in Bates and Watts (1988),
Appendix A1.14. The regression function is

η(β, t) = β3

(
exp[−β1(t− β4)]− exp[−β2(t− β4)]

)
.

and the fixed effects parameter vector is β =

(0.149, 0.716, 2.65, 0.412)>. The NLME model which
is used to generate this design graph has the form
yi = η(β + bi, ξ) + εi. Here, it is assumed that
ξ ∈ [0, 4]5 and bi ∼ N4(0, diag{ω1, ω2, ω3, ω4}) and
εi ∼ N5(0, σ2I5). The values of ω2, ω3, ω4 and σ2 are
fixed at values corresponding to a variance level of
ten percent. A given value on the x-axis corresponds
to the true value of ω1, given by the corresponding
variance level. The value on the y-axis of points with
the same ω1-value give the sampling times of the
corresponding Ds-optimal design. The number of
sampling replicates of a given sampling time is indi-
cated by the colour code used for the point. Thus, a
single D-optimal design is plotted per variance level,
captured in the set of points along the y-axis. . . . . .124
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Figure 2.28 Efficiency profiles generated from the tetracy-
cline metabolism model found in Bates and Watts
(1988), Appendix A1.14. The regression function

is η(β, t) = β3

(
exp[−β1(t − β4)] − exp[−β2(t −

β4)]

)
. and the fixed effects parameter vector is

β = (0.149, 0.716, 2.65, 0.412)>. The NLME model
which is used to generate this design graph has the
form yi = η(β + bi, ξ) + εi. Here, it is assumed that
ξ ∈ [1, 16]5 and bi ∼ N4(0, diag{ω1, ω2, ω3, ω4}) and
εi ∼ N5(0, σ2I5). The values of ω2, ω3, ω4 and σ2 are
fixed at values corresponding to a variance level of
ten percent. To interpret this plot, one must concur-
rently refer to Figure 2.27. Each curve is an efficiency
profile; the colour indicates the true value of ω1, the
x-axis value indicates the D-optimal design which is
being used (this can be located at the corresponding
x-axis value in Figure 2.27) and the y-value is the
relative FO D-efficiency of the chosen design relative
to the FO D-optimal design corresponding to the true
variance level. . . . . . . . . . . . . . . . . . . . . . . .125

Figure 3.1 A simple version of the design graphs found in ear-
lier chapters. The plotting symbol is the index of the
sampling time in the individual Dβ-optimal design
being plotted and the x-axis is the variance magni-
tude used to generate the design. Note that over-
plotting occurs, with time labels “1” through “4”
being consistently placed on top of each other and
time label “6” being on top of “5” for some of the
variance values. . . . . . . . . . . . . . . . . . . . . . .143
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Figure 3.2 Profile objective functions for the One-Compartment
model example. The hollow circles are the coordi-
nates (time and objective function value) of the final
sampling times of the optimal designs. The lines are
the profiles of objective functions for the range of
variance levels considered. The values of i which
indicate which of the i = 1, ..., 40 variance levels is
being used have been added to the end of the corre-
sponding profiles. . . . . . . . . . . . . . . . . . . . . .159

Figure 3.3 Efficiency profiles for the One-Compartment model
example. Each profile is a plot of the D-efficiency
of a design which uses the first four sampling times
of the D-optimal design and then replaces the fifth
sampling time with the value on the x-axis. The
values of i which indicate which of the i = 1, ..., 40
variance levels is being used have been added to the
end of the corresponding profiles. . . . . . . . . . . . .160
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Introduction

This work focuses on optimal experimental design for nonlinear mixed
effects models. The theoretical foundations of this field were laid

almost a century ago, dealing with simple linear problems, but when it
comes to nonlinear mixed effects models, progress has been dependent
on parallel developments in the computational methods for maximum
likelihood estimation as well as on the computational power available.
While a variety of methods are now available in the literature and many of
these are implemented in freely available software packages, the tools of
optimal experimental design are not as widely used as one would expect,
especially considering that the intended outcome of applying this theory
is optimal allocation of sparse experimental resources, an outcome which
has both economic and ethical implications.

A possible explanation for the relative lack of penetration of these tools is
that they require a large amount of quite specific prior knowledge; nonlin-
ear mixed effects models require the specification of a regression function
as well as which parameters are presumed to vary between subjects. On top
of this, for these models even the simplest criteria for optimal experimental
design require the user to specify guesses as to the values of the parameters,
which in the mixed effects case includes the variance parameters related to
variation between subjects. The more advanced criteria require the user to
specify distributions for the parameters in order, for instance, “robustify”
against parameter misspecification or to implement Baysian thinking.

The work presented here constitutes an attempt to lay a foundation for a
practically attractive approach to experimental design in this setting. The
strategy relies on finding optimal designs for a wide range of parameter
values and then assessing their relative performances under parameter
misspecification. Parameter values must still be chosen; to facilitate this, a
scale for variance parameters is constructed which allows users to relate
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the variation of parameters between subjects to its expected impact on
the response profile, thus yielding a more intuitively accessible avenue of
elicitation.

Because many designs must be found, a classic and computationally
cheap optimal design criterion is employed. This criterion is compared
with a newer, computationally more expensive one in order to assess the
trade-off, in terms of information lost, related to this choice. In the cases
examined, it turns out that the two criteria do not differ substantially.

To illustrate the application and general feasibility of the proposed
workflow it is applied to a wide range of examples from the literature.
Two R-packages have been developed which allow the user to apply the
proposed variance scale, find optimal experimental designs and construct
the proposed diagnostic graphs for user-specified nonlinear mixed effects
models.

This thesis has two main chapters:

Chapter 1 introduces the relevant theoretical background of optimal de-
sign and the two different design criteria. Methods for assessing the
relative performance of the two criteria are introduced and applied
to a selection of models. The results, together with a deliberation on
the theoretical justification of the more expensive criterion, indicate
that choosing the cheaper one may not be associated with any loss of
quality in the resulting experimental design.

Chapter 2 describes and applies the proposed workflow to a wide range
of cases. This also works as a showcase for the R-packages that were
developed. Finally, the advantages and weaknesses of the approach
are discussed and a conclusion is drawn as to what has been achieved
in this work.
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Table 0.1: Acronyms and symbols used in this thesis

Acronym Explanation

NLME Nonlinear Mixed Effects

η Regression function in the NLME model

η Vectorised regression function in the NLME model

β Vector of fixed effects parameters in the NLME model

b Vector of random effects

Ω Variance matrix of the random effects vector in the NLME model

ω Random effect variance parameter

Variance component in the NLME model

ε ij Error term (residual) in the NLME model

Of measurement j in individual i

σ2 Variance of the error term in the NLME model (residual variance)

ξ Experimental design vector

MLE Maximum Likelihood Estimate (or Estimation)

FO First Order

Definition on page 41 in equation (1.5)

FOCE First Order Conditional Expectation

See (Retout and Mentre, 2001)

and (Pinheiro and Bates, 1995)

InFO Integrated First Order

MC Monte Carlo

AGQ Adaptive Gaussian Quadrature

MC/AGQ Monte Carlo / Adaptive Gaussian Quadrature

LGQ Likelihood approximation using Gaussian Quadrature

LAGQ Likelihood approximation using Adaptive Gaussian Quadrature

EC50 "Effective Concentration, 50% of"
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FIM Fisher Information Matrix

FIMlin Fisher Information Matrix of linearised model

FIMFO Approximation of Fisher Information Matrix based on First Order
likelihood approximation

FIMInFO Approximation of Fisher Information Matrix based on Integrated
First Order likelihood approximation

FIMMC/AGQ MC/AGQ approximation of the FIM

hAGQ Term in the definition of FIMMC/AGQ

φn Standard normal density on Rn

CV Coefficient of Variation
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1.1 Introduction

Nonlinear Mixed Effects (NLME) modelling allows an investigator to a priori
posit, e.g., a mechanistic model describing the phenomenon of interest;
this is then used to specify the regression function. Between-individual
variation in the shape of the response is taken into account by allowing
the parameters which specify the regression function to vary between
individuals; for each individual, a parameter is drawn from a distribu-
tion which is common to the whole population. Thus, under an NLME
model, individual response profiles follow the same functional form but
the parameters are allowed to be individual-specific. These parameters
often have scientific interpretations due to the mechanistic derivation of the
regression function, e.g., in pharmacokinetics, representing the absorption
rates of a compound into the blood.

NLME models are widely used; examples of applications include mod-
elling the growth of orange trees, intensity of current in semi-conductors,
intensity of earthquakes and the cold tolerance of grass (see Pinheiro and
Bates, 2000).

We will focus on examples drawn from the pharmaceutical industry, an
area which has motivated seminal developments in NLME modelling and
design. The models we consider have been used to, e.g. analyse chemical
reactions, the dynamics of in vivo drug concentration or the effect of a
drug on a subject (often described by receptor theory, i.e., a mechanistic
description of how much of the drug is bound to the relevant receptors in
the body at a given time).

We are concerned with optimal experimental design for NLME models.
In practical terms, optimal experimental design constitutes an attempt to
optimally allocate sparse experimental resources. Given this economic
incentive, it is not surprising that optimal experimental design is widely
used, especially in the pharmaceutical industry. In this context, optimal
experimental design is of ethical as well as economic importance; e.g.,
avoiding unnecessary experimentation on humans and animals is self-
evidently a desirable objective.

In broad terms, the idea of optimal experimental design can be described
as follows: given a parameterised statistical model, we view the distribution
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of the parameter estimator as a function of the experimental design and
then optimise a specific property of that distribution.

A wide range of criteria have been developed which correspond to
different objectives and perspectives. In this chapter, we focus on the
classic D-optimality criterion.

For linear models, the D-optimality criterion picks the design which
minimises the determinant of the covariance matrix of the maximum
likelihood parameter estimator (MLE). This is equivalent to minimising
the volume of the confidence region for the parameter estimates. In the
linear case, this optimisation is easily performed in practice as explicit
expressions for the the covariance matrix are available.

However, NLME models generally do not admit an explicit expression
of the likelihood. This implies that the MLE covariance matrix also has no
explicit expression. Instead, the inverse of the Fisher information matrix
(FIM) is used as a proxy for the MLE covariance matrix. This is motivated
by the Cramer-Rao bound for unbiased estimators, see Retout and Mentre
(2003); Nyberg et al. (2012); Bazzoli et al. (2009); Nguyen and Mentre (2014).

Thus, D-optimal designs for NLME models are found by maximising
the determinant of the FIM over the space of possible experimental designs,
just as with the general linear model. It follows that accurate and efficient
computation of the FIM is essential to the practical applicability of D-
optimal designs.

In this chapter we compare two approaches to approximating the FIM for
NLME models, both relying on linearisation of the model. The first, which
we will refer to as the first order (FO) method, is the classical approach
(see Mentre et al. (1997) and page 468 of Atkinson et al. (2007) and has
the advantages of being both simple to implement and computationally
inexpensive. Being well-established, it is also widely implemented in
software, for instance PopED, Pfim, PkStaMp and PopDes (see Nyberg
et al. (2015)). The second approach was initially proposed by Retout and
Mentre (2003) but has not yet seen widespread use. We will refer to this
approach as the integrated first order (InFO) method. We believe there
are two factors which explain the failure of InFO to gain traction; firstly,
it is computationally expensive in that it involves an integration of the
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FIM of the linearised model over a set of parameter values. This results
in substantially longer computation times when optimising, especially
given the current implementations which rely on Monte Carlo integration
(PopED). Secondly, while it has been suggested (Wang et al. (2012); Nyberg
et al. (2012)) that InFO is superior to FO when random effect variance is
large, to date no thorough investigation of when or how this superiority
obtains has been performed.

We seek to address both these points. First, a computationally efficient
(fast enough to make optimisation feasible for the models we investigate)
implementation of InFO has been achieved through the use of Gaussian
quadrature (assuming normal distribution of random effects). Second, we
carry out a systematic investigation of four different models in which we
find D-optimal designs using both methods and compare the resulting
designs using a third FIM approximation, which we regard as a gold
standard. This third FIM approximation is called Monte Carlo with Adaptive
Gaussian Quadrature (MC/AGQ) and has the advantages that it avoids
linearisation and theoretically can be made arbitrarily close to the true FIM.
It was initially proposed by Nguyen and Mentre (2014) and subsequently
an improved version was presented in Ueckert et al. (2015). While we
regard it as a gold standard it is not feasible to use it for optimisation
purposes due to its high computational cost.

To enable an initial investigation of the relative performance of FO and
InFO, we have implemented both methods in generalised code and applied
them to a number of industrially relevant cases. Our investigations focus
on comparing the relative quality of designs that are D-optimal according
to FO and InFO, respectively.

The remainder of the paper is arranged as follows. Section 1.1 in-
troduces the formal framework and terminology; experimental designs,
NLME models and D-optimality are defined. Section 1.2 explains the two
linearisation-based methods of FIM approximation as well as MC/AGQ.
Section 1.3 introduces the examples for which we compare the two meth-
ods. In Section 1.4 we demonstrate the gold standard method (MC/AGQ)
and use it to provide a sanity check of the two existing methods. Section
1.5 provides an outline of the strategy we employ to compare the two
methods. In Section 1.6 we identify D-optimal designs using both FO and
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InFO and we investigate the effect of increasing the between-individual
variance on the resulting designs. Sections 1.7 deals with comparing de-
signs, qualitatively and quantitatively. The former is mainly done through
visual inspection of the resulting designs and the latter is achieved through
computing relative D-efficiency, a measure of relative quality. Section 1.8
is a discussion of the results and their implications for further research.

1.1.1 Nonlinear Mixed Effects (NLME) model

Consider a study in which N individuals participate. A response of interest,
say concentration of a compound in the blood, is to be measured repeatedly
for each individual. It is believed a priori that the response over time for a
given individual can be modelled with a specific structural function. Such
a function can be motivated by, say, a compartmental modelling approach
(Bates and Watts, 1988, chap. 5).

Each individual is to be measured n times, using the same set of sam-
pling times for all individuals. A set of such sampling times for a single
individual is called an elementary design. The set of allowed elementary de-
signs takes the form Ξ = {ξ = (t1, . . . , tn) : T1 ≤ t1 ≤ t2 ≤ · · · ≤ tn < T2}
for some T2 > T1 > 0. The response of the ith individual is a vector

Yi = (Yi1, . . . , Yin)
>,

of univariate observations where Yij, 1 ≤ j ≤ n, is the observation made at
time tj for individual i. Yij is assumed to be given by

Yij = η(βi, tj) + ε ij (1.1)

where η : Rp × [0, ∞)→ R is the structural function assumed to be shared
across all individuals, βi is a vector of parameters specific to individual i
and ε ij is the error term associated with observation ij.

The function η is assumed to be nonlinear in its first argument (i.e., the
parameter βi specific to individual i). This is the “nonlinear” part of a
Nonlinear Mixed Effects Model.

The distributional assumptions behind the model are that ε ij are inde-
pendent and normally distributed with zero mean and variance σ2 and
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that βi are independent and normally distributed with a population-level
mean β ∈ Rp and a p× p variance matrix Ω. Within an individual, the
parameters are assumed independent, i.e., Ω is assumed to be diagonal
with entries (ω1, . . . , ωp) ∈ (0, ∞)p. Here, the entries of Ω, also known as
“variance components”, are the individual variances of the entries in βi.
They determine how much variation is associated with a given parameter,
when sampling several individuals from the population.

In this setup, βi determines the shape of the response profile for indi-
vidual i and drawing βi from a normal distribution allows the model to
accommodate different shapes for different individuals. In the context of
an experiment which measures concentration of compound in blood for
instance, βi could be related to the metabolism of individual i and thus
determine how quickly the compound is cleared from her system.

In Davidian and Giltinan (2003), it is noted that β, the population-
level mean of the distribution of βi, represents the typical parameter
value, not the typical response profile. For instance, assume that p =

1, β = 0, Ω = 1 and η(βi, t) = (βi)
2. And say we take “the typical

response profile” to refer to the function of t ≥ 0 given by E[η(βi, t)].
Then E[η(βi, t)] = 1 6= η(β, t) = 0 for all t. Had we taken “typical” to
refer to the mode instead of the mean, this would actually have yielded
mode(η(βi, t)) = η(β, t) = 0. But in that case, let p = 3, β = (0, 0, 0)>,
Ω = I3 and η(βi, t) = β2

i1 + β2
i2 + β2

i3. Then the mode is equal to 1 while
η(β, t) = 0 still holds. This illustrates that it is important to understand
what aspects of the structural function βi actually controls.

In the cases treated in this thesis, the number of fixed effects parameters
p will range from one to four. This number is determined by the complexity
of the underlying structural model, i.e., η. For instance, if the response
is assumed to be well described by simple exponential decay then p = 1,
and we set η(β, t) = exp(−βt). Conversely, if a one-compartment model
including adsorption and elimination rates is used, then p = 3 and we set

η(β, t) =
eβ2−β3

eβ2 − eβ1

(
e−eβ1 t − e−eβ2 t

)
The scientific rationale for these two regression functions will be given in

a later section.
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This thesis focuses on choosing ξ optimally for the purpose of estimating
β, a part of β or a function of β. Typically, at least one of the entries of β has
a clear scientific interpretation and is of greater interest to the investigators
than the rest. A common example from pharmacokinetics is the “EC50”
parameter. In a dose-response curve, EC50 is “half the maximally effective
dose”, i.e., the dose at which the response is predicted to be 50% of the
upper asymptote. An example of this is the four-parameter logistic curve
(Seber and Wild, 1989, p.338), given by

η(β, t) = β1 +
β2 − β1

1 + e−β3(t−β4)

where it is assumed that β2 > β1 > 0 and β3, β4 > 0. Upon inspection of
this function, it is easy to see that β1 is the lower asymptote, β2 is the upper
asymptote and β4 is in fact the EC50, i.e., η(β, β4) = β1 + (β2 − β1)/2. It
is very common to compare sets of dose-response curves using only this
parameter. (Whether this is wise is debatable; it ignores the actual response
window given by the interval (β1, β2)).

For notational convenience in later developments, a vectorised formu-
lation of the model may be employed. The response vector for the ith
individual can be written as

Yi = η(βi, ξ) + εi (1.2)

where the within-individual means and errors have been bundled into
vectors

η(βi, ξ) = (η(βi, t1), . . . , η(βi, , tn))
>

εi = (ε i1, . . . , ε in)
>

And, also for convenience, the individual-level parameters βi may be
considered as given by normally distributed deviations (random effects)
from the population-level parameter β

βi = β + bi

where bi ∼ Np(0, Ω) and b1, . . . , bN are independent.
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A more general model could be used. The choice to allocate all indi-
viduals to the same design is a choice made for convenience and can in
theory be relaxed. The same applies to the dimension of the covariate
space, which has been reduced to only one dimension, namely time. Other
covariates of interest could theoretically be included, be they part of the
design or out of experimental control. In the context of reaction kinetics,
examples of such additional covariates include temperature, pressure, start-
ing concentrations and starting volumes. This point also serves to illustrate
that “individual” here is simply a place-holder for some experimental
unit; in the context of reaction kinetics, the experimental unit of interest is
commonly a batch of reagent. The individual observations Yij could also be
assumed multivariate, as in Nyberg et al. (2015). In their paper, they also
allow for the relation between β and bi to be given by a nonlinear function.
In Nyberg et al. (2015) they also note that Ω need not be diagonal (though
for purposes of convenience, they assume it to be so). Another popular
extension is to include so-called "inter-occasion-variability" which essen-
tially adds another random effect to the model which applies to groups
of measurements (occasions) within individuals (Retout and Mentre, 2003;
Nyberg et al., 2012).

1.1.2 Population Experimental Design

As stated in the previous section, this thesis defines an elementary design
as an ordered vector of time points ξ = (t1, . . . , tn), with 0 ≤ t1 ≤ · · · ≤
tn < ∞. A population experimental design is generally speaking a collection
of elementary designs

Ξ = {ξ1, . . . , ξN}

which in the context of the previous section can be read as an experimental
plan for a study of N individuals in which individual i is allocated to
elementary design ξi for i = 1, . . . , N. However, with the exception of a
single example in Chapter 3, this thesis deals exclusively with the case
where all individuals are allocated to the same elementary design, i.e.,
ξi = ξ for all i = 1, . . . , N.
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1.1.3 Likelihood and Fisher Information

The following assumes that the variance components Ω and σ2 are known.
Then the likelihood for the vectorised model given in equation 1.2 is simply
the corresponding probability density, considered as a function of both
the observation y ∈ Rn and the parameter β ∈ Rp. When η is linear, the
likelihood admits an explicit expression. That is, if η(β) = Aβ for some
full rank n× p matrix A, then the likelihood of Yi is given by

L(y; β) = (2π)−
n
2 det(V)−

1
2 exp(−1

2
(y−Aβ)>V−1(y−Aβ)) (1.3)

where V = Var(Yi) = Var(A(β + bi) + εi) = AΩA> + σ2In. In cases
where η is nonlinear, the likelihood generally does not admit an explicit
expression and thus numerical approximation is usually required.

To find the maximum likelihood estimator (MLE) β̂ of β, one solves the
score equation

∂

∂β
log L(y; β) = 0

where the function on the left-hand side is known as the score function.
The Fisher Information Matrix (FIM) is the variance of the score function.
For [GET REF], the expectation of the score function is zero and thus the
FIM is equal to the second moment of the score function. Thus, for a given
elementary design ξ = (t1, . . . , tn) the FIM is the p× p matrix

FIM(ξ) =
∫

Rn

(
∂ log L(y; β)

∂β

)(
∂ log L(y; β)

∂β

)>
dy, (1.4)

and for the population design Ξ, the FIM is

FIM(Ξ) =
N

∑
i=1

FIM(ξi) ,

due to independence between individuals.

Intuitively, the FIM describes the degree to which the MLE β̂ varies with
the observations Y1, . . . , YN . It can also be thought of as the probability-
weighted curvature of the log-likelihood when the log-likelihood is con-
sidered as a function of β only. Loosely speaking, it follows that a “large”
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Fisher Information corresponds to high curvature and thus an easily iden-
tifiable β̂, i.e., a small confidence region. This will be formalised in the
next section.

1.1.4 D-optimality

According to Demidenko (1997), if the number of individuals goes to
infinity and the number of samples per individual is bounded, then the
maximum likelihood estimator is asymptotically normal,

β̂
as.∼ N (β, FIM(Ξ)−1) .

A D-optimal design, Ξ∗, minimises the log determinant of the asymptotic
variance of the MLE; this is equivalent to

Ξ∗ ∈ argmaxΞ{log[det(FIM(Ξ))]} .

From the asymptotic distribution of β̂, it immediately follows that solving
this problem yields a design which minimises the volume of the asymptotic
confidence region for β̂. Note that the FIM and the approximations of it
we employ will generally depend on the true parameter. Since the true
parameter is not known, a guess as to its value must be used. This leads
to the problem of the sensitivity of the resulting design to error in the
guess. While this is an interesting problem and there are several different
approaches to “robustification” of the design criterion, e.g., minimax or
pseudo-Bayesian designs, we will not address it further in this chapter. In
all examples we present, the true parameter is used as the “guess”.

1.2 FIM Approximation

In this section, the following three FIM approximations are introduced.
The First Order (FO) approximation, the Integrated First Order (InFO)
approximation and the Monte Carlo / Adaptive Gaussian Quadrature
(MC/AGQ) approximation.

Both FO and InFO rely on linearisation of the model. The linearised
model admits an exact expression of the FIM which depends on the value
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around which we linearise. FO and InFO differ in how they address this
dependence.

By contrast, MC/AGQ avoids linearisation. It is an attempt to directly
compute the FIM and relies on a combination of adaptive Gaussian quadra-
ture, Monte Carlo integration and (in our implementation) numerical
differentiation.

1.2.1 Linearisation

The vectorised form of the NLME model (equation 1.2) may be linearised
around an arbitrary value b̄ ∈ Rp. Specifically, if we consider the design ξ

to be fixed, i.e., η(β) = η(β, ξ), a first-order Taylor expansion of η around
β + b̄ evaluated in βi = β + bi yields

Yi = η(βi) + εi ' η(β + b̄) + η′(β + b̄)(bi − b̄) + εi .

Following Retout and Mentre (2003), let E and V respectively denote the
expectation and variance of the right-hand side. Then the FIM for the
linearised model is given by

FIMlin(b̄)kl =
N

∑
i=1

[
∂E>i
∂βk

V−1
i

∂Ei

∂βl

+
1
2

trace
(

∂Vi

∂βl
V−1

i
∂Vi

∂βk
V−1

i

) ]
,

for k, l = 1, . . . , p, with

Ei = η(β + b̄)− η′(β + b̄)b̄

and
Vi = η′(β + b̄)>Ω η′(β + b̄) + σ2 In ,
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for i = 1, . . . , N. Since all subjects are assigned to the same design, it holds
that Ei = E1 and Vi = V1 for i = 1, . . . , N. Therefore , the above expression
reduces to

FIMlin(b̄)kl = N
[

∂E>1
∂βk

V−1
1

∂E1

∂βl

+
1
2

trace
(

∂V1

∂βl
V−1

1
∂V1

∂βk
V−1

1

) ]
.

Up until this point, b̄ has been left as an arbitrary choice of constant in
Rp. What distinguishes the two linearisation-based FIM approximations
described in the subsequent sections is the way in which the problem of
choosing b̄ is approached. Both approaches are originally motivated by
thinking of b̄ as a “best guess” value of the realised random effect bi, the
problem being that, at the time of guessing, the random effect has not yet
been realised.

1.2.2 The First Order (FO) Method

The following approach was proposed by Mentre et al. (1997).

With no observations, a natural guess as to the value of the realised
random effect is b̄ = E(b) = 0, leading to the FO FIM approximation

FIMFO = FIMlin(0). (1.5)

1.2.3 The Integrated First Order (InFO) Method

InFO was proposed by Retout and Mentre (2003). It addresses the depen-
dence on b̄ by integrating it out with respect to the distribution of the
random effect. This leads to the InFO FIM approximation,

FIMInFO =
∫

Rp
FIMlin(b̄)φp

(
Ω−1/2b̄

)
db̄ , (1.6)

where φp is the standard normal density on Rp. FIMInFO can heuristically
be regarded as an attempt to provide a “robustified” alternative to FIMFO,
the intuition being that the more variable the random effect is, the less
accurate a fixed value guess will be on average.
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1.2.4 Monte Carlo / Adaptive Gaussian Quadrature

The following approach was initially proposed in Nguyen and Mentre
(2014) and subsequently an improved version was presented in Ueckert
et al. (2015). To avoid cumbersome notation, we suppress the index i and
treat the following as if we had only one elementary design Ξ = {ξ}, with
n observations.

As mentioned in a previous section, the NLME model does not generally
admit a likelihood in closed form. However, the likelihood can be expressed
as an integral,

L(y; β) =
∫

Rp
p(y|b; β)p(b)db (1.7)

where p(y|b; β) and p(b) are normal densities on Rn and Rp, respectively,

p(y|b; β) = φn

(
y− η(β + b)√

σ2

)
,

p(b) = φp

(
Ω−1/2b

)
.

In words, equation 1.7 expresses the marginal density of Yi as the inte-
gral of the joint density of Yi and the random effect bi which in turn is
expressed as the product of the conditional density of Yi given the random
effect and the marginal density of the random effect. This decomposition is
also used in Section 7.2.1 of Pinheiro and Bates (2000). In the same section,
it is shown how, by approximating the integrand in (1.7) with a normal
density, we can use adaptive Gaussian Quadrature (AGQ) to approximate
the integral. Gaussian quadrature is a method of numerical integration
with respect to a given kernel or probability density; for different fam-
ilies of densities different quadrature rules apply. Gaussian quadrature
approximates the integral with a weighted sum of integrand values, with
weights and abscissas (points at which the integrand is evaluated) that
are predetermined and which depend on the nature of the integrand as
well as the level of precision that is required (to increase precision, we
increase the number of abscissas, also referred to as “nodes”). The specific
quadrature rule we implement, Gauss-hermite quadrature, assumes that the
integrand takes the form of the product of a standard normal density and
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a polynomial. Thus, it can be used to compute moments of a standard
normal random variable.

For a given number Q ∈N of quadrature points, the standard Gaussian
quadrature approximation to the NLME likelihood is

LGQ(y; β) =
Q

∑
q=1

wq p(y|bq, β) ,

where w1, . . . , wQ ∈ (0, ∞) are the quadrature weights and b1, . . . , bQ ∈
Rp are the quadrature nodes. These can be obtained from tables in
Abramowitz and Stegun (1964) or from the R-package statmod.

An extension of this rule is adaptive Gaussian quadrature (see Section 7.2.1
of Pinheiro and Bates, 2000). Simply put, adaptive Gaussian quadrature is
an importance sampling version of Gaussian quadrature. It is clear that
by a simple substitution, Gaussian quadrature allows the computation of
integrals where the kernel is any normal density. Given an integral to be
computed, adaptive Gaussian quadrature exploits this by identifying a
Gaussian kernel which approximates the integrand. The choice of kernel is
given by choosing the mean and the variance of the approximating normal
distribution.

The following AGQ approximation to the NLME likelihood was con-
structed in (Section 7.2.1 of Pinheiro and Bates, 2000). For the mean of the
approximating normal distribution, pick the mode (assumed to be unique)
of the integrand

b̂ = argmaxb∈Rp{p(y|b; β)p(b)}

and for the variance, choose

B =

[
− ∂2

∂b2 ln[p(y|b; β)p(b)]
∣∣∣∣
b=b̂

]−1

.
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For a given number of quadrature points Q ∈N, the AGQ approxima-
tion of the NLME likelihood is

LAGQ(y, β) =
Q

∑
q=1

w+
q p(y|b+

q ; β) , (1.8)

where
b+

q = b̂ + B−1/2bq

with corresponding weights

w+
q = B−1/2 φp(b+

q )

φp(bq)
wq .

The approximate likelihood LAGQ can be used to construct an approxima-
tion of the FIM. First note that FIM for the NLME model can be written
as

FIM =
∫

Rn
h(y; β)L(y; β)dy

where

h(y; β) =
∂ log L(y; β)

∂β

∂ log L(y; β)>

∂β

=
∂L(y; β)

∂β

∂L(y; β)>

∂β

(
L(y; β)

)−2

,

with an application of the chain rule in the second equality. Let

hAGQ(y; β) =
∂LAGQ(y; β)

∂β

∂LAGQ(y; β)>

∂β

(
LAGQ(y; β)

)−2

.

The FIM can thus be approximated by a combination of likelihood approxi-
mation and Monte Carlo integration

FIMMC/AGQ =
1
M

M

∑
m=1

hAGQ(ym; β) ,

where y1, . . . , yM are simulations from the NLME model. The high com-
putational cost of this method is in part from having to compute the
derivatives; in this chapter, they are computed numerically with the grad
function from the numDeriv package in R. By default, it uses Richard-
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son’s extrapolation method (Linfield and Penny, 1989). Another source of
computational cost is that we have to find the mode b̂ for each simulation.

1.3 Cases to be examined

We examine four industrially relevant examples from the literature. A
summary of the models can be found in Table 1.1. The chosen parameter
values are taken from the references indicated in the table. Each model
is given by a regression function, a design region and a set of parameter
values (value of β, ω and σ2), found in columns two, three and four of
Table 1.1, respectively. Note that ω1 has been omitted from the parameter
values because we vary this parameter in our investigations.

1.3.1 Exponential Decay I and II

Exponential decay provides a natural mechanistic description for a wide
range of phenomena. For instance, it has been used to model radioactive
decay, as well as irreversible first order reactions (Kitsos and Kolovos, 2013).
On p.248-249 of Atkinson et al. (2007), exponential decay is used to describe
the reaction scheme

A k→ B .

That is, the compound A is transformed into another compound B at a
rate k which is proportional to the concentration of A. In this model, the
concentration [A]t of A at time t is described by the differential equation

d[A]t/dt = −k[A]t ,

with analytical solution

[A]t = [A]0 exp(−k · t) ,

where [A]0 is the initial concentration of A and k is the rate constant. The
square bracket notation for concentration is standard in the chemistry
literature and its unit is number of moles per litre. The rate constant k is
the proportion of material converted per second.
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The model we call Exponential Decay I corresponds to assuming that
the initial concentration of A is known (and assumed to take a value of
one) and the rate constant k is to be estimated. Expressing this in the
notation of equation 1.1, the regression function can be given as η(β, t) =
[A]0 exp(−βt). Exponential Decay II corresponds to the situation where
both the rate constant and the initial concentration of A are assumed
unknown. Expressing this in the notation of equation 1.1, the regression
function can be given as η(β, t) = β2 exp(−β1t).

1.3.2 One-Compartment

The One-Compartment model is one of the most popular examples in
the literature of nonlinear regression models and optimal design for such
models. It was used as a motivating example in seminal works such as
Sheiner et al. (1972) and Mentre et al. (1997) as well as more recent works
such as Wang et al. (2012).

As with exponential decay, the One-Compartment model is a solution
to a differential equation which provides a mechanistic description of a
wide range of phenomena. Examples of applications include the modelling
of chemical reactions (Kitsos and Kolovos (2013)) and metabolisation of
enzymes (Sjogren et al. (2011)). In a mechanistic pharmacokinetic interpre-
tation of the model, it can be used to represent the concentration of a drug
in an individual over time; the individual’s body is considered a compart-
ment which absorbs and eliminates the drug at rates that are proportional
to the amount of drug yet to be absorbed and already absorbed but not yet
eliminated, respectively. This can be represented by the following scheme

A ka→ B ke→ C .

Specifically, an initial dose [A]0 of drug A is administered and it is absorbed
by the body (or the blood) at a rate which is proportional to the current
concentration [A]t of unabsorbed A. As with Exponential Decay above, ka

and ke are rate constants, with ka being the rate of absorption and ke being
the rate of elimination. The absorption rate is thus given by the differential
equation

d[A]t/dt = −ka[A]t .
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From the body compartment, the absorbed drug is eliminated at a rate
which is proportional to the current concentration [B]t of the drug in the
compartment. The rate of change in the body compartment is thus given
by

d[B]t/dt = ka[A]t − ke[B]t ,

where ke is the elimination rate constant. Solving this system of differential
equations for [B]t yields

[B]t =
ka[A]0
ke − ka

(
exp(−kat)− exp(−ket)

)
,

which can then be used as the regression function in an NLME model.
Expressing [B]t in the notation of equation 1.1, the regression function can
be given as

η(β, t) =
eβ2−β3

eβ2 − eβ1

(
e−eβ1 t − e−eβ2 t

)
where β1 = log ke and β2 = log ka and β3 = − log[A]0. Note that to make
the translation consistent with Wang et al. (2012), the denominator of
the first term has been multiplied by −1 and the second term has been
multiplied by −1 as well, keeping the value of the expression unchanged.

1.3.3 Sigmoid Emax

The Sigmoid Emax model is a classic model in the area of pharmacodynam-
ics. It provides a mechanistic description of a simple instance of “receptor
theory”; the underlying idea is that the effect of a drug is indicated by
the proportion of relevant receptors in the body the drug succeeds in
binding itself to. This proportion is then modelled as a function of the
concentration, or amount, of drug administered.

According to Mortensen et al. (2008), the model can be derived as follows.
The effect of a drug is given by the number of drug molecules that have
bound to relevant receptor sites. There is a number of available receptor
sites [R] and a number of available drug molecules [D]. The number
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of bound drug molecules (or drug-receptor complexes) [DR] is given by a
reversible binding reaction

[D] + [R]
k1


k−1

[DR] .

This is standard chemical reaction notation for an equilibrium reaction (

implies equilibrium), which indicates that the rate constant of the forward
reaction (binding) is k1 and the rate constant of the backward reaction
(unbinding) is k−1. The rate of the forward reaction is thus d[DR]

dt = k1[D][R]
and the rate of the backward reaction is d([D]+[R])

dt = k−1[DR].

If the response of interest (the “effect”), E, is assumed proportional
to [DR] by some proportionality constant α > 0, that is, if E = α[DR]
then the maximal effect is Emax = α([R] + [DR]). That is, the maximal
effect is reached when all the receptors in the system are in drug-receptor
complexes. In Mortensen et al. (2008), the forward and backward rate
equations are solved under “steady state conditions”, the first of which is
equality of the rates, i.e., equilibrium. This yields the solution

E =
Emax[D]

[D] + Kd

where Kd = k−1/k1. This model is known as the Michaelis-Menten rela-
tionship.

The Sigmoid Emax model is an extension of the Michaelis-Menten model,
given by

E = E0 +
EmaxCγ

Cγ + ECγ
50

where C is concentration of the drug, EC50 is the concentration for which
E = E0 +

1
2 Emax and γ > 0 is a parameter which allows the shape of

the response curve to become more (or less) “s-shaped”. According to
Salahudeen and Nishtala (2017), the quantity E0 represents a baseline for
the measured effect in the absence of any drug and γ, known as the Hill
coefficient, can be mechanistically justified by the system allowing for mul-
tiple ligands (drug molecules) to bind to the same receptor site. However,
the use of γ is often empirically driven, i.e., scientists have experienced
that including this particular parameter results in a substantially better fit.
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Technically speaking, the instances of this model that are treated in this
chapter are a special case of the Sigmoid Emax model, where γ = 1. This
is also referred to as the Emax model. However, cases where γ 6= 1 will be
treated in the next chapter.

Expressing E in the notation of equation 1.1, and setting γ = 1 we obtain
the regression function

η(β, t) = 5 +
β1t

β2 + t
(1.9)

where E0 = 5 has been assumed, to make the example consistent with
Nguyen and Mentre (2014).

1.4 Demonstration of the Gold Standard

In this Section, we employ Monte Carlo with Adaptive Gaussian Quadra-
ture (MC/AGQ) as the gold standard FIM approximation. Simple examples
are given of its use and a brief sanity check is performed.

1.4.1 Example I

Recall that for the cases treated in this thesis, all random effects variance
matrices are assumed to be diagonal V(bi) = Ω = diag{ω1, . . . , ωp} for
i = 1, . . . , N. Consider the Sigmoid Emax model described in Table 1.1,
with ω1 = 0.3. In Figure 1.1 we plot the value of the MC/AGQ D-
optimality objective function for the FO D-optimal design, as a function
of the number of MC simulations. We have included 10,000 bootstrapped
profiles of the MC/AGQ D-objective function value and constructed point-
wise percentile intervals (2.5% and 97.5% quantiles) from these profiles.
After about 2,000 simulations the percentile intervals narrow from an initial
width of about 0.6 to a width of about 0.2. At 10,000 simulations the width
is about 0.1. Whether these magnitudes of variation are acceptable can
be judged only within some appropriate reference frame, which we will
attempt to provide.

To provide a reference frame, we draw the reader’s attention to Figure
1.2. Here, we plot profiles of the MC/AGQ D-optimality objective function
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(5 quadrature nodes), corresponding to incremental changes from the FO
D-optimal design. Each function evaluation is based on 10,000 simulations,
and the red dots are 100 bootstrapped function evaluations based on those
10,000 simulations. The intervals are taken from Figure 1.1 and correspond
to 1,000 simulations and 10,000 simulations, respectively.

All three plots in Figure 1.2 give us the impression that the margin of
error of the MC/AGQ D-optimality objective function is low enough that
it will allow us to distinguish between radically different designs. This
statement must be qualified in a number of ways. First, we observe that
the objective function does seem to be flat around the optimum value and
hence there is perhaps some reason to be concerned about how precisely
we could determine the optimum if we were to use MC/AGQ for finding
optimal designs. Second, this is a special case, both in terms of the model
under consideration as well as the designs we evaluate the MC/AGQ
D-optimality objective function for. It can therefore only serve as a proof
of concept, not as a guarantee that MC/AGQ will always work. Third,
these plots still only serve as rough visual checks, they do not provide a
quantitative or absolute guide as to the quality of the approximation. With
these caveats in mind, the plots allow us a certain degree of confidence that
the approximation does not behave in an unexpected fashion and does not
exhibit clearly unacceptable levels of imprecision with the chosen number
of simulations and nodes.
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1.4.2 Example II

While FO and InFO have been used before in the literature, especially the
former, the same is not true of the more novel MC/AGQ approach. For
uses of FO and InFO see e.g. McGree et al. (2009), Strömberg et al. (2016)
and Almquist et al. (2015). We therefore perform a quick sanity check; we
randomly generate a number of designs uniformly from the design region
and evaluate them with the MC/AGQ approach. If FO and InFO generate
good designs, we would expect MC/AGQ to evaluate these designs as
better than any randomly generated design.

The results have been plotted in Figure 1.3. We see the expected be-
haviour in the One-Compartment and Sigmoid Emax cases, i.e., the FO
and InFO D-optimal designs have a higher value than any of the randomly
generated designs when evaluated with the MC/AGQ D-optimality ob-
jective function. (Note that while the smoothed densities of the values of
the random designs do cross the FO and InFO values that is an artefact of
the smoothing; there are no random designs in that region). However, in
the Exponential Decay cases, the FO and InFO D-optimal designs perform
about as well as the randomly generated designs.

One possible explanation for the poor performance of the FO and InFO
D-optimal designs in the case of Exponential Decay could be that the
optimisation algorithm failed. To check this, consider Figure 1.4. Here, as
in Figure 1.3, for each plot 10,000 design were sampled from the uniform
distribution on the relevant design region. The densities plotted are values
of the FO and InFO D-optimality objective functions. As a naive check, we
observe that the optimisations seem to have worked well enough that none
of the random designs are better than the optimal one (again, the densities
that cross the relevant vertical lines are artefacts of smoothing). It seems
there is good agreement between the InFO and FO objective functions in
the One-Compartment and Sigmoid Emax models, but substantial disagree-
ment in the Exponential Decay models. In the Exponential Decay models,
the InFO density seems to be shifted to the right, in the other models the
densities seem to overlap. In the Exponential Decay models, the InFO
D-optimal design is worse than many of the random designs (especially
in Exponential Decay I) and in the other models the overlap seems to
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Figure 1.1: Illustration of the MC/AGQ approximation of the FIM. For the
Sigmoid Emax model in Table 1.1 (with ω1 = 0.3), we have computed the
MC/AGQ approximation (5 quadrature nodes) of the FIM and plotted the value
of its log-determinant in red, for an increasing number of MC simulations. The
10,000 simulations used in the approximation were subsequently bootstrapped and
used to create bootstrapped profiles in faded black. Finally, point-wise percentile
intervals (i.e., 2.5% and 97.5% quantiles of the bootstrapped distribution of
logdet(FIMMC/AGQ) for each number of simulations under consideration) were
added in green.
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(c) Moving t1 and t2 from ξ∗ towards each other.

Figure 1.2: Solid black points are the estimated values of logdet(FIMMC/AGQ) as a
function of (a) t1, the first sampling time, keeping t2 = t∗2 , (b) t2, the second sampling
time, keeping t1 = t∗1 , (c) the distance between t1 and t2. Note that (t∗1 , t∗2) = ξ∗, the FO
D-optimal design. Dashed lines are the bounds of a percentile interval given by the 2.5%
and 97.5% quantiles of the distribution of logdet(FIMMC/AGQ(ξ

∗)). For description of
how these intervals are generated, see caption of Figure 1.1.
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extend to the optimal designs. The scales of the function values are very
different when compared with their MC/AGQ counterparts in Figure 1.3.
The most remarkable cases of this are Exponential Decay II and Sigmoid
Emax, which are orders of magnitude different from the MC/AGQ-based
values in terms of the both location and spread. This is further evidence
that there is a strong difference between the linearisation-based criteria
and the MC/AGQ-based one. Recalling from Section 1.1.3 that the FIM is a
measure of the curvature of the log-likelihood (as a function of β) it can be
concluded that the linearisation-based approaches seem to underestimate
this curvature, in particular for Exponential Decay II.

This leads us to conclude that FO and InFO yield a poor FIM approxi-
mations in the Exponential Decay cases. It has previously been noted by
Merlé and Tod (2001) that the linearisation-based methods are not always
appropriate. Hence, it seems natural to include in any application of FO
and InFO an assessment of whether the model is “too nonlinear”.

While addressing that question is outside the scope of this thesis, it is
important; it may provide further motivation for exploring the feasibility
of an MC/AGQ-based method for finding D-optimal designs.

1.5 Strategy for comparing FO and InFO

The existing evidence corroborating the claim that InFO is superior to FO
for “large random effects” is sparse1; Wang et al. (2012) find FO and InFO
D-optimal designs for a single model (One-Compartment), for a single
value of θ 2 and base the claim of InFO superiority on the fact that the
value of the InFO D-optimality objective function is larger in the InFO
D-optimal design than the value of the FO D-optimality objective function
is in the FO D-optimal design. However, this is not sufficient evidence
since two different D-optimality functions are being used; in fact, we have
observed that there is often a systematic difference between the FO and
InFO D-optimality objective functions.

1 Retout and Mentre (2003) actually observed no substantial difference between the ap-
proaches in the examples they considered.

2 However, they vary the constraints on the design space and they also employ Ds-optimality,
i.e., D-optimality for subvectors of the parameter.
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Figure 1.3: Smoothed histograms of the empirical distribution of the MC/AGQ
logdet(FIM) value of designs distributed uniformly on the experimental region.
The red vertical lines represent the MC/AGQ logdet(FIM) value of the FO
D-optimal designs and the dashed green vertical lines represent the MC/AGQ
logdet(FIM) value of the InFO D-optimal designs.
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Figure 1.4: Smoothed histograms of the empirical distribution of the FO (solid
lines) and InFO (dashed lines) logdet(FIM) value of designs distributed uniformly
on the experimental region. The red vertical lines represent the logdet(FIM) value
of the FO D-optimal designs and the green vertical lines represent the logdet(FIM)
value of the InFO D-optimal designs. The red lines can’t be seen in the One-
Compartment and Sigmoid Emax plots because they are under the green lines (the
solid red line is under the solid green line, the dashed red line is under the dashed
green line).
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Another method of comparing FO and InFO is employed by Retout
and Mentre (2003); Nyberg et al. (2012) and Wang et al. (2012). For a
given design, they compute the expected coefficients of variation (CVs) of
the parameter estimators based on FO and based on InFO and then they
compare the results with their empirical, simulation-based, counterparts.
The idea is that the FIM approximation which generates CVs that are closer
to the simulation-based CVs is the better method. However, they only
consider a fairly low number of designs and small sample sizes for the
simulation (five and 100, respectively, in the case of Wang et al. (2012)).
Further it is not clear what constitutes “close” when comparing CVs, as
these are marginal, parameter-wise, comparisons. The fact that CVs are
marginal also means that it is not straightforward to use them to compare
designs; some sort of evaluation of the joint CVs corresponding to a given
design would have to be performed.

For these reasons, we pursue a different strategy for comparing FO and
InFO. For the cases described in Section 1.3, we find FO and InFO D-
optimal designs for a range of values of ω1. This will allow us to establish
whether the two methods generate qualitatively different designs. Sub-
sequently, we use our chosen gold standard, the MC/AGQ D-optimality
objective function, to compute the relative D-efficiency which is defined
in Section 1.7.2. As explained in Section 1.7.2, the relative D-efficiency
of two designs is a measure of how many times one of the designs must
be replicated in order to yield as much information as the other design.
In particular, this enables an investigation of whether increasing ω1 even-
tually leads to the InFO D-optimal design clearly outperforming the FO
D-optimal design, on the scale of relative D-efficiency.

1.6 Finding D-optimal designs

1.6.1 Optimisation

The FO D-optimality objective function is convex when approximate de-
signs are allowed, see, e.g., page 61 of Fedorov and Leonov (2014) or page
75 of Schmelter (2007). However, in this work, only exact designs are
considered and under this restriction the problem is not convex (see page
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15 of Schmelter (2007)). The InFO D-optimality objective function is not
convex in general either. This is illustrated in Figure 1.5; it is a plot of the
objective function for the Exponential Decay II case described in Table 1.1,
with ω1 = 0.15 and with a reduced maximum sample size of n = 2 instead
of n = 5 (so it becomes possible to plot the function). The plot clearly
suggests that the function is not convex given that it appears to contain (at
least) two separate local optima (manual of function values confirms this).

The R routines nlminb and DEoptim are employed for optimisation of the
D-optimality objective functions. Note that both routines allow bounded
optimisation, which is needed to ensure that the resulting design is within
the design region. Another, classic, approach would be to transform the
design region into an unbounded space, optimise there and transform back.
This can be achieved using e.g. hyper-spherical coordinates. In Figure 1.6
we plot the FO D-optimal designs as a function of the between-individual
variance for each of the four cases described in Table 1.1. These were found
via local optimisation with the nlminb routine.

However, non-convexity necessitates a cautious approach to optimisation.
This is illustrated by the first column of plots in Figure 1.7. In these plots,
we have replicated the optimisation approach used to generate Figure 1.6.
For both Exponential Decay cases, we see that the D-optimal design as
a function of between-individual variance behaves somewhat erratically,
with sudden discontinuities in an otherwise smooth graph. Furthermore,
the bifurcation of the graph that we see in Exponential Decay II and in the
One-Compartment model also suggests that there are several local optima
in the objective function and that the optimisation method switches from
locating one optimum to the other as ω1 is increased.

For these reasons, we employ a global optimisation algorithm. We used
the DEoptim routine from the R package by the same name. It implements a
differential evolution algorithm for which we use the default settings except
for the fact that we double the default maximum number of iterations and
the population size parameter (itermax=400 and NP=100). The resulting
plots are presented in the second column of Figure 1.7. However, the design
graphs seem to be highly discontinuous, especially in the Exponential
Decay II case. This is not necessarily surprising, given that DEoptim make
very few assumptions about the objective function, i.e., even if the true



1.6 finding d-optimal designs 60

time 1

tim
e 

2

1

2

3

4

1 2 3 4

6.2

6.2

6.4

6.4

6.4

6.
4

6.6

6.6

6.6

6.6

6.8

6.
8

7.0
7.2
7.4
7.6
7.8
8.0
8.2
8.4
8.6
8.8

9.0

9.2

9.4
9.4

Figure 1.5: InFO D-optimality objective function for Exponential Decay II, with
(t1, t2) ∈ [0, 5]2. Note that the NLME model differs from the Exponential Decay
II model in Table 1.1 in that the number of sampling times is reduced to two (to
allow the function to be plotted).
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objective function is in fact smooth and convex, the optimisation algorithm
does not assume it to be either and will, due to its random nature, produce
solutions that vary around the true optimum, so that, even if all parameters
are fixed, two independent runs of DEoptim will produce two (perhaps
only slightly) different solutions. For the purposes of facilitating further
enquiry, we make the heuristic assumption that the InFO D-optimality
objective function is a smooth function without too many optima and that
the DEoptim routine has produced designs that are located sufficiently
near a global optimum that a follow-up local optimisation will produce a
global optimum, i.e., a true InFO D-optimal design. Specifically, we use
the results from the global optimisation as starting points for a follow-up
local optimisation with nlminb and the resulting designs are assumed to be
true InFO D-optimal designs. They are plotted in the third column of the
Figure 1.7.

One could raise the concern that global optimisation ought to be used to
find the FO D-optimal designs as well; the resulting graphs were identi-
fied and found to be essentially indistinguishable from the ones already
presented.

For the sake of completeness, we formally define the design graphs pre-
sented in Figures 1.6 and 1.7.

Definition. Given θ = (β>, ω>, σ2)> ∈ Θ and a choice of optimality criterion,
let ξ∗(θ) denote the optimal design. Let i ∈ {1, . . . , p} be given and define
ω(i) : (0, ∞)→ Θ as ω(i)(u) = ω + ei(u−ωi), where ei ∈ {0, 1}p with

eij =

0 if j 6= i

1 if j = i

Then the design graph of ωi is given by the graph of the function

ξ∗(u) = ξ∗((β>, ω(i)(u), σ2)>) .

That is, a vector θ of true parameter values for both fixed effects and
variance components is chosen. Then the optimal design ξ∗, by some
design criterion, is considered as a function of a single variance component,
with all other parameter values fixed at the original value.



1.6 finding d-optimal designs 62

Figure 1.6: FO D-optimal designs for each of the models in Table 1.1. The optimal
design is plotted as a function of the variance of the first random effect ω1 = Ω11.
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nlminb used to refine InFO D-Optimal Designs
found by global optimization (DEoptim package).

Figure 1.7:
First column: InFO D-optimal designs with local optimization (function nlminb).
Second column: InFO D-optimal designs with global optimization (function
DEoptim).
Third column: results of local optimisation (function nlminb) used with column
2 as starting point.



1.7 comparing fo and info d-optimal designs 64

1.7 Comparing FO and InFO D-Optimal Designs

1.7.1 Qualitative Comparison: Visual inspection

We have now succeeded in producing FO D-optimal designs, as presented
in Figure 1.6, and we have also produced designs that can reasonably be
expected to be InFO D-optimal, presented in the third column of Figure
1.7. This allows us to make a qualitative comparison of the methods via a
visual inspection of the designs they yield. It is immediately apparent that
the graphs of the D-optimal design as a function of ω1 are qualitatively
different for the two methods; there are differences in the shape as well as
in the replication structure. However, in all cases, the FO D-optimal design
for the smallest value of ω1 closely resembles or is indistinguishable from
the corresponding InFO D-optimal design. This is probably due to the
fact that as Ω→ 0, the two objective functions converge. For Exponential
Decay I, the graph for FO (plot (a) of Figure 1.6) seems to quickly stabilise
and then remain essentially constant whereas the corresponding graph for
InFO (plot (c) of Figure 1.7) yields designs that are highly dependent on
ω1 both in terms of sampling times and replication structure. The same
comments can be made regarding Exponential Decay II (plot (b) of Figure
1.6 versus plot (f) of Figure 1.7).

In the case of the One-Compartment model (comparing plot (c) of Figure
1.6 with plot (i) of Figure 1.7), FO does seem to yield designs that change
smoothly with ω1 without any tendency to stabilise within the range of
values examined. The same is true of InFO. However, while some similarity
can be traced in the set of sampling times yielded by FO and InFO, the
graph for InFO has a bifurcation as well as a subsequent shift in replication
structure; before the bifurcation, the graphs don’t look very dissimilar, but
afterwards, they are different in that FO yields designs which replicate
the first and last sampling time twice whereas InFO yields designs that
replicate the second and the last sampling times twice.

Lastly, in the case of the Sigmoid Emax model (plot (d) of Figure 1.6
versus plot (l) of Figure 1.7), all designs place the second sampling time at
the extreme (t2 = 1000) while the first sampling time varies. In the case of
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FO, the first sampling appears to be a concave function of ω1 wheras for
InFO, the opposite is the case.

There is thus ample reason to conclude that the two methods yield
qualitatively different designs; the next question is whether one method
yields better designs than the other. If we believe the claim that InFO
outperforms FO when random effects are “large”, then we would expect
that InFO would gradually start to outperform FO as ω1 is increased. In
the next section, we try to determine whether this is the case, by computing
the relative D-efficiency of the InFO D-optimal design to the FO D-optimal
design, as a function of ω1.

1.7.2 Quantitative Comparison: Relative D-Efficiency

We propose to compare designs via relative D-efficiency, as defined below.
Given two designs ξ, ξ ′, the relative D-efficiency (of ξ to ξ ′) is

relEff(ξ, ξ ′) =
{

det(FIM(ξ))/det(FIM(ξ ′))
}1/p .

Relative D-efficiency is based on the notion of average variance; in the very
simple case of a linear model and diagonal FIM’s, the relative D-efficiency
is in fact the equal to the ratio of the geometric mean of the variance
of the entries of β̂ under ξ ′ to the geometric mean under ξ. Given an
approximation to the FIM, we can approximate the relative D-efficiency; in
Section 1.7.4, we compute the MC/AGQ relative D-efficiency given by

relEffMC/AGQ(ξ, ξ ′) =

{
det(FIMMC/AGQ(ξ))

det(FIMMC/AGQ(ξ ′))

}1/p

.

1.7.3 Note on interpretation of relative D-efficiency

Relative D-efficiency can also be defined for population designs, with the
observation that if Ξ is a population design, then

FIM(Ξ) = ∑
ξ∈Ξ

FIM(ξ) .
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Let ξ, ξ ′ be given elementary designs and let Ξ and Ξ′ be population
designs where Ξ = {ξ} and

Ξ′ = {ξ ′, . . . , ξ ′︸ ︷︷ ︸
R times

} .

Then
FIM(Ξ′) = R · FIM(ξ ′)

implying that
det(FIM(Ξ′)) = Rpdet(FIM(ξ ′)) .

In this case,

relEff(Ξ, Ξ′) =
1
R
{det(FIM(ξ))/det(FIM(ξ ′))}1/p

=
1
R

relEff(ξ, ξ ′) .

So, if we (allowing non-integer number of individuals in population de-
signs for the purposes of illustration) choose R such that

relEff(Ξ, Ξ′) = 1

we get
relEff(ξ, ξ ′) = R .

In words, the relative D-efficiency of ξ to to ξ ′ can be interpreted as “how
many individuals must be allocated to design ξ ′ in order to obtain the
same information as we obtain from a single individual allocated to design
ξ?”.

1.7.4 Bootstrap

Since we compute the relative efficiency of FO and InFO D-optimal designs
via MC/AGQ, it is subject to a random error associated with the Monte
Carlo integration. In order to account for this error, we construct bootstrap
confidence intervals for the relative efficiency, as per Efron and Tibshirani
(1993). Because of the computational cost of constructing these intervals,
we restrict our attention to ten pairs of designs for each model (one FO
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and one InFO), with the designs corresponding to ten equi-distant values
of ω1.

The bootstrap procedure for each value of ω1 can be summarised as
follows.

Algorithm 1 Bootstrapped percentile intervals for relative MC/AGQ D-efficiency

Input η, β σ2 and ω2, . . . , ωp ← from chosen row in Table 1.1
Input ω1 ← desired value of ω1

Set Ω = diag{ω1, . . . ωp}
for a in (FO, InFO) do

ξ(a) = (t(a)
1 , . . . , t(a)

n )← D-optimal design using approximation a
for i in 1:S do . S = 100, 000

ε
(a)
i = (ε

(a)
i1 , . . . , ε

(a)
in )← drawn from Nn(0, σ2In)

b(a)
i = (b(a)

i1 , . . . , b(a)
ip )← drawn from Np(0, Ω)

set η
(a)
i = (η(β + b(a)

i , t(a)
1 ), . . . , η(β + b(a)

i , t(a)
n ))

set y(a)
i = η

(a)
i + ε

(a)
i

end for
end for
for r in 1:R do . R = 10, 000

for i in 1:M do . M = 10, 000
ĩ← sampled from uniform distribution on {1, . . . , S}
Set ỹi

(FO) = y(FO)

ĩ

Set ỹi
(InFO) = y(InFO)

ĩ
end for
Set FIM(r)

MC/AGQ(ξ
(FO)) = 1

M ∑M
m=1 hAGQ(ỹm

(FO), β) . See Section 1.2.4
Set FIM(r)

MC/AGQ(ξ
(InFO)) = 1

M ∑M
m=1 hAGQ(ỹm

(InFO), β)

Set relEff(r)MC/AGQ(ξ
(FO), ξ(InFO)) =

{
det(FIM(r)

MC/AGQ(ξ
(FO)))

det(FIM(r)
MC/AGQ(ξ

(InFO)))

}1/p

end for
return (relEff(1)MC/AGQ(ξ

(FO), ξ(InFO)), . . . , relEff(R)
MC/AGQ(ξ

(FO), ξ(InFO)))

Algorithm 1 is applied to every model in Table 1.1, with ten different
choices of ω1 for each model. These values of ω1 are equidistantly placed
in the intervals indicated in Table 1.1, Specifically, they are generated by
the R-command seq(a,b,length.out=100)[1:10*10] where a and b are the
endpoints of the interval to which ω1 belongs according to Table 1.1.
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Figure 1.8 contains plots of the designs that are being compared (first and
second row) as well as the corresponding bootstrap confidence intervals
(third row). First note that most confidence intervals contain 1, so on a
marginal basis no strong conclusion is evident. However, judging by the
medians (or the inter-quartile range) of the sampled relative D-efficiencies,
it seems that FO might be slightly worse than InFO in Exponential Decay I,
at least for some values of ω1, though not for the highest. In Exponential
Decay II, the two methods seem to yield designs of the same relative effi-
ciency with the exception of the eighth and ninth intervals; both intervals
are entirely above 1. This means that for each of these intervals, at least
95% of the 1,000 simulated MC/AGQ relative D-efficiencies of FO to InFO
D-optimal designs are above 1, indicating superiority of the FO D-optimal
design. This jump in relative D-efficiency coincides with a change in repli-
cation structure for the InFO D-optimal design from design seven to design
eight (the second sampling time changes from being equal to zero to being
strictly positive) and from design nine to design ten (the second sampling
time becomes zero again and the third sampling time drops to a very small
value close to zero). Hence, the most obvious explanation for the jump is
that it is caused by the non-convexity of the InFO D-optimality objective
function and the corresponding discontinuity in the design graph.

For the One-Compartment model, FO seems to perform as well as, or
better than, InFO. For the Sigmoid Emax model, the two methods seem
to perform equally well. Two further observations can be made: firstly,
that designs that are quite different seem to have quite similar MC/AGQ
relative D-efficiencies; this could be seen as an indication that, as with
InFO, the MC/AGQ D-optimality objective function is not convex. Second,
that the pairs of FO and InFO D-optimal designs with MC/AGQ relative
D-efficiencies that are clearly different from 1 seem quite similar to pairs
where the confidence interval comfortably contains 1. As an example of this
latter phenomenon, consider the FO and InFO designs for the Exponential
Decay I model, for ω1 = 0.21 and ω1 = 0.24; the FO designs for these
two values of ω1 are visually indistinguishable and the only appreciable
difference between the InFO designs is that the first sampling time is
slightly later for ω1 = 0.24 than for ω1 = 0.21. Yet this is enough to cause
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one of the most dramatic shifts relative D-efficiency in these plots. Another
example is the Sigmoid Emax model for ω1 = 0.7 and ω1 = 0.8.

These jumps in MC/AGQ relative D-efficiency, which are not accompa-
nied by qualitatively different designs, could potentially be explained if the
true objective function is subject to relatively radical changes in shape as a
consequence of the change in ω1. That is, though we are evaluating pairs
of designs that from a visual inspection seem to be close together, the effect
of changing ω1 could theoretically be such that the functions with which
we evaluate these pairs are quite different. In the case of the Exponential
Decay model, this could potentially be tied to the conjectured high degree
of nonlinearity.

An alternative explanation is computational error; it is possible that the
bootstrap confidence intervals does not reflect the true variance of the
estimated
MC/AGQ relative D-efficiency. This would be a difficult question to
resolve and is not within the scope of this work. A possible place to start
would be with linear models given that they are the only case we know of
for which analytical solutions are available.

Lastly, note that we chose to utilise bootstrap rather than simply increas-
ing the number of simulations. This is motivated by computational cost.
To illustrate the computational cost, consider the tabulated computation
times in Table 1.2; here, we present the median time taken to compute
the MC/AGQ D-optimality objective function (for a single design). The
median is taken over the computation times for the designs considered in
Figure 1.8.

Exp Dec I Exp Dec II Sigmoid Emax One-comp

0.35 hrs 1.79 hrs 1.95 hrs 8.19 hrs

Table 1.2: Computation times. Median time taken to compute the MC/AGQ
D-optimality objective function for a single design using 10,000 simulations and
five quadrature nodes.

The computation times presented in Table 1.2 are for a single design.
This indicates that optimising the MC/AGQ D-optimality function would



1.8 discussion 70

require a very large computational effort, even for these very simple models
where the maximum number of parameters is three. In particular, note
that it seems that the computation times increases exponentially with the
number of parameters.

1.8 Discussion

In this chapter we present and implement a strategy to investigate the
claim that InFO “performs better when between-individual variance is
large”. We find FO and InFO D-optimal designs for a number of models
commonly used in, e.g., the pharmaceutical industry and then establish
that when between-individual variance is increased, FO and InFO yield
qualitatively different designs. This motivates a further investigation and
also necessitates a quantitative method of comparing designs.

FO and InFO D-optimal designs are quantitatively compared via
MC/AGQ, a third FIM approximation. This is motivated by the fact
that MC/AGQ avoids linearisation and is theoretically capable of arbitrar-
ily high precision. For each model, we compute the MC/AGQ relative
D-efficiency, along with bootstrap confidence intervals, for 10 pairs of FO
and InFO D-optimal designs, each pair corresponding to a given value of
between-individual variance. The resulting plots - of MC/AGQ relative
D-efficiency against between-individual variance - indicate that InFO does
not in general perform better than FO.

In terms of practical implications, this finding is in fact good news. InFO
is computationally far more expensive than FO since it involves approx-
imating a multi-dimensional integral. Moreover, the InFO D-optimality
objective function is more prone to local optima and the implication is that
optimisation compounds computational cost all the more.

A further point against InFO is an apparent lack of a theoretical justifica-
tion for the choice of kernel, i.e., the distribution of b, used to “robustify”
the linearised FIM. The resulting quantity has no known interpretation
as an approximation of anything. This point was elucidated further by
Nyberg et al. (2012), who point out that FOCE relies on linearising around
the mode of the subject-wise joint density, which InFO cannot do because
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Figure 1.8: Final comparison of FO and InFO D-optimal designs and their relative
efficiencies.
First row: FO D-optimal designs for each of the models in Table 1.1. The
optimal design is plotted as a function of the variance of the first random effect
V(b1) = ω1 = Ω11.
Second row: InFO D-optimal designs.
Third row: Relative D-efficiency of FO D-optimal design to InFO D-optimal
design. Computed for ten equi-distant values of Ω11. Confidence intervals
constructed via percentile bootstrap intervals (1,000 samples with resample size
10,000).
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it is not possible without data. However, a more appropriate way to com-
pensate for the lack of data in this step would intuitively be to integrate
with respect to the distribution of the mode, rather than the distribution of
the random effect. An implementation of this idea is proposed in Nyberg
et al. (2012).

This flaw in the construction of InFO could serve to explain why it does
not seem to outperform FO in the cases we have examined. Moreover, it
could explain some of the strange jumps in MC/AGQ relative D-efficiency
that were noted in Figure 1.8. Two InFO D-optimality objective functions
corresponding to two adjacent ω1 values can have optima that are arbi-
trarily better or worse than the relatively constant FO D-optimal designs,
when evaluated by MC/AGQ. This, as opposed to consistently improving
in relative performance as ω1 is increased, which was the expectation of
the originators of the algorithm.

In our investigations, we find that both FO and InFO seem to perform
poorly in the Exponential Decay models. It is possible that this is due to
these models being “highly nonlinear”, i.e., that the linearised model is
a poor approximation; if that is the case this suggests that in such cases
neither FO nor InFO is appropriate. This might motivate a search for a
third method for computing D-optimal designs. The MC/AGQ approach
we used to compute relative D-efficiencies is a natural candidate as a
third method but suffers from being extremely computationally expensive.
Hence, optimisation of the MC/AGQ D-optimality objective function may
not be feasible, especially given the fact that the function itself will be
subject to random error and the optimisation method would have to take
this into account.

1.8.1 Remark concerning scope

Our investigations are empirical in nature because we are dealing with
problems where meaningful analytical results are typically unobtainable.
In such cases, one must carefully consider the scope of one’s investigations.
By the nature of the question, the potential number of cases and variants
of the problem one might consider is infinite. However, when we are
responding to a general claim that InFO is superior to FO for “large”
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random effects, it makes sense to first establish that it holds in the simplest
possible setting. If it is found to hold in the first set of problems, a follow-
up investigation could be initiated to determine more specifically the gains
that might be derived from implementing InFO. With this in mind, we
consider this chapter an initial investigation, the purpose of which is to
examine if we can expect InFO superiority to hold in any case at all.

We make two concrete simplifications to the general problem.

Firstly, we assume that only fixed effects are estimated and that variance
components are known. The investigations we perform can all be carried
out for the case where variance components are not known and have to be
estimated. However, it would take somewhat more computational effort.

Second, for the purposes of this chapter we only treat problems in
which all individuals are allocated to the same elementary experimental
design. Hence, we do not treat cases where the notion of population design
becomes relevant. According to Theorem 7.3 of Schmelter (2007), this
restricted set of designs actually contains the optimal design if we allow
approximate designs, i.e., designs with non-integer levels of replication.
However, we restrict our search to exact designs, i.e., integer levels of
replication, in which case the D-optimal population design may contain
distinct elementary designs, cf. Example 7.4 of Schmelter (2007). It would
require more complicated plots, as well as significantly more computational
effort, to repeat these investigations under the more relaxed assumption of
(potentially) distinct elementary designs.

In Chapter 3, where my R-packages (doptim and randon) are introduced,
several examples are included where variance components are not assumed
known. The relevant expansion of the theory is also covered in Chapter 3.
Chapter 3 also includes an example of using doptim to find an “unbalanced
population D-optimal design”, i.e. a design which is D-optimal over a
set of population designs which can have different elementary designs for
different individuals.
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1.9 Further Work

Our work opens up a number of possible avenues of investigation. It
also gives a framework for initial comparison of different methods for
generating D-optimal designs.

In terms of further investigations, it would be highly desirable to develop
a more systematic approach to evaluating when models are “too nonlinear”,
especially given the severe impact of nonlinearity in the Exponential Decay
cases. In fact, some measures of curvature have been suggested in the
literature and O’Brien (2005) provides a nice overview of these. However,
we did not find an NLME version of any of these, so this is may be an
interesting area for futher development.

Investigating the feasibility of finding MC/AGQ D-optimal designs
would also be of interest, in part exactly because it might provide a remedy
for the cost of linearisation in cases when that cost is judged to be too high.
A particular case, mentioned on page 30 of Nyberg (2011), is when the
relationship between the fixed effects and the random effect is not linear,
for instance if there is a power (Box-Cox) relationship instead (Petersson
et al., 2009). In this case, the FO approximation is not appropriate.

The approach we have taken in this chapter could be replicated in
comparing other methods of FIM approximation. For instance, InFO
is introduced in Retout and Mentre (2003) as an attempt to mimic the
First Order Conditional Estimate (FOCE) method of estimation in NLME
models, as per Lindstrom and Bates (1990). But Nyberg et al. (2012) suggest
that InFO does not mimic FOCE well and propose an alternative FOCE-
mimicking FIM approximation. This alternative approximation could be
compared with FO in exactly the same manner as we have done in this
work, provided it is not too computationally expensive.

Another avenue for further work would be to compare designs by using
the actual performance of the MLE. This would be a direct way of compar-
ing different design criteria for a specific choice of model and parameter
values. A concrete place to start would be to simulate whole datasets from
the assumed model, compute the MLE for each simulated dataset and then
consider the empirical distribution of the MLE. For instance, the empirical
distribution of the empirical covariance matrix could be computed and
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this could in turn be used to estimate the volume of the distribution of the
MLE. Such a volume estimate could be used to directly compare different
designs. However, as with many of the results in this thesis, due to the
empirical nature of the simulation approach it is difficult to make more
than case-specific claims on such a basis. Still, one may use the results
as a starting point from which to form conjectures about how results
might generalise. Simulation studies of the kind described above have
been performed in many papers, though they typically use parameter-wise
performance metrics, e.g. root squared error, coefficient of variation or
related quantities. See e.g. Table 4 in Nyberg et al. (2015), Table 9 in Wang
et al. (2012) or Table 4 in Bazzoli et al. (2010).
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2.1 Introduction

What does a practical application of D-optimal design look like? For
locally D-optimal designs, the components are an NLME model, which
presumably is scientifically justified, and a parameter guess. The question
of how to pick a value for the parameter guess has so far been left open. If
we revisit the example of exponential decay as a naive model for metaboli-
sation, the metabolic rate constant (and its variation between individuals)
could be guessed either by using historical data from other experiments or
by relying on the expertise of investigators.

Once a parameter guess has been made, it is natural to be concerned
about the consequences of parameter misspecification; how much is lost if the
guess is wrong? The most popular approaches to addressing the concern
of parameter misspecification involve “robustification”; pseudo-Bayesian
D-optimal designs achieve this by putting a prior on the parameter and
integrating the objective function with respect to this prior, thus achieving
a sort of weighted objective function. This criterion has been implemented
for NLME models in the software PopED by Nyberg et al. (2012), who refer
to it as ElnD-optimality. Another way of achieving designs that are robust
to parameter misspecification is to employ maximin designs (see page 59

of Silvey (1980)). As the name suggests, maximin designs maximise the
minimal efficiency, over a chosen set of possible parameters.

Finally, in many applications, interest is not in estimation of the full
parameter, but rather in some subset of it; for instance, in the case of
dose-response curves, the parameter estimate of scientific interest is often
that of the EC50 (the dose at which 50% of the maximal effect is achieved).
An example where this parameter occurs, in the Sigmoid Emax model,
was covered in Section 1.3.3. In such cases, one can use the Ds-optimality
criterion to generate experimental designs which minimise the variance of
the corresponding subset of the MLE. In other applications, the quantity of
interest may be a function of the parameters rather than a simple subset.
For instance, the area under the curve (AUC) of a One-Compartment model
may be calculated as a measure of total exposure to the drug. For cases
such as this, the DA-optimality criterion can be used to generate designs
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that minimise the variance of the MLE plug-in estimator of the parameter
transformation of interest.

While the techniques mentioned above address their motivating practical
problems in theory, they have their own inherent problems in practice.

Pseudo-Bayesian design necessitates the elicitation of a prior and this is
highly non-trivial for an NLME model; one could use conjugate priors but
these are generally not motivated by an actual belief in the prior but rather
by mathematical convenience. An exception to this criticism would be
when there are relevant historical data available (e.g. in adaptive designs
where a sequence of experiments is conducted and it is possible to take
data from one experiment and use it to inform the design of the next one).
In the fixed effects case, work has been performed by Bornkamp (2012) to
construct priors that are “uniform in the functional space”, however, it is
not clear how to expand this to include random effects. Moreover, pseudo-
Bayesian designs with uniform priors (of any kind) and minimax designs
share the issue that undue weight may be given to cases which are highly
unlikely, potentially leading to an unacceptable rate of information loss in
practice. Some criteria try to address the problem of disproportionately
informative parameter regions. For instance, the Bias-API criterion in
Nyberg and Hooker (2012) tries to, in the words of the author, “spread
the design by forcing each sample to be responsible for a portion of the
parameter distribution”.

In addition to the problems outlined above, many robust approaches
carry a heavier computational cost that may well make optimisation unfea-
sible for even moderate numbers of parameters or time points.

As for Ds- and DA-optimal designs, it is often the case in practice
that experimental design is an iterative process whereby the statistical
formulation of the objective of the experiment only gradually becomes
apparent; if the above-mentioned robustified approaches are used, this
would almost inevitably entail a laborious process of customising code
several times in order to reflect the updated version of the objective.

The issues mentioned above highlight a need for a “middle road” ap-
proach that allows the practitioner to address the questions of parameter
misspecification and changing experimental objectives in a flexible manner,
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coupled with an intuitively meaningful way of choosing ranges of possible
parameter misspecification.

In this chapter such a workflow is proposed, together with a detailed
description as well as a step by step demonstration for the case of the
One-Compartment model.

A second purpose of this chapter is to function as a showcase for the
R-packages doptim and randon that were developed as part of this work
(see Tvermosegaard (2018a) and Tvermosegaard (2018b)). While the doptim
package allows the use of both FO and InFO (as well as pseudo-Bayesian
criteria), all results in this Chapter have been achieved using the FO
approximation, motivated by the findings in Chapter 1.

2.2 Contents of this chapter

In Section 2.3, the methodological background to the envisioned workflow
is explained in depth and local Ds- and DA-optimality are defined.

The average Proportional Marginal Sensitivity (aPMS) is introduced as a
means to developing a scale - the variance level (VL) - for the magnitude of
the variance components which makes intuitive sense to the practitioner.
Sensitivity bands help to visualise the variation in the regression function
related to a given choice of variance level.

Design graphs, as those used in Chapter 1, enable the user to assess
whether different values within the chosen range of variance levels result
in different designs. Design graphs could equally well be drawn for the
fixed effects parameters; the choice to focus on variance components is
motivated by the relatively sparse investigations that have so far been done
for this aspect of NLME models.

Efficiency profiles enable the user to assess the impact of misspecifying
the variance level (or, equivalently, the variance component), in terms of
information lost. Efficiency profiles can also be used to identify which
designs are most robust to misspecification and, lastly, they provide a
quality check on the optimisation used to generate the D-optimal designs
in the design graph.
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Section 2.4 uses the One-Compartment model as a motivating example.
The tools in Section 2.3 are used in combination to form a practically attrac-
tive workflow; it allows a focused check of design robustness to parameter
misspecification which avoids “over-compensating” for parameter uncer-
tainty as well as the “black box” aspects of robustified criteria. Local Ds-
and DA-optimality are easily implemented in this framework and require
minimal coding to apply in the packages doptim and randon developed
for this work. The resulting graphs illustrate that D-, Ds- and DA-optimal
designs can be quite different from each other. Specifically, depending
on which variance component is inflated and which parameter subset or
transformation one designs for, a misspecified variance component can
result in the loss of information in tens of percentage points and different
guesses about the variance component can yield designs that are radically
different (as was seen in Chapter 1).

In Section 2.5, design graphs and efficiency profiles are drawn for a
number of models taken from the nonlinear regression literature. These
plots allow an extensive investigation of the relative merits of ranges of
designs and this serves to illustrate the wide applicability of the proposed
workflow. It also demonstrates that the randon package makes these
investigations feasible.

2.3 Methodological Background

2.3.1 DA-optimality

Note that Ds-optimality is a special case of DA-optimality, so it suffices
to define the latter. Following O’Brien (2005), suppose interest is in φ(β),
where φ : Rp → Rs is some potentially nonlinear function and s ≤ p. Let
A = ∂φ

∂β and suppose that this s× p matrix is of full rank.

Then the DA-optimality objective function is

ψA(ξ) = log det
(
A>FIM(ξ)−1A

)
(2.1)

and so a DA-optimal design ξ∗ minimises this objective function, ξ∗ ∈
argmaxξψA(ξ). A simple delta-method argument can be employed to
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justify this objective function (see pages 49-50 of Schmelter (2007) as well
as page 385 of Rao et al. (1973)): Suppose that

β̂
as.∼ N

(
β, FIM(ξ)−1) ,

then the MLE plug-in estimator of φ(β) is also asymptotically normal

φ(β̂)
as.∼ N

(
φ(β), A>FIM(ξ)−1A

)
.

The relative quality of two designs ξ, ξ ′ can be measured by their relative
DA-efficiency. Given a transformation of interest φ : Rp → Rs, the relative
DA-efficiency of ξ to ξ ′ is

relEffA(ξ, ξ ′) = exp
(
ψA(ξ

′)− ψA(ξ)
)1/s

If ξ ′ is the DA-optimal design, the ‘relative’ is dropped and one refers to
the “DA-efficiency of ξ”.

2.3.2 average Proportional Marginal Sensitivity

Here follows a constructive argument behind the definition of the average
Proportional Marginal Sensitivity (aPMS).

The partial derivative of the regression function with respect to a sin-
gle fixed effects parameter is here referred to as the marginal sensitivity
(the derivative of the regression function with respect to the full fixed
effects parameter vector is sometimes referred to as the parameter sensi-
tivity (Atkinson, p. 251)). The marginal sensitivity can be thought of as
measuring the change in the regression function per unit change in the
parameter.

For a given NLME model, the marginal sensitivity is given by

MSi(t, ν) =
∂η

∂βi

∣∣∣∣
β=ψi(ν)

,
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where, for i, j = 1, . . . , p,

{ψi(ν)}j =

β j, for j 6= i

ν for j = i
.

That is, the marginal sensitivity of η with respect to the ith fixed effects
parameter is defined as the partial derivative of η with respect to the ith
fixed effects parameter, considered as a function of sampling time t and
the ith fixed effects parameter ν. The ith fixed effect is represented by ν

to highlight that it is not considered fixed whereas the other fixed effects
parameters are considered fixed.

In order to construct a relative measure of change in the regression
function, the marginal sensitivity is normalised with respect to the value of
the regression function, i.e., it is transformed into the point-wise percentage
change in the value of the regression function per unit change in the
parameter. This yields the proportional marginal sensitivity PMSi(t, ν) =

MSi(t, ν)/η(t, ψi(ν)). Lastly, in order to arrive at a scalar-valued measure
of change in the regression function, the proportional marginal sensitivity
is averaged over the time interval of interest [a, b], yielding the average
Proportional Marginal Sensitivity

aPMSi(ν) =
1

b− a

∫ b

a
PMSi(t, ν)dt . (2.2)

Note that [a, b] ⊆ [0, ∞) and the specific values of a and b will relate to
the context in which the NLME model is being applied. For instance, if
a reaction described by a One-Compartment model is planned to be run
for a set amount of time then a = 0 and 0 < b < ∞ will be the time where
the reaction is stopped. In other words, [a, b] will typically be the time
interval from which sampling times may be taken. The aPMS is interpreted
as a type of normalised rate of change, in the set of regression functions
{t 7→ η(t, β) : β ∈ Rp}. Its intended application is as follows:

1. Let ρ be the variance level related to βi. This value can e.g. be elicited
by asking the practitioner how much between-individual variation in
the response profile (in terms of percent deviation from the typical
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profile) is expected to be related to between-individual variation in
βi.

2. One can then plug v into the left-hand side of Equation (2.2) and solve
for ν, yielding δ. The solution δ can be interpreted as the change in βi

which results in a deviation in the regression function of magnitude
ρ, relative to the typical profile.

3. The variance of bi is set to 1
2 δ2, so that twice the standard deviation

of the random effect equals δ.

Thus, the aPMS facilitates the elicitation of guesses pertaining to the value
of the variance components by allowing the question to be framed in terms
of between-individual deviation in profile related to each parameter.

Note that the R-implementation of aPMS uses the first order approxima-
tion ∫ b

a
PMSi(t, ν)dt ' (ν− βi)

∫ b

a
PMSi(t, βi)dt ,

reducing the problem of solving for ν to

δi = (ν− βi) =
ρ

aPMSi(βi)
, (2.3)

where v is the desired variance level.

2.3.3 Design Graphs

The same definition of design graph is used here as in Subsection 1.6.1.
This chapter utilises the one-to-one correspondence between variance level
ρi and variance component ωi to draw design graphs as a function of the
variance level. In all examples in this chapter, all other parameters are kept
fixed; the fixed effects parameters are fixed at model-specific values and
the variance components are fixed at a variance level of ten percent.

2.3.4 Efficiency Profiles

Efficiency profiles are used to evaluate the robustness of designs to mis-
specification of a parameter. In the case of this chapter, the parameter in
question is the variance of the random effect used to generate the design
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graphs. For each variance level in a given design graph in Figure 2.2, the
D-efficiency of all the other designs in the design graph is evaluated and
this generates an efficiency profile. Thus one efficiency profile per design
in the design graph can be drawn.

This can be outlined mathematically. Let ψA(ρ, ξ) =

log det[AFIMFO(ρ, ξ)A>] be the chosen approximation of the DA-
optimality objective function, considered as a function of the variance level
ρ of b1 and of the elementary design ξ. Let ξ∗(ρ) denote the DA-optimal
design corresponding to ρ, i.e., ξ∗(ρ) = argmaxξψ(ρ, ξ). Then, for a given
ρ′ ∈ (0, ∞), the efficiency profile for ξ∗(ρ′) is given by the graph of the
map

v 7→ exp
[

ψA(ρ
′, ξ(ρ))− ψA(ρ

′, ξ(ρ′))

]1/s

.

In words, this graph addresses the question “if the correct guess as to
parameter values has been made for all parameters, with the exception of
ω1 (via the specification of ρ), what is the information loss from using a
DA-optimal design for a different ρ?”.

2.4 Motivating Example: One-Compartment Model

The One-Compartment model is used as a motivating example because it
appears as such in many publications dealing with optimal experimental
designs for nonlinear regression models.

In particular, note that Dokoumetzidis (2006) produced plots very similar
to the design graphs found here, using the One-Compartment model.

Therefore it is well suited as an example to demonstrate the techniques
employed in this chapter.

This example provides an idealised version of the imagined workflow:

1. A mechanistic model is chosen along with an initial parameter guess.

2. aPMS is used to draw sensitivity bands which illustrate the impact
of a chosen variance level for the random effect on the variability in
the response curve.
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3. Optimal designs are identified, either for the full fixed effects pa-
rameter vector, a sub-vector of it, or a nonlinear transformation of
it.

4. Efficiency profiles are drawn to enable assessment of the robustness of
the identified designs to misspecification in the parameter of interest,
as well as to provide a quality check on the optimisation itself.

Regression Function

The regression function for this model, and the chosen value of β can be
found in Table 2.1. Note that unless otherwise specified the values used
for ω and σ2 are chosen such that the corresponding variance levels equal
ten percent.

Sensitivity Bands

This is the first example of how sensitivity bands are constructed (a function
to generate these plots is included in the randon package). Say that the
consulting statistician is informed by the scientist client that batch-to-
batch variation in the first rate constant (exp β1) is likely to result in
approximately ten percent variation in the response profile. Note that in
eliciting this information from the scientist, the statistician must be careful
to explain that the client is meant to think in terms of average relative
variance across the entire response curve. The statistician can then solve
equation (2.3) for δ, with ρ = 0.1, in order to obtain the corresponding,
say, δβ1 , the value which, when added to β1, will result in a ten percent
deviation from the population level regression function. Sensitivity bands
are then given by evaluating the regression function η in ψ1(±δβ1) =

(β1 ± δβ1 , β2, β3)> over the full range of t ∈ (0, 4). In this case, the upper
ten percent sensitivity band is given by

t 7→ η(ψ1(−0.064), t) = η((−0.064, 1, 1)>, t) (t ∈ (0, 4))

and the lower band is given by

t 7→ η(ψ1(0.064), t) = η((0.064, 1, 1)>, t) (t ∈ (0, 4)) .
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The first plot in Figure 2.1 contains sensitivity bands for the parameter
β1. [NB: language note: sensitivity is for parameters not for random effects;
sensitivity is used to decide variance of additive random effects]. The
bands are very narrow around the regression function before the peak,
after which they widen a little and then seem to stabilise.

The second plot in Figure 2.1 contains sensitivity bands for the parameter
β2 and illustrates that sensitivity bands do not necessarily contain the
original profile. Moreover, the time of the maximum response clearly
depends on the value of β2 and the ’flatter’ band appears to be almost
concave. In the first plot, all qualitative aspects of the profile remained the
same for all variance levels.

This also serves as an occasion to make a cautionary statement regarding
the use of variance levels; if we contrast with the case where we varied β1,
the variation in the second plot arguably looks larger, even though the same
variance levels were used. This can be explained by a number of factors;
for one, small (or large) function values can dominate the averaging step in
aPMS, making bands seem counter-intuitively narrow (or wide). Further,
there is a first order approximation (i.e., linearisation) step involved in the
implemented version of aPMS which will induce some error. Thus, there
is a limit to the direct interpretability of ’variance level’. A wise user will
therefore always draw sensitivity bands such as these in order to visually
assess the impact of the chosen level of variance.

The third plot in Figure 2.1 contains sensitivity bands for the parameter
β3. Given that varying β3 essentially corresponds to scaling the regression
function
(as exp(−β3) enters linearly into the regression function), one could have
predicted these sensitivity bands.

Design Graphs

In Figure 2.2, design graphs for the One-Compartment model are presented.
As a guide to reading these plots, consider the left-hand panel: Here, the
variance of the random effect on β2 and β3, as well as the variance of
the error term, are all set such that the corresponding variance level is
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ten percent. The variance of the random effect on β1 is set such that the
variance level equals the value on the x-axis.

Thus, for each value on the x-axis, the full parameter vector for the
model is specified. The D-optimal design for β can then be computed. The
values (in time units) of the design points are given by the y-axis, with
replication level indicated by the colour of the points.

So the interpretation of the left-hand panel in Figure 2.2 is that the
D-optimal design is fairly stable for variance levels of b1 between ten
percent and a little more than twenty percent, with three distinct design
points where the first design point is replicated once in the design and
the two other design points are replicated twice. For variance levels of
b1 between twenty and forty-five percent, the designs have four distinct
design points, with the second earliest time being replicated twice and the
remaining three times being replicated once. Lastly, for variance levels
between forty-five and fifty percent, the replication structure (using the
notation from Subsection 1.1.2) shifts from r = (1, 2, 1, 1) to r = (1, 1, 1, 2),
while the design points themselves remain almost unchanged (there is a
slight discontinuous jump for the last two times, but it appears small in
the plot).

This example thus nicely demonstrates three behaviours that are not
uncommon with design graphs: bifurcation, replication shifts and disconti-
nuities.

The other two panels in Figure 2.2, where the variance level is increased
for ω2 and ω3 respectively, suggest that the D-optimal design is (almost) the
same for all of the corresponding parameter choices. This is unsurprising
in the case of ω3 because β3 (and b3) enters linearly into the regression
function; in the case of ordinary nonlinear regression it holds that for
partially linear models, the value of the linear parameter does not influence
the D-optimal design (see Khuri (1984)). Therefore, it is not surprising if
similar behaviour manifests here.

For ω2 it is interesting to note that even though β2 enters into the regres-
sion function in a way which is quite similar to β1, the D-optimal design
does not seem to be impacted by the variance level of ω2. Considering
the sensitivity bands in Figure 2.1, one might have expected the reverse
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result, i.e., that the D-optimal design depends a lot on ω2 and not very
much on the variance on ω1. This serves as a demonstration of one of
the motivations for using D-optimal designs: intuition is a poor guide in
assessing the relationship between parameter values and their estimators.

Once design graphs for the cases of interest have been computed, it is
a good idea to check the robustness of the designs to misspecification of
the parameters; one of the weaknesses of D-optimal designs for nonlinear
models is that they depend on the parameter.

Efficiency Profiles

Figure 2.3 is the efficiency profile for the design in the left-hand panel of
Figure 2.2, where ρ = 30%. Per construction, the efficiency of that design,
indicated by the vertical dashed line in Figure 2.3, is 100%. The designs
in the left-hand panel of Figure 2.2 which have the same form, i.e., which
belong to the bifurcation with four distinct sampling times and replication
structure r = (1, 2, 1, 1), have efficiencies that are very close to 100%. The
designs before the bifurcation, i.e., corresponding to the lowest variance
levels, all have efficiency over 99%. Lastly, the designs that correspond to
the highest variance levels, i.e., after the (discontinuous) replication shift,
cause a sharp decrease in the efficiency although it still remains above 97%.
Overall, the conclusion from this plot is that the efficiency profile indicates
that if the true variance level is 30%, then all of the generated D-optimal
designs are highly informative, i.e., misspecification of ρ is unproblematic.

Every design in a design graph can be used to generate an efficiency
profile. In the first row of plots in Figure 2.4, all the efficiency profiles for
the designs in the left-hand panel of Figure 2.2 have been plotted. They
have been bundled together, for ease of visualisation, so that each panel
contains several efficiency profiles.

Taken together, the profiles reveal which designs result in the highest
minimal efficiency. A second use of efficiency profiles is as a quality check
of the optimisation; if any efficiency profile contains values over 100%, it
may be concluded that the design which was used to generate the efficiency
profile in question is not optimal, i.e., the optimisation failed.
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Figure 2.3: D-efficiency of designs in the left-hand panel of Figure 2.2 when
the true variance level is 30 %. The x-axis is the variance level used to generate
the design under consideration; this design can be identified by looking up the
design for the same variance level in the left-hand panel of Figure 2.2. The y-axis
is the D-efficiency of the design under consideration. The dashed line goes through
ρ = 30%, i.e., the true variance level.

With this in mind, the considered profiles yield the following conclusions:
unsurprisingly, the worst cases of misspecification lead to the highest loss
of information; if the true variance level is low (left-most panel) and a
design corresponding to the highest variance levels is used, the information
loss is about 10%. If the variance level is truly high (right-most panel) and a
low-variance design is used, the information loss is of a similar magnitude.

The right-most panel contains efficiency profiles with efficiencies over
100%. This implies that when the true variance level is above approximately
40%, the designs with the shifted replication structure r = (1, 1, 1, 2) have
a higher value by the objective function than the design yielded by the
optimisation and which is included as the D-optimal design in the design
graph. This indicates that the optimisation procedure has trouble locating
the appropriate region of the design space in terms of replication structure.
The shifted designs are only evaluated as less than 2% more efficient
however, so the cost in terms of obtaining maximal information is small.
Also, with the knowledge provided by these efficiency profiles, the user
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Figure 2.4: Efficiency profiles for the designs in Figure 2.2. The x-axis gives the
variance level for the random effect mentioned in the caption of the relevant panel
of Figure 2.2. The y-axis gives the D-efficiency of all the designs in the design
graph mentioned in the sub-caption, relative to the D-optimal design for the true
variance level. The dashed lines go through the variance levels which are used as
the true variance levels for the plot.
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can resort to the more efficient designs that the optimisation procedure
failed to identify at the relevant variance level.

Rows two and three of Figure 2.4 are unsurprising in light of the near
constant design graphs to which they correspond. The range of efficiency is
between 99.9% and 100%, implying that any difference between the designs
is negligible. While the almost imperceptible difference in the designs for
the lowest variance levels does cause a corresponding non-constant set of
efficiency profiles, there are no features of practical interest in these plots.

Design graphs for Ds-optimal designs

As mentioned in subsection 2.3.1, interest may be in estimating a subset of
the parameter, or a transformation of the parameter. For such cases, the
DA-optimality objective function has been implemented in randon which
allows the user to produce design graphs and efficiency profiles just as in
the previous section where D-optimal designs for the full parameter vector
β were identified.

In Figure 2.5, design graphs are plotted of Ds-optimal designs for the
One-Compartment model. There is a column of plots per subset of size
two of β, i.e., the first column contains Ds-optimal designs for (β1, β2)>,
the second for (β1, β3)> and the third for (β2, β3)>. In each row of plots, a
different variance component is varied to generate the design graph, in the
first row, ω1 is varied, in the second ω2 and in the third it is ω3.

Similarly to Figure 2.2, the design graphs of Ds-optimal designs in Figure
2.5 are almost constant for variance components ω2 and ω3. This is with
exception of the design graph for varying ω2 and s = (β1, β3)>, i.e., the
design graph in the second row and second column of plots. In fact, this
design graph resembles a horizontal translation of the design graph for
varying ω1 and same s. As previously mentioned, β1 and β2 appear almost
symmetrically in η so it is tempting conjecture that varying ω1 and varying
ω2 give rise to the same set of design graphs, up to a horizontal translation.

When ω1 is varied, i.e., for the first row of design graphs, the choice of s
clearly impacts the qualitative characteristics of the design graph. For the
different choices of s, not one design is repeated between columns, nor do
any two design graphs even contain the same replication structure. For
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varying ω1 and s = (β1, β2)>, the replication structures in the design graph
are r = (2, 1, 2) and r = (2, 1, 1, 1). For varying ω1 and s = (β1, β3)>, the
replication structures in the design graph are r = (1, 2, 2) and r = (1, 1, 1, 2).
For varying ω1 and s = (β2, β3)>, the replication structures in the design
graph are r = (3, 1, 1), r = (1, 2, 2) and r = (1, 2, 1, 1).

It can be concluded that Ds-optimal designs for this model differ sub-
stantially depending on the subset of interest s, and that sensitivity of
the Ds-optimal design to different variance components ranges from high
(in the case of ω1), to low (in the case of ω2), to negligible (in the case of
ω3). Lastly, it is consistently the case that the number of sampling points
increases (weakly) with the magnitude of the variance component. It is
again noted that for the parameter with the “least interesting” looking
sensitivity bands, namely β1, the corresponding variance component, ω1,
yields the “most interesting” looking design graphs.

Efficiency profiles for Ds-optimal designs

As before, efficiency profiles can be drawn for the design graphs presented
in Figure 2.5. These are presented in Figure 2.6, this time with all profiles
for each design graph contained in one plot per design graph. The plot in
the first row, third column, i.e., for varied ω1 and s = (β2, β3) clearly indi-
cates that the optimisation failed for the lower variance level because they
contain efficiency values above one. It is clearly preferable to use designs
corresponding to higher variance levels. A more thorough optimisation
could be employed but it is likely to yield designs very similar to the ones
with r = (1, 2, 2) directly to the right of the sub-optimal ones in the design
graph.

Secondly, the plots reveal that when ω1 is varied, the designs that are
most robust to misspecification of ω1 are near the middle of the design
graph, i.e., corresponding to the variance levels where all efficiency profiles
are relatively close to one (where there is a “peak” in the space under the
efficiency profiles). Beyond these observations, there is little of interest to
note in the efficiency profiles, especially given the near constant design
graphs the other profiles correspond to.
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Figure 2.5: Design graphs for Ds-optimal designs for the One-Compartment
model. The x-axis gives the variance level in percent, for the random effect
mentioned in the title of the respective panels. The y-axis gives the design points
in the corresponding Ds-optimal design, with the colour of the individual point
indicating how many times the design point is replicated. The subset of the
parameter for which the Ds-optimal design is optimal is given by the top panels.
The variance parameter ωj which is varied in order to generate the design graph is
given on the side panels.
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Figure 2.6: Efficiency profiles for the Ds-optimal designs in Figure 2.5. The
x-axis is the variance level used to generate the design under consideration; this
design can be identified by looking up the design for the same variance level in
Figure 2.5. The y-axis is the Ds-efficiency of the design under consideration, when
the true variance level is as indicated by the colour of the line. Each line is a plot
of the Ds-efficiency of all the designs in the corresponding design graph, under the
assumption that a particular variance level (indicated by the colour of the line) for
a particular variance component (indicated by the side panel) is true. Variance
components that are not varied are kept at a variance level of ten percent.



2.4 motivating example : one-compartment model 97

Design graphs and Efficiency Profiles for DA-optimal designs

Transformations of interest for the One-Compartment model include the
Area Under the Curve (AUC) and the time to maximum concentration (tmax).
Both of these quantities admit explicit expressions and it can be shown
that they are respectively given by

AUC =
eβ2−β3

eβ2 − eβ1

(
e−β1 − e−β2

)
(2.4)

and
tmax =

β1 − β2

eβ1 − eβ2
. (2.5)

DA-optimal designs for AUC, tmax and for the vector (AUC, tmax) are
presented in Figure 2.7 and efficiency profiles are presented in Figure 2.8.

The design graph for AUC has only two distinct sampling times in the
first design, with replication structure r = (1, 4). In nonlinear regression
without fixed effects, this would usually imply that the fixed effects param-
eter β cannot be estimated (since the model under consideration has three
fixed effects parameters) and so it must be assumed that the same thing
holds for NLME models, at least in the case where only one individual is
sampled. This behaviour is not exceptional; in (O’Brien, 2005), the author
found several DA- and Ds-optimal designs for nonlinear regression models
that make estimation of β impossible.

The design graph for tmax is somewhat noisy-looking. It suggests that
there are several local optima with different replication structures, but
quite similar sampling times, that are hard for the optimisation algorithm
to distinguish between. Specifically, the graph seems to vacillate between
the three replication structures r = (3, 1, 1), r = (2, 2, 1) and r = (1, 3, 1)
before settling on the second one.

For variance levels below thirty percent, the design graph for the vec-
tor (AUC, tmax) looks similar to the design graph for tmax, albeit with a
different replication structure. However, it resembles the design graph
for AUC in that at approximately thirty percent variance level, there is
a discontinuous bifurcation, which adds a sampling time near the upper
bound of the time interval.
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The three efficiency profile plots in Figure 2.8 each exhibit their own
interesting behaviour. In the case of AUC, the profiles suggest that mis-
specification of the variance level is more serious if one wrongly specifies a
low variance level than if one wrongly specifies a high variance level; all
designs generated for variance levels of twenty percent and above have
efficiencies of more than 97 % regardless of the true variance level whereas
the designs for the lowest variance levels risk up to twenty percent loss
of efficiency in the most extreme cases. In Strömberg et al. (2016) it was
hypothesised that D-optimal designs with more support points and less
clustering would be more robust to parameter misspecification and this
finding agrees with that hypothesis. The efficiency profiles for designs
of about thirty percent and above all have values higher than one for the
designs immediately before the discontinuous bifurcation and replication
shift in the design graph. This means the optimisation failed to distinguish
between the replication structures. However, the loss in efficiency appears
small.

The efficiency profiles for tmax reflect the vacillation of the design graph
between the three different replication structures. They also clearly reveal
that the replication structure r = (2, 2, 1) is in fact best for all variance
levels. Thus, it is tempting to suggest a follow-up optimisation constrained
to this replication structure, but it is worth noting that the efficiency gain
seems likely to be small given the relatively consistent sampling times in
the design graph.

The efficiency profiles for (AUC, tmax) display a new behaviour whereby
the variance level can be clearly partitioned into two regions (above or
below approximately thirty percent) and the crucial step is to specify which
of these regions of variance one believes to be correct. If a design for a
variance level below thirty percent is chosen and the true variance level is
in fact below thirty percent, it makes a negligible difference which of the
relevant designs in the design graph is chosen. However, if the true variance
level is above thirty percent the cost in efficiency can be more than five
percent. This behaviour is mirrored if a design for a variance level above
thirty percent is chosen, and carries an efficiency cost of misspecifying the
region of up to ten percent.
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Figure 2.7: Design graphs for DA-optimal designs for the One-Compartment
model. The left-hand panel contains DA-optimal designs for the AUC, the middle
panel contains DA-optimal designs for tmax and the right-hand panel contains
DA-optimal designs for the vector (AUC, tmax). The x-axis gives the variance
level in percent for ω1, the variance parameter which is inflated. The y-axis gives
the design points in the corresponding DA-optimal design, with the colour of the
individual point indicating how many times the design point is replicated.

As before, the number of distinct sampling times increases with the
magnitude of ω1.
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Figure 2.8: Efficiency profiles for the designs in Figure 2.7. The x-axis is the
variance level used to generate the design under consideration; this design can
be identified by looking up the design for the same variance level in Figure 2.7.
The y-axis is the DA-efficiency of the design under consideration, when the true
variance level is as indicated by the colour of the line. Each line is a plot of the
DA-efficiency of all the designs in the corresponding design graph, under the
assumption that a particular variance level (indicated by the colour of the line) for
a particular variance component (indicated by the side panel) is true. Variance
components that are not varied are kept at a variance level of ten percent.
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2.5 Other Models

The One-Compartment model is popular as a motivating example, but the
workflow suggested in Section 2.1 must be seen to be applicable to other
models.

In the preceding sections it is demonstrated that D-, Ds- and DA-optimal
designs can be found for the One-Compartment model and that the rele-
vant design graphs can be very different in terms of sampling times and
replication structure. Moreover, efficiency profiles are used both to check
the success of the optimisation and to assess the robustness of designs to
misspecification of the variance components. In this section, these methods
are applied to the models used in Chapter 1 as well as models drawn from
Kitsos and Kolovos (2013), a review article which summarises D-optimal
designs for a wide range of nonlinear regression models. Furthermore,
to illustrate the application of these methods when real data is involved,
nonlinear regression models have been fitted to data sets from Appendix
A of Bates and Watts (1988), with the models suggested in the appendix
itself. Note that all of these examples are based on nonlinear regression
without random effects; the variance components are all based on a choice
of variance level (ten percent), with no prior estimates or guesses available.

The specifications of the full set of models investigated in this chapter can
be found in Table 2.1. Here follows short descriptions of their respective
origins (except for those already seen in Chapter 1).

Kitsos (2013), example (25): This model describes the adsorption of gas
molecules on a solid surface via so-called Brunauer-Emmett-Teller theory,
which provides a mechanistic description of multilayer adsorption.

Kitsos (2013), example (28): This model describes a reaction network of
three irreversible first-order parallel reactions; it is effectively a compart-
mental model, similar to the One-Compartment model, but the compart-
mental scheme is different, leading to a different solution to the corre-
sponding set of differential equations.

Bates and Watts (1988), A1.3: This model utilises a simple form of the
classic Michaelis-Menten equation to describe the velocity of an enzymatic
reaction, in this instance represented by counts per minute of a radioactive
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product as a function of the substrate concentration. Responses were
measured with and without the addition of a treatment, Purmoycin, to the
enzyme. The fitted values are obtained from a fit which only considers the
treated group.

Bates and Watts (1988), A1.4: This model is used to describe the decline
over time in biochemical oxygen demand in stream water. The regression
function is a variant of exponential decay.

Bates and Watts (1988), A1.12: This model was used to describe nitrite
utilisation in bush beans as a function of light intensity. The regression
function belongs to the class of rational polynomial models. According
to page 85 of Piegorsch and Bailer (2005) this model can be thought of as
an extension of the Micahaelis-Menten model, where the addition of the
quadratic term in the denominator " ...allows the mean reaction velocity to
rise to a true maximum and then drop".

Bates and Watts (1988), A1.14: This model was used to describe the
metabolism of a compound called tetracycline (see page 281 of Bates and
Watts (1988)). The regression function solves a set of first order differential
equations which provides a mechanistic description of metabolisation;
more specifically, it is a 2-compartment model with an extra parameter (β4)
to allow for so-called “dead time”.

2.5.1 Results

Figures 2.9 to 2.26 contain design graphs and efficiency profiles for the
models in Table 2.1, for all possible Ds-optimal designs. One exception
is the model from Appendix A1.14 of Bates and Watts (1988) where only
two of the 60 possible cases have been presented. Many of the design
graphs are essentially constant, meaning the magnitude of the variance
component does not change which design is Ds-optimal. In most of
these cases, the corresponding efficiency profiles indicate that the range
of possible efficiencies is extremely narrow around 100%. One exception
to this is the Sigmoid Emax model for γ = 1, for s = (β2) and varying
ω2; the efficiency profiles in Figure 2.20 indicate that the range of possible
efficiencies varies from a width of about ten percent to a width of about
two percent, depending on the design chosen.
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The two most common ways for the design graphs to diverge from
being constant is by a change in replication structure which approximately
retains the sampling times or by bifurcation. In some cases, the change
in replication structure does not look stable; for instance in several of the
design graphs for the Sigmoid Emax (γ = 5) model in Figure 2.23, there
seems to be a sort of wavering between replication structures. This could
be due to numerical properties of the problem, for instance a very flat
objective function. Identifying the replication structure which is best is
quite easy to do from the efficiency profiles in Figure 2.24; for instance,
when s = (β2) and ω1 is inflated, the replication structure r = (2, 2, 1) is
superior - all profiles are either at or above 100% efficiency for the designs
with this replication structure. The replication structure r = (2, 1, 2) also
has efficiency profiles which contain values above 100% but those profiles
are even higher for designs with r = (2, 2, 1) (which can also be seen by
the fact that the efficiency profiles for the corresponding variance levels are
below 100% for the designs with r = (2, 1, 2)). A similar conclusion can be
drawn when s = (β2) and ω2 is inflated or when s = (β1, β2) and ω1 is
inflated; again, visual inspection of the efficiency profiles reveal that the
replication structure r = (2, 2, 1) is superior.

By far the most serious cases of efficiency loss, in the magnitudes of
tens of percent, happen in the cases where the design graph suddenly
adds a sampling time; the designs with fewer design points rapidly lose
efficiency as the variance level is increased. This is seen for the models
from Appendix A1.3 and A1.4 of Bates and Watts (1988), the model from
example (25) of Kitsos and Kolovos (2013) and for the Sigmoid Emax model
with γ = 3 as well as for γ = 5.

There are at least three cases where a sampling time is clearly dropped
for a sub-interval of the investigated variance levels, as the variance level
is increased. These are

• The model from Appendix A1.3 of Bates and Watts (1988), when
s = (β2) and ω2 is varied.

• The model from Appendix A1.4 of Bates and Watts (1988) when
s = (β1, β2) and ω2 is varied. The case when s = (β2) and ω2 is
varied could arguably also be included.
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• The model from example (25) of Kitsos and Kolovos (2013), when
s = (β2) and ω2 is varied.

For all of these cases, the efficiency profiles indicate that the designs with
more sampling times are (much) more robust than the optimal design. As
noted, this corresponds well with the work of Strömberg et al. (2016). Also
for all of these cases, there are efficiency profiles with values above 100 %,
indicating a failed optimisation.

The last model examined is the one from Appendix A1.14 of Bates and
Watts (1988); two of the more interesting design graphs are presented
in Figure 2.27. As opposed to the other designs which were all for five-
point designs, the design size is here increased to eight. The resulting
design graphs combine several of the behaviours seen for other models:
discontinuous shifts, adding and dropping sampling times and a subset of
sampling times that is close to being approximately constant (visually) for
all variance levels. However, the efficiency profiles in Figure 2.28 indicate
that in the case where s = (β4) and ω4 is varied, the maximum possible
efficiency loss from using a Ds-optimal design corresponding to the wrong
variance level is about 1%. For the other case, where s = (β2, β3) and ω3 is
varied, the efficiency profiles form a pattern that is surprisingly similar to
those one can see in the case where the design graph is nearly constant,
and the design graph is clearly not constant. However, relative to the cases
where the design graph is constant, the range of possible efficiencies is
fairly wide; moreover, the profiles clearly suggest that the most robust
design is for a variance level of about 18%.
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2.6 Discussion

The results described above demonstrate that several different characteris-
tics of practical interest can be uncovered about the optimal design through
the suggested methodology: if the design graph is essentially constant
(and the corresponding efficiency profiles cluster around 100%), one can
rest easy about misspecifying the variance level. For a non-constant design
graph, one can use efficiency profiles to check robustness of the designs and
possibly pick alternative designs that are more robust or that are acceptably
robust and more practically feasible. In cases where the optimisation has
failed, in particular when there are two competing replication structures
that are hard for the optimisation algorithm to distinguish, the efficiency
profiles provide a check of optimality. If the efficiency profiles indicate that
slightly different designs have surprisingly different efficiencies, one may
conclude that either great control must be exercised when the experiment
is conducted or some sort of robustified approach may have to be sought.

Moreover, considering different parameter subsets per default, creates
a foundation for deciding whether some parameter subsets are more
important to estimate than others. For instance, if the D-optimal design
has design graphs which contain very different designs and the efficiency
profiles do not reveal any of those designs to be particularly robust, then it
becomes all the more interesting if it turns out that the parameter subset of
primary interest does in fact have easily identifiable and acceptably robust
designs associated with them. Note that this aspect of the workflow relies
on designs being relatively cheap to compute.

Currently, there’s a range of vulnerabilities in the implementation of
the suggested workflow, from the quality of the FO approximation to
the reliability of the optimisation algorithm. As was seen in Chapter 1

in the case of exponential decay, the FO approximation can fail, with
the suggested possible cause being a high degree of nonlinearity of the
model. It is hard to envision a FIM approximation which does not entail
linearisation and is simultaneously as computationally cheap as FO, so
in case FO fails the suggested workflow might have to be abandoned (or
allowed a much larger computational budget).
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A warning is also warranted when it comes to using aPMS and variance
levels to specify the variance component. It allows specification to be done
easily, but by that same token it can also be done too easily; it is all too
simple to copy a basis variance level from a reference in the literature
(this Chapter for instance) and then draw design graphs and efficiency
profiles without questioning whether one is looking at the right ranges or
starting from the right basis. This can of course be alleviated if one has
access to prior information in the form of, say, historical data or knowledge
specific to the parameters (for instance, chemical engineers might have a
reasonable a priori idea of activation energies in reaction kinetics as well
as their typical variability between reactions).

Problems with the optimisation algorithm were also seen in Chapter
1 but the prevalence of this problem has been confirmed in this chapter;
several design graphs and efficiency profiles indicated problems with dis-
tinguishing between local optima. It is not trivial to prescribe a general
solution to this problem; a naive approach is to increase the computational
budget (population size, number of iterations) given to the global optimi-
sation problem. Alternatively one could investigate whether the objective
functions (or special cases) have attractive properties that can be used to
pick a more specialised algorithm; for instance, the FO objective function is
almost certainly smooth - this makes it a candidate for a global optimiser
for smooth functions, such as the convex relaxation regression suggested by
Azar et al. (2016). Lastly, the investigations in this chapter suggest certain
heuristics might be worthwhile; for instance, since the largest efficiency
losses due to optimisation failure are associated with a failure to identify
the correct replication structure, one could consider simply optimising
different versions of the objective function, each restricted to a particular
replication structure. However, this would in all likelihood require a man-
ageable (short) list of candidate replication structures in order to be feasible.
In cases where two “competing” replication structures are discovered, the
sampling times are often roughly identical, so one could simply fix those
and then optimise over the replication structure. Also, since certain designs
have fewer design points than there are unknown parameters in the model,
this suggests a restriction (to designs of size greater than or equal to p)
of the set over which one optimises is desirable. Suggestions that reflect
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practical constraints include sampling windows (i.e., relax the requirement
that sampling times be exact) or imposing a minimum amount of time
between samples, reflecting the fact that often simultaneous sample-taking
is not realistic. A final point against this method is that design graphs
are constructed by varying one parameter at a time; thus, the impact of
varying several parameters at a time is not investigated. In this regard,
most robustified optimality criteria are superior, in that the criteria usually
entail optimisation over the joint distribution (or set) of the parameters.

We have discussed failed optimisation, but another kind of failure is that
the FO approximation is simply a poor one and in particular, its minimum
is far from the minimum of the true objective function. This was seen in
the Exponential Decay models in Chapter 1. When this is the case, both
design graphs and efficiency profiles may be highly misleading and it may
not be possible to detect any problems with the figures themselves. Thus,
if it is suspected that the FO approximation may be inappropriate, a user
could replicate the sanity check in Figure 1.3. That is, use MC/AGQ to
compute an FIM approximation, both for the FO D-optimal design as well
as for a simulated set of random designs and then check the MC/AGQ
D-optimality objective function value of the FO D-optimal design against
those of the random designs. If the FO approximation is any good, then
the FO generated design should be superior to all the random designs.

Another limitation of our investigations in this chapter is that while the
problem of singular designs (which contain fewer sampling times than
parameters to be estimated) is encountered in, e.g., the DA-optimal design
for the AUC in the One-Compartment model, we do not propose solutions.
A related problem is sparse designs, which are population designs where
different individuals may be allocated to different elementary designs but
some or all elementary designs are restricted to contain fewer sampling
times than the number of parameters to be estimated. However, it will
be seen in Chapter 3 that the doptim package which is a part of this work
at least theoretically allows the user to address such problems. Because
the D-optimality objective function is made available to the user, she can
optimise it over a restricted set which forces a minimal number of distinct
sampling times. This would be one (potentially naive) way of avoiding
singular designs. As for sparse designs, doptim should theoretically allow
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the user to generate the relevant D-optimality objective function, though
the closest example treated in Chapter 3 is an unbalanced population D-
optimal design. This has the first feature of sparse designs in that it allows
different individuals to be allocated to different elementary designs but the
number of distinct sampling times for a given individual is not restricted
to be less than the number of parameters to be estimated.

In summary, the conclusion of this chapter is that the proposed work-
flow is feasible and yields useful conclusions with important practical
implications.
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3.1 Introduction to new R-packages doptim and
randon

In this chapter the new R-packages doptim and randon are introduced and
described. The doptim package is for generating objective functions for
user-specified problems and the randon package is a wrapper for doptim
which enables the creation of design graphs and efficiency profiles. In the
sections below, code examples are provided in which doptim is used to
solve a series of problems of increasing complexity, starting from a simple
linear model and ending with a One-Compartment model. Code using
randon to reproduce some of the figures in chapter 2 will also be provided
and explained.

The randon package is intended to encapsulate the “middle road”
workflow described in the introduction to Chapter 2. By writing a min-
imal amount of code, intuitively accessible graphs (design graphs and
efficiency profiles) are generated. These should allow a practitioner to
explore how knowledge (and uncertainty) concerning parameters trans-
lates into different experimental designs and different exposures to risk
of inefficiency of those designs. The randon package also implements the
computation of aPMS which is used per default to provide solutions where
variance is investigated as “variance level”, as discussed in the previous
chapter. That is, the first axis of design graphs and efficiency profiles
generated using randon is “variance level” (variance magnitude viewed
as average perturbation in profile caused by the relevant random effect,
proportional to the magnitude of the typical profile). All of the design
graphs and efficiency profiles in Chapter 2 were generated using randon.

The new R-packages can solve problems not treated in previous chap-
ters. The doptim package is the “computational core” of this work. The
genObjFun in doptim can be used to generate objective functions for prob-
lems like those in previous chapters. For users who want a finer level of
control, genObjFun can also be used to address the following additional
problems:

• Creating objective functions for the case where interest is in estimat-
ing variance components
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• Generating so-called composite objective functions (reflecting a
weighted interest in estimating variance components and fixed effects,
see Wang et al. (2012))

• Allowing different elementary designs for different individuals in a
population experimental design

All the use-cases described above will be illustrated in the sections below.

It is easy to generate objective functions with doptim. The genObjFun
function is used as follows:

• The user specifies an NLME model and a (vector of) desired size(s)
of the elementary design(s) to which individuals are to be allocated.
This is easiest to do using a list of arguments, which can be amended
as the problem is redefined or expanded

• The arguments are supplied to genObjFun. This generates an objec-
tive function

• The objective function is optimised using an appropriate optimiser
available in R, e.g., nlminb

The user must make choices regarding FIM approximation and the
type of criterion being employed. The user can choose between

• First Order (FO) and Integrated First Order (InFO) D-optimality.
Definitions can be found on page 41 and page 41, respectively.

• Using reduced and full FIM (see below)

• Returning log[det(FIM)] or the whole FIM. This is of interest when
singular FIMs occur or when custom objective functions are desired.

• D- or DA-optimality, i.e., the user can specify a function of θ as the
parameter of interest (see pages 39 and 80 for formal definitions)

• Local or pseudo-Bayesian D-optimality (see below)

Among the features mentioned above, we have yet to explain what is
meant by “reduced FIM” and “pseduo-Bayesian D-optimality”.

3.1.1 “Reduced FIM”

In Section 1.2.1, the FIM approximation from Retout and Mentre (2003) was
given, for the fixed effects part of the FIM (i.e., the sub-matrix involving
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derivatives with respect to entries of β). In the same paper, they in fact
give an approximation for the FIM in the case where all of θ = (β, ω, σ2) is
unknown, i.e., fixed effects, variance components and the residual variance
all need to be estimated. In this case, the linearised model has FIM

FIMlin(b̄) =
n

∑
i=1

 Ai(E, V) Ci(E, V)

C>i (E, V) Bi(E, V)


Here, with E and V as in Section 1.2.1, the blocks are given by

(
Ai(E, V)

)
kl =

∂E>i
∂βk

V−1
i

∂Ei

∂βl
+

1
2

trace
(

∂Vi

∂βl
V−1

i
∂Vi

∂βk
V−1

i

)
for k, l = 1, . . . , p

(
Bi(E, V)

)
kl = trace

(
∂Vi

∂ωk
V−1

i
∂Vi

∂ωl
V−1

i

)
for k, l = 1, . . . , p + 1

(
Ci(E, V)

)
kl = trace

(
∂Vi

∂ωk
V−1

i
∂Vi

∂βl
V−1

i

)
for k = 1, . . . , p + 1 and l = 1, . . . , p

where we use the convention that ωp+1 = σ2, for notational convenience.
Following Nyberg et al. (2012), one can assume “independence between β

and Vi”, for computational simplicity. Mathematically, this means assuming
∂Vi
∂βk

= 0 for k = 1, . . . , p. Then the approximation above simplifies to

FIMlin(b̄) =
n

∑
i=1

 A∗i (E, V) 0

0 Bi(E, V)

 ,

where the trace term has been dropped from the fixed effects part of the
matrix, i.e.,

(
A∗i (E, V)

)
kl =

∂E>i
∂βk

V−1
i

∂Ei

∂βl
for k, l = 1, . . . , p

If the boolean argument reduced is set to TRUE in genObjFun, the approx-
imation described above will be used, in place of the “full FIM”. Note that
all results in Chapters 1 and 2 were produced using reduced=FALSE.

The next sections can be considered to constitute a beginner’s guide to
using doptim.
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3.2 Example: Linear Regression with random
intercept and slope

This example covers the basic usage of the genObjFun function in the
doptim package, namely to generate a D-optimality objective function for
a user-specified NLME model. In this case, the model is a simple linear
regression with random effects.

For this model, η is of the form

η(β, t) = β1 + β1t = (β1 + β2)

(
1
t

)
,

with t ∈ [a, b] for a fixed choice of a, b > 0 with a < b. Since η is linear in
β this will technically lead to an LME model, which is not representative
of the models this thesis is otherwise concerned with. However, an LME
model is merely a special case of an NLME model (recall, η is allowed but
not required to be nonlinear in β).

One reason to consider such a simple model to begin with is that it is
one of the few cases where explicit results regarding D-optimal designs are
available. In the fixed effects case, and with an even number of samples,
it is known (see e.g. page 70 of Atkinson et al. (2007)) that the D-optimal
design assigns half of the samples to t = a and the other half of the samples
to t = b. Therefore, it might be expected that when ω1 and ω2 are both
small , the D-optimal design for estimating β will be of a similar form.

The linear mixed effects model has two more features which enable a
direct sanity check of the code. First, the FIM admits an explicit expression
(Wand, 2007). Second, the FO approximation is exact. Therefore, we can
compute the FIM both ways and check that the results agree.

The parameters of the model are assumed to be

β = (3, 5) Ω = diag{.1, .1} σ2 = 0.252 ,

and the first task is to find a Dβ-optimal design for a single individual
(N = 1) for whom six samples are taken (k = 6) in the time interval [0, 10].

To generate the Dβ-optimality objective function run the following R-
code:
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1 objFun <- genObjFun(

2 eta = expression(

3 (beta1 + b1) + (beta2+b2) * t

4 ),

5 Ebeta = c(0, 1),

6 Vb = c(Vb1 = 1, Vb2 = 1)/10,

7 Veps = .25^2,

8 phi = "fixed",

9 desvarNames = "t",

10 noSamples = c(6)

11 )

The arguments to genObjFun clearly specify the model described above
as well as some aspects of the design problem. Setting phi = "fixed" indicates
that the objective function is based on the Dβ-optimality criterion. Setting
noSamples = c(6) indicates that the objective function expects designs with
six sampling times, for a single individual.

The objective function can now be evaluated in a design of the user’s
choice, provided it is of the correct length:

1 Xi0 <- c(1, 2, 4, 6, 8, 10)

2 objFun(Xi0)

# returns #

[1] -4.276033

One aspect of the design problem which is not specified above is the
experimental region, i.e., that [a, b] = [0, 10]. That is addressed in the opti-
misation step where the user is free to employ any optimisation algorithm
they deem appropriate. Given that this is a bounded optimisation problem,
the nlminb function (available in the pre-loaded package stats) can be used:

1 nlminb(

2 start = Xi0,

3 objective = objFun,

4 lower = 0,
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5 upper = 10

6 )

# returns #

$‘par‘

[1] 0 0 0 0 0 10

$objective

[1] -4.480053

$convergence

[1] 0

$iterations

[1] 20

$evaluations

function gradient

20 121

$message

[1] "both X-convergence and relative convergence (5)"

The list of outputs from nlminb includes ‘par‘ which is the optimum
identified by the algorithm. In this case, the optimum identified by the
algorithm is different from the theoretical optimum in the fixed effects
case. A simple way to investigate this further is to reduce the magnitude
of the variance component and re-run the code. Since it takes at least seven
arguments to specify a D-optimality problem, it is advisable to save these
arguments in a dedicated list so as to avoid duplicating code:

1 args <- list(

2 eta = expression(

3 (beta1 + b1) + (beta2+b2) * t

4 ),
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5 Ebeta = c(0, 1),

6 Vb = c(Vb1 = 1, Vb2 = 1)/10,

7 Veps = .25^2,

8 phi = "fixed",

9 desvarNames = "t",

10 noSamples = c(6)

11 )

Now it is simple to reduce the variance components and re-run the
problem with the rest of the problem retained:

1 args$Vb = c(Vb1 = 1, Vb2 = 1)/10000

2

3 objFun <- do.call(genObjFun, args)

4

5 nlminb(

6 start = Xi0,

7 objective = objFun,

8 lower = 0,

9 upper = 10

10 )

# returns #

$‘par‘

[1] 0 0 0 10 10 10

$objective

[1] -11.94752

$convergence

[1] 0

$iterations

[1] 12

$evaluations
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function gradient

12 72

$message

[1] "both X-convergence and relative convergence (5)"

With the variance component reduced, nlminb yields the same optimum
as the fixed effects version of the problem, i.e., it splits the samples evenly
between the two boundaries of the time interval.

We can also perform the sanity check mentioned above, i.e., check that
the explicit form of the FIM agrees with the FO approximation. Since this
is just for the purpose of illustration, we will perform the check for a single,
but arbitrary design, produced by sampling six times from the uniform
distribution on [0, 10].

In the code below, we first generate the random design and then the
objective function for the same problem as above, but with one difference:
We set returnFIM=TRUE in genObjFun to make the resulting function
return the FO FIM approximation.

1 # fix seed for reproducibility

2 set.seed(123)

3 # generate random design

4 Xi_random <- runif(n = 6, min = 0, max = 10)

5 # reset the variance parameters

6 args$Vb <- c(1, 1)/10

7 # argument to return FIM rather than objective

function value

8 args$returnFIM = TRUE

9 # generate ``objective function''

10 objFun <- do.call(genObjFun, args)

11 # evaluate objective function

12 objFun(Xi_random)

# returns #

[[1]]

[,1] [,2] [,3] [,4] [,5]
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[1,] 7.163227 0.374001 0.00000000 0.00000000 0.0000000

[2,] 0.374001 9.926123 0.00000000 0.00000000 0.0000000

[3,] 0.000000 0.000000 25.65590797 0.06993839 16.1444590

[4,] 0.000000 0.000000 0.06993839 49.26396022 0.4747473

[5,] 0.000000 0.000000 16.14445898 0.47474729 522.6655929

The code below implements the explicit expression for the FIM as found
in Wand (2007).

1 # fixed effects part

2 X <- cbind(1, Xi_random)

3 Omega <- diag(args$Vb)

4 V <- X %*% Omega %*% t(X) + diag(args$Veps, 6)

5 A <- t(X) %*% solve(V) %*% X

6

7 # variance component part

8 B <- matrix(NA, 3, 3)

9 for(i in 1:3){

10 for(j in 1:3){

11 if( i < 3) Zi = X[,i]

12 if( j < 3) Zj = X[,j]

13 if (i == 3) Zi = diag(1, 6)

14 if (j == 3) Zj = diag(1, 6)

15 tmp <- t(Zi) %*% solve(V) %*% Zj

16 tmp <- tmp %*% t(tmp)

17 if(dim(tmp)[2] > 1) tmp <- diag(tmp)

18 B[i, j] <- 1/2 * sum(tmp)

19 }

20 }

21

22 # to prettify

23 dimnames(A) = NULL

24 # to print together

25 list(A, B)

# returns #
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[[1]]

[,1] [,2]

[1,] 7.163227 0.374001

[2,] 0.374001 9.926123

[[2]]

[,1] [,2] [,3]

[1,] 25.65590797 0.06993839 16.1444590

[2,] 0.06993839 49.26396022 0.4747473

[3,] 16.14445898 0.47474729 522.6655929

Which equals the previous result. As a sanity check, this provides
confidence that the code works.

3.3 Example: exponential decay - first nonlinear
example

A simple, but important, example where the regression function is nonlin-
ear is exponential decay. This is another case where a general expression
for the D-optimal design has been found for the fixed effects case (Kitsos
and Kolovos, 2013).

The regression function is

η(β, t) = β1 exp(β2t) ,

the parameters of the model are assumed to be

β = (1,−1/10) Ω = diag{1/100, 1/100} σ2 = 1/1000

and the experimental region is t ∈ [0, 30]. To specify and solve the
problem, again searching for a single elementary Dβ-optimal design of
length six:

1 args <- list(

2 eta = expression(
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3 (beta1 + b1) * exp((beta2 + b2)*t)

4 ),

5 Ebeta = c(1, - 1/10),

6 Vb = c(1, 1)/100,

7 Veps = 1/1000,

8 phi = "fixed",

9 desvarNames = "t",

10 noSamples = c(6)

11 )

12

13

14 objFun <- do.call(genObjFun, args)

15

16 Xi0 = 1:6/10

17

18 nlminb(

19 start = Xi0,

20 objective = objFun,

21 lower = 0,

22 upper = 30

23 )

# returns #

$‘par‘

[1] 0.000000 0.000000 0.000000 3.894444 3.894445 25.562844

$objective

[1] -14.13597

$convergence

[1] 0

$iterations

[1] 23
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$evaluations

function gradient

24 157

$message

[1] "relative convergence (4)"

According to Kitsos and Kolovos (2013), the D-optimal design for the
fixed effects case has support points (0,−1/β1) = (0, 10). Again, one can
check if decreasing the magnitude of the variance component produces
designs that are closer to the fixed effects case. In the code below, a
decreasing sequence of variance component magnitudes is used to generate
a sequence of Dβ-optimal designs:

1 var_mags <- seq(1/10^3, 1/10^5, length.out = 20)

2

3 optim_desns <- t(sapply(var_mags,

4 function(x){

5 args$Vb <- c(1, 1) * x

6 objFun <- do.call(genObjFun, args)

7 res <- try(nlminb(

8 start = Xi0,

9 objective = objFun,

10 lower = 0,

11 upper = 30

12 )$par)

13 if(class(res) == "try-error") return(rep(

NA, length(Xi0)))

14 return(res)

15 }))

# returns #

Error in chol.default(x) :

the leading minor of order 2 is not positive definite
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Note that in a single case, numerical issues caused the matrix inversion
of the variance of the linearised model to fail, hence the chol.default error
message. This does happen from time to time and the solution will
be context specific - there might be a problem with the starting design
provided or the optimisation problem might be genuinely hard. While it
can be cause to investigate further we will not do so in this demonstration.
Base R can be used to generate a simple design graph with the following
code:

1 matplot(var_mags, optim_desns)

Which produces the plot in Figure 3.1 for the 19 successfully computed
designs.
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Figure 3.1: A simple version of the design graphs found in earlier chapters. The
plotting symbol is the index of the sampling time in the individual Dβ-optimal
design being plotted and the x-axis is the variance magnitude used to generate the
design. Note that over-plotting occurs, with time labels “1” through “4” being
consistently placed on top of each other and time label “6” being on top of “5” for
some of the variance values.
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As can be seen from Figure 3.1, when the magnitude of the variance
component is reduced sufficiently, the Dβ-optimal designs have two sam-
pling times, the first at zero and the second at a time which converges to
10. This is consistent with the above-mentioned result from Kitsos and
Kolovos (2013).

3.4 Example: replicating results from Wang et al.
(2012)

In Wang et al. (2012), several kinds of D-optimal design are found for a
specific NLME model. In this example, some of those results are repro-
duced using the doptim package. The regression function is motivated by
a One-Compartment model:

η(β, t) =
exp(β1 − β3)

exp(β1)− exp(β2)
{exp(− exp(β2)t)− exp(− exp(β1)t)} .

Note that the model is parametrised so as to ensure positivity of rate
constants (exp(β1) and exp(β2)) and volume of distribution (exp(β3)).

3.4.1 Dβ-optimal design for a single individual

In the code below the model is defined, with parameter values as in
Wang et al. (2012). To begin with, the problem is given as optimizing the
design for a single individual (noSamples has length one) and the focus
is on finding a Dβ-optimal design (fixed is set equal to TRUE). The search
is restricted to designs consisting of up to five distinct sampling times
(noSamples is set equal to five).

1 args0 <- list(

2 eta = expression(

3 exp((beta2 + b2) - (beta3 + b3))/

4 (exp(beta2+b2)-exp(beta1+b1)) *

5 (exp(-exp(beta1+b1)*t) - exp(-exp(beta2 + b2)

*t))

6 ),
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7 Ebeta = c(0, 1, 1),

8 Vb = c(0.05, 0.05, 0.1),

9 Veps = 0.05^2,

10 phi = "fixed",

11 desvarNames = "t",

12 noSamples = c(5),

13 reduced = TRUE

14 )

After this the objective function can be generated and optimised.

1 objFun <- do.call(genObjFun, args0)

2

3 Xi0 <- seq(0, 4, length.out = 5)

4 nlminb(start = Xi0, objective = objFun, lower = 0,

upper = 4)

# returns #

$‘par‘

[1] 0.1961514 0.1961512 0.9437235 2.5528683 2.5528691

$objective

[1] -3.170249

$convergence

[1] 0

$iterations

[1] 16

$evaluations

function gradient

19 107

$message

[1] "relative convergence (4)"
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The resulting design, along with the value of the objective function,
correspond exactly with the first row of Table 1 in Wang et al. (2012).
Note the argument reduced = TRUE in the code; this indicates that in the
approximation of the FIM, the "trace term" should be set to zero. More
specifically, recall from Section 1.2 that the linearised model had FIM

FIMlin(b̄)kl =
n

∑
i=1

[
∂E>i
∂βk

V−1
i

∂Ei

∂βl

+
1
2

trace
(

∂Vi

∂βl
V−1

i
∂Vi

∂βk
V−1

i

) ]
.

The “reduced” version omits the second term of this approximation.
In Wang et al. (2012), this is recommended for cases where the variance
component is deemed “small”.

3.4.2 Composite D-optimal design

In Wang et al. (2012), the composite D-optimality criterion is introduced,
which allows the user to express a weighted interest in the fixed effects
and variance components, respectively. Specifically, for a chosen λ ∈ [0, 1],
the composite D-optimality criterion is to find the design ξ∗ ∈ Ξ which
maximizes

λ · log det FIM(ξ∗)β + (1− λ) · log det FIM(ξ∗)ω,σ2

The following code replicates a result from Wang et al. (2012), second
row of Table 2. For the same model as before, the composite D-optimality
objective function is created, with λ = 0.5, and the optimal design is
identified:

1 args <- args0

2 args$returnFIM <- TRUE

3 objFun <- do.call(genObjFun, args)

4

5 f1 <- function(x) - log(det(objFun(x)[[1]][1:3,

1:3]))
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6 f2 <- function(x) - log(det(objFun(x)[[1]][-(1:3),

-(1:3)]))

7 f <- function(x) .5 * f1(x) + .5*f2(x)

8

9 Xi0 <- seq(0, 4, length.out = 5)

10 nlminb(start = Xi0, objective = f, lower = 0, upper

= 4)[c("par", "objective")]

# returns #

$‘par‘

[1] 0.2331545 0.2331545 1.0261762 2.1961446 2.1961435

$objective

[1] -11.75895

The second line of code adds a new argument, returnFIM, which is set
to TRUE. This changes the return value of the generated function from
the log-determinant of the FIM to simply the FIM approximation itself.
The remaining lines of code directly specify the composite D-optimality
objective function, followed by the optimisation step.

To replicate the first row of Table 2 in Wang et al. (2012), where λ = 0,
simply run

1 nlminb(start = Xi0, objective = f2, lower = 0,

upper = 4)[c("par", "objective")]

# returns #

$‘par‘

[1] 0.2748855 0.2748866 1.6424521 1.6424451 1.6424473

$objective

[1] -20.88068
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3.4.3 Population D-optimal design

The genObjFun can also handle population D-optimal designs. In this case,
the design problem involves several individuals who may be allocated to
different elementary designs. In the code below, the args list is modified to
specify that two individuals are to be allocated to two different elementary
designs, each with three sampling times.

1 args <- args0

2 args$noSamples <- c(3, 3)

3 objFun <- do.call(genObjFun, args)

4 Xi0 <- c(1:3, 1:3)

5 nlminb(start = Xi0, objective = objFun, lower = 0,

upper = 4)[c("par", "objective")]

# returns #

$‘par‘

[1] 0.2192545 0.9634978 2.4872472 0.2192544 0.9634977 2.4872472

$objective

[1] -4.297543

Note that the noSamples argument is used to indicate the number of
individuals (by the length of the vector provided, i.e., two) and the sizes
of the elementary designs (by the integer valued entries of the vector
provided, i.e., both three). The first three values of the optimisation result
constitute the first elementary design of the population D-optimal design
and the last three values constitute the second elementary design. This
example replicates the first row of Table 3 in Wang et al. (2012). They note
that while the two elementary designs are identical in the optimal design
for this problem, that does not generally have to be the case.

3.4.4 Population D-optimal design, unbalanced

This case is an extension of the previous case with multiple individuals.
Here, three groups of different sizes (with group sizes chosen by the user)
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are allocated to elementary designs of different lengths (with the design
lengths chosen by the user). Specifically, the first group consists of 30

individuals allocated to a design of length three, the second group of 4

individuals allocated to a design of length two and the last group of 2

individuals allocated to a single point design. The design problem is now
to optimally choose the six design points that make up the three elementary
designs. Specifically, a Dβ-optimal design is sought and the trace term is
omitted (so reduced = TRUE).

1 args <- args0

2 args$returnFIM <- TRUE

3

4 args1 <- args

5 args1$noSamples <- 3

6 f1 <- function(Xi) do.call(genObjFun, args1)(Xi)

[[1]][1:3, 1:3]

7

8 args2 <- args

9 args2$noSamples <- 2

10 f2 <- function(Xi) do.call(genObjFun, args2)(Xi)

[[1]][1:3, 1:3]

11

12 args3 <- args

13 args3$noSamples <- 1

14 f3 <- function(Xi) do.call(genObjFun, args3)(Xi)

[[1]][1:3, 1:3]

15

16

17 f <- function(Xi) -log(det(

18 30*f1(Xi[1:3]) + 4*f2(Xi[4:5]) + 2*f3(Xi[6])

19 ))

20

21 case <- DEoptim::DEoptim(f, lower = rep(0, 6),

upper = rep(4, 6))

22 nlminb(start = case$optim$bestmem, objective = f,

lower = 0, upper = 4)[c("par", "objective")]
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# returns #

$‘par‘

par1 par2 par3 par4 par5 par6

0.2170318 0.9784380 2.4956097 2.4309390 0.7556319 0.2550840

$objective

[1] -12.74138

NB: the reason we need to define args1, args2 and args3 is lazy evalua-
tion in R; if we instead kept updating args, the resulting functions would
all use the last definition of args.

The above results replicate row one of Table 4 in Wang et al. (2012).
Note that the FIM for the group of individuals is equal to the sum of the
elementary FIMs, due to independence between individuals.

3.4.5 DA-optimal design

The following example is not included in Wang et al. (2012), but it serves
to illustrate one last capability of doptim, namely generating DA-optimality
objective functions. In the code below, the element phi in args, the list of
arguments, is modified to contain a list of expressions. The first element
of this list is the expression for Area Under the Curve (AUC), which was
given in Equation 2.4 and the second is the expression for the time to
maximum response (tmax), given in Equation 2.5. Thus, the code below gen-
erates and optimises a DA-optimality objective function for the parameter
transformation φ = (AUC, tmax).

1 args <- args0

2 args$phi <- list(

3 expression(exp(beta2-beta3)/(exp(beta2) - exp(

beta1)) * (exp(-beta1) - exp(-beta2))),

4 expression((beta1 - beta2)/(exp(beta1)-exp(beta2)

)))

5 objFun <- do.call(genObjFun, args)

6 nlminb(start = Xi0, objective = objFun, lower = 0,

upper = 4)[c("par", "objective")]
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# returns #

$par

[1] 0.1702486 0.1702488 1.0757593 2.4337100 2.4337135

$objective

[1] -6.685038

3.5 Overview of the randon package

The sensitivity band plots, design graphs and efficiency profiles in Chapter
2 were created using the randon package. In this section, the reader will be
taken through simple examples of how to use randon to generate similar
results for their own problem.

The package makes three main functions available to the user:

calc_aPMS Compute a first order approximation of aPMS
for a given nonlinear regression function, pa-
rameter and interval. The aPMS is an attempt
to measure the average deviation in the regres-
sion function over the interval (in NLME terms,
the population level profile), caused by a per-
turbation in a single fixed effects parameter. It
can used as a starting point to find realistic pri-
ors for marginal variances of (additive) random
efffects.

plot_sensBands Plot regression function with aPMS sensitivity
bands

genOptimDesnRange A wrapper to generate a range of optimal de-
signs for given model, parameter transforma-
tion and range of variance levels.

Of these functions, only plot_sensBands and genOptimDesnRange are
envisioned as part of the workflow suggested in this thesis; the calc_aPMS
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function is used by the other two functions in randon to translate between
variance level and magnitude of variance components.

3.5.1 plot_sensBands

This function generates plots of the regression function, with added sensi-
tivity bands, as seen in Figure 2.1. The following code partially recreates
the plot in the first panel of the Figure, i.e., 10% sensitivity bands for the
One-Compartment model.

1 m <- list(

2 eta = expression(

3 (exp(beta2) / exp(beta3)) /

4 (exp(beta2) - exp(beta1)) *

5 (exp( - exp(beta1) * t) - exp( - exp(beta2) *

t))

6 ),

7 beta = list(beta1 = 0, beta2 = 1, beta3 = 1),

8 tInt = c(0, 4)

9 )

10

11 plot_sensBands(model = m, VLrange_variedParam = .1)

The model argument must be a list with three named elements

• eta is an expression which defines the regression function, but without
any random effects specified. The parameters must be named beta1,
beta2, etc. The covariate must be named t.

• beta is a list with entry names matching the corresponding fixed
effects parameters. The entries are scalars setting the values of the
parameters.

• tInt is a vector of length two, defining the (time) interval which the
covariate t is restricted to for the purposes of the sensitivity plot.

By supplying the VLrange_variedParam argument, the user specifies
which variance levels she wishes to visualise for the parameter being varied.
Per default, the parameter being varied is "beta1", because it always exists.
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If the user wishes to visualise several variance levels in the same plot, she
can supply a vector-valued VLrange_variedParam argument, as follows.

1 plot_sensBands(model = m,

2 VLrange_variedParam = c(.1, .2, .3))

This code recreates the first panel of Figure 2.1. Lastly, to fully recreate
Figure 2.1, one can supply a vector of parameter names to the function.

1 plot_sensBands(model = m,

2 VLrange_variedParam = c(.1, .2, .3),

3 paramName_variedParam = c("beta1", "

beta2","beta3"))

This generates three plots, one per entry in the vector c("beta1",
"beta2","beta3") supplied to paramName_variedParam, each with three
sensitivity bands, one per entry in the vector c(.1, .2, .3) supplied to
VLrange_variedParam.

3.5.2 genOptimDesnRange

This function was used to generate the design graphs and efficiency pro-
files in Chapter 2. The seed has been set for reproducibility; the first
optimisation is a global optimisation using DEoptim which is a stochastic
algorithm.

Reproducing plots from the One-Compartment model example

To generate a range of optimal designs for the One-Compartment model
specified above, use the code

1 optDes_beta1 <- genOptimDesnRange(m, noSamples = 5)

Here, the only arguments supplied to the function are the model defi-
nition, m, and the noSamples argument, the latter of which indicates the
size of the design. If noSamples is not supplied, the value defaults to the
number of fixed effects parameters in the model. When the line of code is
run, some descriptive output is printed to the screen and a list of objects is
returned by the function and saved in the optDes_beta1 variable. In the
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standard case, which this should be, the descriptive output has two distinct
sections. First, the diagnostics from the global optimisation which is used
to generate the first D-optimal design are printed; one line per iteration.
These are standard outputs from the DEoptim function from the package
of the same name. It has the following form:

startDesn is NULL. Performing global optimisation to identify appropriate startDesn.

Iteration: 1 bestvalit: -24.308162 bestmemit: 0.669019 2.730682 1.151220 0.258034 1.978325

Iteration: 2 bestvalit: -24.308162 bestmemit: 0.669019 2.730682 1.151220 0.258034 1.978325

Iteration: 3 bestvalit: -24.308162 bestmemit: 0.669019 2.730682 1.151220 0.258034 1.978325

Iteration: 4 bestvalit: -24.308162 bestmemit: 0.669019 2.730682 1.151220 0.258034 1.978325

Iteration: 5 bestvalit: -24.308162 bestmemit: 0.669019 2.730682 1.151220 0.258034 1.978325

Iteration: 6 bestvalit: -24.318806 bestmemit: 0.267714 1.994231 0.320108 0.861529 2.147230

Iteration: 7 bestvalit: -24.318806 bestmemit: 0.267714 1.994231 0.320108 0.861529 2.147230

.

.

.

Iteration: 196 bestvalit: -24.440543 bestmemit: 0.945508 2.357908 0.259394 0.941260 2.389271

Iteration: 197 bestvalit: -24.440543 bestmemit: 0.945508 2.357908 0.259394 0.941260 2.389271

Iteration: 198 bestvalit: -24.440543 bestmemit: 0.945508 2.357908 0.259394 0.941260 2.389271

Iteration: 199 bestvalit: -24.440543 bestmemit: 0.945508 2.357908 0.259394 0.941260 2.389271

Iteration: 200 bestvalit: -24.440543 bestmemit: 0.945508 2.357908 0.259394 0.941260 2.389271

Note that if the user supplies a startDesn argument, which should be
a vector of the appropriate length (noSamples) and with values in the
appropriate range (m$tInt) this is instead used as the starting design. The
second output which is printed to the screen is a counter which indicates
the progress along the chosen range of variance levels, i.e., how many of
the desired D-optimal designs have been computed. It takes the following
form:

[1] "Vb_val 1 of 41"

[1] "Vb_val 2 of 41"

[1] "Vb_val 3 of 41"

.

.

.

[1] "Vb_val 39 of 41"

[1] "Vb_val 40 of 41"

[1] "Vb_val 41 of 41"
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The genOptimDesnRange function returns a list, which in the example
above is stored in the variable optDes_beta1. The entries of the list are
named as follows.

> names(optDes_beta1)

[1] "eta_supplied" "model" "paramName_variedParam"

[4] "VLrange_variedParam" "Vb_range" "optimDesign"

[7] "objFuns" "desnGraph" "repcount"

[10] "effProfiles"

In optDes_beta1$desnGraph and optDes_beta1$effProfiles the design
graph and efficiency profiles can be found, respectively. The plots are
presented in Figures 2.25 and 2.26 bearing column label “s=(β1, β2, β3)”
and row label “Vary ω1”.

Exploiting access to objective functions: Spot check of optimality and
plotting efficiency

Much of the output listed above is for bookkeeping purposes (for instance,
Vb_range contains a matrix with all the variance values that have been
used, one row per variance level). However, one item worth noting is the
entry named objFuns. This is a list (“wrapped” in a matrix, for better
printing) of the objective functions used to generate the optimal designs
in the design graph (they are also stored as a matrix in the output, as
optimDesign). These objective functions can be accessed directly by the
user, just as the output of genObjFun can.

As an example of how this might be convenient, consider a scenario in
which the user wishes to inspect the optimality function for the purpose of
checking that the optimisation actually yielded globally optimal designs. A
first step in such an inspection could be to consider profiles of the relevant
objective functions, with all but one design point fixed at the optimal
design and the final design point being varied. In the code below, the
objective function Ψ(i) : [0, 4]5 → R for each variance level i is extracted
from optDes_beta1 from the previous example. Profile functions Ψ(i)

. :
[0, 4]→ R are then defined by fixing the first four arguments of Ψ(i) at the
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first four values of the ith optimal design and letting the final sampling
time t5 vary. These profile functions are then plotted.

1 # optimal designs from previous optimisation

2 od <- optDes_beta1$optimDesign

3

4 # objective functions used to generate od

5 ofs <- unlist(optDes_beta1$objFuns)

6

7 # range of alternative sampling times for t5

8 t5s <- seq(0, 4, length.out = 100)

9

10 # value of objective functions in range of t5s

11 vof_t5s = sapply(1:nrow(od), function(i){

12 # i'th objective function

13 of_i = ofs[[i]]

14 # i'th optimal design

15 od_i = od[i,]

16 # value of i'th objective function

17 # when modifying t5 in optimal design

18 vof_i_t5s = sapply(t5s, function(t5){

19 of_i(c(od_i[-5], t5))

20 })

21 return(vof_i_t5s)

22 })

23

24 matplot(t5s, vof_t5s,

25 type = "l",

26 col = 1,

27 lty = 1,

28 xlab = expression(t[5]),

29 ylab = "",

30 xlim = c(0,4.4))

31 text(cbind(4.2, vof_t5s[100,]), paste0("i = ", 1:

nrow(od)), cex = .6)
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32 title(ylab=expression({psi[.]}^{(i)}~"("~t[5]~")"

), line=2, cex.lab=1.2)

And the final sampling times from the optimal designs can be added to
the plot with this code.

1 # value of objective functions in optimal t5s

2 vof_od = sapply(1:nrow(od), function(i){

3 # i'th objective function

4 of_i = ofs[[i]]

5 # i'th optimal design

6 od_i = od[i,]

7 # value of i'th objective function

8 # when t5 is optimal

9 vof_i_od_i = of_i(od_i)

10 return(vof_i_od_i)

11 })

12

13 points(od[,5], vof_od)

The resulting plot is presented in Figure 3.2. From a visual inspection,
it appears that the final sampling times in the optimal designs stored in
optDes_beta1$optimDesign, are in fact globally optimal for the profile
objective functions. However, the plot also reveals two additional local
optima in every profile. So had the local optimiser been supplied with a
different starting value, a sub-optimal design could have been identified.
Extending this approach (plotting profile objective functions for a single
sampling time) to involve pairs of sampling times is straightforward, but
three or more sampling times at a time may present a challenge.

While it is tempting to make conjectures about the implications of the
relative flatness of some of the profiles in the plot, it is more meaningful
to discuss this on the scale of D-efficiency. The approach taken in the
code above can easily be extended to compute the relevant efficiencies.
This will also allow the user to address problems where experimenters
are considering changing a sampling time, due to feasibility or resourcing
constraints.
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In the code below, the D-efficiency profiles of the designs under consid-
eration are computed and plotted (with one profile per variance level). The
resulting plot is given in Figure 3.3.

1 # D-efficiency profiles in range of t5s

2 dEff_t5s = sapply(1:nrow(od), function(i){

3 # i'th objective function

4 of_i = ofs[[i]]

5 # i'th optimal design

6 od_i = od[i,]

7 # value of i'th objective function

8 # when modifying t5 in optimal design

9 dEff_i_t5s = sapply(t5s, function(t5){

10 exp(of_i(od_i) - of_i(c(od_i[-5], t5)))^(1/

length(optDes_beta1$model$beta))

11 })

12 return(dEff_i_t5s)

13 })

14

15 matplot(t5s, dEff_t5s,

16 type = "l",

17 lty = 1,

18 col = 1,

19 xlab = expression(t[5]),

20 ylab = "",

21 xlim = c(0, 4.4))

22 text(cbind(4.2, dEff_t5s[100,]), paste0("i = ",

1:nrow(od)), cex = .6)

23 title(ylab = expression({D[eff]}^{(i)}), line =

2, cex.lab = 1.2)

Inspection of Figure 3.3 reveals that the apparent flatness of the objective
function profiles in Figure 3.2 is indeed misleading insofar as judging
efficiency loss is concerned. Depending on the chosen value of the fifth
sampling time, efficiency losses of more than 10% are clearly quite common.
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Figure 3.2: Profile objective functions for the One-Compartment model example.
The hollow circles are the coordinates (time and objective function value) of the
final sampling times of the optimal designs. The lines are the profiles of objective
functions for the range of variance levels considered. The values of i which indicate
which of the i = 1, ..., 40 variance levels is being used have been added to the end
of the corresponding profiles.
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Figure 3.3: Efficiency profiles for the One-Compartment model example. Each
profile is a plot of the D-efficiency of a design which uses the first four sampling
times of the D-optimal design and then replaces the fifth sampling time with the
value on the x-axis. The values of i which indicate which of the i = 1, ..., 40
variance levels is being used have been added to the end of the corresponding
profiles.
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3.5.3 Discussion

The purpose of this chapter is to equip the reader with sufficient knowledge
to make extensive use of the packages doptim and randon.

In the first part of this chapter, the basic capabilities of the doptim package
are covered. In particular, it is worth noting that because the user is able to
easily construct objective functions, the package provides a great deal of
flexibility: for instance, it allows the user to expand or restrict the design
space, customise the optimisation method and create composite objective
functions.

Building on this, note that once an appropriate FIM approximation is
accessible, then any criterion which relies on such an approximation may
be fairly easily implemented. For instance, A-optimality which minimises
the trace of the FIM or E-optimality which maximises the minimum eigen-
value of the FIM. Thus, while these criteria are not utilised in this thesis,
extending the usage of doptim to cover them is straightforward.

In the second part of this chapter, the randon package is demonstrated
and the reader is shown how to generate sensitivity bands, design graphs
and efficiency profiles for a desired range of variance levels for a chosen
variance component. This is achieved by guiding the reader through
reproducing some of the plots used in Chapter 2. The advantage of having
access to the objective functions used to generate the design graphs is also
illustrated in a simple example.

With the material presented in these two sections, the reader is em-
powered to employ the workflow which we suggest and demonstrate in
Chapter 2.



Conclusion

The purpose of this work is to establish the foundation for a workflow
involving D-optimal design when NLME models are used. In the preceding
chapters, this workflow is outlined, implemented and applied and the
relevant tools, which have been made available in the form of R-packages,
are described in detail.

Chapter 1 deals primarily with the problem of choosing an approxima-
tion to the FIM that makes the computation of large numbers of D-optimal
designs feasible while trying to assess the cost incurred from choosing an
inexpensive approach, in terms of information lost. Happily, it is found
that relative to the InFO approximation, the FO approximation does not
seem to perform noticeably worse in any of the cases examined. Along the
way, it is illustrated that optimisation of the objective function is generally
a non-trivial task; the InFO approximation is shown to lead to an objective
function with multiple local optima. In Chapter 2 this problem is shown
to apply to the FO approximation as well, though theory suggests that
working with approximate designs might alleviate it. However, Chapter 1

leaves some questions open which are not answered later on: are there
other FIM approximations which do fare better while remaining computa-
tionally feasible? What is the cost of linearisation and can the cases where
this cost is too high be identified?

Chapter 2 addresses the main problem; how can the advantages of D-
optimal designs be delivered to the end user? The two biggest obstacles are
intimately related; the practical issue that, for NLME models, D-optimal
design necessitates the elicitation of prior beliefs about parameter values
and the theoretical issue of addressing parameter misspecification in the
elicited values. The former issue has, to this author’s knowledge, only been
addressed on an application - to - application basis and often it is implicitly
supposed that prior data exists so that the problem at hand comes to

162



3.5 overview of the RANDON package 163

resemble that of sequential design. In Chapter 2, a simple translation of
the variance scale is developed which makes it more feasible to elicit priors
directly from practitioners. The issue of parameter misspecification has
been addressed extensively in the literature, but primarily via theoretically
advanced solutions that tend to either complicate the elicitation of priors,
or be overly sceptical (trying to minimise the maximal loss) or both. Chap-
ter 2 takes a different tack and proposes the use of efficiency profiles to
systematically evaluate and compare the relative costs of parameter mis-
specification and, because of the cheap computational cost, this approach
makes it possible to, as a default, extend the scenarios considered to cases
where only subsets of parameters or transformations of parameters are of
interest. A set of examples is treated in a fairly comprehensive manner; de-
sign graphs and efficiency profiles are drawn for a wide range of scenarios.
With this, it is illustrated that the proposed workflow is indeed feasible and
reveals important characteristics of the generated designs, such as their
relative robustness.

Chapter 3 provides a gentle introduction to the R-packages which I
developed, doptim and randon. A potential user is shown, through a natural
progression of examples, how to generate D-optimality objective functions
for a fairly flexible class of NLME models. The regression function must be
explicitly supplied; regression functions which are specified as solutions
to ODEs are within the theoretical framework utilised in this thesis but
are not implemented in the packages. It is shown how doptim can be
used to replicate results from the literature; Dβ-optimal designs, fully D-
optimal designs as well as composite D-optimal designs and unbalanced
population D-optimal designs. For completeness, an example of how to
generate DA-optimal designs is also provided.

The randon package is meant to encapsulate an approach to optimal de-
sign which balances ease of use, interpretability and insight into robustness
properties of investigated designs. Thus, Chapter 3 is meant to illustrate
how easily the functions in randon can be applied to a given nonlinear
regression function of interest to generate plots such as those found in
Chapter 2. The natural progression of generating sensitivity bands to
check a priori specifications of variance components, through to generating
design graphs and efficiency profiles for parameter transformations and
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variance components of interest is captured in a few simple examples.
Further, the power given to the user by this package through making the
resulting set of objective functions available, is demonstrated in an example
where information loss due to moving a single design point in an optimal
design is investigated simultaneously for a range of variance levels.

To summarise, we recommend that the FO approximation is used as
a default when computing FIM approximations. The caveat is that the
user should consider whether there are specific reasons to worry about
linearisation, in particular whether the model may in fact be so nonlinear
that the FO approximation is poor. A simple sanity check is provided in
Chapter 1, but a more rigorous approach is lacking and is a good area
for further work. Then, the randon package can be employed both to
help form parameter guesses through generating sensitivity bands and
also to check robustness of designs to misspecified variance components.
Thus, a consulting statistician should be able to easily use these tools
in collaboration with their client, to quickly generate insights into their
problem.

In terms of further work and future applications, it was mentioned in
Chapter 3 that other criteria which rely on the FIM should be simple to
investigate using the approaches outlined in this thesis. The scope of Chap-
ter 2 could also easily have been wider. There was nothing theoretically
stopping us from expanding to other sizes of designs, different parameter
transformations or parameter transformations which also involve variance
components. As mentioned in Chapter 1 when we defined the NLME
model, a more general model could be used, with multivariate responses,
multiple covariates and more complex variance structures. A lot of the
work here would be simple to extend to these cases.

Looking forward, many problems remain; e.g., what effect does simulta-
neous variation of parameters have on the design graph and what is the
impact of a multivariate parameter misspecification?

While the gravity of these issues is yet to be explored and, if necessary,
addressed, this work makes possible a new kind of consultation which one
may argue is more closely aligned with the scientific approach to experi-
ments in many applied settings. Therefore, issues aside, it is hoped that for
settings where nonlinear mixed effects are appropriate and relevant, the
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perceived gap between the theory and application of optimal experimental
design has been narrowed, if only a little.
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