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‘In my view every economic fact, whether or not it is of such a nature as to be expressed in numbers, 
stands in relation as cause and effect to many other facts; and since it never happens that all of them 
can be expressed in numbers, the applications of exact mathematical methods to those which can is 

nearly always a waste of time, while in the large majority of cases it is positively misleading.’ 

Alfred Marshall (1901), quoted in Milanovic (2016)1 

 

 

‘A man with one watch always knows the time. A man with two watches is never sure.’ 

Segal’s Law, quoted in Kline (2016)2 

 

 

‘Complexity is not a condition to be tamed, but a lesson to be learned.’ 

James Bridle (2018)3 

 

 

‘Therefore we attempt to treat the same problem with several alternative models …  

Hence our truth is the intersection of independent lies.’ 

Levins (1966)4 

  

1 MILANOVIC, B. 2016. Global Inequality: A New Approach for the Age of Globalization, Cambridge (Mass), 
Belknap. 
2 KLINE, R. B. 2011. Principles and Practice of Structural Equation Modelling, New York, Guildford Press. 
3 BRIDLE, J. 2018. New Dark Age: Technology and the End of the Future, London, Verso. 
4 LEVINS, R. 1966. The Strategy of Model Building in Population Biology. American Scientist, 54, 421-431. 
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Abstract 

Global-level models have consistently found that climate change will increase the risk of hunger. The 

climate-undernutrition relation is complex, and choices must be made about what is brought into 

focus, with these choices drawing attention to particular causes and solutions. A critical overview of 

the literature showed, however, that all previous models had adopted one general conceptualisation: 

less or lower quality food means more hunger. This leaves much unexplored.   

The central idea of this thesis is that when faced with complex health problems, a fuller understanding 

may be gained by developing multiple models, each adopting a different perspective. The thesis aims 

to develop a series of global-level climate-undernutrition models, with the insights from one model 

guiding the development of the next. These models are presented as four research papers.  

Papers 1 and 2 adopt a ‘crop productivity’ perspective to quantify stunting. The results suggest that 

future socioeconomic conditions will play a larger in role in shaping stunting than climate change. 

Thus, Paper 3 places food production in the background and asks how climate change may impact on 

stunting via its impacts on two socioeconomic factors: incomes and food price. The results imply that 

slowly rising food prices lead to decent farm incomes, which may reduce the risk climate change poses 

to nutrition in rural areas. Producer-consumer farmers, however, were not directly represented. Given 

this, Paper 4 assesses the health-related implications for rural populations of producer-consumer 

households practising different styles of farming in the global food system under climate change. The 

results suggest that how farming is done – whether more entrepreneurial- or peasant-like – will impact 

on future nutrition and the conditions that support rural health.   

Collectively, the research papers demonstrate the utility of a multiple model-approach to complexity, 

and the benefits of drawing on a range of theories when building models.  
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Chapter 1. Introduction 

Despite decades of efforts to reduce and eliminate it, hunger still affects an estimated 820 million 

people (FAO et al., 2019) and undernutrition remains a major cause of morbidity and mortality in 

children (GBD 2017 SDG Collaborators, 2018). Climate change is expected to further hinder progress 

even if the most ambitious targets of the Paris Agreement to limit climate change are met (Ebi et al., 

2018). Developing an understanding of how the mutually conditioning processes associated with 

climate change (as well as actions to mitigate and adapt to it) and development (whether 

“sustainable” or not) will shape future undernutrition poses considerable challenges, not least 

because the causes of undernutrition itself are complex (Scanlan, 2003, Smith and Haddad, 2015),  as 

is the relation between climate change and undernutrition (Myers et al., 2017).  

In this thesis, I develop a series of new models that look at the potential impacts of climate change on 

hunger and undernutrition under given development scenarios, with the findings and questions raised 

by each model guiding the development of the next model.  

Given the complexity of the climate-undernutrition relation, when building – as well as assessing 

output from - climate-undernutrition models, questions arise not just about “what we (already) know” 

about future undernutrition under climate change, but also about “how we know what we know”.  The 

former question has been comprehensively reviewed by others on a number of occasions (e.g. Parry 

et al., 2009, Wheeler and von Braun, 2013, Smith et al., 2014), and a summary of what is known is 

given in the next section of this chapter. “How we know” – that is, how have the relations between 

climate change and undernutrition been represented in models, along with the implications of this – 

has been less explicitly explored: this is the focus of the critical literature overview in Chapter 2.   

The key specific finding of the literature overview is that perspectives that view poverty and inequality 

as the root causes of undernutrition have been largely omitted. A more general implication arising 

from the overview is that, in order to gain new insights into complex health problems, it is useful – if 

not necessary – to develop multiple models, each viewing the problem from a different perspective 

(Levins, 1966). Both the specific finding and the general implication are reflected in the thesis aims 

and objectives, which are given in Chapter 3.  

Following this, Chapters 4, 5 and 6 describe newly developed climate-undernutrition models that 

address some previously omitted perspectives. The model in Chapter 4 (which is included in the above 
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literature overview6) focusses on a more health-relevant final outcome (child stunting) than the 

preceding literature; the model in Chapter 5 takes a poverty perspective; and, the model in Chapter 6 

centres on the development trajectories of subsistence farming. Each of the models described has 

been published or prepared for submission as a research paper.  

Finally, the concluding chapter (Chapter 7) draws the research papers together to summarize how 

they collectively broaden our understanding of the climate change-undernutrition problem, thus 

illustrating the utility of the general principle of approaching complexity with a set of models based 

on different abstractions. I also briefly discuss possible directions for future research and the 

limitations of thesis.  

Of note, the scope of the thesis has been limited to global-level models7. This is because, firstly, the 

scientific community (that is, funders and research groups) has been, and remains, interested in 

climate-undernutrition research conducted at this level. Secondly, the food system is becoming 

increasing globalised (Weis, 2007, Cleveland, 2014), and this is being actively promoted by various 

institutions (e.g. World Bank, 2007)). Thirdly, while national- and local-level studies (recently reviewed 

by Phalkey et al (2015)) may attempt to capture the particularities of a given place and time, global-

level dynamics – which partly shape within-country conditions – are of interest in their own right (e.g. 

Mazoyer and Roudart, 2006). For instance, global food trade – at least in its current form – appears to 

be both decreasing and increasing the risk of undernutrition for different population groups 

(McMichael, 2012, Moore Lappe and Collins, 2015). Additionally, the 2007-08 food price crisis showed 

clearly how global-level processes may combine to impact on population groups in multiple countries 

simultaneously, with hunger-associated riots occurring in around 30 countries (Holt-Gimenez and 

Patel, 2009). Thus, the global-level is not simply a “blurry” version of something better viewed more 

locally: processes operating all levels are of consequence (Krieger, 2011, Levins and Lewontin, 1985).  

The next section provides a brief general discussion of what we know about undernutrition and how 

climate change may impact on it.  

 

6 Over the time period during which I have worked on this thesis, the relevant climate-undernutrition literature 
has expanded; thus, the first model I developed (described in Chapter 4) is now part of the established 
literature and was thus included in the literature overview.   
7 I use “global-level” to refer to models that focus on multiple countries in multiple regions and represent (at 
some point in the model) global-level processes (e.g. global food trade; global food price transmission), rather 
than models that necessarily focus on all or most countries. 

15



Undernutrition and climate change: an overview 

The literature on undernutrition is extremely large and diverse, and the literature on climate change 

and undernutrition continues to grow. The following is intended to give a brief overview of current 

knowledge8.  

Undernutrition 

Hunger and undernutrition have been the focus of global attention for decades – from the 

eradication (within a decade) pledges following the food crisis in the 1970s (Holt-Gimenez and Patel, 

2009), to the reduction goals of the Millennium Development Goals (MDGs) (Pogge, 2010), and back 

to eradication (by 2030) goals under the Sustainable Development Goals (SDGs) (United Nations, 

2017) – but progress has been mixed and slow in many locations (Rieff, 2016). Stunting (a measure 

of undernutrition based on height-for-age), for instance, affects an estimated 149 million children 

aged under five, 55% of who live in Asia and 39% in Africa (UNICEF et al., 2019). Since the year 2000, 

there have been large disparities in prevalence reduction, both across- and within-regions. For 

example: Latin America and the Caribbean saw a drop from 16.7% to 9%; South Asia from 49.7% to 

32.7%; and, Africa from 38% to 30% (with the number of stunted children actually rising from 50.3 

million to 58.8 million) (UNICEF et al., 2019). 

There is an important distinction between the metrics commonly used to quantify the prevalence of 

hunger and undernutrition. As well as shaping the apparent magnitude of the problem, the choice of 

metric influences the causes of the problem that are brought into focus. And this in turn may influence 

the types of actions taken to solve the problem. “Undernourishment”, or synonymously “being at risk 

of hunger”9, is a theoretically-based, modelled estimate (all undernourishment estimates are 

modelled, even those for the present) of the distribution of calories in a national population, that was 

developed by the Food and Agricultural Organization (FAO) (FAO, 2003). The “proportion 

undernourished” is defined as the proportion of a population “whose dietary energy consumption is 

continuously below a minimum dietary energy requirement for maintaining a healthy life and carrying 

out light physical activity with an acceptable minimum body-weight for attained-height”. That is, 

undernourishment has one essential cause: a lack of food; specifically, calorie intake. Thus, key 

solutions involve increasing the quantity of food produced and ensuring improved access.  

 

8 Climate-health impact models have also examined other nutrition-related outcomes, such as non-
communicable diseases (e.g. Springmann et al., 2016)  and sustainable diets (e.g. Willett et al., 2019). Such 
outcomes are beyond the scope of the thesis. 
9 This term was typically used in early climate change-nutrition assessments (e.g. Parry and Rosenzweig, 1993). 
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In contrast, “undernutrition” refers to a physical state that may be measured using anthropometric 

indices, including stunting and underweight (low weight-for-age) (WHO, 2017). Aside from the 

advantage of being measured in real populations rather than modelled, undernutrition has two 

characteristics that render it preferable to undernourishment when assessing population health.  

 

Firstly, undernutrition has complex causation, with a lack of food (i.e. undernourishment) being just 

one - and often not the most important – cause. For instance, Smith and Haddad (2015) found that 

between 1970 and 2012, 67% of the reduction in stunting was due to improvements in women’s 

education, gender equality, and access to adequate water and sanitation services. Further, causes 

operate at multiple levels (UNICEF, 1990, World Bank, 2008), ranging from:  

• individual: e.g. lack of energy and nutrient intake (Black et al., 2008), repeated episodes of 

diarrhoeal disease (Checkley et al., 2008), sub-clinical gut inflammation Guerrant et al., 2013)) 

• local: e.g. rainfall patterns (Jankowska et al., 2011, Grace et al., 2012) 

• national: e.g. proportion of women with access to education (Smith and Haddad, 2000), per 

capita national income (Vollmer et al., 2014), civil conflict (Jenkins and Scanlan, 2001)); to,  

• global: e.g. foreign direct investment (Wimberley and Bello, 1992), position in the World-

System10 (Kick et al., 2011), global food prices (Mazoyer and Roudart, 2006). 

That is, undernutrition draws attention to a wide range of (changing) non-food causes that strongly 

influence its prevalence and trajectory.  

Secondly, undernutrition may be directly linked to concrete health impacts. For instance, stunting is 

estimated to contribute to 45% of child deaths (Black et al., 2013); it increases morbidity for diseases 

including diarrhoeal disease and pneumonia (Prendergast and Humphrey, 2014); and, in the long term 

it increases the risk of reduced neurodevelopmental and cognitive function (manifesting as reduced 

learning and earning capacity) as well as  chronic disease (Victora et al., 2008, de Onis and Branca, 

2016). In contrast to undernourishment, the potentially major health implications of undernutrition 

for both individuals and populations are clearly evident.  

In sum, in many – but not all – settings, and despite ongoing efforts, undernutrition has proved difficult 

to reduce (relative to aspirations), which is partly because it has complex multi-level causation that 

reaches beyond food availability and access, and it remains a major cause of ill health and death. 

10 World-Systems Analysis looks at between-country relations as (partial) explanations for within-county 

processes (Wallerstein, 2004). 
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Climate and weather have always been associated with undernutrition, but anthropogenic climate 

change – in combination with a changing food system – is likely to bring new patterns of risk.   

Climate change and undernutrition 

Climate change is expected to impact on undernutrition via multiple routes (Figure 1). Some key 

pathways shown in the figure include:  

Greenhouse gas emissions cause changes in weather, climate and the wider environment (e.g. 

temperature and rainfall patterns; extreme weather events; ocean temperature and acidity) 

– which will impact on – crops, animals, and ocean life - which may lead to – changed quantity 

and quality of food produced – and may also – reduce agricultural labour capacity (due to 

increased heat stress) and alter patterns of infectious diseases (such as diarrhoeal disease) – 

which collectively may – impact on each of the four dimensions of food security (quantity and 

quality of food; access to food; stability of food supply; and, ability of individuals to utilize (i.e. 

gain benefits from) food intake)  (FAO, 2017c).   

 

 
Figure 1 Pathways from climate change to undernutrition 
Source: Myers et al. (2017) [Licensed under a Creative Commons Attribution-ShareAlike 4.0 (CC-BY-SA) International 

License] 
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To date, modelling of the potential impacts of climate change on undernutrition have tended to trace 

pathways associated with crop (and by extrapolation, food more generally) productivity; climate 

change impacts on agricultural labour and infectious disease, for instance, have been treated as 

separate outcomes using independent models (e.g. Hales et al., 2014). 

 

Global-level modelling studies have consistently found that the impacts of climate change on food 

availability are likely to increase the risk of poor nutrition (compared to futures without climate 

change), with the magnitude of the impact estimates varying with the particular model used and the 

future scenarios considered (for reviews, see: Myers et al., 2017, Parry et al., 2009, Schmidhuber and 

Tubiello, 2007, Smith et al., 2014, Wheeler and von Braun, 2013). Indicative examples suggest the “risk 

of hunger” (i.e. proportion undernourished) may increase (relative to a future without climate change) 

by 5 to 25% globally by 2080 (Schmidhuber and Tubiello, 2007), and that regionally, stunting may 

increase (relatively) by 23% in parts of Africa and 62% in South Asia by 2050 (Lloyd et al., 2011). 

Further, changes in food quality may increase the risk of dietary deficiencies (Medek et al., 2017, 

Myers et al., 2015). For instance, Myers et al. (2015) estimated that by 2050, climate change may put 

an additional 140 million people at risk of zinc deficiency, with the greatest number of affected people 

being in Africa and South Asia. 

 

The Paris Agreement (United Nations, 2015) aims to limit average global warming to 2⁰C, or preferably 

to 1.5⁰C, and recent work has attempted to estimate levels of poor nutrition under these conditions 

(Ebi et al., 2018). While noting limitations in the methods employed, it was estimated that at 1.5⁰C of 

warming the global undernourished population would be 530 to 550 million compared to 540 to 590 

million at 2⁰C. Uncertainty is wide, but taking a worst case-perspective suggests that the additional 

0.5⁰C of warming may place around 40 million more people at risk. 

 

Overall, climate change may impact on undernutrition through various paths, and, a number of global-

level modelling studies suggest that climate change - even at “low levels” – will place significantly 

more people at risk.  A key question arising from this is: given the complexity of the climate-

undernutrition relation, which aspects of this have been focussed upon when developing our 

understanding? i.e. How do we know what know? This is addressed in Chapter 2.  
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Chapter 2. Critical overview of the literature: How we know what we 

know about the potential impacts of climate change on undernutrition 

at the global-level 

Introduction 

As discussed in Chapter 1, both the causation of undernutrition and the relation between climate 

change and undernutrition are complex. Consequently, no single model of the potential impacts of 

climate change on undernutrition will be able to capture the whole of this relation. The implication is, 

that when developing such models, choices about which pathways are brought into focus must be 

made, although these choices may be made implicitly or by necessity due to data and/or knowledge 

limitations. 

In recent years, an increasing number of papers have made the case for introducing mathematical 

modelling methods11 into population health that are better able to deal complexity (e.g. Hammond 

and Dubé, 2012, El-Sayed and Galea, 2017, Maglio and Mabry, 2011, Mellor et al., 2016). These 

approaches represent a potential advance, as they allow – for example – system feedbacks to be 

represented and emergent properties to be examined. However, what is generally omitted from 

discussions is that these methods do not alleviate the need to make choices about how a system is 

represented. In fact, arguably, given the flexibility of the methods and the sensitivity of model 

behaviour to its specification (Puccia and Levins, 1985), these methods may make these choices even 

more important.  

The upshot is, regardless of the technical method adopted, abstraction cannot be avoided (e.g. Levins, 

2006). It is always necessary “to simplify … models in a way that preserves the essential features of 

the problem” (Levins, 1966). Crucially, these essential features are not fixed: they are a function of 

(amongst other things) the particular question of interest (Hedström, 2005), what is already known 

(Levins, 1966), and the theory of the causation being employed (Krieger, 2011). Further, such choices 

are not merely academic considerations; they may have real world consequences, as they draw 

attention to particular causes of, and solutions to, the health outcome of interest (for relevant 

discussions, see: Scanlan, 2003, Buttel, 2000, Le Heron, 2013, Levins, 1966, Krieger, 2011, Krieger, 

2013).  

11 For example, systems dynamics modelling and agent-based modelling.  

20



Given this, the underlying theme of the critical literature overview is abstraction choice, which is 

addressed by considering: how we know what we know about climate change and undernutrition at 

the global-level. That is, it examines the choices that have been made about where to focus when 

modelling the causes of undernutrition and how climate change may impact on it12.  

 

Methods 

I adopted a three-stage process. Firstly, I identified global-level modelling studies that include 

estimates of the impacts of climate change on an undernutrition-related outcome (e.g. 

undernourishment or “proportion at risk of hunger”13, underweight, stunting14, dietary deficiency15). 

This was an iterative process carried out over the course of the PhD, with literature being identified 

as part of the development of each of the component papers. To do this, I drew on existing 

comprehensive reviews (Parry et al., 2009, Smith et al., 2014, Wheeler and von Braun, 2013, 

Schmidhuber and Tubiello, 2007, Myers et al., 2017), personal communications with other groups 

working in this area, and informal searches of standard databases (e.g. Medline, Scopus). The time 

period covered by the literature extends from 1994 (the year of the earliest paper that was identified) 

to the year 2017 (which was prior to the submission of Research Paper 3 (Chapter 5) to a journal16)17.  

In the second stage (at each step in the iterative process), I evaluated the identified papers from the 

perspective of the underlying conceptualisation of the relation between climate change and 

undernutrition rather than in terms of their specific findings. This was done at a relatively high level 

of abstraction. For example, if a suite of crop models were employed as part of an overall model, the 

specific crops modelled or the particular crop model used would not be considered relevant from the 

perspective of this review18; what would be considered important is that (i) that crop models were 

12 In addition to this literature overview, Chapter 1 provides a brief summary of the literature and refers to a 
number of reviews by other authors, and, each of the papers in Chapters 4, 5, and 6 include brief literature 
reviews.  
13 These first two outcomes are used synonymously in the literature reviewed and are modelled using a method 
developed by the FAO (2017a); also see Chapter 1. 
14 These second two concepts are anthropometric measures of nutrition status. “Underweight” is low weight-
for-age, “stunting” is low height-for-age (WHO, 2017); also see Chapter 1. 
15 For example, deficiency of a micro- or macronutrient. 
16 Note that Research Papers 1 and 2 were published during the period covered by the literature overview.  
17 Since this literature overview was carried out, additional global-level climate-undernutrition papers have 
been published (e.g. Beach et al., 2019, Fujimori et al., 2019, Nelson et al., 2018, Zhu et al., 2018). While there 
have been ongoing methodological advances (e.g. Smith and Myers, 2018) the essence of the underlying 
conceptualisations have remained the same and the conclusions of this overview are unaffected.   
18 This is not intended to suggest that these details are not relevant when interpreting the findings of a paper; 
only that they are not relevant when developing an abstract conceptual understanding of the approach 
employed in a paper.  
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included in the conceptualisation, and (ii) the way in which these were ultimately linked to human 

health.  

In the third stage, I grouped the papers by the general types of conceptualisation employed.  

The findings of the above are presented in the results section. In the discussion section, I consider the 

implications the adopted conceptualisations have for the development of our understanding of the 

climate-undernutrition relation.   

 

Results  

I identified 19 papers published over the past two and a half decades (Table 1). The primary purpose 

of many of these papers was not to estimate impacts on human health (see article titles in Table 1). 

However, in all these papers undernourishment or undernutrition estimates were made as part of the 

modelling process, and the purpose of this review is to assess these papers from a population health 

perspective rather than the perspective of central interest to the paper’s authors. 

When the underlying conceptualisations used in the papers are considered, it is seen that in all papers 

the route from climate to undernutrition is via the impacts of climate change on food production. This 

is represented in two general ways – as changes in food quantity, or, food quality - and the papers 

have been grouped accordingly. The food quantity group comprises 16 papers (the first published in 

1994), where quantity is represented as national-level calorie availability. The food quality group is 

comprised of 3 papers (the first published in 2015), where quality is represented as micronutrients 

(zinc), macronutrients (protein), or food groups (e.g. fruit and vegetables) (Table 1). In both groups of 

papers, populations at risk of hunger or undernutrition are represented as consumers confronted with 

a climate change-impacted food supply. 

Models centred on quantity of food produced 

All the papers in this group are based on the same underlying general conceptualisation of how climate 

change will impact on undernutrition, which may be represented by a chain of linked component 

models (Figure 2, Panel A). The starting point is climate models (providing, for example, temperature 

and rainfall data for future worlds) which are used to drive a suite of crops models (generally 

comprised of some combination of wheat, maize, soy, rice, and groundnut). The resulting climate-

associated changes in crop production are then extrapolated to estimate climate-associated changes 

in all food production.  
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Table 1 Global-level climate-undernutrition modelling studies that include a health-related outcome, grouped by whether 
they focus on food quantity of food quality a 

 
Author/year 

 
Title 

Health-related 
outcome 

Models based on food quantity (calorie availability) 

Rosenzweig and 
Parry (1994) 

Potential impact of climate change on world food supply Undernourishmentb 

Parry et al. 
(1999) 

Climate change and world food security: A new assessment Undernourishment 

Parry et al. 
(2004) 

Effects of climate change on global food production under SRES emissions 
and socio-economic scenarios 

Undernourishment 

McMichael et 
al. (2004) 

Global Climate, In: Comparative Quantification of Health Risks: Global and 
Regional Burden of Disease due to Selected Major Risk Factors 

Undernourishment 

Fischer et al. 
(2005) 

Socio-economic and climate change impacts on agriculture: an integrated 
assessment, 1990-2080. 

Undernourishment 

Tubiello and 
Fischer (2007) 

Reducing climate change impacts on agriculture: Global and regional 
effects of mitigation 

Undernourishment 

Nelson et al. 
(2009) 

Climate change: Impact on agriculture and costs of adaptation Underweight 

Nelson et al. 
(2010) 

Food security, farming, and climate change to 2050 Underweight 

Lloyd et al. 
(2011) 

Climate change, crop yields, and undernutrition: Development of a model 
to quantify the impact of climate scenarios on child undernutrition 

Stunting 

Lloyd et al. 
(2014) 

Undernutrition. In: Quantitative risk assessment of the effects of climate 
change on selected causes of death, 2030s and 2050s. 

Stunting, stunting-
attributable mortality 

Ishida et al. 
(2014) 

Global-scale projection and its sensitivity analysis of the health burden 
attributable to childhood undernutrition under the latest scenario 

framework for climate change research 

DALYsc attributable to 
underweight 

Hasegawa et al. 
(2014) 

Climate change impact and adaptation assessment on food consumption 
utilizing a new scenario framework 

Undernourishment 

Hasegawa et al. 
(2015a) 

Consequence of climate mitigation on the risk of hunger Undernourishment 

Hasegawa et al. 
(2015b) 

Scenarios for the risk of hunger in the twenty-first century using shared 
socioeconomic pathways 

Undernourishment 

Hasegawa et al. 
(2016) 

Economic implications of climate change impacts on human health 
through undernourishment 

Undernourishment and 
DALYs attributable to 

underweight 

Dawson et al. 
(2016) 

Modelling impacts of climate change on global food security. Undernourishment 

Models based on food quality (micro- and macronutrients, food groups) 

Myers et al. 
(2015) 

Effect of increased concentrations of atmospheric carbon dioxide on the 
global threat of zinc deficiency: a modelling study. 

Zinc deficiency 

Springmann et 
al. (2016) 

Global and regional health effects of future food production under climate 
change: a modelling study 

Mortality due to 
underweight, 

overweight/obesity, 
and changed diet 

Medek et al. 
(2017) 

Estimated effects of future atmospheric CO2 concentrations on protein 
intake and the risk of protein deficiency by country and region 

Protein deficiency 

a The papers highlighted in grey are Research Papers 1 and 2 (Chapter 4) in this thesis. 
b Undernourishment is often referred to as “being at risk of hunger”. 
c “DALYs” is Disability-Adjusted Life Years 
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Next, this (along with other factors) drives a global food trade model19, which re-distributes food 

commodities between countries and then estimates post-trade national-level calorie availability. The 

food trade model then connects to an undernourishment model, in which calorie availability is used 

to estimate the expected proportion of a national population that is undernourished. 

 
Figure 2 Panel A: The chain of component models (shown as boxes) underlying global-level climate-undernutrition models 
centred on the quantity of food produced, with future scenarios shown as ovals. Panel B: Example of the further extension of 
the chain on models, with the first model built for this thesis (Chapter 4) indicated by the red arrow. 
Panel B Source: Hasegawa et al. (2016) [Licensed under a Creative Commons Attribution 4.0 International Licence] 

 

Undernourishment was the human health-related outcome of models pre-dating the commencement 

of this thesis (in 2010). As discussed in Chapter 1, undernourishment is a theoretically-based outcome 

that, as it is essentially driven by calorie availability estimates (Svedberg, 2000, Klasen, 2006), does 

not account for how changing socioeconomic conditions may influence future nutrition 20. Given this, 

in the first model built for this thesis (Chapter 4), I extended the chain of models to add a health impact 

model to estimate child stunting (Lloyd et al., 2011) as this better reflects the combined effects of 

climate and socioeconomic conditions in future worlds, and can be more concretely connected to 

19 The food trade model also represents additional economic processes which then feedback to influence 
production decisions; e.g. shifts in land allocated to crop production.   
20 Strictly speaking, this is not entirely true: the undernourishment model attempts to account for within-country 

inequalities in food distribution, but it has been found that this has much smaller influence on changes in 

estimated levels of undernourishment than calorie availability (Svedberg, 2000, Klasen, 2006). Additionally, the 

FAO have recently updated their method which may increase the influence of non-calorie factors (FAO, 2014), 

but to my knowledge the original method is employed in existing climate-undernutrition models. 
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health outcomes21,22. Following this, the stunting model was extended to estimate child mortality 

(Lloyd et al., 2014) (also described in Chapter 4).  

Since then, the above stunting model has itself been incorporated into the chain of models, with other 

groups further extending the chain to estimate more detailed health-related outcomes such as 

Disability-Adjusted Life Years (DALYs) as well as their economic implications (e.g. Ishida et al., 2014, 

Hasegawa et al., 2016) (Figure 2, Panel B). 

The general approach utilised in the food quantity-centred models has three additional features 

relevant to health modelling. First, health impact models sit at the end of the chain of models. This 

means that they (i.e. the health impact models) necessarily inherit the assumptions made in the 

upstream models. What may be reasonable assumptions given the concerns and disciplinary 

conventions of modellers working upstream may prevent health modellers from considering particular 

processes. For instance, from an economist’s perspective and for a given application, it may be 

considered reasonable to assume “perfect markets” in a trade model. This assumption would then be 

passed along the chain. From a health perspective, however, the potential role of imperfect food 

markets or externalities (e.g. arising from agricultural subsidies that favour large scale farms) in 

generating undernutrition risk in certain groups may be of central interest (Moore Lappe and Collins, 

2015, Rossett, 2006). This issue is not necessarily a problem in itself (assumptions must be made), but 

it curtails the range of what health modellers may investigate23.   

The second feature is the way future scenarios are used in the chain of models. Climate scenarios 

(which are represented as greenhouse gas emissions or radiative forcing (Moss et al., 2010)) enter via 

the climate models, and socioeconomic scenarios (e.g. demographics and incomes) enter via the 

trade, undernourishment, and health impact models (Figure 2, Panel A). In this approach, while the 

climate and socioeconomic scenarios are usually paired in plausible combinations, climate does not 

directly impact on the socioeconomic scenario input data (although some recent models include 

indirect feedback (e.g. Hasegawa et al., 2016)). It is expected, however, that climate change will affect 

human health, including nutrition, via its impacts on socioeconomic conditions including – for example 

21 See Chapter 1.  
22 Around the same time, a group at the International Food Policy Research Institute (IFRPI) (Nelson et al., 2009, 
Nelson et al., 2010) similarly extended the chain by estimating child underweight. However, their underweight 
model was limited by the fact that scenario-specific data were not available to drive it. Additionally, the 
upstream component models represent average changes in food supply over the long term: the implications of 
this for nutrition are better captured by stunting than underweight. For a brief discussion, see Lloyd et al. (2011) 
in Chapter 4.  
23 At the same time, perspectives taken and assumptions made in upstream models may enable health modellers 
to explore new issues.  
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– poverty and incomes (Hallegatte et al., 2016). These routes are not represented in the papers 

included in the overview.  

Thirdly, as noted above, over time, the general strategy employed to increase our understanding of 

the potential impacts of climate change on undernutrition has been to lengthen the chain of models 

(Figure 2, Panel B). In doing this, the component models have been improved and future scenarios 

have evolved, but this group of models has arguably – at least in essence – been asking the same 

question each time (albeit attempting to answer it more precisely and/or focussing on particular sub-

questions) rather than interrogating the problem from new angles. I return to this issue in the 

discussion.  

Models centred on quality of food produced 

This group of papers represent a recent development in climate-nutrition modelling. The focus has 

shifted to how climate change-associated24 changes in the quality of food (zinc or protein content) or 

dietary composition (e.g. fruit and vegetable consumption) may impact on undernutrition (due to 

dietary deficiencies) or non-communicable diseases.  

Viewed in terms of conceptualisation, two approaches have been used. In the first approach, 

Springman et al (2016) (who focus on agriculturally-mediated dietary changes) begin with the initial 

part of the chain of models used in the “food quantity” papers, running from the climate to the trade 

model (Figure 3, Panel A)25. At this point, a new dietary component model is linked to the trade model. 

Rather than only considering calorie availability, the dietary component model assesses the availability 

of a wider range of food groups and nutrients. This is then connected to a new set of health sub-

models which estimates how changed dietary quality may impact on various health outcomes.  

While this is an important innovation, for the purposes of this review the approach may be seen as a 

branching of the existing chain of models. The pathway from climate to undernutrition remains 

centred on changed food production, albeit with more detailed representation of food available to 

consumers.  

 

24 Here, climate change may be represented directly as changed weather conditions, or indirectly as changed 
atmospheric carbon dioxide.  
25 The climate-crop-trade modelling was done by the same group that provided input data for a number of the 
‘food quantity’ papers (Lloyd et al., 2011, Lloyd et al., 2014, Nelson et al., 2009, Nelson et al., 2010). 
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Figure 3 Underlying conceptualisations employed in papers focussed on changes in food quality, where Approach 1 (Panel 
A) is a branching of the chain of models used in the food quantity papers (Figure 2, Panel A) and Approach 2 (Panel B) is a 
based on FAO Food Balance Sheets. 

 

The second approach was used by Myers et al (2015) to look at zinc deficiency and Medek at al (2017) 

to look at protein deficiency (Figure 3, Panel B). The starting point is Food Balance Sheets for the 

present (produced by the FAO (2017b)), which give detailed country-level estimates of per capita 

availability of standard groups of food commodities. A series of calculations are used to estimate the 

total zinc or protein content of the available food, and the expected distribution of these nutrients 

across national populations is then modelled. This provides an estimate of dietary quality in the 

present.  

As well as causing climate change, rising atmospheric carbon dioxide levels are expected to reduce the 

zinc and protein content (along with other nutrients) of food. To simulate future diets under climate 

change, current Food Balance Sheets are “exposed” to higher levels of carbon dioxide and the changes 

in nutrient content are estimated. These reduced nutrient levels are distributed across national 

populations to estimate future dietary quality. Climate change-attributable changes in dietary quality 

are calculated as the difference between the former and latter estimates. This also represents an 

important innovation; however, the essence of the conceptualisation remains centred on changes in 

food production. 
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Discussion 

The above papers have led to ongoing advances in our knowledge of the potential impacts of climate 

change on future undernutrition. The purpose of this overview, however, is not to critique individual 

papers and their findings, but rather to identify patterns and trends in the perspectives and 

conceptualisations used in literature. In these terms, the central perspective taken in all papers (i.e. 

both those focussed on food quantity and food quality) are variants of:  

Climate change-associated changes in food production 

– represented as either food quantity or quality – 

will impact on the food supply available to consumers, 

and this will influence the risk of future undernutrition26. 

While acknowledging the oversimplification, this may be boiled down to the following theory of 

hunger or undernutrition:  

Less or lower quality food means more undernutrition. 

Intuitively, this may suggest that existing models have focussed exactly on the most pressing issues: 

millions of people are already hungry, global population is growing rapidly, and climate change 

threatens our ability to produce food. A lack of food appears to be the central concern, and this 

suggests increased production is paramount.    

At present, however, despite the persistence of undernutrition, there is currently enough food 

produced “to make us all chubby”, even after accounting for food used for animal feed and biofuels 

as well as waste (Moore Lappé, 2013). Historically there has been a shift from “hunger amidst scarcity” 

to “hunger amidst abundance” (Araghi, 2000). This suggests that, over time, the dominant causes of 

hunger have shifted. Given the large role played by socioeconomic factors in shaping undernutrition, 

and that socioeconomic conditions are changing rapidly, this possibility is plausible. Of course, in the 

future, the threat of genuine scarcity may return, but this does not obviate the need to better 

understand other processes that are shaping undernutrition and how climate change may impact on 

them.  

The above raises the question: alongside examining the role of the quantity and/or quality of food 

produced as a cause of future undernutrition, which other perspectives could be usefully explored? 

One way of approaching this question is via theory.   

26 With Springman et al (2016) also considering obesity and non-communicable diseases.  
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There are many theories of hunger and undernutrition (e.g. Mazoyer, 2001, Moore Lappe and Collins, 

2015, Rieff, 2016, Devereux, 1993, Fogel, 2004). A useful way to approach these is to use a general 

typology of macro-theories27 of hunger developed by Buttel (2000)28, in which theories are grouped 

along two dimensions (Table 2). The first dimension reflects the importance given to food production. 

Theories may be “productionist” – that is, the production of insufficient quantities of food is seen as 

the main cause of hunger - or “non-productionist” – which, while recognising that the quantity of food 

produced is important, do not see this as the central issue. The second dimension reflects the 

importance given to population. “Neo-Malthusian” theories see population growth as a key cause of 

undernutrition, whereas as “non-Malthusian” theories see population as important but not central. 

This gives a typology of four groups of theories.    

Table 2 A typology of macro-theories of hunger and undernutrition, classified along dimensions relating to (i) the importance 
given to the quantity of food produced (vertical), and (ii) the importance given to population growth (horizontal). 

Assumptions about the 
importance of increased 

food production 

 
Assumptions about the importance of population growth 

Non-Malthusian Malthusian 

 
 

Productionist 

Modernisation 
Hunger is caused by a lack of 

modernisation and technology 
 

Productionist Neo-Malthusian 
Hunger is caused by food production falling 

behind population growth 

Solution: “Development” Solution: Agricultural research and development 

 
 

Non-productionist 

Political Economy 
Hunger is caused by social inequality and 

poverty produced both globally and 
locally 

 

Ecological Neo-Malthusian 
Hunger is caused by population growth and 

environmental degradation 

Solution: Address root causes of 
inequality and poverty (i.e. tends to look 

at factors internal to society) 

Solution: Live within the limits of the Earth  
(i.e. tends to look at factors external to society) 

Based on Buttel (2000), Table 2. 

Critically, as shown in the table, each theory potentially acts as a guide to practical action by suggesting 

particular types of solutions to undernutrition. These range from general development (akin to 

modernisation theories of development (Payne and Phillips, 2010)) to science (i.e. agricultural 

research and development) to recognising the “limits to growth” (i.e. factors largely, but not entirely, 

external to society) to addressing poverty and inequality (i.e. factors largely internal to society).  

In this conceptualisation, particular theories aren’t seen as “right” or “wrong”, and there is some 

empirical evidence to support each of them. Rather, each theory is seen as a lens through which to 

view different aspects of complex (and changing) reality. Further, the groups of theories are not 

27 Buttel notes these macro-theories (or ‘families of theories’) attempt to focus on the general dynamics of 
hunger, but in doing so gloss over a number of important factors including war, disasters, and gender relations. 
For the purposes of this overview, however, these macro-theories are sufficient to identify the broad 
perspectives taken in previous climate-undernutrition modelling.   
28 Of note, Buttel examined theories of hunger in general; not theories in light of the potential threat to 
nutrition posed by climate change. 
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intended to be rigidly distinct, and in practice the central theory underlying a given model may partially 

incorporate elements of other theories (I return to this below).  

To identify gaps in the climate-undernutrition modelling literature, the papers included in the 

overview may be assessed in relation to the typology. It is clear that all the papers have adopted 

“productionist” perspectives, with particular papers tending more towards “modernisation” or “neo-

Malthusian” perspectives depending on their specific assumptions (e.g. for the former, as Gross 

Domestic Product per capital (GDPpc) rises the risk of undernutrition may be assumed to fall (e.g. 

Lloyd et al., 2011); in the latter, models may attempt to account for improvements in agricultural 

technology (e.g. Hasegawa et al., 2015b)). Additionally, elements of ecological limits appear in that, 

for example, assumptions regarding soil degradation may be included (e.g. Nelson et al., 2010).   

Perspectives that view poverty and inequality as the major causes of undernutrition, however, have 

not been represented in the modelling literature. Given that, as noted above, (i) there is currently 

sufficient food to feed the global population (Moore Lappé, 2013), (ii) poverty and hunger tend to 

occur together (Pogge, 2010)29, and (iii) climate change is expected to impact on patterns of incomes 

and poverty (Hallegatte and Rozenberg, 2017), this appears to be a crucial omission. Two models in 

this thesis (Chapters 5 and 6) attempt to begin to fill this gap.   

A more general suggestion also arises from the above. Table 2 shows the wide range of processes that 

are associated with undernutrition. Arguably, no single model will be able to capture them all 

simultaneously. This is because of the inherent limits of the technical methods (regardless of how 

sophisticated) that a model may employ. Further, even if a given model were able to capture all the 

major processes (or at least, those that a particular modelling group thought were the most 

important), the causes of undernutrition are contested, as are the types of solutions that are 

considered to be viable: thus, different models (and modelling strategies) would be required to give 

representation to these differing ideological standpoints. For instance, Buttel (2000) argues that 

“productionist neo-Malthusian” perspectives tend to be widely accepted because the solution they 

point to is increased production (i.e. a technological solution). In contrast, “ecological neo-

Malthusian” perspectives are less palatable to many as they suggest solutions lie in deeper social 

changes such as the need to constrain expansion and consumption. In sum, this suggests that, in order 

to gain a broad range of new insights into complex health problems such as undernutrition, it is useful 

– if not necessary – to develop multiple models, each viewing the problem from a different 

perspective.  

29 In some conceptualisations, poverty is defined by hunger (Ravallion, 1992). 

30



Conclusions 

Over the past 25 years, 19 papers (including those in Chapter 4 of this thesis) have modelled the 

potential impacts of climate change on undernourishment or undernutrition at the global-level. 

Assessing the papers in terms of their underlying conceptualisations shows that all papers rest on 

variants of how climate change will impact on food supply (in terms of quantity or quality) and how 

this in turn may impact the nutritional status of populations of consumers. This captures an important 

but limited range of the possible conceptualisations of the climate-undernutrition relation, and 

predominately draws attention to increasing food production.  One potentially crucial but omitted 

perspective suggests the root causes of undernutrition lie in patterns of poverty and inequality: the 

models developed in Chapters 5 and 6 adopt different standpoints within this general perspective.  

The overview has also raised the wide range of processes that generate undernutrition and argues 

that no single model can simultaneously represent them all, partly because of the contestation over 

the causes of undernutrition and its solutions. Given this, the concluding chapter (Chapter 7) 

summarizes how the findings of the models developed for this thesis collectively illustrate the utility 

of approaching complexity with a set of models based on different abstractions. 

In the following chapter (Chapter 3), I outline the aims and objectives of this thesis.  
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Chapter 3. Aims, objectives, and chapter structure 

The previous chapters have established that: (i) the causation of undernutrition, as well as the relation 

between climate change and undernutrition, are complex and contested, and may be viewed through 

various theoretical lenses, and (ii) previous global-level modelling - at least prior to the publication of 

Research Paper 3 (Chapter 5) - has consistently focussed on how climate-associated30 changes in food 

production (as quantity and/or quality) may affect food supplies available to consumers. Taken 

together, this means significant knowledge gaps exist.    

A central tenet of this thesis is that when faced with complex health issues such as undernutrition, to 

gain a fuller understanding, it is useful (if not necessary) to develop multiple models, each based on 

different conceptualisations or theories. Further, it follows that new insights gained from one model 

can act as a guide to the questions addressed in a subsequent model: that is, model building can be 

seen as an ongoing process (Levins, 1966, Levins, 1993). Relatedly, Nancy Krieger and George Davey 

Smith (2016) have argued that “robust causal inference” should “comprise a complex narrative … from 

diverse perspectives … produced by myriad methods”.   

Drawing on these ideas, the overall aim of the proposed PhD is: 

To develop - and illustrate the benefits of developing - multiple global-level undernutrition 

models, each adopting a different perspective and making different assumptions, and each 

providing different but complementary insights into how climate change may impact on future 

undernutrition and health.  

This aim will be met via the following objectives, with the chapter addressing the objective shown in 

square brackets: 

1. Develop a critical overview of the global-level climate-undernutrition literature in order 

to identify:  

i. how the climate-undernutrition relation has been conceptualised, and  

ii. some omitted but potentially important conceptualisations [Chapter 2].  

2. Develop and run three new global-level climate-undernutrition models, viewing the 

relation from the perspectives of: 

i. changed crop productivity [Chapter 4], 

ii. low income populations and relative food prices [Chapter 5], and 

30 Including both the direct effects of climate change and impacts associated with raised atmospheric carbon 
dioxide. 
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iii. the development trajectories of different styles of farming31 in the global food 

system [Chapter 6]. 

3. Summarize the ways in which the insights from the new models broaden our 

understanding of the climate change-undernutrition problem, and thus illustrate the 

utility of approaching complexity with a set of models based on different abstractions 

[Chapter 7]. 

 

The chapter structure of the thesis is shown in Figure 4. Running diagonally through the figure, the 

grey boxes joined by the solid arrows show the chapters. The underlying logic which links the chapters 

is shown by the paths marked with the curved dashed arrows: that is, this shows how the key insights 

of one chapter lead to the question addressed in the next chapter.  The aim of the thesis is shown in 

the grey box in the top right.  

31 ‘Styles of farming’ refers to, for instance, how food is produced and the way farmers relate to markets, with a 
key distinction being between peasant and entrepreneurial farming (van der Ploeg, 2018).   
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Figure 4 Chapter structure, with the chapters shown in the diagonally running grey boxes joined by solid arrows, and the logic linking the chapters shown by the paths marked by dotted curved 
arrows.  
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This PhD contains sections written specifically for the thesis (Chapters 1, 2, 3, and 7), as well as 

published papers (Chapters 4 and 5). Chapter 6 is an extended version of a paper in preparation for 

submission to a journal.  
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Chapter 4. Modelling climate change impacts on child stunting through 

changed crop productivity 

Background 

This chapter is composed of two research papers. It focusses on the development and application of 

a statistically-based model (multiple regression) that assesses how climate change-associated changes 

in crop productivity may impact on future child stunting and mortality. 

Research Paper 1 (Lloyd et al., 2011) was developed as part of the NERC (Natural Environment 

Research Council, UK) funded multidisciplinary QUEST-GSI project32, with additional model inputs 

provided by the International Food Policy Research Institute (IFPRI). The paper describes the 

development of the model and provides estimates of climate change-attributable moderate and 

severe stunting in children aged <5, in South Asia and Sub-Saharan Africa, under moderate to high 

climate change, for one socioeconomic scenario, for the year 2050.  

Research Paper 2 (Lloyd et al., 2014) was part of a World Health Organization (WHO) report on the 

potential health impacts of climate change (Hales et al., 2014). For this report, the model developed 

in Research Paper 1 was extended to estimate stunting-attributable child mortality. The paper 

describes the model and makes estimates of climate change-attributable moderate and severe 

stunting in children <5, as well associated child mortality, in 12 world regions, under moderate climate 

change, under three socioeconomic scenarios, for the 2030s and 2050s. As this paper was a chapter 

of a report, relevant associated chapters and the reference list are provided in the accompanying 

appendix (“Research Paper 2: Supplemental Material”) rather than in the chapter itself.  

 

  

32 QUEST: Quantifying and Understanding the Earth System; GSI: Global-Scale Impacts. 
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Research Paper 1: Climate Change, Crop Yields, and Undernutrition: 

Development of a Model to Quantify the Impact of Climate Scenarios on Child 

Undernutrition 

For accompanying supplemental material, see the appendix “Research Paper 1: Supplemental 

Material”. 

Note on copyright 

Extract from the Environmental Health Perspectives (EHP) website: 

“All documents published by EHP are in the public domain. PDF copies of published articles 

can be freely shared and distributed without permission from either EHP or the authors. … 

(A)uthors of research articles do retain copyright of the article’s contents. … You do not need 

permission from EHP to reuse your own content. This includes reproducing figures and using 

your article as an attachment or appendix.” 

Source: https://ehp.niehs.nih.gov/about-ehp/copyright-permissions (Last accessed: 6 Nov, 2019) 
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Hunger and undernutrition are pervasive, 
thought to be worsening in absolute terms, 
and are major contributors to global ill health 
[Black et  al. 2008; Food and Agricultural 
Organization of the United Nations (FAO) 
2009]. More than one billion people are under­
nourished (FAO 2009), and about a third of 
the burden of disease in children < 5 years of 
age is attributable to undernutrition (Black 
et al. 2008). Economic growth is anticipated 
by many to reduce future undernutrition 
(Smith and Haddad 2002), although recent 
observations do not support this assumption 
(Subramanyam et al. 2011).

Global food security depends on a range 
of factors (Schmidhuber and Tubiello 2007), 
with cereal production playing a major role 
(Parry et al. 2009). Data suggest that global 
per capita cereal production plateaued during 
the 1980s and has since declined (Magdoff and 
Tokar 2010), despite production increases in 
some regions (FAO 2011). Further, with eco­
nomic growth, dietary preferences tend toward 
greater meat consumption, placing greater 
demands on cereal production to provide ani­
mal feed (Msangi and Rosegrant 2011).

Concern is growing that efforts to reduce 
undernutrition in the coming decades may be 
threatened by global climate change (Nelson 
et al. 2010; Parry et al. 2009; Schmidhuber and 
Tubiello 2007). Scientific assessments indicate 

that warming will have an overall negative 
impact on major cereal yields in low-latitude 
areas, although yields may increase in some 
high-latitude areas (Easterling et al. 2007). 
Climate change could place an additional 
5–170 million people “at risk of hunger” by 
the 2080s (Parry et al. 1999, 2004; Rosenzweig 
and Parry 1994). Food security is now one of 
the leading concerns associated with anthropo­
genic climate change (Parry et al. 2009).

A number of terms are used to describe hun­
ger and undernutrition. “Undernourishment” is 
not a health outcome per se; it is a theoreti­
cal model-based estimate of access to calories 
developed by the FAO and is defined as the 
proportion of people “whose dietary energy 
consumption is continuously below a minimum 
dietary energy requirement for maintaining a 
healthy life and carrying out light physical activ­
ity with an acceptable minimum body-weight 
for attained-height” (FAO 2010). That is, it has 
one final cause: a lack of food. “At risk of hun­
ger” is synonymous with undernourishment.

“Undernutrition” refers to a physical state 
and is measured using (among other things) 
anthropometric indices such as stunting 
(height-for-age) and underweight (weight-for-
age) [World Health Organization (WHO) 
2010]. A lack of food—that is, under­
nourishment—is one of the many causes 
of undernutrition, which also include poor 

water and sanitation provision, low levels of 
women’s education, repeated episodes of infec­
tious diseases, and low birth weight [United 
Nations Children’s Fund (UNICEF 1990); for 
more details on causes, see Black et al. 2008; 
UNICEF 1990]. Checkley et al. (2008), for 
example, estimated that 25% [95% confidence 
interval (CI): 8, 38%] of irreversible stunting 
at 24 months of age could be attributed to 
having had five or more episodes of diarrhea. 
Although it can be argued that undernutrition 
itself is not a health outcome, undernutrition 
can be directly linked to increased risk of 
death and poor health (Black et  al. 2008). 
Additionally, child undernutrition has long-
term consequences for the health and earning 
potential of adults (Victora et al. 2008).

To quantify future health burdens, it is 
preferable to model undernutrition (which 
refers to a physical state and accounts for com­
plex causation) rather than undernourishment 
(which is a theoretical concept). They are often 
poorly correlated (Klasen 2006; Svedberg 
2002) and this suggests that undernourishment 
is a poor proxy for undernutrition. The WHO 
concluded that (using a number of simplify­
ing assumptions) undernutrition represented 
a significant proportion of the total burden 
of disease estimated to be attributable to cli­
mate change in 2000 (McMichael et al. 2004). 
Only one group has provided more recent 
quantitative estimates of future undernutrition 
attributable to climate change. Nelson et al. 
(2009) reported that, for two climate sce­
narios, climate change may increase under­
weight in children < 5 years of age by around 
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Climate Change, Crop Yields, and Undernutrition: Development of a Model 
to Quantify the Impact of Climate Scenarios on Child Undernutrition
Simon J. Lloyd, R. Sari Kovats, and Zaid Chalabi

Department of Social and Environmental Health Research, London School of Hygiene and Tropical Medicine, London, United Kingdom

Background: Global climate change is anticipated to reduce future cereal yields and threaten food 
security, thus potentially increasing the risk of undernutrition. The causation of undernutrition is 
complex, and there is a need to develop models that better quantify the potential impacts of climate 
change on population health.

Objectives: We developed a model for estimating future undernutrition that accounts for food and 
nonfood (socioeconomic) causes and can be linked to available regional scenario data. We estimated 
child stunting attributable to climate change in five regions in South Asia and sub-Saharan Africa 
(SSA) in 2050.

Methods: We used current national food availability and undernutrition data to parameterize and 
validate a global model, using a process-driven approach based on estimations of the physiological 
relationship between a lack of food and stunting. We estimated stunting in 2050 using published 
modeled national calorie availability under two climate scenarios and a reference scenario (no cli-
mate change).

Results: We estimated that climate change will lead to a relative increase in moderate stunting of 
1–29% in 2050 compared with a future without climate change. Climate change will have a greater 
impact on rates of severe stunting, which we estimated will increase by 23% (central SSA) to 62% 
(South Asia).

Conclusions: Climate change is likely to impair future efforts to reduce child malnutrition in 
South Asia and SSA, even when economic growth is taken into account. Our model suggests that to 
reduce and prevent future undernutrition, it is necessary to both increase food access and improve 
socioeconomic conditions, as well as reduce greenhouse gas emissions.

Key words: cereal crops, climate change, Monte Carlo simulation, quantitative model, under
nourishment, undernutrition. Environ Health Perspect 119:1817–1823 (2011).  http://dx.doi.
org/10.1289/ehp.1003311 [Online 15 August 2011]
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20% by 2050. Underweight was estimated 
using an equation developed by Smith and 
Haddad (2000), which is driven by per capita 
calorie availability and socioeconomic indica­
tors: the ratio of female to male life expectancy, 
female enrollment in secondary education, 
and access to improved water supply. Future 
per capita calorie availability was estimated by 
modeling crop yield and global food trade. 
All other nonclimate factors were assumed to 
stay constant over time (i.e., unchanged from 
baseline values). These assumptions are likely 
to have led to an overestimate of the future 
burden attributable to climate change because 
this approach assumes that living conditions 
in countries will improve little over the next 
40 years. This is not consistent with historical 
trends; between 1970 and 1995, 43% of the 
reduction in child underweight has been attrib­
uted to improved female education, compared 
with 26% for increased food availability and 
19% from improved water access (Smith and 
Haddad 2000).

More recently, the same group produced 
updated estimates for a broader range of sce­
narios using a similar strategy (Nelson et al. 
2010). Based on expert opinion, the socioeco­
nomic variables driving the underweight model 
were varied with time but were considered 
constant across three socioeconomic scenarios 
broadly representing pessimistic, business-as-
usual, and optimistic economic growth.

Despite the importance of socioeconomic 
influences on health, the data currently avail­
able for climate impact studies are largely lim­
ited to population and gross domestic product 
(GDP) projections that were created for esti­
mating future greenhouse gas emission concen­
trations. At present, any modeling efforts must 
work within these constraints. However, atten­
tion is now being focused on creating a wider 
range of plausible socioeconomic scenarios for 
climate impact assessments (Moss et al. 2010).

We developed a parsimonious model for 
estimating future undernutrition attributable 
to global climate change, specifically due to its 
impacts on crop productivity. We then esti­
mated the future impact of climate scenarios 
on undernutrition in children for five world 
regions in Africa and Asia in 2050 using previ­
ously published estimates of climate change–
attributable changes in calorie availability from 
Nelson et al. (2009). [The more recent esti­
mates (Nelson et al. 2010) are not included in 
our assessment because they were released after 
the completion of our project.]

Materials and Methods
We first describe the development and fit­
ting of a model for estimating the prevalence 
of stunting. Second, we outline the process 
of estimating the proportion undernourished 
(PoU) using per capita calorie availability esti­
mates from Nelson et al. (2009). Finally, we 

discuss the simulation process for estimating 
future undernutrition attributable to global 
climate change.

Model development. Our outcome of 
interest is stunting in children < 5 years of age, 
because this best captures the impact of condi­
tions over the long term (Black et al. 2008). 
Children are considered moderately stunted 
if they are > 2 SDs below the mean expected 
height-for-age and severely stunted if > 3 SDs 
below the mean (de Onis and Blossner 2003).

Scenario data are limited essentially to 
future food availability and per capita GDP, 
and many causes of stunting cannot be explic­
itly modeled. We considered stunting to have 
two main causes, which we refer to as “food 
causes” and “nonfood causes.” Food causes 
are represented as PoU, which accounts for 
climate change effects on calorie availability 
(via changes in crop productivity) and food 
access. [Stunting has food causes other than 
calories, e.g., micronutrient deficiencies (Black 
et al. 2008), but these are not represented in 
PoU, nor are they modeled in climate-crop 
models.] Nonfood causes are represented as 
a “black box cluster” of socioeconomic fac­
tors acting at various levels and represent the 
wide range of social and demographic causes 
of stunting, such as low female literacy and 
poor health care access (Frongillo et al. 1997). 
Nonfood causes are modeled using per capita 
GDP and the Gini coefficient for income dis­
tribution to generate a “development score,” 
as described below.

The conceptual model is represented by 
two general equations:

	 yijk = αk + βk xij + γk wij + θk xijwij	 [1] 
for every i, j; k = 2, 3,	

	 yij1 = 1 – yij2 – yij3	 [2] 
for every i, j; k = 1,

where yijk is the proportion of children 
< 5 years of age stunted in country i, in region 
j, at level k, where k is 1 if no/mild stunting, 
2 if moderate stunting, or 3 if severe stunting; 
xij is food causes of stunting, represented by 
the PoU in country i, in region j; and wij is 
nonfood causes of stunting, represented by the 
“development score” (defined below) in coun­
try i, in region j. The parameters αk, βk, γk, 
and θk are to be determined: βk is the physi­
ological relation between undernourishment 
and stunting (details given below), γk relates 
the development score to stunting, θk relates 
the interaction between undernourishment 
and the development score to stunting, and αk 
is the regression constant.

Equation 1 is a bilinear model because it 
is a linear function of the independent vari­
ables (xij and wij) and their product (xijwij). 
After estimating moderate (yij2) and severe 
(yij3) stunting, we estimated the proportion 

not or mildly stunted (yij1) as described in 
Equation 2.

The “development score” is an indicator of 
the nonfood causes of stunting. It is driven by 
country-level projections of future per capita 
GDP and the baseline (i.e., most recent esti­
mate available) Gini coefficient (because no 
projections were available). The development 
score is scaled from 0 to 1; it equals 0 when 
socioeconomic conditions are optimal (in terms 
of avoiding undernutrition) and all under­
nutrition is attributable to food causes, and it 
equals 1 when nonfood causes are at their cur­
rent (baseline) global maximum [for additional 
information on development score calculations, 
see Supplemental Material, Annex 1 (http://
dx.doi.org/10.1289/ehp.1003311)].

To parameterize the equations, we assem­
bled a global data set obtaining country-level 
undernourishment estimates from the FAO 
(FAO 2010), per capita GDP and Gini data 
from the World Bank Development Indicators 
(WBDI) database (World Bank 2010), 
and stunting data from the WHO’s Global 
Database on Child Growth and Malnutrition 
(WHO 2010).

Stunting data were matched to under­
nourishment data to within a 1-year period. 
Per capita GDP and Gini coefficient estimates 
were matched as closely as possible to the 
stunting data year. The data set covered the 
period 1988–2008 and contained 186 records 
with complete data. Countries were included 
in the data set more than once if they had data 
for multiple years.

Fitting the model. We decided, a priori, 
to use a process-driven (theory-based) rather 
than a standard data-driven (statistical) 
approach to develop and parameterize the 
model equations. The purpose of the model is 
to describe plausible futures, so we designed it 
to be driven as much as possible by relation­
ships that will be stable over time.

Of the two model variables, we assumed 
that food causes have a more stable relation­
ship with stunting than do nonfood causes 
because food causes are physiologically related 
to stunting, and it is reasonable to assume 
that this relationship will hold over the 
next 50 years. In contrast, we assumed that 
nonfood causes—which we modeled using 
per capita GDP and the Gini coefficient—do 
not necessarily have a stable relationship with 
stunting because the relationship is mediated, 
at least partly, by social and political factors 
that may change over time. Therefore, when 
fitting our model, we first quantified the rela­
tionship between stunting and food causes and 
then considered socioeconomic factors.

We assumed that if someone had insuffi­
cient food, and nonfood causes of stunting were 
absent (i.e., socioeconomic conditions were 
optimal in terms of avoiding undernutrition), 
there would be a predictable risk of stunting; 
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that is, we assumed the relationship between 
food intake and stunting is physiologically 
determined and holds globally. This assumption 
is supported by ample evidence that, at least 
until 6 years of age, all adequately nourished 
and optimally cared for children will have simi­
lar, predictable growth rates (WHO 2006). In 
addition to this food intake–related burden, if 
socioeconomic conditions are poor, there is an 
additional risk of stunting from nonfood causes 
and their interaction with food causes, for 
example, high rates of diarrhea associated with 
inadequate sanitation. We do not consider it 
probable that a country will lack sufficient food 
but otherwise have “optimal” socioeconomic 
conditions; our conception is theoretical.

Using the data set, we estimated the pre­
dictable but unknown physiologically based 
relationship between undernourishment and 
stunting at level k (βk) as

	βk = 	mini,j {yijk /xij; i = 1…, j = 1…}.	 [3]

(The operator mini,j{∙} means the minimum 
of the argument in {∙}.) This minimum pro­
portion was obtained by finding the mini­
mum value of the ratio of yijk to xij among all 
the countries in all regions, where, as defined 
above, yijk represents the proportion stunted 
< 5 years of age in country i, in region j, and 
stunting level k; and xij represents the pro­
portion of the population undernourished in 
county i, in region  j. Because it is unlikely 
that all stunting in a country is caused by 
food causes alone, our estimate of βk will be 
an overestimate of the purely physiological 
relationship between food and stunting. In 
practice, because the minimum observed 
value may be too low because of data errors, 
we chose to use the 5th percentile of the 
distribution of yijk /xij as the best estimate 
of βk and used the 1st and 10th percentiles 
as the boundaries of its plausible range (see 
“Estimating future stunting,” below).

Once the above relationship was found, 
one-fifth of the data set (37 records) was ran­
domly selected and reserved for model valida­
tion; the remainder (149 records) was used to 
parameterize the equations. (To obtain the 
best possible estimate, and considering that 
our method of estimation provides a rough 
approximation, we used the entire data set to 
estimate βk.)

We parameterized the equations in a step­
wise manner. In the first step, we used βk to 
attribute a proportion of stunting to food causes 
in all countries in the parameterization data set:

	 rijk = βk xij		  [4] 
for every i, j, k,

where rijk is the proportion of stunting 
attributable to food causes in country i, in 
region j, at level k.

In the second step, we attributed the 
remaining proportion of stunting to nonfood 
causes and the interaction between food and 
nonfood causes:

	 sijk = yijk – rijk		  [5] 
for every i, j, k,

where sijk is the proportion of stunting attrib­
utable to nonfood causes and the interaction 
between food and nonfood causes in coun­
try i, in region j, at level k. We then used lin­
ear methods to estimate the parameters (αk, 
γk, θk) of the bilinear model:

	 sijk = αk + γk wij + θk xijwij	 [6] 
for every i, j, k.

The model was validated by comparing 
levels of stunting predicted by the model to 
observed stunting in the reserved portion of 
the data set (37 records).

For αk, γk, and θk we used the standard 
errors of the estimates to describe the plau­
sible range of their true values. We carried out 
our analysis with Stata (version 11; StataCorp, 
College Station, TX, USA).

Estimating future population under­
nourished. The model required estimates of 
future PoU with and without climate change. 
Calculation of PoU requires data for a) the coef­
ficient of variation for within-population calorie 
distribution, b) the average minimum calorie 
requirements to avoid undernourishment in 
the population, and c) per capita calorie avail­
ability (FAO 2003). Because projection data 
for a) and b) are not available, we assumed they 
remain at baseline levels. For c), we used esti­
mates made by Nelson et al. (2009) for futures 
with and without climate change. The future 
without climate change (reference scenario) 
was represented with the 1950–2000 climate. 
The two climate change scenarios were derived 
from two climate models [the National Centre 
for Atmospheric Research (NCAR) model and 
the Commonwealth Scientific and Industrial 
Research Organisation (CSIRO) model] 
forced by a medium-high emissions scenario 
[the Intergovernmental Panel on Climate 
Change A2 scenario from the Special Report on 
Emissions Scenarios; see Nakicenovic and Swart 
(2000)]. The two climate scenarios were used to 
address uncertainty in the climate system; the 
NCAR model is warmer and wetter than the 
CSIRO model. The global average increases in 
maximum temperature and precipitation over 
land by 2050 were 1.9°C and 10%, and 1.2°C 
and 2% for the NCAR and CSIRO scenarios, 
respectively. For details of the assumptions in 
the crop modeling (e.g., carbon dioxide fertil­
ization, irrigation, and adaptation responses), 
extrapolations to other food groups, and the 
trade model, see Nelson et  al. (2009). For 
additional information on PoU estimation, see 

Supplemental Material, Annex 2 (http://dx.doi.
org/10.1289/ehp.1003311).

Estimating future stunting. The principal 
input to our simulation model was future 
country-level PoU derived from Nelson et al. 
(2009). We ensured within-scenario consis­
tency by using the same GDP (G. Nelson, 
International Food Policy Research Institute, 
personal communication) and population 
projections [United Nations medium variant, 
2006 revision (United Nations 2007)] used in 
the calorie availability projections. Our esti­
mates of the Gini coefficient were the most 
recent estimates available from the WBDI 
(World Bank 2010).

To account for parameter uncertainty, we 
used a standard Monte Carlo approach. Each 
of αk, γk, and θk were assumed to be nor­
mally distributed about their point estimates 
as defined by their respective standard errors. 
βk was assumed to be uniformly distributed 
between the 1st and 10th percentiles of the 
distribution of yijk/xij. This method produced 
probability density functions (PDFs) of future 
stunting.

We aimed to base each PDF on 100,000 
estimates. We selected the first 100,000 esti­
mates that were > 0 and < 1. By rejecting 
low and high estimates, we potentially intro­
duced an upward or downward bias; to assess 
this, we quantified the proportion of rejected 
results [see Supplemental Material, Table 1 
(http://dx.doi.org/10.1289/ehp.1003311)].

Final estimates were produced at the 
regional level for South Asia and four regions 
in sub-Saharan Africa [SSA; central, east, south, 
and west; see Supplemental Material, Table 2 
(http://dx.doi.org/10.1289/ehp.1003311)]. 
We aggregated stunting from the country to 
regional level using population weighting. We 
ran the simulation using MATLAB (version 
2009b; MathWorks, Natick, MA, USA).

Results
Model development and parameters. Table 1 
summarizes the data set used to parameter­
ize our model. The correlation coefficients 
between stunting and PoU were 0.16 and 
0.19 for moderate and severe stunting, respec­
tively. For univariate analysis of stunting and 
the development score, R2 was 0.40 for mod­
erate stunting and 0.45 for severe stunting; 
when PoU was added to these models, R2 
was unchanged. That is, using a data-driven 
approach, including PoU as an explanatory 
variable would not improve the model fit to 
estimate stunting in the present compared 
with using the development score alone. This 
supported our approach using a theory-based 
model that accounts for both food access and 
socioeconomic conditions.

The model parameter estimates are shown 
in Table 2. The β parameter is an estimate 
of the assumed physiological relationship 
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between a lack of food and stunting. Thus, 
the central estimate of β = 0.35 for moder­
ate stunting suggests that for every 1% of the 
population who are undernourished, on aver­
age 0.35% of children < 5 years of age will 
be moderately stunted. Using the validation 
data set, the predicted and observed values are 
well correlated, with correlation coefficients of 
0.78, 0.66, and 0.80 for no/mild, moderate, 
and severe stunting, respectively [for scatter­
plots, see Supplemental Material, Figure 1 
(http://dx.doi.org/10.1289/ehp.1003311)].

Estimates of future proportions under­
nourished. The proportions of regional pop­
ulations projected to be undernourished in 
2050 are shown in Table 3. Countries for 
which complete data were not available were 
excluded [see Supplemental Material, Table 2 
(http://dx.doi.org/10.1289/ehp.1003311)]. 
The estimates suggest that climate change will 
increase PoU compared with a future without 
climate change, and also that climate change 
and population growth will increase it to 
above current levels in all regions.

Projections of stunting in 2050. We estimate 
that climate change will increase stunting in all 
regions (Table 3), with severe stunting increas­
ing by 30–50%. The estimated relative change 
in stunting was smaller than the estimated rela­
tive change in undernourishment. Figure 1 
shows the uncertainty in the stunting estimates 
as histograms of probabilistic outcomes derived 
from the Monte Carlo simulation.

We compared our stunting estimates 
with underweight estimates made by Nelson 
et al. (2009) (Table 4). The results are not 
directly comparable, but we have assumed 
that the ratio of underweight to stunting at 
baseline remains constant in the future. The 
final column shows this ratio as a regional, 
population-weighted average calculated using 
the most recent estimates of underweight and 
stunting (FAO 2010).

Discussion
We have developed the first global model to 
estimate the impact of climate change on future 
stunting—a more relevant outcome measure 
for human population health than “population 
at risk of hunger” (i.e., undernourishment) or 
underweight. Additionally, our model distin­
guishes moderate from severe stunting, which 
bring substantially different health risks (Black 
et al. 2008). Based on our conservative assump­
tions, the model suggests that climate change 
will have significant effects on future under­
nutrition, even when the beneficial effects of 
economic growth are taken into account. This 
is particularly so for severe stunting, with a 
62% increase in South Asia and a 55% increase 
in east and south SSA. The health implica­
tions of this are large: according to Black et al. 

Table 1. Summary of the data used to parameterize the model. 

No. 
observations

Children stunteda (%) Undernourisheda 

(%)
Per capita GDPa 

(2000 US$)Region Moderate Severe Ginia,b

Global 149 19 (3–30) 16 (1–36) 24 (5–70) 897 (81–5,513) 0.45 (0.17–0.74)
Caribbean 9 8 (3–14) 4 (1–8) 12 (5–27) 2,398 (942–3,688) 0.47 (0.4–0.53)
Central America 12 19 (13–27) 12 (4–29) 19 (5–52) 2,051 (633–5,513) 0.53 (0.49–0.58)
South Asia 8 26 (22–30) 26 (2–35) 22 (16–26) 364 (207–589) 0.38 (0.3–0.47)
Southeast Asia 12 22 (11–27) 18 (3–33) 21 (9–41) 729 (232–1,958) 0.4 (0.33–0.44)
SSA

Central 5 21 (16–26) 24 (15–35) 49 (21–76) 309 (81–578) 0.51 (0.44–0.61)
East 23 24 (14–29) 23 (12–34) 36 (15–62) 286 (110–757) 0.43 (0.3–0.6)
South 8 30 (19–23) 14 (9–30) 29 (14–46) 1,298 (415–2,599) 0.60 (0.5–0.74)
West 35 20 (13–25) 19 (7–30) 24 (8–51) 315 (138–684) 0.43 (0.36–0.53)

Other regions 37 16 (6–23) 16 (6–23) 18 (5–58) 1,249 (206–3,975) 0.43 (0.17–0.62)

Data are shown globally (for all those countries for which data were available) and for regions defined for the Global 
Burden of Disease Study (Harvard University et al. 2009).
aValues are regional means (minimum–maximum); numbers are based on records from between 1991 and 2008. bThe Gini 
coefficient ranges from 0, where there is perfect income equality, to 1, where all income goes to one person.

Table 2. Central estimates and plausible ranges of model parameters.
Level of stunting βk αk γk θk

Moderate (k = 2) 0.35 (0.20–0.44) 0.025 ± 0.013 0.26 ± 0.028 –0.43 ± 0.041
Severe (k = 3) 0.18 (0.11–0.28) –0.052 ± 0.021 0.34 ± 0.044 –0.18 ± 0.064

βk is the physiological relation between undernourishment and stunting [5th percentile (1st–10th percentile)]; αk is the 
regression constant, γk relates the development score to stunting, and θk relates the interaction between undernourish-
ment and the development score to stunting (regression estimate ± SE).

Table 3. Estimates of undernourishment and stunting at baseline (present) and in 2050 with and without climate change (CC).

Percent undernourisheda Percent relative 
increase in  
PoU under 

climate changeb

Percent stunted (mean ± SD) of the PDFsa,c Percent relative 
increase in 

stunting under 
climate changed

2050

Stunting level

2050

Region Baseline No CC NCAR CSIRO Baseline No CC NCAR CSIRO
South Asia 22 15 30 29 97 Moderate 23 11.2 ± 1.8 14.6 ± 2.6 14.3 ± 2.5 29

Severe 19 2.9 ± 1.2 4.8 ± 1.7 4.6 ± 1.6 61
SSA

Central 65 53 81 80 52 Moderate 20 19.9 ± 4.7 20.1 ± 5.7 20.1 ± 5.7 1
Severe 20 16.8 ± 5.6 22.1 ± 6.1 22.0 ± 6.1 31

East 35 24 52 52 116 Moderate 22 19.3 ± 2.9 21.1 ± 4.6 21.1 ± 4.5 9
Severe 18 9.7 ± 1.9 15.0 ± 2.3 15.0 ± 2.3 55

South 32 33 60 60 82 Moderate 16 17.1 ± 3.0 21.0 ± 4.8 21.0 ± 4.8 23
Severe 12 8.8 ± 3.3 13.6 ± 4.0 13.6 ± 4.0 55

West 15 12 29 29 142 Moderate 17 17.0 ± 2.2 18.6 ± 2.9 18.5 ± 2.9 9
Severe 16 6.8 ± 1.6 9.3 ± 1.8 9.2 ± 1.8 36

aBaseline undernourishment and stunting data are from FAO (2010) and are calculated as population-weighted averages using the most recent data available; countries without data are excluded. 
“No CC” is the reference scenario (i.e. future without climate change); “NCAR” and “CSIRO” are futures under climate change scenarios based on the NCAR and CSIRO models respectively. 
bCompared with a future with no climate change; estimate based on average estimates from NCAR and CSIRO. For example, for South Asia the calculation was: 

15
2

30 29

1 100 97#

+

=-f p
. 

cEmpirically derived PDF, derived from the Monte Carlo simulations. dCompared with a future with no climate change; estimate based on average of the mean of the estimates from 
NCAR and CSIRO. For example, for moderate stunting in South Asia the calculation was:

11.2
2

14.6 14.3

1 100 29#

+

=-
f p

.
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(2008), moderate stunting increases the risk of 
all-cause death 1.6 times (95% CI: 1.3, 2.2) 
and severe stunting increases the risk 4.1 times 
(95% CI: 2.6, 6.4).

Comparing our results with those of 
Nelson et  al. (2009) should be done cau­
tiously because the outcome measures are dif­
ferent. Our estimates for stunting are lower 
than estimates from Nelson et al. (2009) for 
underweight in both South Asia and SSA 
(Table 4). Our estimates for SSA are closer 
but still lower. It is likely these differences are 
largely explained by how the models account 
for socioeconomic conditions. Nelson et al. 
(2009) estimated underweight using a complex 
model that accounted for many socioeconomic 
factors, but because of a lack of data, all the 
factors (except for food access) were held at 
baseline levels. Our stunting equation repre­
sents socioeconomics more simply but is able 
to account for expected changes over the next 

40 years. World Bank projections suggest that 
in South Asia, GDP will increase nine times 
between 2005 and 2050—an absolute increase 
of about $7,000 billion (year 2000 US$); in 
SSA the figures are five times and $1,700 bil­
lion. Hence, allowing for these changes results 

in lower future stunting estimates, with a 
greater reduction in South Asia.

Model approximations and assumptions. 
We used a theory-based rather than statisti­
cally based approach to modeling. Although 
we accept that a statistical approach would 

Figure 1. Histograms proportional to the PDFs for the proportion estimated to be stunted in 2050, by region: SSA, C (central); SSA, E (east); SSA, S (south); SSA, 
W (west). Histograms were derived from 100,000 Monte Carlo runs. The x-axes are proportion stunted at a given level; the y-axes are number of estimates. The 
curves are blue for no climate change, green for NCAR, and red for CSIRO. There is large overlap of the NCAR and CSIRO curves.
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Table 4. Model estimates of numbers of children affected by undernutrition in 2050: underweight and 
stunting.

Millions of  
children affected by 

undernutrition in 2050

Additional millions 
of children affected 

by undernutrition 
with climate change

Baseline 
ratio of 

underweight 
to stuntingaRegion Outcome No CC NCAR CSIRO No CC NCAR

South Asia Underweightb 52 59 59 7 7 1.1
Stuntingc 20 27 26 7 6

SSA Underweightb 42 52 52 10 10 0.7
Stuntingc 45 54 54 9 9

aCalculated as [(moderate + severe underweight)/(moderate + severe stunting)] using data for the present (FAO 2010) 
and as a regional, population-weighted average. bUnderweight estimates for 2050 are from Nelson et al. (2009). cStunt-
ing estimates are the sum of the numbers moderately and severely stunted, based on the mean estimates of the empiri-
cally derived PDFs. 
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be sound if our aim were to estimate current 
stunting, our aim was to estimate future stunt­
ing. Thus, we developed a model that was 
driven as much as possible by a relationship 
that can reasonably be expected to remain con­
stant over time. We assumed that the physi­
ological relationship between stunting and 
undernourishment will remain constant and 
approximated this relationship in the first step. 
After this, because the relationship between 
stunting and GDP (which is mediated by, 
among other things, political and social con­
ditions) may vary significantly over time, we 
fitted the development score and interaction 
term as a second step.

We made several key approximations in 
constructing the model. The first approxi­
mation was to fit a separate bilinear regres­
sion model to two of the stunting levels and 
then use these to estimate no/mild stunting. 
Although a more rigorous approach would 
fit the three regression models simultane­
ously while ensuring that the proportions (for 
each country) are positive and always add up 
to unity, this could lead to an imbalance in 
the goodness of model fit of one level at the 
expense of another. The second approximation 
was to treat the food causes and the product 
of the food causes and nonfood causes as two 
independent variables in the least squares fit. 
This, of course, would introduce errors because 
the variables are correlated. Nevertheless, the 
approximation was validated against a data set 
different from that on which it was based. The 
third approximation concerns the approach we 
adopted for the probabilistic (Monte Carlo) 
simulations. Simulated values that were either 
< 0 or > 1 were discarded. This could intro­
duce bias, and we quantified this potential. No 
estimates were rejected for being > 1, mean­
ing there is no risk of downward biasing. For 
estimates < 0, no moderate stunting estimates 
were rejected, but severe stunting estimates 
were rejected in all regions [see Supplemental 
Material, Table 1 (http://dx.doi.org/10.1289/
ehp.1003311)], meaning there is some poten­
tial for upward bias. Because more estimates 
were rejected in the “no climate change” future 
compared with the “climate change” future, 
this may have reduced the apparent impact of 
climate change on severe stunting.

The fourth approximation was the estimate 
of the physiological relationship between stunt­
ing and a lack of food (as represented by under­
nourishment). We ran our model assuming that 
a uniform distribution of values between the 
1st and 10th percentile of the ratio of stunting 
to undernourishment adequately represented 
the true value. In support of our estimates, our 
parameters suggest that about 60% of stunt­
ing could not be directly attributed to a lack 
of food; this is in line with previous estimates 
that around 40–60% of undernutrition could 
be attributed to environmental conditions 

(predominantly a lack of water and sanitation) 
(Pruss-Ustun and Corvalan 2006).

Although a more elaborate approach could 
have been used, inevitably there is always a 
trade-off between model complexity and ease 
of model use. We have tilted more toward 
model simplicity but at the same time quanti­
fied the errors induced by the approximations, 
as far as possible.

We made estimates of future under­
nourishment from projected calorie availability. 
In doing so we assumed that both within-coun­
try food distribution and average minimum 
calorie requirement remained at baseline levels. 
In support of these assumptions, we note that 
FAO estimates of within-country food distribu­
tion are based on extrapolations of infrequently 
collected data from relatively few countries and 
are restricted to lie between values represent­
ing a given maximum and minimum equity 
of distribution (based on estimated require­
ments). Varying values within this range has 
been found to have little impact on PoU in 
countries with low calorie availability (FAO 
1996; Svedberg 2002). Considering mini­
mum calorie requirements, the estimated mean 
change in requirements across all countries was 
just 0.1% per year over the period 1990–1992 
to 2004–2006 (FAO 2010). Further, accord­
ing to FAO data (FAO 2010), the average 
minimum calorie requirements are increasing 
in most low-income countries and are higher 
(and increasing) in middle-income countries. 
This means our estimate may be conservative. 
Finally, Svedberg (2002) estimated that over a 
20-year period, 88% of the change in regional 
undernourishment was explained by changes in 
per capita calorie availability.

We assumed that, once per capita GDP 
reached $10,000 (2000 US$; with an associ­
ated Gini coefficient of 0.38), socioeconomic 
conditions no longer contributed to stunt­
ing. We tested the sensitivity of the model to 
this assumption by rerunning it without this 
assumption. This made a negligible difference 
to estimates (data not shown).

Finally, a limitation of the overall model­
ing strategy is that climate change is assumed 
to enter the system only through its impact on 
crop production. First, this allows only a par­
tial consideration of future food security: food 
availability and, to a degree, access are mod­
eled, but stability and utilization are not (for 
a discussion, see Schmidhuber and Tubiello 
2007). Second, climate change is likely to 
affect undernutrition by a variety of routes, 
including plant diseases, extreme drought 
events, infectious disease, labor productivity, 
water availability, and overall impact on GDP. 
So far, these aspects have not been accounted 
for, and we recommend that future assess­
ments (of all health impacts, not just under­
nutrition) attempt to account for the multiple 
effects of climate change.

Model behavior. We examined model 
behavior over the range of plausible input vari­
able values. When either undernourishment 
or the development score are high (a high 
development score indicates poor socio­
economic conditions), moderate stunt­
ing decreases. However, this is accompanied 
by increases in severe stunting, provid­
ing that undernourishment is not too high 
[for the model’s equations surface plots, see 
Supplemental Material, Figure 2 (http://dx.doi.
org/10.1289/ehp.1003311)]. As with any 
model, output for input variable values falling 
outside the range within which the model was 
fitted should be interpreted with caution. In 
the data used to parameterize the equations, 
the maximum value for undernourishment was 
76% (Table 1), and the surface plots suggest 
that above this value, stunting estimates may 
be invalid. In our future estimates, only under­
nourishment in central SSA under climate 
change exceeded this (80% and 81%; Table 3); 
although these PoU estimates are only just out­
side the fitting range, the resulting stunting 
estimates should be interpreted cautiously.

The model’s equations suggest that, as 
either food access or general socioeconomic 
conditions worsen, severe stunting increases 
more rapidly than moderate stunting; that 
is, more children shift from moderate to 
severe stunting than shift from no/mild stunt­
ing to moderate stunting. It is likely that this 
behavior is partly because the model assumes 
that, regardless of conditions, the distribu­
tion of access to food remains constant. This 
assumption is a property of the FAO under­
nourishment model (FAO 2003) and of our 
development score (i.e., the Gini coefficient is 
assumed to remain constant at baseline levels). 
We believe that allowing distributions to vary 
should be considered in future work.

The θ parameters have negative values. 
This was unexpected but, when considered in 
the context of the full equation and in terms 
of observed model behavior, the model equa­
tions predicted stunting changes as expected. 
Thus, if either food or nonfood causes are high 
and those causes are then reduced, the impact 
on stunting is greater than if both food and 
nonfood causes are high and only one vari­
able is lowered. This suggests, as expected, that 
to best deal with stunting it is necessary to 
address both food and nonfood causes.

Dealing with uncertainty. It is axiomatic 
that there are uncertainties in any risk assess­
ment model. In this assessment, we have 
addressed parametric uncertainty in the stunting 
model through the use of Monte Carlo simula­
tions. Structural uncertainty will be addressed in 
future work by exploring nonlinear interactions. 
It was not possible to assess the uncertainty 
in the upstream models (e.g., climate models, 
crop models, trade model) that drive our model 
(i.e., the input uncertainties associated with xij 
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and wij) because we lacked the necessary infor­
mation. Future assessments should use a wide 
range of climate and socioeconomic scenarios 
in order to capture the uncertainty of future 
emission pathways and the world in which the 
climate impacts will occur.

Conclusions
Previous studies have shown that climate 
change is likely to have negative effects on 
future hunger and undernutrition (Nelson 
et al. 2009, 2010; Parry et al. 1999, 2004; 
Rosenzweig and Parry 1994), and our results 
are consistent with these. This reinforces the 
evidence base for action to be taken to reduce 
carbon emissions and the impacts of the cli­
mate change to which we are already commit­
ted. Additionally, our model suggests that to 
reduce and prevent future undernutrition, it 
is necessary to both increase food access and 
improve socioeconomic conditions.

Quantifying the size of the impact pres­
ents difficulties. Our work illustrates the 
importance of the outcome considered—for 
example, undernourishment versus stunting, 
and moderate stunting versus severe stunting. 
These outcomes have different implications 
for adaptation and decision making (e.g., 
whether adaptation policies should focus only 
on food supplies or consider water and sani­
tation provision) and different implications 
for health (e.g., severe stunting is a much 
greater health threat than is moderate stunt­
ing). Further, future socioeconomic condi­
tions must be considered; this involves both 
developing new data sets and designing mod­
els that recognize data constraints. Above all, 
because none of the above issues will be easily 
overcome, modeling efforts should explicitly 
describe their assumptions and limitations.
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Undernutrition
Simon Lloyd, Sari Kovats, Zaid Chalabi

7.1 Background

Hunger and undernutrition are major contributors to the global burden of disease and are 
the leading risk factors for death and morbidity in children aged under 5 years (IHME, 2013).

Around 1 billion people are thought to have insufficient food to meet their needs (FAO, 
2009). In children aged under 5 years, 45% of deaths (3.1 million deaths) were attributed to 
undernutrition in 2011 (Black et al 2013). The reduction of hunger and undernutrition is one 
of the Millennium Development Goals, but although progress has been made, reductions lag 
behind aspirations, particularly following the food price and financial crises in 2008–2009 
(UN, 2010). Box 7.1 defines the key terms used in this assessment.

The causes of undernutrition are complex, extending beyond food availability to include 
factors such as poverty, access to services (such as adequate water and sanitation), social 
conditions (such as women’s access to education) and underlying population health (such 
as prevalence of diarrhoeal disease) (UNICEF, 1990). For example, Checkley and colleagues 
(2008) found that a quarter of irreversible stunting in young children could be attributed 
to having had five or more episodes of diarrhoea. Smith & Haddad (2000) attributed 43% 
of the reduction in child underweight between 1970 and 1995 to greater access of women to 
education, 26% of the reduction to greater food access, and 19% of the reduction to improved 
water and sanitation.

7
Undernourishment, modelled using the FAO (2003) method, is defined as having 
a “dietary energy consumption [that] is continuously below a minimum dietary 
energy requirement for maintaining a healthy life and carrying out a light physical 
activity with an acceptable minimum body-weight for attained-height” (FAO, 2010). 
Undernourishment has one final cause: a lack of calories.

Undernutrition is conventionally measured using anthropometrics such as stunting 
(height for age) and underweight (weight for age) (WHO, 2010). It has multiple causes, 
of which lack of food is one. In this assessment, since we are looking at long-term 
average conditions such as average crop productivity, we focus on stunting, which best 
reflects these conditions (Black et al., 2008) and use the terms undernutrition and 
stunting synonymously.

Box 7.1 Definitions used in this assessment
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Climate change is expected to have significant impacts on cereal production, particularly 
at low latitudes. Crop models have been used to estimate changes in yield under a range 
of climate scenarios. The 4th IPCC assessment report concluded that although moderate 
warming may benefit crop yields in mid- to high-latitude regions, it is likely that there will 
be decreases in yields in seasonally dry and low-latitude regions (Meehl et al., 2007).

Methods for estimating the impacts of reduced average food yields on human health and 
welfare are complex, linking various models (such as crop, food trade and health) and using 
a range of metrics to estimate health impacts. Initial models were based on a threshold 
level of per capita calorie availability that meets an average individual’s calorie estimated 
minimum requirements (FAO, 2003). Populations below the threshold were considered at 
risk of hunger. Thus, studies have estimated an additional 5 million to 170 million people 
may be at risk of hunger by the 2080s (Parry et al., 2004; Schmidhuber & Tubiello, 2007). 
More recent modelling efforts have quantified more direct outcome measures. For example, 
Nelson and colleagues (2009) estimated that under a medium-high emissions scenario (SRES 
A2), global reductions in crop productivity could increase the proportion of underweight 
children by around 20% in 2050.

Future climate change may also affect crop productivity through a range of mechanisms 
that are not included within current crop yield modelling, including increases in extreme 
weather events (such as droughts and heavy rainfall – although some climate variability is 
incorporated in some models), spatially remote conditions that influence local conditions 
(such as rainfall higher in a river catchment), sea-level rise (such as loss of crop land from 
inundation or salinization), changes in demand for water, and increases in pests and diseases 
(Gornall et al., 2010). Furthermore, climate change is likely to affect undernutrition through 
routes other than crop productivity. Livelihoods may be lost if formerly productive land 
ceases to be productive and poverty may increase. Infectious diseases such as diarrhoeal 
disease (see Chapter 4) and malaria (see Chapter 5) may become more prevalent. These 
factors, which may be anticipated to increase the risk of future undernutrition, are not 
accounted for in existing models.

Food security is defined as the “situation that exists when all people, at all times, have 
physical, social, and economic access to sufficient, safe, and nutritious food that meets their 
dietary needs and food preferences for an active and health life” (FAO, 2011) and is commonly 
considered along the dimensions of availability, access, stability and utility (Schmidhuber & 
Tubiello, 2007). Existing health impact modelling covers the dimensions of food availability 
(such as crop productivity) and access (such as global distribution via trade), but it does 
cover not stability (such as losses due to extreme weather) or utility (such as absorption of 
nutrients compromised in a child with chronic diarrhoea) or how these factors are affected 
via routes other than food production. For more details, see Schmidhuber & Tubiello (2007).
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7.2 Assessment method: linking crop, trade and health 
impact models

The connections between climate change and undernutrition are many and complex. We 
used the output from a chain of models shown in Figure 7.1. We used the following steps to 
estimate climate change-attributable burden of undernutrition:

1.	 Future post-global food trade national calorie availability estimates for 2030 and 2050 
with and without climate change were obtained from the dataset accompanying the 
report of Nelson and colleagues (2010).

2.	 Within-country food distribution estimates, represented as the proportion of population 
undernourished, were generated using the method of the Food and Agriculture 
Organization of the United Nations (FAO, 2003).

3.	 Estimates of regional-level child stunting were generated from national proportion 
of population undernourished values and projections of GDP per capita, using an 
undernutrition model (Lloyd et al., 2011).

4.	 Estimates of all-cause mortality attributable to child stunting were made using the methods 
of the WHO Burden of Disease Assessment, with population-attributable fractions. This 
used our stunting estimates, estimates of relative risk of mortality in stunted children 
from Black and colleagues (2008), and mortality projections (see Chapter 8).

7.2.1 Step 1: national calorie availability estimates

Nelson and colleagues (2010) estimated national calorie availability in future worlds with 
climate entering the model via crop productivity. Estimates were calculated in the absence of 
climate change and under two climate change scenarios (MIROC and CSIRO) driven by A1 
emissions, for three socioeconomic futures (see Section 7.3). Future cereal production under 
particular scenarios was estimated using the Decision Support System for Agrotechnology 
Transfer (DSSAT) crop models for rice, wheat, maize, soy and groundnut (Jones et al., 2003). 
Crop production was assessed for average weather conditions and did not include extreme 
weather or other events such as potential pest invasions.

fig 1.2
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(b) Malaria (mortality in all ages)  
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(d) Dengue (mortality in all ages)   
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(c) Diarrhoeal disease (mortality in children aged under 15 years) 
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(e) Heat (mortality in people aged over 65 years) 
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Figure 7.1  Schematic illustration of the modelled pathway from climate change to child undernutrition 
and its consequences
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Changes in other food commodities were estimated by extrapolating from the five modelled 
crops (Nelson et al., 2010 ). Of note, using data from WHO (2010) and FAO (2010), we found 
that in the 34 countries that together account for 90% of all stunting, on average about 50% 
of calories come from wheat, rice, maize or soy, and the contribution of animal products 
to calorie intake is about 10% (unpublished results). Thus, the crop yield changes that were 
explicitly modelled in this assessment account for a significant portion of calorie intake in 
countries with the highest rates of undernutrition.

To estimate global food distribution, the food production estimates were used to drive 
the IMPACT model (Rosegrant et al., 2008), which in turn partially drives future crop 
production. IMPACT analyses 32 crop and livestock commodities in 281 world regions, 
covering all land surface except for Antarctica. Production and demand are linked via global 
trade; crop production is determined by factors including prices, area expansion, irrigation 
and water availability, and demand is based on food, feed, biofuels and other uses. In a 
globalized world, the trade model component is essential to estimate future food availability, 
as countries will either grow or import food. The assumptions about economic growth are 
therefore important, as this will determine whether or not a country can afford to purchase 
food in the model.

The final output was future national-level per capita calorie availability in 2030 and 2050, 
under two climate scenarios and without climate change, for each of the three socioeconomic 
scenarios. We used this as the basis for our undernutrition estimates.

The calorie availability data did not cover all countries and the spatial aggregations did not 
directly match the 21 world regions used in this assessment; therefore, we made estimates for 
12 world regions (Box 7.2). Two of these regions are aggregated: tropical Latin America and 
Andean Latin America were combined into mid Latin America, and some countries from 
the Caribbean region where included in central Latin America.

Asia, central: Armenia, Azerbaijan, Georgia, Kazakhstan, Kyrgyzstan, Mongolia, Tajikistan, Turkmenistan, 
Uzbekistan

Asia, east: China, Democratic People’s Republic of Korea

Asia, south: Afghanistan, Bangladesh, Bhutan, India, Nepal, Pakistan

Asia, southeast: Cambodia, Indonesia, Lao People’s Democratic Republic, Malaysia, Myanmar, Philippines, 
Sri Lanka, Thailand, Viet Nam

Latin America, central: Belize,b Colombia, Costa Rica, El Salvador, French Guiana,b Guatemala, Guyana,b 
Honduras, Mexico, Nicaragua, Panama, Suriname,b Venezuela (Bolivarian Republic of)

Latin America, mid: Bolivia (Plurinational State of),c Brazil,d Ecuador,c Paraguay,d Peruc

Latin America, south: Argentina, Chile, Uruguay

North Africa and the Middle East: Algeria, Bahrain, Egypt, Iran (Islamic Republic of), Jordan, Kuwait, 
Lebanon, Libyan Arab Jamahiriya, Morocco, Oman, Qatar, Saudi Arabia, Syrian Arab Republic, Tunisia, 
Turkey, United Arab Emirates

Box 7.2 Countriesa included in our regional projections based on output from the 
IMPACT model
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For full details of the methods and assumptions underlying the calorie availability estimates, 
see the original paper by Nelson and colleagues (2010).

7.2.2 Step 2: within-country food distribution estimates

We used national calorie availability estimates from Step 1 to estimate the proportion of the 
population expected to be undernourished in each scenario combination using the FAO 
(2003) method. The method assumes that within a country, food distribution is described 
by a right-skewed log-normal distribution. The peak of the curve is determined by average 
calorie availability (calories/capita), the spread is determined by a measure of inequality of 
food distribution (similar to the commonly used Gini coefficient for income distribution), 
and the cut-off point for being undernourished is based on estimated average minimum 
calorie needs for a given population. The proportion undernourished is the area under the 
curve up to the minimum requirements cut-off point (Figure 7.2). For a full explanation of 
the method, see the original FAO (2003) document.

To use this method, in addition to national calorie available data, we required data on the 
within-country food distribution and the average minimum calorie requirement to avoid 
undernourishment. As projection data were not available for either of these, we obtained 
baseline (current) FAO data and assumed the values would remain constant in the future. 
We believe this approach is reasonable. For within-country food distribution, even at 
baseline, FAO country-level estimates are based on extrapolations of infrequently collected 
data from relatively few countries and are restricted to values between 0.2 and 0.35 (this is 
a convention of the FAO (2003) method). Variation within this range has been found to 
have little impact on changes in undernourishment in countries with low calorie availability 
(FAO, 1996; Svedberg, 2002). For average minimum calorie requirements across all countries, 
the mean change was 0.1% per year over the period 1990–1992 to 2004–2006 (FAO, 2010). 
Furthermore, Svedberg (2002) found that over a 20-year period, 88% of the change in 
regional undernourishment was explained by changes in per capita calorie availability.

Sub-Saharan Africa, central: Angola, Central African Republic, Congo, Democratic Republic of the Congo, 
Equatorial Guinea, Gabon

Sub-Saharan Africa, eastern: Burundi, Djibouti, Eritrea, Ethiopia, Kenya, Madagascar, Malawi, Mozambique, 
Rwanda, Somalia, Sudan, Uganda, United Republic of Tanzania, Zambia

Sub-Saharan Africa, southern: Botswana, Lesotho, Namibia, South Africa, Swaziland, Zimbabwe

Sub-Saharan Africa, western: Benin, Burkina Faso, Cameroon, Chad, Cote d’Ivoire, Gambia, Ghana, 
Guinea, Guinea-Bissau, Liberia, Mali, Mauritania, Niger, Nigeria, Senegal, Sierra Leone, Togo

a	 The list in this box has not been changed from the original study and does not comply with WHO style for coun-
try references

b	 Countries from the Caribbean region included in Latin America, central
c	 Countries from Latin America, Andean
d	 Countries from Latin America, tropical
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7.2.3 Step 3: estimates of child stunting

We used a model that we had previously developed to estimate future stunting attributable 
to global climate change (Lloyd et al., 2011). The model considers stunting to have two 
broad causes: a lack of food (food causes), which is represented as proportion of population 
undernourished, and non-food causes, which are a cluster of socioeconomic factors 
modelled using GDP per capita and the Gini coefficient for income distribution. The model 
also includes the interaction of food and non-food causes; for instance, a given intake of 
food will have different impacts on nutrition, depending on the presence and severity of 
diarrhoeal disease. See the original paper by Lloyd and colleagues (2011) for more details on 
the modelling method.

For model inputs, we used national-level estimates of the proportion of population 
undernourished derived from Step 2, national population and national GDP per capita 
projections (Nelson et al., 2010), and the current Gini coefficient for income distributions 
(World Bank, 2010a). (Projections for the Gini coefficient were not available. We used the 
most recent estimates available and assumed they remained constant in the future.)

The model output is the proportion of children moderately and severely stunted, as defined 
by the WHO (2006) child growth standards. A child is considered to be moderately stunted 
if they are more than two standard deviations below the mean expected height for age, and 
severely stunted if they are more than three standard deviations below the mean expected 
height for age.

To account for parameter uncertainty in the undernutrition model, stunting was estimated 
as probability density functions using a Monte Carlo simulation. We ran the simulation 
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(a) Undernutrition (all-cause mortality in children aged under 5 years) 
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(b) Malaria (mortality in all ages)  

 

0

10000

20000

30000

40000

50000

60000

HIC

As
ia,

 C

As
ia,

 E

As
ia,

 S

As
ia,

 SE LA
M

SS
A, 

E

SS
A, 

C

SS
A, 

S

SS
A, 

W

(d) Dengue (mortality in all ages)   
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(c) Diarrhoeal disease (mortality in children aged under 15 years) 
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(e) Heat (mortality in people aged over 65 years) 

0

5000

10000

15000

20000

25000

30000

HIC

As
ia,

 C

As
ia,

 E

As
ia,

 S

As
ia,

 SE LA
M

SS
A, 

E

SS
A, 

C

SS
A, 

S

SS
A, 

W

0

2

4

6

8

N
um

be
r 

of
 s

ev
er

el
y 

st
un

te
d 

ch
ild

re
n
 

M
ill

io
ns

 

 SSA,C                     SSA,E                                SSA,S                            SSA,W

No CC Additional with CC

20
30

20
50

20
30

20
50

20
30

20
50

20
30

20
50

SSA,C                     SSA,E                                SSA,S                            SSA,W

No CC Additional with CC

20
30

20
50

20
30

20
50

20
30

20
50

20
30

20
50

SSA,C                     SSA,E                                SSA,S                            SSA,W

No CC Additional with CC

20
30

20
50

20
30

20
50

20
30

20
50

20
30

20
50

0 5 1010 15 20

1
.0

1
.0

1
.1

1
.2

1
.3

1
.4

1
.5

Daily maximum temperature − OT

Re
la

tiv
e 

m
or

ta
lit

y

Daily maximum temperature

Excess mortality

OT

Mortality

Climate
models
(GCMs)

Crop
models

(5 crops)

Global
food trade

model

National
calorie

availability

Within-
country 
calorie 

distribution

Extrapolation to 
production of other 
food commodities

Under-nutrition 
in children 
aged under 

5 years

Under-nutrition 
attributable

 deaths

Step(i) Step(ii) Step(iii) Step(iv)

P(
U

)

energy (kcal)
 

Average minimum
calorie requirements

Average per capita
calorie availability

Proportion
undernourished

Food
distribution

10

100

1,000

10,000

100,000

2008 2030 2050 2080

N
um

be
r 

of
 d

ea
th

s 
(l

og
 s

ca
le

)
 

Th
ou

sa
nd

s  

Year 

High Growth  

Comm D

0−4 yrs

5−14 yrs

15−64 yrs

65+ yrs

NCD

0−4 yrs

5−14 yrs

15−64 yrs

65+ yrs

Inj

0−4 yrs

5−14 yrs

15−64 yrs

65+ yrs

10

100

1,000

10,000

100,000

2008 2030 2050 2080

N
um

be
r 

of
 d

ea
th

s 
(l

og
 s

ca
le

)
 

Th
ou

sa
nd

s  

Year 

Base Case  

Comm D

0−4 yrs

5−14 yrs

15−64 yrs

65+ yrs

NCD

0−4 yrs

5−14 yrs

15−64 yrs

65+ yrs

Inj

0−4 yrs

5−14 yrs

15−64 yrs

65+ yrs

10

100

1,000

10,000

100,000

2008 2030 2050 2080

N
um

be
r 

of
 d

ea
th

s 
(l

og
 s

ca
le

)
 

Th
ou

sa
nd

s  

Year 

Low Growth  

Comm D

0−4 yrs

5−14 yrs

15−64 yrs

65+ yrs

NCD

0−4 yrs

5−14 yrs

15−64 yrs

65+ yrs

Inj

0−4 yrs

5−14 yrs

15−64 yrs

65+ yrs

 

 

 
  

  

  
  

   
    

    
   
   
        

     
     

N: gridded average annual
diarrhoeal disease mortality
in children <15yrs, without 
climate change, for three 
socioeconomic scenarios, 
for a given future time slice.

 

ß : log-linear percent increase in relative risk of 
diarrhoeal disease per degree of temperature increase, 
as a ‘mid’, ‘low’, and ‘high’ estimate, where the same 
relations are applied globally and over time. 
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∆T : gridded average annual tempera-
ture anomaly with climate change, as 
minimum, median and maximum 
anomaly across 5 climate scenarios, 
for a given future time slice.

Figure 7.2  FAO method for estimating the proportion of a population that is 
undernourisheda

a	 x-axis is energy intake; y-axis is proportion of population with that energy intake
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100 000 times (each using a randomly selected combination of parameter values) for each 
scenario combination to obtain estimated distributions of the proportion stunted. We then 
combined the distributions for the two climate scenarios2 to obtain a single distribution of 
proportion stunted under climate change for each scenario combination.

For each distribution of proportion stunted, we used the mean to represent our best estimate 
and represent the uncertainty interval as mean ± 1 standard deviation. We estimated stunting 
attributable to climate change by subtracting the mean estimate without climate change 
from the mean estimate with climate change, and combined their variances to estimate 
uncertainty,3 reported as mean ± 1 standard deviation.

The undernutrition model has three underlying assumptions of relevance to our stunting 
estimates. First, the model estimates stunting specifically in children aged under 5 years, but 
the proportion undernourished is estimated for the entire population. As a result, estimates 
made with the model implicitly assume that, in all populations, the age distribution of 
undernourishment remains constant over time.

Second, the model is partly driven by an estimate of the physiological relationship between 
stunting and undernourishment; it is assumed that this estimate is representative of the true 
relationship and that it will be constant over the 50-year period included in this assessment. 
In terms of representativeness, the estimate is an approximation made for modelling 
purposes, and it gave a good fit between predicted and observed stunting in the model 
validation. Of note, the estimate suggests that about 60% of stunting could not be attributed 
directly to a lack of food, which is consistent with a previous estimate that around 40–60% of 
undernutrition could be attributed to environmental conditions (Pruss-Ustun & Corvalan, 
2006).

Third, the undernutrition model accounts for socioeconomic conditions using an indicator 
based on GDP per capita and the Gini coefficient for income distribution (the “development 
score”). We assume that the Gini coefficient remains at baseline levels, although it may change 
significantly over the next 50 years. Also, in using the development score, we effectively 
assumed that the current relationship between GDP and socioeconomic conditions (such as 
access to adequate water supplies, health-care provision and education) will hold in the future. 
As this relationship is determined by many factors that may change, such as those shaped by 
politics and cultural norms, the relationship may change over the assessment period.

Due to a lack of data, we were unable to quantify the implications of the above assumptions.

2	 We combined the distributions of proportion stunted for the MIROC and CSIRO scenarios 

based on their means and variances using the formulae                
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7.2.4 Step 4: estimates of all-cause mortality attributable to stunting

We combined our estimates of the future proportion of children who are moderately and 
severely stunted with odds ratios for all-cause mortality associated with each level of stunting 
from Black and colleagues (2008) to estimate population-attributable fractions of deaths due 
to stunting. The odds ratios were estimated using data from eight low-income countries 
considered to be broadly representative of all low-income countries and were adjusted for 
confounding due to socioeconomic factors (Table 7.1). For more details, see the paper by 
Black and colleagues (2008).

Table 7.1  Odds ratio for all-cause mortality associated with moderate and 
severe stunting

Cause Moderate stuntinga Severe stuntinga

All causes 1.6 (1.3 to 2.2) 4.1 (2.6 to 6.4)

a	 Odds ratios shown as central estimates with 95% confidence intervals in brackets

Source: Black et al. (2008)

Following the method of Black and colleagues (2008), we assumed that the odds ratios 
were a reasonable first-order approximation of the equivalent relative risks. We estimated 
population-attributable fractions using

    
∑ [  (     )] 
   

∑ [  (     )]    
   

 

where PAF is the population-attributable fraction; Pi is the proportion affected by the 
exposure of interest at level i; RRi is the relative risk for a given outcome when exposed at 
level i; and i is a level exposure, where there are n levels of exposure, with 1 ≤ i ≤ n.

Specifically in our use, i = 1 for moderate stunting and i = 2 for severe stunting; Pi is the 
proportion stunted at level i; and RRi is the relative risk of all-cause mortality associated with 
stunting at level i (compared with being not stunted).

When estimating the population-attributable fractions, we accounted for uncertainty in the 
proportion stunted and the mortality odds ratios as follows: for the proportion stunted, 
using our regional-level mean estimates and standard deviations generated in Step 3, we 
ran a standard Monte Carlo simulation to estimate 100  000 plausible values of the true 
proportion stunted at each level in each region. Similarly, for the odds ratios, using the central 
estimates and 95% confidence intervals, we estimated 100 000 plausible estimates of the true 
odds ratio.4 Thus, we estimated population-attributable fractions for each region with and 
without climate change as distributions (probability density functions), based on 100 000 
plausible estimates. The climate change-attributable population-attributable fractions were 

4	 The odds ratios in Table 7.1 were estimated in the log scale and then transformed to the natural scale. Therefore, the 
confidence intervals are asymmetrical about the means. Thus, we logged the odds ratios and confidence intervals and then 
calculated the averages of the upper and lower confidence intervals. We estimated the standard deviation for use in the 
Monte Carlo simulation. After running the simulation, we exponentiated the results.

[7.1]
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estimated by subtracting the vectors of population-attributable fraction estimates without 
climate change from the vectors of population-attributable fraction estimates with climate 
change.

To estimate the number of deaths due to stunting in each scenario, we applied the population-
attributable fractions directly to the projections of the all-cause mortality in children aged 
under 5 years (see Chapter 8 for discussion of mortality projections). We obtained probability 
density functions of stunting-attributable deaths for each region and used the mean as our 
best estimate and one standard deviation to describe the uncertainty interval.

7.3 Scenario data

As this chapter was dependent on input data produced outside this project (national-level 
calorie availability estimates), it uses a different set of scenarios from the other chapters.

7.3.1 Observed climate data

The current climate was represented using the WorldClim current conditions dataset, 
which represents the period 1950–2000 and provides monthly averages for minimum and 
maximum temperature and precipitation (Hijmans et al., 2005). The data were generated by 
interpolating average monthly data for weather stations to a 1 km2 grid. For details of how 
the data were used to drive the crop models, see the paper by Nelson and colleagues (2010).

7.3.2 Climate scenarios

Two climate scenarios were used to drive the DSSAT model, both forced by the A1b 
emissions scenario:

•	 ‌CSIRO model: by 2050, the mean change in annual average minimum and maximum 
temperatures is 1.6°C and 1.4°C, respectively, with a 0.7% increase in average annual 
precipitation.

•	 ‌MIROC model: by 2050, the mean change in annual average minimum and maximum 
temperatures is 3.0°C and 2.8°C change, respectively, with a 4.7% increase in average 
annual precipitation.

7.3.3 GDP and population projections

The estimates of calorie availability from Step 1 (Nelson et al., 2010) were made under three 
socioeconomic scenarios intended to represent pessimistic, baseline (business as usual) and 
optimistic futures (Table 7.2). We note that these scenarios are quantitatively different from 
those used elsewhere in the CCRA project (see Chapter 8).

Of particular note, as seen in Table 7.2, the GDP data used in this chapter were in a different 
metric from the GDP data used in other chapters (market exchange rate versus purchasing 
power parity); thus, the data are not directly comparable. In general, purchasing power 
parity may better reflect conditions within a given country. The estimates tend to be of 
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greater magnitude as they reflect the relative cost of living within a particular country, which 
tends to be lower in low-income compared with high-income countries. In contrast, market 
exchange rates may better reflect relative currency values, critical to global food trade, 
which is of major importance to estimates in this chapter. We assume that the purchasing 
power parity and market exchange rate data are roughly equivalent in each of the three 
socioeconomic scenarios; it is not, however, possible to test this assumption. The assumption 
is stronger for the baseline/base case and optimistic/high growth cases: in both studies, 
GDP continues to grow over the century. For the pessimistic/low growth scenarios, growth 
continues over the century in the purchasing power parity estimates (pessimistic scenario), 
but with the market exchange rate data used in other chapters (low growth scenario), GDP 
growth tapers towards zero and ceases to grow in any country after 2015.

As we have assumed equivalence between Nelson and colleagues’ (2010) and the CCRA 
scenarios, for consistency with other chapters, we refer to our estimates as being for low 
growth, base case and high growth scenarios.

For population, the CCRA uses a common population projection for all three socioeconomic 
scenarios, while Nelson and colleagues use different projections for each scenario. In the 
optimistic and baseline scenarios, Nelson and colleagues use a higher population than 

Table 7.2  Socioeconomic scenarios subsequently used to estimate future national calories 
availability, showing global totals of GDP per capita and population for 2050a and socioeconomic 
scenarios used in the other chapters of the CCRA

Scenario GDP Population

Nelson et al. (2010) CCRA Nelson et al. (2010) CCRA

Source Global GDP 
per capita, 

2050b

Global GDP 
per capita, 

2050c

Source Global 
population, 

2050d

Global 
population, 

2050d

Pessimistic/
low growth

Low scenario from 
Millennium Ecosystem 
Assessment,e with growth 
rates used in base

8779 9191 UN high 
variant, 2008 
revision

10 99 9130

Baseline/
base case

Based on rates from 
World Bank EACC study,f 
updated for sub-Saharan 
Africa and south Asia

17 23 29 84 UN medium 
variant, 2008 
revision

9906 9130

Optimistic/
high growth

High scenario from 
Millennium Ecosystem 
Assessment,e with growth 
rates used in base

23 60 44 94 UN low 
variant, 2008 
revision

7913 9130

a	 Based on Tables 1.1 and 1.3 in Nelson et al. (2010)

b	 GDP per capita in constant US$ 2000 as market exchange rate

c	 GDP per capita in 2005 international dollars as purchasing power parity

d	 Population totals in millions

e	 Millennium Ecosystem Assessment (2005)

f	 Margulis et al. (2010)

60



	 Undernutrition  79

the CCRA (for high growth and base case) (see Table 7.2). Compared with using a lower 
population estimate (as in the CCRA), the use of the higher populations could have two 
opposing effects within the calorie availability model: having more people to feed may mean 
more people are undernourished (that is, the proportion of population undernourished 
would be higher than if the population were lower); but having more people to feed may lead 
to greater demand and thus production, resulting in increased food availability. The degree 
to which one effect is offset by the other is unknown; when scaling the results to be consistent 
with the CCRA population (see below), we assume the offset is complete – in effect, we 
assume that the proportion of population undernourished is independent of population 
(providing population total or growth is not excessively high) and that any additional risk of 
hunger due to a higher population is balanced by the accompanying decrease in risk due to 
increased demand-driven production). The same argument applies to the lower population 
(compared with the CCRA) in Nelson and colleagues’ pessimistic scenario.

7.3.4 Scaling output for consistency with other health outcomes in the 
global assessment

It is important that all outcomes in this climate change assessment are based on a consistent 
set of assumptions about future worlds (particularly for economic growth and population 
growth). However, the future calorie estimates used in this chapter were based on a different 
set of scenarios. To bring our results in line with other chapter estimates as far as possible, 
we used the following strategies and assumptions:

•	 ‌We estimated national-level stunting using data for the countries shown in Box 7.2, based 
on the population scenarios used by Nelson and colleagues (2010). This ensured within-
model consistency between the calorie estimates and the undernutrition estimates.

•	 ‌We aggregated the national-level stunting estimates to estimate the proportion stunted at 
regional level, using the regional definitions shown in Box 7.2. As noted in Step 1, these 
regional definitions do not match the regional definitions used in the other chapters of 
this assessment; in particular, due to missing data, fewer countries are included in the 
regions in Box 7.2. Hence, we assumed that our regional estimates of proportion stunted 
were representative of regional stunting when all countries in the region are included 
(that is, based on the world regions).

•	 ‌To estimate the number stunted or number of deaths, we used population totals consistent 
with the CCRA population. This ensured comparability between estimates of number 
stunted and number of deaths in this chapter, and numbers estimated in other chapters 
of this assessment. We note that this assumes that the calorie availability estimates (which 
underlie the stunting estimates) are relatively independent of total population (that is, the 
two effects outlined above balance each other).

7.4 Results

Climate change is expected to cause a significant increase in the number of children with 
severe stunting, regardless of the socioeconomic scenario considered (Figure 7.3). In 
the base case, in a future without climate change, we estimate there will be 142.4 million 
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(uncertainty interval 139.8  million to 144.6  million) moderately stunted children and 
58.2 million (uncertainty interval 56.3 million to 59.9 million) severely stunted children in 
2030. The corresponding figures for 2050 are 101.9 million (uncertainty interval 100.1 million 
to 103.4  million) for moderate stunted children and 31.5  million (uncertainty interval 
30.5 million to 32.5 million) for severely stunted children. We estimate that climate change 
will result in an additional 3.6  million (uncertainty interval 2.9  million to 4.4  million) 
moderately stunted children and 3.9 million (uncertainty interval 3.5 million to 4.4 million) 
severely stunted children by 2030; in total, this is 7.5 million (uncertainty interval 6.7 million 
to 8.4 million) additional stunted children. In 2050, additional severe stunting is estimated to 
remain at 3.9 million (uncertainty interval 3.6 million to 4.1 million), but moderate stunting 
is expect to rise to 6.2 million (uncertainty interval 5.4 million to 7.0 million), giving a total 
of 10.1 million (uncertainty interval 9.2 million to 11.0 million) additional stunted children.

Under the low growth scenario, without climate change we estimate that in 2030 there will 
be 162.3  million (uncertainty interval 159.5  million to 165.1  million) moderately stunted 
children and 73.6 million (uncertainty interval 71.7 million to 75.9 million) severely stunted 
children. For 2050, the corresponding estimates are 213.5  million (uncertainty interval 
210.2  million to 216.4  million) and 112.6  million (uncertainty interval 109.6  million to 
115.7 million), respectively. Our estimates suggest climate change will lead to a large increase 
in severe stunting. Climate change is projected to increase moderate stunting by 3.3 million 
(uncertainty interval 2.4 million to 4.1 million) by 2030, but then reduce it by 4.9 million 
(uncertainty interval 5.9 million to 3.9 million) (compared with a future without climate 

fig 1.2

fig 2.1

fig 4.2

fig 4.1

 

 

 

0

2

4

6

8

10

12

14

16

2008 2030 2050 2080

An
nu

al
 d

ea
th

s,
 c

hi
ld

re
n 

<
15

 y
ea

rs
 

x 
10

0,
00

0  

Time  

B

H

L

0

10

20

30

40

50

60

70

80

2008 2030 2050 2080

M
or

ta
lit

y 
ra

te
 p

er
 1

00
,0

00
ch

ild
re

n 
<

15
 y

ea
rs

 

Time  

B

H

L

fig 7.2

fig 7.1

fig 7.5

fig 7.6

 

 

0

500

1000

1500

2000

2500

1961 −1990 2030 2050

BCM2

IPCM4

EGMAM_1

EGMAM_2

EGMAM_3

Population change only 
in modelled risk areas

Population change only 
in observed risk areas

0

500

1000

1500

2000

2500

1961−1990 2030 2050

BCM2

IPCM4

EGMAM_1

EGMAM_2

EGMAM_3

Population change 
only in modelled risk 
areas

Population change 
only in observed risk 
areas

fig 7.3

-6

-4

-2

0

2

4

6

8

10

12

L B H L B H

St
un

tin
g 

in
 c

hi
ld

re
n 

un
de

r 
5 

at
tr

ib
ut

ab
le

 to
 c

lim
at

e 
ch

an
ge

 

 

M
ill

io
ns 

2030                                          2050  

Severe

Moderate

0

20

40

60

80

100

120

140

L B H L B H

De
at

hs
 in

 c
hi

ld
re

n 
un

de
r 

5 
at

tr
ib

ut
ab

le
 to

 c
lim

at
e 

ch
an

ge

 
Th

ou
sa

nd
s 

2030                                                                2050  

fig 7.4

fig 8.2

 

0

2,000

4,000

6,000

8,000

10,000

12,000

2000 2025 2050 2075 2100

M
ill

io
ns 

Year  

IIASA A1

UN 2010 rev - medium

fig 8.1

200

400

600

800

1,000

1,200

20001980 2020 2040 2060 2080 2100

CO
2 

Eq
ui

va
le

nt
 (

pp
m

)
 

Year

fig 8.3

fig 8.4

0

2

4

6

8

10

12

14

N
um

be
r 

of
 s

ev
er

el
y 

st
un

te
d 

ch
ild

re
n 

M
ill

io
ns
 

 

0

2

4

6

8

N
um

be
r 

of
 s

ev
er

el
y 

st
un

te
d 

ch
ild

re
n 

M
ill

io
ns
 

 

0.5 0.6 0.7 0.8 0.9 1
0

1000

2000

3000

4000

5000

6000

0 0.05 0.1 0.15 0.2 0.25 0.3
0

1000

2000

3000

4000

5000

6000

0 0.05 0.1 0.15 0.2
0

1000

2000

3000

4000

5000

6000

0.5 0.6 0.7 0.8 0.9 1
0

1000

2000

3000

4000

5000

6000

0 0.05 0.1 0.15 0.2 0.25 0.3
0

1000

2000

3000

4000

5000

6000

0 0.05 0.1 0.15 0.2
0

1000

2000

3000

4000

5000

6000

0.5 0.6 0.7 0.8 0.9 1
0

1000

2000

3000

4000

5000

6000

0 0.05 0.1 0.15 0.2 0.25 0.3
0

1000

2000

3000

4000

5000

6000

0 0.05 0.1 0.15 0.2
0

1000

2000

3000

4000

5000

6000

Not/mild stunting Moderate stunting Severe stunting

As,S

LA, M

SSA,E

0

 20

 40

 60

 80

 100

 120

 140

 160

2008 2018 2028 2038 2048 2058 2068 2078 2088 2098

In
te

rn
at

io
na

l $
 2

00
5 

(0
00

’s
)

Year
 

Base
case

High
growth

Low
Growth

fig 2.2

fig 3.1

(a) Undernutrition (all-cause mortality in children aged under 5 years) 
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(b) Malaria (mortality in all ages)  
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(d) Dengue (mortality in all ages)   
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(c) Diarrhoeal disease (mortality in children aged under 15 years) 
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(e) Heat (mortality in people aged over 65 years) 
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Figure 7.3  Additional numbera of children aged under 5 years stunted due to climate 
change in 2030 and 2050 in the 12 study regions under low growth (L), base case (B) 
and high growth (H) socioeconomic scenarios

a	 Bars show additional number of children stunted due to climate change as a mean of the proba-
bility density function for the combined climate change scenario estimates minus the mean of the 
probability density function for the estimates without climate change
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change). This apparent benefit, however, is offset as severe stunting is expected to increase 
by 5.2  million (uncertainty interval 4.5  million to 5.9  million) by 2030 and 8.2  million 
(uncertainty interval 6.9 million to 9.5 million) by 2050. Total climate change-attributable 
stunting is expected to be 8.5 million (uncertainty interval 7.4 million to 9.5 million) in 2030 
and 3.3 million (uncertainty interval 1.6 million to 4.9 million) in 2050.

For the high growth scenario without climate change, moderate and severe stunting in 
2030 are estimated to be 123.1  million (uncertainty interval 121  million to 125.1  million) 
and 43.5 million (uncertainty interval 42.1 million to 45.2 million), respectively. In 2050 
our estimates are 70.1  million (uncertainty interval 68.8  million to 71.6  million) for 
moderate stunting and 14.3 million (uncertainty interval 13.5 million to 15.2 million) for 
severe stunting. Climate change is expected to increase moderate stunting by 3.3 million 
(uncertainty interval 2.7  million to 4.0  million) in 2030, and 3.8  million (uncertainty 
interval 3.3  million to 4.3  million) by 2050. Severe stunting is estimated to increase by 
3.1  million (uncertainty interval 2.7  million to 3.6  million) and 1.4  million (uncertainty 
interval 1.3 million to 1.6 million) in 2030 and 2050, respectively. Total stunting is expected 
to increase by 6.5  million (uncertainty interval 5.7  million to 7.2  million) in 2030 and 
5.2 million (uncertainty interval 4.7 million to 5.7 million) in 2050.

Figure 7.4 shows additional severe stunting attributable to climate change in the sub-
Saharan African regions, which are, along with south Asia, expected to be the most affected5 
by climate change (in terms of stunting). Table 7.3 shows the estimated number of children 
with stunting attributable to climate change in sub-Saharan Africa and south Asia.

5	 With the exception of southern sub-Saharan Africa, which has lower rates of stunting than the other regions in sub-Saharan 
Africa.

Table 7.3  Estimated numbera of children aged under 5 years with climate change-attributable 
stunting in 2030 and 2050 in sub-Saharan Africab and south Asia

Region Climate change–attributable stunting (millions of children aged < 5 years)

Stunting 
level

Base case Low growth High growth
2030 2050 2030 2050 2030 2050

Sub-
Saharan 
Africa

Moderate 0.8
(0.4 to 1.1)

1.8
(1.6 to 2.1)

0.4
(−0.06 to 0.8)

−2.6
(−3.0 to −2.1)

0.7 
(0.4 to 1.1)

1.2 
(1.0 to 1.4)

Severe 2.3
(2.0 to 2.6)

2.4
(2.2 to 2.5)

2.9
(2.6 to 3.2)

3.9 
(3.5 to 4.3)

1.9
(1.7 to 2.2)

1.1 
(9.7 to 1.2)

Asia, 
south

Moderate 1.1
(0.6 to 1.6)

1.8
(1.6 to 2.1)

1.1
(0.6 to 1.6)

−1.5
(−2.1 to −0.9)

1.1 
(0.8 to 1.5)

1.3 
(1.1 to 1.5)

Severe 0.9
(0.6 to 1.3)

0.9
(0.8 to 1.0)

1.4 
(0.9 to 1.9)

2.1 
(1.2 to 3.1)

0.6 
(3.5 to 0.9)

0.2 
(0.1 to 0.3)

a	 Numbers are mean estimate (millions of children aged under 5 years) with uncertainty interval (mean ± 1 standard deviation) in brackets

b	 Sub-Saharan Africa is the sum of estimates for central, eastern, southern and western sub-Saharan Africa. The mean estimate is the sum of the mean 
estimates from each region; the uncertainty interval is based on the uncertainty interval in each region (and was calculated by summing the variances in 
each region)
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Figure 7.4  Numbera of children with severe stunting, with and without climate change 
(CC), in 2030 and 2050 in four African regions under (a) base case, (b) low growth 
and (c) high growth scenarios

0

2

4

6

8

10

12

14

  

 

0

2

4

6

8

  

 

0

2

4

6

8

  

 SSA,C   SSA,E       SSA,S        SSA,W

20
30

20
50

20
30

20
50

20
30

20
50

20
30

20
50

SSA,C    SSA,E       SSA,S         SSA,W

20
30

20
50

20
30

20
50

20
30

20
50

20
30

20
50

SSA,C   SSA,E      SSA,S         SSA,W

No CC Additional with CC

20
30

20
50

20
30

20
50

20
30

20
50

20
30

20
50

(a) Base case

(b) Low growth

(c) High growth

N
um

be
r 

of
 s

ev
er

el
y 

st
un

te
d 

ch
ild

re
n 

(m
ill

io
ns

)
N

um
be

r 
of

 s
ev

er
el

y 
st

un
te

d 
ch

ild
re

n 
(m

ill
io

ns
)

N
um

be
r 

of
 s

ev
er

el
y 

st
un

te
d 

ch
ild

re
n 

(m
ill

io
ns

)

7.5 Regional estimates of children with stunting due to 
climate change

Table 7.4 gives regional estimates of the number of children with stunting due to climate 
change in 2030 and 2050.

SSA,C – sub-Saharan Africa, central;  
SSA,E – sub-Saharan Africa, eastern;  
SSA,S – sub-Saharan Africa, southern;  
SSA,W – sub-Saharan Africa, western

a	 Note y-axis scale is different for each 
graph; bars show number of children 
severely stunted as mean of the 
probability density function for the 
estimates without climate change and 
the mean additional number stunted 
with climate change based on the 
probability density function of the 
combined climate change scenario 
estimates
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7.6 Mortality due to climate change-attributable 
undernutrition

Climate change is estimated to increase mortality due to undernutrition, compared with a 
world without climate change (Figure 7.5).

There are important differences in mortality impacts, depending on the economic growth 
scenario. In the base case, we estimate there will be an additional 95 175 (uncertainty interval 
−3586 to 193 937) deaths in 2030 and 84 695 (uncertainty interval 29 815 to 139 576) deaths 
in 2050. The corresponding numbers for the low growth scenario are 131 634 (uncertainty 
interval −11 273 to 274 541) deaths in 2030 and 101 484 (uncertainty interval −32 326 to 
235  294) deaths in 2050; and for the high growth scenario 77  205 (uncertainty interval 
−12 491 to 166 900) deaths in 2030 and 36 524 (uncertainty interval 2518 to 70 530) deaths 
in 2050.

The regional distribution of mortality is shown in Table 7.5.

fig 1.2

fig 2.1

fig 4.2

fig 4.1
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(a) Undernutrition (all-cause mortality in children aged under 5 years) 
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(b) Malaria (mortality in all ages)  
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(d) Dengue (mortality in all ages)   
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(c) Diarrhoeal disease (mortality in children aged under 15 years) 
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(e) Heat (mortality in people aged over 65 years) 
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N: gridded average annual
diarrhoeal disease mortality
in children <15yrs, without 
climate change, for three 
socioeconomic scenarios, 
for a given future time slice.

 

ß : log-linear percent increase in relative risk of 
diarrhoeal disease per degree of temperature increase, 
as a ‘mid’, ‘low’, and ‘high’ estimate, where the same 
relations are applied globally and over time. 

 

 

 

n : gridded estimates of climate-attributable 
diarrhoeal disease mortality, for ‘mid’,‘low’
and ‘high’ relations, for minimum,median 
and maximum temperature anomalies. 

Aggregation to
regional level 
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exp(ß x ∆T)-1
exp(ß x ∆T)
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∆T : gridded average annual tempera-
ture anomaly with climate change, as 
minimum, median and maximum 
anomaly across 5 climate scenarios, 
for a given future time slice.

Figure 7.5  Estimated additional deaths in children aged under 5 years attributable to 
climate change in 2030 and 2050, in the 12 study regions, under low growth (L), base 
case (B) and high growth (H) scenariosa

a	 Bars show additional numbers of deaths in children attributable to climate change as mean of the 
probability density function for the combined climate change scenario estimates minus the mean 
of the probability density function for the estimates without climate change
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7.7 Uncertainty

7.7.1 Parameter uncertainty in the health model

To account for parameter uncertainty in stunting model, we used a standard Monte Carlo 
approach (see also Lloyd et al., 2011). Each parameter was assumed to be distributed either 
normally or uniformly about its point estimate (for details, see Lloyd et al., 2011). Figure 7.6 
shows the histograms proportional to the probability density functions of future stunting 
for selected regions in the base case.

7.7.2 Uncertainty in stunting-attributable death

To estimate stunting-attributable deaths, we required data on the proportion of children 
stunted and the relative risk of death in moderate and severe stunting (relative to not 
stunted). For the stunting data, we used the probability density functions for stunting with 
and without climate change. For the relative risk estimates, we used the odds ratios shown 
in Table 7.1. Using the mean and standard deviations of the probability density functions 
for stunting and odds ratios, we estimated the population-attributable fractions using a 
standard Monte Carlo simulation (100 000 runs).

fig 1.2

fig 2.1

fig 4.2

fig 4.1
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(a) Undernutrition (all-cause mortality in children aged under 5 years) 
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(b) Malaria (mortality in all ages)  
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(d) Dengue (mortality in all ages)   

 

0

50

100

150

200

250

HIC

As
ia,

 C

As
ia,

 E

As
ia,

 S

As
ia,

 SE LA
M

SS
A, 

E

SS
A, 

C

SS
A, 

S

SS
A, 

W

(c) Diarrhoeal disease (mortality in children aged under 15 years) 
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(e) Heat (mortality in people aged over 65 years) 
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N: gridded average annual
diarrhoeal disease mortality
in children <15yrs, without 
climate change, for three 
socioeconomic scenarios, 
for a given future time slice.

 

ß : log-linear percent increase in relative risk of 
diarrhoeal disease per degree of temperature increase, 
as a ‘mid’, ‘low’, and ‘high’ estimate, where the same 
relations are applied globally and over time. 
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anomaly across 5 climate scenarios, 
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Figure 7.6 Histograms proportional to probability density functions for the proportion of children estimated 
to be stunted in 2050 under the base case scenario, for selected regionsa

As,S – Asia, south; LA,M – Latin America, mid; SSA,E – sub-Saharan Africa, eastern
a	 Histograms were derived from 100 000 Monte Carlo runs. The x-axes show proportion of children stunted at a given 

level. Note that the x-axis scale runs from 0.5 to 1 in column 1, from 0 to 0.3 in column 2, and from 0 to 0.2 in column 
3. The y-axes show number of estimates. The curves are blue for no climate change, red for MIROC and green for CSIRO
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94  Quantitative risk assessment of the effects of climate change on selected causes of death, 2030s and 2050s

It was not possible to assess the uncertainty in the upstream models (such as climate, 
crop and trade models) that drive our model as we lacked the necessary information. This 
assessment has included two climate scenarios and three health futures.

The large uncertainty is a natural consequence of propagating uncertainties in a chain of 
models. More important than presenting uncertainty is taking into account the uncertainty 
of making robust decisions, such as in terms of prioritizing interventions to reduce the 
impact of climate change on health. This can be done using decision-analytical methods. 
Calculating uncertainty is a necessary first step to support policy-makers making robust 
decisions under uncertainty.

7.8 Discussion

Previous studies have shown that climate change is likely to increase future hunger and 
undernutrition (Rosenzweig & Parry, 1994; Parry et al. 1999, 2004; Nelson et al., 2009, 2010). 
A previous assessment using the same undernutrition model but under different climate and 
socioeconomic scenarios estimated that moderate stunting in sub-Saharan Africa and south 
Asia would increase by 1–29% by 2050, with increases of 23–62% in severe stunting (Lloyd et 
al., 2011). At the time of writing, no other studies have estimated future mortality attributable 
to undernutrition as a result of climate change, and therefore a direct comparison cannot 
be attempted.

According to this assessment, regardless of the future socioeconomic scenario considered, 
climate change will result in millions more children being stunted. In the base case scenario, 
our mean estimate suggests an additional 7.5  million children will be stunted by 2030, 
increasing to an additional 10.1  million by 2050. In the low growth scenario, moderate 
stunting is estimated to be 4.9 million (mean estimate) lower by 2050 in a future with climate 
change (compared with a future without climate change), but severe stunting is expected to 
increase by 8.2 million (mean estimate). This poses a major health risk: moderate stunting 
has an all-cause mortality odds ratio (compared with not being stunted) of 1.6; the odds ratio 
for severe stunting is 4.1 (Black et al., 2008). Furthermore, severe stunting brings a higher 
risk of morbidity (Black et al., 2008) and has a greater impact on future potential, such as 
education and earning potential (Victora et al., 2008).

In the high growth scenario, climate change is expected to increase severe stunting by 
3.1 million in 2030 and 1.4 million in 2050 (mean estimates). This is despite the considerable 
income growth in this scenario, which (due to assumed accompanying lowering of the non-
food risks of stunting such as those related to physical infrastructure and education) lowers 
the risk of stunting. This scenario assumes that high income growth can be achieved without 
increasing climate change (that is, the amount of climate change in this scenario is the same 
as in the base and optimistic scenarios); in other words, it is optimistic in terms of the 
development of green technology.

Geographically, the areas expected to be most affected (in terms of numbers of children 
stunted) by climate change are sub-Saharan Africa (with the exception of southern sub-
Saharan Africa) and south Asia. That these regions are also expected to have a generally 
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high burden of disease magnifies the likely impacts of stunting, which acts synergistically 
with many infectious diseases and increases the risk of some chronic diseases (Black et al., 
2008; Victora et al., 2008).

In terms of the proportion of children stunted, regardless of the presence or absence of 
climate change, economic growth is expected to reduce child stunting. Over time, the 
proportion of children stunted drops considerably in the high growth scenario; it drops less 
so, but still considerably, in the base case scenario. In contrast, in the low growth scenario, 
the proportion of children stunted increases over time. Despite the potential benefits of 
economic growth, climate change leads to an increase in the proportion stunted in all 
scenarios.

These results may appear to suggest that high economic growth (as in the high growth 
scenario) is the optimal pathway to reduce stunting; in our results, stunting in the base 
case scenario without climate change exceeds stunting in the high growth case with climate 
change. We caution against such an interpretation for the following reasons. First, the high 
growth scenario assumes that additional economic growth brings no increase in climate 
change; this is highly unlikely. In reality, unless there is a rapid advance in the availability and 
use of green technology, the likely increase in emissions and accompanying climate change 
will have negative impacts on food production that are not accounted for in this assessment. 
Second, the undernutrition model we used assumes that the relationship between national 
income and stunting risk remains constant over time at baseline levels. This relationship has 
been estimated at a time (currently) when there are vast inequalities between and within 
countries, and there are many initiatives aimed at improving the situation. These initiatives, 
from the standpoint of the undernutrition model, aim to change the relationship between 
national income and stunting risk; that is, although one possible path to reducing stunting 
is to maximize national income (which may have unforeseen or unconsidered consequences 
that offset the expected benefits, such as greater climate change), another possible path is to 
reduce inequalities and improve living conditions.

We estimate that in the base case scenario, climate change-attributable stunting will result 
in about 95 000 extra child deaths in 2030 and 80 000 extra child deaths in 2050 (mean 
estimates). This finding is not insignificant, but it is lower than may have been anticipated 
given that we estimate climate change will result in millions more stunted children in 
all three socioeconomic scenarios. We believe our estimates should be considered very 
conservative for the following two reasons. First, the burden of disease projections assume 
that with time and development, there is a shift away from communicable diseases and 
towards noncommunicable diseases. The population projections assume the population of 
children aged under 5 years is declining in all but three countries included in our analysis, 
despite growth in total population. Considered together, this means over time there are 
fewer communicable disease deaths in fewer children; this shrinking group is the particular 
group at risk of stunting associated mortality. Furthermore, stunting in childhood has been 
associated with a greater risk of noncommunicable diseases and lower economic productivity 
in adulthood (Victora et al., 2008); this is not accounted for in our model. It is reasonable to 
expect that an increase in stunting of the magnitude we estimate would lead to an increase 
in rates of (and death rates due to) noncommunicable disease and reduce national income.
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96  Quantitative risk assessment of the effects of climate change on selected causes of death, 2030s and 2050s

Second, our modelling does not include the impact of shocks; it considers stunting due 
only to expected average conditions. Climate shocks may occur in the form of acute food 
production decreases due to extensive and prolonged droughts, or increased food price 
instability leading to rapid price increases. Relevant shocks need not be related directly to 
food access; for example, there may be an epidemic of diarrhoea associated with changed 
temperature regimes. In the face of such shocks, stunting can be considered as a cause of 
vulnerability: if an already stunted child has a sudden decrease in food access, or a sudden 
increase in disease risk, then the risk of further morbidity or mortality is considerably higher 
than in non-stunted children. At the population level, if there are large numbers of already 
stunted children, then it will be considerably more difficult for a nation to cope with shocks.
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Contribution of Research Papers 1 & 2 and new questions raised 

The model developed for Research Papers 1 and 2 represented an advance in that it estimated a more 

health-relevant outcome (child stunting, split into moderate and severe stunting) than previous 

assessments (Lloyd et al., 2011), and attempted to explicitly account for the influence of 

socioeconomic development. The latter was done by aggregating the causes of stunting into food- and 

non-food-causes. Overall, the findings of the model showed that as climate change increased and 

socioeconomic conditions worsened, child stunting – in particular, severe stunting, which is 

considerably more lethal than moderate stunting (Black et al., 2008) - increased.  

 

Subsequently, the stunting model has been incorporated into models developed by other groups (e.g. 

Ishida et al., 2014, Hasegawa et al., 2016). This involved two sequential innovations. Firstly, Ishida et 

al. (2014) developed a statistically-based model that transformed the output of the stunting model 

into estimates of ‘Disability-adjusted Life Years Attributable to Underweight’ (DAtUs). They then 

estimated DAtU’s globally and for world regions under various climate and socioeconomic scenarios. 

In their approach, the authors effectively lengthened the existing chain of models that represented 

the pathway from climate change to undernutrition-related outcomes (Figure 1, panel A in Chapter 2 

of this thesis, and, Figure 1 in Ishida et al. (2014)). That is, they added the DAtU model to the end of 

the chain.  

 

Secondly, Hasegawa et al. (2016) developed new models with transformed the output of the DAtU 

model initially into Disability Adjusted Life Years (DALYs) for various health outcomes, and then used 

these outputs to estimate economic measures (e.g. medical expenditures, value of lives lost). Impact 

estimates were made for various world regions and globally under combinations of climate and 

socioeconomic scenarios. An advance in this approach was the incorporation of feedbacks: (i) from 

medical expenditure to income, and (ii) from mortality to labour availability. From a health 

perspective, however, the model essentially represented a further lengthening of the chain of models 

(see Figure 1, panel B in Chapter 2 of this thesis (which is a reproduction of Figure 1 in Hasegawa et al. 

(2016)), notwithstanding feedbacks which indirectly influence stunting estimates in subsequent years 

(via effects on GDPpc and aggregate food production).  

 

Both of the above were important innovations which advanced existing knowledge. In doing so, 

however, they continued to view the climate-undernutrition relation from the same perspective as 

previous models, asking: how climate change-associated changes in food production will impact on 

food supply available to consumers and how this will influence the risk of undernutrition. Further, 
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existing structural features were retained: (i) the downstream health component models inherit the 

assumptions of the upstream component models, including that production and consumption (and 

thus, producers and consumers) can be considered separately, and, (ii) climate does not directly 

impact on scenario-specific socioeconomic conditions (albeit Hasegawa et al. (2016) allow for some 

indirect effects of climate on GDPpc and population via its impacts on stunting).   

 

The results generated by the model in Chapter 2, as well as in the successor models described above 

(Hasegawa et al., 2016, Ishida et al., 2014), raise new questions. Research Paper 2 found that the 

differences in stunting between socioeconomic scenarios were considerably larger than climate 

change-attributable stunting (Figure 5; also see Figure 7.4 in Research Paper 2). Ishida et al. (2014) 

and Hasegawa et al. (2016) found likewise. That is, all these results suggest that socioeconomic 

development (blue bars in Figure 5) has a much greater influence on the magnitude of estimated child 

stunting than climate change (orange bars in Figure 5) (Lloyd and Hales, 2019). Yet, when estimating 

undernutrition in all these models, socioeconomic conditions are represented crudely, essentially as 

national-level GDPpc. Further, although it is expected that climate change will impact on 

socioeconomic conditions (Hallegatte and Rozenberg, 2017), these models only account for climate 

impacts on crop production.   

 

Given this, the questions arising are, what would we see if a model attempted to (i) better represent 

aspects of development?, and (ii) account for the direct impacts of climate change on development 

rather than only on crop production? A first step in this direction was taken in Research Paper 3.  
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Figure 5 Estimates of number of children stunted in futures with and without climate change, in 2030 and 2050, under 
moderate to high emissions, for three socioeconomic scenarios. Impacts without climate change are shown in blue; additional 
impacts with climate change are shown in orange; in the legend, “CC” stands for “climate change”. The emissions scenario 
was SRES (Special Report on Emissions Scenarios) A1b (Nakicenovic and Swart, 2000). Each pair of bars represents a given 
socioeconomic scenario in the 2030s (left bar) and 2050s (right bar); the socioeconomic scenarios are “low growth”, “base 
case”, and “high growth”, which assume low, moderate, and high economic growth, respectively (for details, see “Research 
Paper 2: Supplemental Material”). 
Based on results from Lloyd et al (2014). 
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Chapter 5. Modelling climate change impacts on child stunting through 

incomes of the poorest and food price 

Background 

This chapter is composed of a research paper (Lloyd et al., 2018) that was originally commissioned by 

the World Bank as part of the “Shock Waves” report on climate change and poverty (Hallegatte et al., 

2016). It describes the development of a statistically-based (multilevel longitudinal regression) health 

model that estimates the impacts of climate change on child stunting in rural and urban areas through 

its effects on incomes and food prices. The poverty modelling was carried out by the World Bank 

(Hallegatte and Rozenberg, 2017) and the food price modelling was carried out by IIASA (International 

Institute for Applied Systems Analysis) using GLOBIOM (Global Biosphere Management Model) (Havlík 

et al., 2014, Havlík et al., 2015). Stunting estimates are given for the year 2030 under low and high 

climate change, and under “poverty” and “prosperity” socioeconomic scenarios.      

 

Research Paper 3: A Global-Level Model of the Potential Impact of Climate 

Change on Child Stunting via Income and Food Price in 2030 

For accompanying supplemental material, see the appendix “Research Paper 3: Supplemental 

Material”. 

Note on copyright 

Extract from the Environmental Health Perspectives (EHP) website: 

“All documents published by EHP are in the public domain. PDF copies of published articles 

can be freely shared and distributed without permission from either EHP or the authors. … 

(A)uthors of research articles do retain copyright of the article’s contents. … You do not need 

permission from EHP to reuse your own content. This includes reproducing figures and using 

your article as an attachment or appendix.” 

Source: https://ehp.niehs.nih.gov/about-ehp/copyright-permissions (Last accessed: 6 Nov, 2019) 
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A Global-Level Model of the Potential Impacts of Climate Change on Child
Stunting via Income and Food Price in 2030
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Hygiene and Tropical Medicine, London, UK
2Global Facility for Disaster Reduction and Recovery, World Bank, Washington, DC, USA
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BACKGROUND: In 2016, 23% of children (155 million) aged <5 were stunted. Global-level modeling has consistently found climate change impacts
on food production are likely to impair progress on reducing undernutrition.
OBJECTIVES: We adopt a new perspective, assessing how climate change may affect child stunting via its impacts on two interacting socioeconomic
drivers: incomes of the poorest 20% of populations (due to climate impacts on crop production, health, labor productivity, and disasters) and food
prices.
METHODS:We developed a statistical model to project moderate and severe stunting in children aged <5 at the national level in 2030 under low and
high climate change scenarios combined with poverty and prosperity scenarios in 44 countries.
RESULTS: We estimated that in the absence of climate change, 110 million children aged <5 would be stunted in 2030 under the poverty scenario in
comparison with 83 million under the prosperity scenario. Estimates of climate change–attributable stunting ranged from 570,000 under the prosper-
ity/low climate change scenario to >1million under the poverty/high climate change scenario. The projected impact of climate change on stunting
was greater in rural vs. urban areas under both socioeconomic scenarios. In countries with lower incomes and relatively high food prices, we projected
that rising prices would tend to increase stunting, whereas in countries with higher incomes and relatively low food prices, rising prices would tend to
decrease stunting. These findings suggest that food prices that provide decent incomes to farmers alongside high employment with living wages will
reduce undernutrition and vulnerability to climate change.
CONCLUSIONS: Shifting the focus from food production to interactions between incomes and food price provides new insights. Futures that protect
health should consider not just availability, accessibility, and quality of food, but also the incomes generated by those producing the food. https://doi.
org/10.1289/EHP2916

Introduction
Despite being a focus of health and global development policy for
decades, and notwithstanding significant progress in many coun-
tries, child undernutrition remains a major contributor to the global
burden of disease (GBD). An estimated 23% (155 million) of chil-
dren aged <5 were stunted (low height-for-age) in 2016 (UNICEF
et al. 2017), which has major health implications. In comparison
with not being stunted, moderate stunting has an all-cause mortality
odds ratio (OR) of 1.6; for severe stunting, it increases to 4.1 (Black
et al. 2008). Morbidity risk increases for diseases, including pneu-
monia and diarrheal disease (Prendergast and Humphrey 2014). In
the longer term, a reduction in neurodevelopmental and cognitive
function may lead to reduced learning and earning capacity, and the
risk of chronic disease is increased (de Onis and Branca 2016;
Victora et al. 2008).

Global-level modeling studies have consistently found that cli-
mate change is likely to impair progress on reducing undernutrition

(e.g., Hasegawa et al. 2015; Ishida et al. 2014; Nelson et al. 2010).
For instance, Lloyd et al. (2011) found that that high climate
change may result in a relative increase in severe stunting of 23%
in Sub-Saharan Africa and 62% in South Asia in the 2050s. In such
global-level studies, the mechanism via which climate change
affects undernutrition is through changed crop productivity, which
affects post-trade national calorie availability. Projected calorie
availability is combined with fixed (i.e., not affected by climate
change) scenario-specific socioeconomic variables, such as popu-
lation size and per capitaGrossDomestic Product (GDPpc), to esti-
mate undernutrition. These fixed socioeconomic variables have a
major influence: A consistent finding is that the differences in
undernutrition between plausible socioeconomic futures is consid-
erably larger than that between plausible climate change futures
(e.g., Lloyd et al. 2014; Schmidhuber and Tubiello 2007).

This finding raises three related issues. First, given the com-
plexity of the causation of undernutrition, the large influence of
socioeconomic conditions is expected. For example, Smith and
Haddad (2015) found that between 1970 and 2012, 67% of the
reduction in stunting was due to improvements in women’s educa-
tion, gender equality, and access to adequate water and sanitation
services. Rayner and Lang (2012) state that measures of height
(including stunting) are “less an indicator of nutritional status and
more a comment on the ‘nutrition-environment interaction,’”where
“environment” refers to context rather than just the natural environ-
ment. That is, at the population level, stunting is about more than
food. Second, as well as affecting food production, climate change
may affect undernutrition via socioeconomic routes. For instance,
recent work shows that climate change may affect the income of the
poorest population groups disproportionately (Hallegatte et al.
2016), and this impact may in turn influence undernutrition risk.
Third, interactions between routes from climate to undernutrition
may mean the combined impacts are not simply additive and are

Address correspondence to S.J. Lloyd, Dept. of Public Health, Environments
and Society, London School of Hygiene and Tropical Medicine, 15-17
Tavistock Place, London, WC1H 9SH. UK. Telephone: +34 644 61 49 32.
Email: simon.lloyd@lshtm.ac.uk
Supplemental Material is available online (https://doi.org/10.1289/EHP2916).
The authors declare they have no actual or potential competing financial

interests.
Received 28 September 2017; Revised 24 July 2018; Accepted 26 July

2018; Published 26 September 2018.
Note to readers with disabilities: EHP strives to ensure that all journal

content is accessible to all readers. However, some figures and Supplemental
Material published in EHP articles may not conform to 508 standards due to
the complexity of the information being presented. If you need assistance
accessing journal content, please contact ehponline@niehs.nih.gov. Our staff
will work with you to assess and meet your accessibility needs within
3 working days.

Environmental Health Perspectives 097007-1 126(9) September 2018

A Section 508–conformant HTML version of this article
is available at https://doi.org/10.1289/EHP2916.Research

85

https://doi.org/10.1289/EHP2916
https://doi.org/10.1289/EHP2916
mailto:simon.lloyd@lshtm.ac.uk
https://doi.org/10.1289/EHP2916
http://ehp.niehs.nih.gov/accessibility/
mailto:ehponline@niehs.nih.gov
https://doi.org/10.1289/EHP2916


thus not easily predictable. However, to our knowledge, no previous
global-level climate–undernutrition models have considered impacts
operating through routes other than food production or more than one
climate entry point at a time.

In this paper, we take a first step toward examining how climate
change entering through two interacting socioeconomic drivers—
incomes of the poorest 20% of a country and food price—may affect
child stunting at the national level and in rural and urban areas. Both
drivers may significantly influence undernutrition. Climate change
may influence incomes via its impacts on crop production, health,
labor productivity, and disasters (Hallegatte and Rozenberg 2017).
In turn, low income and povertymanifest in a constellation of forms,
including lack of access towater and sanitation, essential medicines,
education, and adequate shelter and food; these forms combine to
increase the risk of undernutrition (Pogge 2010). Food prices have a
more complex relation to undernutrition: As well as directly influ-
encing ability to purchase food, prices may influence incomes and
wages. For instance, sustained high prices may increase risks for
low-income net food consumers while reducing the risk for net food
producers (Hertel 2016; Ivanic andMartin 2008). Thus, interactions
between food price and incomes, and how they are each affected by
climate change,may have unexpected aggregate effects.

To investigate this, we used multilevel statistical modeling to
develop a global-level model that could be driven by projection
data provided by “poverty” and “food price” models. We then
projected moderate and severe stunting in children aged <5 at the
national level and in rural and urban areas in 2030 under low and
high climate change scenarios combined with poverty and pros-
perity socioeconomic scenarios.

Methods
In this section, we describe: a) the historical data and indicators
used when fitting the stunting model, b) the forms of the equa-
tions and the process of fitting the stunting model, and c) the pov-
erty and food-price models and the scenario-specific projection
data used to make the estimates of future stunting. For the latter,
a full set of projection data was available only out to 2030, and
this limited the temporal horizon of our stunting estimates.

Historical Data and Indicator Development
Stunting data for children <5 y of age were from the Global
Database on Child Growth and Malnutrition, which is based on
survey data using consistent growth standards to identify moder-
ate stunting (height-for-age Z-scores of −3 to −2) and severe
stunting (height-for-age Z-scores <− 3) (WHO 2017). Data for
individual countries during a given year were available for mod-
erate stunting and severe stunting, both at the national level and
separately for rural and urban areas in each country. Individual
countries were included in our analysis if they met three criteria.
First, data were available on the prevalence of moderate and severe
stunting from surveys performed on at least three occasions from
1990 onward. Second, they had sufficient data to derive estimates
of food prices at the national level and of incomes of the poorest
20% of the population in rural and urban areas, respectively, for the
majority of the years with stunting data. Third, these estimates of
food price and incomes of the poorest populations could also be
calculated for future years using output from poverty and food
pricemodels (described below.)

To develop an indicator of rural and urban incomes for each
country, we obtained historical data on the average GDPpc of the
population in the lowest 20% of the income distribution in each
country (GDPpc20), in Purchasing Power Parity 2005 dollars
(PPP$2005) (World Bank 2017) for each year with stunting data
(matched as closely as possible, within a maximum of 5 y). Next,

we used the ratio of rural to urban income or consumption to
derive area-level income indicators for the rural and urban popu-
lations in the lowest 20% of the income distribution (inc20Rij and
inc20Uij , respectively) for each country j on occasion i when stunt-
ing was measured:

inc20 Rð Þ
ij =GDPpc20ij ×

income Rð Þ
ij

income Rð Þ
ij + income Uð Þ

ij

0
@

1
A and

inc20 Uð Þ
ij =GDPpc20ij ×

income Uð Þ
ij

income Rð Þ
ij + income Uð Þ

ij

0
@

1
A (1)

where GDPpc20ij is the national-level average GDPpc of the low-
est 20% of the population of country j on occasion i (in PPP$
2005) [“i” is a sequential index of measurement occasion; this is
used because it corresponds to indexing commonly used in longi-
tudinal multilevel models (see below)], and incomeðRÞij and
incomeðUÞij represent the average values for income or consump-
tion in rural and urban areas of country j during year i. This met-
ric can be derived using data on either income or consumption, as
long as the same units are used for rural and urban areas in each
country and year. The indicator does not give an estimate of
actual income; rather, it provides a measure of the size of rural
and urban incomes that is comparable over time and across
countries. An increase in the income indicator for a given rural
or urban area indicates an increase in the average income of the
population in the lowest 20% of the income distribution for the
area.

There are two key assumptions in this indicator. First, projec-
tion data from the poverty model are for agricultural and nonagri-
cultural incomes. We assumed these corresponded to rural and
urban areas, respectively, because stunting data and historical
income data were split rural–urban. Second, historical data for ru-
ral and urban incomes of the bottom 20% were not available; we
thus assume that average incomes are roughly proportional to
incomes of the bottom 20%.

In addition, we derived the ratio of the rural-to-urban income
indicator for country j on occasion i as:

Dij =
inc20 Rð Þ

ij

inc20 Uð Þ
ij

(2)

We next developed an indicator of the affordability of food
for the poorest 20% of the population in a given country. The
model used to project future food prices (described below) esti-
mated within-country changes in average national-level food pri-
ces relative to the year 2000 with the effects of inflation removed,
such that the projected value is set to 1 for the year 2000 in all
countries, and a 10% increase in price in a given country and year
would result in an indicator= 1:1. We produced equivalent his-
torical price data by dividing the national-level Consumer Price
Index (CPI) for food (fCPI ij) by the general CPI (gCPI ij) (both
set to 100 for the year 2000) (ILO 2017) to get an indicator of
change in “real” food prices for country j on occasion i. Next, to
develop an indicator of food price relative to incomes of the pop-
ulation in lowest 20% of the income distribution that is compara-
ble across countries, we multiplied this by the domestic food
price index (DFPI, an indicator of average food price in a given
country relative to other countries) for county j in the year 2000
(FAO 2017b) and then divided it by GDPpc20ij=460, in which
“460” represents an annual income of $1:25 PPP2005, equal to
the World Bank poverty line (Chen and Ravallion 2008). The full
equation for the food price indicator (priceij) is:
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priceij =

fCPIij
gCPIij

� �
×DFPIj

GDPpc20ij
460

� � (3)

Due to a lack of data, we could not derive separate indicators
for rural and urban areas; hence, priceij is a national-level indica-
tor of average prices across rural and urban areas in each country
on each occasion relative to incomes in the lowest 20% of the
income distribution. Additionally, a lack of data meant we were
unable to account for differing expenditure patterns in low-
income populations; in effect, it is assumed that expenditure pat-
terns are similar in this population group in the study countries.
As the food-price indicator increases, food becomes less afford-
able (on average) for the poorest part of the population. If data
required to derive priceij for a specific year were missing, we
interpolated or extrapolated the existing series or used data from
the country’s nearest neighbor to derive a value.

Forms of the Model Equations and Model Fitting
As we had a mix of national-level and area-level predictors, we
used a two-stage approach, first modeling national-level moderate
or severe stunting longitudinally, and then modeling area-level
(i.e., rural and urban) moderate or severe stunting as a function of
national-level stunting.We used random-effects models to account
for unmeasured influences on stunting, and to allow us to make
general inferences for all countries at risk of stunting, rather than
limiting inferences only to the countries used to fit themodel.

In the first stage, we used “growth-curve” modeling (Rabe-
Hesketh and Skrondal 2012; Steele 2014) to estimate national-
level trajectories of moderate stunting and severe stunting, using
longitudinal national-level predictors while allowing for autocor-
relation, and to assess time-varying and fixed predictors and
unexplained differences (Rabe-Hesketh and Skrondal 2012). We
used separate binomial logistic regression models (with the num-
ber stunted being calculated using prevalence and sample size
from the survey data for stunting) to derive estimates for the
prevalence of moderate stunting or severe stunting, respectively.

We initially fit “null” growth-curve models that included ran-
dom effects and year only. The approach provides a formal test
of whether a multilevel model gives a better fit than an equivalent
single-level model and provides an initial assessment of stunting
trajectories in recent decades. Following this we fit “full” models
containing the predictor variables for each outcome.

Separate first-stage models for the log odds of moderate or severe
stunting vs. no stunting (respectively) at the national level for each
country j on occasion i for degree of stunting k (YðNÞ

ijk ) (where the
superscriptN refers to national level) had the following form:

log
Y Nð Þ
ijk

1− Y Nð Þ
ijk

0
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0jk + b Nð Þ
1jk tijð Þ+ b Nð Þ

2k Gijð Þ+ b Nð Þ
3k Pijð Þ

+ b Nð Þ
4k Gij ×Pijð Þ+B � R (4)

bðNÞ0jk = bðNÞ0k + uðNÞ0jk (5)

bðNÞ1jk = bðNÞ1k + uðNÞ1jk (6)

where tij is the year of measurement of stunting, centered on the
year 2010; Gij is log(GDPpc20ij); Pij is mean centered log
(priceij); R is a column vector of 11 indicator variables for GBD
regions (as a contextual variable) (IHME 2015), and B is the cor-
responding row vector of fixed parameters for each region. The
subscript k is degree of stunting (0 for moderate, and 1 for

severe). The coefficients bðNÞ2k , bðNÞ3k , and bðNÞ4k are fixed global pa-
rameters; bðNÞ0jk and bðNÞ1jk are country-specific parameters. The ran-
dom effects, representing unmeasured time-invariant country-
specific effects, capture (given the covariates) country-level dif-
ferences, where uðNÞ0j is the random intercept, and uðNÞ1j is the ran-
dom slope for year. The u terms are assumed to be normally
distributed with a mean of zero and collectively follow a multi-
variate normal distribution with a mean of zero and a specified
covariance (Steele 2014):

uðNÞ0jk

uðNÞ1jk
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where r2
u0k is the variance of uðNÞ0jk , r

2
u1k is the variance of uðNÞ1jk ,

and ru0u1 is the covariance of u
ðNÞ
0jk and uðNÞ1jk .

In the second stage, we used multilevel binomial logistic
regression and area-level variables to estimate the log odds of
moderate stunting or severe stunting in rural areas and urban
areas, respectively (YðAÞ

ijk ), where the superscript A refers to rural
or urban area, as a function of national-level stunting:
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cðAÞ0jk = cðAÞ0k +wðAÞ
0jk (9)

cðAÞ1jk = cðAÞ1k +wðAÞ
1jk (10)

YðNÞ
ijk is national-level stunting on occasion i in country j of

degree k (i.e., moderate or severe); IðAÞij represents area-level
income as log(inc20ðRÞij ) or log(inc20ðUÞij ) (from Equation 1) centered
just below its historical minimum; and Dij represents rural–urban
inequalities (from Equation 2). The coefficients cðAÞ2k , c

ðAÞ
3k , c

ðAÞ
4k , and

cðAÞ5k arefixed area-level global parameters; cðAÞ0jk and c
ðAÞ
1jk are country-

specific area-level parameters. The random effects wðAÞ
0jk and wðAÞ

1jk
capture unmeasured time-invariant country-specific area effects
(country-specific random intercepts and random slopes, respec-
tively) for national-level stunting, which are assumed to be normally
distributed (as in Equation 7).

Whenmaking projections of rural and urban stunting, to ensure
consistency with the national-level projections, we proportionally
rescaled the rural and urban estimates for moderate and severe
stunting so that they summed to the national-level estimates.

All equations were fitted in Stata 13.0 (StataCorp LLC) using
the “meqrlogit” command, which fits random-effects models for
binomial responses using QR decomposition.

UpstreamModels and Scenario-specific Projection Data
Two streams of modeled scenario-specific projection data were
used to drive the stunting model. The first, for incomes, was from a
“poverty model” (Hallegatte and Rozenberg 2017), which is a
microsimulation model based on household surveys from 92 coun-
tries, thus representing individual households from across the
income spectrum. The second, for food prices, was from the Global
Biosphere Management Model (GLOBIOM) (Havlík et al. 2014;
Havlík et al. 2015) (Figure 1). Both models were initially driven by
standard climate and socioeconomic scenarios. Climate data were
from fiveGeneral CirculationModels (GCMs) under two emissions
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scenarios (Representative Concentration Pathways (RCPs) (Moss
et al. 2010)). RCP 2.6 represents a low emissions future and RCP8.5
represents a high emissions future. Socioeconomic data were from
two Shared Socioeconomic Pathways (SSPs) (O’Neill et al. 2017).
SSP4 represents a world of rapid population growth, low economic
growth, and high inequalities. SSP5 is scenario with low population
growth, high economic growth, and large environmental pressures.

For the poverty model, based on the above scenarios, a set of
tailored scenarios were developed to account for both socioeco-
nomic and climate uncertainties in 2030. Firstly, socioeconomic
futures were developed. A total of 300 subscenarios for each SSP
were generated to capture the various ways that the macrolevel
conditions specified in the SSPs may be reached by 2030. This
included differences in factors such as: a) structural change, as
share of labor force in each sector (i.e., agriculture, manufactur-
ing, services) by skill level (i.e., low, high) and participation
rates; b) productivity growth of skilled and unskilled labor and in
each sector; c) demographic change, and d) policies (e.g., pen-
sions and social transfers). The scenarios based on SSP4 repre-
sent “poverty” futures, with a global stability in the fraction of
people living in poverty. Those based on SSP5 represent “pros-
perity” futures, which are broadly consistent with the achieve-
ment of the Sustainable Development Goals (SDGs) (United
Nations 2018).

Following this, climate was introduced into the model: first, as a
counterfactual future without climate change and then as low- and
high-impact climate change scenarios. Because the magnitude of
climate change in 2030 is only minimally affected by future emis-
sions and climate policies, the difference between the low- and high-
impact scenarios is related to the magnitude of expected impacts,
rather than emissions. Impacts in a set of sectors were assessed
across all the initial climate scenarios. These sectors included: a)
food prices and food production (as impacts of food price on house-
holds’ available income, and changes in farmers’ incomes); b)
health and labor productivity (stunting, as lost income over a life-
time; malaria and diarrheal disease, as treatment costs and days of
work lost; c) labor productivity losses, as proportion of labor time
lost; and, d) disasters, as income losses due to exposure to cyclones,
storm surge, floods, and drought). The smallest impacts were taken
to represent “low climate change” and the highest to represent “high
climate change.”

Of note, when accounting for uncertainty on how high food pri-
ces translate into higher revenues and for the difference between
landowners and laborers, different assumptions were made in the
poverty and prosperity scenarios: in the prosperity scenario, a 1%
increase in food price translates into a 1% increase in farmers’
income; in the poverty scenario, a larger fraction of the gain is cap-
tured by landowners at the expense of laborers, and a 1% increase
in food price translates into a 0.5% increase in farmers’ income.

Finally, the three climate-change scenarios (no change, low, and
high) were combined with the two sets of socioeconomic scenarios
to give six sets of climate-socioeconomic scenarios under which the
poverty model was run. The data outputs from the poverty model
used to drive the stuntingmodel were national-level averageGDPpc
of the lowest 20% of the population (GDPpc20ij) and average
incomes in rural and urban areas (incomeRij and incomeUij , respec-
tively), as well as population (split into agricultural and nonagricul-
tural for all ages and children <15). (See the original paper for a full
description of the povertymodel (Hallegatte andRozenberg 2017)).

For food prices, GLOBIOM accounted for (among other
things) future changes in crop productivity and global food trade,
and estimated relative changes in national-level food prices based
on results from Havlík et al. (2015). This provided data for the
national-level deflated food CPI (i.e., fCPI ij=gCPIij). Following
the method used for poverty model, we used the lowest prices in

2030 under SSP4 and SSP5 from any RCP-GCM combination for
“low climate change” in the “poverty” and “prosperity” scenarios,
respectively; similarly, we used the highest prices for “high climate
change.” Prices in futures without climate changewere used for the
“no climate change” scenarios.

Additionally, SSP-specific population projections for children
<5 y of age were taken from the Wittgenstein Centre for
Demography and Global Human Capital (2017). The poverty
model provided population data for children <15 y in agricul-
tural and nonagricultural families; we assumed that the
agricultural-to-nonagricultural ratio in children <5 y of age was
the same as that for children <15 y of age. Further we assumed
that agricultural populations lived in rural areas, and nonagri-
cultural families lived in urban areas.

In the stunting model, we combine the above projection data
to estimate patterns of undernutrition in children <5 y of age
given climate change–impacted incomes and food prices under
the climate and socioeconomic scenarios developed for the pov-
erty model.

Two issues arise in relation to the stunting model input data.
First, food-price estimates from GLOBIOM are one of the inputs
into the poverty model. That is, food prices influence incomes.
Second, in the poverty model, stunting affects incomes. However,
as stunting-related income losses are seen in adults who were
stunted when children—i.e., 10 to 20 y previously—we assume
this is independent of stunted children <5 y of age in the time pe-
riod of interest (Figure 1). Combining these issues, we assume that
following the initial impacts of food prices and adult stunting on
income (along with impacts on income due to other factors), chil-
dren <5 y old are “exposed” to particular levels of income and
food prices relative to income, which together influence their risk
of stunting: this risk is quantified by the stuntingmodel.

Results

Historical Data Holdings
We began with a dataset for all countries with stunting data from
1990 onwards (WHO 2017). We then dropped observations
where stunting data were not split into moderate and severe (15
observations) and countries with measurements on less than three
occasions (39 countries). We then obtained income and price
data to match the stunting data.

Thefinal dataset was unbalanced (the number and years of obser-
vation differed by country). It included 3–6 (mean= 4) observations
from 49 countries (Table 1) for a total of 194 country-year observa-
tions. Countries from 12 of the 21 GBD regions (IHME 2015) were
included (Table 1, Table S1). We did not include countries from
high-income regions (Asia Pacific, High Income; Australasia;
Europe, Western; Latin America, Southern; North America, High
Income), where the prevalence of child stunting is very low, nor did
we include data from any countries in four of the low- and middle-
income GBD regions, specifically: Europe, Eastern; Latin America,
Tropical; Oceania; Sub-SaharanAfrica, Central.

For the national-level stunting data in the final dataset, moder-
ate stunting ranged from 2.9% (The Former Yugoslav Republic of
Macedonia in 2011) to 32.8% (Nepal in 1998), with a mean of
18.6% and a median of 19.5%. Severe stunting ranged from 1.3%
(Jamaica in 1999) to 34.6% (India in 1993), with a mean of 14.6%
and a median of 13.4%. For the data underlying the income indica-
tor (Equation 1), 82 estimates were based on consumption (i.e.,
household spending) and 112 on income (i.e., household total
income). A total of 29% of observations were matched to the same
year as the stunting estimate, an additional 46% within 2 y, and the
remaining 25% within 5 y. For the data underlying the food price
indicator (Equation 2), 17% of values for the food CPI (fCPIij) and
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Figure 1. Conceptual diagram of the relations among climate and socioeconomic projection data, upstream models, and the stunting model. Abbreviations: SSP,
Shared Socioeconomic Pathways; RCP, Representative Concentration Pathways; GCM, General Circulation Model; GLOBIOM, Global Biosphere Management
Model. In the “Upstreammodels” food price is one of the drivers of the impacts of climate change on income (shown by the link between GLOBIOM and the poverty
model), and, stunting is one of the drivers of income loss in the poverty model (due to income losses in adults who were stunted as children 10 to 20 y previously). It is
assumed that “agricultural” corresponds to rural populations and “nonagricultural” to urban populations and that the proportions of children <5 y of age in rural and
urban areaswere the sameas theestimated proportions of children<15 y of age in agricultural andnonagricultural families outputted from thepovertymodel.
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16% for general CPI (gCPIij) were interpolated or extrapolated,
and 5% of estimates for bothwere from nearest-neighbor countries.
Screening for outliers showed that the food CPI (which was set
equal to 100 in the year 2000) in Angola was 251 in the year 2001
and 2,618 in the year 2007. This apparent rapid rise to an extreme
level (the next-highest estimate in the dataset is 422) appears, if
assumed to be correct, to represent an outlier case in the dataset so
all observations were dropped. (Note that Angola is not included in
the summary data above.)

For full country-year level details of the data described above,
see Excel Table S1.

Model Fitting
We first fit national-level models (Equation 4) for moderate and
severe stunting, initially as null growth curve models (i.e., with

random effects but no predictors other than year) and then as full
models (i.e., including all predictors) (Table 1). Null models for
both moderate and severe stunting had a good fit and better
explained stunting trajectories than equivalent single-level mod-
els (i.e., the same models without random effects) (Likelihood ra-
tio tests: p<0:0001). That is, as expected, there are substantial
between-country differences in stunting prevalence in the year
2010 as well as in trajectories of stunting over time. Using the
random parts of the null models, we estimated 95% coverage
intervals (the range over which 95% of country-specific values
would be expected to lie) for percent stunted in 2010 (based on
bðNÞ0jk ) and absolute change in percent stunted from 2000 to 2010
(based on bðNÞ1jk ). This involved conversion between log odds, odds
ratios, and predicted probabilities, and using the standard formula
for 95% coverage intervals (Rabe-Hesketh and Skrondal 2012)
(See Appendix S1 for a full explanation of the calculations). For

Table 1. Estimated parameters for national-level models of moderate and severe stunting (odds ratios and 95% confidence intervals (CI) for fixed parameters;
coefficients and standard errors for random variables).

Parametersa
Moderate Severe

Null model Full model Null model Full model

Fixed part
Year 0.986 0.99 0.962 0.97

(0.980, 0.992) (0.984, 0.996) (0.953, 0.972) (0.96, 0.98)
log(GDP per capita of the bottom 20%) 0.912 0.6

(0.851, 0.977) (0.553, 0.652)
log(food price indicator) 0.814 1.229

(0.727, 0.911) (1.072, 1.409)
Interaction of GDP and food price terms 1.03 0.928

(1.011, 1.05) (0.907, 0.949)
Constant 0.193 0.346 0.109 3.192

(0.164, 0.227) (0.215, 0.557) (0.086, 0.138) (1.729, 5.894)
Region:
Asia, Central 1 1

(reference) (reference)
Asia, East 0.531 0.308

(0.327, 0.862) (0.12, 0.795)
Asia, South 1.693 2.227

(1.341, 2.138) (1.318, 3.762)
Asia, South East 1.325 1.29

(1.065, 1.648) (0.796, 2.091)
Caribbean 0.357 0.183

(0.253, 0.505) (0.087, 0.385)
Europe, Central 0.501 0.512

(0.382, 0.659) (0.298, 0.88)
Latin America, Andean 1.33 0.752

(0.981, 1.804) (0.374, 1.509)
Latin America, Central 1.057 0.6

(0.856, 1.306) (0.371, 0.968)
North Africa and Middle East 0.785 0.592

(0.571, 1.079) (0.294, 1.192)
Sub-Saharan Africa, Eastern 1.569 1.605

(1.284, 1.916) (1.043, 2.47)
Sub-Saharan Africa, Southern 1.405 1.076

(1.075, 1.835) (0.598, 1.936)
Sub-Saharan Africa, West 1.093 1.147

(0.995, 1.201) (1.03, 1.278)
Random part
Variance in country-specific intercepts 0.332 0.046 0.702 0.2706

(0.0699) (0.0122) (.147) (0.0597)
Variance in country-specific slopes 0.0004 0.0004 .0012 0.0013

(0.0001) (0.0001) (0.0003) (0.0003)
Covariance of intercepts and slopes 0.00853 0.0016 0.01 0.0086

(0.0024) (0.001) (0.0048) (0.0034)

Note: Countries included are Albania, Armenia, Bangladesh, Bolivia, Bosnia & Herzegovina, Burkina Faso, Cambodia, Cameroon, China, Columbia, Cote d’Ivoire, Dominican
Republic, Egypt, El Salvador, Ghana, Guatemala, Honduras, India, Indonesia, Jamaica, Kenya, Kyrgyzstan, Lao PDR, Lesotho, Madagascar, Malawi, Mauritania, Mexico, Mongolia,
Mozambique, Namibia, Nepal, Nicaragua, Niger, Pakistan, Peru, Romania, Rwanda, Senegal, Sierra Leone, Sri Lanka, Swaziland, Tajikistan, Tanzania, TFYR of Macedonia, Turkey,
Uzbekistan, Vietnam, Zambia.
aThe corresponding symbols used in Equations 4 to 6 are “Year”: bðNÞ1k , “log(GDP per capita of the bottom 20%)”: bðNÞ2k , “log(food price indicator)”: bðNÞ3k , “Interaction of GDP and food
price terms”: bðNÞ4k , “Constant”: bðNÞ0k , “Region”: vector B, “Variance in country-specific intercepts”: var(bðNÞ0jk ), “Variance in country-specific slopes”: var(bðNÞ1jk ), “Covariance of inter-

cepts and slopes”: cov(bðNÞ0jk , b
ðNÞ
1jk ).
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moderate stunting, predicted prevalence in 2010 across all countries
(as mean (fifth centile, 95th centile)) was 16% (6% to 37%). For
severe stunting, prevalence in 2010 was predicted to be 10% (2% to
36%). The estimated absolute change in percent stunting over the
decade from 2000 to 2010 was −2:0% (−8:8% to 3.3%) for moder-
ate, and −4:0% (−14:1% to 2.3%) for severe stunting (positive
numbers indicate stunting increased). Additionally, the covariances
for the random intercept and slope [covariance(bðNÞ0jk , b

ðNÞ
1jk ); 0.00853

and 0.01 for moderate and severe stunting, respectively] indicate
that when the random intercept for stunting in the year 2010
increases, the slope for year also tends to increase (i.e., the rate of
decline of stunting decreases). This suggests that, in general, coun-
tries with more stunting in 2010 experienced slower rates of decline,
and this relationship is stronger for severe stunting than for moder-
ate stunting. (The correlation between the estimated random effects
for slope (uðNÞ1jk ) and intercept (uðNÞ0jk ) is 0.37 for moderate stunting
and 0.50 for severe stunting.) In line with this, between-
country variance in stunting [calculated as: varianceðbðNÞ0jk Þ+
2 ½covarianceðbðNÞ0jk , b

ðNÞ
1jk Þ× tij�+varianceðbðNÞ1jk Þ× t2ij (Rabe-Hesketh

and Skrondal 2012; Steele 2014)] has been increasing with time
(i.e., as all variance terms are positive, the value of the previous
equation becomes more positive as time increases); that is, although
stunting has generally been declining, some countries are being left
behind. If it is assumed that the countries included in the analysis
represent a random sample of all countries at risk of stunting, the
above ranges and patterns may be interpreted as reflecting those
seen globally.

Both full models for moderate and severe stunting had better
fits than their counterpart null models (Likelihood ratio tests:
p<0:0001). After adding the main predictors to the model (i.e.,
Gij, Pij, Gij ×Pij), adding the contextual region variable had little
influence of the predictor coefficients but the intercept random var-
iance [var(bðNÞ0jk )] decreased from 0.2716 to 0.046 (i.e., more than
quartered) and from 0.6856 to 0.2706 (i.e., more than halved) in
the moderate and severe stunting models, respectively. This sug-
gests unexplained between-country differences tend to cluster by
region, with stronger clustering formoderate than severe stunting.

We checked the model for multicollinearity of the main predic-
tors (the income and food-price indicators) as well as year and con-
cluded it was unlikely to influence model predictions. First, when
adding predictors to the models, there were no large increases in
standard errors, and these remained small (i.e., the 95% confi-
dence intervals of the odds did not cross one) in the final equa-
tions (Table 1) (Goldberger 1991). Second, to assess this more
formally, we used a two-step approach suggested by Hill and
Adkins (2003). In step one, Variance Inflations Factors (VIFs) are
used to check for the presence of multicollinearity. A commonly
used rule of thumb is that values greater than 10 suggest “serious”
multicollinearity. VIFs for the main predictors (excluding interac-
tion terms) were all less than 10 [1.1, 8.7, 8.9, for year, the log of
the food-price indicator (Pij), and the log of GDP20pc (Gij),
respectively]. As may be expected, however, the addition of the
interaction terms resulted in large VIFs (1.1, 61.7, 8.9, 54.6, for
year, the log of food-price indicator (Pij), the log of GDP20c (Gij),
and the price–income interaction (Pij ×Gij), respectively). In step
two, we derived signal-to-noise ratios (log(odds)/SE) for each pre-
dictor to assess whether multicollinearity is likely to bias model
coefficients. If the ratios are judged to be sufficiently high, multi-
collinearity is not likely to bias estimates (Hill and Adkins 2003).
For instance, a ratio >j1:96j would indicate that the 95% confi-
dence interval would not cross the null (Kirkwood and Sterne
2003). Signal-to-noise ratios were within acceptable levels. For
instance, for moderate stunting, these were −2:6, −3:6, and 3.1 for
the log of GDP20pc (Gij), the log of the food-price indicator (Pij),
and their interaction, respectively (Table S2). Third, in situations

where multicollinearity is judged to be potentially harmful, parame-
ters for individual coefficients may be biased (making it difficult to
separate the effects of individual predictors), whereas predictions
made by the model as a whole tend to remain reliable (Goldberger
1991; Hill and Adkins 2003). In our results, we do not attempt to
separate the effects of income on stunting from those of price; in
fact, we argue they are inseparable. All our results are based on pre-
dictions made by the model as a whole. In sum, although multicolli-
nearity appears to be present due to the inclusion of the interaction
term, it is unlikely to affect the predictionsmade by themodel.

To illustrate the change in stunting when income and food price
change together, we plot estimated percent stunted for average
countries (i.e., random effects equal 0) in the reference region, with
year held constant at 2010, over a slightly larger range of GDP20pc
and the food-price indicator seen in the historical data (Figure 2).
Both moderate and severe stunting are at their predicted maxi-
mums (∼ 22% and 32%, respectively) when average income and
food price relative to income are at their lowest levels. This corre-
sponds to an average income level well below the $1:25 per day
poverty line. At this income, stunting declines as relative food pri-
ces rise. However, at this income, even at the highest relative prices
in the plots, moderate and severe stunting remain high (∼ 15% and
20% respectively). The lowest level of moderate stunting (∼ 12%)
is seen when incomes are highest (∼ 10 times the poverty line) and
relative prices are lowest. In contrast, the lowest level of severe
stunting (∼ 1%) is seen when incomes are highest but relative pri-
ces are highest; this is also when total stunting (moderate plus
severe) is at its lowest.

The vectors in the plots in Figure 2 give a hypothetical example
of the possible impacts of climate change on stunting if incomes
were to fall and prices were to rise. In the movement from A1 to
A2, as income falls and the price indicators rises,moderate stunting
increases from 15% to 18% and severe stunting increases from 13%
to 21%; total stunting rises by 11%. In contrast, at a higher income,
when going from B1 to B2, moderate stunting increases from 12%
to 14%, but severe stunting falls from 13% to 8%; total stunting
decreases by 4%. This shows there is an important interaction
between these two routes from climate to stunting.

Due to the limited availability of historical data we were unable
to validate the model using independent data. However, based on
the data used to fit the models, the correlation between observed and
predicted stunting was high (r=0:98, for both models) and within-
countries trajectories appeared to be well reproduced. Model diag-
nostics also suggested themodelsfit well (Figures S1 and S2).

We next fit the within-country models for distributing national-
level stunting between rural and urban areas (Table 2). We fit mod-
els with the full set of predictors of interest, and then used back-
wards stepwise regression to remove nonsignificant predictors
(i.e., with 95% confidence intervals that included the null). Again,
no independent data were available to validate the models, but cor-
relations between observed and predicted stunting were consis-
tently high (between 0.97 and 0.99) (Figure S3). Likelihood ratio
tests suggest the multilevel models have a better fit than equivalent
single level models. However, model residuals for the random
effects for all models (moderate and severe stunting, rural and
urban) show that the 95% confidence intervals are wide and fre-
quently include zero. Further, residual plots for predicted stunting
show that the pattern of errors differs by level of stunting and tend
to be greatest at lower prevalences (Figures S4 and S5). This sug-
gests that national-level stunting projections made using the equa-
tions, particularly when prevalence is low, should be interpreted
cautiously. We assessed the model for multicollinearity using the
same procedure we employed for Equation 5 and again found it
was not likely to affect model predictions. (We note that standard
errors were wide for the inequalities predictor in the rural severe
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Figure 2. Plots for the full national-level (I) moderate and (II) severe stunting models showing the predicted prevalence of stunting as a function of log of the average
income of the bottom 20% of the income distribution and the log of the food-price indicator, in average countries (i.e., random effects equal 0) in the reference region in
the year 2010.Note that the z-axis scale differs for themoderate and severe stunting plots. Ranges of the average income and food-price indicator axes are slightly larger
than those in the historical data. Note that because the food-price indicator represents price relative to income, it is partly a function of income; that is, the x- and y-axes
are not independent. The vectors show examples of how the combined effects of a fall in income and a rise in price relative to income (i.e., moving fromA1 to A2, and,
fromB1 toB2)can lead to either an increaseor decrease in stunting.See themodelfitting subsection of the results section fordetails.
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and urban moderate models; however, these were included in the
model as the standard errors for their interaction termswere small.)
(Table S3).

Estimates of Future Stunting
Projection data to drive the stunting model were available for 44 of
the 49 countries used to fit the model. Figure 3 shows the aggre-
gated estimates of the number of children <5 y of age stunted in
the study countries in 2030 under the six scenarios (as means and
5th and 95th centiles across the 300 socioeconomic subscenarios).
The plot suggests, first, within any socioeconomic scenario, the
impact of climate change in 2030 is relatively small (although not
negligible, as discussed ahead). This finding is consistent with pre-
vious work (e.g., Lloyd et al. 2014). Second, projected differences
between the two socioeconomic scenarios are large, with mean
estimates of 110 million stunted children in the poverty scenario
and 83 million in the prosperity scenario. Third, however, within-
socioeconomic scenario uncertainty in the magnitude of the esti-
mates is large: Estimates of total stunting range from 80 to 140mil-
lion in the poverty scenario, and from 57 to 108 million in the
prosperity scenario. That is, although there is generally less stunt-
ing in the prosperity scenario, allowing for uncertainties shows
there is significant across-socioeconomic scenario overlap.

Table 3 shows aggregated climate change–attributable stunting
by scenario. These indicate, first, in all scenarios, that there is more
stunting in 2030 in futures with climate change than without.
Across the scenarios, mean climate-change attributable stunting is
estimated to be between 570,000 (prosperity/low climate change)
and 1 million (poverty/high climate change). Second, in the pov-
erty scenarios, a large proportion of climate change–attributable
stunting is severe, whereas under the prosperity scenarios, the
moderate/severe balance tends to be more even. For example,
under poverty/high climate change, the mean estimate of the ratio
of moderate to severe climate change–attributable stunting is 0.39,
whereas under prosperity/high climate change it is 0.95. Third, in
both socioeconomic scenarios, as climate change increases, rural
areas bear a greater proportion of the burden than urban areas, but
less so in the prosperity than in the poverty scenarios. For the mean

estimates, the ratio of climate change–attributable number of peo-
ple stunted in rural versus urban areas rises from 1.06 to 1.22 under
poverty, and from 1.05 to 1.12 under prosperity. Fourth, within-
socioeconomic scenario uncertainty matters considerably more
under poverty/high climate change than in other scenarios, with a
difference of 550,000 stunted between the 5th and 95th centiles,
mostly due to differences in severe stunting. In general, this within-
socioeconomic scenario uncertainty in how macro conditions
specified by the SSPs are met matters more for severe than moder-
ate stunting in all scenarios.

Finally, aggregate results conceal underlying patterns in country-
level climate change–attributable stunting. We developed a typology
based on whether high climate change is expected to increase or
decrease the mean estimates of country-level total stunting relative to
low climate change in the poverty and prosperity scenarios (Table 4).
The typology is intended to indicate general tendencies in stunting
patterns in groups of countries sharing similar characteristics rather
than rigidly separate countries and expectations regarding stunting
based on statistical criteria. Type I includes 64% of countries (28 of
44) in which high climate change is expected to bring more stunting
than low climate change in both socioeconomic scenarios. In 36% of
countries, however, there was less climate change–attributable stunt-
ing under the high than under the low climate change scenario. In type
II countries (11), this occurred in both the poverty and prosperity sce-
narios; in type III countries (5), this was only in the poverty scenario;
and in type IV countries (2), thiswas only in the prosperity scenario.

Table 4 shows the patterns of incomes and food prices as coun-
triesmove from low to high climate change, by country type. In type
I countries, under low climate change, average incomes of the bot-
tom 20% are relatively low (2 to 2.5 times the poverty line) and the
food-price indicator (which indicates food prices relative to income)
is relatively high. Under both poverty and prosperity scenarios, high
climate change reduces incomes by a relative amount that is fairly
typical across all study countries (∼ 4%) but increases in the food-
price indicator are relatively high. The combination of low incomes
and large increases in price results in increased stunting as climate
change increases under both socioeconomic scenarios. In type II
countries under low climate change, incomes are relatively high
(4 to 5 times the poverty line), and the food-price indicator is

Table 2. Estimated parameters for the area-level models of moderate and severe stunting (odds ratios an 95% CI for fixed parameters; coefficients and standard
error for random variables).

Parametersa
Rural Urban

Moderate Severe Moderate Severe

Fixed part:
National-level stunting 1.026 1.069 1.071 1.044

(1.014, 1.039) (1.051, 1.087) (1.062, 1.08) (1.017, 1.073)
log(income indicator) 0.744 0.873 0.861 0.878

(0.682, 0.813) (0.786, 0.97) (0.776, 0.954) (0.77, 1.001)
Interaction of national-level stunting and income indicator terms 1.015 1.011 1.017

(1.011, 1.019) (1.007, 1.015) (1.01, 1.025)
Rural-urban inequalities 0.9 0.992 0.865

(0.845, 0.959) (0.845, 1.164) (0.68, 1.101)
Interaction of income indicator and inequalities terms 0.934 1.131

(0.861, 1.013) (1.007, 1.27)
Constant 0.179 0.09 0.066 0.041

(0.136, 0.237) (0.07, 0.116) (0.049, 0.089) (0.026, 0.066)
Random part:
Variance in intercepts 0.0803 0.152 0.2722 0.3936

(0.0295) (0.0389) (0.0843) (0.094)
Variance in slopes 0.0001 0.0015 0.0005 0.0014

(0.0001) (0.0005) (0.0002) (0.0004)
Covariance of intercepts and slopes −0:003 −0:0134 −0:0114 −0:0219

(0.0012) (0.0043) (0.0038) (0.0057)
aThe corresponding symbols used in Equation 8 to 10 are “National-level stunting”: cðAÞ1k , “log(income indicator)”: cðAÞ2k . “Interaction of national-level stunting and income indicator
terms”: cðAÞ3k , “Rural-urban inequalities”: cðAÞ4k , “Interaction of income indicator and inequalities terms”: cðAÞ5k , “Constant”: c

ðAÞ
0k , “Variance in intercepts”: var(cðAÞ0jk ), “Variance in slopes”:

var(cðAÞ1jk ), “Covariance of intercepts and slopes”: cov(cðAÞ0jk , c
ðAÞ
1jk ).
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relatively low.High climate change brings typical (relative) drops in
incomes, but increases in the food-price indicator are relatively
small. This combination of higher average incomes and rising rela-
tive prices leads to decreases in stunting as climate change increases
under both socioeconomic scenarios.

In type III countries under low climate change, incomes
(3 times the poverty line) and relative prices are at an intermediate
level (Table 4). High climate change brings typical relative
decreases in income in both socioeconomic scenarios. In the

poverty scenario, the rise in relative price is relatively high, and—
at these intermediate incomes—the combination of income loss
and high price increases reduces overall stunting as climate change
increases. In the prosperity scenarios, the rise in relative price is
relatively small and does not appear to offset the loss of income,
resulting in an increase in stunting as climate change increases.
Thus, type III countries appear to be at incomes where the overall
effects of increases in relative food prices tend to be either harmful
or beneficial.

Table 3. Estimated numbers of children (means, 5th and 95th percentiles) with climate change–attributable stunting in 2030 according to socioeconomic and
climate change scenarios in the 49 study countries.

Scenario
Stunting Severity Rural vs. Urban Areas

Total stuntedModerate Severe Moderate: Severea Rural Urban Rural: Urbanb

Poverty / high climate change
5th centile 269,800 489,100 0.55 409,700 349,200 1.17 758,900
Mean 288,400 736,500 0.39 563,300 461,700 1.22 1,025,000
95th centile 323,200 981,300 0.33 773,400 531,100 1.46 1,304,600
Poverty / low climate change
5th centile 181,600 432,100 0.42 328,900 284,700 1.16 613,600
Mean 199,200 569,300 0.35 396,100 372,400 1.06 768,500
95th centile 225,000 650,000 0.35 468,400 406,600 1.15 875,000
Prosperity / high climate change
5th centile 306,100 246,700 1.24 277,700 275,000 1.01 552,800
Mean 348,400 366,700 0.95 377,700 337,400 1.12 715,100
95th centile 385,900 493,500 0.78 490,600 388,800 1.26 879,500
Prosperity / low climate change
5th centile 207,000 256,100 0.81 232,100 231,000 1.00 463,100
Mean 222,300 347,600 0.64 291,800 278,100 1.05 569,900
95th centile 231,400 395,800 0.58 330,200 297,100 1.11 627,200

Note: Estimated numbers of children with climate change–attributable stunting are calculated for each combined scenarios as the number with stunting under high or low climate
change vs. no climate change with the socioeconomic scenario (poverty or prosperity) held constant. Study countries are listed below Table 1. Values for the 5th and 95th percentiles
represent distributions over the 300 subscenarios for each socioeconomic scenario (i.e., poverty or prosperity).
aRatio of the projected numbers of children with moderate vs. severe stunting due to climate change.
bRatio of the projected numbers of children with stunting due to climate change (regardless of severity) in rural vs. urban areas.

Figure 3. Projected numbers of stunted children (age <5 years) in the 49 study countries in 2030 under combined socioeconomic (poverty or prosperity) and
climate change scenarios (high climate change or low climate change), according to the degree of stunting (moderate or severe) and rural or urban area. Values
shown for each socioeconomic/climate change combination represent the distribution of estimates for 300 subscenarios for poverty and property projections,
respectively. Abbreviations: p5, 5th percentile; m, mean; p95, 95th percentile; pov, poverty scenario; prosp, prosperity scenario; CC, climate change.
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There are just two type IV countries, so interpretation should
be cautious (Table 4). Under low climate change, these countries
have the lowest average income (1.5 to 2 times the poverty line)
and high relative prices. In the poverty scenario, as climate
change increases, both the average decrease in incomes and
increase in relative prices are at their highest. Together, these fac-
tors increase stunting. In the prosperity scenario, climate change
brings typical reductions in incomes and a much lower increase
in price; in this case, stunting is reduced.

In sum, this research suggests that when average incomes of
the poorest are low and food prices are relatively high, losses of
income and further increases in price tend to increase stunting at
the national level. When incomes are higher and prices relative to
income are relatively low (note: this does not suggest absolute
food prices are low), losses of income may be offset by price
increases, and overall stunting tends to decrease. This is presum-
ably due to gains made by low-income food producers and per-
haps by nonskilled wage earners. At intermediate incomes (i.e.,
around 3 times the poverty line) and relative prices, the overall
impact of higher relative prices tends to change from increasing
stunting to decreasing stunting as incomes of poorest rise further.

Discussion
To our knowledge, we have developed the first global-level
model for estimating future climate change–attributable stunting
in which climate change acts through two interacting socioeco-
nomic drivers: incomes of the bottom 20% of a population and

food price relative to incomes. Previous global-level undernutri-
tion models have focused on changed food production and calorie
availability in fixed socioeconomic conditions (e.g., Lloyd et al.
2011; Nelson et al. 2010). Such models provide insights into a
key influence on future undernutrition while placing other influ-
ences in the background. Previous work has also suggested that
socioeconomic conditions play a major role in shaping future
undernutrition (e.g., Lloyd et al. 2014; Schmidhuber and Tubiello
2007): our model attempts to offer new insights by focusing on
two of these conditions while placing other influences in the
background. Incomes of the poorest groups and food prices are
likely to play a central role in shaping future undernutrition
(Mazoyer and Roudart 2006; Pogge 2010). In rural areas, small-
holder farms (i.e., farms <2 hectares) are “home to about two bil-
lion people, including half the world’s undernourished people
and the majority of people living in absolute poverty” (IFAD
2011). The urban poor are also at high risk of undernutrition and
to the impacts of price and financial shocks (Ruel et al. 2010).

Our null model suggests that the historical rate of decline in
stunting has generally been slow, even during the period in which
hunger was a focus of the Millennium Development Goals
(United Nations 2017). The average absolute annual decline over
the period 2000 to 2010 was estimated to be 0.2% for moderate
stunting and 0.4% for severe stunting, although larger declines
were seen in some countries (5th centiles of 0.88% for moderate
and 1.41% for severe). This estimate is similar to previous esti-
mates (Rieff 2016). Additionally, between-country differences
widened as the biggest improvements tended to be in countries

Table 4. Projected average income of the bottom 20%, deflated food-price index, and food-price indicator for countries grouped by the pattern of the estimated
impact of high vs. low climate change on stunting under socioeconomic scenarios of poverty and prosperity.

Country
type

Low climate change High climate change
Relative difference between high

vs. low climate change

GDP20pc
mean (range)

Deflated fCPI
mean (range)

log(Food price
indicator) mean

(range)
GDP20pc

mean (range)
Deflated fCPI
mean (range)

log(Food price
indicator) mean

(range) GDP20pc
Deflated
fCPI

log(Food
price

indicator)

Type Ia

Poverty 869
(161 to 2157)

116
(91 to 171)

0.2
(−1:86 to 2.25)

832
(149 to 2094)

122
(94 to 182)

0.3
(−1:82 to 2.36)

−4% 5% 50%

Prosperity 1142
(255 to 2867)

105
(90 to 137)

−0:24
(−1:95 to 1.69)

1101
(243 to 2799)

108
(95 to 139)

−0:17
(−1:91 to 1.64)

−4% 3% 29%

Type IIb

Poverty 1839
(244 to 4957)

111
(96 to 129)

−0:42
(−2:18 to 1.41)

1764
(226 to 4792)

119
(98 to 149)

−0:31
(−2:12 to 1.67)

−4% 7% 26%

Prosperity 2174
(481 to 5327)

104
(96 to 117)

−0:79
(−2:24 to 0.64)

2082
(459 to 5065)

110
(99 to 125)

−0:69
(−2:17 to 0.67)

−4% 6% 13%

Type IIIc

Poverty 1262
(380 to 1938)

102
(88 to 120)

−0:37
(−1:92 to 1.06)

1211
(364 to 1867)

110
(93 to 135)

−0:25
(−1:83 to 1.22)

−4% 8% 32%

Prosperity 1603
(697 to 2207)

97
(90 to 106)

−0:76
(−2:07 to 0.38)

1531
(676 to 2101)

102
(94 to 113)

−0:68
(−2:00 to 0.44)

−4% 5% 11%

Type IVd

Poverty 703
(601 to 805)

123
(118 to 128)

0.09
(−0:58 to 0.75)

649
(556 to 742)

134
(131 to 138)

0.25
(−0:42 to 0.93)

−8% 9% 178%

Prosperity 1045
(916 to 1174)

108
(107 to 109)

−0:43
(−1:12 to 0.26)

999
(878 to 1119)

115
(113 to 117)

−0:32
(−1:01 to 0.27)

−4% 6% 26%

Note: GDPpc20: per capita Gross Domestic Product of the bottom 20% in PPP 2005 (∼ $460 is on the World Bank poverty line of $1:25 per day); Deflated fCPI =
national food consumer price index=national general consumer price index, an indication of the difference in within-country average food prices for 2030 relative to the year 2000 (i.e.,
it equals 1 in the year 2000; a value of 1.1, for example, indicates a 10% rise in price); log(Food price indicator): mean-centered natural log of the food price indicator (priceij)
(Equation 3), higher values indicate that food is less affordable for the poorest part of the population.
aType I countries: Stunting increases more with high climate change than low climate change under both poverty and prosperity scenarios (Bangladesh, Bolivia, Cambodia, Cameroon,
Cote d’Ivoire, Dominican Republic, El Salvador, Ghana, Honduras, India, Jamaica, Kenya, Madagascar, Malawi, Mexico, Mongolia, Mozambique, Nicaragua, Pakistan, Peru,
Romania, Rwanda, Sierra Leone, Sri Lanka, Swaziland, Tanzania, Vietnam, Zambia).
bType II countries: Stunting increases more with low climate change than high climate change under both poverty and prosperity scenarios (Albania, Bosnia and Herzegovina, Burkina
Faso, Egypt, Guatemala, Indonesia, Lao PDR, Niger, TFYR of Macedonia).
cType III countries: Stunting increases more with low climate change than high climate change under poverty scenarios, but not under prosperity scenarios (China, Kyrgyzstan, Nepal,
Senegal, Tajikistan).
dType IV countries: Stunting increases more with low climate change than high climate change under prosperity scenarios, but not under poverty scenarios (Mauritania, Namibia).
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with lower levels of stunting. This widening suggests child stunt-
ing is likely to remain a major contributor to the global burden of
disease in the coming decades, even without the additional threats
posed by climate change. In the full model, when incomes and
relative food price were added, we found that their interaction
was critical: In some instances, a decline in income and increase
in relative prices increased stunting, whereas in others they
reduced it (Figure 2).

Adding regions to the model led to large reductions in unex-
plained between-country differences, with a much larger reduc-
tion in the moderate than in the severe stunting model. This
addition suggests that, although moderate and severe stunting are
distinguished using a quantitative scale, there may be qualitative
differences in their causes: Moderate stunting may tend to be
influenced more by regional structural factors operating both
within and between countries, whereas severe stunting may tend
to be more influenced by within-country processes (for example,
civil conflict). Given that severe stunting brings considerably
worse morbidity and mortality risks than moderate stunting does
(Black et al. 2008; Victora et al. 2008), further investigation of
this aspect in future work may provide useful insights.

Consistent with previous work (Lloyd et al. 2014), our projec-
tions suggest that climate change will have a relatively small—but
not insignificant—impact on stunting in 2030, whereas estimated
between-socioeconomic scenario differences are large. Mean esti-
mates of child stunting in the study countries in the poverty and
prosperity scenarios are 110 million and 83 million, respectively
(Figure 3). Of note, the wide variation in these estimates across the
300 subscenarios for each SSP (which differed by demographic
characteristics, economic policies, the distribution and participa-
tion of labor, productivity growth by sector, and labor skill levels),
suggests that the particular mechanisms that produce poverty or
prosperity futures could have substantial influences on patterns of
health.

Our projections suggest that, in aggregate, stunting will increase
as climate change increases, with larger impacts under the poverty
scenario: We estimate that >1million additional children would be
stunted under poverty/high climate change, in comparison with
570,00 under prosperity/low climate change (Table 3). Further, our
estimates suggests that severe stunting would account for a greater
proportion of climate change–attributable stunting under the pov-
erty scenarios than in the prosperity scenarios, and that the potential
impact of climate change on stunting would be greater in rural areas
in comparisonwith urban areas under both socioeconomic scenarios
(Table 3). Previous analyses have suggested that the impact of rising
food prices on poverty is, in general, greater in urban areas than in
rural areas (Hertel et al. 2010; Ivanic and Martin 2008). These
results, however, are not directly comparable to our findings. First,
the causal pathways and outcome differ: Our model looks at the
combined impacts of changes in food prices and incomes of the
poorest populations on child stunting, rather than how food prices
may affect the number of people below a fixed poverty line. Second,
the poverty model driving the stunting model assesses how climate
change may affect incomes via multiple routes rather than through
food prices alone (Figure 1). Third, our estimates are based on
scenario-specific projections of future socioeconomic conditions,
whereas Hertel et al. (2010) hold future socioeconomic conditions
constant at present level and Ivanic and Martin (2008) analyze his-
torical data. Although this different approachmay explain the differ-
ences in the results, below we briefly discuss further differences in
the modeling approaches and how the stunting model may be
improved by drawing on this food price–poverty literature.

We developed a typology based on country-level changes in
stunting in response to increasing climate change (Table 4). In
type I countries, incomes of the poorest are relatively low and

relative prices tend to be high; in this situation, our projections
suggest that increasing climate change is likely to increase stunt-
ing. In type II countries, incomes are higher and relative prices
are lower; there, increasing climate change is likely to decrease
stunting. Type III countries have intermediate incomes and rela-
tive food prices, and in these cases, increasing climate change
might increase or decrease stunting. That is, type III countries
appear to be at income levels where they may transition to type I
countries if incomes of the poorest fall, or to type II countries if
incomes of the poorest rise.

These patterns suggest that the impact of climate change will
be an increase in aggregate country-level stunting for countries in
which average incomes of the poorest are low and food is generally
less affordable, even though rising food prices may benefit some
population subgroups. However, when incomes of the poorest are
higher, sustained higher food prices (relative to incomes) tend to
lower country-level stunting (although some groups may be
harmed). This suggests that it is not continually falling food prices
that will eliminate undernutrition (see also: Hertel 2016); rather,
food prices that provide a decent income to farmers alongside high
levels of employment with wages that adequately cover the costs
of living is required (among other things) (Holt-Giménez and Patel
2009; Mazoyer and Roudart 2006; Weis 2007). In sum, the reduc-
tion and then elimination of poverty and inequality are required. If
these conditions were generally met, our estimates suggest that—
at least out to the 2030s—the potential harms of climate change on
stunting via the pathways considered would be significantly
reduced. We stress that this does not suggest that climate change
may improve population health if incomes increase. Rather, it sug-
gests that higher incomes combined with “fair” food prices may
reduce stunting and vulnerability to the impacts of climate change.

Our model has a number of limitations. The first relates to data
availability. For the historical stunting data, we found 49 countries
with at least three observations covering rural and urban areas and
split as moderate and severe since 1990 (WHO 2017) (Table S1).
We used random-effects modeling which, by assuming these coun-
tries represent a random sample of all countries at risk of stunting,
allows us to make general statements about all affected countries.
However, although the data coveredmany countries at greatest risk
of stunting (including 18 in Sub-Saharan Africa and 9 in South and
Southeast Asia), and countries with a wide range of stunting (2.9%
to 32.8% for moderate stunting; 1.3% to 34.6% for severe stunting),
we cannot rule out the potential for bias. Further, we included data
for China, a country whose size and particular patterns of develop-
ment can have a large influence on global-level trends of various
factors. For instance, an estimated one third of global farms are in
China (Lowder et al. 2016), and the inclusion or exclusion of China
from global trends in poverty reduction can reverse trajectories
(Pogge 2010). Given this, we assessed the potential influence of
China on our model by excluding it and found only very small
changes in the parameters for the main predictors. Despite these
limitations, model diagnostics for the national-level model show
the random effects and residuals follow the expected distributions
(Figure S2), suggesting that general inferences may be both rea-
sonable and useful.

For the predictor variables, finding data that matched the avail-
able projections for incomes and prices, and that were comparable
across countries and over time, was difficult. Consequently, it was
necessary to develop indicators using available data. However, as
the income indicator was split by area but the price indicator was at
the national level, we took a two stage-approach to modeling, first
modeling the national level longitudinally and then modeling
stunting by area (i.e., rural and urban). Of note, we did not model
area as a distinct level as it not a random sample of area categories;
rather it is a dichotomous fixed categorywithin a country.
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Second, we modeled moderate and severe stunting using inde-
pendent equations. This separation is unable to capture the dynam-
ics of changes in nutritional status and within-country migration.
For example, a severely stunted child in a rural area may leave this
category by becoming moderately stunted or well nourished, or by
dying; additionally, the child’s family may migrate to an urban
area, thus reducing rural stunting but increasing urban stunting.
Given the available data, it was not possible to include these dy-
namics in ourmodel.

Third, again due to limited data availability, we were not able
to formally validate themodel. The national-level equations appear
to have a reasonably good fit and show strong correlations between
observed and predicted stunting; however, the diagnostics for the
area-level models show the fit is not as good (Figures S3 and S4).
This was further evident when rescaling rural and urban moderate
and severe stunting projections so they summed to the national-
level projections. For the poverty/high climate change scenarios,
for example, the ratio of estimated rural and urban moderate stunt-
ing to estimated national-level stunting had a median of 1.02,
meaning the magnitude of rescaling was small. The 95th centile
was 1.15, requiring modest rescaling. However, the 5th centile was
0.63, which necessitated significant rescaling. For severe stunting,
the ratio had a median of 0.95, 5th centile of 0.28, and 95th centile
of 1.35. That is, significant rescaling was often required. Thus, the
projected patterns of rural and urban stunting should be interpreted
with some caution. This does not, however, affect the national-
level projections, which are the basis of our core findings.

Fourth, due to the limits of the projection data, our stunting
estimates do not go beyond 2030. Further into the future, it would
be expected that increasing climate change would have greater
impacts on poverty and food prices due to, for example, increased
crop productivity losses, labor losses, infectious diseases, and
disasters (Smith et al. 2014). Our findings suggest that moderate
price increases in the context of reasonable incomes may bring
aggregate reductions in stunting. However, increased climate
change beyond 2030 may drive incomes of the poorest to low
levels and food prices steeply upwards, in turn bringing increased
child stunting. This possibility suggests the importance of near-
term changes that increase incomes and protect the livelihoods of
the poorest (in both rural and urban areas), alongside actions to
improve the resilience of food crops to climate change.

A related issue is that our model assumes that an adequate food
supply is available. This is arguably reasonable for the 2030s as esti-
mates suggest there is currently sufficient food to adequately feed
about 1.5 times the current population (Moore Lappé 2013), mean-
ing we have historically moved from “hunger amidst scarcity” to
“hunger amidst abundance” (Araghi 2000). However, further into
the future, increasing climate change and growing populations may
make food production an increasingly important cause of stunting
(e.g., Lloyd et al. 2011; Nelson et al. 2010). If our model were to be
used to make projections beyond 2030, it may need to be modified
to include food availability (and perhaps food quality).

Fifth, our model is driven by income projections that consider
shifts between general labor sectors (Hallegatte and Rozenberg
2017), represented as agricultural and nonagricultural incomes
(taken to represent rural and urban incomes, respectively) in our
model. However, previous studies looking at how food prices
affect poverty have shown the importance of more detailed pat-
terns of income sources, as well as ratios of net buyers to net con-
sumers of food, in shaping the aggregate impacts of food prices
on poverty (Hertel et al. 2010; Hertel 2016; Ivanic and Martin
2008). These impacts of food prices on poverty would be
expected to influence patterns of undernutrition. Future under-
nutrition models could attempt to represent this explicitly, per-
haps by closer integration with the poverty model. However,

obtaining the required historical and projection data from a
large number of countries is likely to be difficult. (For example,
Hertel et al. (2010) included 15 countries and Ivanic and
Martin (2008) included 9 countries.)

Sixth, despite the complexity of the causation of undernutri-
tion, we include explicit predictors related only to incomes and
food prices in our model. However, as our aim is to represent the
total effects of incomes and food prices on stunting, we follow
the general logic outlined by Biggs et al. (2010). Although other
factors, such as education and access to water and sanitation,
affect stunting, they are also likely to be strongly influenced by
incomes. This influence means that: a) if such factors were added
to a regression model, they would absorb some of the effects of
income on stunting; and b) such factors are likely to be highly
collinear with income and may cause model fitting problems.
Thus, by including just income and price, we attempt to capture
their full effects regardless of the specific causal pathway from
the predictors to the outcomes.

Conclusions
Previous global-level models have shown that climate change–
attributable changes in food production and distribution may
affect undernutrition and have highlighted the importance of soci-
oeconomic conditions. Our model shifts the focus to how climate
change may affect two key socioeconomic drivers—incomes of
the poorest and food price—and assesses how their interaction
may influence stunting in the 2030s. The patterns in our aggre-
gate results suggest that stunting will increase as climate change
increases, with a greater proportion of the burden falling on rural
areas, and larger increases in severe stunting in comparison with
moderate stunting in the poverty scenarios.

The disaggregated country-level patterns offer a different
insight: In situations when incomes of the poorest are relatively
high, modest and sustained increases in food prices relative to
incomes may reduce overall stunting. This finding suggests, along
with ensuring that adequate quantities of food are produced in the
future, a key means of reducing the impacts of climate change on
stunting may be—rather than seeking ever-lower food prices—to
ensure food prices are high enough to sustain farming households
and that decent work with adequate incomes is available for all.
Views on how this, particularly the former, might be best achieved
are contested (e.g., FAO 2017a; McIntyre et al. 2009; Patel 2009),
but the results of our model suggest that agricultural futures that
protect health must consider not just availability, accessibility
(e.g., Hasegawa et al. 2016; Lloyd et al. 2011), and quality of food
(Myers et al. 2015), but also the incomes generated by those pro-
ducing the food. This aspect is perhaps particularly urgent as, coun-
terintuitively, food producers currently comprise around half of the
world’s undernourished people (IFAD2011).
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Contribution of Research Paper 3 and new questions raised 

The model developed for Research Paper 3 adopted a novel perspective on the climate-nutrition 

relation. Previously, climate-nutrition modelling had focused on how climate change impacts on crop 

productivity may impact on food quantity and quality, and how this in turn may impact on nutrition 

(see Chapter 2). The model in this chapter shifted the perspective to ask how climate change may 

affect child stunting through its impacts on two interacting socioeconomic drivers: incomes of the 

poorest 20% of a population and food price. Additionally, the model split the impact estimates into 

rural and urban areas.  

In aggregate, the results showed that futures in which incomes of the poorest remain low and in which 

climate change is allowed to worsen would have significantly more child stunting in the near-term (i.e. 

in 2030) than futures in which incomes of the poorest rise and climate change is partly mitigated. 

Additionally, in the former situation, the degree of stunting would tend to be worse (i.e. there would 

be more severe stunting), and a greater proportion of the burden would fall on rural areas. 

Arguably, the patterns in the results based on a typology of countries (see Table 4 in Research Paper 

3) were the most interesting findings. These showed that when incomes of the poorest were low and 

prices (relative to income) rose fairly abruptly, stunting tended to increase (as would be expected). In 

contrast, when incomes of the poorest were higher, gradual rises in relative price tended to reduce 

stunting. Drawing on theory and previous empirical work, we argued that the underlying mechanism 

may be that sustained higher prices raised both farm incomes and rural wages, thus reducing the risk 

of both undernutrition and the risk that climate change posed to nutritional status. 

When formulating our conclusions, we partly drew on some relevant papers from the agricultural 

economics literature (Hertel, 2016, Hertel et al., 2010, Ivanic and Martin, 2008). On the one hand, our 

work reached the same general conclusion as this literature; on the other, our framing of the research 

question – and thus our methodological approach - differed.  

In terms of the general conclusions, in contrast to the tendency in the literature to assume that higher 

food prices lead to lower food security (Hertel, 2016), higher food prices are likely to have mixed 

effects and may result in improved nutrition in many groups. Our work suggested that in the context 

of incomes that aren’t too low (i.e. above the poverty line, but still poor), slowly rising food prices 

appear to reduce stunting and vulnerability to climate change. In line with this, Hertel (2016), for 

instance, cites literature (i) from Bangladesh that found that rural wage increases associated with 

sustained raised food prices appeared to increase the well-being in many households (Ravallion, 1990, 

World Bank, 2013), and, a multi-country statistical study that found higher food prices tended to 
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reduce poverty, most likely due to their influence on the prices of agricultural supplies and rural wages  

(Headey, 2014). 

At the same time, however, the framing of the research question differed. In our model we asked, 

how does a given combination of food price and average income amongst the poorest, at a given time 

and in a given country, impact on child stunting? Incomes were influenced by a range of processes 

other than food price (including health care costs, labour productivity losses, and disasters), and 

populations were split dichotomously into rural and urban. In contrast, Hertel et al. (2010) and Ivanic 

and Martin (2008), for instance, asked, how do changes in food prices impact on poverty in households 

given their sources of income? In this framing, incomes (and thus poverty rates) are influenced only by 

changes in food price: this is a simpler pathway than that considered in our model. However, 

households - specifically their means of income generation – are represented in a more sophisticated 

way than in our work, providing a better understanding of the pattern of impacts. Further, these 

differences in simplifications and complexities had implications for the scope of viable impact 

estimates in terms of spatial and temporal and resolution. Our model looked at 44 countries under 

future socioeconomic scenarios out to 2030; Hertel et al. (2010) also assessed impacts in 2030 but in 

just 15 countries and under the assumption of unchanging socioeconomic conditions (other than food 

price and household income patterns); Ivanic and Martin (2008) looked at historical data in 9 

countries.  

In line with the theme of this thesis, the upshot of the above is that – given the complexity of the 

relation between food price, incomes, poverty, and nutrition – trade offs are inevitable when making 

abstractions (and, given a researcher’s objectives, choices are often shaped by data limitations). Thus 

the adoption of multiple perspectives should be seen as a useful for strategy for deepening our 

understanding of a problem and for guiding the development of ongoing empirical analyses and 

models. Both Research Paper 3 and the agricultural economics papers draw the same general 

conclusion, but the details of the findings differ. I would argue that the key question arising from this 

is not, which of the approaches is right (or at least better)?, but rather, how can the work be 

synthesised to guide future work?    

In sum, the Research Paper 3 (along with the supportive evidence from the agricultural economics 

literature discussed above) suggests that as well as ensuring an adequate quantity, accessibility, and 

quality of food for consumers, a key means of reducing the impacts of climate change on stunting 

appears to be ensuring food prices are high enough to sustain those producing the food; i.e. producer-

consumer peasant farmers.  
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Producer-consumer farmers, however, were not explicitly represented in the health model described 

in this chapter. Further, in previous climate-nutrition work based on the chain of models shown in 

Chapter 2, Figure 2, Panel A, production and consumption are separated by design. This is despite the 

fact that smallholder producer-consumer farmers comprise an estimated two fifths of the global 

population, the majority of those living in extreme poverty, and more than half of the world’s 

undernourished (IFAD, 2011). Further, it has been argued that this same group could play a key role 

in both mitigating climate change and providing sufficient food to feed growing populations, although 

the particular way farming could or ought to be done is contested (HLPE, 2019).  

This raises the question: what would we see if we shifted perspective to ask how interactions between 

producer-consumer farmers in the global food system shape both the risk of hunger and the conditions 

that support rural health? A first attempt to address this question was made in Research Paper 4.  
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Chapter 6. The influence of different constellations of styles of farming 

on rural health and the implications of climate change 

Background 

This chapter is composed a research paper that is being prepared for submission to a journal. It 

describes the development of an Agent-Based Model (ABM) that focuses on producer-consumer 

farmers practicing different styles of farming in the global food system, and assesses how their 

interactions shape hunger and other health-supporting conditions, under various climate, agricultural 

policy, global price transmission, and farming style preference scenarios. This work was not funded.  

Research Paper 4: Climate change and hunger through the lens of farming 

styles and rural health: insights from an agent-based model

For accompanying supplemental material, see the appendix “Research Paper 4: Supplemental 

Material”. In the appendix, the model is described using an ODD+D (Overview, Design Concepts and 

Details plus Decision-Making) (Müller et al., 2013), which is a widely adopted format for giving 

complete and consistently organized descriptions of ABMs. 
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Climate change and hunger through the lens of 

farming styles and rural health: 

insights from an agent-based model 

 

Abstract 

Undernutrition is a major contributor to the global-burden of disease, and global-level models suggest 

that climate change-mediated reductions in food quantity and quality will negatively affect it. These 

models, however, capture just some of the processes that will shape future nutrition.   

 

We adopt a novel standpoint, developing an agent-based model in which producer-consumer 

smallholders practice different styles of farming in the global food system. The model represents a 

hypothetical rural community in which ‘orphan’ (i.e. subsistence) farmers may develop by adopting a 

farming style that is either highly market-dependent (‘entrepreneurial’) or more autonomous 

(‘peasant’ agroecology). We take a first look at the question: how might farm development trajectories 

- under various climate, policy, price transmission, and farming style-preference scenarios - impact on 

hunger and health-related conditions (incomes, work, inequality, ‘real land productivity’) in rural 

areas?  

 

Simulations without climate change or agricultural policy found that style preference patterns 

influence production, food price, and incomes, and there were trade-offs between them. For instance, 

entrepreneurial-oriented futures had the highest production and lowest prices but were 

simultaneously those in which farms tended towards crisis. Simulations with climate change and 

agricultural policy found that peasant-orientated agroecology futures had the highest production, 

prices equal to or lower than those under entrepreneurial-oriented futures, and better supported 

rural health. There were, however, contradictory effects on nutrition, with benefits and harms for 

different groups.  

   

Collectively the findings suggest that when attempting to understand how climate change may impact 

on future nutrition and health, patterns of farming styles - along with the fates of the households that 

practice them – matter. These issues, including the potential role of peasant farming, have been 

neglected in previous climate-nutrition modelling but go to the heart of current debates on the future 

of farming: thus, they should be given more prominence in future work.   
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Introduction 

Hunger and undernutrition are major contributors to the global burden of disease and have proven 

difficult to eliminate despite long being the focus of global programmes [1-3]. For instance, current 

estimates suggest 820 million people are undernourished (insufficient calorie intake) and 149 million 

children aged under 5 are stunted (low height-for-age) [4]. Part of the reason for this seeming 

intractability is the complexity of its causation, involving factors and processes operating at the 

individual- and population-level in multiple spheres, ranging from infectious diseases [5], to education 

[6], to civil conflict [7], to foreign direct investment [8]. While climate and weather have always played 

a role in hunger, ongoing climate change is increasing this complexity and is likely to further impede 

actions to eradicate it [9]. 

 

Global-level climate-undernutrition models have repeatedly found that population 

undernourishment, child undernutrition (e.g. stunting), and dietary quality will be negatively affected 

by climate change-mediated changes in food production [e.g. 10,11-20]. Ultimately, whether or not 

an individual is poorly nourished is determined by the quantity and quality of food they can access, as 

well as whether they are affected by infectious diseases that compromise nutrient absorption [21,22], 

and this is reflected in both the method and theory underlying extant climate-nutrition models [10-

20]. Methodologically (and put in general terms), climate impacts on crop production are assessed in 

order to estimate changes in food quantity and quality, and this is in turn used to assess expected 

dietary changes in consumers. Socioeconomic conditions associated with nutritional status (for 

example, water, sanitation, and female access to education [6]) are also typically accounted for as 

modifying factors, albeit usually crudely represented as exogenously specified (i.e. not modelled or 

affected by climate change) Gross Domestic Product per capita (GDPpc). In terms of theory (which is 

often implicit), these approaches tend to see the dominant cause of poor nutrition as food scarcity (in 

terms of quantity or quality), which may arise from an absolute lack of food or its unaffordability. This 

is a crucial perspective given expected population growth and the threat climate change poses to food 

production.  

 

The complexity of undernutrition suggests, however, that previous climate-undernutrition modelling 

captures just some of the processes that are likely to shape future nutrition. In fact, despite the 

persistence of undernutrition,  there is currently more than enough food produced globally to feed 

everyone [23]. No single model could be expected to represent all the important processes but it 

would be useful to develop models that adopt perspectives in addition to that of total food 

production. Illustrating this, recent modelling found that ensuring decent incomes for farmers may be 

107



a key means of reducing future undernutrition and vulnerability to climate change, although farming 

households were not directly represented in the model [24]. 

 

In this paper, we describe a model that takes a novel perspective on the climate-undernutrition 

relation. We developed our perspective based on the following. Firstly, ‘half the world’s 

undernourished people and the majority of people living in absolute poverty’ are found amongst the 

2 billion producer-consumers living on smallholder farms [25]. At the same time, it has been argued 

this same group could hold the key to feeding populations healthily, mitigating climate change (and 

other environmental damages), and providing decent rural livelihoods [26-28]. Yet, producer-

consumers are not explicitly included in existing global-level climate-undernutrition models which 

separate production and consumption by design. 

  

Secondly, when representing production, existing climate-undernutrition models allow for between-

farm quantitative differences (e.g. farm size, input use) but do not qualitatively distinguish ‘farming 

styles’ [29]. Literature on both historical [29] and future farming [28], however, has highlighted non-

trivial distinctions in terms of on-farm practices (e.g. preferences for labour-capital balances), goals 

(e.g. profit, autonomy), and farm connections to the ‘rest-of-the-world’ (e.g. relations with input and 

food markets). It may be expected that such differences – and particularly the pattern of uptake of 

different farming styles - will influence population health under future climate change. To our 

knowledge, however, this has not been examined in a model.   

  

In this paper, we develop an agent-based model (ABM) in which the agents are producer-consumer 

smallholders practicing different styles of farming in the global food system. We use the model to take 

a first look at the question: how might farm development trajectories - under various climate, policy, 

price transmission, and farming style-preference scenarios - impact on hunger and health-related 

conditions in rural areas? That is, in contrast to previous work that traces a pathway from climate 

change to hunger, we begin by assessing how patterns of farming styles may impact on rural health 

(in the absence of climate change), and then assess how climate change may modify this relation. Our 

model is a ‘proof of concept’ model, set in a hypothetical farming community. 

 

This paper has three main purposes: (i) to familiarize the climate-health community (and other 

interested groups) with the concept of ‘styles of farming’, particularly in terms of inseparable ideas 

about who is farming (‘peasants’ vs ‘entrepreneurs’ [29,30]) and how they are farming (agroecology 

vs reliance on purchased inputs [26,31]); (ii) to use patterns in the model outputs to draw attention 
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to the role different farming futures may play in shaping population health via both food- and non-

food-related processes, and the implications of climate change; and (iii) stimulate debate about the 

importance of these largely neglected (at least in climate-health modelling) issues and spur the 

development of more detailed models. 

 

The next section gives an overview of the ABM. Following this, results from a set of simulation 

experiments conducted under various scenarios are presented and discussed. We finish with some 

concluding remarks on the implications for future research. 

 

 

Methods 

ABMs are simulation models which represent agents, their goal-orientated decisions, the actions they 

take, and their interactions with other agents and the environment (understood in broad terms) [32]. 

They track how micro-level actions unfold over time to give rise to macro-level patterns. While ABMs 

have been used to study population health [e.g. 33] and agricultural systems [e.g. 34], to our 

knowledge they have not been previously used to assess the potential impacts of climate change on 

health.  

 

Existing global-level climate undernutrition models typically link together a chain of component 

models. In this approach, the health component model is generally driven by macro-to-macro 

statistical correlations (e.g. the correlation between ‘total quantity of food’ and ‘proportion at risk of 

stunting’), and the crop production component model generally assumes homogeneity of farmer goals 

[e.g. 10,11-17,35]. That is, health component model operates entirely at an aggregate level, where 

the latter (partly) arises from homogenous farming-related behaviours at a lower level. We argue this 

is a critical limitation given the contested nature of how farming futures could or should look [28,36]; 

what happens at the micro-level matters for population health. 

 

ABMs overcome these limitations. In our case,  ABM allows an assessment of how changing patterns 

of heterogenous behaviour in agents at the micro-level - i.e. farmers practicing different styles of 

farming - interact to give rise to macro-level conditions – for instance, aggregate food price - which in 

turn (via feedback), along with other structural conditions (such as climate, agricultural policy), 

influence micro-level behaviour, giving rise to farm development trajectories and patterns of health-

related conditions [cf. 30,37]. Our model, however, introduces a new set of limitations (see 
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‘Discussion’). Thus, our approach should be seen as offering insights that are complimentary to 

previous work, as well as providing guidance on the development of future models.  

 

Overview of the model and simulations 

Our ABM represents a hypothetical world in which a population of peasant producer-consumer 

farming households practicing ‘orphan’ farming (i.e. subsistence farming) on one hectare plots may 

develop by adopting a farming style which is either dependent on purchased inputs (‘entrepreneurial’ 

farming) or that is driven by enhancing and utilizing on-farm ecological processes (‘agroecology’) 

[29,38,39] (Fig 1). This occurs under scenarios which vary by (i) the proportion of farmers preferring a 

given style of farming, (ii) the style favoured by agricultural policy, (iii) the degree of influence of global 

food prices on local prices (as an indicator of globalization of the food system), and (iv) the severity of 

climate change. Simulations are run in annual time steps for 50 years and, amongst other things, five 

health-supporting outcomes from different spheres are assessed: basic nutrition (biological); farm 

incomes and labour (economic); income inequality (social); and, ‘real land productivity’ (a measure of 

farming intensity; environmental). Fig 1 shows a schematic of the model.   
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Fig 1. Schematic diagram of the agent-based model. The central cycle (thick black arrows) represents the farm 

production process, with each cycle occurring over one year (i.e. one timestep). Agents (farming households 

plus an a-spatial mega-agent representing corporate agriculture) and the environment (1ha plots) are shown in 

grey and green. Agent decisions are shown in blue. Scenario options are shown in orange. Health-related 

outcomes are shown in red. See text for further details.  

 

We developed our agent types based on the work of van der Ploeg [29,30,36], and for theoretical 

consistency we drew on the same body of work to model their economic behaviours. While there are 

well developed approaches to agricultural household modelling which explicitly represent producer-

consumers [40], we did not utilise these methods as their assumptions (e.g. all households are profit 

maximizers) are inconsistent with the van der Ploeg typology. We further describe our approach ahead 

(see ‘Model process’) and return to agricultural household modelling in the ‘Discussion’ section (see 

‘Model limitations’).       

 

Tables 1 and 2 describe the key model variables and parameters. In general, we parameterized the 

model using approximations based on the literature. For instance, we derived approximate rates of 

temperature rise in our climate change scenarios based on averages in the Representative 

Concentration Pathways (RCPs; these are the scenarios currently used in climate change impact 

assessments) [41]; we estimated yield loss per degree of warming based on existing quantifications 

[42,43]; we used ‘rules of thumb’ for productivity and consumption in subsistence farming (Mazoyer 
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and Roudart, 2006)); and, we estimated annual yield increments in peasant agriculture based on 

qualitive knowledge (van der Ploeg, 2013)). We took this approach because: (i) it allowed for simplicity 

and transparency; (ii) the model represents a hypothetical rural area; (iii) quantitative estimates for 

some parameters were not available; and, (iv) patterns in the results rather than quantifications are 

of central interest  (We discuss this further in the ‘Model limitations’ section of the ‘Discussion’). 
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Table 1. Key environment and agent factors, their initial values, and how they change over timea. 

Factor 
(units) 

Function or effect Initial value Change over time Notes 

Landscape     
 

‘Local area’ 
(ha) 

 

Grid of 1ha plots. 
 

 

441 1ha plots. 
 

No change. A 21 by 21 grid of arable 
plots.  

 

Plot max 
productivity 

(kg/year) 

 

Each plot has a 
maximum 
productivity under 
orphan agriculture 
(i.e. in which no non-
labour farm inputs 
are used). 

 

Randomly set for each plot: 
1000kg/year ±20% (uniform 
distribution). [Based on [38]] 
 

 

Slow rise on optimized 
peasant farms. ‘Peasant’ 
policy: orphan 1.5%/year, 
Agroecology 3% per year; 
other policies: Orphan 
1%/year, Agroecology 
1.5%/year. Max productivity 
= max productivity for 
entrepreneurial farmers.  
[Based on [30]] 
 

 

‘Optimized’ in terms of 
production; assumed that if 
farmer unable to optimize, 
then also unable to gain 
production increases. 
Assumes no land 
degradation under any 
style.  

 

Plot 
agroecology 

yield multiple 
(scalar) 

 

Max productivity of a 
plot is raised by a 
given multiple after 
transitioning to 
agroecology. 

 

Randomly set for each plot: 
mean=4, SD=1.5 (normal 
distribution, restricted to 
values between 2 and 7). 
[Based on [39,44,45]] 
 

 

No change. 
 

Productivity rises slowly 
during the transition phase, 
with the full yield multiple 
being achieved after the 
agroecology transition 
period.  

 

Agroecology 
transition 

period (years) 
 

 

Number of years to 
transition a plot to 
agroecology. 

 

3 years. [Based on [39]] 
 

No change. Transition achieved via 
labour intensification. 

Agents     
 

Farming 
households 
(number) 

 

Farming households, 
each of four people, 
practicing a particular 
style of farming. 
Using manual tools, 
each household can 
farm one hectare.  
 

 

250; each randomly assigned 
a 1ha plot; all practicing 
orphan agriculture; 
preference to develop via a 
particular style distributed 
according to scenario.   

 

Households change to 
preferred style if they have 
access to sufficient 
resources, or, abandon 
farming if nutrition falls 
below 50% of a basic diet. 

 

Initially ~40% of plots are 
unoccupied. Approximates 
conditions in lower income 
countries. [38,46,47] 

 

Family basic 
diet 

(kg of 
cereal/year) 

 

Quantity of cereal 
equivalents providing 
a basic diet to a 
family for one year. 
 

 

700kg/year (equiv. to 
~2200kcal/person/day). 
[Based on [38]] 

 

No change. Households 
abandon their farm if they 
are unable to obtain 50% of 
a basic diet.  

 

Household members do not 
age over time. 

 

Labour diet 
(kcal/day) 

 

Worker calorie 
intake/day to allow a 
given amount of 
labour power.   

 

5100kcal/day for max 
production on 1ha; 
diminishing returns as intake 
increases to this level. 
[Based on [48,49]] 
 

 

Acquiring working animals 
or a small tractor allows a 
worker to farm more than 
1ha (Table 2). Labour input 
requirements double under 
agroecology.  

 

For orphan agriculture, max 
production on 1ha with 
manual tools requires 150 
ten hour labour days/year. 
[Based on [48]] 

 

Agroecology 
labour 

multiple 
(scalar) 

 

Increase in labour 
requirements for 
maximum production 
in agroecology. 
 

 

2 (i.e. for max production, 
required labour time 
doubles). [Based on [39]] 

 

No change. ‘Necessary input’ 
requirements rise 
proportionally with labour 
(see Table 2).  

Climate 

    

 

Warming 
trend and 
yield losses 
(degrees/year, 
and, % 
loss/degree of 
warming)  
 

 

Yields decline as 
warming increases, 
with lower losses for 
agroecology. 
(For effects on global 
food price, see Table 
2.) 

 

Warming = 0. 
Yield loss = 4%/degree of 
warming [Based on [42,43]]; 
losses reduced by 10% under 
agroecology. [Based on [39]] 

 

Linear rise in warming.  
High CC: 2 degrees/50 years; 
Low CC: 1 degree/50 years; 
No CC: no warming. [Based 
on [50]] 
 

 

An approximation guided 
by average warming under 
the Representative 
Concentration Pathways 
[41]. Agroecology loss 
reductions are an 
approximation.  
  

 

Drought risk 
and yield 

losses 
(annual risk, 

and, % 
loss/event) 

 

 

Proportion of yield 
lost if a drought 
occurs; lower losses 
under agroecology. 
(For effects of global 
food price, see Table 
2.) 

 

Drought risk = 5%/year 
Drought yield losses are - 
High CC: av. 15%, up to 30%; 
Low CC: av. 10%, up to 25%; 
No CC: av. 7.5%, up to 20%. 
Losses reduced by 20% 
under agroecology. [Based 
on [39]] 
 

 

Linear increase in risk –  
High CC: doubles after 50 
years; Low CC: 1.5 times 
after 50 years; No CC: no 
change. 
Yield losses are fixed over 
time. 

 

Drought losses are 
contingent on multiple 
processes meaning no 
generally applicable 
quantification available. 
Plausible approximations 
used, including for 
agroecology. 

av., average; CC, climate change; ha, hectare; SD, standard deviation. 
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a Note that model parameters are approximations derived from the literature. See text and the ODD+D (S1 Appendix) for 

further details.  
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Table 2. Prices for key factors, their initial values, and how they change over timea. 
Factor 
(units) 

Function or effect Initial value Change over time Notes 

Food price     
 

Local food 
price 

(cents/kg) 

 

Food price faced by 
farming households. 

 

40c/kg (Given input prices 
(see below), this places the 
average farmer close to the 
threshold for development.) 
 

 

Calculated as the production-
weighted average of farmer 
asking prices, adjusted for global 
price given price transmission. 
 

 

Farm gate and 
consumer prices 
assumed to be the 
same. 

 

Global food 
price 

(cents/kg) 

 

Represents price 
arising from global 
corporate agriculture: 
influences trend in 
local price via global 
price transmission 
(Figure 1).   

 

40c/kg 
 

General tendency to fall (most 
rapidly under ‘no climate change’ 
and most slowly under ‘high 
climate change’ (due to 
warming)) & oscillate. Drought 
causes price increases, with the 
greatest increases under ‘high 
climate change’ (See text for 
details).  
 

 

The simulations aim to 
assess the impact of the 
tendency for global 
prices to fall and 
oscillate on smallholder 
farming. [Based on [38]] 

Inputs     
 

Labour: low 
skilled 

wage ($) 

 

Cost of a full-time 
farm worker (Labour 
time may be 
purchased in fractions 
given target yield). 
 

 

Price = 180% of the cost of a 
basic diet for a family of 
four. [e.g. [51]] 

 

Same formula (based on average 
local price over last 5 years), but 
with an additional rise of 2% per 
year [Based on [52]]. 

 

Peasants do not cost 
labour. Over time, food 
costs represent a 
smaller proportion of 
people’s income.  

 

Purchased 
inputs: 

necessary 
inputs ($) 

 

‘Necessary inputs’ 
represent expenditure 
required to enable 
production. Assumed 
to be scalable given 
target production. 

 

Necessary inputs for max 
production: price/ha = 15% 
of a low skilled wage.  
[Based on [53,54]] 

 

Under agroecology, necessary 
inputs for maximum production 
double (i.e. in proportion to 
increased labour requirements 
(Table 1)). 

 

Necessary inputs 
include clothing, tool 
repair, building 
maintenance, etc [38]. 
 

 

Purchased 
inputs: 

fertilizer 
($/kg) 

 

Increases productivity 
of a plot up to 10 
times [38], with 
diminishing returns as 
quantity used 
increases to max. 
 

 

Price of 1kg = local food 
price/kg X 10. Max 
productivity at 500kg [e.g. 
[55-57]]. Under ‘Entre’ and 
‘entre eroding’ policy: 50% 
subsidy. 

 

Same formula, but price rises 
1%/year.  
Under ‘Entre eroding’, subsidy 
falls by 1%/year. 

 

‘Fertilizer’ assumed to 
represent all non-
necessary purchased 
inputs (e.g. pesticides, 
seeds). Thus, the 
fertilizer:food price 
ratio accounts for this. 
 

 

Working 
(i.e. 

draught) 
animals ($) 

 

Allows one worker to 
farm up to 5ha (cf. 
manual tools, which 
allow 1ha to be 
farmed). 

 

Price = 30 years of net 
income (i.e. after feeding the 
family) of average orphan ag 
farm. [Based on [38]] 
 

 

Same formula, based on average 
local food price over the last five 
years. 

 

Working animals allow 
workers to farm a 
greater area but do not 
increase plot 
productivity. 

 

Small 
tractor ($) 

 

Allows one worker to 
farm up to 16 hectares 
(cf. manual tools, 
which allow 1ha to be 
farmed).  

 

Price = 150 years of net 
income (i.e. after feeding the 
family) of average orphan 
agriculture farm. [Based on 
[38,48]] 
 

 

Same formula, based on average 
local food price over the last five 
years.  

 

Tractors allow workers 
to farm a greater area 
but do not increase plot 
productivity. 

 

Land price 
($/ha) 

 

Farmers may expand 
by purchasing unused 
adjacent plots.  

 

Price/ha = the cost of 30 
tonnes of cereal (Equivalent 
to the value of 30 years of 
average max production of 
orphan agriculture)   

 

Same formula, based on average 
local food price over the last five 
years.   

 

Price chosen as this 
roughly represents the 
gross value produced 
on the land over the 
working life of an 
orphan farmer. 
 

Credit 
    

 

Annual 
interest 
rates (%) 

 

Interest rates on loans 
for fertilizer (short-
term), animals and 
tractors (mid-term), 
and land (long-term) 
[29]. 
 

 

Short-term (1 year): 20%, 
mid-term (3 to 6 years): 15%, 
long-term (8 years): 10%.  
Rates halved under ‘Entre’ 
and ‘Entre eroding’ policy.  

 

Fixed, except under ‘Entre 
eroding’ policy where rates 
increase linearly over time, 
returning to their full values after 
50 years.   

 

Peasant farmers do not 
use credit. Rates based 
on [58-61]. 

ha, hectare 

a Note that model parameters are approximations derived from the literature. See text and the ODD+D (S1 Appendix) for 

further details. 
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We ran two sets of simulation experiments and conducted a sensitivity analysis. Previous climate-

undernutrition modelling has assessed how climate impacts on food production may in turn impact 

on health; our simulations develop an alternative perspective in two stages. First, the ‘Style preference 

and globalization’ runs assess how different combinations of style preferences and global price 

transmission influence farm development trajectories – in terms of total food production, food price, 

and farm incomes - in the absence of climate change or specific agricultural policies. Second, the 

‘Climate change and agricultural policy’ runs look at how climate change and agricultural policy may 

modify these development trajectories, and how these may in turn shape the conditions that support 

(or undermine) the health of rural communities. Following this we ran a sensitivity analysis to assess 

how assumptions about maximum productivity and climate-related losses of agroecology and 

entrepreneurial farming influence model outputs for total food production and food price.    

 

Below, we provide further detail on the ABM and then describe our scenarios and simulation 

experiments. Full details of the model are given in the accompanying ODD+D (Overview, Design 

Concepts and Details plus Decision-Making) [62] (S1 Appendix). The latter is a widely adopted format 

for giving a complete and consistently organized description of ABMs. The model was implemented in 

Netlogo 6.0.1 [63]. 

 

Model details 

This section describes the following: the rural landscape, the agents, how climate change is 

represented, some key model processes, and the main outcomes assessed. 

 

Rural landscape 

The landscape is a 21 by 21 grid (441 cells) of 1ha arable plots, which represents the ‘local area’ 

occupied by the hypothetical rural community. Each plot is randomly assigned a maximum productive 

potential of between 800kg and 1200kg of cereal equivalents/year (see below for how these quantities 

relate to dietary intake requirements) (Based on [38]). Additionally, each plot is randomly assigned a 

yield multiple that may be achieved under agroecology following a transition period of three years 

(Table 1).   

 

Agents 

The agents are farming households comprised of four people (Table 1), and farms produce a generic 

crop measured in cereal equivalents [38]. Households may be ‘peasant’ or ‘non-peasant’ and are 
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represented by three types of agent defined by their style of farming (Figure 1). Two styles represent 

peasant farming: ‘orphan’ and ‘agroecology’. The third style, which is non-peasant, is 

‘entrepreneurial’.  

 

The distinctions between peasant and (non-peasant) entrepreneurial farming are derived from 

empirically-based categories developed by van der Ploeg [29] (We note that van der Ploeg does not 

claim a rigid distinction between entrepreneurial and peasant farming exists in the real world. Rather, 

the ‘peasant condition’ is an ongoing process that develops in response to changing contextual 

conditions, and which may express more or less ‘peasantness’. For the purposes of the model, 

however, we assume entrepreneurial and peasant farming are distinct categories). In essence, 

entrepreneurial farming predominately relies upon purchased farm inputs (e.g. fertilizers) and wage 

labour, often using credit to obtain these, and develops via capital intensification. This means the logic 

driving production decisions is largely shaped by off-farm processes, such as price ratios (determining 

the margin) and technology (determining scale); thus, the market acts as an ordering principle, and 

the goals of entrepreneurial farming are to maximise returns-on-investment and expand (market 

share and/or farm size) [29].  

 

Peasants farming differs in that a major goal is to deepen autonomy. This is achieved by largely relying 

on on-farm produced inputs, avoiding credit, and maximising returns-to-labour, with development 

being via labour and knowledge intensification. Thus, farmers attempt to shape the production 

process such that it guarantees the next year of production without recourse to the market. In this 

sense, autonomy means reduced market dependence. This does not imply peasants isolate 

themselves from markets; rather, markets are used as an outlet for surplus production [29].  

 

Another key difference between peasant and entrepreneurial farming is that peasants only use family 

labour and do not consider labour costs when optimizing production [30]; instead, they must provide 

a labour diet adequate for the required labour power (Table 1). In contrast, entrepreneurial farmers 

employ labour, paying a wage (Table 2) and costing labour in optimization decisions, including when 

a labourer is a family member [30].    

 

The first style of peasant farming is orphan agriculture. Following Mazoyer and Roudart [38], this is 

defined as farming with manual tools (e.g. a hoe) and very limited input use (e.g. fertilizers), meaning 

that one worker labouring at full capacity can farm 1 hectare to produce an average of 1000kg of 

cereal equivalents per year. Of this, 700kg provides a family of four a basic diet 
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(~2200kcal/person/day), and full capacity labour requires an additional (i.e. additional to a basic diet) 

2900kcal/labour-day, which is equivalent to ~110kg of cereal/year (Table 1). Thus, limited production 

potential relative to needs renders orphan livelihoods precarious.  

 

The second style of peasant farming is agroecology. In the ABM, during an agroecology transition 

period of three years, orphan farmers intensify the productive potential of their land (and thus deepen 

their autonomy) to gain an average yield multiple of four (e.g. an initial maximum yield of 1000kg/ha 

would be increased to 4000kg/ha) (Table 1). This is achieved by developing and modifying on-farm 

ecological processes, generally via labour intensification (Table 1) and learning via community 

networks (Note that these ecological processes and networks are not explicitly represented in the 

ABM) [26,39].  

 

Additionally, as peasant farming (both agroecology and orphan agriculture) is labour and knowledge 

intensive, slow ongoing gains in maximum productivity per hectare may also be achieved by fine-

tuning farming practices (Table 1) [30].   

 

As well as agents representing farming households, an a-spatial (i.e. not located in the landscape) 

mega-agent represents ‘corporate agriculture’, which is large-scale agriculture with a profit-making 

goal [29]. Over recent decades, various processes - including productivity increases and subsidies - 

have led corporate agriculture to be associated with a general tendency for global food prices to fall, 

and it has been argued that this has caused poverty and untenability of livelihoods for many 

smallholders (i.e. both peasant and entrepreneurial farmers) [23,38,64,65]. Additionally, global prices 

tend to oscillate, with troughs potentially forcing the worst-off farmers permanently out of farming 

[38]. Given this, rather than representing corporate agriculture explicitly as farms, the model 

represents it implicitly as a price trend that tends to fall but oscillate (Fig 1, Table 2; further details 

ahead).    

 

In sum, the ABM represents peasant and non-peasant farming households (agents), practicing one of 

three styles of farming (orphan, agroecology, entrepreneurial; i.e. the agent types)), in a local area 

comprised of 441 one hectare plots (landscape), who collectively form a constellation of farming 

households that operate in a global context in which prices associated with corporate agriculture (a-

spatial mega-agent) tend to fall but oscillate. The context of farming is also shaped by climate change. 
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Climate change 

There are multiple pathways from climate change to nutrition [66], and different agricultures in 

different parts of the world are expected to face varying degrees and forms of change in weather and 

climate [67]. In the ABM, however, as we aim to look at patterns in the results rather than quantify 

outcomes, we incorporate climate using a simple approach.  We consider three climate change 

scenarios (‘no’, ‘low’, and ‘high’), with each of the warming scenarios being associated with a linear 

increase in temperature (equivalent to 1⁰C and 2⁰C of warming over 50 years in the low and high 

scenarios, respectively) and a rise in drought risk, with the same changes experienced on all plots of 

land (Table 1).  

 

Climate affects farmers in the local area as well as global food price (i.e. corporate agriculture). For 

farmers in the local area, climate change is expressed as yield losses. As temperature rises, yields 

decline on all plots. If a drought occurs, yield losses vary randomly (around an average loss) by farm. 

Agroecology farms face lower temperature-related and drought losses as the diverse on-farm ecology 

confers greater resilience [39] (Table 1). For global food price, temperature rise and droughts lead to 

price increases (Fig 1, Table 2).       

 

Model processes 

Each time step represents one year during which a set of processes associated with production occur 

sequentially (Fig 1). At the start of each time step, farms have a potential income given what they 

produced in the previous time step and the local food price, and (possibly) savings. Following this 

orphan farmers decide whether to convert to their preferred style. Those who prefer agroecology will 

begin conversion if their savings are sufficient to cover the additional inputs required during the 

labour-intensive transition period (i.e. additional labour diet and necessary inputs). The use of savings 

means they will not be dependent on credit. Those who prefer entrepreneurial style will convert if 

their income (after feeding the family) plus their savings will cover a low skilled wage, which is 

assumed to make them eligible for credit (e.g. to purchase fertilizer).  

 

Following this, agroecology and entrepreneurial farmers decide whether to expand their farm, by 

acquiring land, working animals or small tractors (Table 2). Agroecology farmers will gradually acquire 

up to two lots of working animals and 10ha of land as this is manageable using family labour. They will 

only acquire new land or animals if all their existing plots have been transitioned to agroecology (thus, 

the maximum rate of expansion is 1ha every 3 years) and if all costs can be met using savings. 

Entrepreneurial farmers will acquire land, working animals or tractors if their income and savings 
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cover at least half the cost, using credit to cover the balance (Table 2, main text). They may acquire 

1ha of land per year. When acquiring land, all farmers choose the plot with the highest productive 

potential that is contiguous with their farm. 

 

Next farmers allocate resources to consumption and production. Each farmer estimates their 

expected food price in the coming year, based on current price, the price change over the previous 

five years, style-specific considerations, and some random variation (representing unmodelled factors 

that may affect expectations). Farmers then find their target level of production using standard 

economic methods [68,69], but with the following style-specific modifications (See Appendix S1 for 

additional details, including Figures B and C which show decision-type trees for resource allocation).  

 

Peasant farmers initially aim to maximise returns-to-labour, which is equivalent to optimizing without 

costing labour [30]. However, if income at this level of production would not meet their autonomy-

related goal of increasing value added per labour object (i.e. increase net income per hectare), they 

will attempt to produce at a higher level. If necessary, households ration resources between 

consumption and production, and if they are unable to provide themselves with at least 50% of a basic 

diet they will either sell assets (if owned) or abandon the farm. 

 

Entrepreneurial farmers first assess whether their income plus savings is sufficient to meet their 

current debt obligations and provide at least 50% of a basic diet for the family. If not, they sell assets 

(if owned) or abandon the farm. Following this, they find optimal production by maximising returns-

on-investment [30]. If, however, either (i) the farm would run at a loss at this level of production, they 

will sell assets (if owned) and re-optimize or abandon the farm, or (ii) farm income at this level of 

production would not meet their expansion-related goals, they will attempt to increase production, 

again selling assets if necessary.  

 

All farmers then attempt to produce their target yield, with actual yield being determined by climate 

effects and random variation (Figure 1). The model accounts for expected annual increases in 

temperature and drought risk; calculates expected yield losses due to warming; and, assesses whether 

a local drought occurs (given drought risk) and, if so, the expected average yield losses (Table 1). Actual 

yield for each farming household is then calculated given climate change-associated losses and 

random variation (of ± 15% to account for unmodelled factors). 
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Given their actual yield, each farming household now calculates their asking price. In doing so, both 

peasant and entrepreneurial farmers seek to maintain their respective autonomy- and expansion-

related goals. An initial aggregate local price is then calculated by combining the asking prices of each 

household to give a production-weighted average. Finally, this initial local price is adjusted for global 

price (see below) according to scenario-specific global price transmission (an elasticity) (Figure 1); for 

example, if global food price had risen by 5% and global price transmission were 0.5, then local food 

price would be increased by 2.5%.       

 

Global food price is set such that it has a tendency to fall and oscillate, but will rise in response to a 

drought. The average rate of price decline is determined by the climate scenario: 1.5%/year, 

1.25%/year and 1%/year under ‘no’, ‘low’ and ‘high’ climate change, respectively (The actual change 

in each time step is randomly determined and includes the possibility of a price rise). This tendency is 

combined with an oscillator function has an amplitude of 1.5 cents and period of 10 years (These 

parameters were chosen subjectively by observing price behaviour while varying their values). Finally, 

the model assesses whether there is a drought that affects global prices. If a drought occurs, price is 

adjusted upwards by a random amount dependent on the climate change scenario (5% to 7.5%, 7.5% 

to 12.5%, and 10% to 17.5%, under no, low, and high climate change, respectively).    

 

Local food price and farm production are then combined to estimate the incomes of each farming 

household, the next time step begins, and the model processes are repeated. Each simulation is run 

for 50 years (i.e. time steps). 

 

Outcomes assessed 

The following outcomes are tracked by the model and presented in the results. ‘Local food price’ is 

the price faced by farming households (farm-gate and consumer prices are assumed to be equal), 

calculated as described above. ‘Total food production’ is the total physical product of the entire 

farming community, expressed in tonnes of cereal equivalents. ‘Income slope’ is the average change 

in income over the previous ten years (i.e. slope as $ per year) for farmers practicing each style; that 

is, it indicates whether incomes are rising, stable, or falling, and the magnitude of the change. 

‘Converted farms’ is the number of orphan farmers who have converted to their preferred style. 

‘Abandoned farms’ is the number of households who left farming as they cannot provide themselves 

with 50% of a basic diet or meet their debt obligations.      
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Five health-related outcomes (i.e. that support the health of the farming community) are also tracked. 

‘Orphan nutrition’ is the average proportion of a basic diet (in calories; Table 1) available for remaining 

orphan households. ‘Labour’ is the sum of full-time equivalent workers (including both workers on 

peasant farms and wage earners) on farms in the community. ‘Income Gini’ is a measure of income 

inequality amongst farming households in the community, and ‘mean net farm income’ is the average 

net income across all farming households in the community.  

 

The fifth outcome is ‘real land productivity’ which is a measure of farming intensity based on value 

added during the farming process; that is, it removes the contribution of inputs that were produced 

elsewhere (e.g. purchased fertilizers) [29,53]. The latter were produced in environmental spaces other 

than the farm, and during the farming process their value is – in effect - transferred into final yield 

(rather than created on the farm). Thus, real land productivity is more environmentally-sensitive than 

conventional measures of intensity.   

 

It is represented as net income per hectare adjusted for the proportion of value that was added on 

the farm (‘endogeneity’), calculated [based on 53] as: 

 

 

𝑟𝑒𝑎𝑙 𝑙𝑎𝑛𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 [$ ℎ𝑎⁄ ] =  
𝑓𝑎𝑟𝑚 𝑛𝑒𝑡 𝑖𝑛𝑐𝑜𝑚𝑒 [$]

𝑓𝑎𝑟𝑚 𝑠𝑖𝑧𝑒  [ℎ𝑎]
 × 𝑒𝑛𝑑𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦                                                                 (1) 

 

                                  𝑒𝑛𝑑𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 =   
𝑣𝑎𝑙𝑢𝑒 𝑎𝑑𝑑𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒 𝑓𝑎𝑟𝑚 [$]

𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑓𝑎𝑟𝑚 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 [$]
       

 

                         =  
𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑓𝑎𝑟𝑚 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛−(𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑 𝑖𝑛𝑝𝑢𝑡𝑠 𝑒𝑥𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑙𝑎𝑏𝑜𝑢𝑟) [$]

𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑓𝑎𝑟𝑚 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 [$]
            (2) 

 

 

Scenarios, experiments, and sensitivity analysis 

Model set-up: scenario settings and initialization 

Prior to initialization, a scenario is chosen by the model user, which is a combination of four factors 

(Fig 1). First, ‘Farming style preference distribution’ is the proportion of orphan farming households 

who prefer to develop via agroecology (rather than entrepreneurial style). Second, ‘Global price 

transmission’ is the degree to which global food prices influence local food prices. This is an elasticity 

that specifies the percent change in local price given a 1% change in global price [70]. Third, ‘Climate 

change’ may be set to ‘no’, ‘low’ or ‘high’ (Table 1).  
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Fourth, ‘Agricultural policy’ specifies which farming style is favoured and has four options (see Table 

3, ahead). ‘Entrepreneurial’ policy favours entrepreneurial farming by lowering interest rates and 

fertilizer prices (Table 2). ‘Entrepreneurial eroding’ is initialized in the same way but interest rates and 

fertilizer prices rise linearly to their unsubsidized levels after 50 years (Table 2). ‘Peasant’ policy 

favours orphan agriculture and agroecology by supporting research and fostering community 

networks, which is represented in the model by a rise in the rate of annual maximum yield increase 

(Table 1). ‘None’ means policy does not favour any style.  

 

The model is initialized by placing each of 250 peasant households practicing orphan agriculture on 

randomly selected 1ha plots in the local area of 441 plots (Table 1). At initialization, it is assumed that 

all households have achieved their maximum yield and have no savings. Each household is randomly 

assigned a (fixed) preference for whether they will aim to develop by remaining peasants and adopting 

agroecology style, or, by adopting (non-peasant) entrepreneurial style, with the preference 

distribution being user-selected (Figure 1). Additionally, households are randomly assigned 

preferences for how they save money and whether they favour production or family nutrition when 

rationing. 

 

Local and global food prices are set, then prices for productive commodities (e.g. labour, fertilizer, 

land) are set based on food price (Table 2). That is, productive commodity prices are linked to food 

price, but many of these links change over time (Table 2) as, for example, it is assumed that food prices 

represent a decreasing share of wages. Of note, initial prices are intentionally set at levels such that 

the average orphan farmer is close to an income that would allow them to develop their farm.  The 

temperature anomaly (i.e. warming) is set to 0 and drought risk is set at 5% per year for both the local 

area and corporate agriculture (i.e. global food price) (Table 1).  

 

Simulation experiments 

We conducted two sets of simulation experiments. The ‘Style preference and globalization’ 

simulations were run without climate change (i.e. ‘no’ climate change) or specific agriculture policies 

(i.e. ‘none’ policy) for various combinations of proportion preferring agroecology and global price 

transmission. The purpose was to assess how the latter two factors influence farm development 

trajectories in terms of local food price, total food production, and the income trajectories of farmers 

practicing each style. 

 

123



The second set – the ‘Climate change and agricultural policy’ runs – then look at how climate change 

and four agricultural policy scenarios (Table 3) modify farm development trajectories, and how this 

may in turn shape both patterns of hunger and conditions that support the health of the farming 

community.  

 

Table 3. Agricultural policy scenarios and associated settings for proportion preferring agroecology and 
global price transmission. 

Agricultural policy Prop preferring 
agroecology 

Global price 
transmission Policy name Policy actions 

Entrepreneurial Lower interest rates and fertilizer subsidies (see Table 2). 
 

0.25 0.75 

Entrepreneurial 
eroding 

As for entrepreneurial except interest rates and subsidies 
linearly increase and return to baseline level after 50 years 

(see Table 2) 
 

0.25 0.75 

Peasant Support for research as well as development of community 
networks, represented by increased rate of yield increases 

(see Table 1). 
 

0.75 0.25 

None No actions supporting any farming style. 0.5 0.5 
 

  

 

The four agricultural policy scenarios are intended to approximate the following: (i) ‘entrepreneurial’ 

represents worlds favouring capital intensive farming that is highly dependent on and integrated into 

globalized markets (e.g. some farms practicing ‘sustainable intensification’ have these characteristics 

[28]); (ii) ‘entrepreneurial eroding’ recognises that the development trajectory of entrepreneurial 

farming is at least partly dependent on conditions external to farms and assesses the consequences if 

these conditions are not maintained over the long term [cf. 29]; (iii) ‘peasant’ represents worlds in 

which on-farm ecological processes are enhanced via labour intensification in order to develop both 

production and farmer autonomy, with agroecology being a key farming practice for achieving this 

[39]; and, (iv) ‘none’ represents a world where entrepreneurial and peasant farming co-existence but 

there is no explicit policy support for either.  

 

For both sets of simulation experiments the ABM was run 250 times (which was judged – based on 

observation of outputs and across-run standard deviations - to be sufficient to capture typical model 

behaviour) for each combination of factors and the results for each output are shown as their across-

run mean values.  

 

Sensitivity analysis 

In the ‘Climate change and agricultural policy’ simulations, the differences in the outcomes for 

peasant- and entrepreneurial-centred futures are of key interest. The model has many parameters, 

and naturally we cannot evaluate the sensitivity of the model outputs to all of them. However, two 
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aspects of the model parameterization may have a strong influence on these results. Firstly, 

agroecology to entrepreneurial yield ratios. In the simulation experiments, it is assumed that  (i) 

transitioned agroecology farms may initially produce up to an average of 4 tonnes per ha (SD = 1.5) 

and that this may slowly increase up to a maximum 10 tonnes per ha, and, (ii) entrepreneurial farming 

may produce up to an average of 10 tonnes per ha (Table 1). That is, the average agroecology to 

entrepreneurial yield ratio is initially 2:5 and may increase over time to 1:1. Secondly, it is assumed 

that climate change-related losses for agroecology are lower than entrepreneurial losses: 10% lower 

for warming-related losses and 20% lower for drought-related losses (Table 1).   

 

We conducted a sensitivity analysis to assess the influence of these assumptions on two key outcomes: 

total food production and local food price. Under the ‘entrepreneurial’ and ‘peasant’ policy scenarios 

(Table 3), we re-ran the model under the following conditions: (i) fixed agroecology to entrepreneurial 

yield ratios of 1:4, 1:2, 3:4, and 1:1, with no increases in agroecology yield over time, and (ii) warming- 

and drought-related yield losses for agroecology compared to entrepreneurial of 10% lower, equal, 

and 10% higher.  

 

Results 

Style preference and globalization runs 

These simulations assess how patterns of farming styles influence food production. More specifically, 

they assess how farm development trajectories – in terms of production, price, and incomes - are 

influenced by patterns of farming style preference and global price transmission, in the absence of 

climate change and particular agricultural policies.  Fig 2 shows total food production and local food 

price (y-axes) under various combinations of global price transmission (x-axes) and proportion 

preferring agroecology (line colour) at 25 and 50 years. 
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Fig 2. Total food production and local food price in the absence of climate change and agricultural policies. 

The plots show total food production (top two plots) and local food price (bottom two plots) (y-axes) under 

combinations of global price transmission (x-axes) and proportion preferring agroecology (line colour) after 25 

(left plots) and 50 years (right plots), in the absence of climate change or specific agricultural policies. For the y-

axes, total food production and local food price are shown as the mean result across 250 runs under each 

combination of factors. For the x-axes, global price transmission is an elasticity such that a value of 0.6, for 

example, means that a 1% rise in global food price would cause a 0.6% rise in local food price. For the line colours, 

a value of 0.2, for example, means that 20% of orphan farmers prefer to develop via agroecology and 80% via 

entrepreneurial farming.   

 

 

The proportion preferring agroecology had a strong effect on total production (i.e. production 

summed across all farms) at 25 years (Fig 2, upper left panel), with production in runs where 80% 

preferred agroecology being 25% lower than when 80% preferred an entrepreneurial style. This gap 

declined by year 50, with production in the former being 10% lower than in latter (Fig 2, upper right 

panel). Global price transmission tended to have little effect on total food production. 
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Local prices tended to be lower at 50 years compared to 25 years (Fig 2, bottom row). Prices were 

lower when global price transmission increased, with the latter effect being stronger at 50 years 

compared to 25 years. An increase in the proportion preferring agroecology increased prices at both 

25 and 50 years. Compared to the start price (i.e. at year 0) of 40c per kg, prices tended to be lower 

at both 25 and 50 years under most sets of conditions, except when a very high proportion preferred 

agroecology and/or when price transmission was very low. 

 

Fig 3 shows the rate of change of farm net incomes (averaged over the previous 10 years) in $ per 

year, by farming style (i.e. as average change across all farmers practicing a given style) (y-axes), under 

various combinations of global price transmission (x-axes) and proportion preferring agroecology (line 

colour), at 25 and 50 years. For reference, the average orphan household would have a net income of 

about $80 per year after providing a basic family diet plus a labour diet if local food price were 40c per 

kg (i.e. the food price at year 0). 
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Fig 3. Income slopes by farming style in the absence of climate change and agricultural policies. The plots show 

income slopes for orphan, agroecology, and entrepreneurial farms (top to bottom plots, respectively) (y-axes; 

scale differs for each style) under combinations of global price transmission (x-axes) and proportion preferring 

agroecology (line colour) after 25 (left plots) and 50 years (right plots), in the absence of climate change or 

specific agricultural policies. For the y-axes, the income slopes are the gradient (units = $ per year) of mean farm 

net income by farming style over the previous ten years, shown as the mean result across 250 runs under each 

combination of factors. For the x-axes, global price transmission is an elasticity such that a value of 0.6, for 

example, means that a 1% rise in global food price would cause a 0.6% rise in local food price. For the line colours, 
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a value of 0.2, for example, means that 20% of orphan farmers prefer to develop via agroecology and 80% via 

entrepreneurial farming.   

 

 

Net incomes for orphan agriculture tended to be falling slowly at both 25 and 50 years (Fig 3, top row). 

At 25 years, the fall in income tended to increase slightly as the proportion preferring agroecology 

increased, and to decrease slightly as global price transmission increased. This pattern strengthened 

at 50 years. For farmers practicing agroecology, net incomes tended to be increasing rapidly at 25 

years, with this increase slowing at 50 years (Fig 3, middle row). Increasing price transmission tended 

to slow growth slightly, and increasing the proportion preferring agroecology tend to increase growth, 

with the latter effect being stronger at 25 years than at 50 years.  

 

For entrepreneurial agriculture, incomes tended to be rising at 25 years, although at a slower rate 

than for agroecology farmers (Fig 3, lower left panel). Increasing transmission increased growth, and 

increasing the proportion preferring agroecology decreased it, albeit both effects were reasonably 

small. At 50 years, these tendencies had reversed: incomes were falling; transmission tended to 

steepen the fall; and, an increasing in the proportion preferring agroecology slowed the fall (Fig 3, 

lower right panel). These latter two effects, however, were very small.   

 

 

Climate change and agricultural policy runs 

The second set of simulations has two parts. Firstly, we assessed how farm development trajectories 

are modified by climate change and agricultural policy scenarios, where the latter are a combination 

of an agricultural policy plus related settings for the proportion preferring agroecology and global price 

transmission (Table 3). Secondly, we assessed how these farm development trajectories impact on 

hunger and a set of conditions that support health in the rural community.    

 

Fig 4 shows time-series plots (covering 50 years; x-axes) for farm development trajectories, as total 

food production (i.e. summed across all farms), local food price, the number of farmers who have 

converted to their preferred style, and the number of abandoned farms. Results are shown as the 

mean result over 250 runs (y-axes) for each policy scenario (coloured lines). 
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Fig 4. Total food production, local food price, and converted and abandoned farms, under the agricultural 

policy and climate scenarios. The plots show time-series for total food production, local food price, and the 

number of converted and abandoned farms (top to bottom plots, respectively) under the four agricultural policy 

scenarios, for no, low, and high climate change (left to right plots, respectively). For the y-axes, all results are 

shown as the mean value across 250 runs. For the coloured lines, the four scenarios are: (i) ‘Entre’ in which 

agricultural policy favour entrepreneurial farming, 25% of farmers prefer agroecology, and global price 

transmission is 0.75; (ii) ‘Entre eroding’ is as for ‘Entre’ except policy support erodes over time; (iii) ‘Peasant’ in 

which policy favours peasant farming, 75% of farmers prefer agroecology, and global price transmission is 0.25; 
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and, (iv) ‘None’ in which policy favours neither farming style, 50% prefer agroecology, and global price 

transmission is 0.5 (Table 3). 

 

In futures without climate change, total production (Fig 4, top row) rises rapidly for the first 20 years 

under both entrepreneurial scenarios. It then falls for a short period before again beginning to slowly 

rise (with production gains slower under ‘entrepreneurial eroding’ than ‘entrepreneurial’). In contrast, 

production rises slowly but steadily under the ‘peasant’ scenario, with production beginning to exceed 

that under ‘entrepreneurial’ after about 35 years. This pattern is similar under low and high climate 

change, but the final gap between ‘peasant’ and other scenarios increases as climate change worsens. 

 

Local food price (Fig 4, second row) is falling under all policy scenarios in worlds without climate 

change, and is highest under the ‘peasant’ scenario. Under low climate change, prices tend to be fairly 

stable over time, and are similar under all policy scenarios after 50 years. Under high climate change, 

prices initially rise slowly and then begin to rise rapidly under all but the ‘peasant’ scenario after about 

30 years.  

 

The number of converted farmers (i.e. households who have been able to move from orphan farming 

to their preferred style) (Fig 4, third row) grows fastest under the ‘peasant’ scenario, with the gap 

between the latter and other scenarios growing across the no, low, and high climate scenarios, 

respectively. The number of abandoned farms (i.e. households who were unable to provide 

themselves with at least 50% of a basic diet or meet their debt obligations) (Fig 4, bottom row) 

increases with climate change (i.e. across the no, low, and high scenarios, respectively). Numbers are 

highest under the ‘none’ policy scenario, followed by the ‘peasant’ scenario (although by 50 years the 

numbers under ‘entrepreneurial eroding’ have exceeded those under the ‘peasant’ scenario). 

 

Fig 5 shows time-series plots (covering 50 years; x-axes) for five health-related outcomes that arise 

from the farm development trajectories: nutrition in orphan households, labour, income inequality, 

net farm income, and ‘real land productivity’, as the mean result over 250 runs (y-axes) for each policy 

scenario (coloured lines). 

131



 

Fig 5. Nutrition, labour, income inequality, net farm income, and real land productivity under the agricultural 

policy and climate scenarios. The plots show time-series for nutrition in orphan farming households, labour, 

income inequality, net farm income, and real land productivity (top to bottom plots, respectively) under the four 

policy scenarios, for no, low and high climate change (left to right plots, respectively). For the y-axes, all results 
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are shown as the mean value across 250 runs. For the coloured lines, the four scenarios are: (i) ‘Entre’ in which 

agricultural policy favour entrepreneurial farming, 25% of farmers prefer agroecology, and global price 

transmission is 0.75; (ii) ‘Entre eroding’ is as for ‘Entre’ except policy support erodes over time; (iii) ‘Peasant’ in 

which policy favours peasant farming, 75% of farmers prefer agroecology, and global price transmission is 0.25; 

and, (iv) ‘None’ in which policy favours neither farming style, 50% prefer agroecology, and global price 

transmission is 0.5 (Table 3). The outcomes are as follows - ‘Orphan nutrition’: the average proportion of a basic 

diet being consumed in orphan farming households; ‘Labour’: the total number of full-time equivalent workers 

across all farming households; ‘Income Gini’: income inequality, where a higher value means greater inequality; 

‘Mean net farm income’: average net farm income across all households over the previous five years;. ‘Real land 

productivity’: an indicator of farming intensity after removing the contribution of purchased inputs to Gross 

Value Product.    

 

Orphan nutrition, which is the mean proportion of a basic diet consumed in the remaining orphan 

households (Fig 5, top row), is consistently lowest in the ‘peasant’ policy scenario, with the gap 

between the latter and the other policy scenarios widening across the no, low, and high climate 

change scenarios, respectively. Households that remain in orphan agriculture have had their 

development blocked (i.e. they are unable to convert to their preferred style); how this and other farm 

development processes (based on the results in Fig 4) impact on nutrition after 25 and 50 years is 

shown in Table 4.  
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Table 4. Farm development processes and their implications for nutrition, under the agricultural policy and 
climate scenarios at 25 and 50 years. 

 Farm development process and indicator of nutrition 

 Blocked development: Abandonment: Realised development: Raised total production: 
  Mean proportion of a 

basic dieta consumed in 
orphan households (% 
of initial households in 

brackets)b 

% of initial 
households 

abandoning as 
unable to provide 
≥50% of a basic 

dieta,c 

% of initial households 

with at least a basic 
dieta,d 

Total number of 
households potentially 

fed a basic dieta,e 

Policy 
scenario 

Climate 
scenario 

25  
years 

50 
years 

25 
years 

50 
years 

25 
years 

50 
years 

25 
years 

50 
years 

Entre No 0.83 
(36%) 

0.70 
(22%) 

0% 0% 65% 77% 3,606 4,559 

Low 0.80 
(41%) 

0.71 
(26%) 

0% 6% 59% 68% 3,350 3,659 

High 0.78 
(46%) 

0.78 
(22%) 

1% 18% 53% 60% 3,173 3,059 

Entre 
eroding 

No 0.84 
(36%) 

0.71 
(22%) 

0% 3% 64% 75% 3,829 4,111 

Low 0.80 
(41%) 

0.71 
(25%) 

0% 7% 59% 68% 3,530 3,260 

High 0.78 
(46%) 

0.78 
(22%) 

1% 19% 54% 60% 3,213 2,694 

Peasant No 0.82 
(26%) 

0.66 
(17%) 

0% 2% 73% 81% 2,914 5000 

Low 0.80 
(30%) 

0.61 
(14%) 

1% 6% 70% 78% 2,664 4,553 

High 0.78 
(34%) 

0.63 
(8%) 

2% 18% 64% 74% 2,333 4,124 

None No 0.84 
(35%) 

0.71 
(22%) 

1% 4% 64% 74% 2,891 4,087 

Low 0.81 
(39%) 

0.72 
(24%) 

2% 10% 59% 66% 2,559 3,586 

High 0.78 
(44%) 

0.78 
(21%) 

3% 23% 53% 56% 2,181 3,106 

a A basic diet for the farming household (assumed to be comprised of four people) requires 700kg of cereal equivalents; 
200kg of cereal equivalents provides 2200 kcal/day for a year [38]. 
b The numbers show the mean proportion of a basic diet consumed across all remaining orphan households (For the 
corresponding time-series, see top row in Fig 5); the numbers in brackets are the percent of initial households that remain 
in orphan agriculture.  
c These results are based on the number of abandoned farms (see bottom row in Fig 4 for the corresponding time-series) as 
part of the criteria for abandonment is the inability to provide the family with at least 50% of a basic diet (Table 1).  
d These results are based on the number of farmers who have converted to their preferred style (agroecology or 
entrepreneurial) (see third row in Fig 4 for the corresponding time-series) as the results indicate that all these households 
are able to provide a basic family diet (results not shown). 
e These results are based on total production (i.e. across all farms; see top row in Fig 4 for the corresponding time-series), 
calculated as total production divided by 700kg. 

 

 

The ‘blocked development’ columns are based on the orphan nutrition results reported in Fig 5 (top 

row) but also show the percent of initial farmers who are still practicing orphan agriculture. The results 

show the average fraction of a basic diet being consumed by orphan (i.e. subsistence) farmers is lowest 

under ‘peasant’ policy; however, the percent of farmers remaining in orphan agriculture is also lowest 

under this policy. The ‘abandonment’ column shows the percent of farmers who have abandoned 

their land as they have access to <50% of a basic diet: that is, this group have left farming as they were 
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faced with starvation. Abandonment due to starvation rises when moving from no to low to high 

climate change, and is highest under the ‘none’ policy.  

 

The ‘realised development’ columns show the percent of initial farmers who have been able to convert 

to their preferred style (agroecology or entrepreneurial). The model results indicate that these 

households are consistently able to meet basic dietary requirements (results not shown); thus, these 

numbers show the percent of initial households with at least basic nutrition. The numbers are highest 

under the ‘peasant’ policy, and decline when moving from no to low to high climate change.  Finally, 

the ‘raised total production’ columns show how many households could be fed a basic diet given the 

total production across all farms. Numbers are highest under the entrepreneurial scenarios at 25 

years, but at 50 years are highest under the ‘peasant’ scenario and – for low and high climate change 

– lowest under ‘entrepreneurial eroding’.      

 

These same farm development processes also generate a wider set of conditions that support (or 

undermine) the health of the rural community. Labour, as the number of full-time equivalent farm 

workers across all farms (Fig 5, second row), rises rapidly under the ‘peasant’ scenario before 

plateauing, with a similar trajectory under the ‘none’ policy scenario. In contrast, labour continually 

falls under the two entrepreneurial scenarios. Climate change reduces labour in all policy scenarios. 

Income inequality, as the Gini coefficient (Fig 5, third row), initially rises rapidly then slowly declines 

under all policy and climate scenarios. Inequality tends to be the highest in the ‘none’ policy, under 

which it increases when moving from no to low to high climate change. In the ‘peasant’ scenario, both 

peak inequality and inequality at 50 years are the lowest (compared to other policy scenarios).  

 

Average net farm incomes (Fig 5, fourth row) rise steadily under all policy scenarios under no climate 

change. After about 25 years, incomes under the ‘peasant’ scenario begin rising faster than those 

under the other policy scenarios, and are the highest at 50 years (at this time they are lowest under 

‘entrepreneurial eroding’). Similar patterns are seen under low and high climate change, but incomes 

are higher (as prices as higher; Fig 4, second row).  Patterns for ‘real land productivity’ (Fig 5, bottom 

row) are similar to those for net farm incomes, but gaps between the ‘peasant’ scenario and the other 

policy scenarios are wider.  

 

Sensitivity analysis 

We tested how changing the assumptions about the maximum production and climate sensitivity of 

agroecology and entrepreneurial farming influenced total food production and local food price 

under the ‘entrepreneurial’ and ‘peasant’ policy scenarios (Fig 6).  
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Fig 6. Total food production and local food price at year 50: sensitivity analysis. The plots show total food 

production (top row) and local food price (bottom row) (y-axes) after 50 years, under no, low, and high climate 

change (left to right plots, respectively), under different yield ratio assumptions (x-axes), for the peasant and 

entrepreneurial policy scenarios with different climate sensitivity assumptions (line colour). For the y-axes, 

values are shown as the mean result across 250 runs under each combination of factors (Note that the y-axis 

scale for local food price differs in each plot). For the x-axes, the numbers show the ratio of agroecology to 

entrepreneurial maximum production (e.g. 1:4 means maximum production for agroecology is 25% that of 

entrepreneurial farming). For the coloured lines, ‘entre’ and ‘peasant’ refer to the entrepreneurial and peasant 

scenarios, respectively, and, the numbers refer to agroecology climate sensitivity relative to entrepreneurial 

farming, where: 0.9 means agroecology losses are 10% lower, 1 means losses are equal, and 1.1 means 

agroecology losses are 10% higher.  

 

After 50 years in futures without climate change, food production is 50% higher in the 

‘entrepreneurial’ compared to the ‘peasant’ scenario when the agroecology to entrepreneurial yield 

ratio is 1:4 (Fig 6, upper left panel). The gap closes to 25% when the yield is ratio of 1:2, and production 

is equal when the ratio is 3:4. At a ratio of 1:1, total production in the peasant scenario is 15% higher 

than in the entrepreneurial scenario.  

 

In futures with climate change, food production under the peasant scenario rises relative to that under 

the entrepreneurial scenario, with the climate sensitivity assumptions having only a small effect 

(Figure 6, coloured lines). When the yield ratio is 1:2, production under the peasant scenario is 14% 

and 8% lower than in the entrepreneurial scenario under low and high climate change, respectively 

(Fig 6, upper middle and right panels, respectively). When the yield ratio is 3:4, production in the 
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peasant scenario is 7% and 11% higher than in the entrepreneurial scenario under low and high 

climate change, respectively. The latter figures rise to 20% and 22%, respectively, when the yield ratio 

is 1:1.     

 

For local food price, in futures without climate change, prices are 35% higher under the peasant 

scenario relative to the entrepreneurial scenario for all yield ratios except 1:4, where prices are 55% 

higher (Fig 6, lower left panel). In futures with climate change, prices under the peasant scenario 

remain considerably higher than in the entrepreneurial scenario when the yield ratio is 1:4. For the 

remaining yield ratios, peasant scenario prices are 15% to 20% higher than entrepreneurial prices 

under low climate change. Under high climate change, peasant scenario prices are 10% to 20% lower 

than those in the entrepreneurial scenario.    

 

Discussion 

In this paper we have presented the first (at least to our knowledge) ABM that focusses on climate 

change, hunger, and health. The flexibility of this approach allowed us to include previously neglected 

processes in order to view climate-nutrition relation from a novel standpoint.    

 

Previous climate-nutrition modelling essentially traces a pathway from climate change to nutrition 

amongst consumers, via changes in quantity and quality of food produced, where socioeconomic 

factors are seen as modifiers of these linkages [e.g. 12,14,17] (Fig 7, Panel A). Our model adopts an 

alternative standpoint, beginning with processes that shape both wealth and poverty - as well as both 

good nutrition and hunger - amongst subsistence farmers, and then assessing how climate change 

may influence these. Farm development trajectories are at the centre of the model, and these arise 

from the confluence of three underlying processes: ‘industrialisation’, in which farming increasingly 

depends on purchased inputs (i.e. entrepreneurial farming increases); ‘re-peasantization’, in which 

peasant farming is strengthened via, for example, greater autonomy (i.e. agroecology farming 

increases); and ‘deactivation’, in which land is taken out of production (i.e. farms are abandoned) [29]. 

The resulting farm development trajectories manifest as changing constellations of households 

practicing different styles of farming, and these in turn give rise not only to patterns of nutrition but 

to a set of conditions that support the health of the rural community as well as vulnerability to climate 

change (Fig 7, Panel B). In sum, we aimed to gain new insights by shifting the standpoint of the model 

from that of the pathway between climate change and hunger to one based on farming styles and 

rural health.  
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Fig 7. Alternative climate-undernutrition model structures based on different standpoints. Panel A shows the 

general structure underlying previous global-level climate-undernutrition models, which link together a series 

of component models.  A pathway is traced from climate, to crops, to trade, to nutrition-related health 

outcomes. Production and consumption are separated, with the upstream component models calculating food 

availability (i.e. production). The health-impact model then combines the latter with socioeconomic variables to 

estimate consumption-related outcomes in entire populations. Panel B shows the model structure adopted in 

this paper. Constellations of producer-consumer farmers practicing different styles of farming develop over time 

under given climate, policy, style preference, and price transmission scenarios. Different facets of the farm 

development process give rise to patterns of hunger and other health-supporting conditions in the rural 

community.   

 

Main findings 

The ‘Style preference and globalization’ model runs assessed how patterns of farming styles influence 

production, price and farm incomes and were conducted in the absence of climate change and specific 

agricultural policies. That is, in contrast to previous climate-undernutrition modelling which assesses 

how production and price impact on hunger, we initially take a step back to assess how patterns of 

farming styles impact on production and price.   

 

Four key patterns were seen, relating to: (i) the influence of farming style preference patterns of food 

production and price; (ii) the effects of global price transmission on food prices; (iii) differences in farm 

incomes by style and over time; and (iv) the mixed fates of the worst-off households depending on 

the style preference pattern. Table 5 describes the relevant patterns, their implications, and provides 

comments on the underlying mechanisms.  
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Table 5. The four key patterns seen in the results of the ‘Style preference and globalization’ model 
runs, their implications, and comments on the underlying mechanisms.  

a This column discusses key mechanisms that shaped the patterns of interest but other processes and between-process 

interactions are also likely to have contributed.  

 

Pattern in the results Implications Comments on mechanismsa 

(i) Food production and food price differ by style preference pattern 
As the proportion preferring 
agroecology increased, total food 
production decreased and local food 
price increased; this effect on 
production and price decreased over 
time (Fig 2, top and bottom rows, 
respectively).  
 

Compared to agroecology futures, 
entrepreneurial futures provided 
both more and cheaper food, 
especially in the near term.    

Agroecology is slower to develop than 
entrepreneurial farming, requiring an 
initial transition period and with 
potential yield gains accumulating 
gradually over time. Each style sets 
their optimal production and asking 
prices via different processes. 
   

(ii) Global price transmission influences price but not production 
As global price transmission 
increased, local food prices fell, with 
the difference between prices under 
lower and higher transmission 
increasing over time (Fig 2, bottom 
row). Transmission did not influence 
total food production (Fig 2, top row).  
 

Farm gross income declined as price 
transmission (i.e. globalization) 
increased (because price fell but 
production was unchanged), and this 
had a cumulative effect over time. 

The model assumes global food prices 
are (on average) falling and oscillating 
over time. This means that as price 
transmission increases there is 
greater downward pressure on local 
prices. This effect interacts with the 
aggregate asking price of local 
farmers (the latter has only a small 
influence in this set of runs). 
 

(iii) Farm income trajectories differ by farming style and over time 
Patterns of farm development – using 
income slopes over the previous 10 
years as an indicator – were uneven 
(Fig 3).  
 
 - Orphan farmers faced slow income 
decline at both 25 and 50 years (Fig 3, 
top row). 
 - Agroecology farmers had increasing 
incomes: rapidly at 25 years and 
more slowly at 50 years (Fig 3, middle 
row). 
- Entrepreneurial farmers had 
increasing incomes at 25 years but 
falling incomes at 50 years (Fig 3, 
bottom row).    

In entrepreneurial futures, there 
would be initial progress amongst 
most converted farms, but the 
beginnings of a farming crisis were 
evident at 50 years. In agroecology 
futures, there would be rapid 
progress initially, with progress 
slowing after 50 years.    

All orphan farmers will convert to 
their preferred style if their resources 
allow it under current price 
conditions. Thus, remaining orphan 
farmers have had their development 
blocked (at least temporarily).  
Agroecology incomes rise rapidly 
from a baseline of precarious 
subsistence. This slows over time as 
potential production rises and the 
style is established.  
For entrepreneurial farmers, their 
margin is dependent on input:output 
price ratios (i.e. off-farm conditions). 
Over time they face an increasing 
“squeeze” (falling food prices, rising 
input costs) ([e.g. as described in 29]). 
 

(iv) Fates of the worst-off households are mixed, with the pattern differing by style preference pattern 
As the proportion preferring 
agroecology increased, the decline in 
the incomes of orphan farmers 
increased, with a greater effect at 50 
years compared to 25 years (Fig 3, 
top row). 

Some orphan farmers had their 
development blocked to a greater 
degree in agroecology futures 
compared to entrepreneurial futures. 
However, more orphan farmers were 
able to convert to there preferred 
style in agroecology futures (result 
not shown). That is, some orphan 
farmers were harmed while others 
benefited.     

Opposing effects are operating. 
Agroecology benefits some orphan 
farmers, allowing them to convert as 
it has lower entry barriers (i.e. costs) 
than entrepreneurial farming, and it 
may generate conditions (i.e. higher 
prices) that allow others to convert. 
However, at the same time, the 
higher food prices also tended to trap 
the very worst-off farmers as they sell 
little food on the market but face 
rising input prices (which are linked to 
food prices).   
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Collectively, the findings in Table 5 suggest that farming futures must consider trade-offs between the 

quantity of food produced, its price, the development of farming communities, and the fate of the 

most precariously placed households. For instance, if actions were to be guided by a theory of 

undernutrition that suggested abundant (i.e. addressing availability), low priced (i.e. addressing 

access) food was the solution to hunger, then the results would suggest that futures in which a high 

proportion of households adopt entrepreneurial farming in a highly globalized market would be the 

preferred future (Fig 2). This suggestion is complicated, though, when the implications for rural 

communities are considered (Fig 3). Futures that may appear to offer the greatest food security are 

precisely futures in which the model suggests farming would be in crisis (i.e. incomes tend to be falling) 

after 50 years (Fig 3, bottom right panel). In contrast, agroecology-orientated futures appear to 

mitigate these negative effects, potentially sustaining rural communities, but production increases are 

slower and food prices higher, and the worst-off households may have their development blocked (Fig 

2 and 3).   

 

In other words, different farming futures – that is, different constellations of farming styles and their 

development trajectories – appear to have very different impacts on food production, price, and the 

fates of farms. This may in turn be expected to have significantly different impacts on the conditions 

supporting the health of farming households. Further, these impacts would be expected to be 

modified by both climate change and agricultural policy. These expectations were explored in the 

second set of simulations.    

 

The ‘Climate change and agricultural policy’ runs showed four key patterns: (i) between-policy 

differences in production and price reversed over time; (ii) the ‘peasant’ policy had mixed effects on 

farm conversion and abandonment rates; (iii) different facets of the farm development process had 

different implications for nutrition; and, (iv) the farm development process shaped a range of 

conditions that may support or undermine rural health. Table 6 describes the relevant patterns, their 

implications, and provides comments on the underlying mechanisms. 
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Table 6. The four key patterns seen in the results of the ‘Climate change and agricultural policy’ 
model runs, their implications, and comments on the underlying mechanisms.  

a This column discusses key mechanisms that shaped the pattern of interest but other processes and between-process 

interactions are also likely to have contributed.  

Pattern in the results Implications Comments on mechanismsa 

(i) Under climate change, between-policy differences in production and price reversed over time. 
After 30 years, production was 
highest under ‘peasant’ policy, with 
the gap between the latter and other 
policies increasing as climate change 
worsened (although total production 
simultaneously fell) (Fig 4, top row).  
In the absence of climate change and 
after 50 years, local food price was 
highest under ‘peasant’ policy, with 
prices tending to converge across all 
policies under low climate change 
and being lowest in the ‘peasant’ 
policy under high climate change. 
Prices were more stable under the 
‘peasant’ policy.  

‘Entrepreneurial’ policy initially 
provided the most food at the lowest 
prices. However, after an initial 
development period, food availability 
was highest under ‘peasant’ policy at 
prices that were similar to other 
policies under low climate change, 
and lower than under other policies 
under high climate change. 
Additionally, the tendency for more 
stable prices in ‘peasant’ futures may 
have reduced the risk entailed in 
agricultural livelihoods.     

As described in Table 5, agroecology 
is slower to develop than 
entrepreneurial farming and each 
style sets its production and asking 
price differently. Additionally, in 
these runs, the introduction of 
supportive policies leads to faster 
rates of agroecology yield increments, 
which appears to allow farmers to 
sustain their livelihoods at lower 
asking prices than under the 
‘entrepreneurial’ policy. Prices are 
more stable under ‘peasant’ policy as 
agroecology is relatively insulated 
from markets.     

(ii) For farm conversion and abandonment, mixed benefits and harms were evident under ‘peasant’ policy 
The greatest number of farms were 
able to convert to their preferred 
style under ‘peasant’ policy (Fig 4, 
third row). However, more farmers 
abandoned farming under ‘peasant’ 
compared to ‘entrepreneurial’ policy 
(Fig 4, bottom row). 

As described in Table 5, ‘peasant’ 
policy had opposing effects on 
orphan farmers, both facilitating 
conversion for some and blocking the 
development of the worst-off.  

Lower transition costs allow more 
farmers to convert to agroecology 
earlier. The resulting higher food 
prices as agroecology proliferated, 
however, leads to prices of necessary 
inputs (which are linked to food price) 
that may be too high for farms with 
the lowest productive potential.   

(iii) Different facets of the farm development process had different implications for nutrition  
Patterns of nutrition were influenced 
by total food production, blocked 
development, farm abandonment, 
and successful farm conversion (Table 
4). Nutrition related to total 
production and conversion was 
highest under ‘peasant’ policy for all 
climate scenarios. However, under 
the same policy, nutrition related to 
blocked development was at its 
lowest and nutrition related to 
abandonment was at similar levels to 
that seen under other policies.    

These findings - particularly that 
under a given policy/climate 
combination different facets of the 
farm development process may 
either benefit or harm nutrition – 
underscore the need to look beyond 
food quantity and quality, and to 
specifically consider producer-
consumers, in future climate-
nutrition modelling.   

On average, orphan farmers have 
limited production potential relative 
to reproduction requirements (i.e. 
production and consumption). Thus, 
if their development is blocked, many 
will have poor nutrition. Farmers 
decide to abandon their farms if they 
cannot provide at least half a basic 
diet to the family. For households 
that have been able to convert to 
their preferred style, their level of 
production far exceeds basic dietary 
requirements.     

(iv) The farm development process shaped conditions that may support or undermine rural health  
Farm development trajectories 
shaped patterns of labour, farm 
income, income inequalities, and ‘real 
land productivity’ (Figure 5), each of 
which would be expected to influence 
community health in rural areas. All 
of these conditions were most 
supportive of rural health under 
‘peasant’ policy under all the climate 
scenarios.  

These findings suggest that future 
climate-nutrition models should 
consider not only how farm 
development trajectories impact on 
nutrition, but also how they may 
shape rural health more generally via 
impacts on conditions that are 
supportive of (or harmful to) 
community health.  

On labour: agroecology develops via 
labour-intensification while 
entrepreneurial farming develops via 
capital intensification. On income: 
low input costs and the avoidance of 
debt contribute to relatively higher 
net incomes in agroecology. On 
income inequalities: more and 
smaller farms under ‘peasant’ relative 
to ‘entrepreneurial’ policy results in 
lower inequalities. On ‘real land 
productivity’: the use of off-farm 
produced inputs on entrepreneurial 
farms means proportionally less new 
value is generated on the farm than 
on agroecology farms.     
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In additional to Table 6, a number of further discussion points arise. The first relates to food 

production (Table 6, pattern (i)). Under the entrepreneurial policy, production initially rose rapidly but 

then began to decline after about 20 years before again rising, albeit slowly (Fig 4, top row). The 

decline is not explained by trends in farm conversions: the rate of conversion was slowing (Fig 4, third 

row) and this may have slowed production growth but it would not directly cause a decline. Nor is it 

explained by farm abandonment (Fig 4, bottom row). The farm income curves (Fig 5, fourth row), 

however, show the decline in production was a rational action aimed at maximising incomes. 

Immediately before the drop in production, income growth was slowing; during the subsequent period 

of falling production, however, income grew rapidly. That is, for entrepreneurial farming, the 

interactions of farmer goals, on-farm conditions (e.g. assets), and off-farm conditions (e.g. price ratios) 

may at times drive production downwards while simultaneously increasing net incomes.    

 

A similar production pattern was not evident in the ‘peasant’ scenario (Fig 4, top row). Peasant farmers 

aim to increase returns per labour object (e.g. returns per hectare) and attempt to render themselves 

less sensitive to off-farm conditions. As a result, total production rose continuously over the model 

runs. Of further note, production at 50 years was lowest under ‘entrepreneurial eroding’ policy (Fig 4, 

top row): this highlights the risks faced by styles that are highly dependent on changeable off-farm 

conditions that are beyond their control.  

 

The second point relates to the opposing effects of agroecology on conversion and abandonment rates 

(Table 6, pattern (ii); see also Table 5, pattern (iv)). The potential for negative impacts on the worst-

off households and the means of addressing them should perhaps be explored in future empirical 

work and incorporated into model. For instance,  programmes that ensure the most precariously 

placed households are included in community knowledge networks which aim to develop peasant 

farming may be developed [39,53]. Of additional note, under the ‘none’ policy, in which 

entrepreneurial and agroecology styles coexist, conversions were slower and lower than under 

‘peasant’ policy and there were the highest levels of abandonment. This suggests that the viability of 

a co-existence strategy, that may appear robust due to a mixture of both peasant and non-peasant 

farming, may actually be harmful; this should be investigated in future work.  

 

The third point relates to the impacts on the health-supporting conditions (Table 6, pattern (iv)). We 

have suggested that the higher levels of farm labour under the ‘peasant’ policy compared to the 

‘entrepreneurial’ policy are beneficial for health (Fig 5, second row). This, however, is contentious. 

Some argue that reduced farm labour releases people from undesirable toil to work in other sectors; 
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others argue that agroecology generates rewarding work [71]. While this issue, along with its health-

related implications, is likely to remain subject to dispute, two relevant considerations are: (i) the 

nature of work differs by farming style, meaning both positions may be correct: labour on 

entrepreneurial farms may entail drudgery while labour on peasant farms may be more rewarding 

[29,71]; and (ii) for people no longer working on farms, decent alternative employment in cities may 

not be available [72]. 

 

The results also show that income inequalities initially rose rapidly in all scenarios (Fig 5, third row). It 

may be speculated that, during this initial transition period, hardship for the many in the context of 

rising prosperity for a few may harm community health, and may have unexpected (and unmodelled 

in the ABM) influences on the longer-term development trajectories (e.g. via  high levels of 

competition and rapid accumulation of land by the first to develop [73]).  

 

Of final note on the results for the health-supporting conditions, both farm income and real land 

productivity are lowest under ‘entrepreneurial eroding’ policy (Fig 5, bottom two rows). This again 

shows the potential for farming styles that are heavily dependent on external conditions to place 

farming livelihoods in jeopardy, as well to farm less intensively (in the environmentally-sensitive sense 

of real land productivity), if these external supporting conditions are not maintained.     

 

Sensitivity analysis 

The sensitivity analysis assessed the impacts on total production and price when the assumptions 

about maximum yields and climate sensitivities of agroecology and entrepreneurial farming were 

varied. There were three key findings. 

  

Firstly, farmers tended to produce at a level closer to their maximum yield under the ‘peasant’ policy 

than under the ‘entrepreneurial’ policy (Fig 6, top row). For instance, in futures without climate 

change, when maximum production for agroecology was 50% lower that for entrepreneurial farming 

(yield ratio 1:2), total production under ‘peasant’ policy was just 25% lower than under 

‘entrepreneurial’ policy.  

 

Secondly, the between-style gap in actual compared to maximum production widened when climate 

change was introduced (Fig 6, top row, middle and right panels). This was seen regardless of whether 

it was assumed agroecology was more or less sensitive to yields losses due to climate change than 

entrepreneurial farming. For instance, when agroecology maximum production was 50% of that of 
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entrepreneurial farming (yield ratio 1:2), total production for the ‘peasant’ policy was just 14% lower 

than for ‘entrepreneurial’ under low climate change; this gap closed to 8% under high climate change. 

For yields ratios ≥ 3:4, production in the ‘peasant’ scenario exceeded that in the ‘entrepreneurial’ 

scenario.  

 

Together, these first two patterns show that the main results are not dependent on either agroecology 

having equal (or indeed, higher) productive potential to entrepreneurial farming or being less sensitive 

to climate change. Rather, it suggests that the between-style differences in the way production and 

consumption decisions are made - which rest on differences in underlying goals – play a key role in 

shaping the results. These between-style differences are not accounted for in previous climate-

undernutrition modelling [e.g. 10,11-17,24,35].          

 

The third finding relates to food price. Here, patterns by climate change scenario at 50 years (Fig 6, 

bottom row) are broadly similar to those seen in the main results (Fig 4, second row). In futures 

without climate change, food prices were considerably higher under the ‘peasant’ scenario compared 

to the ‘entrepreneurial’ scenario (Fig 6, bottom left panel). Of note, the influence of the agroecology 

to entrepreneurial yield ratio on the between-style price difference is minimal for ratios ≥ 1:2.   

 

Under low climate change, prices tend to be 15% to 20% higher for ‘peasant’ compared to 

‘entrepreneurial’ policy (Fig 6, bottom row, middle panel); in the main results, this price gap was 

smaller (Fig 4, second row, middle panel). Under high climate, ‘peasant’ policy prices were 10% to 20% 

lower than those for ‘entrepreneurial’ policy (Fig 6, bottom row, right panel); in the main results, this 

price gap was larger (Fig 4, second row, right panel). Once again, the yield ratio assumptions had little 

influence on the between-style price difference for ratios ≥ 1:2. Further, assumptions about between-

style differences in sensitivity to climate change had only a small influence on the results.  

 

When the production and price results are considered together, similar patterns are seen to those in 

the main results when the yield ratio is ≥ 3:4. In futures with climate change and a yield ratio of 1:2, 

production is slightly lower under ‘peasant’ policy compared to the ‘entrepreneurial’ policy, with 

slightly higher prices under low climate change but slightly lower prices under high climate change. 

That is, when agroecology is assumed to have 50% of the productive potential of entrepreneurial 

farming, future production and price are reasonably similar. When the yield ratio is 1:4, the outcomes 

differ significantly to those in the main results, but the available evidence suggests agroecology yields 

currently exceed this level [e.g. 39,44,45]. Additionally, it has been argued that ongoing research and 
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on-farm knowledge generation has the potential to further increase agroecology yields over time [30] 

(We note that the sensitivity analysis assumes there are no yield increases over time for agroecology). 

   

In sum, while the sensitivity analysis shows the yield- and climate change-related assumptions 

influence the results (as would be expected), they do not significantly alter the general patterns when 

held within plausible bounds. While we consider the tested parameters to be the most important, we 

recognise the model utilises many other parameters (Tables 1 and 2). It is possible that model output 

may be sensitive to one or more of these. Future work should further refine the parameters and assess 

model sensitivity to those that may have a strong influence on model output.     

 

Implications 

Considered together, the upshot of the model results is that when attempting to understand how 

climate change may impact on future nutrition and health, patterns of farming styles - along with the 

fates of the households that practice them - matter. We stress that our model is not intended to 

directly represent the real world and we do not claim that the findings demonstrate that peasant 

farming and agroecology are the optimal ways forward. Rather, the model demonstrates that this may 

be a viable way forward, yet – despite being a future that is desired by many farmers [27] – it has been 

neglected in previous health impact modelling; thus, it warrants more attention.  

 

Crucially, this line of inquiry is not just of academic interest: firstly, the contributions and 

vulnerabilities of peasants have been formally recognised by the United Nations with the adoption of 

the Declaration of the Rights of Peasants and Other Working People in Rural Areas (UNDROP) [74]; 

secondly, it goes to the heart of a current debate on the future farming. A recent report by The High 

Level Panel of Experts on Food Security and Nutrition [28] makes the distinction between ‘sustainable 

intensification and related approaches’ (which includes, for example, ‘climate smart agriculture’), and, 

‘agroecological and related approaches’. In terms of our representations, the former is analogous to 

‘entrepreneurial’ and the latter to ‘agroecology’. The report highlights, for instance, that sustainable 

intensification starts from the premise that ‘… productivity per land area needs to increase in a 

sustainable manner …’, while agroecological approaches emphasise ‘… reducing inputs and fostering 

diversity alongside social and political transformation focussed on improving ecological and human 

health …’, and that these two approaches ‘… are thus grounded in very different visions of the future 

of food systems’ [28].  
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Two distinct strands underlie this debate. The first is the empirical question of which futures are viable 

and would, for instance, be able to feed growing populations sustainably. The second is value-based: 

of these viable futures, which should we choose? [cf. 75] Shifting from a health model with a central 

focus on quantity and/or quality of food produced (i.e. where food is essentially considered to be ‘a 

thing’ that is separate from the processes that produced it) to one which explicitly considers farming 

styles (i.e. where food, how it is produced, and the social and environmental implications of this are 

considered together) simultaneously shifts from an approach that largely focusses on the empirical 

strand to one that includes aspects of the value-based strand. Both these strands are important for 

future population health, which include issues around who should choose the future we pursue as 

well as the distribution of benefits and harms.  

 

Model limitations 

Our model has a number of limitations. The first relates to the representation of different farming 

styles. We drew on existing typologies [29,30,38] but simplified them to define styles that were rigidly 

distinct from one another. We accounted for differences in relations with the market, the type of farm 

inputs used, and goals, as these influence farmer decisions and behaviours. In the real world, however, 

there are additional differences and between-style distinctions are less rigid: given this, it would be 

useful to develop more subtle representations in future work.  

 

When modelling the economic behaviour of agents practicing different farming style, we did not draw 

on the tradition of agricultural household modelling [40]. This was because the latter has theoretical 

inconsistencies with our agent typology. At same time, agricultural household modelling has many 

well-developed aspects that are directly relevant to our approach, and the ABM could potentially be 

improved by drawing on them. For instance, the methods explicitly represent household production 

and consumption, are able to account for on- and off-farm produced inputs (e.g. fertilizers, wage vs 

family labour), and they have been used to look at how policies impact on the well-being (including 

nutritional status) of agricultural and non-agricultural rural households [40]. Future work should 

explore means of adapting these methods to allow, for instance, the incorporation of style-specific 

goals.   

 

Two final issues related to farming styles are: (i) we only allowed conversions from orphan to either 

entrepreneurial or agroecology farming; future models should allow for other between-style 

conversion (e.g. from entrepreneurial to agroecology); and (ii) the ABM does not represent the 
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environmental impacts of farming (such as soil degradation and greenhouse gas emissions), which 

would be expected to differ by style.   

 

A second limitation is model parameterization (Tables 1 and 2). We used approximations based on 

quantifications (e.g. yield loss per degree of warming [42,43]), ‘rules of thumb’ (e.g. production and 

consumption in orphan agriculture [38]), and qualitative knowledge (e.g. annual yield increments for 

peasant agriculture [30]). We argue, however, that given the nature of our model (a proof of concept 

model focussed on a hypothetical rural area) and its purposes (to assess patterns of outcomes and 

draw attention to previously neglected processes) our parameterization is a reasonable first-order 

approximation and is adequate to illustrate fundamental patterns.  Future modelling should attempt 

to refine these parameters, partly using empirical research but also drawing on expert knowledge and 

opinion where gaps exist. 

 

A key aspect of this is agroecology-related knowledge gaps. For Europe, modelling of an agroecology 

future found that while production would decline by 35% in 2050 compared to 2010 (from a starting 

point of highly productive agriculture), healthy food would still be available for all Europeans, export 

capacity would be maintained, and agricultural greenhouse gases would decline by 40% [76]. For 

regions with lower incomes, empirical work has shown considerable yields gains from agroecology 

and similar farming styles [e.g. 44,45,77]. However, this is an under-researched area, and some 

existing research conflates agroecology with other forms of sustainable intensification thus neglecting 

key aspects of agroecology such as greater farmer autonomy [39,53].   

 

A third limitation is that the model represents only some aspects of the global food system. For 

instance, the model does not include a ‘demand-side’ (other than the demand of farming households) 

that influences production and prices. Instead, we assume prices are set by the supply-side and that 

all food for sale will be purchased. This was partly intentional because, as Gliessman [26] argues, 

conventional supply-demand models essentially see agriculture as ‘one giant farm’ and group all 

people together as homogenous ‘consumers’. Such a representation excludes factors that would be 

expected to impact on population health. Additionally, the ABM doesn’t consider, for example, value-

chains and their effects on nutrition [e.g. 78], or dietary diversity and the environmental consequences 

of dietary patterns [e.g. 79]. We argue, however, that these limitations are justified as they are both 

necessary – no model can represent the entirety of a complex reality – and advantageous: they allow 

the exploration of a part of reality that has not only been neglected but may provide key insights to 

achieving healthy, sustainable futures.          
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A fourth limitation is that the climate (Table 1) and agricultural policy (Table 3) scenarios were 

represented simply. This was intentional as it renders our assumptions transparent, but it would be 

possible to, for example, use more detailed climate scenario data in future ABMs. Under our 

representation (Table 1), the results showed average yield losses under low and high climate change 

after 50 years (relative to no climate change) of 9% and 18% under ‘peasant’, and 20% and 32% under 

‘entrepreneurial’ policy, respectively. Losses of this magnitude are at the upper end of warming-

related yield declines found across crop models [80]. However, we argue that this is partly justified 

because our model is intended to represent populations who live in regions that are expected to be 

most impacted (i.e. tropical regions), and, our model attempts to account for the effects of droughts 

as well as warming trends. For agricultural policies (Table 3), additional entrepreneurial- and peasant-

favouring measures and their expected benefit could be explored and introduced.     

 

Conclusions   

By developing a model that views the climate-nutrition relation from a novel standpoint, we have 

gained new insights. Firstly, along with food quantity and quality, how farming is done - that is, 

patterns of farming styles - is likely to have a strong influence on future health. Secondly, farm 

development trajectories may have contradictory effects at a given time point (e.g. potentially 

benefiting some subsistence farmers but harming others) and on the same group at different times 

(e.g. rapidly rising production and falling prices may initially lead to rising incomes for some farmers 

but eventually to falling incomes). Finally, patterns of farming styles and their associated development 

trajectories will influence not only nutrition but also conditions that support rural health (e.g. labour, 

inequalities). We argue that each of these issues should be given greater prominence in debates 

amongst health-focussed researchers and in future modelling exercises. Specifically, we suggest a key 

strategy (in addition to, not in place of, existing strategies) for understanding the climate-nutrition 

relation is to move from a tendency to centre thinking around pathways traced from climate change 

to hunger, to instead focus on the development trajectories of farming styles and their impacts on 

rural health, and then ask how climate change may affect this.  

 

In purely pragmatic terms, the question of how healthy, diverse diets could be provided for all people 

while living within planetary boundaries could be answered in multiple ways and achieved by various 

approaches to farming. Essentially, this is an empirical question. The question is complicated, 

however, by introducing issues such as democracy, justice, and equity, as these are normative issues 

that are contested [28], including in terms of what each of these actually entails. These latter issues 
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are included as explicit goals of some styles of farming (e.g. agroecology [39]), and, different 

constellations of styles of farming are like to influence them in different ways. Previous climate-

nutrition modelling has tended to focus on the empirical aspects using quantitative modelling. We 

argue that in addition to the empirical aspects, the normative aspects should also be considered, 

including through building models with an explanatory focus (such as Agent-Based Modelling), as it is 

their combined effects that will ultimately shape patterns of health. With our model, we have 

attempted to take a first step in this direction; we suggest that future work should continue on this 

path.             
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Contribution of Research Paper 4 and new questions raised 

The model developed for Research Paper 4 made two key innovations to fill a knowledge gap identified 

by Research Paper 3: it utilised Agent-Based Modelling, which to my knowledge has not previously 

been used in climate-health impact studies33; and, it explicitly accounted for different styles of farming 

(van der Ploeg, 2018), attempting to capture the core distinctions between approaches to sustainable 

agriculture that are currently being debated (HLPE, 2019). The results add to our understanding of the 

relation between climate change and hunger, showing that – alongside the quantity and quality of 

food produced - patterns of farming styles and their development trajectories are likely to: shape 

future health; have contradictory impacts on different sub-groups of farmers; and influence not only 

nutrition but also a range of conditions that support the health of rural communities.     

For new questions raised and ways forward, see “Conclusions, Directions for future research” 

 

  

33 Although it has been used in climate change-oriented work in areas other than health, and in population 
health-oriented work in areas other than climate change impacts.  
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Chapter 7. Conclusions 

The starting point of this thesis was the idea that the causation of hunger and undernutrition is 

complex, as is the climate-nutrition relation (Chapters 1 and 2). A wide range of processes are 

implicated in undernutrition, and a number of theoretical lenses may be used to develop our 

understanding, including of how climate change may impact on it. Despite this, prior to this thesis, 

global-level health modelling had – in essence - tended to take a single perspective on the problem; 

this may be (crudely) characterised as a “less or lower quality food means more hunger” perspective. 

This is a useful angle but leaves much unexplored.  

In a seminal paper, Richard Levins proposed a modelling strategy for dealing with such complexity 

(Levins, 1966). Levins argued against a “brute force” approach, where the aim would be for a model 

to give as complete a representation of the phenomenon of interest as possible. The utility of such an 

approach is restricted by, for example, the limits of scientific practice (e.g. the ability to measure or 

quantify the full range of relevant parameters and variables) and the interpretability of such a model 

(e.g. it is difficult to identify the most important causal processes in a highly detailed model). Instead, 

Levins argued that our understanding of a complex phenomenon is better developed via a series of 

“strategic idealisations”, in which – by intent – some processes are omitted, with choices being guided 

by what is already known about the problem and the purpose of the model (for a detailed discussion, 

see: Weisberg, 2006).  

The aim of the thesis is based on Levins’ suggested approach: 

To develop - and illustrate the benefits of developing - multiple global-level undernutrition 

models, each adopting a different perspective and making different assumptions, and each 

providing different but complementary insights into how climate change may impact on future 

undernutrition and health.  

In this chapter I begin by summarizing the ways in which the thesis has met this aim. Following this, I 

briefly discuss the possible directions for future research as well as limitations of this thesis. I end with 

some concluding remarks.  

 

Research Papers: Key insights and modelling strategy 

Research Papers 1 and 2 (Chapter 4) built on previous work by adding a statistically-based health 

impact model. This made estimates of a more health-relevant outcome (child stunting) while also 

attempting to better account for the role of socioeconomic factors. In doing so, the results showed 
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that future social and economic conditions appeared to play a much greater part in shaping the 

prevalence of stunting than climate change. In this model (as well as in other models (see Chapter 2)), 

however, it was assumed that national GDPpc gave adequate representation to socioeconomic 

conditions, and it was further assumed that they (i.e. socioeconomic conditions) would not be affected 

by climate change. These assumptions were made for a number of reasons.  

Firstly, the availability of both historical34 and projection35 data (the former for fitting models; the 

latter for making future predictions) for socioeconomic factors is fairly limited, making it difficult (if 

not impossible) to incorporate them into empirically-based quantitative health models. Secondly, the 

central purpose of the health models was to assess the potential impacts of climate change; at the 

time these health models were being developed, upstream modellers were assessing climate impacts 

on crop productivity. Thus, health modellers also tended to focus on this aspect36.  

The third factor is associated with the way in which different types of variables tend to be represented 

in health models. In 1989, Laurell argued that, in general, epidemiology tended to treat the biomedical 

aspects of a problem rigorously but the social aspects “with the superficiality of the ‘evident’” (Laurell, 

1989). This is no longer the case given developments in social epidemiology (e.g. Bambra, 2016, 

Krieger, 2011, CSDH, 2008), but arguably the health components of climate-health impact models 

retain at least some of this tendency (e.g. Hales et al., 2014). To overcome this, climate-health 

modellers could draw on approaches used in social epidemiology (as well as further afield), including 

“stepping back” from the most proximal causes of undernutrition (i.e. food quantity and quality) to 

consider underlying social processes (cf. McMichael, 1999), and by explicitly drawing on theory (e.g. 

theories of the causes of undernutrition; see Chapter 2) to guide model development (Krieger, 2011).  

To address some of the blind spots in previous work, Research Paper 3 (Chapter 5) shifted the focus 

away from food quantity in order to consider how the impacts of climate change on incomes of the 

poorest parts of populations and food price may combine to increase the risk of stunting in 2030. That 

is, it assessed how climate change acting through two socioeconomic pathways may shape future 

34 In addition, research has found that apparently precise historical data are often of low quality and may provide 
an unreliable account of actual conditions (Jerven, 2013, Jerven, 2018). This will in turn influence the outputs of 
models that are dependent on them.   
35 Until recently, the socioeconomic projection data used in climate change impact assessments was limited to 
demographics, GDPpc, education, and percent of a population living in urban areas (Wittgenstein Centre for 
Demography and Global Human Capital, 2017, IIASA, 2018, Jones and O’Neill, 2016). However, ongoing work is 
expanding the range of projection variables to include, for example, income inequalities (Rao et al., 2019).  
36 More recently, however, the World Bank developed a model that assesses how climate change may impact 

on poverty (Hallegatte and Rozenberg, 2017). This was used as an upstream model for Research Paper 3, 

enabling an assessment of the potential impacts of climate change on nutrition through its (i.e. climate change’s) 

affects on socioeconomic conditions.  
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stunting. In order to explicitly focus on this, rather than building onto existing models based on food 

quantity or quality, a new (statistically-based) health model was developed. In doing so, it was 

assumed that in 2030 there would be sufficient food available for all people who were able to afford 

it; i.e. it placed the central concern of previous modelling in the background. This assumption served 

two purposes: (i) it allowed the total effects of incomes and food prices on stunting to be assessed by 

excluding co-dependent and “downstream” (and likely collinear) factors (cf. Biggs et al., 2010), and (ii) 

it facilitated the interpretation of patterns in the results (as it simplified the structure of the health 

model).       

The quantitative results of Research Paper 3 suggested that – alongside concerns about climate 

impacts on food quantity and quality as assessed in previous models - the impacts of climate change 

on poverty are likely to increase the risk of stunting, particularly in rural areas. In addition, we argued 

that the patterns seen in the results implied that slowly rising food prices tended to lead to decent 

farm incomes and rural wages, which in turn reduced the risk of undernutrition and the risk that 

climate change posed to nutritional status. This interpretation, however, was guided by theory 

(Mazoyer, 2001, Mazoyer and Roudart, 2006) and previous empirical work (Hertel, 2016) rather than 

the explicit details of the health model.    

The results of Research Paper 3 suggested two general ways forward. Option 1: having first established 

that poverty matters in a new model, build on existing food quantity- or quality-based models by 

simultaneously including climate impacts on poverty; i.e. attempt to make existing models more 

completely represent reality. Option 2: build new models that further explore mechanisms associated 

with food price and rural incomes while omitting other processes; i.e. attempt to capture a different 

part of reality (cf. Weisberg, 2006).  

In the thesis, I opted for option 2. Option 1 would be potentially useful if the goal were to make 

quantitative predictions of future undernutrition, but option 2 is more useful for further developing 

an explanatory understanding. This choice is underscored by the following practical considerations.  

Firstly, producer-consumer farmers are at the core of the issues raised by the results of Research Paper 

3 but existing climate-undernutrition models split production from consumption by design (for 

example, see Chapter 2: Figure 2, Panel B). Thus, explicitly representing producer-consumers would 

be difficult. Secondly, empirically-based theories have argued that the “farming styles”  (comprised 

of, for example, farmer goals, the types of farming inputs used, and the way a farm is connected to 

markets) adopted by producer-consumers influence farm incomes, development trajectories, and by 

extension farmer nutrition and health (van der Ploeg, 2018). Gliessman (2015), however, points out 

that in standard economic models - including the type used in existing climate-nutrition modelling -  
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“food production … is reduced to a merely technical problem in a purely economic context: to meet 

consumers’ demand for food, farmers develop and use the methods that produce the most food for 

the least cost”; that is, “farming methods [i.e. farming styles] are hidden inside the ‘black box’ of 

agriculture”. While the standard economic perspective is a useful, well developed, and widely 

accepted approach for many applications, it precludes the representation of producer-consumer 

famers practicing different styles37. Yet, “farming styles” are a central part of debates around the 

future of the food system (HLPE, 2019, Rosset and Altieri, 2017).   

Thirdly, conventional climate impact models are currently driven by a set of standard socioeconomic 

scenarios: the Shared Socioeconomic Pathways (SSPs) (O’Neill et al., 2017). This across-model scenario 

harmonization brings many advantages. A limitation, however, arises if a key aim is to represent 

producer-consumer farmers: the SSPs that may be characterized as the most optimistic (in one way 

or another) (SSP1 and SSP5) assume that 92% of the world population will live in urban areas by 2100. 

The only scenario with a substantial rural population in 2100 (40%) is a pessimistic one. That is, while 

the SSPs are based on historical data and standard projection methods, and are widely accepted as 

plausible, they exclude the potential of modelling optimistic futures in which (relatively) large 

numbers of producer-consumer farmers live in vibrant rural communities (Lloyd and Hales, 2019). Yet, 

this is the future desired by large numbers of peasant farmers (La Via Campesina, 2019)38.  

Given this, for Research Paper 4, I attempted to develop a novel modelling strategy which intentionally 

de-coupled the health model from existing upstream models and the details of standard 

socioeconomic scenarios. This strategy, along with the use of Agent-Based Modelling, allowed the 

direct representation of households practicing different styles of farming, their distinct ways of making 

decisions, and internal processes (rather than exogenously imposed scenarios) that shape nutrition 

and health. New insights associated with previously unexplored processes were gained, but this was 

enabled by abstracting away a range of other processes, and climate change was represented simply 

(see “Discussion, Limitations” in Research Paper 4, Chapter 6). Thus, ongoing modelling should build 

on the finding of Research Paper 4 to develop new perspectives.    

In sum, the research papers have broadened our understanding of the climate-undernutrition 

relation. They began by centring on the largely technical issue of producing sufficient food to feed the 

global population, and moved - by way of incomes of people who produce the food - to contested 

37 This is not to suggest that standard economic perspectives could not be adapted to explicitly account for 
farming styles; it only intends to suggest that in current global-level climate-undernutrition models farming 
styles could not be represented without such an adaptation.  
38 I do not mean to suggest this is necessarily a viable future; merely that it is a desired future for some groups.   
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issues around choices of farming styles. That is, they have illustrated that, when modelling population 

nutrition and health in future worlds, we need to think about socioeconomic conditions not only in 

quantitative terms (i.e. ‘as having a little bit more of this, and a little bit less of that’) but also 

qualitatively (e.g. in terms of how farming is done, including farmer goals), and the latter involves 

making explicit choices.  

These insights were gained by developing a series of models, which: (i) each abstracted away a 

different set of processes; (ii) increasingly drew on relevant theoretical understandings of the core 

issues; (iii) adopted different technical methods; (iv) shifted the goal of the model from quantitative 

prediction to mathematically-based qualitive understanding; and, (v) moved from a general strategy 

of tracing a path from climate change to undernutrition and asking how socioeconomic conditions 

might modify this, to, beginning with an evolving social structure (i.e. constellations of farming styles) 

and asking how climate change may influence this.  

I argue that the adoption of these and similar approaches into climate-nutrition modelling, as well as 

climate-health and planetary health modelling more generally, alongside the more typical approaches 

of refining existing models and/or developing multiple models that take essentially the same 

perspective and comparing their results (e.g. Caminade et al., 2014, Nelson et al., 2014), would better 

serve the goal of understanding future health impacts and how to reduce or avert them.  That is to 

say, the adoption and development of Levins’ strategy (Levins, 1966) in health impact modelling may 

ultimately lead to tangible benefits for population health.  

 

Directions for future research 

In general terms, given the complexity of the climate change-undernutrition relation, there are many 

possible directions for future research. At present, active lines of inquiry include, for example, 

sustainable diets (e.g. Willett et al., 2019) and the role of value chains (e.g. de Brauw et al., 2015)), 

and findings from the research papers in this thesis could potentially be integrated into existing work. 

Here, however, I focus on the future development of Research Paper 4.  

The findings of the ABM raised a number of issues that would benefit from further investigation. In 

line with the general modelling strategy adopted in this thesis, one option would be to develop a 

model that takes a new perspective. However, as the ABM rests on a number of simplifications, I 

would argue that some of these – particularly those that are apparently most strongly linked to the 

key findings – should be “complexified”. The priorities for development essentially mirror the model 

limitations raised in the discussion section of Research Paper 4 (Chapter 6).  
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There are three major priorities. First, as farming styles lie at the core of the model, their 

representation should be refined, becoming less dichotomous and more strongly grounded in current 

agricultural innovations. For instance, “entrepreneurial” farming could be refined to better represent 

“climate smart agriculture”, and means of reflecting a wider range of goals associated with 

agroecology could be explored (HLPE, 2019). Additionally, farm development trajectories should be 

allowed to be multi- rather than uni-directional (e.g. by allowing entrepreneurial farmers to become 

more peasant-like over time).    

Second, selected model parameters should also be refined. The model results suggested that in 

entrepreneurial-futures there is a tension between rapid increases in low priced food and the long-

term viability of farms and thus rural communities. Conversely, during the first few of decades of 

agroecology futures, production was lower and food prices were higher. Refinement of the model 

parameters that underlie these patterns (e.g. productivity increases, input prices, credit markets) 

should therefore be prioritized in order to explore the robustness of these results.  

Thirdly, a demand-side should be introduced into the model, perhaps initially representing adjoining 

urban areas that may be fed by a combination of food produced locally (i.e. by the modelled rural 

community) and imported food.  

The above developments may assist in deepening our understanding of: whether agroecology would 

be able to increase production quickly enough to feed growing populations; whether rapid increases 

in production could harm sub-groups of farmers; whether or not rapid increases in the production of 

low priced food would be ‘the best way’ of eradicating undernutrition and ensuring food security; and, 

the potential impacts of gradually rising food prices on different populations groups.   

A range of additional developments, including improved representation of climate change and other 

environmental processes, as well as incorporation of other parts of the global food system, could also 

be useful pursed in the future, but I would suggest that these are of lower priority than the above 

issues.  

 

Limitations 

This thesis has a number of limitations. The limitations of each of the research papers are discussed in 

detail in the relevant chapters (see Chapter 4, 5, and 6), and here I focus on the major limitations of 

the thesis as a whole.  
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First, the thesis only considered the global-level. Real farmers, however, exist in specific conditions in 

communities with histories; no understanding of climate change, nutrition, and the future of food 

systems is complete without including these aspects. A number of studies across various sites have 

demonstrated and quantified the links between climate, weather, quantity of food produced, and 

undernutrition (Belesova et al., 2018, Phalkey et al., 2015). Such detail is a blind spot in this thesis, 

which generated knowledge of a more general nature.  

Nevertheless, the findings provide some insights into how future local-level research and modelling 

could advance. Firstly, farms and farming communities do not exist in isolation; even when only 

loosely connected to markets, global and national food systems may impact on them and influence 

their options and choices (Amin, 2003, Mazoyer and Roudart, 2006). Where possible, local-level 

studies may benefit from including such contextual issues which may assist in answering questions 

such as, “why are some families trapped in precarious subsistence farming?”39. Secondly, while local 

level studies often include social and livelihood variables as factors that modify the climate-nutrition 

relation, additional – and potentially more useful – insights may be gained by specifically considering 

farming styles (i.e. as a collection of qualities rather than a set of independent quantities). 

Second, in all the research papers in this thesis, food was represented only in terms of calories; this is 

a clear gap as it only captures one aspect of how food intake contributes to undernutrition in 

individuals and to population health in general. For instance, estimates suggest that two billion people 

are deficient in at least one micronutrient (Myers et al., 2017), and, recent work has shown that what 

we eat collectively has major impacts on the environment and the sustainability of farming (Willett et 

al., 2019).  

At the time Research Paper 1 was developed, it was useful to abstract away from the details of dietary 

composition to gain an initial understanding of how climate may impact on stunting, and, for Research 

Paper 4, looking at diet in simple terms better allowed a focus on farming styles40. Now, however, it 

would be useful to consider diet in more detail. This has already been done by some groups (e.g. 

Medek et al., 2017, Myers et al., 2015, Springmann et al., 2018). In particular, future work on farming 

styles should incorporate these aspects as, for example, the production of diverse foods under 

agroecology style farming not only provides good nutrition, it also underwrites farm resilience (Rosset 

and Altieri, 2017).     

39 This question is of relevance to health research as it focuses on sources of vulnerability, including to climate 
change and its health impacts.  
40 Research Paper 2 was an extension of Research Paper 1, and Research Paper 3 did not directly represent 
food.  
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Third, overall, the thesis did not generate a quantitively backed-up set of final statements. In 

particular, the most important findings of Research Paper 3 are statements based on patterns seen in 

the results, and Research Paper 4 provides only a qualitive understanding of potentially important 

processes. While this is not a limit to the ability of the research to address its objectives, it may be 

seen as an important limit in the context of climate-health modelling in general. In climate-health 

modelling, the key results are typically expressed along the lines of: under high climate change 𝑥 

million additional children would be stunted in the year 𝑦 in region 𝑧. Outputs in this form have an 

immediately apparent grounding in the real world, stress the magnitude of impacts on particular 

groups of people, and are readily digestible by other researchers, stakeholders, and the media. This in 

turn may mean they are more likely to spur actions to avoid future impacts. To guide such actions, 

however, an understanding of the causes of the problem is required: traditional quantitative climate-

undernutrition models, however, arguably offer little explanation beyond changed quantity or quality 

of food.    

This tension is captured by two quotes (Sayer, 1992): Lord Kelvin claimed, “When you cannot measure 

it, when you cannot express it in numbers, your knowledge is of a meagre and unsatisfactory kind”; 

Jacob Viner, however, further claimed, “When you can measure it, when you can express it in 

numbers, your knowledge is still of a meagre and unsatisfactory kind”. That is, to act on a complex 

problem, we need both quantitative predictive models (to aid prioritization), and models that attempt 

to explain why we see something (to guide actions) (Hedström, 2005), in particular by looking beyond 

the immediately apparent causes (e.g. a lack of food) to underlying causes (e.g. patterns of farming 

styles). And, as discussed throughout this thesis, there should be an interplay of results from predictive 

and explanatory models, with each guiding the other in an ongoing modelling process.  

Thus, one means of overcoming this limitation – and which may hasten the development of our 

understanding of complex climate-health problems - is to attempt to increase the acceptability of a 

wider range of modelling goals amongst the climate-health research community.  

 

Concluding remarks 

I would like to conclude with some thoughts on a general issue arising from the research papers 

developed for this thesis. As noted above, the research papers moved from focussing on technical 

issues around the quantity of food that will be available in future worlds to contested issues around 

which farming styles will ensure future food security. This adds an additional dimension to Levins’ 

(1966) original modelling strategy. Levins was writing in the context of population biology, which was 
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attempting to understand existing ecological systems41. In contrast, the models in this thesis are 

considering possible future worlds; this brings an additional choice: that is, which possible futures 

should we model? For population health, this is a crucial consideration.  

In broad terms, there two aspects to this: future climate and future social conditions. Future climate 

is a physical phenomenon, and while there are advances that could be made when representing it in 

health models – for instance, in relation to extreme weather events and tipping points – this aspect 

has tended to receive the greatest attention in previous modelling and there have been ongoing 

advances made (Anderson et al., 2019). Giving representation to future social conditions is arguably 

more challenging, and in any case is less advanced.  Social processes have a strong influence on 

population health (CSDH, 2008), and there will be both supportive and undermining interactions 

between climate change, actions to mitigate and adapt to it, population vulnerability, and 

development trajectories (Lloyd and Hales, 2019). 

Wright (2010) argues that, for the social world (which would, in terms of the thesis, include – for 

example - the organization of the global food system), “… what is pragmatically possible is not fixed 

independently of our imaginations, but is itself shaped by our visions”. Rieff (2016) suggests we may 

need a “… different development debate, one focused less on the metrics of what new agricultural 

techniques or market reform work best … and more on what kind of society we want … - in short, a 

political debate focussed around justice rather than a debate about technical means … ”, and goes on 

to say, “ … we need to think through what a decent society consists of beyond the easing of extreme 

poverty and hunger”.  Ongoing investigation into, for example, new metrics and their utility is of 

course required; but alongside this, broader visions of potentially viable futures should also be 

considered, as well as their implications for population health. 

Such issues are highly contested but cut to the core of the concerns of population health, which go 

well beyond the incidence and prevalence of diseases to include the underlying processes and living 

conditions that ultimately determine patterns of health (Bambra, 2016, Krieger, 2011, Stuckler and 

Siegel, 2011). Thus, I argue for the need to develop health models and accompanying scenarios that 

look beyond the expected prevalence of a given health outcomes, and give representation to a range 

of visions of contested but genuinely transformative futures. The latter may be based on, for instance, 

the desires of different social groups (e.g. peasant farmers (La Via Campesina, 2019)) or ideas 

developed by credible groups of academics that take a more critical view on possible futures (Tellus 

Institute, 2019). The aim of this approach would not always – or even often - be to settle matters 

41 Levins’ interests extended well beyond modelling populations (e.g. Levins and Lewontin, 1985, Lewontin and 
Levins, 2007), but this was the context focus of the particular paper I am referring to.  
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scientifically: some elements may be settled empirically, and technology may open or restrict the 

available options, but many issues rest on values and will remain contested. Given this, at times the 

aim would be to give representation to futures desired by particular groups and contribute to 

assessing their viability42. 

Over recent decades, environmental epidemiology43 has expanded the scope of the problems it 

attempts to address, first bringing in the implications of climate change (McMichael et al., 2004) and 

more recently focussing on “planetary health” (Whitmee et al., 2015). Over the same period, there 

have been multiple calls for epidemiology to draw on a wider range of technical methods (for example, 

Systems Dynamic Modelling and Agent-Based Modelling) as it confronts problems of increasing 

complexity (El-Sayed and Galea, 2017, Mabry et al., 2010, Maglio and Mabry, 2011)44. This thesis has 

arguably contributed to showing that a third set of innovations is required: alongside the expansion 

of the scope and the adoption of new technical methods, it is necessary to draw on a wider range of 

theories to guide analysis and modelling while simultaneously engaging more directly in contested 

issues around what kind of society we want. This is because the latter will be a crucial determinant of 

both climate change and population health, and because – at least partially – it is a choice that health 

modellers could – and should - influence.  

 

  

42 When considering a particular future world, Wright (2010) distinguishes between whether that future would 
be “desirable” (i.e. is this future wanted by some groups?), “viable” (i.e. if this future were actually realised, 
would it function as expected or undermine itself?), and “achievable” (i.e. if this future were both desired and 
viable, could we actually get there?).   
43 Arguably the core discipline underlying the majority climate-health impact models. 
44 An exception is infectious disease epidemiology, which has long drawn on complexity science.  
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Annex 1. Calculation of the development score  
 
The formula for calculating the development score is: 
 
 

௜௝ݓ ൌ ൞
െ ሺ௔೔ೕ ି ௔೘ೌೣሻ 

ሺ௔೘ೌೣି௔೘೔೙ሻ
     ݂݅ ܽ௜௝ ൑ ߬        

,݅׊                                                                          ݆
       0                        ݂݅ ܽ௜௝ ൐ ߬          

    [S1] 

     
where: 
 ܽ௜௝ ൌ ln ሺGDP/ୡୟ୮୧୲ୟ ౟ౠ

G୧୬୧౟ౠ
ሻ                 [S2] 

 
 ܽ௠௔௫ ൌ maximum value of ܽ௜௝  across all countries i with ܽ௜௝ ൑ ߬ in all regions j, 
                              ܽ௠௔௫ ൌ max௜,௝ሼܽ௜௝ሽ 
 ܽ௠௜௡ ൌ minimum value of ܽ௜௝  across all countries i with ீ஽௉

௖௔௣௜௧௔௜௝
൑ ߬ in all regions j, 

                              ܽ௠௜௡ ൌ min௜,௝ሼܽ௜௝ሽ 
 

߬ ൌ 10, the cut-off value for a based on a GDP/capita of $10 000  (USD 2000 US) and 
a Gini coefficient of 0.38 
 
GDP/capitaij = Gross Domestic Product per capita for country i in region j 

 Giniij = Gini coefficient (World Bank 2011) of country i in region j.  
 
(Note the operators ݉ܽݔ௜,௝ሼ. ሽ  and ݉݅݊௜,௝ሼ. ሽ respectively mean the maximum or minimum of 
the argument in {.}; ׊ means ‘for every’) 
 

Analysis of data for the present for GDP/capita, stunting and undernourishment, suggests that 

when GDP/capita is above $10 000 (US 2000) that both undernourishment and stunting are 

rare. This GDP/capita is approximately the lower end of the range seen in Western Europe, 

and socioeconomic conditions in Western Europe can generally be considered to be adequate 

in terms of avoiding stunting. We use an associated Gini coefficient of 0.38 to define 

minimum distribution of wealth necessary (In 1997 in Portugal, GDP/capita was $10,200 and 

Gini was 0.385).  Based on these observations, we assume that once wealth reaches the 

equivalent of a GDP/capita of $10 000 (USD 2000) with a Gini of 0.38, that non-food causes 

of stunting are absent; that is, at and above this level, the development score is set to 0.   
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The initial scaling of the development score was done using a dataset for all countries (i.e. all 

countries across the globe) for which current GDP/capita and Gini coefficient data were 

available. This means, in the scaling from 0 to 1, 1 represents the ‘worst’ conditions currently 

observed, and 0 represents the ‘best’ conditions (capped as described above). 

 

We note that this means that if conditions worsen in countries with very poor conditions 

currently, there is little room for the scaled development score to represent this (as the score 

will already be close to 1). In practice, however, the scenario we examined (as is common to 

all currently available socioeconomic scenarios for the future) assumes there is growth in 

GDP/capita in all countries; that is, there is no need to scale the score to allow the worst off 

countries to worsen. If the need arises to allow for worsening conditions, the development 

score could be re-scaled appropriately.    
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Annex 2. Estimating proportion undernourished (PoU) 
 

Our model required projections of future proportion undernourished (PoU) with and without 

climate change. Nelson et al (2009) estimated country-level average per capita calorie 

availability in 2050 using five crop models (wheat, rice, maize, soy and groundnut) and the 

IMPACT trade model. For details of the assumptions in the crop modelling  (e.g. regarding 

CO2 fertilization, irrigation and adaptation responses, etc), extrapolations to other food 

groups, and the trade model see Nelson et al (2009).  

 

We used the estimates of country-level per capita calorie availability to estimate PoU using 

the FAO method (FAO 2003).  The FAO method assumes that the within-population 

distribution of calories is described by a log-normal distribution, and is driven by estimates of 

(i) the coefficient of variation for within-population calorie distribution, (ii) the average 

minimum calorie requirement to avoid undernourishment in the population, and (iii) per 

capita calorie availability (see FAO (2003) for details). As scenario (future) data were not 

available for either (i) or (ii), we obtained current estimates (FAO 2010) and assumed they 

remained constant at current (baseline) levels. 
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Supplemental Material, Table 1. Percentage of Monte Carlo simulation estimates 
rejected for having values < 0 without and with future climate changea. All numbers are 
percentages. 

 No climate change With climate change 

Region Severe stunting Moderate stunting Severe stunting Moderate stunting 

South Asia 

 

27 0 8 0 

Sub-Saharan 
Africa, Central 

 

<5 0 <5 0 

Sub-Saharan 
Africa, East 

 

14 0 <5 0 

Sub-Saharan 
Africa, South 

 

18 0 <5 0 

Sub-Saharan 
Africa, West 

<5 0 <5 0 

a In the Monte Carlo simulation, it was possible to obtain estimates where proportion stunted was <0 or >1. Thus we ran the 
simulation 500 000 times and selected the first 100 000 estimates that were >0 and <1 which potentially introduced bias. 
There were no estimates >1, meaning there was no risk of downward bias. This table shows the percentage of estimates that 
were rejected for being <0, which potentially introduces upward bias. More estimates for severe stunting were rejected in the 
‘no climate change’ compared to the ‘climate change’ future which may have reduced the apparent impact of climate change 
on severe stunting.   
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Supplemental Material, Table 2. Countries in each regiona. Countries marked with an 
asterisk* did not have complete data and were excluded from the simulation.    
South Asia 

Afghanistan* 

Bangladesh 

Bhutan 

India 

Nepal 

Pakistan 

 

Sub-Saharan Africa, Central 

Angola 

Central African Republic 

Congo 

Democratic Republic of the 
Congo 

Equatorial Guinea* 

Gabon 

 

Sub-Saharan Africa, South 

Botswana 

Lesotho 

Namibia* 

South Africa* 

Swaziland 

Zimbabwe 

Sub-Saharan Africa, East 

Burundi 

Comoros* 

Djibouti 

Eritrea* 

Ethiopia 

Kenya 

Madagascar 

Malawi 

Mayotte* 

Mozambique 

Rwanda 

Somalia* 

Sudan* 

Uganda 

United Republic of Tanzania 

Zambia 

 

Sub-Saharan Africa, West 

Benin 

Burkina Faso 

Cameroon 

Cape Verde* 

Chad 

Cote d’I’voire 

Gambia 

Ghana 

Guinea 

Guinea-Bissau 

Liberia 

Mali 

Mauritania 

Niger 

Nigeria 

Saint Helena* 

Sao Tome & Principle* 

Senegal 

 

a We used regions previously defined for the Global Burden of Disease Study 2010 (Institute for Health Metrics Evaluation 
2010)   
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Supplemental Material, Figure 1. Model validation: scatter plots showing observed 
versus fitted estimatesa.  

a The model was validated using the validation dataset (37 records). The x-axis is the model estimate, the y-axis is observed 
stunting, and the line shows a perfect fit. 
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Supplemental Material, Figure 2. Equation surface plots for A) moderate stunting and 
B) severe stunting  

A) Moderate stunting 

 

B) Severe stunting 
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Introduction and key findings
Sari Kovats, Simon Hales, Simon Lloyd

Climate change risks are systemic and long term in nature, requiring a different approach to 
assessment compared with other environmental exposures. Global burden of disease studies 
have focused on proximal risk factors and historical patterns (Lim et al., 2012), with relatively 
little attention paid to upstream causes. Burden of disease studies also focus on current 
exposures rather than future exposure and the long timescales required by climate change 
assessments. Climate change poses qualitatively different risks to human health, mainly via 
indirect pathways (McMichael, 1999, 2013). These features result in unique challenges for 
health risk assessment. There is a need to improve estimates of the effects of climate change 
on health on a global and regional scale (Campbell-Lendrum et al., 2007; Costello et al., 
2009). The latest assessment of the Intergovernmental Panel on Climate Change (IPCC) 
found significant evidence gaps (Smith et al., 2014). For example, uncertainties about future 
vulnerability, exposure and responses of interlinked human and natural systems were 
acknowledged to be large, indicating the need to explore a wide range of socioeconomic 
futures in assessments of climate change-related risks.

This report summarizes the potential impact of climate change on health metrics and 
attributable mortality for two future time periods: 2030 and 2050. The assessment is 
an advance on previous studies (Campbell-Lendrum & Woodruff, 2006), but it is still 
constrained by limited quantitative information about, and understanding of, causal 
mechanisms linking climate with health impacts on a global and local scale. We did not 
assess the current burden of disease due to observed climate change (warming since the 
1960s) (WHO, 2009a).

Since the first global risk assessment was published (McMichael et al., 2004), there has been 
some development of global models to estimate climate change impacts for a range of health 
issues, particularly for malaria (Caminade et al., 2014) and undernutrition (Nelson et al., 
2010; Lloyd et al., 2011).

The health impacts of climate change described in this report are mortality caused by 
heat, coastal flooding, diarrhoeal disease, malaria, dengue and undernutrition (Figure 1.1). 
Models were run with a consistent set of climate, population and socioeconomic scenarios, 
as far as was technically possible. In keeping with current approaches to scenario-based 
climate impacts assessment, climate and non-climate scenarios were kept separate in the 
presentation of results. We also assessed, as far as possible, uncertainties associated with 
each impact model. We assessed the effect of climate model uncertainty by including a range 
of climate model projections. Estimates were done with and without inclusion of adaptation 
to climate change, as far as technically feasible (Table 1.1).

1
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4  Quantitative risk assessment of the effects of climate change on selected causes of death, 2030s and 2050s

Figure 1.1  Models used in this assessment, with output metrics
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1.1 Methods and data

This assessment, subsequently referred to as the Climate Change Risk Assessment (CCRA), 
involves the development of outcome-specific models to estimate future climate change-
attributable health effects (a range of metrics indicated by blue boxes in Figure 1.1) and 
future annual mortality (light purple boxes in Figure 1.1). The individual health models are 
described briefly below and in detail in each chapter.

The overall conceptual framework of this assessment was to model mortality in future worlds 
with and without climate change. The climate change-attributable impacts were defined as 
the additional mortality in future years (2030s and 2050s) under climate change scenarios 
compared with the mortality in the same time periods under the 1961–1990 climate (the 
counterfactual).

In absolute terms, the future impacts of climate change will depend on underlying health 
status. Rather than assume no change in future health status, we base our assessment on 
forecasts of mortality in future decades. Mortality forecasts are based on empirical models of 
observed mortality trends in relation to major drivers such as socioeconomic development, 
education and technology, together with projections of the future trajectories of these drivers 
on a national scale (see below and Chapter 8 for details). It is assumed that recent trends in 
socioeconomic development, education and technology will continue for the next 15–50 years, 
resulting in a continued decline in mortality from infectious diseases and undernutrition 
(Mathers & Loncar, 2006; WHO, 2008, 2012). We acknowledge that the empirical method 
has limitations, including an inability to account for the subnational distribution of wealth 
and the optimistic assumption that there will be no major discontinuities in the trajectory 
of socioeconomic development until at least the middle of the 21st century.

A single greenhouse gas emission scenario, the Special Report on Emission Scenarios 
(SRES) A1b, was used in this assessment. Because of the long lead times between emission 
of greenhouse gases and changes in climate, the choice of emission scenario makes little 
difference to the projected range of climate change in the next few decades (IPCC, 2013). 
There is, however, strong justification for early emissions reductions, since the level of 
emissions in future decades has a major impact on the severity of climate alteration beyond 
the 2050s.

In order to take into account climate modelling uncertainty in future climate projections, 
five global climate model runs were used to estimate future impacts (see Chapter 8 for 
details). For some impact pathways, the results of intermediate models were used (for 
example, undernutrition estimates use outputs from food trade models, and flood mortality 
estimates use outputs from a coastal flood model). Final results were derived for 21 world 
regions, based on the regions used in the most recent round of the Global Burden of Disease 
study (Lim et al., 2012) (see Annex for details) and for two time periods (2030s and 2050s). 
We also report summary results for 10 world regions (Figure 1.2).
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Table 1.1  Adaptation assumptions in the models used in this assessment

Underlying trends Adaptation 
assumptions 
included in model

Potential options 
not included in 
model

Foreseeable limits to 
adaptation

Heat-related 
mortality in elderly 
people

Population growth 
and ageing; 
improved health 
in elderly people 
due to economic 
development

Three levels of 
autonomous 
adaptation assumed – 
none, partial and full 
– based on shifts to 
optimum temperature

Improved heat 
health protection 
measures; early 
warning systems

Cost and feasibility 
of active and passive 
cooling measures in 
dwellings

Coastal flooding Coastal population 
increase; increased 
vulnerability due 
to rapid urban 
development, which 
then declines

Evolving coastal 
protection measures

Population 
relocation

Technical and cost 
barriers to coastal 
defences, particularly 
in atoll countries, 
deltas and low-lying 
areas in poor countries

Diarrhoeal disease Improved mortality 
outcomes due 
to technology 
and economic 
development

None Improved water, 
sanitation and 
hygiene

Cost of installation 
and maintenance of 
water and sanitation 
facilities. Potential 
future decreases in 
water availability

Malaria and 
dengue

Assumed reductions 
in mortality rates 
resulting from 
socioeconomic 
development

Assumed reductions 
in mortality rates 
resulting from 
socioeconomic 
development

Specific novel 
interventions, e.g. 
vector control, 
vaccination, early 
warning systems

Insecticide or drug 
resistance

Undernutrition Population 
growth; improved 
population health 
due to technology 
and economic 
development

Crop yield models 
include adaptation 
measures

Non-agricultural 
interventions, e.g. 
water and sanitation 
provision; reduced 
meat consumption 
in countries with 
currently high 
consumption

Limits of maximum 
productivity of 
agricultural systems

Table 1.2  Additional deaths attributable to climate change,a under A1b emissions and the 
base case socioeconomic scenario, in 2030

Region Undernutritionb Malaria Dengue Diarrhoeal 
diseasec

Heatd

Asia Pacific, 
high income

0 0 1 1488
(0 to 0) (0 to 0) (0 to 2) (1208 to 1739)

Asia, central 473 0 0 111 740
(−215 to 1161) (0 to 0) (0 to 0) (49 to 150) (364 to 990)

Asia, east 1155 0 39 216 8010
(−5313 to 7622) (0 to 0) (23 to 48) (95 to 298) (5710 to 9733)

Asia, south 20 692 1875 197 14 870 9176
(−39 019 to 

80 404)
(1368 to 2495) (101 to 254) (6533 to 

20 561)
(7330 to 
10 620)

Asia, south-east 3348 550 0 765 2408

[Continues]
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Region Undernutritionb Malaria Dengue Diarrhoeal 
diseasec

Heatd

(−2635 to 9331) (398 to 779) (0 to 0) (336 to 1105) (1629 to 3192)

Australasia 0 0 0 93
(0 to 0) (0 to 0) (0 to 0) (58 to 151)

Caribbean 12 3 72 117
(12 to 12) (3 to 3) (31 to 104) (73 to 148)

Europe, central 0 0 1 880
(0 to 0) (0 to 0) (0 to 1) (570 to 1523)

Europe, eastern 0 0 3 1974
(0 to 0) (0 to 0) (1 to 4) (1325 to 2904)

Europe, western 0 0 2 2625
(0 to 0) (0 to 0) (1 to 13) (1152 to 5279)

Latin America, 
Andeane

445 17 2 49 181
(−327 to 1218) (6 to 37) (0 to 4) (21 to 69) (119 to 241)

Latin America, 
centralf

859 39 6 109 878
(−837 to 2554) (32 to 47) (−1 to 9) (48 to 156) (540 to 1113)

Latin America, 
southern

14 0 0 1 421
(−49 to 76) (0 to 0) (0 to 0) (0 to 2) (303 to 686)

Latin America, 
tropical

95 5 19 739
(87 to 113) (4 to 5) (9 to 27) (623 to 954)

North America, 
high income

0 0 2 2990
(0 to 0) (0 to 0) (0 to 2) (2297 to 3287)

North Africa/
Middle East

1617 14 0 1323 2,058
(−2030 to 5264) (14 to 14) (0 to 0) (582 to 1850) (1381 to 2342)

Oceania 44 0 22 13
(44 to 44) (0 to 0) (10 to 32) (9 to 20)

Sub-Saharan 
Africa, central

14 385 56 705 0 6326 344
(−27 448 to 

56 217)
(34 908 to 
112 719)

(0 to 0) (2774 to 8946) (281 to 389)

Sub-Saharan 
Africa, eastern

27 999 143 6 10 997 1212
(−8701 to 
64 699)

(142 to 143) (5 to 7) (4811 to 
15 585)

(1064 to 1552)

Sub-Saharan 
Africa, southern

1245 0 0 489 254
(−1505 to 3994) (0 to 1) (0 to 0) (215 to 685) (163 to 313)

Sub-Saharan 
Africa, western

22 944 597 1 12 737 987
(−31 728 to 

77 616)
(597 to 597) (1 to 1) (5581 to 

18 110)
(712 to 1214)

World 95 176 60 091 258 48 114 37 588
(−119 807 to 

310 156)
(37 608 to 
117 001)

(136 to 331) (21 097 to 
67 702)

(26 912 to 
48 390)

a	 Unless otherwise stated, the central estimate is the mean, based on five global climate model runs, and the uncertainty interval (in brackets) is the lowest 
and highest estimates; for each region, the first line is the mean estimate and the second line is the lowest and highest estimates

b	 Undernutrition estimates are for children aged under 5 years; the central estimate is the mean of the probability density function of impact estimates; the 
uncertainty interval is mean ± 1 standard deviation of the probability density function

c	 Diarrhoeal disease estimates are for children aged under 15 years; estimates are based on median temperature across the five global climate model 
runs, with the central estimate based on the mid-estimate of the temperature/diarrhoea coefficient, and the range based on the low and high coefficient 
estimates

d	 Heat estimates are for people aged over 65 years; results assume 50% adaptation

e	 Undernutrition estimate for Andean Latin America and tropical Latin America combined

f	 Undernutrition estimate for central Latin America and Caribbean combined

[Continued]
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8  Quantitative risk assessment of the effects of climate change on selected causes of death, 2030s and 2050s

1.1.1 Global health futures: population, economic and mortality 
projections

The health impacts of climate change will depend on the underlying health of affected 
populations, which will in turn depend on future socioeconomic conditions and other 
important factors, such as universal health coverage and environmental regulation. 
Three sets of mortality projections were developed for this project by the World Health 
Organization (WHO) (see Chapter 8):

•	 ‌low (economic) growth;
•	 ‌base case;
•	 ‌high (economic) growth (consistent with the SRES A1 scenario) (Nakicenovic & Swart, 

2000).

The approach built on previous methods (Mathers & Loncar, 2006; WHO, 2008, 2012). 
The method uses a series of regression equations that quantify the current and historical 
relationships between mortality and a set of independent variables. The major independent 
variables related to mortality were gross domestic product (GDP) per capita, years 
of education and time (which is assumed to be a proxy for health benefits arising from 
technological developments). In addition, specific assumptions are made regarding future 
patterns of acquired immunodeficiency syndrome (AIDS), tuberculosis, malaria, smoking 
and body mass index.

To represent future population totals and spatial patterns, we used the United Nations (UN) 
2010 revision, medium variant (UN, 2011). This estimates a world population of around 9 billion 
people in 2050 that continues to grow and reaches about 10 billion people by 2100. Fertility and 
life expectancy are presently higher than anticipated in many countries; if this trend continues, 
then future population totals will exceed those of earlier projections (UN, 2011).

1.1.2 Climate scenarios

We used a single medium-high emissions scenario, SRES A1b, which captures the range 
of projections regarding global mean temperatures up to the middle of the 21st century 
(Nakicenovic & Swart, 2000).

We used five climate model runs – BCM2.0, EGMAM1, EGMAM2, EGMAM3 and CM4v1 
(see Chapter 8). The climate scenarios were selected based on the availability of climate 
variables required for individual models.

The climate models chosen did not share a common spatial grid. Grid resolutions ranged 
from 48 × 96 to 160 × 320. All runs were therefore regridded (interpolated) to a 1° × 1° global 
grid (180 × 360). The coastal flood impacts were estimated using a sea-level rise scenario 
driven by SRES A1b (see Chapter 3).

The baseline climate (no anthropogenic climate change) was represented by the average over 
1961–1990 from the Climate Research Unit, University of East Anglia TS 2.1 monthly time 
series. Some analyses have used alternative datasets, such as for heat-related mortality in 
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Chapter 2. The analysis of undernutrition relied on a model of the effect of climate change 
on food availability, which used two global climate models – Model for Interdisciplinary 
Research on Climate (MIROC) and Commonwealth Scientific and Industrial Research 
Organisation (CSIRO Mk3) – driven by A1 emissions (see below and Chapter 7 for details).

1.1.3 Climate health models

Heat-related mortality
A published temperature–mortality model was used to estimate heat-related mortality based 
on the observed association between daily mortality and temperature in Japan (Honda et 
al., 2014). Impacts were restricted to mortality in people aged over 65 years, and a single 
temperature mortality function was applied universally as the function was validated against 
other (temperate-zone) populations. The difference in mortality between the optimum 
temperature and a temperature beyond the optimum is defined as the heat-attributable 
mortality. Estimates were generated for three assumptions about the level of autonomous 
adaptation (no adaptation, partial adaptation and complete adaptation), and the optimum 
temperature was shifted accordingly (see Chapter 2).

Coastal flood mortality
A new global model to estimate the mortality attributable to storm surge was developed 
(Lloyd et al., 2014). Estimates of future populations exposed to coastal flooding due to sea-
level rise were derived from the Dynamic Interactive Vulnerability Assessment (DIVA) 
global model (Vafeidis et al., 2008). Country-specific mortality from storm surges was 
estimated from the International Disaster Database (EM-DAT) (CRED, 2011) and used 
to fit a model, with the baseline exposure from DIVA (which assumes that all countries 
optimize coastal protection). The effect of economic development was modelled using the 
Human Development Index. Based on observed associations between disaster mortality 
and economic development, the model allows for an initial increase in mortality risk as low-
income countries develop, followed by a decline in risk as disaster risk reduction is improved 
(Patt et al., 2010). The model was fitted with observed disaster mortality data using a short 
and long time series to balance the competing requirements of data completeness and the 
need to assess average mortality over a long time period. Impact projections were made for 
sea-level rise projections under the A1b emissions scenario (see Chapter 3).

Diarrhoeal disease
A linear exposure–response function was derived from the published literature that 
described the association between temperature and diarrhoeal disease. Due to the limited 
number of observational studies, a range of exposure–response functions was generated 
(high, median and low estimates). Estimates were restricted to mortality in children aged 
under 15 years. Climate scenario data were used to estimate the attributable fraction due 
to higher temperatures, which was then applied to projections of future diarrhoeal disease 
mortality (see Chapter 4).
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10  Quantitative risk assessment of the effects of climate change on selected causes of death, 2030s and 2050s

Malaria
A published empirical-statistical model was used, which incorporates temperature, 
precipitation and GDP per capita as predictors of the past, present and future geographical 
limits of malaria (Béguin et al., 2011). Scenario-based projections of future climate, economic 
development and population were used to estimate changes in the population at risk of 
malaria in the years 2030 and 2050. Gridded population data for the A1b scenario were 
obtained from the International Institute for Applied Systems Analysis (IIASA, 2009) for the 
years 1990, 2030 and 2050. The population data were used together with the risk areas from 
the malaria model to estimate the future population at risk and the change in the population 
at risk from baseline climate. To calculate mortality associated with malaria infections, 
national current malaria mortality estimates were multiplied by the national ratio of the 
projected population at risk to the present population at risk (see Chapter 5).

Dengue
An empirical-statistical model was developed using temperature, precipitation and GDP per 
capita as predictors of the past, present and future geographical limits of dengue (Åström 
et al., 2012). Scenario-based projections of future climate, economic development and 
population were used to estimate changes in the population at risk of dengue in the years 
2030 and 2050. Changes in the proportion of the national population at risk, along with 
estimates of current mortality from dengue, were used to estimate changes in mortality 
attributable to climate change, using the same method as for malaria above (see Chapter 6).

Undernutrition
A previously published model estimated the effect of changes in per capita calorie availability 
(undernourishment) on undernutrition (stunting) in children aged under 5 years (Lloyd et 
al., 2011). The undernourishment estimates were derived from the International Model for 
Policy Analysis of Agricultural Commodities and Trade (IMPACT) integrated assessment 
model at the International Food Policy Research Institute (IFPRI) (Nelson et al., 2010). 
The model accounts for food and non-food (socioeconomic) causes of undernutrition. 
The model was used to estimate child stunting attributable to climate change based on 
projections of national food availability per capita published by IFPRI. This outcome was 
used to estimate the attributable burden of mortality in children aged under 5 years using 
published relative risks for association between stunting and all-cause mortality (Black et al., 
2008), which were then applied to mortality projections provided by WHO (see Chapter 7).

1.2 Findings

Climate change is projected to have substantial adverse effects on human health that will be 
distributed unequally within and between populations.

Figure 1.2 and Tables 1.2 and 1.3 illustrate the regional distribution of annual climate 
change-attributable mortality in 2030 and 2050 under the base case scenario of economic 
development. Estimates are the annual impact for the specified year under each scenario, 
with a single population projection. The central estimates represent the average from five 
climate scenarios. Climate change may increase the burden of mortality from coastal 
flooding, but because these impacts are highly uncertain they are not included below.
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Figure 1.2  Estimated future annual mortality attributable to climate change under A1b emissions and for 
the base case socioeconomic scenario in 2030 (blue bars) and 2050 (orange bars), by world regiona and 
health outcome, for (a) undernutrition, (b) malaria, (c) diarrhoeal disease, (d) dengue and (e) heat

(a) Undernutrition (all-cause mortality in children aged 
under 5 years)

(b) Malaria (mortality in all ages)

(c) Diarrhoeal disease (mortality in children aged under 
15 years)

(d) Dengue (mortality in all ages)

(e) Heat (mortality in people aged over 65 years)

a 	 Asia, C – Asia, central; Asia, E – Asia, east; Asia, S – Asia, 
south; Asia, SE – Asia, south-east; HIC, high-income countries 
(includes Asia Pacific, high income; Australasia; Europe, central; 
Europe, eastern; Europe, western; North America, high income; 
and Oceania); LAM – Latin America (includes Latin America, 
Andean; Latin America, central; Latin America, southern; Latin 
America, tropical; and Caribbean); SSA, C – sub-Saharan Africa, 
central; SSA, E – sub-Saharan Africa, eastern; SSA, S – sub-
Saharan Africa, southern; SSA, W – sub-Saharan Africa, western. 
Estimates for North Africa/Middle East are not included.
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12  Quantitative risk assessment of the effects of climate change on selected causes of death, 2030s and 2050s

Table 1.3  Additional deaths attributable to climate change,a under A1b emissions and the 
base case socioeconomic scenarios, in 2050

Region Undernutritionb Malaria Dengue Diarrhoeal diseasec Heatd

Asia Pacific, 
high income

0 0 1 2504
(0 to 0) (0 to 0) (0 to 1) (1868 to 3046)

Asia, central 314 0 0 26 1889
(66 to 563) (0 to 0) (0 to 0) (12 to 38) (1077 to 2173)

Asia, east 700 0 31 72 17 882
(−427 to 1828) (0 to 0) (25 to 42) (33 to 107) (11 562 to 

24 576)
Asia, south 16 530 9343 209 7717 24 632

(−1582 to 34 642) (2998 to 13 488) (140 to 246) (3522 to 11 421) (20 095 to 
31 239)

Asia, south-east 3049 287 0 383 7240
(605 to 5494) (265 to 334) (0 to 0) (172 to 575) (5883 to 10 290)

Australasia 0 0 0 236
(0 to 0) (0 to 0) (0 to 0) (180 to 359)

Caribbean 7 0 17 320
(7 to 7) (0 to 1) (8 to 26) (259 to 380)

Europe, central 0 0 0 1680
(0 to 0) (0 to 0) (0 to 0) (989 to 2769)

Europe, eastern 0 0 1 3218
(0 to 0) (0 to 0) (0 to 1) (2438 to 4807)

Europe, western 0 0 1 5573
(0 to 0) (0 to 0) (1 to 2) (3908 to 9737)

Latin America, 
Andeane

330 1 3 12 597
(−6 to 665) (1 to 1) (0 to 7) (5 to 17) (477 to 804)

Latin America, centralf 706 99 10 27 2713
(100 to 1311) (56 to 167) (7 to 14) (12 to 40) (2137 to 3679)

Latin America, 
southern

11 0 0 0 884
(−27 to 49) (0 to 0) (0 to 0) (0 to 0) (624 to 1261)

Latin America, tropical 0 20 5 2007
(0 to 0) (15 to 23) (2 to 7) (1489 to 2993)

North America, 
high income

0 0 1 6101
(0 to 0) (0 to 0) (0 to 2) (4923 to 7259)

North Africa/Middle 
East

1167 209 0 812 6669
(−480 to 2813) (157 to 316) (0 to 0) (369 to 1206) (4731 to 8537)

Oceania 32 0 15 68
(32 to 32) (0 to 0) (7 to 23) (58 to 101)

Sub-Saharan Africa, 
central

18 273 0 1 5473 1363
(−12 372 to 48 918) (0 to 0) (1 to 1) (2473 to 8174) (1139 to 1598)

Sub-Saharan Africa, 
eastern

26 480 22 194 5 6951 4543
(4936 to 48 024) (18 747 to 

26 002)
(4 to 5) (3138 to 10 392) (3497 to 5957)

Sub-Saharan Africa, 
southern

1032 0 0 267 706
(−516 to 2580) (0 to 0) (0 to 0) (121 to 396) (553 to 857)

Sub-Saharan Africa, 
western

16 105 524 1 11 174 3469
(−19 500 to 51 709) (524 to 524) (1 to 1) (5039 to 16 723) (2887 to 4261)

World 84 697 32 695 282 32 955 94 621
(−29 203 to 163 989) (22 786 to 

40 817)
(195 to 342) (14 914 to 49 151) (70 775 to 

126 684)

a	 Unless otherwise stated, the central estimate is the mean, based on five global climate model runs, and the uncertainty interval (in brackets) is the lowest 
and highest estimates; for each region, the first line is the mean estimate and the second line is the lowest and highest estimates

b	 Undernutrition estimates are for children aged under 5 years; the central estimate is the mean of the probability density function of impact estimates; the 
uncertainty interval is mean ± 1 standard deviation of the probability density function

c	 Diarrhoeal disease estimates are for children aged under 15 years; estimates are based on median temperature across the five global climate model 
runs, with the central estimate based on the mid-estimate of the temperature/diarrhoea coefficient, and the range based on the low and high coefficient 
estimates

d	 Heat estimates are for people aged over 65 years; results assume 50% adaptation

e	 Undernutrition estimate for Andean Latin America and tropical Latin America combined

f	 Undernutrition estimate for central Latin America and Caribbean combined
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An important component of the CCRA is the use of a consistent set of mortality projections 
with which to estimate future attributable mortality. We have used a range of GDP projections 
to drive the mortality forecasts.

The final mortality estimate is a combination of reduction in projected mortality in the 
absence of climate change, population growth in affected regions, and sensitivity of the 
health outcome to climate change.

Compared with a future without climate change, and in the absence of adaptation, 
approximately 65 000 additional deaths due to heat exposure in elderly people are projected 
for the year 2030 (see Chapter 2).

The coastal flooding modelling results show that much of the future burden of flooding 
can be avoided by adaptation to coastal flooding – assumed to be the construction and 
maintenance of coastal defences. This is not feasible for some populations, however, and so 
the results may represent an optimistic assessment of future health impacts. The results are, 
however, presented for a range of adaptation scenarios.

An additional 48 000 deaths due to diarrhoea and 60 000 deaths due to malaria are projected 
for the year 2030. There is very little projected increase in deaths due to dengue fever.

Undernutrition is one of the leading causes of death in young children and is likely to remain 
so in future decades. IPCC estimates suggest that climate change is likely to have significant 
effects on cereal crop productivity, potentially increasing the risk of undernutrition (Smith 
at al., 2014). Projected increases in infectious disease morbidity, especially for diarrhoeal 
illness, would exacerbate climate change effects on child nutrition.

1.3 Discussion

Climate change is projected to have substantial adverse impacts on future mortality, even 
under optimistic scenarios of future socioeconomic development. Under a base case 
socioeconomic scenario, we estimate approximately 250 000 additional deaths due to climate 
change per year between 2030 and 2050. These numbers do not represent a prediction of the 
overall impacts of climate change on health, since we could not quantify several important 
causal pathways (see Section 1.3.1).

The results of individual models are broadly consistent with previous published estimates for 
specific outcomes (see later chapters for details). A major limitation for a climate change risk 
assessment is the scope of the impacts that can be modelled quantitatively with sufficient 
confidence. The results reported here indicate that climate change will have an impact on 
health, even with adaptation and under conditions of high economic growth. Among these, 
the most substantial impacts of climate change on health are projected to be caused by 
undernutrition and infectious diseases (diarrhoeal disease and malaria). Impacts are greatest 
under a low (economic) growth scenario because of higher rates of mortality projected in 
low- and middle-income countries (see individual chapters). In 2030, sub-Saharan Africa is 
projected to have the greatest burden of mortality impacts attributable to climate change. By 
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2050, south Asia is projected to be the region most affected by the health effects of climate 
change.

Some models resulted in a wide range of uncertainty around the final estimates. Empirical 
models with improved statistical power can go some way to addressing this in the future. 
Due to the formulation of the models, uncertainty was estimated using a range of methods 
(see later chapters for discussion).

The previous estimate of the disease burden of climate change was for the year 2000 
(McMichael et al., 2004) as part of the WHO Comparative Risk Assessment (2000–2004). 
Approximately 150 000 deaths globally were attributed to the climate warming experienced 
by 2000; most of these deaths were in sub-Saharan Africa and south Asia (Ezzati et al., 
2002). In this project, we did not estimate a current burden due to observed climate change. 
Furthermore, with different models and different underlying assumptions and scenarios, the 
results of this project are not directly comparable with the previous WHO estimates.

1.3.1 Limitations of the assessment

The main limitation of the CCRA is the inability of current models to account for major 
pathways of potential health impact, such as the effects of economic damage, major heatwave 
events, river flooding or water scarcity. The assessment does not consider the impacts of 
climate change on human security, for example through increases in migration or conflict. 
The included models can capture only a subset of potential causal pathways, and none 
accounts for the effects of major discontinuities in climatic, social or ecological conditions.

Extreme events
The health impacts of extreme climate events are not included in this assessment, with the 
exception of the increase in coastal flooding due to sea-level rise. Extreme events are not 
well described by climate data averaged over space and time. Flood disasters from storm-
surge events are included in the assessment, but an increase in river flooding due to climate 
change is not included because no global projections of populations at risk of flooding were 
available. The coastal flood risk assessment assumed no change in the frequency of storm 
events, apart from the relative change in impact due to rising sea levels. The crop yield 
models used within the undernutrition framework will include some measure of climate 
variability but not a scenario that includes multiple extreme drought events. The same 
methodological issues arise for the temperature-related impacts.

Burden of disease indicators
There are several reasons why mortality is only an incomplete indicator for a health impact 
assessment. For several outcomes, such as dengue, the health burden from morbidity far 
outweighs that attributable to mortality. Furthermore, for outcomes such as diarrhoeal 
disease, significant reductions in mortality rates have not been reflected in reduced 
morbidity rates. Future work will focus on summary measures of population health, such 
as disability-adjusted life-years (DALYs), and economic evaluation of impacts. It should 
be noted that many of the models provide useful intermediate endpoints that are not 
included here because they cannot be readily aggregated, such as the proportion of the 
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population stunted and the population at risk of malaria. Several key outcomes included in 
this assessment are also closely interrelated, for example malaria and diarrhoeal disease are 
associated with increased mortality from undernutrition and vice versa. Thus estimates of 
mortality attributable to single diseases may under- or overestimate the true burden from 
climate change.

Our ability to model the effects of climate change on vector-borne disease is also limited. 
The models described below estimate the geographical areas within which the combination 
of average climatic and socioeconomic conditions is conducive to local transmission. 
Extrapolation to changes in mortality, based on the proportion of national populations at 
risk, is a crude, if reasonable, assumption. We assume no change in the mortality rate in the 
population defined as at risk at baseline and in the future.

1.3.2 Benefits of climate change to health

Climate change will have some positive impacts on human health. There are likely to be 
reductions in cold-related mortality and morbidity in high-income populations. The most 
recent assessment report of the IPCC concludes, however, that the impacts on health of 
more frequent heat extremes greatly outweigh the benefits of fewer cold days, and that 
the few studies of the large developing country populations in the tropics, point to effects 
of heat, but not cold, on mortality (Smith et al., 2014). The effect of cold temperatures is 
therefore not modelled in this assessment. Any beneficial effects of climate change on food 
supply and vector-borne disease distribution are included in the current estimates, which 
represent the aggregate results at the regional level. At the national or local level, benefits to 
health may be more apparent.

1.3.3 Incorporating adaptation into the assessment

Some of the impacts on health due to climate change in this assessment can be avoided by 
adaptation measures. This reinforces the need for strengthened public health measures. The 
quantification of the burden avoided by adaptation is difficult to assess, however. Adaptation 
can occur at all stages of the relevant causal pathways, such as disaster risk reduction or 
increased food production. Table 1.1 describes how adaptation was modelled explicitly for 
each health outcome.

This study shows that, even with effective adaptation policies, climate change can undermine 
current and future development programmes. Therefore, in the long term (decades to 
centuries), development policy is unlikely to succeed unless future global environmental 
risks are considered.

1.3.4. Implications for policy

The conclusion that climate change is projected to have substantial adverse impacts on future 
mortality, even considering only a subset of the expected health effects, under optimistic 
scenarios of future socioeconomic development and with adaptation, does have implications 
for the international effort to address climate change.
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In relation to mitigation policy, the results indicate that minimizing climate-sensitive health 
risks is an additional reason to act to reduce climate change, alongside the immediate 
health benefits expected to accrue from measures to reduce climate pollutants (for example, 
through lower levels of particulate air pollution), and the avoided damages to other human 
and natural systems.

With regard to policies on climate change adaptation, the CCRA supports the case both for 
the overall strengthening of programmes to address health risks including undernutrition, 
diarrhoea, vector-borne disease, and heat extremes, and for explicit consideration of climate 
risks (both from climate variability and long-term climate change) within programme 
design.

The results also have implications for the linkages between climate, health and wider 
sustainable development objectives. The strong effect of socioeconomic development on the 
projections of many of the health risks emphasizes the need to ensure that overall economic 
growth, climate policies and health programmes, particularly benefit the poorest and most 
vulnerable populations.
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Future worlds and scenario 
data
Sari Kovats, Simon Lloyd, Sophie Bonjour, Colin Mathers

8.1 Introduction

This chapter describes in more detail the scenarios used in this global climate change risk 
assessment. We have used three global climate models to generate five climate scenarios 
representing one emissions scenario (A1b) (Nakicenovic & Swart, 2000) and three economic 
futures (base case, low growth, high growth) to describe impacts across a range of plausible 
futures. An overview of the scenarios is given in Table 8.1.

Table 8.1  Summary of scenarios used in the assessment

Scenario name Climate data Population data Mortality data GDP data

Base case A1b UN 2010 revision, 
medium variant

Base case Base case

Low growth A1b UN 2010 revision, 
medium variant

Low growth Low growth

High growth A1b UN 2010 revision, 
medium variant

High growth High growth

8.2 Climate data: observed

Observed climate data are used to represent the current climate. This was based on the 
Climate Research Unit TS 2.1 monthly time series for 1961–1990, which has a spatial 
resolution of 0.5° × 0.5° (Mitchell & Jones, 2005). We refer to this as baseline climate.

The baseline climate serves two purposes. First, it is used in combination with output 
from climate models to estimate future climate. The output of the climate models was not 
used directly. The temperature change (delta) was extracted as the difference between the 
projected future climate (for example, the 2030s) and the baseline time period (1961–1990), 
this change in temperature was then added to the observed baseline climate to represent 
future climate change. Second, the baseline climate is used to represent the future climate in 
a world without climate change – that is, it is used as the counterfactual climate.

8
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8.3 Climate scenario data

There is much uncertainty about the future climate arising from the possible greenhouse gas 
emission pathways that society will follow and how a given level of emissions will influence 
climate. In terms of emissions, the effect of different pathways on global mean temperature 
is not significant before around 2040; as health impact estimates are made out to 2050, it 
was agreed to use a single emissions scenario: A1b from the SRES (Nakicenovic & Swart, 
2000). The A1 scenario family comprises three groups that describe alternative directions of 
technological change in the energy system. The groups are distinguished by their technological 
emphasis: fossil-intensive (A1FI), non-fossil energy sources (A1T), and a balance across all 
sources (A1B) (where balanced is defined as not relying too heavily on one particular energy 
source, on the assumption that similar improvement rates apply to all energy supply and end-
use technologies). Figure 8.1 shows the emissions trajectory under A1b.

To account for uncertainty in how emissions will affect climate, the outputs of several 
different climate model runs were used. The model runs used were selected based on the 
availability of the following variables: temperature, humidity and precipitation. Table 8.2 
describes the five climate scenarios used.
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(a) Undernutrition (all-cause mortality in children aged under 5 years) 
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(b) Malaria (mortality in all ages)  
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(d) Dengue (mortality in all ages)   
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(c) Diarrhoeal disease (mortality in children aged under 15 years) 
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(e) Heat (mortality in people aged over 65 years) 
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N: gridded average annual
diarrhoeal disease mortality
in children <15yrs, without 
climate change, for three 
socioeconomic scenarios, 
for a given future time slice.

 

ß : log-linear percent increase in relative risk of 
diarrhoeal disease per degree of temperature increase, 
as a ‘mid’, ‘low’, and ‘high’ estimate, where the same 
relations are applied globally and over time. 
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Figure 8.1  A1b emissions trajectory; for comparison, an optimistic mitigation scenario 
known as E1 is also shown
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Table 8.2  Climate model descriptions for the runs used in this assessment

BCM EGMAM CM4

Modelling 
centre

Bjerknes Centre for Climate 
Research, University of Bergen, 
Norway

Freie Universitaet Berlin, 
Institute for Meteorology, 
Berlin, Germany

Institut Pierre Simon Laplace, 
Paris, France

Model version BCM 2.0 EGMAM (2006) IPSL-CM4_v1

Scenarios 20C3M, SRA1B 20C3M, SRA1B 20C3M, SRA1B

Run numbers 1 1, 2, 3 1

Original grid 64 × 128 48 × 96 72 × 96

References Otterå, OH et al (2009) Roeckner et al. (1996); Manzini 
& McFarlane (1998); Legutke & 
Maier-Reimer (1999)

Marti O et al. (2004)

The climate models used do not share a common spatial grid, with grid resolutions ranging 
from 48 × 96 to 160 × 320. All runs were therefore regridded (interpolated) to a 1° × 1° global 
grid (180 × 360). This was carried out using a bilinear interpolation routine, linint2 from 
the NCAR Command Language package (http://www.ncl.ucar.edu/Document/Functions/
Built-in/linint2.shtml). Spherical harmonic-based regridding routines were available but are 
not advised for bounded parameters such as precipitation. It was felt that the same technique 
should be used across all parameters, so bilinear interpolation was chosen. Data processing 
was carried out by Ian Harris at the Climate Research Unit, University of East Anglia. The 
underlying data were from the ENSEMBLES project (Hewitt, 2004).

New post-SRES emissions scenarios (Representative Concentration Pathways) were 
developed for the IPCC fifth assessment report, but scenario data for these were not available 
at the time the estimates in this project were made.

8.4 Population projections

To represent future population totals and patterns, we used the UN 2010 revision, medium 
variant (UN, 2011). As analysis suggests that fertility and life expectancy are currently higher 
in many countries than was expected in the UN revisions made immediately before the 2010 
revision, and expectations are that these will remain higher than previously anticipated in 
coming decades, future population totals exceed those made in the years immediately before 
this revision. The 2010 revision projects that in 2050, the world population will be around 
9 billion people and will continue to grow to reach about 10 billion people by 2100 (Figure 8.2).

We have used the above projections as they were the most recent estimates (at the time 
of this analysis) of the most likely future trends. Totals differ from those used in previous 
climate change impact assessments for A1 worlds – particularly in the long term – and these 
differences must be borne in mind when interpreting our health impact estimates. Global 
total populations in the UN 2010 revision projections compared with IIASA A1 projections 
are 9.3 billion and 8.7 billion in 2050; 10.0 billion and 8.1 billion in 2080; and 10.1 billion 
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and 7.1 billion in 2100. Previous work has generally coupled A1b emissions with population 
projections specifically made to accompany these emissions (van Vuuren et al., 2007), and 
these population projections were in turn based on low variants of the UN population 
projections from 2003 and 2004, which may, in light of the findings of the UN 2010 revision, 
be considered out of date.

Figure 8.2 compares the UN 2010, medium variant and one set of A1 population projections 
produced by IIASA (Grubler et al., 2007), with the A1 population peaking around 2050 and 
then declining to around 7 billion in 2100.

The implication of using the higher UN (2011) population projections in this assessment than 
in previous A1-based assessments is that the number of climate change-attributable deaths 
is likely to be higher. This is because there are more people potentially affected by climate 
change, and the countries with the highest population growth are, in general, those with high 
pre-existing disease burdens and thus most vulnerable to the health impacts of climate change.

8.5 GDP data

The GDP data are in 2005 international dollars as purchasing power parity. Three sets of 
historical estimates and projections were made, drawing on data from sources including 
the World Bank, International Monetary Fund (IMF), International Futures and the 
Organisation for Economic Co-operation and Development (OECD) (Table 8.3). Figure 8.3 
shows the global level GDP per capita projections for the three scenarios. A high growth 
set of GDP projections was built based on the GDP country estimates developed for the 
emission scenario A1b (CIESIN, 2002). A low growth set of GDP projection was constructed 
in which growth tapers to zero in all countries by 2015.
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(a) Undernutrition (all-cause mortality in children aged under 5 years) 
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(b) Malaria (mortality in all ages)  
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(d) Dengue (mortality in all ages)   
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(c) Diarrhoeal disease (mortality in children aged under 15 years) 
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(e) Heat (mortality in people aged over 65 years) 
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for a given future time slice.

Figure 8.2  World population projections by year to 2100 for the UN 2010 revision 
(medium variant) and IIASA A1
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Table 8.3  Data used in mortality projectionsa

Scenario Base case High growth Low growth

Population UN (2011) UNDP (2010); UN (2011) UNDP (2010); UN (2011)

GDP per capita World Bank, OECD, IMF, 
International Futures

SRES A1 Growth from 2010 to 2015 
tapers to zero at country 
level; country-level growth 
zero from 2015 to 2100

Human capital (average 
years of schooling at 
age 25 years)

International Futures base case 
with some adjustments

As for base scenario As for base scenario

HIV/AIDS UN (2010) for 48 countries, 
UNAIDS extended for others

UNAIDS projections, 
extended with optimistic 
trends

As for base scenario

Tuberculosis Base scenario from previous 
projections extended to 2080

Base scenario Base scenario

Malaria Global Fund to Fight AIDS, 
Tuberculosis and Malaria sce-
nario 2 (scale up to 147 million 
bednets per year by 2020)

Global Fund scenario 2 
(scale up to 190 million 
bednets per year by 2020)

Global Fund scenario 2 
(scale up to 110 million 
bednets per year by 2020)

Smoking Base scenario updated 
projections (lower than previous 
projections)

Base scenario Base scenario

Body mass index Projections based on estimated 
trends for 1990–2010 regressed 
against GDP and time

Base scenario Base scenario

a	 Projected changes in GDP/capita and human capital (years of education at age 25 years) and time (as a proxy for technological development) are used to 
drive the equations for estimating future mortality. In addition, specific assumptions are made when making estimates for HIV/AIDS, tuberculosis, malar-
ia, and outcomes associated with smoking and body mass index
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(a) Undernutrition (all-cause mortality in children aged under 5 years) 
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(b) Malaria (mortality in all ages)  
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(d) Dengue (mortality in all ages)   
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(c) Diarrhoeal disease (mortality in children aged under 15 years) 
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(e) Heat (mortality in people aged over 65 years) 
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N: gridded average annual
diarrhoeal disease mortality
in children <15yrs, without 
climate change, for three 
socioeconomic scenarios, 
for a given future time slice.

 

ß : log-linear percent increase in relative risk of 
diarrhoeal disease per degree of temperature increase, 
as a ‘mid’, ‘low’, and ‘high’ estimate, where the same 
relations are applied globally and over time. 
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for a given future time slice.

Figure 8.3  Global level GDP per capita for three future worlds
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8.6 Mortality projections

The health impacts of climate change will depend on the underlying health of affected 
populations, which in turn will depend on future socioeconomic conditions. A set of 
mortality projections was developed for this project. The cause- and age-specific projections 
for each world region were generated using a regression model and using the assumptions 
and scenarios described in Table 8.3 (consistent with those used to drive the climate change 
impact models). The models built upon previous methods (Mathers & Loncar, 2006; WHO, 
2008, 2012). The method uses a series of equations that quantify the current and historical 
relationships between mortality and a set of independent variables. The major independent 
variables (which were shown to be structurally related to mortality) are GDP per capita, 
human capital (as years of education at age 25 years), and time, which is assumed to be 
a proxy for health benefits arising from technological developments. In addition, specific 
assumptions are made regarding future patterns of HIV/AIDS, tuberculosis and malaria, 
and for outcomes associated with smoking and body mass index.

These updated projections have been prepared using the WHO cause of death estimates 
for the year 2008 as a starting point (WHO, 2011a). The methods used are essentially the 
same as those published previously (Mathers & Loncar, 2006; WHO, 2008, 2012), with the 
following changes:

•	 ‌GDP projections were revised to take account of World Bank revisions to purchasing 
power parity conversion rates and updated using recent projections of real growth per 
annum in income per capita from the World Bank (2010c,d), IMF (2010) and OECD 
(2009). Longer-term projections of GDP per capita to the year 2100 were taken from the 
International Futures project (Hughes, 2010) and converted from base year 2000 to 2005 
for purchasing power parity dollars. Country-specific GDP per capita growth rates were 
varied smoothly from the World Bank and OECD estimates for 2015 to the International 
Futures estimates for 2030.

•	 ‌Human capital (average years of schooling for adults) estimates and projections were 
updated using the latest update of the Barro & Lee (2010) time series and projections from 
the International Futures project base case (Hughes, 2010).

•	 ‌The projection regression equations were recalibrated so that back projections of 
child mortality rates to 1990 matched observed trends for World Bank regions. In the 
recalibrated projections, the regression coefficient for human capital was left unchanged 
and the regression coefficient for time (a proxy for technological change) was set to zero 
for low-income countries in the WHO African, European, South-East Asia and Western 
Pacific regions.

•	 ‌Smoking impact projections were updated to take into account more recent regional 
trends in tobacco smoking (WHO, 2011b).

Figure 8.4 shows the trends in mortality for diseases grouped as communicable diseases 
(this category includes maternal conditions, perinatal causes, and nutritional deficiencies), 
noncommunicable diseases and injuries, by age group. Each of the three scenarios is in a 
separate plot.
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Figure 8.4  Trends in mortality for communicable diseases (Comm D), noncommunicable diseases (NCD) 
and injuries (Inj), by age group, from 2008 to 2080 under (a) base case, (b) low growth and (c) high 
growth scenarios
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Annex6

Definition of regions used in this assessment

Estimates in this assessment were made for the 21 world regions defined for the Global Burden of Disease Study 
(IHME, 2010). The regions are:

ASIA PACIFIC, HIGH INCOME
Brunei Darussalam
Japan
Republic of Korea
Singapore

ASIA, CENTRAL
Armenia
Azerbaijan
Georgia
Kazakhstan
Kyrgyzstan
Mongolia
Tajikistan
Turkmenistan
Uzbekistan

ASIA, EAST
China
China, Hong Kong Special 

Administrative Region
China, Macao Special 

Administrative Region
China, Province of Taiwan
Democratic People’s Republic of 

Korea

ASIA, SOUTH
Afghanistan
Bangladesh
Bhutan
India
Nepal
Pakistan

ASIA, SOUTH-EAST
Cambodia
Christmas Island
Cocos Islands
Indonesia
Lao People’s Democratic Republic
Malaysia
Maldives
Mauritius
Myanmar
Philippines
Reunion
Seychelles
Sri Lanka
Thailand
Timor-Leste
Viet Nam

AUSTRALASIA
Australia
New Zealand

CARIBBEAN
Anguilla
Antigua and Barbuda
Aruba
Bahamas
Barbados
Belize
Bermuda
British Virgin Islands
Cayman Islands
Cuba

Dominica
Dominican Republic
French Guiana
Grenada
Guadeloupe
Guyana
Haiti
Jamaica
Martinique
Montserrat
Netherlands Antilles
Puerto Rico
Saint Barthelemy
Saint Kitts and Nevis
Saint Lucia
Saint Martin
Saint Vincent and the Grenadines
Suriname
Trinidad and Tobago
Turks and Caicos Islands
US Virgin Islands

EUROPE, CENTRAL
Albania
Bosnia and Herzegovina
Bulgaria
Croatia
Czech Republic
Hungary
Montenegro
Poland
Romania
Serbia

Annex

6	 The list in this annex has not been changed from the Global Burden of Disease Study and does not comply with WHO style for country references.
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Slovakia
Slovenia
The former Yugoslav Republic of 

Macedonia

EUROPE, EASTERN
Belarus
Estonia
Latvia
Lithuania
Republic of Moldova
Russian Federation
Ukraine

EUROPE, WESTERN
Akrotiri and Dhekelia
Aland Islands
Andorra
Austria
Belgium
Channel Islands
Cyprus
Denmark
Faeroe Islands
Finland
France
Germany
Gibraltar
Greece
Greenland
Guernsey
Holy See
Iceland
Ireland
Isle of Man
Israel
Italy
Jersey
Liechtenstein
Luxembourg
Malta
Monaco

Netherlands
Norway
Portugal
San Marino
Spain
Svalbard
Sweden
Switzerland
United Kingdom of Great Britain 

and Northern Ireland

LATIN AMERICA, ANDEAN
Bolivia (Plurinational State of)
Ecuador
Peru

LATIN AMERICA, CENTRAL
Colombia
Costa Rica
El Salvador
Guatemala
Honduras
Mexico
Nicaragua
Panama
Venezuela

LATIN AMERICA, SOUTHERN
Argentina
Chile
Falkland Islands (Malvinas)
Uruguay

LATIN AMERICA, TROPICAL
Brazil
Paraguay

NORTH AFRICA/
MIDDLE EAST
Algeria
Bahrain
Egypt
Iran (Islamic Republic of)
Iraq

Jordan
Kuwait
Lebanon
Libyan Arab Jamahiriya
Morocco
Occupied Palestinian territory
Oman
Qatar
Saudi Arabia
Syrian Arab Republic
Tunisia
Turkey
United Arab Emirates
Western Sahara
Yemen

NORTH AMERICA, 
HIGH INCOME
Canada
Saint Pierre et Miquelon
United States of America

OCEANIA
American Samoa
Cook Islands
Fiji
French Polynesia
Guam
Kiribati
Marshall Islands
Micronesia (Federated States of)
Nauru
New Caledonia
Niue
Norfolk Island
Northern Mariana Islands
Palau
Papua New Guinea
Pitcairn
Samoa
Solomon Islands
Tokelau
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Tonga
Tuvalu
Vanuatu
Wallis and Futuna Islands

SUB-SAHARAN AFRICA, 
CENTRAL
Angola
Central African Republic
Congo
Democratic Republic of the Congo
Equatorial Guinea
Gabon

SUB-SAHARAN AFRICA, 
EAST
Burundi
Comoros
Djibouti
Eritrea
Ethiopia
Kenya

Madagascar
Malawi
Mayotte
Mozambique
Rwanda
Somalia
Sudan
Uganda
United Republic of Tanzania
Zambia

SUB-SAHARAN AFRICA, 
SOUTHERN
Botswana
Lesotho
Namibia
South Africa
Swaziland
Zimbabwe

SUB-SAHARAN AFRICA, 
WEST
Benin
Burkina Faso
Cameroon
Cape Verde
Chad
Cote d’Ivoire
Gambia
Ghana
Guinea
Guinea-Bissau
Liberia
Mali
Mauritania
Niger
Nigeria
Saint Helena
Sao Tome and Principe
Senegal
Sierra Leone
Togo

Annex
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Table of Contents 

Table S1. Countries included when fitting the stunting models, grouped by Global Burden of Disease 
Region. The number of observations per country is shown in brackets. 

Table S2. Signal-to-noise ratios (as parameter estimates divided by their standard errors) for the 
national-level stunting equation (equation 5). 

Table S3. Signal-to-noise ratios (as parameter estimates divided by their standard errors) for the area-
level stunting equation (equation 8). 

Figure S1. Predicted versus observed stunting for the national-level equations for moderate (A and B) 
and severe stunting (C and D), based on the historical data used to fit the equations. Figures A and C 
show predicted percent stunted (y-axis) against observed percent stunted (x-axis), for the historical data 
used to fit the equations. The red line is a line of ‘perfect fit’. Both equations appear to fit well across the 
range of the stunting, with larger error in the severe compared to the moderate equation. Figures B and 
D show predicted within-country trajectories of stunting (as red lines) against observed percent stunted 
(blue dots) for a sub-set of countries. Year is shown on the x-axes; percent stunted on y-axes. It appears 
that the equations are able to reproduce historical stunting trajectories well for both moderate and severe 
stunting. As noted in the main text, no independent data were available with which to validate the 
equations. 
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Figure S2. Residuals for the national-level moderate (A, B, C) and severe (D, E, F) stunting equations, 
for the country random intercepts (A, D), country random slopes (B, E), and predicted stunting (C, F). 
Figures A, B, D, and E are caterpillar plots: these show the country residuals - i.e. random effects – 
for a given model parameter, ranked from smallest to largest along the x-axis by their difference from a 
random effect equal to zero (shown on the y-axis; a random effect equal to zero is indicated by the red 
line). The dots show the mean estimates; the bars the 95% confidence interval, where wide confidence 
intervals are partly caused by small sample sizes. The x-axis labels are as follows - A: ‘u0_mod_rank’ is 
the rank of the random intercept for moderate stunting; B: ‘u1_mod_rank’ is the rank of the random 
slope for moderate stunting; D: ‘u0_svr_rank’ is the rank of the random intercept for severe stunting’; 
and, E: ‘u0_svr_rank’ is the rank of the random slope for severe stunting. In each of the four figures the 
y-axis is the difference of the random effect from zero. The caterpillar plots show the random effects for 
the intercept and slope for both the moderate and severe stunting equations are significantly different 
from the average. Figures C and F show the for predicted stunting. The x-axes are – C: predicted 
percent moderately stunted in a country; and, F: predicted percent severely stunted in a country. In both 
figures the y-axis shows the residuals, with zero indicated by the red line. The residuals plot for 
moderate stunting (C) shows there may be a tendency to under predict at higher levels of stunting. For 
severe stunting (F), the equation appears to tends to under predict more often than over predict. 

Figure S3. Predicted versus observed stunting for the within-country equations for rural (A and B) and 
urban stunting (C and D), based on the historical data used to fit the equations. For each pair, the first 
figure (A and C) is for moderate stunting, and the second (B and D) is for severe stunting. All figures 
show predicted percent stunted (y-axis) against observed percent stunted (x-axis), for the historical data 
used to fit the equations. The red line is a line of ‘perfect fit’. Both equations appear to fit well across the 
range of the stunting, with slightly larger error in the severe compared to the moderate stunting equation. 
As noted in the main text, no independent data were available with which to validate the equations. 

Figure S4. Residuals for the within-country rural equations for moderate (A, B, C) and severe (D, E, F) 
stunting, for the country random intercepts (A, D), country random slopes (B, E), and predicted stunting 
(C, F). Figures A, B, D, and E are caterpillar plots: these show the residuals - i.e. random effects – for 
a given model parameter, ranked from smallest to largest along the x-axis by their difference from a 
random effect equal to zero (shown on the y-axis; a random effect equal to zero is indicated by the red 
line). The dots show the mean estimates; the bars the 95% confidence interval, where wide confidence 
intervals are partly caused by small sample sizes. The x-axis labels are as follows - A: 
‘u0_mod__rur_rank’ is the rank of the random intercept for moderate rural stunting; B: 
‘u1_mod_rur_rank’ is the rank of the random slope for moderate rural stunting; D: ‘u0_svr_rur_rank’ is 
the rank of the random intercept for severe rural stunting’; and, E: ‘u0_svr_rur_rank’ is the rank of the 
random slope for severe rural stunting. In each of the four figures the y-axis is the difference of the 
random effect from zero. The caterpillar plots show the 95% confidence intervals for the random effects 
for both the intercept and slope frequently cross zero. Figures C and F show the for predicted stunting. 
The x-axes are – C: predicted percent moderately stunted in rural areas in a given country; and, F: 
predicted percent severely stunted in rural areas in given a country. In both figures the y-axis shows the 
residuals, with zero indicated by the red line. The residuals plot for severe stunting (F) shows the model 
has greater error for low levels of stunting than high. Consequently, estimates made for rural areas 
should be interpreted cautiously. 
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Figure S5. Residuals for the within-country urban equations for moderate (A, B, C) and severe (D,E, F) 
stunting, for the country random intercepts (A, D), country random slopes (B, E), and predicted stunting 
(C, F). Figures A, B, D, and E are caterpillar plots: these show the residuals - i.e. random effects – for 
a given model parameter, ranked from smallest to largest along the x-axis by their difference from a 
random effect equal to zero (shown on the y-axis; a random effect equal to zero is indicated by the red 
line). The dots show the mean estimates; the bars the 95% confidence interval, where wide confidence 
intervals are partly caused by small sample sizes. The x-axis labels are as follows - A: 
‘u0_mod__urb_rank’ is the rank of the random intercept for moderate urban stunting; B: 
‘u1_mod_urb_rank’ is the rank of the random slope for moderate urban stunting; D: ‘u0_svr_urb_rank’ 
is the rank of the random intercept for severe urban stunting’; and, E: ‘u0_svr_urb_rank’ is the rank of 
the random slope for severe urban stunting. In each of the four figures the y-axis is the difference of the 
random effect from zero. The caterpillar plots show the 95% confidence intervals for the random effects 
for both the intercept and slope frequently cross zero. Figures C and F show the for predicted stunting. 
The x-axes are – C: predicted percent moderately stunted in urban areas in a given country; and, F: 
predicted percent severely stunted in urban areas in given a country. In both figures the y-axis shows the 
residuals, with zero indicated by the red line. The residuals plot for both moderate and severe stunting 
(C and F) shows the pattern of errors differs by level of stunting. Consequently, estimates made for 
urban areas should be interpreted cautiously. 

Appendix S1. Calculation of 95% coverage intervals for (i) the percent of children aged under 5 stunted 
in the year 2010, and (ii) the absolute change in the percent of children aged under 5 stunted from the 
year 2000 to the year 2010. 

Additional File - Excel Document  
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Tables 
Table S1: Countries included when fitting the stunting models, grouped by Global Burden of Disease Region1. The number of observations 

per country is shown in brackets. 

Asia, Central Asia, South East Latin America, Andean Sub-Saharan Africa, 
East 

Sub-Saharan Africa, 
West 

Armenia (4) Cambodia (5) Bolivia (4) Kenya (5) Burkina Faso (5) 

Kyrgyzstan (4) Indonesia (3) Peru (5) Madagascar (4) Cameroon (5) 

Mongolia (3) Lao PDR (3) Latin America, Central Malawi (6) Cote d’Ivoire (4) 

Tajikistan (3) Sri Lanka (3) Colombia (4) Mozambique (4) Ghana (5) 

Uzbekistan (3) Vietnam (3) El Salvador (4) Rwanda (3) Mauritania (3) 

Asia, East Caribbean Guatemala (3) Tanzania (4) Niger (3) 

China (3) Dominican Republic (5) Honduras (4) Zambia (4) Senegal (4) 

Asia, South Jamaica (6) Mexico (3) Sub-Saharan Africa, 
South 

Sierra Leone (4) 

Bangladesh (5) Europe, Central Nicaragua (6) Lesotho (3)  

India (3) Bosnia and  
Herzegovina (3) 

North Africa/ Middle 
East 

Namibia (3)  

Nepal (5) Romania (4) Egypt (4) Swaziland (4)  

Pakistan (4) TFYR of Macedonia (4) Turkey (4)   
 

1 IHME. 2015. Global burden of disease study 2015 geographies. Available: 

http://www.healthdata.org/sites/default/files/files/Projects/GBD/GBDRegions_countries.pdf  [accessed July 7 2017] 
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Table S2: Signal-to-noise ratios (as parameter estimates divided by their standard errors) for the national-level stunting equation 

(equation 5).  

 
 

Predictor1 

Moderate stunting Severe stunting 

Parameter 
estimate 
(log odds) 

 
Standard 

error 

 
Signal-to-

noise ratio 

Parameter 
estimate 
(log odds) 

 
Standard 

error 

 
Signal-to-

noise ratio 

Year, centred on 2010 
 

(tij) 

-0.0103 0.00303 -3.4 -0.0305 0.0053 -5.8 

log(GDP per capita of the population in 
the lowest 20% of the income 

distribution) 
 

(Gij) 

-0.0923 0.0352 -2.6 -0.510 0.0422 -12.1 
 

log(food price indicator), mean centred 
 

(Pij) 

-0.206 0.0572 -3.6 0.206 0.0697 3.0 

Interaction of log(GDP per capita of the 
population in the lowest 20% of the 

income distribution)  
and  

log(food price indicator) 
 

(Gij X Pij) 

0.0300 0.00969 3.1 -0.0751 0.0116 -6.5 
 

 1 The predictors are given as a description and as the variable name (in brackets).  
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Table S3: Signal-to-noise ratios (as parameter estimates divided by their standard errors) for the area-level stunting equation (equation 8). 

 
 

 
Predictor1 

Rural 

Moderate stunting Severe stunting 

Parameter 
estimate 
(log odds) 

 
Standard 

error 

 
Signal-to-

noise ratio 

Parameter 
estimate 
(log odds) 

 
Standard 

error 

 
Signal-to-
noise ratio 

National level stunting 
 

(Y(N)
ijk) 

0.0261 0.00599 4.4 0.0670 0.00860 7.8 

log(income indicator), centred 
just below its historical minimum 

 
(I(A)

ij) 

-0.295 0.0450 -6.6 -0.136 0.0537 -2.53 

Interaction of national-level 
stunting and the income 

indicator 
 

(Y(N)
ijk X I(A)

ij) 

0.0151 0.00196 7.7 0.0112 0.00191 5.9 

Rural-urban inequalities 
 

(Dij) 

-0.105 0.0324 -3.2 -0.00850 0.0816 -0.1 

Interaction of the income 
indicator and rural-urban 

inequalities 
 

(I(A)
ij X Dij) 

-1.718 0.142 -12.1 -2.409 0.129 -18.7 

 

 
 
 

Predictor 

Urban 

Moderate stunting Severe stunting 

Parameter 
estimate 
(log odds) 

 
Standard 

error 

 
Signal-to-

noise ratio 

Parameter 
estimate 
(log odds) 

 
Standard 

error 

 
Signal-to-
noise ratio 

National level stunting 
 

(Y(N)
ijk) 

0.0687 0.00433 15.9 0.0435 0.0135 3.2 

log(income indicator), centred 
just below its historical minimum 

 
(I(A)

ij) 

-0.150 0.0523 -2.9 -0.130 0.0671 -1.9 

Interaction of national-level 
stunting and the income 

indicator 
 

(Y(N))
ijk X I(A)

ij) 

. . . 0.0172 0.00377 4.6 

Rural-urban inequalities 
 

(Dij) 

-0.145 0.122 -1.2 . . . 

Interaction of the income 
indicator and rural-urban 

inequalities 
 

(I(A)
ij X Dij) 

0.123 0.0587 2.1 . . . 

1 The predictors are given as a description and as the variable name (in brackets).  
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Figures 

 

Figure S1: Predicted versus observed stunting for the national-level equations for moderate (A and B) and severe stunting 

(C and D), based on the historical data used to fit the equations.                                   

Figures A and C show predicted percent stunted (y-axis) against observed percent stunted (x-axis), for the historical data 

used to fit the equations. The red line is a line of ‘perfect fit’. Both equations appear to fit well across the range of the 

stunting, with larger error in the severe compared to the moderate equation. 

Figures B and D show predicted within-country trajectories of stunting (as red lines) against observed percent stunted 

(blue dots) for a sub-set of countries. Year is shown on the x-axes; percent stunted on y-axes. It appears that the equations 

are able to reproduce historical stunting trajectories well for both moderate and severe stunting.  

As noted in the main text, no independent data were available with which to validate the equations.  
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Figure S2: Residuals for the national-level moderate (A, B, C) and severe (D, E, F) stunting equations, for the country 

random intercepts (A, D), country random slopes (B, E), and predicted stunting (C, F).  

Figures A, B, D, and E are caterpillar plots: these show the country residuals - i.e. random effects – for a given model 

parameter, ranked from smallest to largest along the x-axis by their difference from a random effect equal to zero (shown 

on the y-axis; a random effect equal to zero is indicated by the red line). The dots show the mean estimates; the bars the 

95% confidence interval, where wide confidence intervals are partly caused by small sample sizes. The x-axis labels are as 

follows - A: ‘u0_mod_rank’ is the rank of the random intercept for moderate stunting; B: ‘u1_mod_rank’ is the rank of the 

random slope for moderate stunting; D: ‘u0_svr_rank’ is the rank of the random intercept for severe stunting’; and, E: 

‘u0_svr_rank’ is the rank of the random slope for severe stunting. In each of the four figures the y-axis is the difference of 

the random effect from zero.  

The caterpillar plots show the random effects for the intercept and slope for both the moderate and severe stunting 

equations are significantly different from the average. 

Figures C and F show the for predicted stunting. The x-axes are – C: predicted percent moderately stunted in a country; 

and, F: predicted percent severely stunted in a country. In both figures the y-axis shows the residuals, with zero indicated 

by the red line.      

The residuals plot for moderate stunting (C) shows there may be a tendency to under predict at higher levels of stunting. 

For severe stunting (F), the equation appears to tends to under predict more often than over predict.   
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Figure S3: Predicted versus observed stunting for the within-country equations for rural (A and B) and urban stunting (C 

and D), based on the historical data used to fit the equations.              

For each pair, the first figure (A and C) is for moderate stunting, and the second (B and D) is for severe stunting 

All figures show predicted percent stunted (y-axis) against observed percent stunted (x-axis), for the historical data used to 

fit the equations. The red line is a line of ‘perfect fit’. Both equations appear to fit well across the range of the stunting, 

with slightly larger error in the severe compared to the moderate stunting equation. 

As noted in the main text, no independent data were available with which to validate the equations.  
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Figure S4: Residuals for the within-country rural equations for moderate (A, B, C) and severe (D, E, F) stunting, for the 

country random intercepts (A, D), country random slopes (B, E), and predicted stunting (C, F).  

Figures A, B, D, and E are caterpillar plots: these show the residuals - i.e. random effects – for a given model parameter, 

ranked from smallest to largest along the x-axis by their difference from a random effect equal to zero (shown on the y-

axis; a random effect equal to zero is indicated by the red line). The dots show the mean estimates; the bars the 95% 

confidence interval, where wide confidence intervals are partly caused by small sample sizes. The x-axis labels are as 

follows - A: ‘u0_mod__rur_rank’ is the rank of the random intercept for moderate rural stunting; B: ‘u1_mod_rur_rank’ is 

the rank of the random slope for moderate rural stunting; D: ‘u0_svr_rur_rank’ is the rank of the random intercept for 

severe rural stunting’; and, E: ‘u0_svr_rur_rank’ is the rank of the random slope for severe rural stunting. In each of the 

four figures the y-axis is the difference of the random effect from zero.  

The caterpillar plots show the 95% confidence intervals for the random effects for both the intercept and slope frequently 

cross zero.  

Figures C and F show the for predicted stunting. The x-axes are – C: predicted percent moderately stunted in rural areas in 

a given country; and, F: predicted percent severely stunted in rural areas in given a country. In both figures the y-axis 

shows the residuals, with zero indicated by the red line.      

The residuals plot for severe stunting (F) shows the model has greater error for low levels of stunting than high.  

Consequently, estimates made for rural areas should be interpreted cautiously.    
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Figure S5: Residuals for the within-country urban equations for moderate (A, B, C) and severe (D,E, F) stunting, for the 

country random intercepts (A, D), country random slopes (B, E), and predicted stunting (C, F).  

Figures A, B, D, and E are caterpillar plots: these show the residuals - i.e. random effects – for a given model parameter, 

ranked from smallest to largest along the x-axis by their difference from a random effect equal to zero (shown on the y-

axis; a random effect equal to zero is indicated by the red line). The dots show the mean estimates; the bars the 95% 

confidence interval, where wide confidence intervals are partly caused by small sample sizes. The x-axis labels are as 

follows - A: ‘u0_mod__urb_rank’ is the rank of the random intercept for moderate urban stunting; B: ‘u1_mod_urb_rank’ 

is the rank of the random slope for moderate urban stunting; D: ‘u0_svr_urb_rank’ is the rank of the random intercept for 

severe urban stunting’; and, E: ‘u0_svr_urb_rank’ is the rank of the random slope for severe urban stunting. In each of the 

four figures the y-axis is the difference of the random effect from zero.  

The caterpillar plots show the 95% confidence intervals for the random effects for both the intercept and slope frequently 

cross zero.  

Figures C and F show the for predicted stunting. The x-axes are – C: predicted percent moderately stunted in urban areas in 

a given country; and, F: predicted percent severely stunted in urban areas in given a country. In both figures the y-axis 

shows the residuals, with zero indicated by the red line.      

The residuals plot for both moderate and severe stunting (C and F) shows the pattern of errors differs by level of stunting.  

Consequently, estimates made for urban areas should be interpreted cautiously. 
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Appendix S1 
Calculation of 95% coverage intervals for (i) the percent of children aged under 5 stunted in the 

year 2010, and (ii) the absolute change in the percent of children aged under 5 stunted from the 

year 2000 to the year 2010 

For equation [4], the 95% coverage interval for the random intercept or slope is the range 
over which 95% of the country-specific values would be expected to lie.  
  

95% 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑎𝑠 log 𝑜𝑑𝑑𝑠 ±  1.96√𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 
 
           [S1] 
 
Note that in the calculations below: 

 numbers shown to four decimal places; any small discrepancies in the results of a 
calculation are due to rounding, and, 

 see equations [4] to [7] for the parameters referred to.  

 all ‘log’ calculations are natural logs. 
 
 
1. The range of predicted percent of stunted children in the year 2010  
(i.e. the 95% coverage interval for the intercept) 
 
Moderate stunting 
Fixed constant as odds ratio = 0.1928 (see Table 1) 
 
Fixed constant as log odds = log(0.1928) = -1.6463 
 

95% coverage interval = 𝛽0𝑗𝑘
(𝑁)

± 1.96√𝜎𝑢0
2 = −1.6463 ± 1.96√0.3319  

= −1.6463 ± 1.1292 
i.e. −1.6463 (−2.7755, −0.5172) 

 
As odds: 

𝑒−1.6463(𝑒−2.7755, 𝑒−0.5172) 
= 0.1928 (0.06232, 0.5962) 

 
As predicted probability: 

 
0.1928 

1+0.1928 
 (

0.06232

1+0.06232
,

0.5962

1+0.5962
)  

= 0.1616 (0.05866, 0.3735) 
As percent stunted: 

𝟏𝟔. 𝟐% (𝟓. 𝟗%, 𝟑𝟕. 𝟒%) 
 
 
Severe stunting 
Fixed constant as odds ratio = 0.1092 (see Table 1) 
 
Fixed constant as log odds = log(0.1092) = -2.2139 
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As log odds: 

95% coverage interval = 𝛽0𝑗𝑘
(𝑁)

± 1.96√𝜎𝑢0
2 = −2.2139 ± 1.96√0.702  

= −2.2139 ± 1.6423 
i.e. −2.2139 (−3.8564, −0.5712) 

 
As odds: 

𝑒−2.2139 (𝑒−3.8564, 𝑒−0.5712) 
= 0.1093 (0.02114, 0.568) 

 
As predicted probability: 

 
0.1093

1+0.1093 
 (

0.02114

1+0.02114
,

0.568

1+0.568
)  

= 0.09851 (0.0207, 0.3609) 
As percent stunted: 

𝟗. 𝟗% (𝟐. 𝟏%, 𝟑𝟔. 𝟏%) 
 
 
 
2. The range of absolute change in predicted percent of children stunted from the year 
2000 to the year 2010  
(i.e. based on the 95% coverage interval for the slope for year) 
 
The null form of equation [4] for estimating the log odds of stunting in 2000 and 2010 is: 
 

𝑙𝑜𝑔 (
𝑌𝑖𝑗𝑘

(𝑁)

1−𝑌
𝑖𝑗𝑘
(𝑁)) = 𝛽0𝑗𝑘

(𝑁)
+ 𝛽1𝑗𝑘

(𝑁)
(𝑡𝑖𝑗)           [S2] 

 
 
Where 𝑡𝑖𝑗 equals -10 in the year 2000 and 0 in the year 2010. 

 
 
Moderate stunting 
Fixed slope as odds ratio = 0.9862 (see Table 1) 
 
Fixed slope as log odds = log(0.9862) = -0.01386 
 
 

95% coverage interval = 𝛽1𝑗𝑘
(𝑁)

± 1.96√𝜎𝑢1
2 = −0.01386 ± 1.96√0.000429  

= −0.01386 ± 0.00084 
i.e. −0.01386 (−0.05445, 0.02673) 

 
For the fixed estimate, using [S2], the log odds of stunting in the year 2000 is: 
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𝑙𝑜𝑔 (
𝑌𝑖𝑗𝑘

(𝑁)

1 − 𝑌𝑖𝑗𝑘
(𝑁)

) = 𝛽0𝑗𝑘
(𝑁)

+ 𝛽1𝑗𝑘
(𝑁)

(𝑡𝑖𝑗) 

 
= −1.6463 − 0.01386(−10) = −1.5077 

 
As odds: 

 
𝑒−1.5077 = 0.2214 

 
As predicted probability: 

 
0.2214

1 + 0.2214
= 0.1813 

 
As percent stunted: 

18.1% 
 
For the fixed estimate, log odds of stunting in the year 2010 is: 
 

𝑙𝑜𝑔 (
𝑌𝑖𝑗𝑘

(𝑁)

1 − 𝑌𝑖𝑗𝑘
(𝑁)

) = 𝛽0𝑗𝑘
(𝑁)

+ 𝛽1𝑗𝑘
(𝑁)

(𝑡𝑖𝑗) 

 
= −1.6463 − 0.01386(0) = −1.6463 

 
As odds: 

 
𝑒−1.6463 = 0.1928 

As predicted probability: 
 

0.1928

1 + 0.1928
= 0.1616 

As percent stunted: 
16.2% 

 
Finally, based on the fixed estimate, the absolute change in moderate stunting between the 
years 2000 and 2010 is: 

18.1% −  16.2% = −𝟏. 𝟗% 
 
 
For the low and high estimates of absolute change in moderate stunting between the years 

2000 and 2010, the above calculations were repeated using S2 with  𝛽1𝑗𝑘
(𝑁)

 set to -0.05445 for 

the low estimate and to 0.02673 for the high estimate (i.e. based on the above calculation 
of the 95% coverage interval).  
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The resulting estimate for the absolute change in the percent of children moderately 
stunted between the years 2000 to 2010 is -2% (-8.8% to 3.3%) (where a positive number 
indicates moderate stunting increased). 
 
Severe stunting 
Fixed slope as odds ratio = 0.9622 (see Table 1) 
 
Fixed slope as log odds = log(0.9622) = -0.03855 
 

95% coverage interval = 𝛽1𝑗𝑘
(𝑁)

± 1.96√𝜎𝑢1
2 = −0.03855 ± 1.96√0.001175  

= −0.03855 ± 0.002303 
i.e. −0.03855 (−0.1057, 0.02865) 

 
The calculations used to estimate the absolute change in moderate stunted were repeated, 

using equation [S2] with 𝛽0𝑗𝑘
(𝑁)

=  −2.2139 and 𝛽1𝑗𝑘
(𝑁)

 set to -0.03855, -0.1057, and 0.02865 

for the fixed, low and high estimates, respectively. 
 
The resulting estimate for the absolute change in the percent of children severely stunted 
between the years 2000 to 2010 is -4% (-14.1% to 2.3%) (where a positive number indicates 
severe stunting increased). 
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S1 Appendix. ODD+D model documentation 

 
Accompanying the paper, “Climate change and hunger through the lens of farming styles and rural 

health: insights from an agent-based model”; Lloyd SJ, Chalabi Z. 

 

Table of Contents 

1 OVERVIEW ............................................................................................................................................... 2 

1.1 PURPOSE .................................................................................................................................................. 2 
1.2 ENTITIES, STATE VARIABLES, AND SCALES ......................................................................................................... 2 
1.3 PROCESS OVERVIEW AND SCHEDULING ........................................................................................................... 4 

2 DESIGN CONCEPTS................................................................................................................................... 6 

2.1 THEORETICAL AND EMPIRICAL BACKGROUND ................................................................................................... 6 
2.2 INDIVIDUAL DECISION MAKING ..................................................................................................................... 8 
2.3 LEARNING ................................................................................................................................................. 9 
2.4 INDIVIDUAL SENSING ................................................................................................................................. 10 
2.5 INDIVIDUAL PREDICTION ............................................................................................................................ 10 
2.6 INTERACTION ........................................................................................................................................... 11 
2.7 COLLECTIVES ........................................................................................................................................... 11 
2.8 HETEROGENEITY ...................................................................................................................................... 11 
2.9 STOCHASTICITY ........................................................................................................................................ 12 
2.10 OBSERVATION ......................................................................................................................................... 12 

3 DETAILS ................................................................................................................................................. 12 

3.1 IMPLEMENTATION DETAILS ......................................................................................................................... 12 
3.2 INITIALIZATION ........................................................................................................................................ 12 
3.3 INPUT DATA ............................................................................................................................................ 13 
3.4 SUB-MODELS ........................................................................................................................................... 13 

4 TABLES, FIGURES, AND PSEUDO-CODE .................................................................................................. 13 

4.1 TABLES ................................................................................................................................................... 13 
4.2 FIGURES ................................................................................................................................................. 17 
4.3 PSEUDO-CODE ......................................................................................................................................... 20 

5 REFERENCES .......................................................................................................................................... 29 

 

 

  

235



1 Overview 

1.1 Purpose 

1.1.1 What is the purpose of the study? 
The purpose of the model is to gain an understanding of how the development trajectories of 

constellations of producer-consumer farming households practicing different styles of farming may 

affect patterns of hunger and health in a farming community, under scenarios for climate change, 

agricultural policy, global price transmission, and style preference patterns, in a global food system in 

which food prices are tending to fall and oscillate. 

The model represents a stylized farming community and aims to assess the potential importance of 

previously unexplored aspects of the relation between climate change and hunger. Previous models 

have focused on changes in food quantity and quality for consumers, as well as the impacts of dietary 

patterns on both consumer health and the environment. This ABM focusses on how patterns of 

farming styles – which differ in terms of farmer goals and degree of market dependence – may shape 

both nutrition and conditions that support the health of rural communities, and, it acts as a virtual lab 

for testing the implications of various scenarios.   

The key outcomes assessed are total food production, local food price, household nutritional status, 

farm labour (number of full-time equivalent workers), income Gini (i.e. income inequalities), average 

net farm income (and its rate of change), and ‘real land productivity’ (an ecologically sensitive measure 

of farming intensity). 

1.1.2 For whom is the model designed? 
The model was designed for researchers with an interest in climate change and health. The results 

may be of interest to decision-makers and stakeholders involved in and/or affected by debates and 

choices about the future of farming.  

1.2 Entities, state variables, and scales 

1.2.1 What kind of entities are in the model? 
Agents are farming households practicing a given style of farming: ‘peasant’ style, with sub-types of 

‘orphan’ style (i.e. subsistence farming on one hectare using manual tools) and ‘agroecology’ style 

(labour-intensive; largely using on-farm produced inputs; using the market as an outlet to sell surplus 

yields; using savings rather than credit to make purchases; has a key goal of maximising autonomy), 

or, ‘entrepreneurial-style’ (capital-intensive; dependent on the market to both purchase farm inputs 

and to sell yields; if needed, uses credit to finance purchases; a key goal of expansion) (van der Ploeg, 

2018, Mazoyer and Roudart, 2006). There is also an a-spatial mega-agent for global corporate 

agriculture, which is represented as a tendency for global food prices to fall and oscillate1. The spatial 

units are 1 hectare plots of farm land. The environment is represented as climate change, composed 

of a warming trend and change in drought risk, which affects crop yields.     

1.2.2 By what attributes (i.e. state variables and parameters) are these entities 

characterized? 
Farming households are characterized by: a list of adjacent 1 hectare plot they occupy, with farm size 

influencing their productive potential; their current and preferred farming styles; their farm 

equipment, which determines the amount of land one worker is able to farm: manual tools (e.g. a 

1 Note that global corporate agriculture is not strictly an agent in that it does not take actions based on decisions; 
however, it is characterized as an agent here as it represents a farming entity and future iterations of the model 
will make it increasingly agent-like.  
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hoe, which allows one worker to farm 1 hectare), working animals (e.g. oxen, which allow one worker 

to farm up to 5 hectares), or a  small tractor (which allows one worker to farm to 16 hectares); their 

preferences for saving money and rationing spending, which together represent their preference for 

developing the farm vs. feeding the family a basic diet; family nutritional status, as the proportion of 

a basic diet consumed; current farm income as well as a list of their income in previous years; their 

expected food price in the coming year, given actual food prices in previous years and their style-

specific goals;  their optimum (given their style-specific goals), target (given their resources and 

preferences), and actual (given weather and random variation (the latter representing unmodelled 

factors)) yields; their asking food price (i.e. when selling their yield) given their actual yield and farming 

style-specific goals; and, short-, mid-, and long-term debt. 

 

Global corporate agriculture is characterised by: current global food price; average rate of price 

decline; and, the amplitude and frequency of oscillation.  

 

The 1 hectare plots are characterized by: whether the plot is occupied by a farmer; the maximum yield 

of the plot in the absence of inputs (e.g. fertilizer); and, the potential yield multiple of the plot under 

agroecology following an agroecology transition period.  

 

1.2.3 What are the exogenous factors / drivers of the model? 
Climate change, characterised as a warming trend which sets the temperature anomaly relative to 

year 0, and, an annual drought risk. Both the warming trend and annual drought risk increase as the 

climate scenario worsens. The temperature anomaly causes yield losses for farming households, and 

it (implicitly) causes the average rate of global price decline to slow. If a drought occurs in the farming 

community, households lose a proportion of their yields; if a drought affects corporate agriculture, 

global food price rises. The climate scenario is selected by the model user as: no, low, or high climate 

change.  

Agricultural policy is selected by the user and favours one style of farming over another. 

‘Entrepreneurial’ policy favours entrepreneurial farming by subsidising farm inputs and lowering 

interest rates on credit; ‘Entrepreneurial eroding’ policy is initially the same as the previous but 

support erodes over time; ‘Peasant’ policy favours peasant farming by stimulating research and 

supporting community networks, represented implicitly in the model as increased rates of yield 

increase for peasant farmers; ‘No’ policy which means there are no actions supporting any style of 

farming.  

Global price transmission which determines the influence of global food price (i.e. associated with 

corporate agriculture) on local food price (i.e. the price faced by the community of farming households 

(agents)). This is a user selected elasticity (e.g. a setting of 0.5 would mean for each 1% rise in global 

food price, local price would rise by 0.5).   

Farming style preference pattern which sets the proportion of farming households that prefer to 

develop via a given style. At model initialisation, all farmers practice orphan-style and they may 

develop either via agroecology- or entrepreneurial-style. The preference pattern is user selected; for 

instance, preferences may be set such that 40% prefer agroecology and 60% prefer entrepreneurial.  

Interest rates for short-, mid-, and long-term credit (used for purchases of farm inputs, farm 

equipment, and land, respectively) are set according to the agricultural policy scenario.  
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1.2.4 If applicable, how is space included in the model? 
The landscape is composed of 1 hectare farm plots. Each farming household initially occupies 1 

hectare of land but may expand to unoccupied adjacent (in any direction, but the world does not ‘wrap 

around’) plots if they have the necessary resources to purchase and cultivate it. Each plot has a 

randomly assigned maximum productive potential. Climate change and global food price influence all 

plots equally (i.e. for the former it is assumed that climate change does not vary across space occupied 

by the farming community, and for the latter it is assumed that factors such as distance from the 

nearest market do not affect food price). The landscape is stylized and does not represent a real-world 

location.  

1.2.5 What are the temporal and spatial resolutions and extents of the model? 
Each time step represents one year and each simulation runs for 50 years. Each cell represents 1 

hectare of farmland in a 21 by 21 grid (i.e. 441 cells).  

1.3 Process overview and scheduling 

1.3.1 What entity does what, and in what order? 
In each year (i.e. time step), six processes occur in the following order, with the entity undertaking 

the process shown in square brackets (where the ‘observer’ is the model controller2). In processes 

involving farming households, the order in which each makes decisions and/or takes actions is 

randomly determined.  

1. Set weather [observer] 

Given the climate change scenario, weather conditions are updated and the expected 

impacts are calculated: the temperature anomaly is incremented and the associated yield 

losses are calculated; drought risk is incremented and whether droughts affecting the farming 

community and/or corporate agriculture occur is assessed, along with the associated 

expected average yield losses and global price rise, respectively. 

 

2. Produce crops [all farming households] 

All farming households attempt to produce their target yield (for setting of target yield, see 

‘Consumption and production decisions’ ahead), with actual yield being a function of the 

temperature anomaly, drought (if occurred), and random variation (representing unmodelled 

factors). Following this, each household calculates their asking price (i.e. the selling price they 

aim for), given their target yield, actual yield, and style-specific goals. 

 

Finally, assessment is made of (i) the potential yield increments in the coming year for 

peasant farmers, and (ii) whether farmers have transitioned a plot to agroecology, with the 

transition period being set by the user3,4.  

 

3. Set food prices and other prices [observer] 

Global and local food prices are set. Global food price is set such that: it tends to fall annually 

by a climate scenario-specific average amount (with actual change varying randomly around 

the average, including the possibility of a price rise); tends to oscillate with a given amplitude 

and period; and, is adjusted upwards if a drought affecting corporate agriculture has occurred 

2 This is standard terminology in NetLogo, the platform in which the model was coded.  
3 In the accompanying paper, the transition period is set to 3 years in all model runs.  
4 Note these steps are included in ‘produce crops’ as the labour-intensive production process on peasant farms 
leads to both ongoing yield increments and agroecology transitions.         
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(this adjustment is made according to a climate scenario-specific average amount, with actual 

rise being randomly determined).  

 

Local food price is set by combining household asking prices to give a production-weighted 

average price (i.e. where each household’s asking price is given a weight according the 

quantity of food produced by that household), and this is then adjusted according to global 

food price and the user selected level of global price transmission. Local food price 

represents both farm-gate and consumer price, which are assumed to be equal. 

 

The following prices, which are functions of local food price, are then set: low-skilled wage 

(i.e. the cost of a full-time farm worker), necessary inputs (i.e. expenditure that is necessary 

to allow a worker to be productive, e.g. clothes, tool repair, building maintenance), ‘fertilizer’ 

(which stands in for all non-necessary purchased inputs, such as herbicides and pesticides), 

farm equipment (working animals and small tractors), and land price (for a 1ha plot). Under 

the ‘Entrepreneurial eroding’ policy scenario, current interest rates are calculated5.  

 

4. Consider farming style change [households practicing ‘orphan’ style] 

Farmers practicing orphan agriculture decide whether to change to their preferred style (In 

the current iteration of the model, the only permitted changes are from ‘orphan’ to either 

‘agroecology’ or ‘entrepreneurial’). Orphan farmers with a preference for agroecology will 

convert if they have sufficient savings (i.e. they avoid credit) to cover additional input costs 

during the agroecology transition period. Orphan farmers with a preference for 

entrepreneurial farming will convert if, after providing a basic diet for the family, their 

income plus savings would be sufficient to employ a full-time worker; they will use short-

term credit to purchase fertilizer if they require additional funds. 

 

5. Consider expansion [households practicing ‘agroecology’ or ‘entrepreneurial’ style] 

Before converting to their preferred style, all orphan households occupy 1 hectare of land 

and use manual tools. Following conversion, a household may gradually expand the farm by 

acquiring adjacent (in any direction) unoccupied plots. In addition, to farm newly acquired 

land, households may require additional farm equipment and/or labour inputs. 

 

Agroecology farms: An additional unoccupied adjacent 1 hectare plot and/or working animals 

will be acquired if the costs can be covered by household savings (i.e. credit is avoided). A 

maximum of one new plot can be acquired in each time step, and farmers will not acquire a 

new plot until the most recently acquired plot has been transitioned to agroecology. 

Agroecology households may have up to 10 hectares of land and two pairs of working animals 

as such a farm can be managed using family labour.  

 

Entrepreneurial farms: An additional unoccupied adjacent 1 hectare plot and/or working 

animals or a small tractor may be acquired if farm income and savings cover half the cost; 

credit will be used to cover the remainder, if required. A maximum of one new plot can be 

acquired in each time step.  

 

6. Allocate resources to consumption and production [all farming households] 

5 Interest rates remain constant over time in other agricultural policy scenarios. 
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All farming households make decisions about consumption (of food) and production, given 

their resources and style-specific goals. All households estimate their expected food price in 

the coming year, and then find their optimum production level. 

 

Peasant households initially optimize given their farm land and equipment but without 

considering other resource constraints. Standard optimization methods are used except that 

farmers, who use family labour, do not cost labour when optimizing (i.e. they maximise 

returns-to-labour) (van der Ploeg, 2013). Instead, they must provide workers with a labour 

diet sufficient to allow them to produce at the optimal level (Strauss, 1986). Households then 

set their target yield at this optimal level unless (i) their resources do not permit this level 

production in which case they ration their resources across consumption and production, and 

will abandon the farm if, after selling farm assets, they are unable to meet at least 50% of a 

basic diet for the family; or (ii) optimal production would not provide an income sufficient to 

reproduce the farm and meet their autonomy-related goal of increasing value added per 

labour object, in which case they attempt to increase production.   

 

Entrepreneurial households optimize, again using standard methods except that they aim to 

maximise returns-on-investment (van der Ploeg, 2013), given their resources (including the 

available credit). If at this optimal level returns-on-investment are negative (i.e. the farm 

would run at a loss), they sell an asset and re-optimize; if they have no assets to sell, they 

abandon the farm. They then assess whether income at optimal production would cover their 

expected expenses (e.g. debt obligations) and meet their income target: if not, they aim to 

produce at a level that would come as close to achieving this as possible; if, however, at this 

level returns-on-investment are negative, they sell an asset and re-optimize, unless they have 

no assets to sell, in which case they abandon the farm.    

2 Design Concepts 

2.1 Theoretical and Empirical Background 

2.1.1 Which general concepts, theories or hypotheses are underlying the model’s design at 

the system level or at the level(s) of the submodel(s) (apart from the decision model)? 
The general theory underlying the model is that the root causes of hunger lie in patterns of poverty 

and inequality, and that these are partly generated by the food system itself; that is, the food system 

produces both wealth and poverty, and both good nutrition and hunger (Holt-Gimenez and Patel, 

2009, Moore Lappe and Collins, 2015, Rossett, 2006, Buttel, 2000). Two specific aspects of this are 

explored in the model. Firstly, over-productive ‘corporate’ agriculture drives a tendency for food price 

to fall, which in turn reduces the viability of livelihoods for the least productive agricultures, pushing 

them into poverty and hunger (Mazoyer and Roudart, 2006). Secondly, policies that generally support 

‘entrepreneurial’ farming tend to harm ‘peasant’ farming and may be generating a constellation of 

farms that is not sustainable and is highly vulnerable to changing institutional and market conditions 

(van der Ploeg, 2017).   

The key concept employed in the model is ‘farming styles’ (van der Ploeg, 2018). While farms may 

differ by size and farmers may differ in terms of, for example, risk averseness, van der Ploeg (2018) 

suggests that, alongside these quantitative differences, there are also crucial qualitative distinctions. 

A key distinction is between ‘peasant’ (represented in the model as ‘orphan’ farming and 
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‘agroecology’) and ‘entrepreneurial’ styles of farming6. Here, some key differences lie in (i) farmer 

goals, (ii) the means employed to intensify farming, and (iii) the way farms are connected to markets. 

Peasant farmers have a key goal of deepening autonomy.  Means of achieving this include avoiding 

market dependence and increasing value added per labour object. Production is increased via labour-

intensification. The farm production process produces food as well as most farm inputs: this means 

the next round of production is guaranteed7 without recourse to markets (notwithstanding some 

necessary inputs that must be purchased, including as clothing, tool repairs, or for building 

maintenance). Peasant farmers also avoid credit, making purchases using their savings. Of note, 

peasants do not isolate themselves from markets: the market is used as an outlet for surplus 

production. 

Entrepreneurial farmers have a key goal of expansion, and production is increased via capital-

intensification which is generally partly financed using credit. The farm production process relies on 

purchased inputs (e.g. fertilizers) and employed workers, again often financed using credit. Yield is 

almost entirely sold on the market. This means the logic driving production decisions is largely shaped 

by off-farm processes, such as price ratios (determining the margin) and technology (determining 

scale); thus, the market acts as an ordering principle, and another goal of entrepreneurial farming is 

to maximise returns-on-investment.  

Corporate agriculture has a central goal of maximising profit. In the ABM, however, corporate farms 

are not explicitly represented; rather, they are represented implicitly as a tendency for global food 

price to fall and oscillate.   

The hypothesis of the model is that the development trajectories of different constellations of farming 

styles will have implications for both nutrition and the conditions supporting the health of rural 

communities, and that climate change, agricultural policy and global price transmission will modify 

these implications.   

2.1.2 On what assumptions is/are the agents’ decision model(s) based 
Decisions on optimal production are assumed to be consistent with standard economic approaches 

(i.e. using a production function and a total factor cost curve) (Debertin, 2012, Ellis, 1993) but modified 

using van der Ploeg’s (2013) Chayanovian-based approach, in which goals differ by farming style (see 

above).   

Decisions on asking price (i.e. for food to be sold in the market), on whether to convert to the 

preferred style of farming, and on whether to expand the farm or purchase equipment, are assumed 

to be taken in line with farming style-specific goals (van der Ploeg, 2013, van der Ploeg, 2018). For 

instance, for the latter, peasant farmers will only use saving to make purchases while entrepreneurial 

farmers will use credit (if needed).  

Decisions on rationing resources (between nutrition and production) are guided by arbitrarily 

assigned fixed preferences, with the exception that it is assumed that nutrition will be favoured over 

production when faced with starvation (De La O Campos et al., 2018). For peasants, the decision to 

abandon a farm is made when nutrition falls below a threshold for survival, which is set to 

consumption of half a basic diet, on the assumption that when faced with ‘ultra hunger’ (De La O 

6 In the real-world, this is not a binary distinction and farmers may be more peasant- or entrepreneurial-like. In 

this iteration of the model, however, as we are attempting to take a first look at the implications of farming style 

for hunger and health under climate change, we treat the distinction as being binary. 
7 That is, guaranteed except if faced with unforeseen circumstances such as significant crop losses. 
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Campos et al., 2018) farming is no longer viable.  For entrepreneurial farmers, it is assumed that the 

farm will be abandoned when it is running at loss or debt obligations cannot be met.  

 

2.1.3 Why is a/are certain decision model(s) chosen? 
The decision models of central importance to the model are based on the empirically grounded 

theories on farming styles developed by van der Ploeg (van der Ploeg, 2013, van der Ploeg, 2016, van 

der Ploeg, 2017, van der Ploeg, 2018). These where chosen for the following related reasons. 

Firstly, producer-consumer farming households comprise a large proportion of those affected by, and 

at risk of, poverty and hunger (IFAD, 2011), yet it has been argued this same group could hold the key 

to feeding populations healthily, mitigating climate change (and other environmental damages), and 

providing decent rural livelihoods (La Via Campesina, 2019, HLPE, 2019). In previous global-level 

climate-undernutrition models, however, production and consumption are separated by design, and 

both producer and consumers are represented essentially homogenously: production is not 

distinguished qualitatively by farming style, and, all people are cast as homogenous consumers (i.e. 

producer-consumers are not represented) (e.g. Lloyd et al., 2011).  

Secondly, between-style distinctions go to the heart of debates on the future of farming. The High 

Level Panel of Experts on Food Security (HLPE, 2019) distinguish between ‘sustainable intensification 

and related approaches’ (SI) (which includes, for example, ‘climate smart agriculture’), and, 

‘agroecological and related approaches’ . The former is analogous to ‘entrepreneurial’ farming and 

the latter to ‘agroecology’. The HLPE crucially notes that these two approaches are ‘… grounded in 

very different visions of the future of food systems’ (HLPE, 2019).  

Thus, the model employs decision models based on theories of farming styles in order to assess the 

health implications of these possible future food systems under climate change. 

2.1.4 If the model/a submodel (e.g. the decision model) is based on empirical data, where 

does the data come from? 
The model does not draw on explicit empirical data. Rather, it uses generalizations based on published 

empirically-based studies where possible.  

2.1.5 At which level of aggregation were the data available? 
Not applicable. 

2.2 Individual Decision Making 

2.2.1 What are the subjects and objects of decision-making? On which level of aggregation 

is decision-making modelled? Are multiple levels of decision making included? 
The decision-making subjects are farming households. The objects of decisions are: target production, 

whether to convert to their preferred farming style, whether to expand the farm and/or purchase new 

equipment, how to ration (if required) resources between consumption and production, whether to 

liquid assets if additional funds are needed, and whether to abandon the farm.   

All decisions are made at the household level. 
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2.2.2 What is the basic rationality behind agents’ decision-making in the model? Do agents 

pursue an explicit objective or have other success criteria? 
Households find their optimal production according to their objectives (i.e. goals), which differ by 

farming style. Decisions on target production, as well as farm expansion, are made given resource 

constraints, style-specific goals, fixed preferences (assigned at model initialization), and thresholds 

(e.g. for abandoning the farm).   

2.2.3 How do agents make their decisions? 
Decisions are made according to the rules represented in the decision trees (Figures A, B, and C). 

Within these decision trees, decisions on optimal production are initially made using modified 

standard economic methods; i.e. based on production functions and cost curves (Debertin, 2012, Ellis, 

1993) (see 4.3.6.3).  

 

2.2.4 Do the agents adapt their behaviour to changing endogenous and exogenous state 

variables? And if yes, how? 
No. 

2.2.5 Do social norms or cultural values play a role in the decision-making process? 
Not explicitly. However, the goals of peasant farmers arise from underlying peasant norms and values 

(van der Ploeg, 2018).    

2.2.6 Do spatial aspects play a role in the decision process? 
When attempting to expand the farm, households may only acquire unoccupied adjacent plots (in any 

direction, but the world does not ‘wrap around’). If no adjacent plots are unoccupied, they cannot 

expand.  

2.2.7 Do temporal aspects play a role in the decision process? 
When estimating expected food price in the coming year, agents consider the price trend over the 

previous 5 years. When making decisions guided by income-related goals, households base decisions 

on their average net income over the previous 5 years. When making decisions about production, 

agents account for previous yield losses due to climate change-associated warming trends.  

2.2.8 To which extent and how is uncertainty included in the agents’ decision rules? 
No information that agents obtain (e.g. food prices) contains uncertainty. When agents are estimating 

their expected food price in the coming year, a random element is used to represent unmodelled 

factors which partly represent farmer uncertainty regarding future prices.    

 

2.3 Learning 

2.3.1 Is individual learning included in the decision process? How do individuals change their 

decision rules over time as consequence of their experience? 
No 

2.3.2 Is collective learning implemented in the model? 
No 
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2.4 Individual sensing 

2.4.1 What endogenous and exogenous state variables are individuals assumed to sense and 

consider in their decisions? Is the sensing process erroneous? 
Agents sense and use the following variables in their decision making: local food price and other prices 

(low-skilled wage, necessary inputs, fertilizer, working animals, small tractors, land, interest rates), 

warming trend-associated yield losses, the productive potential of a plot they are considering 

purchasing. Sensing processes are not erroneous. 

 

2.4.2 What state variables of which other individuals can an individual perceive? Is the 

sensing process erroneous? 
None 

 

2.4.3 What is the spatial scale of sensing? 
All sensed variables are sensed globally, except the productivity of plots being considered for 

purchase, for which only plots adjacent to the farm may be sensed. 

  

2.4.4 Are the mechanisms by which agents obtain information modelled explicitly, or are 

individuals simply assumed to know these variables? 
Agents are assumed to know. 

 

2.4.5 Are costs for cognition and costs for gathering information included in the model? 
No 

 

2.5 Individual prediction 

2.5.1 Which data do the agents use to predict future conditions? 
They predict their expected food price in the coming year based on the local price in the previous five 

years. They predict their maximum possible yield in the coming year based on the current temperature 

anomaly (i.e. due to climate change).  

2.5.2 What internal models are agents assumed to use to estimate future conditions or 

consequences of their decisions? 
An agent’s expected food price is based on a combination of: current local price and the price trend 

over the previous five years, random variation to reflect unmodelled factors, and their style-specific 

goals.   

For predictions of temperature anomaly-associated yield losses, all agents are assumed to know the 

current anomaly and the associated yield losses.  

2.5.3 Might agents be erroneous in the prediction process, and how is it implemented? 
The actual local food price in the coming year arises from prices and expectations of all agents; thus, 

predictions of individual agents are likely to be erroneous. All households face the same local food 

price, regardless of the expectations or initial asking price. 

Temperature anomaly-associated yield loss predictions are not erroneous. However, actual yields for 

each household are subject to random variation (to capture unmodelled factors, which implicitly 

includes, for example, growing season temperatures that diverge from the anomaly-associated 

average)).  
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2.6 Interaction 

2.6.1 Are interactions among agents and entities assumed as direct or indirect? 
Households interact indirectly through local food price (which is determined by the production and 

expectations of all agents).  

Households with farms located close to each other may also interact indirectly when purchasing 

additional plots. Households purchase the adjacent plot with highest productive potential, and once 

a plot is occupied it is unavailable to other households. Entrepreneurial farmers may expand faster 

than those practicing agroecology as the latter will not purchase additional land until the previously 

purchased plot has been transitioned (to agroecology).     

2.6.2 On what do the interactions depend? 
Interaction via local food price depends on relative farm productivities; i.e. those with the highest 

production have the greatest influence on local food price, which is a production-weighted average. 

Interactions via land purchase depend on spatial proximity of farms.    

2.6.3 If the interactions involve communication, how are such communications represented? 
Not applicable.  

2.6.4 If a coordination network exists, how does it affect the agent behaviour? Is the 

structure of the network imposed or emergent? 
Not applicable. 

2.7 Collectives 

2.7.1 If a coordination network exists, how does it affect the agent behaviour? Is the 

structure of the network imposed or emergent? 
Not applicable. 

2.7.2 How are collectives represented? 
Not applicable.  

2.8 Heterogeneity 

2.8.1 Are the agents heterogeneous? If yes, which state variables and/or processes differ 

between the agents? 
Between-farming style heterogeneity is of central concern in the model. Peasant (orphan and 

agroecology) and entrepreneurial farmers are heterogenous; for details see 1.3.1 and 2.1.1, Figures B 

and C, section 4.3. 

 

2.8.2 Are the agents heterogeneous in their decision-making? If yes, which decision models 

or decision objects differ between the agents? 
Peasant (orphan and agroecology) and entrepreneurial farmers are heterogenous in the decision 

making for: decisions on style change (i.e. depending on preferred style of the orphan farmer) and 

expansion (see 4.3.4 and 4.3.5), and decisions on allocation of resources to consumption and 

production (see Figures B and C) including when optimizing , setting target production and whether 

to abandon the farm (see Figures B and C, and 4.3.6.3), as well as when deciding their asking price (see 

4.3.2.2).   
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2.9 Stochasticity 

2.9.1 What processes (including initialization) are modelled by assuming they are random or 

partly random? 
At model initiation: households are placed on randomly selected one hectare plots; the maximum 

potential yield and the agroecology yield multiple of each plot is randomly assigned (Table A);  

household preferences for the use of savings (use all, use half, don’t use, save additional 10% of 

income) and rationing (favour production, favour consumption, favour both equally) are randomly 

distributed (but in fixed proportions), as are style preferences (in user specified proportions).  

 

In each time step: droughts occur randomly given their risk, and average expected yield loss (Table A) 

and rises in global food price are randomly set (Table B); yields have a random component to represent 

unmodelled factors (varying by about ±15%; normally distributed, mean = 0, std dev = 6.5); global 

food price has a general tendency to fall, but actual change is partly randomly determined (and 

included the possibility of a rise); if local or global food price fall below 5c/kg they are increased by a 

random amount (see 4.3.3.1 and 4.3.3.2); household expected food prices in the coming year contain 

a random component to reflect unmodelled processes (see 4.3.6.3). 

 

2.10 Observation 

2.10.1 What data are collected from the ABM for testing, understanding, and analysing it, and 

how and when are they collected? 
The key model outputs are described in 4.3.7. All data are collated at the end of each time step.  

2.10.2 What key results, outputs or characteristics of the model are emerging from the 

individuals? 
The above outputs are assessed at the system level but they are not strictly ‘emergent’ (e.g. they are 

sums or aggregates of individual-level variables), but collectively they give an indication of the 

productive potential and health of the community as a whole. 

3 Details 

3.1 Implementation details 

3.1.1 How has the model been implemented? 
Netlogo 6.0.1 (Wilensky, 1999). 

3.1.2 Is the model accessible and if so where? 
On request from the author. 

3.2 Initialization 

3.2.1 What is the initial state of the model world, i.e. at time t=0 of a simulation run? 
See Tables A and B. 

 

3.2.2 Is initialization always the same, or is it allowed to vary among simulations? 
Households are randomly located. Style preference patterns are user selected. 

3.2.3 Are the initial values chosen arbitrarily or based on data? 
Initial values are derived for the empirically-based literature where possible (see Tables A and B). 
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3.3 Input data 

3.3.1 Does the model use input from external sources such as data files or other models to 

represent processes that change over time? 
No 

3.4 Sub-models 

3.4.1 What, in detail, are the submodels that represent the processes listed in ‘Process 

overview and scheduling’? 
For model a description of model variables and parameters, their initial values, and how they change 

over time, see Tables A and B. For decision trees, see 4.2. For pseudo-code, see 4.3. 

 

3.4.2 What are the model parameters, their dimensions and reference values? 
See Tables A and B. 

 

3.4.3 How were sub-models designed or chosen, and how were they parameterized and then 

tested? 
The model sub-models for farming household decisions were designed as expressions of van der 

Ploeg’s (2018) empirically-based theories of style-specific goals and behaviours, drawing on standard 

economic methods (Debertin, 2012, Ellis, 1993) but modifying them as required (Holt-Gimenez, 2019, 

van der Ploeg, 2013), empirical studies of farm productivity (Pimentel and Pimentel, 2008), ‘rules of 

thumb’ (for productive potential given equipment and land) (Mazoyer and Roudart, 2006). 

Additionally, ad hoc decision trees were developed, intended to represent style-specific goals and 

plausible farmer behaviour when faced with starvation or a farm that is running at a loss.       

 

The climate sub-model was designed to be an approximation of possible changes in climate and 

weather and the possible impacts on farming.  

 

The sub-models were test iteratively, which each section of code being tested (e.g. by tracking 

individual working variables), de-bugged, and modified as necessary.  

4 Tables, figures, and pseudo-code 

4.1 Tables 
The tables in this section describe model variables and parameters, their functions, their initial values, 

and how they change over time. Table A shows factors associated with agents and the environment; 

Table B shows the prices of factors that may be purchased.  
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Table A. Key environment and agent factors, their initial values, and how they change over time  

Factor Function or 
effect 

 Initial value Change over time Notes 

Landscape      
 

‘Local area’ 
 

Grid of 1 ha plots. 
 

  

441 plots. 
 

No change. A 21 by 21 grid of 
arable plots.  

 

Plot max 
productivity 

 

Each plot has a 
maximum 
productivity 
under orphan 
agriculture (i.e. in 
which no non-
labour farm 
inputs are used). 

  

Randomly set for each 
plot: 1000kg/year ±20% 
(uniform distribution). 
[Based on Mazoyer and 
Roudart (2006)] 
 

 

Gradual increase on 
‘optimized’ peasant 
farms. ‘Peasant’ 
policy: orphan 
1.5%/year, Agroecol 
3% per year; other 
policies: Orphan 
1%/year, Agroecol 
1.5%/year. Max 
production = 10t/ha.  
[Based on van der 
Ploeg (2013)] 
 

 

‘Optimized’ in terms 
of production; 
assumed that if 
farmer unable to 
optimize, then also 
unable to gain 
production increases. 
Assumes no land 
degradation under 
any style.  

 

Plot 
agroecology 

yield 
multiple 

 

Max productivity 
of a plot is raised 
by a given 
multiple after 
transitioning to 
agroecology. 

  

Randomly set for each 
plot: mean=4, SD=1.5 
(normal distribution, 
restricted to values 
between 2 and 7). 
[Based on Pretty et al. 
(2003), Pretty et al. (2018), 
Rosset and Altieri (2017)] 
 

 

No change. 
 

Productivity rises 
slowly during the 
transition phase, with 
the full yield multiple 
being achieved after 
the agroecology 
transition period (see 
4.3.2.4) 

 

Agroecology 
transition 

period 
 

 

Number of years 
to transition a 
plot to 
agroecology. 

  

3 years. [Based on Rosset 
and Altieri (2017)] 

 

No change. Transition achieved 
via labour 
intensification (see 
‘Agroecology labour 
multiple’) 

Agents      
 

Farming 
households 

 

Farming 
households, each 
of four people, 
practicing a 
particular style of 
farming. Using 
manual tools, 
each household 
can farm one 
hectare.  
 

  

250; each randomly 
assigned a 1ha plot; all 
practicing orphan 
agriculture; preference to 
develop via a particular 
style distributed according 
to scenario. All households 
are assumed to have 
consumed a basic diet, be 
aiming to produce their 
maximum yield, and have 
no savings 

 

Households change to 
preferred style if they 
have access to 
sufficient resources 
(see 4.3.4), or, 
abandon farming if 
nutrition falls below 
50% of a basic diet. 

 

Initially ~40% of plots 
are unoccupied. 
Approximates 
conditions in lower 
income countries. 
(Bruinsma, 2003, 
Mazoyer and 
Roudart, 2006, World 
Bank, 2019) 

 

Family basic 
diet 

 

Quantity of cereal 
equivalents 
providing a basic 
diet to a family 
for one year. 
 

  

700kg/year (equiv. to 
~2200kcal/person/day). 
[Based on Mazoyer and 
Roudart (2006)] 

 

No change. 
Households abandon 
their farm if they are 
unable to obtain 50% 
of a basic diet.  

 

Household members 
do not age over time. 

 

Labour diet 
 

Worker calorie 
intake/day to 
allow a given 
amount of labour 
power.   

  

5100kcal/day for max 
production on 1ha; 
diminishing returns as 
intake increases to this 
level (see 4.3.6.1) [Based 
on Strauss (1986) & 
Pimentel and Pimentel 
(2008)] 
 

 

Acquiring working 
animals or a small 
tractor allows a 
worker to farm more 
than 1ha (Table B). 
Labour input 
requirements double 
under agroecology.  

 

For orphan 
agriculture, max 
production on 1ha 
with manual tools 
requires 150 ten hour 
labour days/year. 
[Based on Pimentel 
and Pimentel (2008)] 

 

Agroecology 
labour 

multiple 

 

Increase in labour 
requirements for 
maximum 
production in 
agroecology. 
 

  

2 (i.e. for max production, 
required labour time 
doubles). [Based on Rosset 
and Altieri (2017)] 

 

No change. ‘Necessary input’ 
requirements rise 
proportionally with 
labour (Table B). 
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Table A, continued 

Factor Function or effect Initial value Change over time Notes 

Climate 

    

 

Warming 
trend and 
yield losses 

 

Yields decline as 
warming increases, 
with lower losses for 
agroecology. 
(For effects on global 
food price, see Table 
B). 

 

Warming = 0. 
Yield loss = 4%/degree of 
warming [Based on Moore et 
al. (2017) and Zhao et al. 
(2017)]; losses reduced by 
10% under agroecology. 
[Based on Rosset and Altieri 
(2017)] 

 

Linear rise in warming.  
High CC: 2 degrees/50years 
(i.e. 0.04 degrees per year); 
Low CC: 1 degree/50 years 
(i.e. 0.02 degrees per year); 
No CC: no warming. [Based 
on Knutti and Sedláček 
(2012)] 
 

 

An approximation guided by 
average warming under the 
Representative 
Concentration Pathways 
(Moss et al., 2010). 
Agroecology loss reductions 
are an approximation.  
  

 

Drought risk 
and yield 

losses 

 

Proportion of yield 
lost if a drought 
occurs; lower losses 
under agroecology. 
(For effects on global 
food price, see Table 
B). 

 

Drought risk = 5%/year 
Drought yield losses are - 
High CC: av. 15%, up to 30%; 
Low CC: av. 10%, up to 25%; 
No CC: av. 7.5%, up to 20%. 
Losses reduced by 20% 
under agroecology (see 
4.3.1.1 and 4.3.2.1). [Based 
on Rosset and Altieri (2017)] 
 

 

Linear increase in risk –  
High CC: doubles after 50 
years; Low CC: 1.5 times 
after 50 years; No CC: no 
change. 
Yield losses are fixed over 
time. 

 

Drought losses are 
contingent on multiple 
processes meaning no 
generally applicable 
quantification available. 
Plausible approximations 
used, including for 
agroecology. 
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Table B. Prices for key factors, their initial values, and how they change over time 

Factor Function or effect Initial value Change over time Notes 
Food price     

 

Local food 
price 

 

Food price faced by 
farming households. 

 

40c/kg (Given input prices 
(see below), this places the 
average farmer close to the 
threshold for development.) 
 

 

Calculated as the production-
weighted average of farmer 
asking prices, adjusted for global 
price given price transmission 
(see 4.3.3.2). 
 

 

Farm gate and 
consumer prices 
assumed to be the 
same. 

 

Global food 
price 

 

Represents price 
arising from global 
corporate agriculture: 
influences trend in 
local price via global 
price transmission 
(Figure A) 

 

40c/kg 
 

General tendency to fall (most 
rapidly under ‘no climate change’ 
and most slowly under ‘high 
climate change’ (due to 
warming)) & oscillate. Drought 
causes price increases, with the 
greatest increases under ‘high 
climate change’ (see 4.3.3.1). 
 

 

The simulations aim to 
assess the impact of the 
tendency for global 
prices to fall and 
oscillate on smallholder 
farming. [Based on 
Mazoyer and Roudart 
(2006)] 

Inputs     
 

Labour: low 
skilled 
wage 

 

Cost of a full-time 
farm worker (Labour 
time may be 
purchased in fractions 
given target yield). 
 

 

Price = 180% of the cost of a 
basic diet for a family of 
four; i.e. price = 700kg * local 
food price * 1.8. [e.g. Wage 
Indicator Foundation (2019)] 

 

Same formula (based on average 
local price over last 5 years), but 
with an additional rise of 2% per 
year [Based on ILO (2016)]. 

 

Peasants do not cost 
labour. Over time, food 
costs represent a 
smaller proportion of 
people’s income.  

 

Purchased 
inputs: 

necessary 
inputs 

 

‘Necessary inputs’ 
represent expenditure 
required to enable 
production. Assumed 
to be scalable given 
target production. 

 

Necessary inputs for max 
production: price/ha = 15% 
of a low skilled wage.  
[Based on Petersen and 
Silveira (2017) and van der 
Ploeg (2016)] 

 

Under agroecology, necessary 
inputs for maximum production 
double (i.e. in proportion to 
increased labour requirements 
(Table A)). 

 

Necessary inputs 
include clothing, tool 
repair, building 
maintenance, etc 
(Mazoyer and Roudart, 
2006). 
 

 

Purchased 
inputs: 

fertilizer 

 

Increases productivity 
of a plot up to 10 
times (Mazoyer and 
Roudart, 2006), with 
diminishing returns as 
quantity used 
increases to max (see 
4.3.6.2) 
 

 

Price of 1kg = local food 
price/kg * 10. Max 
productivity at 500kg [e.g. 
(Roser and Ritchie (2019), 
van der Velde et al., 2013, 
Yamano and Arai, 2011)]. 
Under ‘Entre’ and ‘entre 
eroding’ policy: 50% subsidy. 

 

Same formula, but price rises 
1%/year.  
Under ‘entre eroding’, subsidy 
falls by 1%/year. 

 

‘Fertilizer’ assumed to 
represent all non-
necessary purchased 
inputs (e.g. pesticides, 
seeds). Thus, the 
fertilizer:food price 
ratio accounts for this. 
 

 

Working 
(i.e. 

draught) 
animals 

 

Allows one worker to 
farm up to 5ha (cf. 
manual tools, which 
allow 1ha to be 
farmed). 

 

Price = 30 years of net 
income (i.e. after feeding the 
family) of average orphan ag 
farm (See 4.3.3.3). [Based on 
Mazoyer and Roudart 
(2006)] 
 

 

Same formula, based on average 
local food price over the last five 
years. 

 

Working animals allow 
workers to farm a 
greater area but do not 
increase plot 
productivity. 

 

Small 
tractor 

 

Allows one worker to 
farm up to 16 hectares 
(cf. manual tools, 
which allow 1ha to be 
farmed).  

 

Price = 150 years of net 
income (i.e. after feeding the 
family) of av orphan ag farm. 
(See 4.3.3.3) [Based on 
Mazoyer and Roudart (2006) 
and Pimentel and Pimentel 
(2008)] 
 

 

Same formula, based on average 
local food price over the last five 
years.  

 

Tractors allow workers 
to farm a greater area 
but do not increase plot 
productivity. 

 

Land price 
 

Farmers may expand 
by purchasing unused 
adjacent plots.  

 

Price/ha = the cost of 30 
tonnes of cereal (Equivalent 
to the value of 30 years of 
average max production of 
orphan agriculture) (See 
4.3.3.3).   

 

Same formula, based on average 
local food price over the last five 
years.   

 

Price chosen as this 
roughly represents the 
gross value produced 
on the land over the 
working life of an 
orphan farmer. 
 

Credit 
    

 

Annual 
interest 
rates 

 

Interest rates on loans 
for fertilizer (short-
term), animals and 
tractors (mid-term), 
and land (long-term) 
(van der Ploeg, 2018). 
 

 

Short-term (1 year): 20%, 
mid-term (3 to 6 years): 15%, 
long-term (8 years): 10%.  
Rates halved under ‘Entre’ 
and ‘Entre eroding’ policy. 
 
 

 

Fixed, except under ‘Entre 
eroding’ policy where rates 
increase linearly over time, 
returning to their full values after 
50 years.   

 

Peasant farmers do not 
use credit. Rates based 
on Chandio and Jiang 
(2018), Chisasa and 
Makina (2012), Duniya 
and Adinah (2015), 
Malik and Nazli (1999). 
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4.2   Figures 
Figure A show household actions and decision related to production, and Figures B and C show 

household actions and decisions related to the allocation of resources to consumption and 

production for peasant and entrepreneurial farmers, respectively.  

 

 
Figure A Household actions and decisions related to production. Scenarios are shown in orange; ‘observer’ (i.e. model 
controller) are shown in grey boxes and by dotted arrows; household decisions are shown in blue boxes; household actions 
are shown in white boxes and linked by solid arrows. Decisions related to the allocation of resources to consumption and 
production are shown in green and differ for peasant and entrepreneurial farmers (see Figures B and C) 
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Figure B Peasant farmer actions and decisions related to the allocation of resources to consumption and production. 
Household decisions are shown in blue boxes except for decisions shaped by fixed preferences which are shown in red; 
household actions are shown in white boxes and linked by arrows. Decisions related to production are shown in green (see 
Figure A). 
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Figure C Entrepreneurial farmer actions and decisions related to the allocation of resources to consumption and production. 
Household decisions are shown in blue boxes; household actions are shown in white boxes and linked by arrows; scenarios 
are shown in orange. Decisions related to production are shown in green (see Figure A). 
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4.3 Pseudo-code 
In this section, relevant pseudo-code is shown for each of the six major model processes (see 1.3) 

and for the main model outputs (see 1.1). See also Tables A and B for how additional variables and 

parameters change over time. 

4.3.1 Set weather 

4.3.1.1 Average yield losses if a drought occurs 

Average yield losses if a drought occurs: 
For high climate change, average yield loss = 15% to ~30% 

                                                                                  = (15 + absolute value [normally distributed random floating point number 

with (mean = 0, std dev = 7)]) / 100 

For low climate change, average yield loss = 10% to ~25% 

                                                                                  = (10 + absolute value [normally distributed random floating point number 

with (mean = 0, std dev = 7)]) / 100           

For no climate change, average yield loss = 7.5% to ~20% 

                                                                                  = (7.5 + absolute value [normally distributed random floating point number 

with (mean = 0, std dev = 6.5)]) / 100 

 

4.3.2 Produce crops 

4.3.2.1 Household yield losses if a drought has occurred 
For orphan and entrepreneurial households (note that ‘average yield losses’ are calculated in 4.3.1.1): 

household drought yield loss = 80% to 120% of average losses for 90% of households 

                                                                                                          = average yield loss × (1 + ([normally distributed random    

                  floating point number with (mean = 0, std dev = 10)] / 100)) 

For agroecology households, losses are calculated as for orphan and entrepreneurial households but then decreased by 

20%. 

4.3.2.2 Actual yield 

Actual yield is target yield, reduced by warming-associated yield losses (Table A), drought-associated 

yield losses (4.3.2.1), and randomly adjusted (by up to ~±15%) to account for unmodelled factors. 

 
actual yield = (target yield – (warming-associated yield losses + drought associated yield losses)) × 

                ((1 + normally distributed random floating point number with (mean = 0, std dev = 6.5) / 100) 

 

4.3.2.3 Household asking price  

Households finding their asking price in style-dependent manner. Asking prices are restricted such 

that they do not differ by more than ± 15% of expected price. 

 
For peasant farmers: 

yield for sale = what would remain of the yield if the family were provided with a basic diet and  

                                                                          sufficient for 90% of a maximum labour diet were set aside 

                        = actual yield – (quantity required to provide a basic family diet +  

                                                                           quantity to provide 90% of a maximum labour diet) 

 

desired income = the maximum of: either the cost of 90% of maximum necessary inputs, or, a net income of 105% of the   

                                                                                                                         average net income over the previous five years8    

                            = max (90% of cost of maximum necessary inputs, 105% of five year average net income)  

8 The former is the quantity of necessary inputs required for 90% of maximum labour to be fully productive; 
the latter represents an increase on value added per labour object (i.e. a key goal of peasant farmers). 
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If yield for sale > 0 [asking price = (desired income) / (yield for sale) 

  if asking price > expected price × 1.15 [set asking price = expected price × 1.15] 

                                   if asking price < expected price × 0.85 [set asking price = expected price × 0.85] 

                   ] 

If yield for sale < 0 [asking price = expected price × 1.15]9 

 

 

For entrepreneurial farmers: 

yield for sale = actual yield  

asking price = (target yield × expected price) / yield for sale) 

if asking price > expected price × 1.15 [set asking price = expected price × 1.15] 

if asking price < expected price × 0.85 [set asking price = expected price × 0.85] 

 

4.3.2.4 Agroecology yield rise during transition period  

Household yields rise gradually during the agroecology transition period, achieving the full 

agroecology yield multiple after the transition period: 
During transition period, achieved yield multiple = (plot agroecology yield multiple) /  

           (agroecology transition period – plot years under agroecology) 

 

4.3.3 Set food prices and other prices 

4.3.3.1 Global food price  

Global food price is set such that it has a tendency to fall (fastest when no climate change; slowest 

under high climate change), oscillate, and rise in response to a drought. 

 

Roughly linear tendency to fall (but may also rise): 
For high climate change, working global food price = average fall of 1% per year  

   = global food price(t-1) –  

                                                                   (global food price(t-1) × 0.01) + normal distributed random floating point number with  

                                                                             (mean = 0, std dev = global food price(t-1) × 0.025) 

For low climate change, working global food price = average fall of 1.25% per year 

                                                                                          = global food price(t-1) –  

                                                              (global food price(t-1) × 0.0125) + normal distributed random floating point number with  

                                                                          (mean = 0, std dev = global food price(t-1) × 0.0275) 

For no climate change, working global food price = average fall of 1.5% per year 

                                                                                        = global food price(t-1) –  

                                                                (global food price(t-1) × 0.015) + normal distributed random floating point number with  

                                                                            (mean = 0, std dev = global food price(t-1) × 0.03) 

 (where t is the current time step) 

 
Check working global food price > 5c/kg (i.e. assume a price lower than this would be unreasonably low): 

      while (working global food price) ≤ 5c/kg [  

set (working global food price) =  

              working global food price + (random floating point number ≥0 and < 5) 

                  ] 

 

Adjust for oscillation: 
let amplitude = 0.3 and period = 10 

9 If a household would have nothing for sale after meeting a basic diet and 90% of a labour diet they will boost 
they asking price by as much as they think is viable: this is assumed to be 15% above their expected price. 
Households will sell at least some of their yield as they require at least some necessary inputs if they are to 
produce crops.   
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oscillator = amplitude ×  𝑠𝑖𝑛 (
2𝜋

𝑝𝑒𝑟𝑖𝑜𝑑
× 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 ×

180

𝜋
)  

working global food price = working global food price + (oscillation * 0.05) 

 

Check working global food price >5c/kg, as per code above. 

 

Adjust for drought: 
For high climate change, drought price increase = 10% to 17.5% 

                   = (random floating point number ≥ 10 and <17.5) / 100 

For low climate change, drought price increase = 7.5% to 12.5% 

                   = (random floating point number ≥ 7.5 and <12.5) / 100 

For no climate change, drought price increase = 5% to 7.5% 

                   = (random floating point number ≥ 5 and <7.5) / 100 

 

global food price = working global food price × (1 + drought-price-increase) 

 

4.3.3.2 Local food price 

Local food price is the production-weighted average of household asking prices adjusted by global 

price transmission: 
 Production-weighted average of household asking prices = 

∑ [ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑎𝑠𝑘𝑖𝑛𝑔 𝑝𝑟𝑖𝑐𝑒 ×  (
ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑦𝑖𝑒𝑙𝑑 𝑓𝑜𝑟 𝑠𝑎𝑙𝑒

∑ (𝑦𝑖𝑒𝑙𝑑 𝑓𝑜𝑟 𝑠𝑎𝑙𝑒)𝑎𝑙𝑙 ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑠
)]

𝑎𝑙𝑙 ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑠
 

 

Check production weighted price > 5c/kg (i.e. assume a price lower than this would be unreasonably low): 

      while (production-weighted average of household asking prices) ≤ 5c/kg [  

set (production-weighted average of household asking price) =  

              production-weighted average of household asking price + (random floating point number ≥0 and < 5) 

                  ] 

 

Adjust for global price transmission: 

       % change global food price = (global food price(t) – global food price(t-1)) / global food price(t-1), where t is the current  

time step 

       local food price = production-weighted average of household asking prices ×  

((1 + % change in global food price) * global price transmission)) 

 

4.3.3.3 Prices of working animals, small tractors, and land 

Prices are linked to average local food price over the previous 5 years. 

 
price of working animals plus simple equipment = ~30 years of average income for an orphan farmer after feeding the  

                                                                                                                                                                      family a basic diet 

                                                                                      = 30 years × (1000kg – 700kg) × local food price   

                                                                                     ≈ ~10 years of average gross value product per ha for an orphan farmer 

                                                                                     = 10 × 1000kg × five year average local food price 

 

price of small tractor = ~150 years of average income for an orphan farmer after feeding the family a basic diet 

                                      = 150 years × (1000kg – 700kg) × local food price   

                                       ≈ ~50 years of average gross value product per ha for an orphan farmer 

                                       = 50 × 1000kg × five year average local food price 

 

price of 1ha of land = ~30 years of average gross value product per ha for an orphan farmer  

                                    = 30 × 1000kg × five year average local food price 

 

 

4.3.4 Consider farming style change 
Orphan with preference for agroecology: 
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Change style if: 

 savings ≥ additional inputs required during transition period, which is: 

  [additional necessary inputs] + [additional labour diet], which is: 

  [(necessary inputs × (agroecology labour multiple – 1)] +  

[(daily labour diet – daily basic diet) * annual labour days * local food price *  

(agroecology labour multiple – 1)] 

 

Orphan with preference for entrepreneurial:  
 Change style if: 

  savings + (income – family basic diet) ≥ low skilled wage 

 

4.3.5 Consider expansion 
Orphan farmers cannot expand their farm beyond one hectare (the maximum area that can be 

managed by an orphan farmer using manual tools). Agroecology farmers may acquire up to 10 

hectares plus two set of working animals (as this can be managed using family labour), and they only 

make purchased using their savings. Entrepreneurial farmers, who use wage labour, may acquire an 

unlimited number of hectares plus working animals or small tractors; they make purchases if they 

can pay at least half the cost using savings and acquire credit for the balance (mid-term credit for 

working animals and tractors; long-term credit for land).  

Agroecology farmers: 

IF all plots transitioned to agroecology [ 

    AND IF have only 1 hectare of land AND savings > (price of working animals + one hectare of land) [ 

IF at least one plot adjacent to the farm is unoccupied, acquire the plot with the greatest yield potential  

                                                                                                                                             and one pair of working animals 

] 

         ELSE IF have working animals that are able to farm more land than currently owned AND own < 10 hectares AND      

                                                                                                                                                savings > price of one hectare of land [ 

IF at least one plot adjacent to the farm is unoccupied, acquire the plot with the greatest yield potential 

]  

               ELSE IF own 5 hectare of land AND own 1 pair of working animals AND savings > price of working animals [ 

 acquire an additional pair of working animals 

                 ]        

] 

 

Entrepreneurial farmers: 

IF own ≥ 1 tractor AND could farm more land than currently owned with these tractors AND  

                                                                                                      savings ≥ (price of one hectare / 2) [ 

IF at least one plot adjacent to the farm is unoccupied, acquire the plot with the greatest yield potential  

] 

    ELSE IF (savings + current income + (price of owned working animals / 2)10 ≥ (price of a small tractor / 2)) AND  

                       mid-term debt = 0) [ 

                  acquire a tractor 

  ] 

       ELSE IF own ≥ 1 pair of working animals AND could farm more land than currently owned with these working animals  

                                                                                                                                               AND savings ≥ (price of one hectare / 2) [ 

IF at least one plot adjacent to the farm is unoccupied, acquire the plot with the greatest yield potential  

 ] 

           ELSE IF ((savings + current income) ≥ (price of working animals / 2)) AND no tractors owned AND mid-term debt = 0)[ 

             acquire a pair of working animals 

] 

10 If moving for using working animals to using tractors, farmers will sell their working animals at half their 
initial value. 

257



               ELSE IF ((savings + current income) ≥ (low skilled-wage × farm size)11) AND no working animals or tractors are    

                                                                                                                             owned AND savings ≥ (price of one hectare / 2) [ 

IF at least one plot adjacent to the farm is unoccupied, acquire the plot with the greatest yield potential  

] 

 

4.3.6 Allocate resources to consumption and production 

4.3.6.1 Proportion of maximum yield achieved as a function of labour diet 

Based on Strauss (1986). 
Proportion of maximum yield achieved = f(proportion of maximum labour power)  

= f(proportion of maximum labour diet consumed) 

= -(proportion of maximum labour diet consumed)^2 +  

2×(proportion of maximum labour diet consumed) 

 

4.3.6.2 Yield increases with fertilizer 

With maximum fertilizer input (assumed to be 500kg/hectare) the yield multiple is assumed to be 10 

(e.g. if yield on a hectare of land were 1 tonne then the application of 500kg of fertilizer would lead 

to a yield of 10 tonnes). Fertilizer use up to this maximum brings diminishing returns.  

 
The table below shows the relation between fertilizer inputs and the achieved yield multiple. The top row (‘Prop’) is the 

proportion of maximum fertilizer used (e.g. 0.2 means 100kg of fertilizer was used) and the second row (‘Mult’) shows the 

associated yield multiple (e.g. if a proportion of 0.2 were used the yield multiple would be 3.6).   

Prop  .05 .1 .15 .2 .25 .3 .35 .4 .45 .5 .55 .6 .65 .7 .75 .8 .85 .9 .95 1 

Mult 1.1 1.9 2.8 3.6 4.4 5.1 5.8 6.4 7 7.5 8 8.4 8.8 9.1 9.4 9.6 9.8 9.9 9.98 10 

 

 

4.3.6.3 Optimization 

First, all households find their expected price in the coming year. 

 
Expected price 

Each household estimates their expected food price in the coming year, where expected price reflects the price farmers 

would aim to sell their yield for, given price trends and their style-specific goals. Thus, expected price is based on an initial 

estimate given price trends, which is then adjusted as follows to reflect style-specific goals: orphan farmers make no 

adjustment; entrepreneurial farmers aim to expand by capturing more of the market so reduce their expected price; 

agroecology farmers aim to increase autonomy by increasing returns-to-labour-object so they increase their expected 

price.    

 

    Step 1: find initial expected price 

     Initial expected price = current local food price +  

                            (slope of local food price over previous five years × (random floating point number > -3.5 and <1.5)  

Where, the random number represents unspecified factors when making 

judgements about price trends, but there is a general tendency to assume 

that the current trend will slow.  

 

 IF initial expected price ≤ 0 THEN set initial expected price = current price × 1.05 

 

    Step 2: adjust initial expected price given farming style 

       Orphan farmers: 

  Expected price = initial expected price 

Entrepreneurial farmers:  

  Expected price = initial expected price × 0.98 

 Agroecology farmers: 

11 This is the cost of wages to farm all the plots currently owned; i.e. using manual tools, each working can 
manage 1 hectare). 

258



  Expected price = initial expected price × 1.15 

 

Following this, households find their optimal production. 
 

Find optimal production: peasant households 

 

Step 1: Find production level that would maximise returns-to-labour, given land and equipment but assuming no other 

resource constraints. Maximising returns-to-labour is equivalent to optimizing production using standard economic 

methods (i.e. to maximise profit) (Debertin, 2012, Ellis, 1993) but without costing labour (van der Ploeg, 2013).  

  

The total value product (TVP) curve is derived by modifying the curve for ‘proportion of maximum yield achieved’ 

given labour inputs (see 4.3.6.1) so that it accounts for household maximum achievable yield and expected food 

price.  

 

                      TVP =  [-(proportion of maximum labour diet consumed)^2 +   

2×(proportion of maximum labour diet consumed)] × (expected price × maximum yield) 

 

It is assumed that, for a given proportion of maximum labour power (which is equal to the proportion of a 

maximum labour diet consumed) to be productive, an equivalent proportion of maximum necessary inputs is 

required. Thus: 

 

TVP =  [-(proportion of maximum necessary inputs)^2 +   

2×(proportion of maximum necessary inputs)] × (expected price × maximum yield) 

     [where the x-axis is proportion of maximum necessary inputs, and the y-axis is $] 

 

The total factor cost (TFC) curve is derived such that it begins at the origin and slope is equal to the cost of 

necessary inputs that would allow maximum production. For the TFC curve: x-axis is proportion of maximum 

necessary inputs and y-axis is $.  

 

TFC = (cost of necessary inputs that would allow maximum production) ×  

                    (proportion of maximum necessary inputs) 

 

 

Then, production is optimal when: 
𝑑(𝑇𝑉𝑃)

𝑑𝑥
=

𝑑(𝑇𝐹𝐶)

𝑑𝑥
 

 

Step 2: IF optimal production is at a level such that workers would not be consuming a basic diet THEN boost optimal 

production to a level where workers consume a basic diet. 

  

      IF optimal proportion of maximum necessary inputs × calories for maximum labour < calories in basic daily diet 

                             THEN [optimal proportion of maximum necessary inputs =  

                                                                                                           calories in basic daily diet / calories for maximum labour power 

                                          = 2200 / 5100 = 0.43 

    ] 

 

Step 3: Assess whether optimal production would provide sufficient income to reproduce the farm: i.e. provide a family 

basic diet, and, allow the purchase of sufficient necessary inputs to enable workers consuming a basic labour diet to be 

fully productive. If not, attempt to increase production.    

  

 IF (gross income at optimal production – (family basic diet × expected food price)) < 

                                                                           ((2200 / 5100) × cost of necessary inputs that would allow maximum production)  

  THEN [set optimal production to a level that provides required income  

                                                                      OR if not achievable, set optimal production = maximum achievable production 

                                               ] 

 

Step 4: Assess whether optimal production would provide sufficient income to achieve autonomy-related goal of increasing 

value added per labour object. This is assumed to be achieved if a household’s five year average net income is increased by 

5%. If not, attempt to increase production.  
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 IF (gross income at optimal production – (family basic diet × expected food price)) < 

                                                                                                                                                      (five year average net income × 1.05)  

  THEN [set optimal production to a level that provides desired income  

                                                                      OR if not achievable, set optimal production = maximum achievable production 

                                               ] 

 

Step 5: see Figure A for subsequent household decisions on target production, rationing if necessary, and whether to 

abandon the farm.  

 

Find optimal production: entrepreneurial households 

Step 1: find production level that would maximise returns-on-investment given available resources including maximum 

available credit. Maximising returns-on-investment is based on the same curves used to optimize production in standard 

economic methods (i.e. to maximise profit) (Debertin, 2012, Ellis, 1993) but aims for a different target (van der Ploeg, 

2013).  

 

The total value product (TVP) curve has an x-axis for proportion of maximum labour used (which is equal to 

proportion of maximum necessary inputs used), a y-axis for proportion of maximum fertilizer inputs12 used, and a 

z-axis for total value product in $. The total factor cost (TFC) curve has the same x- and y-axes but the z-axis is 

total factor cost in $. And for each combination of inputs, returns-on-investment (ROI) is given by: 

 𝑅𝑂𝐼 =  
𝑇𝑉𝑃−𝑇𝐹𝐶

𝑇𝐹𝐶
 

 

The household sets optimal production at the level which, of the viable options (given available resources), 

maximises ROI.  

𝑣𝑖𝑎𝑏𝑙𝑒 𝑅𝑂𝐼𝑠 = 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑅𝑂𝐼𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑎𝑐ℎ𝑖𝑒𝑣𝑎𝑏𝑙𝑒 𝑔𝑖𝑣𝑒𝑛 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 

 

𝑡𝑎𝑟𝑔𝑒𝑡 𝑅𝑂𝐼 = max (𝑣𝑖𝑎𝑏𝑙𝑒 𝑅𝑂𝐼𝑠) 

 

𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙 𝑎𝑡 𝑤ℎ𝑖𝑐ℎ 𝑡𝑎𝑟𝑔𝑒𝑡 𝑅𝑂𝐼 𝑖𝑠 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑 

  

Step 2: Check whether the expected return on investment is positive. If not, sell assets and re-optimize.  

 

IF viable ROI < 0, THEN  

[IF they have assets to sell [sell assets (see 4.3.6.4) and return to step 1]  

                                                                          ELSE [abandon the farm] 

  ] 

 

Step 3: Assess whether optimal production would allow household to cover expenses and achieve desired income in the 

coming year. If not, attempt to increase production.  

 

Desired income is either (i) average net income per hectare over the previous 5 years if no additional land was acquired in 

the current time step, or (ii) if an additional hectare was acquired in this time step, 95% of average net income per hectare 

over the previous five year. The latter is because entrepreneurial farmers aim to increase income via expansion, where 

income is determined by margin per ha multiplied by scale (i.e. farm size) (van der Ploeg, 2018). Thus, if entrepreneurial 

farmers have expanded by acquiring an additional plot in the current time step, the margin per ha may fall while income 

rises.  

 IF no land acquired in the current time step  

THEN [desired net income = five year average net income per hectare × farm size] 

ELSE [desired net income = five year average net income per hectare × farm size × 0.95]   

  

IF TVP at optimal < (debt obligations + basic diet for the household + desired income)  

  THEN [set target TVP = min ((debt obligations + basic diet for the household + desired income),  

                                                                                        maximum viable TVP) 

                                                find lowest cost way of achieving target TVP 

               IF ROI for target TVP < 0 THEN [IF they have asset to sell [sell assets (see 4.3.6.4) and  

                      return to step 1] 

        ELSE [abandon the farm] 

12 ‘Fertilizer’ stands in for all purchased inputs (e.g. herbicides, pesticides).  
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For decisions and actions taken by peasant and entrepreneurial farmers following optimization see 

Figures B and C, respectively.  

 

4.3.6.4 Sell assets  

If households require additional funds to for the farm to survive they will sell equipment and land for 

half its value (i.e. assumed to require a quick sale by a struggling farm). 
 

IF at least one small tractor owned [sell tractor for half its value AND sell any land that can no longer be farmed without  

          this equipment13 

                           ] 

     Else IF at least one pair of working animals owned [sell pair of working animals for half their value AND sell any land 

           that can no longer be farmed without this equipment14 

                           ] 

 

4.3.7 Model outputs 

4.3.7.1 Total food produced 

Total food produce by all households in a given year, quantified as kilograms of cereal equivalents, 

where 700kg feeds a family of 4 a basic diet (Mazoyer and Roudart, 2006). 

 

𝑇𝑜𝑡𝑎𝑙 𝑓𝑜𝑜𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑𝑡 =  ∑ ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑡𝑜𝑡𝑎𝑙 𝑓𝑜𝑜𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑡

𝑎𝑙𝑙 ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑠

 

        (where 𝑡 is the current time step) 

 

4.3.7.2 Local food price 

See 4.3.3.2. 

 

4.3.7.3 Income slope 

Shown as average change in average net income over the previous 10 years for farmers practicing 

each style (units: $/year).  

 
household net income = household gross income – all household expenses 

  

five year average household net income = [sum of (household net income) over the previous five years] / 5 

 

mean of five year average household net income for all household practicing a given style = 

                [sum of (five year average household net income for households practicing a given style)] /  

                                                                                                                                             (number of households practicing that style) 

 

For finding average income slope for all households practicing a given style , let x-axis = time step and y-axis = mean of five   

                               year average household net income for households practicing a given style, then: 

                                                            style-specific income slope =  
𝑑𝑦

𝑑𝑥
 , over the previous 10 years 

 

 

4.3.7.4 Orphan nutrition 

Average nutrition across all orphan households, as the proportion of a basic diet being consumed. 

13 i.e. each small tractor allows one worker to farm 16 hectares. 
14 i.e. each pair of working animals allows one worker to farm 5 hectares. Note that after selling the last pair of 
working animals a household will have only 1 hectare of land.  
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Household nutrition = (kg of cereal equivalents consumed by a household) / 700kg, where 700kg provide a basic diet.  

Orphan nutrition = mean (household nutrition) of orphan households  

 

4.3.7.5 Farm labour 

For orphan agriculture, max production on 1ha with manual tools requires 150 ten hour labour 

days/year (Based on Pimentel and Pimentel, 2008). Thus, a full-time worker is assumed to be 

working 150 ten hour labour days/year, regardless of the area they farm (which is dependent on 

their equipment). Full-time workers include both family labour on peasant farms and wage labour on 

entrepreneurial farms.  

 
Farm labour = sum of (full-time equivalent workers) on all farms 

 

4.3.7.6 Income Gini 

The Gini coefficient is calculated using standard methods (e.g. Milanovic, 2005), based on five year 

average household net incomes. A value of 0 indicates perfect inequality and a value of 1 indicates 

maximum inequality.  

 

 

4.3.7.7 Mean net farm income 

Mean net farm income is the average of the five year average net income of all farming households. 

 
household net income = household gross income – all household expenses 

  

five year average household net income = [sum of (household net income) over the previous five years] / 5 

 

mean of five year average household net income = [sum of (five year average household net income)] /  

              (number of households) 

 

4.3.7.8 Real land productivity 

Real land productivity is net income per hectare adjusted for the proportion of value that was added 

on the farm (‘endogeneity’), calculated (based on Petersen and Silveira, 2017) as follows. 

 
For each household: 

𝑟𝑒𝑎𝑙 𝑙𝑎𝑛𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 [$ ℎ𝑎⁄ ] =  
ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑛𝑒𝑡 𝑖𝑛𝑐𝑜𝑚𝑒 𝑖𝑛 𝑎 𝑔𝑖𝑣𝑒𝑛 𝑦𝑒𝑎𝑟 [$]

𝑓𝑎𝑟𝑚 𝑠𝑖𝑧𝑒  [ℎ𝑎]
 × 𝑒𝑛𝑑𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 , where:                                                                   

 

                                  𝑒𝑛𝑑𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 =   
𝑣𝑎𝑙𝑢𝑒 𝑎𝑑𝑑𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒 𝑓𝑎𝑟𝑚 [$]

𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑓𝑎𝑟𝑚 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 [$]
       

 

                         =  
𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑓𝑎𝑟𝑚 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛−(𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑 𝑖𝑛𝑝𝑢𝑡𝑠 𝑒𝑥𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑙𝑎𝑏𝑜𝑢𝑟) [$]

𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑓𝑎𝑟𝑚 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 [$]
 , where: 

 

𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑓𝑎𝑟𝑚 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑎𝑐𝑡𝑢𝑎𝑙 𝑓𝑎𝑟𝑚 × 𝑙𝑜𝑐𝑎𝑙 𝑓𝑜𝑜𝑑 𝑝𝑟𝑖𝑐𝑒  
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