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Cerebral malaria is a severe neuropathological complication of Plasmodium falciparum

infection. It results in high mortality and post-recovery neuro-cognitive disorders in

children, even after appropriate treatment with effective anti-parasitic drugs. While the

complete landscape of the pathogenesis of cerebral malaria still remains to be elucidated,

numerous innovative approaches have been developed in recent years in order to

improve the early detection of this neurological syndrome and, subsequently, the clinical

care of affected patients. In this review, we briefly summarize the current understanding of

cerebral malaria pathogenesis, compile the array of new biomarkers and tools available

for diagnosis and research, and describe the emerging therapeutic approaches to tackle

this pathology effectively.

Keywords: cerebral malaria, Plasmodium falciparum, diagnostic, pathophysiology, research tools, new therapies

CEREBRAL MALARIA: A COMPLEX AND MULTI-FACTORIAL
SYNDROME

Plasmodium falciparummalaria continues to be the predominant infectious disease in tropical and
sub-tropical countries, with an estimated global incidence of 207 million cases and 627,000 deaths
reported in 2012 (W.H.O., 2014). Cerebral malaria (CM) is a severe complication of P. falciparum
infection. This complex and potentially reversible encephalopathy leads to coma and occurs with
or without signs of compromise in other organs. There is no definite adjunctive therapy and even
with highly effective antimalarial drugs and intensive care, mortality is 10–25% (Taylor et al., 2004;
Mishra and Newton, 2009). CM is most frequent in sub-Saharan Africa where the intense malaria
transmission leads to widespread acquisition of immunity during childhood. Thus, CM is rare in
adults and principally occurs in children under five (W.H.O., 2014). CM is also an important cause
of mortality andmorbidity in South East Asia, wheremalaria transmission is not sufficiently intense
to induce robust immunity. In this region, CM principally occurs in older children and adults.

There are significant differences in the pattern of vital organ dysfunction in CM between
African children and South East Asian adults (Trang et al., 1992; Marsh et al., 1995; Newton et al.,
1998; Wassmer et al., 2015) for which the mechanism is poorly understood. In adults, central
nervous system dysfunction frequently occurs in conjunction with failure of other organ systems,
particularly renal and respiratory. In contrast, African children have a more purely neurological
disease, with rapid onset of coma, anemia and seizures, but overt respiratory or renal compromise
is generally absent (Newton et al., 1998; Miller et al., 2013). Neuropathological dissimilarities were
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also described: African children present prominent accretions of
fibrin (Dorovini-Zis et al., 2011; Moxon et al., 2013; Milner et al.,
2014), platelets (Grau et al., 2003), and inflammatory infiltrates
within the neurovasculature. These features are less marked or
absent in Southeast Asian adults (Macpherson et al., 1985; Turner
et al., 1994; Hawkes et al., 2013).

Several processes have been implicated in CM pathogenesis,
including microvascular obstruction by P. falciparum-parasitized
red blood cell (PRBC; Berendt et al., 1994), excessive pro-
inflammatory cytokine production (Clark and Rockett, 1994),
microvascular thrombosis (van der Heyde et al., 2006; Moxon
et al., 2009), loss of endothelial barrier function (Beare et al.,
2009; Dorovini-Zis et al., 2011), and endothelial dysregulation
(Wassmer et al., 2011). The way these pathological mechanisms
are linked and how they are influenced by host and parasite
factors remains to be elucidated. In addition, the reasons why
circulating cytokines, coagulation factors, or PRBC specifically
target only the brain in African children, and the brain as well
as other organs in Southeast Asian adults, are still unclear.

In order to better understand the factors leading to the
development of CM and subsequently improve the outcome
for affected patients, a new range of techniques and sets of
biomarkers for severity have recently been developed. The
present review focuses on these innovative advances, which offer
a new panel of tools for malaria researchers and clinicians in the
field.

NOVEL INVESTIGATIVE TECHNIQUES

Clinical Neuroimaging
Advanced imaging devices have become increasingly accessible
to malaria-endemic countries in recent years, allowing a leap
forward in terms of clinical studies aimed at elucidating the
etiology of CM.

Magnetic Resonance Imaging
MRI yields very useful clinical information and provides a
measure of several neurological parameters impossible to assess
otherwise, e.g., nature of cerebral blood flow alteration and
damage to neural tissue. The study by Penet et al. (2005)
was the first to perform MRI of the murine model of CM,
and demonstrated vascular damage attributable to inflammatory
processes. Subsequently, MRI techniques also allowed the
analysis of neuronal axon injury during CM (Kennan et al.,
2005), as well as the investigation of the diffused cerebral swelling
of brainstem in 120 Malawian children with CM (Potchen
et al., 2012). By allowing the comparison of specific parameters
between CM patients who survive and those who succumb to
the disease, the use of MRI has been instrumental in highlighting
an increased intracranial pressure and brain stem herniation in
fatal cases (Seydel et al., 2015). This study not only suggested
for the first time a cause of death in pediatric CM, but also
new potential therapeutic approaches aimed at decreasing the
intracranial pressure in affected patients.

Computed Tomography
Unlike MRI, CT scans are now commonly available in malaria-
endemic countries. Their pioneering use in CM patients

from Thailand and Kenya suggested for the first time the
involvement of cerebral edema in the development of the
pathology (Looareesuwan et al., 1983; Newton et al., 1994).
Subsequently, a study in India showed that CT findings correlate
well with level of consciousness and severity of disease but
do not reveal the extent of the pathology permitted by post-
mortem examinations (Patankar et al., 2002). CT imaging is
particularly helpful for the determination of cerebral volume
variation and the detection of infarctions in large vessels, as
recently demonstrated in a pediatric CM patient population
(Potchen et al., 2010). In children with retinopathy-confirmed
CM, acute head CTs revealed findings consistent with autopsy
studies and showed abnormality in basal ganglia, white matter
and corpus callosum. Follow-up images in survivors allowed the
identification of lesions consistent with acute symptomatology
and chronic deficits. CT imaging was used in a consequent study
to evaluate and map brain swelling in Indian adults with CM and
assess the potential benefits of mannitol as an adjunct therapeutic
agent (Mohanty et al., 2011). The study was the largest of its kind,
including 126 Asian adult patients with CM. Their systematic
acute head CT scans revealed that 29% had moderate to severe
brain swelling. There was, however, no significant correlation
between swelling and coma depth and mortality in the series.

Investigative Neuro-imaging Tools
While the use of neuroimaging techniques has contributed to
a better understanding of the pathophysiology of CM, novel
and revolutionary approaches have become available in the
laboratory but are not applicable directly to patients. For this, the
experimental model, albeit limited (Craig et al., 2012), represents
a useful tool to investigate the pathogenesis of CM at the cellular
and molecular level in the brain.

In vivo Bioluminescent Imaging
In vivo bioluminescent imaging is a versatile and sensitive
tool that is based on the detection of light emission from
cells or tissues. The technique has been allowed by the
genetic modification of malaria parasites and the production of
luciferase-expressing lines. This, coupled with the development
of imaging systems to detect cells expressing reporter genes, has
significantly broadened the possibilities for in vivo studies of
interactions between Plasmodium spp. parasites and their hosts
(Franke-Fayard et al., 2006). Optical imaging by bioluminescence
allows a low-cost, non-invasive and real-time analysis of disease
processes at the molecular level in experimental animals. It also
permits longitudinal monitoring of the course of the pathology
in the same animal, and the imaging of transgenic fluorescent
or bioluminescent malaria parasites is now widely used as a tool
to assess parasite distribution during experimental CM. A recent
study used real-time in vivo imaging to evaluate the contribution
of different immune mediators to PRBC accumulation and
distribution during the development of experimental CM. The
results showed that CD8+ T cells and IFN-γ are responsible
for the rapid increase in total parasite biomass, as well as for
the accumulation of PRBC in the brain and in different organs
(Claser et al., 2011). These in vivo pathogenesis studies can also
be carried out with a different bioluminescent target, as shown
by Imai and colleagues, who evaluated oxidative stress during
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experimental CM using OKD48 (Keap1-dependent Oxidative
stress Detector, No-48-luciferase) mice. Oxidative stress in the
brain can be visualized in these animals after injection of
luciferin, and an elevated bioluminescent signal was associated
with the development of the pathology (Imai et al., 2014).
Lastly, this imaging technique can also used for the assessment
of parasite virulence (Spaccapelo et al., 2010) and provides a
simple and reliable framework for in vivo antimalarial and CM
adjunctive treatment screening by monitoring post-treatment
changes in bioluminescence signal, which correlates with the
degree of parasitemia in the animal (Franke-Fayard et al.,
2008).

Intra-vital Microscopy
Recently developed, this advanced imaging tool allows the
direct and live visualization of the brain via a cranial opening
(Volz, 2013). The technique can reveal cellular responses over
time and space during the course of experimental CM and
can be conducted under conditions closely approximating
those of a natural environment. In addition, it presents the
advantage of observing in vivo pathological events in the
brain, including variations in hemodynamic events (Nacer
et al., 2014) and vascular leakages (Frevert et al., 2014). By
comparing the variation of these parameters between control
and treated animal groups, intra-vital microscopy has allowed
the assessment of intervention drugs, including nimodipine
and nitric oxide (NO) therapy (Cabrales et al., 2011; Zanini
et al., 2011; Rénia et al., 2012). It is a versatile platform,
as demonstrated by two recent and innovative studies. First,
Cabrales and colleagues performed the direct, quantitative, and
dynamic analysis of fluctuations of oxygen transport and tension
during experimental CM progression and its contribution to
the severity of disease. Results highlighted the pial tissue as
highly sensitive to changes in blood flow, anemia, and low
oxygen tension impacting sufficient oxygen delivery (Cabrales
et al., 2013). Second, Pai and colleagues used of a novel,
two photon-based approach, which allowed them to monitor
the behavior of leukocytes in cerebral microvessels during the
development of the pathology in infected mice. A decrease
in the rolling velocity of monocytes, a measure of endothelial
cell activation, was associated with the progressive worsening
of signs in the animals. These modifications were mediated
by Plasmodium-specific CD8+ T lymphocytes, suggesting
their direct influence in the regulation of vascular pathology
associated with the development of experimental CM (Pai et al.,
2014).

18F-Fluorodeoxyglucose (FDG) Positron Emission

Tomography (PET)
FDG-PET is a non-invasive imaging tool used to map cerebral
metabolic activity by quantifying the uptake of a glucose analog
by brain cells. This metabolic activity was measured in vivo
during the progression of experimental CM in the Plasmodium
coatneyi primate model of the pathology (in which there is
significant cerebral sequestration). The analysis revealed diffuse
and heterogeneous reduction of metabolism in the cortex during
the acute phase of infection (Sugiyama et al., 2004). These results

are consistent with a focal impairment of the microcirculation,
potentially induced by PRBC sequestration. However, it is
plausible that this reduced metabolic activity safeguards the
cerebral tissue against hypoperfusion, as an inherent function
of the microcirculatory system is to protect organs from the
effects of diminished oxygen and metabolite supply (Ellis et al.,
2005). This could explain why more than half of CM patients
present no neurological sequelae following recovery (Kawai and
Sugiyama, 2010). Another study showed reduced cerebral blood
flow during CM using an FDG-PET in a murine model of
experimental CM (Kennan et al., 2005). FDG-PET was recently
used systematically in a cohort of patients to help the diagnosis
of fever of unknown origin (Tokmak et al., 2014), showing
that this approach might become available to CM patients soon
and may be able to complement the ongoing MRI studies to
shed some light on the pathophysiological processes during the
neurological syndrome.

NEW DIAGNOSTIC TOOLS

In addition to prevention strategies and effective treatment, one
of the most important factors influencing the outcome of CM is
its early diagnosis. According to a study published in 2004, about
a quarter of the pediatric patients diagnosed with CM using the
WHO criteria were shown at autopsy to have died of non-CM
causes (Taylor et al., 2004), which highlights the importance of
accurate and reliable diagnostic tools.

Malarial Retinopathy
The sequestration of P. falciparum-infected red blood cells
(PRBC) in the cerebral microvasculature is the hallmark of CM.
In pediatric patients, retinal microvessels have been shown to
sustain damage comparable to the ones occurring in the brain,
making them an easily observable surrogate marker to assess the
severity of cerebral pathology during CM (Beare et al., 2006;
Maude et al., 2009). In recent years, the approaches adopted
to assess and document the retinal changes during CM have
evolved rapidly and are now available for clinical studies in
endemic areas.

Funduscopy
Funduscopy is a relatively low-cost and easy technique to
assess the presence of retinopathies, which allows the accurate
distinction between malaria and non-malaria coma in CM
patients. Retinal changes include vessel color changes, white-
centered hemorrhages, and peri- and extramacular whitening.
The severity of these changes during P. falciparum infection
correlates strongly with patient mortality, and the identification
of markers associated with the presence of retinopathies and
therefore, of CM, may allow the early detection of patients at risk
(Kariuki et al., 2014; Maccormick et al., 2014).

Optical Coherence Tomography (OCT)
OCT is an in vivo imaging tool for the detection of retinal
changes. This imaging technique allows optical-signal acquisition
by which high-resolution cross-sectional images of the retina,
optic nerve-head and even the thickness of the retinal nerve
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fiber layer can be acquired and both qualitative and quantitative
evaluations can be made (Sakata et al., 2009). Despite its
non-invasive nature and high-resolution output, the use of
OCT in malarial retinopathy has been difficult to implement
systematically so far due to its costs, as well as practical issues.
Indeed, patients need to be seated upright for the retinal analysis,
which is problematic for comatose CM patients in intensive care
units. However, a case of P. vivax retinopathy has been recently
described using OCT (Lee et al., 2010), showing that the new
development in high-resolution and high-speed OCT, along with
the improvement in portability (Huang and Hirose, 2012) might
make the technology extremely valuable for retinopathy analyses
in malaria-endemic areas.

Teleophthalmology
While the use of retinopathy has helped increasing the accuracy
of diagnosis in African children and more recently in Asian
adults (Sayeed et al., 2011), its use is still infrequent, as systematic
funduscopy requires a trained ophthalmologist, as well as
expensive equipment that is not always available in field clinics.
This has led to the recent development of easy-to-handle
and affordable retinal cameras (Maude et al., 2011), as well
as the emergence of modified handheld portable devices
such as smartphones. In addition to their telecommunication
functions, the most recent models possess diagnostic-quality
imaging facility that meet the criteria necessary for accurate
fundus examination and rapid diagnosis of retinopathy
(Kumar et al., 2012; Maamari et al., 2014). This revolutionary
“teleophthalmology” can be performed using cheap 3D printed
fittings where the built-in flash of the phone provides the light
source, and an installed application allows the easy and rapid
photo-documentation of retinal abnormalities in CM patients
(Myung et al., 2014). Such devices can be operated by healthcare
workers after minimal training and the saved images can be sent
by SMS or email to an ophthalmologist for rapid diagnosis.

Fluorescein Angiogram Framework
In order to help accurtely establish the presence of retinopathy
in CM, the automated analysis of the retinal vasculature has
become an active research area in the field of medical imaging
in the recent years, both for its diagnostic and prognostic
significance (Beare et al., 2004). A prerequisite to this appoach
is the automated detection of blood vessels, and the past decade
has witnessed the rapid development of methods for retinal vessel
segmentation (Fraz et al., 2012). A recent study has demonstrated
the novel use of an automated segmentation approach in
fluorescein angiography, to extract retina vessel images and build
an analysis framework (Zhao et al., 2015). The latter includes
four main components: vessel segmentation, analysis of vessel
geometry, salient feature generation, and vessel classification.
This automated analysis to classify retinal vessel abnormalities
showed an overall sensitivity, specificity, and accuracy similar to
the ones obtained using two direct observers. Coupling this new
approach to the teleophthalmology described above would allow
a direct diagnosis of CMwithout sending acquired pictures of the
retina to an off-site ophthalmologist, leading to a faster treatment
of the patient.

Electroencephalography (EEG) and
Micro-EEG
EEG
This non-invasive technique to record electrical impulses of the
brain by measuring voltage fluctuations due to ionic current
within the neural tissue has been used in CM patients since
the early 1990s (Thumasupapong et al., 1995). Prolonged and
multiple seizures complicate a high proportion of cases of
CM and can damage brain tissue by aggravating hypoxia,
hypoglycemia, and intracranial hypertension. In recent years,
the use of EEG has allowed the detection of these delayed CM
sequelae, including neurodisabilities such as status epilepticus.
Acute and serial EEGs are especially important for identifying
subclinical seizures. A study performed in Kenya revealed that in
about 25% of the enrolled pediatric CM patients, coma is due to
continuing subtle seizure activity which is likely to go undetected,
but is responsive to anticonvulsant drugs (Crawley et al., 1996).
Subsequent studies in Kenya and in Mali showed an increased
prevalence of epilepsy in patients who survived CM (Carter et al.,
2004; Ngoungou et al., 2006). The recent inclusion of retinopathy
as a criteria for CM diagnostic in a study in Malawian children
helped to improve the accuracy of the diagnosis in enrolled
patients, and to identify children with pre-existing neurological
injuries, predispositions to adverse neurological outcomes, or
non-malarial causes of coma. In this carefully defined cohort,
almost a third of retinopathy-positive CM survivors developed
epilepsy or other neurobehavioral sequelae (Birbeck et al., 2010).

Micro-EEG
One major limitation of the EEG studies is the serial post-
discharge follow-up assessments, which involve multiple patient
visits to the hospital, or home-based visits by nurses. These are
not always possible and often present a logistical hindrance to
EEG studies in the field. However, a miniature version of the
EEG equipment is now available as a portable headgear that can
accommodate up to 32 electrodes and connects via Bluetooth
technology to a small monitoring machine. The micro-EEG
diagnostic accuracy of status epilepticus is comparable to that
of standard EEG systems (Grant et al., 2014) and will greatly
facilitate not only the recording of brain as an easy diagnostic
tool (Omurtag and Fenton, 2012), but will also allow an easier
continuous recording of the patient after discharge. Indeed,
patients can leave the hospital with the device and come back
once the recording period is over. The tools is expected to soon
be used for rapid monitoring and imaging of neuropathological
sequelae, as well as a standard routine assessment in comatose
patients with CM, as is already initiated in a phase 1 and 2 clinical
trial for levetiracetam, a medication to control the seizures
associated with pediatric CM (http://www.clinicaltrials.gov/ct2/
show/study/NCT01660672).

BIOMARKERS

Biomarkers include tools and technologies that can facilitate the
prediction, cause, diagnosis, progression, regression, or outcome
of treatment of disease. For pathologies of the nervous system,
there is a wide range of techniques used to gain information
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about the brain in both the healthy and diseased state. These
involve measurements directly on biological media such as blood
or cerebrospinal fluid (CSF) from the patients; or measurements
via brain imaging, which do not involve direct sampling of
tissue but measure changes in the composition or function
of the nervous system. While biomarkers have been used to
diagnose and prognosticate the progress and outcome of many
chronic diseases, the field of malaria research only recently
moved in the direction of actively identifying biomarkers that
can accurately discriminate the severe forms of malaria, and in
particular, CM. Such biomarkers, once identified, validated, and
integrated into rapid diagnostic tests, could allow the accurate
and early identification of CM patients and their subsequent
referral to tertiary healthcare facilities for prompt intervention.
Recent clinical studies have identified serological factors that
have the potential of being biomarkers. Based on their function
and stage(s) of usage, these can be classified as early screening
and diagnosis biomarkers, as well as prognostic biomarkers
(Table 1).

Early Screening and Diagnosis Biomarkers
Biomarkers used for early screening or diagnosis are used as
an indicator of a biological factor that represents either a
subclinical manifestation, stage of the disorder, or a surrogate
manifestation of the disease. Early screening biomarkers allow
the identification of individuals destined to become affected or
who are in the “preclinical” stages of the illness. Unfortunately,
due to the rapid development of CM and the late presentation
of the patients to hospitals, longitudinal analyses of plasma
from patients with falciparum malaria have not been feasible
so far and potential early screening biomarkers for CM before
the onset of symptoms are yet to be identified. However,
serological factors that allow the accurate discrimination of CM
after the onset of symptoms have been described in the recent
years. These biomarkers are indicative of pathology, as they
are based on specific processes that have been associated with
the development of CM (Figure 1). For instance, the role of
endothelial intra-cellular adhesion molecule-1 (ICAM-1) in the
sequestration of PRBC is well-understood, and specific binding
of PRBC to ICAM-1 has been implicated in the development
of CM (Smith et al., 2000). High levels of plasma soluble
ICAM-1 were found to be associated with the development
of CM in Ghanaian children, and these levels may reflect
the upregulation of ICAM-1 in the cerebral microvasculature
(Adukpo et al., 2013). Angiopoetin-1 and -2 (ANG-1 and -2)
are critical regulators of endothelial activation and integrity, and
their levels have also been described as reliable biomarkers of
CM. Indeed, ANG-1 and -2 levels profiled from serum or whole
blood were shown to discriminate accurately between cerebral
and uncomplicated malaria in African patients (Lovegrove et al.,
2009), and between cerebral, severe non-cerebral malaria, and
uncomplicated malaria in a cohort of Thai patients (Conroy
et al., 2009). Compared to UM, CM patients presented significant
decreases in ANG-1 and increases in ANG-2 levels and the ratio
of ANG-2:ANG-1. This is consistent with the pathophysiology
of CM, which involves endothelial activation and dysfunction.
Indeed, ANG-1 maintains vascular quiescence, while ANG-2

displaces ANG-1 upon endothelial activation and sensitizes the
cells to become responsive to sub-threshold concentrations of
tumor necrosis factor (TNF; Kim et al., 2011). Estimation of
Plasmodium falciparum histidine rich protein 2 (PfHRP2) in
the plasma samples has also been shown to be an accurate
diagnostic tool to ascertain the parasite biomass in severe
malaria patients, and allowed the distinction between severe and
uncomplicated malaria (Hendriksen et al., 2012; Imwong et al.,
2015). Clinical studies have also shown that PfHRP2 can be
present in the CSF of patients with CM (Mikita et al., 2014).
More recently, the use of advanced affinity-proteomic tools
employing a high-throughput platform of specific antibodies for
candidate screening has allowed a wider analysis of potential
diagnosis biomarkers for the neuropathology. The plasma levels
of 1015 muscle proteins were measured in 700 children and
Bachmann and colleagues showed that high levels of four
specific smooth muscle proteins exhibit high correlation with
the development of endothelial injury and microvasculature
lesions during CM, including the smooth muscle cells that
surround the endothelial cell monolayer in the tunica media
of post-capillary venules (Bachmann et al., 2014). This is in
concordance with the presence of vascular and microvascular
lesions complicated by ring hemorrhages in comatose CM
patients (Ponsford et al., 2012). In addition, as ANG-1 is
primarily produced by vascular smooth muscle cells (van Meurs
et al., 2009), their injury could result in a reduced production of
the angiogenic factor, leading to its low levels during CM. Further
studies are warranted but these proteins could represent new
biomarkers for the severity of CM and allow prompt therapeutic
measures.

Prognostic Biomarkers
Prognostic biomarkers provide information on the likely course
of the disease in an individual. Plasma levels of ANG-1 and
ANG-2 can also predict the clinical outcome of CM, according
to studies performed in African children (Lovegrove et al., 2009)
and in Indian adults (Jain et al., 2011), in which low ANG-1
levels on presentation was associated with a fatal outcome. This
may indicate that, in addition to antiparasitic drugs, ANG-1 is
needed to reverse the deleterious endothelial activation in CM
and prevent death (Wassmer et al., 2015). CXCL10 and CXCL4
(C-X-C motif chemokine 10 and 4), the ligands of chemokine
receptor CXCR3, were described as another set of prognostic
biomarkers in CM (Wilson et al., 2011). Indeed, high plasma
levels of the chemokines were found to be significantly associated
with mortality in CM patients. CXCL10 is produced by a variety
of cells, including endothelial cells. The effects of elevated levels
of CXCL10 on the cerebral microvasculature are unknown but
are suspected to cause local injuries by recruiting mononuclear
leukocytes, inducing focal hyperinflammation (Jain et al., 2008).
In addition, CXCL4 is released from activated platelets and
stimulates TNF production by mononuclear leukocytes, a key
proinflammatory cytokine associated with the development of
CM. This study established that CXCL10 and CXCL4 can be
routinely used to predict the mortality risk in CM patients
in endemic settings. Along with the clinical diagnosis of CM,
the presence of PfHRP2 in CSF can also be used to predict
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TABLE 1 | Pathogenesis of cerebral malaria: recent discoveries and potential biomarkers.

Biomarker Abbreviations Type/Site Method Indicative events Study

HUMAN CEREBRAL MALARIA

von Willebrand factor

(VWF), propeptide

VWF, VWF

propeptide

Plasma ELISA based assays Indicates acute and excessive endothelial

cell activation (Weibel–Palade exocytosis)

Hollestelle et al., 2006;

Bridges et al., 2010

Erythropoietin Epo CSF ELISA based assays High levels are associated with a

neuroprotective role in pediatric CM

Casals-Pascual et al.,

2008

Angiopoetin-1, -2 ANG-1, ANG-2 Endothelial (whole

blood levels)

ELISA based assays ANG-1 and -2 levels from whole blood

allow the accurate discrimination between

cerebral, severe (non-cerebral) malaria and

uncomplicated malaria

Conroy et al., 2009

Endothelial (serum

levels)

ELISA based assays Low ANG-1 levels at presentation is

indicative of a poor outcome; Serum

ANG-1 levels are significantly decreased

and ANG-2 levels increased in children

with CM compared to uncomplicated

malaria patients and healthy controls

Lovegrove et al., 2009

Endothelial (plasma

levels)

ELISA based assays Low ANG-1 levels at admission and

gradual increase with recovery are

observed, suggesting ANG-1 as a

potential marker of clinical response in CM

patients

Conroy et al., 2010

Ligands of chemokine

receptor CXCR3

CXCL4, CXCL10 CSF, serum ELISA based assays Enhanced plasma levels of CXCL10 and

CXCL4 are significantly associated with a

poor outcome in CM and could be used to

determine mortality risk in patients

Wilson et al., 2011

Soluble ICAM-1 sICAM-1 Endothelial (plasma

levels)

ELISA based assays High levels of soluble ICAM-1 are strongly

associated with CM

Adukpo et al., 2013

Specific muscle

proteins

CA3 (major), CK,

CKM, MB

Vascular (plasma levels) Affinity-Proteomics Elevated levels of specific muscle proteins

in plasma indicate muscle damage and

microvasculature lesions in children with

CM

Bachmann et al., 2014

Pf histidine-rich

protein-2

PfHRP2 CSF ELISA based assays Elevation of CSF pfHRP-2 is indicative of

mortality in CM patients

Thakur et al., 2014

EXPERIMENTAL CEREBRAL MALARIA

Endothelin-1 ET-1 Endothelial RT/qRT-PCR Significant increase of mRNA levels of

ET-1, coding enzyme ECE and its

receptors (ET-A, B)

Machado et al., 2006

Chemokine receptor

CXCR3 and its ligands

(Mig, IP-10)

CXCR3, Mig,

IP-10

N/A qPCR/ELISA CXCR3 is essential for trafficking of T cells

into the brain and the development of

ECM. CXCR3 ligands (Mig and IP-10) have

distinct and non-redundant roles in ECM

pathogenesis

Campanella et al., 2008

Glutamate Glu Brain Enzyme assays,

SHIRPA screen

Increased levels of glutamate leads to

CNS dysfunction, neurological and

behavioral symptoms

Miranda et al., 2010

Cerebral levels of IL-1β

and TNF

IL-1β and TNF CSF ELISA based assays Increased cerebral levels of IL-1β and TNF

are associated with anxiety-like behavior

Miranda et al., 2010

CD8+ T Cells and

IFN-γ

CD8+ T cells,

IFN-γ

NA ELISA based assays CD8+ T Cells and IFN-gamma are

required for time-dependent accumulation

of PRBC in deep organs

Claser et al., 2011

(Continued)
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TABLE 1 | Continued

Biomarker Abbreviations Type/Site Method Indicative events Study

Granzyme B

expression

GzmB CD8+ T cells gzmB−/− knock out

mice

High expression of Granzyme B on CD8+

T cells reduces parasite biomass in the

brain; ECM induction is dependent on

antiparasitic CD4+ T cell responses

Haque et al., 2011

Platelet Activating

Factor

PAF Endothelial PAFR−/− knock out

mice

Facilitates the recruitment of leukocytes,

induces the release of immune factors;

increases vascular permeability

Lacerda-Queiroz et al.,

2012

Brain water channel

aquaporin-4

AQP4 CSF Semi-quantitative

RT-PCR

Partial protection conferred by AQP4 Promeneur et al., 2013

Plasma microparticles MP Blood Biochemical Mediates coagulation, inflammation, and

cell adhesion; facilitates neurological

lesions

El-Assaad et al., 2014b

Epo, erythropoietin; PfEMP-1, Plasmodium falciparum Erythrocyte Membrane Protein-1; AQP4, Aquaporin 4; ECM, experimental CM.

the disease outcome, as recently demonstrated in retinopathy
positive CM patients from Malawi. Using 100 CSF and 103
plasma samples, their findings inferred that an increased level
of PfHRP2 in CSF and lower plasma/CSF PfHRP2 ratios was
predictive of death in retinopathy positive CM patients (Thakur
et al., 2014).

Future Directions and Market Barriers
Host plasma microparticles (MP) are submicron elements
(100 nm–1µM), which originate from extracellular vesiculation
processes during host cell activation and/or apoptotic events.
High MP numbers were shown to be significantly higher in
the plasma of patients with CM compared to patients with
uncomplicated malaria or severe anemia in several separate
analyses (Combes et al., 2004; Pankoui Mfonkeu et al., 2010;
Nantakomol et al., 2011), showing that they could be potentially
used as a diagnosis biomarker for CM. In addition, platelet-
derived MP were shown to be the most abundant in the
plasma of CM patients, and their levels were significantly
correlated with coma depth and thrombocytopenia. However,
the current analysis of plasma MP necessitate high-sensitivity
clinical equipment and trained technicians, which might explain
why their use as a biomarker in endemic regions has not
been further investigated to date. The fast-paced evolution of
low-cost, portable, point-of care quantitative diagnostic devices
might reverse the situation in the near future. Similarly,
cumulating data suggest that small non-coding-RNAs such as
microRNAs (miRNAs) can be utilized as potential biomarkers
for the diagnosis and prognosis of a variety of parasitic diseases
(Manzano-Roman and Siles-Lucas, 2012). Circulating miRNAs
can be detected in biological fluids as serum, saliva and
others, exhibiting a good potential as non-invasive biomarkers.
While this has not yet been evaluated in falciparum malaria
infection, it is likely that the current technology required for
miRNA identification and quantification will restrict their use as
diagnostic or prognosis biomarker for now. Lastly, In addition
to biomarkers from biological media, the recent implementation
of MRI techniques to investigate the factors leading to the

development of CM might also lead to the identification of
biomarkers of severity and/or disease outcome using imaging
maps. Such approaches could focus on the parasite burden in the
brain and correlate it with disease severity, or establish a scale of
brain swelling in CMpatients, potentially indicative of the disease
prognosis.

EMERGING THERAPEUTIC OPTIONS

Themajor challenge to prevent humanmortality in CM lies in the
current lack of specific therapies aimed at dampening the pro-
inflammatory state associated with the neurologic syndrome, as
well as its deleterious effects on the host. Considering the multi-
factorial nature of the neuropathology, even the most effective
anti malarial drugs cannot ensure complete survival (Dondorp
et al., 2005, 2010; Mishra and Wiese, 2009) and due to the poor
understanding of its pathogenic processes, candidate adjunctive
therapies to decrease mortality in CM have been unsuccessful so
far (Mohanty et al., 2006, 2011; Mishra and Wiese, 2009; John
et al., 2010). However, the recent breakthrough allowed by some
of the technologies and approaches described above are slowly
narrowing the spectrum of candidate therapeutic pathways.
Table 2 represents some of the potential therapeutics against
CM, based on recent observations from experimental models
and human pathogenesis. Some of these novel adjunct therapies
include heme-oxygenase-1 (HO-1) and carbon monoxide
(CO), exogenous nitric oxide, pressurized oxygen, additive
antioxidants, and hydrogen sulfide gas (Dellavalle et al., 2013;
Table 2).

In addition to adjunct therapies, new classes of agents
developed using novel creative strategies are urgently needed to
tackle severe malaria infection. Indeed, the number of available
and effective antimalarial drugs is quickly dwindling, as the
resistance of P. falciparum against artemisinin combination
treatments (ACT), the recommended first-line therapy for
infected patients, is now prevalent across mainland Southeast
Asia (Ashley et al., 2014). This is alarming because: (i) resistance
to the previous mainstays of antimalarial treatments—namely

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7 October 2015 | Volume 5 | Article 75

http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


Sahu et al. Understanding and treating cerebral malaria

CXCL10

CXCL4
TNF

CA3

CK, CKM, MB

ANG-1

ANG-2

sICAM-1

microhemorrhage

Parasite biomass:

PfHRP2

+

Platelets

PRBC

Smooth muscle cells

Basement membrane

Tunica externa

a

b
c

Mononuclear leukocyte

Marker of pathology Marker of poor outcome

POSTCAPILLARY VENULE

Endothelial cells

FIGURE 1 | Links between human CM physiopathology and current biomarkers of pathogenesis and poor outcome: a proposed model. Upon infection

with P. falciparum, the host immune system produces pro-inflammatory cytokines, which activate endothelial cells, prompting them to produce CXCL10, a

chemoattractant for mononuclear leukocytes. Platelets accumulated in the microvasculature of CM patients release CXCL4 from their alpha granules, which

stimulates the production of TNF by mononuclear leukocytes locally. Both cytokines contribute to a hyperinflammatory state in CM and are associated with a poor

outcome. Once released, TNF leads to the upregulation of ICAM-1 on endothelial cells (a), which, in turn, induces the sequestration of PRBC and platelets in the

cerebral microvasculature. The presence of soluble ICAM-1 in the plasma is reflective of the increase in ICAM-1 levels at the endothelial surface. High densities of

sequestered parasites produce elevated amounts of PfHRP2, a marker of pathology and an indicator of poor outcome when detected in the CSF. Sequestration of

parasites, coupled with high levels of TNF induce focal vascular injuries, leading to smooth muscle cell damage and ring hemorrhages (b). Injured smooth muscle cells

discharge abnormally high amounts of carbonic anhydrase III (CA3), creatine kinase (CK), creatine kinase, muscle (CKM), and myoglobin (MB) in the bloodstream, all

biomarkers of CM. In addition, destroyed smooth muscle cells stop producing ANG-1, contributing to its systemic decrease. Coupled with an elevated release of

ANG-2 from the Weibel–Palade bodies of activated endothelial cells, the shift in the angiogenic factor balance results in a high ANG-2:ANG-1 ratio, another marker of

pathology. ANG-2 sensitizes endothelial cells, which become responsive to sub-threshold concentrations of TNF, contributing to the aggravation of the different

pathways described above (c).

chloroquine and sulfadoxine/pyrimethamine—have already
spread across southeast Asia into Africa, resulting in the
deaths of millions of patients (Roper et al., 2004) and (ii) there
are currently no alternative drugs to replace ACT. However,
unprecedented global and multidisciplinary efforts aimed at
broadening therapeutic potential and identifying novel modes of
action are currently in place (Flannery et al., 2013). Hopefully,
these efforts will allow the widening of malaria treatement
options and will help to overcome the emerging drug resistance.

CONCLUDING REMARKS

The World Health Organization estimated that deaths related to
malaria have dropped down from one million in 2000 to about
780,000 in 2009 and 627,000 in 2013 (W.H.O., 2011, 2014). In
endemic Africa, unprecedented levels of intervention coverage
have halved Plasmodium falciparum infection prevalence since
2000, and the incidence of clinical disease have dropped by 40%
(Bhatt et al., 2015). Despite this promising trend, the figures
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TABLE 2 | Cerebral malaria: emerging therapeutic options.

Therapeutics Mode Observation/mechanism of protection References Stage

HUMAN CEREBRAL MALARIA

Levetiracetam (LVT1) Single Treatment of seizures, epilepsy and improves CM

outcome in African children

http://www.clinicaltrials.

gov/ct2/show/study/

NCT01660672

Clinical trial completed,

Oct 2014

Rosiglitazone AP-partnered Decreases levels of pro-inflammatory factors (IL-6 and

MCP-1); elevates BDNF levels (day 2) and lowers

Ang-2/Ang-1 ratio (day 3)

Serghides et al., 2014 In vivo study

EXPERIMENTAL CEREBRAL MALARIA

Heme-Oxygenase-1

(HO-1) and carbon

monoxide (CO)

Adjunctive Decreases parasitemia, prevents BBB disruption, brain

microvasculature congestion, neuro-inflammation and

CD8+ T-cell brain sequestration during ECM

Pamplona et al., 2007 Experimental

Pressurized oxygen

(HBO) therapy

Adjunctive Prevents ECM signs; reduces expression of TNF, IFN-γ

and IL-10 mRNA levels and percentage of γδ and αβ

CD4+ and CD8+ T cell sequestration, prevents BBB

dysfunction

Blanco et al., 2008 Experimental

Thiol Pantethine Adjunctive Decreases circulating microparticles and protects BBB

integrity

Penet et al., 2008 Experimental

Nimodipine Artemether-

partnered

Prevents vasoconstriction and vascular collapse by

inducing vasodilation and enhancing pial blood flow;

increases survival

Cabrales et al., 2010 Experimental

Artemisone CQ-partnered Prevents mortality at late stages of ECM Waknine-Grinberg et al.,

2010

Experimental

Antioxidant therapy CQ-partnered Prevents the development of persistent cognitive

damage

Reis et al., 2010 Experimental

Flt3 ligand Adjunctive Helps reducing the proportion of CD8-T cells producing

IFN-γ and granzyme B; decreases sequestration of

PRBC

Tamura et al., 2011 Experimental

Artemether +

Artesunate

Combinative Prevents death at late-stages of ECM; reduces leukocyte

accumulation in brain vessels and decreases cerebral

vascular inflammation

Clemmer et al., 2011 Experimental

Exogenous Nitric Oxide

(NO)

Single Leads to a decreased expression of ICAM-1 and

P-selectin; a lower number of adherent leukocytes and

platelets in pial vessels and in venules; a reduced

vascular inflammation, and albumin leakage

Zanini et al., 2011 Experimental

Erythropoietin Single Reverses the development of ECM and degree of neural

hypoxia; reduces clinical signs of CM and cerebral

pathology features

Hempel et al., 2011, 2012 Experimental

HJP-272 Artemether-

partnered

Decreases brain hemorrhage and increases survival Dai et al., 2012 Experimental

IDR-peptide Adjunctive Enhances mice survival in late stage interventions

through anti-inflammatory networks

Achtman et al., 2012 Experimental

Atorvastatin Adjunctive Prevents parasite cytoadherence and endothelial

damage; enhances the pharmacologic inhibition of

CXCL10 and a reduction in mortality

Taoufiq et al., 2011;

Wilson et al., 2011

Experimental

Rosiglitazone Adjunctive As an agonist of Peroxisome proliferator-activated

receptor-γ (PPAR-γ), modulates host inflammatory

responses and improves clinical outcome in ECM;

prevents the development of brain atrophy and

neurocognitive impairment

Serghides et al., 2009,

2014

Experimental

(Continued)
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TABLE 2 | Continued

Therapeutics Mode Observation/mechanism of protection References Stage

Neuregulin-1 (NRG-1) Single; Compared

with Artemether

Leads to endothelial protection and reduction in BBB

permeability; neuro-protective nature, decreases

mortality

Li et al., 2012; Lok et al.,

2012; Solomon et al.,

2014

Experimental

Citicoline (CTC) Adjunctive CTC reduces the production of microparticles in vitro;

confers protection against ECM

El-Assaad et al., 2014a Experimental

BBB, blood-brain barrier; ECM, experimental CM; IDR-peptide, innate defense regulatory peptide; CQ, Chloroquine; AP, Atovaquone–Proguanil; BDNF, brain-derived neurotrophic factor.

are still worrisome. Such progress has been possible despite
the lack of a malaria vaccine and is mainly attributable to
increased prevention efforts globally, coupled to the widespread
use of artemesinin derivatives. The systematic use of some
of the emerging new technologies aimed at facilitating the
early and accurate diagnosis of malaria-associated complications
is likely to not only help clinicians identify high-risk CM
patients in the future, but also expedite the clinical triage
of symptomatic parasitemic patients, as well as their prompt
and comprehensive care. This will, hopefully, lead to a further
decrease in malaria-related deaths worldwide. In addition, the
recent implementation of state-of-the-art investigation tools to
elucidate the pathophysiology of CM is also likely to contribute
to the identification of new image-derived prognosis biomarkers
and adjunct therapeutic avenues, as illustrated by the recent and
groundbreaking study of brain lesions in Malawian patients with
CM (Seydel et al., 2015). Lastly, the European Medicines Agency
just approved the RTS,S vaccine with the recommendation that
it should be used in African children at risk, the first malaria
vaccine to ever get this clearance (Hawkes, 2015). Coupled with

the clinical efforts in malaria-endemic regions, this vaccine could
represent a milestone in the global fight against malaria.
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