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ABSTRACT

RODENT EOSINOPHILS AND NEUTROPHILS: MEMBRANE RECEPTORS. EFFECTOR 
FUNCTIONS AND ANTIGEN DIFFERENCES

A.F. LOPEZ.

Purification techniques were developed for mouse eosinophils and 
neutrophils. Membrane receptors on mouse eosinophils and neutrophils 

were studied by means of rosette formation, phagocytosis and ^*Cr 

release assays using mouse complement and monoclonal IgM, IgGl and 

IgG2b antibody-coated sheep erythrocytes. Eosinophils as well as 

neutrophils were found to possess complement and IgG receptors, with 

eosinophils showing higher complement and antibody requirements than 

neutrophils. Both cell types reacted more strongly with IgG2b than 

with the IgGl used, but it is unclear whether this is a subclass effect 

or a reflection of a different antibody density on the sheep red cell 

membrane.

The possibility that lysis of trypanosomes in the acute phase of 
Trypanosoma cruzi infection may result in T.cruzi antigen coating of host 

cells, thus rendering them susceptible to the host effector mechanisms, 

was investigated. An in vitro model was used, in which mouse eosinophils 

and neutrophils were found to be cytotoxic against mouse cell lines coated 

with T.cruzi antigen in the presence of antl-T.cruzi antibody.

The finding that eosinophils could kill mammalian cells led to 

experiments in which rat eosinophils, neutrophils and K cells were tested 

against antibody-coated mouse cell line cells. All three effector cells 

were found to be active against cells of lymphoid origin. Cytotoxicity 

by granulocytes was shown to be specific for the antibody-coated target 

cells and to depend on the type and concentration of the antibody 

preparation used.
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The production of a monospecific anti-eosinophil serum that would 
allow studies on the role of the eosinophil in experimental protozoan 
infections was attempted by hyperimmunizing rabbits with highly purified 

preparations of mouse eosinophils. The antisera thus obtained were 

found to cross-react with other leucocytes and, even after absorption 

with a range of mouse cells, no specificity for eosinophils was achieved. 

Monoclonal antibody techniques were then tried, and rat-mouse and rat-rat 

fusions produced several hybridomas secreting anti-eosinophil antibodies. 

One of these has been shown to be highly specific rn vitro and to 

selectively deplete eosinophils jin vivo.
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Neutrophils have long been recognized as constituting a defensive 

barrier against invading microorganisms. They accomplish this by 

reaching the site of infection as a response to a chemotactic stimulus, 

and then ingesting ard killing the pathogens.

In contrast to neutrophils, the role of eosinophils has only 

recently begun to be understood. Despite its frequent association with 

parasitic and allergic diseases, no specific function had been ascribed 

to the eosinophil until recently, and it had been suggested that these 

cells may be important in removing antigen-antibody complexes.

The observation that eosinophils are less active than neutrophils 

in killing Escherichia coli and Staphyloccocus aureus, probably as a 

result of differences in their peroxidases (De Chatelet, Migler, Shirley, 

Muss, Szejda 5 Bass, 1978)/ suggest that neutrophils are the more active 

in controlling infection by these microorganisms.

Eosinophils, on the other hand, are selectively recruited by the 

mast cell tetrapeptide "eosinophil chemotactic factor of anaphylaxis" 

and contain in their granules an array of enzymes with antagonistic 

activity to the mast cell products. For example, both eosinophils and 

neutrophils can inactivate histamin®®» by means of histaminase; 

eosinophils and probably also neutrophils can produce, prostaglandins as 

a response to membrane stimulation. Eosinophils have a high content of 

arysulphatase B which inactivates the "slow reacting substance of 

anaphylaxis". Eosinophils also have phospholipase D which inactivates 

platelet activating factors, and a lysophospholipase which may protect 

the eosinophil from its own lysophospholipids. All these factors suggest 

that eosinophils could play a major role in controlling hypersensitivity 

reactions.
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Although there is a well documented association between eosinophilia

and some parasitic infections, the reason for this has remained elusive 

for many years. The demonstration that eosinophils could mediate 

antibody-dependent killing of the trematode Schistosoma mansoni 

(Butterworth, Sturrock, Houba, Mahmoud, Sher G Rees, 1975) produced 

evidence that eosinophils could function as effector cells against this 

parasite. Since then, eosinophils have also been shown to mediate 

antibody-dependent killing of the nematodes Litomosoides carinii 

(Subrahmayam, Rao, Mehta G Nelson, 1976), Trichinella spiralis (Kazura 

6 Grove, 1978) and Nippostrongylus brasiliensis (Mackenzie, Jungery,

Taylor G Ogilvie, 1980), and the protozoans Trypanosoma cruzi (Lopez,

Bunn Moreno £ Sanderson, 1978) and Trypanosoma dionisii (Thorne,

Glauert, Svvenssen 5 Franks, 1979). Eosinophils have also been shown to 

phagocytose malaria parasite-infected red cells in the presence of antibody 

(Tosta G IVedderburn, 1980).

Neutrophils have also been found to be active against the protozoan 

T. cruzi (Lopez et a K , 1978) and T. dionisii (Thorne et̂  a U , 1979), 

however they do not appear to induce damage to the large parasites 

N.brasiliensis and T.spiralis (Mackenzie, Jungery, Taylor G Ogilvie, 1981). 

While some workers have found neutrophils to induce damage to antibody 

or complement-coated S.mansoni (Anwar, Smithers G Kay, 1979) others have 

shown eosinophils but not neutrophils to be the active cells (Vadas,

David, Butterworth, Pisani G Siongok, 1979).

As eosinophils are often compared to neutrophils when tested for 

cytotoxic activity against parasites, some interesting differences are 

beginning to emerge. For example, the high ability of eosinophils to 

inflict damage to largo parasites as compared to neutrophils could be 

explained at least in part by the presence in the eosinophil of a unique
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constituent, the major basic protein (Gleich, Loegering 5 Maldonado,

1973) which has cytotoxic properties (Butterworth, IVassom, Gleich,

Loegering 5 David, 1979a) and can promote a firm attachment of the 

eosinophil to the parasite membrane (Butterworth, Vadas, Wassom,

Dessein, Hogan, Sherry, Gleich 5 David, 1979c)•

It should be noted that while granulocytes represent a system that 

can induce damage to invading parasites, other cell types have been 

shown to lack this property. Thus, K cells which are highly active 

against antibody-coated cell line cells do not kill T.cruzi (Sanderson,Lopez 

5 Bunn Moreno, 1977) T cells, although recognizing host antigens on 
the surface of schistosomula of S.mansoni fail to induce cytotoxicity 

(Butterworth, Vadas, Martz 5 Sher, 1979b). Macrophages, while being 

able to induce damage to S.mansoni (Capron, Dessaint, Joseph, Rousseaux, 

Capron 5 Bazin, 1977) appear to lack cytotoxic activity against T.cruzi 

and can even support its growth (Sanderson & de Souza, 1979).

Some of the difficulties in comparing eosinophils and neutrophils 

is derived from the need to work with highly purified preparations.

This has prompted workers to develop purification techniques which have 

produced highly purified preparations of eosinophils and neutrophils 

obtained from the rat (Sanderson 6 Thomas, 1978) and human species 

(Vadas e£ al_., 1979). In this thesis, purification techniques are 

described for mouse eosinophils and neutrophils (Chapter 3) which provide 

the basis for studies on their membrane receptors (Chapter 4), effector 

functions (Chapter 5) and antigenic differences (Chapter 7). Further

more, by developing purification techniques for mouse granulocytes it 

is hoped that it will facilitate studies of these cells in an extensively 

used experimental model as the mouse, particularly regarding parasitic 

infections and immediate hypersensitivity.
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Eosinophils and neutrophils carry out their effector functions by 

means of specific membrane receptors. These include receptors for the 

C3b-C4b fragments of complement (CR1 receptors), for the C3bi fragment 

(CR3 receptor) and for the Fc portion of IgG (Anwar 8 Kay, 1977a). 

Granulocytes appear to lack receptors for the C3d portion of C3 (CR2 

receptor) (Ross, Tack 5 Rabellino, 1978; Tai § Spry, 1980) and for IgM 

After some conflicting reports (Sullivan, Grimley, Metzger, 1971;

Hubscher, 1975) eosinophils do seem to have receptors for IgE which 

are different to those for IgG (Capron 8 Capron, 1980). Furthermore, 

eosinophils have been shown to kill IgE-coated S.mansoni (Capron 8 

Capron, 1980). Data on eosinophil and neutrophil binding to IgG sub

classes is, however, scanty. When tested in a homologous system rat 

eosinophils appear to have receptors for IgG2a (Capron, Capron, Torpier, 

Bazin, Bout 8 Joseph, 1978), and guinea pig eosinophils bind sheep and 

ox erythrocytes coated with IgGl and IgG2 antibddies (Butterworth,
Coombs, Gurner 8 Wilson, 1976).

It is important to investigate the Ig isotype to which granulocytes 

can bind, and which effect results from this interaction, because 

differences in cytotoxicity by different cell types with different 

antisera may be explained on the basis of the particular subclass 

composition of each antiserum (Clark 8 Klebanoff, 1977; Chapter 6). 

Furthermore, the concept of "masking antibodies" to parasite antigens 

(Rickard, 1974) or tumour antigens may be directly related to the inability 

of the host effector cells to bind a specific isotype. That differences 

in the eosinophil and neutrophil binding to different IgG subclasses may 

exist is suggested also by inhibition experiments in which myeloma proteins 

of some subclasses were inhibitory in the rosette assay, while others 

were not (Messmer 8 Jelinek, 1970; Tai 8 Spry, 1976).
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The advent of monoclonal antibodies offers the opportunity to 

study these differences. Monoclonal antibodies to sheep erythrocytes (E) 

have already proved useful tools to study macrophage binding to different 

IgG subclasses. Thus, mouse macrophages have been shown to phagocytose 

and lyse E coated with mouse IgGl, IgG2a, IgG2b and IgG3 monoclonal 

antibodies, and appear to be more active when E are opsonized with IgG2a 

or IgG2b (Ralph, Nakoink, Diamond 5 Yelton, 1980). Furthermore, these 

antibodies have allowed studies that show that macrophages have three 

different Fc receptors: one shared by IgGl and IgG2b (Diamond 5 Scharff, 

1980), another for IgG2a (Diamond 6 Scharff, 1980) and a third for IgG3 

(Diamond G Yelton, 1981).

Although in previous studies mouse eosinophils appeared to be 

different to eosinophils from other species in that complement receptors 

could not be detected on their surface (Rabellino G Metcalf, 1975; 

Rabellino, Ross, Trang, Williams G Metcalf, 1978; Hoghart, Cruise,

McKenzie G Mitchell, 1980), it is shown in Chapter 4 that they do possess 

complement receptors but that eosinophils have a higher complement 

requirement than neutrophils. Eosinophils are also shown to have a 

higher requirement for antibody molecules than neutrophils and studies 

have been carried out to investigate the binding of granulocytes to IgGl 

and IgG2b monoclonal antibodies (see Chapter 4).

Despite the fact that eosinophils can kill large parasites coated 

with antibody and complement, the possibility that these cells could also 

mediate damage to mammalian cells in a similar fashion has received little 

attention. Results of Parrillo G Fauci. (1978) suggest that eosinophils 

may have low activity against antibody-coated nucleated mammalian cells. 

Thus, eosinophils appeared to be less effective than neutrophils which 

are very active against certain tumour cells (Gale G Zighclboim, 1975;
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Clark 5 Klebanoff, 1977). In this thesis, the cytotoxic activity of 

eosinophils and neutrophils is investigated in detail (Chapters 5 and 6) 

and it is shown that both types of granulocyte can induce similar 

levels of cytotoxicity from cell line cells coated with antibody.

Through this effector function it is possible that eosinophils and 

neutrophils could play a central role in certain diseases (Chapters 5 

and 6) .

Previous work has indicated that eosinophils could play a protective 

role against some parasitic infections in vivo (James 5 Colley, 1976).

The experiments described in this thesis suggest a possible role for 

granulocytes in T.cruzi infections (Chapter 5). Furthermore, their 

ability to kill tumour cells in vitro (Chapters 5 and 6) deserves further 

investigation in vivo. With this objective in mind, the production of 

monoclonal antibodies to mouse eosinophils and neutrophils was sought 

with the aim of obtaining a specific reagent with which to ablate these 

cells ill vivo. The development of a monoclonal antibody highly specific for 

mouse eosinophils iji vitro and which selectively ablates these cells 

in vivo has been achieved (Chapter 7). This approach is shown to offer 

the best possibilities of success to study the role of granulocytes 

in vivo.
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2.01. Media

■ a f . r

2.01.1. Media for general purposes

Phosphate buffer saline: NaCl 8 gm; KC1 0.2 gm; anhydrous Na2HP04 

1.15 gm; KH2P04 0.2 gm; made up to 1 litre with distilled water.

The foetal calf serum (FCS) and RPMI 1640 media (Cat. N o .10-601-22; 

powder preparation with glutamine, without sodium bicarbonate) were 

obtained from Flow Laboratories, Irvine, Scotland. The FCS was used 

after heat inactivated 30' at 56°C. The RPMI 1640 stock solutions were 

made up and sterilised by filtration by the Media Supply Department of 

the Clinical Research Centre, Harrow.

PBS-FCS

PBS containing 2% foetal calf serum 

RPMI 1640 (X10; stock solution)

RPMI-H (XI; stock solution)

RPMI-1640 containing 20 mil HEPES (Flow Laboratories) buffer 

RPMI-Bicarb (XI; stock solution)
RPMI-1640 containing 0.22% sodium bicarbonate (BDII Chemicals Ltd

Poole, England)

RPMI-H-F 10%

A stock solution containing RPMI-H and 10% Ficoll (Pharmacia Fine 
Chemicals AB, Upsala, Sweden).

When other concentrations were required, this stock solution 

was diluted in RPMI-H.

RPMI-H-FCS
RPMI-H containing 10% foetal calf serum, 100 IU/ml Penicillin- 

streptomycin (Glaxo Laboratories Ltd., Greenford, England) and 

2 mM L-Glutaminc (BDH Chemicals Ltd.).

RPMI-Bicarb-FCS
RPMI-Bicarb containing 10% foetal calf serum, 10 mM HEPES buffer

7
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100 IU/ml Penicillin-streptomycin and 2 mM L-Glutamine. 

RPMI-Bicarb-FCS-P

RPMI-Bicarb-FCS containing 100 iriM sodium pyruvate (Flow
Laboratories).

2.01.2. Hybridoma reagents and media 

PEG

35% polyethylenglycol (Mol.wt. 1500; BDH Chemicals Ltd.) 

in RPMI-H. It was dissolved at 37°C and sterilised by 

filtration.

HT stock solution (lOOx)

H_0 90 mis

Hypoxantine 136.1 mg

Thymidine 38.7 mg

SIGMA London Chemical Co., 
Poole, England

dissolved at 44 C for 60’. Sterilised by filtration.

HAT stock solution (lOOx)

This was obtained by mixing 90 ml of HAT stock solution with 

with 10 ml of Solution A.

Solution A; 0.1 M NaOH 5 ml

Aminopterin 17.6 mg (ICN Pharmaceutical Inc. Cat. No.100623,
Cleveland, USA).

Dissolved. 100 ml H20 added. Sterilised by filtration.

Cloning medium

RMPI-Bicarb-FCS containing HT or HAT stock solutions in 

different final concentrations.

Agar stock solution
1.1% Agar (Difco-Bacto-Agar, Difco Laboratories, Detroit, USA) 

in deionised distilled water.
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Agar medium

RPMI 1640 (lOx) 16 ml

NaHCOj 8% w/v 2,.5 ml

Penicillin/streptomycin 
100 IU/ml

5 ml

Glutamine 2 mM 1 ml

Sodium pyruvate 2 ml

Foetal calf serum 40 ml

h 2o 36 ml

Agar base layer

Equal volumes of agar stock solution and agar medium were 

mixed to give an agar concentration of 0.55%.

Agar top layer

Equal volumes of cloning medium and agar base layer were 

mixed to give an agar concentration of 0.275%.

2,01.3. Medium for freezing down cells 

RPMI-H-FCS-DMSO

RPMI-H-FCS containing 10% dimethylsulphoxide.

2.02. Cell line cells

The cell line designation is followed, in brackets by the animal 

strain and the tissue of origin. The American Type Culture Collection 

(ATCC) and Certified Cell Line (CLL) number of each cell line is given 

when known.
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2.02.1. Cell line cells of mouse origin 

BW 5147 (AKR, thymic lymphosarcoma used for the production of T cell 

hybridomas) was a gift from Dr. E. Simpson (Clinical Research Centre, 

Harrow).

S2 (BALB/c, muscle-derived fibrosarcoma) was maintained in vitro 

by Dr. Ribeiro dos Santos (St. George's Hospital Medical School, Tooting).

Neuro-2a (BALB/c, neuroblastoma) was obtained from Dr. Ribeiro dos 

Santos. ATCC CC L 131.

P815 (DBA/2 mastocytoma) was maintained by Dr. C.J. Sanderson.

EL4 (C57 BL, thymic lymphosarcoma) was a gift from Dr. E. Simpson. 

P3-NSI-1 Ag4-1 (BALB/c, myeloma) was a gift from Dr. E. Simpson.

This cell line, commonly referred to as NS1, is widely used for the 

production of monoclonal antibodies (Kohler, Howe and Milstein, 1976). 

Although it does not secrete Ig, it synthesises K chain.

P3-X63- Ag8.653 (BALB/c myeloma) was a gift from Dr. B. Turner (NIMR). 

This cell line, used for the production of monoclonal antibodies, was 

derived from NS1 and does not express Ig heavy or light chain (Kearney, 

Radbruch, Liesegang and Rajewsky, 1979).

2.02.2. Cell line cells of rat origin
Y3-Ag 1.2.3 (LOU rat myeloma) was obtained from Dr. C. Milstein

(MRC Laboratory of Molecular Biology, Cambridge). This cell line is used 
for the production of monoclonal antibodies (Galfre, Milstein fi Wright, 

1979). It is commonly referred to as Y3.

2.02.3. Cell line cells of human origin

Daudi (Burkitt lymphoma-derived) was a gift from Dr. S. Patterson 

(Clinical Research Centre).
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MRC5 (Human embryonic lung; diploid); ATCC CCL 171, was supplied 
by the tissue culture service of the Clinical Research Centre.

All cell line cells, except Y3 were grown in RPMI-Bicarb-FCS.

Y3 cells were grown in RPMI-Bicarb-FCS-P.

All these cell lines were used when in exponential growth.

2.03. Laboratory animal strains

2.03.1. Mouse

BALB/c, BALB/c nu/nu, A, DBA/2, C57BL/6, C57BL/10, SJL, TO, ATL, BIO, 

AQR, CBA and AKR were originally obtained from OLAC Ltd., Bicester, England.

C57 BL/6-Ly-la was originally obtained from the Sloane-Kettering 

Institute for Cancer Research, New York, U.S.A. NH was obtained from 

the National Institute of Health, Bethesda, U.S.A.

All these strains were maintained in the special Pathogen Free Unit 

of the Clinical Research Centre.

2.03.2. Rat

AGUS rats were obtained from Bantin and Kingman Ltd., Hull, England. 

August rats were obtained from NIMR.

LOU rats were obtained from OLAC Ltd.

2.03.3 Rabbit
New Zealand white rabbits were obtained from Ranch Rabbits Ltd.,

Crawley Down, England.
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2.04 Antibody preparations

2.04.1. Monoclonal antibodies

Mouse anti-sheep erythrocytes (E): IgM from hybridoma supernatant 

(MAS 012b), IgGl from hybridoma supernatant (MAS 013b) and serum/ascites 

(MAS 013c) and IgG2b from hybridoma supernatant (MAS 014b) and serum/ascites 

(MAS 014c) were all purchased from Sera-Lab Ltd. (Crawley Down, England).

IgM 83/SCC1 was a gift from Dr. P. Lydyard (Middlesex Hospital Medical 

School).

Mouse H-2^ anti-H-2^ (antibody 27.R9; Lemke, Hämmerling, Höhmann fi 

Rajewsky, 1978) was a gift from Dr. A. Müllbacher (Clinical Research 

Centre).

2.04.2. Antisera

Mouse anti-E: Laboratory stock, obtained after multiple injections of F. 

This is known as "Mouse anti-SRBC (B/C)ex AJM". •

Mouse anti-Trypanosoma cruzi: this was obtained by Dr. Ribeiro dos 

Santos from BALB/c mice chronically infected with T.cruzi. The antiserum was 

absorbed with S2 and Neuro-2a cell line cells.
J  L

Mouse H-2 anti-H-2 (Searle Diagnostic, High Wycombe, England).

Rat anti-mouse cell lines: three antisera were raised in three individual

AGUS rats: antiserum A and B were produced in a similar fashion in two rats
7

that received weekly i.p. injections of 3 x 10 P815 cells over a two month

period. Antiserum C was produced in another AGUS rat which received a single 

i.p. injection of 3 x 10* 7 P815 cells followed by weekly i.p. injections of 

3 x 107 Neuro-2a cells over a two month period.

Rat anti-human MRC S: this was produced by weekly i.p. injections of 

MRC S cell line cells into an AGUS rat over a two month period.

Rabbit anti-T.cruzi: this was obtained by Dr. Ribeiro dos Santos from 

rabbits chronically infected with T.cruzi. The antiserum was absorbed

12



with S2 and Neuro-2a cell line cells.

Rabbit anti-mouse IgG: Laboratory stock. The rabbit IgG fraction 

was a gift from Dr. W. Thomas (Clinical Research Centre) and the anti-mouse 

IgG purified by affinity chromatography on a mouse IgG coupled-Sepharose 

column by Dr. C. Sanderson.

Rabbit anti-mouse eosinophil: three individual antisera were
7raised, AE^, AE 2 and AE^ by weekly injections of 5 x 10 BALB/c eosinophils 

in Complete Freund's Adjuvant (CFA, Difco Laboratories) in three New
g

Zealand white rabbits over a four week period. AEj absorbed with 10 P815

cells is called AE, .la
Rabbit anti-mouse neutrophil : this was produced by weekly injections 

of 3 x 107 BALB/c neutrophils in CFA in a New Zealand white rabbit over a 

four week period.

Goat anti-rat IgG: Laboratory stock. The IgG fraction was a gift 

from Dr. J. Howard (ARC, Babraham), and the anti-rat IgG purified by 

affinity chromatography on a rat IgG coupled-Sepharose by Dr. C. Sanderson. 

Goat anti-rabbit IgG-FITC: (Nordic Immunology, London).

2.05. Complement

2.05.1. Mouse complement.
This was obtained from strain A(C5 deficient) mice. Mouse blood 

was pooled, allowed to clot 15' at 22°C and then at 4°C for 2 to 4 hrs 

The serum thus obtained was twice absorbed with E (1 volume packed E:

5 volumes mouse serum) and kept at 4°C. It was used within two hours.
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2.05.2. Guinea pig complement

Fresh guinea pig serum was absorbed with mouse spleen cells (1 volume 

packed splenocytes: 10 volumes guinea pig serum) for 1 h at 4°C. It 

was stored in 200 pi aliquots at -70°C until use. This complement was 

used in the cytotoxicity assays (Chapter 7) with mouse eosinophils, 

lymphocytes and macrophages at a dilution of 1:10 in RPMI-H-FCS. This 

dilution gave maximum cytotoxicity in a preliminary titration with a 

rat anti-mouse cell serum (antiserum A).

2.05.3. Rabbit complement

This was used in the cytoxicity assay with mouse neutrophils 

(Chapter 7) since guinea pig complement gave very low levels of cytotoxicity 

with a rat anti-mouse cell serum (antiserum A) and hybrid Ml/21.A9.H8.C5 

(Table 2.1). Complement from six rabbits were then tested and the 

complement giving the highest levels of cytotoxicity and the lowest level 

of toxicity (antibody-independent activity) absorbed with different 

numbers of mouse spleen cells. Absorption of 100 pi of complement with 

5 x 10^ cells was found to give high levels of cytotoxicity with a low 

toxic effect and used at a dilution of 1:10 in RPMI-H-FCS.

2.05.4. Human complement

Laboratory stock, obtained from the serum of a normal individual and 

stored at -70°C.



Table 2.1. Cytotoxicity of mouse neutrophils by antibody and complement

from different sources.

Complement 
at 1:10

__________________ Antibody preparations________________
Antiserum A Monoclonal Ab* Antiserum A Mon.Ab

♦ ♦ ♦ “ • f -
guinea pig 25+ 4 3 0 20 3 5 0
rabbit 89 72 98 88 1O0 76 96 93

rabbit
absorbed 77 14 59 9 NT NT NT NT

Human 2 1 9 2 IS 6 7 6

without sodium azide with 10 mfl sodium azide

* Monoclonal antibody Ml/21 A9.H8.G5 (see Chapter 7)

+ Percentage specific ^*Cr release 

NT = not tested

Increasing the complement concentration did not increase the specific 
^*Cr release.

Azide was used to inhibit an antibody modulation effect.
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2.06. Cell suspensions

2.06.1. Mouse cells

Peritoneal exudates containing eosinophils and neutrophils, were 

collected from the peritoneal cavity in RPMI-H-FCS, washed (centrifugation at 

400 r.c.f. for 5'), counted and resuspended to the required concentration.

Macrophages were obtained from the peritoneal cavity of mice three 

days after an injection of dextran (Mol.wt. 5-40 x 10**, Koch-Light 

Laboratories Ltd., Colnbrook, England) and collected in RPMI-H-FCS.

Lymphocytes were obtained from normal spleens. The spleens were 

collected in RPMI-H-FCS, disrupted with a silicone rubber bung and the 

resulting cell suspension allowed to stand for 5* to let aggregates 

sediment. The single cell suspension was then transferred to another 

tube, washed and centrifuged on an interface of Metrizamide (Nyegaard 

6 Co., Oslo) 14.5% at 1200 r.c.f. for 15'. The interface consisting of 

100% mononuclear cells was the source of lymphocytes.

Mouse peripheral blood was obtained by cardiac puncture with a 1 ml 

syringe containing 40 I.U. of heparin (preservative free; Paines 5 Byrne 

Ltd., Greenford, England). The cells were then washed and resuspended 

in RPMI-H-FCS.

2.06.2. Rat cells

Eosinophils, neutrophils and K cells were obtained as previously 

described (Sanderson 6 Thomas, 1978). Briefly, eosinophils obtained from 

normal August rats in RPMI-H-FCS were centrifuged on a two step gradient 

of Metrizamide 17.5% and 16.5%. The second interface containing the 

eosinophils was centrifuged again on a second gradient of Metrizamide 

using the same concentrations. This produced a preparation consisting of
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about 90% eosinophils.

Rat neutrophils were obtained in RPMI-H-FCS from AGUS rats after 

an i.p. injection of dextran. The cells were first centrifuged on 

Ficoll-Paque, and the resulting pellet centrifuged on a two step gradient 

of Metrizamide 20% and 17.5%. The second interface, containing about 

95% neutrophils, was used.

K cells were obtained from the spleen of normal AGUS rats. This 

was disrupted (see Section 2.06.1.) and the cells in RPMI-H-FCS 

centrifuged on Ficoll-Paque. The interface, consisting of 100% lymphoid 

cells was used as the source of K cells.

2.07. Cell counting

This was done with a Coulter counter Model 2B1 (Coulter Electronics 

Ltd., Luton, England). This apparatus counts particles passing through 

a small aperture in an electrolyte solution. A fixed volume (usually 

0.5 ml) of particles is made to pass through the aperture in which an 

electrical current has been established. As each particle passes through 

the orifice, the resistance is changed and registered as a pulse that is 

proportional to the particle volume. Coincidence corrections (when two 

cells pass through the orifice simultaneously) is made electronically. 

Using the electrical controls it is possible to select the volume range. 

Thus, with the instrument properly calibrated for a particular cell type 

only viable colls are counted as dead cells show a different electrical 

resistance and give a pulse height equivalent to a much smaller cell.

This instrument was used in conjunction with a Model P64 size 

distribution analyzer (Coulter Electronics Ltd.) which plotted size



distribution graphically.

When mouse peripheral blood and spleen cells were counted, Zaponin 

(Coulter Electronics Ltd.) was added to lyse the red cells.

2.08. Cell viability

This was tested by mixing equal volumes of filtered trypan blue 

0.2% in PBS and the cell suspension. After 5' at 22°C the cells were 

examined in the microscope under phase contrast and those cells stained, 

scored as dead cells.

2.09. Staining

Cells were first sedimented onto a microscope slide with a Cyto- 

centrifuge (Shandon Scientific Company Ltd., London) and fixed in 

methanol for 4'-5'. The slides were then stained for two minutes with 

filtered Giemsa stain (Code No.35014, 2K, BDH ) freshly diluted 1:5 

in Sorensen's buffer (Mercia Brocades Ltd., West Byfleet, England).

2.10. Parasites used to induce peritoneal eosinophilia

2.10.1. Trichinella spiralis (gift from Dr. G. Lee, NIMR)

The infective larvae of this parasite was obtained from mice or 

rats carrying at least a six week old infection. The parasite could be 

obtained by digesting the wall of the cysts present in the skeletal muscle
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of these animals with a solution of 1 N HC1 1% and pepsin (BDH) 1%.

2.10.2. Taenia crassiceps (Toi strain, gift from Dr. J. Chernin, 

North East Surrey College of Technology)

This parasite, whose definite host is the fox and the intermediate 

host a rodent ( Freeman, 1962) was maintained by serial i.p. passage in 

mice. This parasite reproduces in the peritoneal cavity of mice by 

assexual exogenous budding.

2.10.3. Mesocestoides corti (gift from Professor Eckert, Institut 

für Parasitologie der Universität, Zürich)

This parasite appears to need two intermediate hosts, a mite and a 

small vertebrate before completing its life cycle in a bird or a mammal 

(Eckert, von Brand & Voge, 1969). In natural infections the larvae of 

M.corti passes from the gut to the peritoneal cavity of mice, and from 

here to the liver by direct penetration (Specht 5 Widmer, 1972).

During assexual multiplication in the liver, few parasites are found in 

the peritoneal cavity, but after day 25 after infection many parasites 

are observed again in the peritoneum. In laboratory i.p. infections 

the larvae penetrates into the liver where it multiplies assexually and 

migrates back into the peritoneum. This parasite was maintained by 

serial i.p. passage in mice.
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2.11. Cell separation techniques

2.11.1. Nylon wool column

This technique was used to separate adherent from non-adherent 

cells essentially as described by Julius, Simpson G Herzenberg (1973).

A column was made in a 10 ml syringe, filled with RPMI-H-FCS 

and incubated at 37°C for 1 hour. The column was then rinsed with fresh 

medium and the cells in RPMI-H-FCS added and incubated at 37°C.

After 15' the non-adherent cells were obtained by eluting the column 

with 25 ml of RPMI-H-FCS. The adherent cells were recovered by forcing 

medium through the column with the syringe plunger.

2 .1 1 .2 . Isopycnic centrifugation

This technique separates cells by centrifuging them at relatively 

high gravitational forces to their equilibrium position (isopycnic point) 

in a density gradient. The isopycnic point for each cell type was firstly 

determined by centrifuging the cells on a continuous linear gradient.

Once this was determined, an interface, or a two step gradient was used 

which allowed the separation of a particular cell type from the other 

cells in a single centrifugation step.

Metrizamide (Nyegaard 5 Co.AS.Oslo) was chosen over Ficol1-sodium 

diatrizoate solutions as a gradient material because of its greater 

flexibility in covering a wide range of densities without changes in 

osmolarity pnd only minor changes in viscosity. A Metrizamide stock 

solution 35.3% w/v was made and filtered through a 0.22 pm Millipore 

filter. This stock solution has an osmolarity of 282 m Osm which is 

isotonic for the rat and slightly hypotonic for mouse cells.

Metrizamidc of different concentrations were made by diluting the
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stock solution in PBS and adding 2% FCS. Each concentration was then 

checked with a refractometer (Abbe refractometer M.46, Rank Precision Ltd., 

London) and adjusted if necessary (Table 2.2). It was stored at -20°C 

away from light.

A continuous linear 10-20% Metrizamide gradient was formed by 
separately dispensing these solutions into the chambers of a gradient 

former, the highest density solution into the chamber nearest the outlet. 

The tubing from the outlet was connected to a penitaltic pump 

(Varioperpex II, LKB Produkter Ltd., Sweden) which in turn was connected 

to the probe of an Auto Densi Flow (Searle, New Jersey, U.S.A.) apparatus. 

This instrument delivers the gradient into a centrifuge tube, and as 

the fluid enters the tube, the probe is automatically raised so that 

the fluid is delivered at the surface of the gradient in a continuous and 

non-turbulent manner. The cells were then placed on top of the gradient 

with the same apparatus and centrifuged for IS' at 1200 r.c.f. After 

centrifugation the sample layers were collected from the top of the tube 

in 0.5 ml fractions using the Auto Densi Flow in reverse. For each 

fraction the refractive index was determined as a measure of the 

Metrizamide concentration, the cells counted and a cytocentrifuge 

preparation made. In this way it was possible to establish the total 

number of each cell type that sedimented in each fraction.

Separation on a density interface

5 ml of the chosen Metrizamide concentration was placed underneath 

S ml of cells (up to 10® per 24 mm tube) in RPMI-H-FCS with a syringe. 

Separation on a two step gradient

This was formed by layering 1 ml of the highest Metrizamide 

concentration at the bottom of a 1 0  ml plastic tube followed by 2 ml of 

the lowest Metrizamidc concentration on top, and the cells in 1 or 2 ml
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Table 2.2. Refractive index and density of a range of Metrizamide 
concentrations at 22°C.

Percent. Refractive Density
Metrizamide index (gm/cm3

1 0 1.3483 1.0512
1 1 1.3500 1.0567
1 2 1.3516 1.0622
13 1.3532 1.0677
14 1.3548 1.0732
15 1.3564 1.0787
16 1.3580 1.0842
17 1.3597 1.0897
18 1.3613 1.0952
19 1.3630 1.1027
2 0 1.3646 1.1062
30 1.3809 1.1612
35.3 1.3895 1.1903

Ficoll-Paque has 3a density of 1.0077gm/cm which
corresponds to a Metrizamide concentration of 14.8%.
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(up to 2 X IO7 cells per 16 mm tube) in RPMI-H-FCS on top of the

gradient. Delivery of the Metrizamide concentrations and the cells in 

RPMI-H-FCS was done with the Auto Densi Flow.

For both types of separation the cells were centrifuged for 15' 

at 1 2 0 0  r.c.f.The interfaces were individually recovered with a pasteur 

pipette taking care to avoid contamination with cells in the lower layer. 

Cells obtained from the interface or pellet were then resuspended in 

20 ml RPMI-H-FCS and washed.

2.11.3. Velocity sedimentation at unit gravity

This technique is based on the principle that the velocity of a 

sphere sedimenting through a fluid under the influence of gravity is given 

by Stoke's law:

fluid medium respectively, g is the sedimentation force, r the radius of 

the particle and n = viscosity.

In practical terms, provided (/-/') and n remain constant, the cells 

sediment at rates largely determined by their volume according to the 

equation

where s is expressed in mm/h and r in microns.

This technique was used essentially as described by Denman 5 Pelton 

(1973). The total sedimentation time used was of about 3.5 hrs. The 

sedimentation velocity for each cell type was calculated by correlating

s 2

9 n

where s = sedimentation velocity, / and /'the densities of the cells and

2r (Miller 6 Phillips, 1969)s
4
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the geometry of the sedimentation chamber to the volumes collected and 

the length of time given to the cells to sediment.

The sedimentation apparatus is illustrated in Figure 2.1. The 

technique was performed in the following way: to the sedimentation chamber 
(D) containing 50 ml of RPMI-H, up to 4 x 10® cells in 20 mis of RPMI-H-FCS 

0.16% - F 0.16% were loaded under gravity. When the cell loading was 

completed the flow regulators F^, F2 and F3 were opened, thereby 

allowing the communication between A and B and the formation of a 

shallow 0.16% - 2% Ficoll gradient. As the gradient was formed, it entered 

the sedimentation chamber where a perforated porcelain disc and steel 

ring (II) were placed at the inlet to minimize turbulence. The cells 

were pushed upwards by the influence of gravity while the gradient was 

formed over a 40' period. The rate was controlled manually with flow 

regulator F^. Once the gradient entered the sedimentation chamber the 

cells were allowed to sediment for another two hours. Collection of 

the sedimented cells was done over 40'-50' either from the chamber inlet 

or from the top of the chamber by upward displacement with 40% sucrose.

(The sucrose was passed by connecting the vessel E to the sedimentation 

chamber and opening F4 .) As the cells reached the lower or upper cone 

of the chamber, according to the type of collection used, the flow rate 

was slowed down with flow regulator F̂  to minimize cell layer mixing.

The cells were then collected in 10 ml fractions, counted and the 

percentage of each cell type examined in a cytocentrifuge preparation.

Thus, it was possible to calculate the total number of each cell type 

per fraction.

2.12. Indirect heamagglutination (Coomb's test)

This assay was used in preliminary experiments designed to find the



Figure 2 . 1. Sedimentation apparatus

A) Chamber containing 300 ml RPMI-H-FCS2?»-F2f»
B) Chamber containing 100 ml RPMI-H-FC.S1%-F1*
C) Universal tube containing cells in RPMI-H-FCS 0.16%-F 0.16*
D) Sedimentation chamber. Diameter = 10 cm 

• E) Vessel for applying sucrose 40*
F) Flow regulators
G) Magnetic stirrer
H) Baffle
I) 1 0  ml tubes for sample collection
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sheep giving the highest titre with mouse monoclonal IgGi and IgG2b 

anti-E antibodies. Sheep No.61 (Tissue Culture Services, Slough England) 

gave the best result out of ten sheep tested and was used throughout 

these experiments.

The assay was performed in a haemagglutination plate (V bottom,

Cooke Microtitre System, Sterilin, Teddington, England) in which equal
O

volumes (50 Ul) of washed E in RPMI-H (10 A1!) and antibody dilution 

(also in RPMI-H) were mixed. After 40' at 22°C the E were washed three 

times in the plates and the rabbit anti-mouse IgG at 1:200 added (this 

dilution gave optimum indirect haemagglutination with the mouse anti-E 

serum). After 3 h at 22°C, the agglutination titre was recorded.

Since in preliminary experiments the mouse monoclonal IgGi and IgG2b 

anti-E antibodies obtained in the form of culture supernatant had given 

a low number of rosettes with both eosinophils and neutrophils, a 

comparison was made with these antibodies obtained in the form of serum/ 

ascites. A higher titre was recorded with antibodies from the serum/ 

ascites preparation (Table 2.3) and these preparations were therefore used 

in all the experiments described in Chapter 4. These antibodies did not 

show direct agglutination of E.

2.13. Complement fixation assay

This assay was used to select the mouse monoclonal IgM anti-E with 

the highest titre. IgM antibodies, IgM 83/SCC1 and IgM (Sera Lab) 

had been previously found not to produce direct agglutination of E, 

although IgM 83/SCC1 can be agglutinating when hybridoma supernatants are 

concentrated or when obtained in the form of serum/ascites (Dr. Lydyard,
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Table 2.3 Indirect haemaglutination (Coomb's test) with monoclonal IgGl and IgG2b anti-E antibodies

Reciprocal of Antibody dilution

10 20 40 80 160 320 640 1280 2560 5120 10240 20480 4000 8000 16000

IgGl* ♦ ♦♦ ♦ ♦♦ ♦ ♦♦ ♦ ♦ - - - - - - - - - -

IgG2b* ♦ ♦♦ ♦ ♦♦ ♦ - - - - - - - - -

IgGl + ♦ ♦♦ ♦ ♦♦ ♦ ♦♦ ♦ ♦ ♦ - - - - -

IgG2b+ ♦♦♦ ♦♦♦ ♦ ♦♦ ♦♦♦ •f ± -

*
Antibody from hybridoma supernatants 

+ Antibody from serum/ascites



personal communication).
O

Equal volumes (50 pi) of washed E (10 /ml), antibody dilution and 

guinea pig complement (at a 1:10 dilution) were mixed in LP2 tubes 

(Luckham, Burgess Hill, England) and incubated 1 h at 37°C. At the end 

of the incubation period the tubes were centrifuged for 5' at 400 r.c.f. 

and the end point of haemolysis determined visually. The control pellet 

was classified as (+++) and no visible pellet (indicating 1 0 0 % haemolysis 

as (-).

IgM 83/SCC1 gave the highest titre (Table 2.4) and was therefore 

selected for the experiments described in Chapter 4. IgGl and IgG2b 

were included as a comparison.

2.14. EA complexes

Washed E (108 /ml) were incubated for 40' at 22°C with different 

concentrations of IgM 83/SCC1, IgGl and IgG2b anti-E antibodies. The 
complexes were then washed twice and resuspended in RPMI-H.

2.15. EAC complexes

a) Formation of EAC. EAC3b was prepared essentially as described 

by McConnell 6 Hurd (1976); 0.5 ml of EAjgM (2 x 108 /ml) were incubated 

in mouse complement (see Section 2.05.1) diluted 1:2 in RPMI-H.

After two minutes at 37°C the reaction was stopped by adding sodium suramin 

(Antrypol, Bayer 205, Bayer, U.K. Ltd., Haywards Heath, England, gift 
from Dr. McConnell.)
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Table 2.4. Haemolysis of E by different antibody preparations and guinea pig complement

Reciprocal of antibody dilution

5 10 20 40 80 160 320 640 1280 2560 5120 None

IgM 83/SCC1 ♦4* 4- 4» 4-4- 4*4-4* 4*4*4- 4*4*4* 4*4» 4* 4* - - - -

IgM(Sera
Lab)

♦♦♦ 4-4-4« 4-4* 4- - - - - - - - -

IgGl* - - - - - - - - - - - «

IgG2b* 4-4*4- 4-+4- 4-4*4* 4*4*4* 4-4*4* 4-4*4* 4*4* 4* - - -

obtained in the form of serum ascites



in mouseFor the preparation of EAC3bi, incubation of EAjgM 

complement was for 30' at 37°C; the cells were then washed and incubated 

for a further 1 h at 37°C in undiluted heat inactivated mouse serum as 

a source of Factor H and Factor I to ensure total cleavage of C3b into 

C3bi.

Both preparations, EAC3b and EAC3bi were then resuspended and 

diluted in RPMI-H-F 2%. Granulocytes were also suspended in RPMI-H-F 2% 

when tested in the rosette, phagocytosis and 51Cr release assays with 

these complexes. Ficoll 2% was used to replace FCS in these assays to 

avoid degradation on the complexes formed by Factor I present in the FCS. 

Control experiments with EAjgG2b showed granulocytes to be equally active 
in the presence of FCS or Ficoll in a 4 hs cytotoxicity assay.

b) Testing with Daudi cells: Daudi cell line cells form rosettes 

with E coated with human C3bi and C3d but not with human C3b (Ross, Tack 

Ç Rabellino, 1978). They were used as a control indicator system for 

mouse complement-coated E. Between 20 to 55% of Daudi cells were found 

to form rosettes with EAC3b complexes, whereas more than 80% Daudi cells 

formed rosettes with mouse EAC3bi.

2.16. Rosette formation

For EA rosettes, lOO^u 1 of effector cells in RPMI-H-FCS (2 x lO^/ml)
g

were mixed with 100^,1 of EA complexes in RPMI-H-FCS (10 /ml) and 

centrifuged at 100 g for 4' at 4°C as described by Tai 6 Spry (1980).

For EAC rosettes, the mixtures in RPMI-H-F 2% were centrifuged at 22°C 

and then incubated for 2'-S’ at 37°C. The pellets were gently resuspended, 

sedimented onto a microscope slide with a Cytocentrifuge and stained with 

Gicmsa.



Rosette assays were done in triplicate, counting a minimum of 

2 0 0 cells; three or more adhering cells were regarded as positive.

2.17. Phagocytosis assay

Effector cells and EA or EAC complexes were mixed as in the rosette assay 

(2.16) and incubated at 37°C. At the end of the incubation period, the 

mixtures were centrifuged for 1' at 100 g. Cytocentrifuge preparations 

were then made, and the percentage of cells with one or more ingested E 

was determined.

2.18. Trypanosoma cruzi antigen

This was prepared by Dr. Ribeiro dos Santos from cultured epimastigotes. 

The parasites were suspended in distilled water and disrupted by freezing 

and thawing twice (Ribeiro dos Santos 6 Hudson, 1980b). The lysate was 

made isotonic by adding 1.4 M sodium chloride solution and debris 

removed by centrifugation at 30,000 r.c.f. for 1 h at 4°C. The supernatant 

was adjusted to a protein concentration of 2 0 0  yg/ml.

2.19. Hybridization technique

This was used to raise the rat monoclonal antibodies to mouse 

eosinophils described in Chapter 7.

2.19.1. Immunization

Purified mouse eosinophils were injected into male rats in 1 ml of
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PBS containing 2% heat inactivated normal rat serum. The rat giving 

the highest titre with mouse eosinophils was selected.

In fusion 1 (rat-mouse fusion) an AGUS rat was primed i.p. with
7 72 x 10 CBA eosinophils and three weeks later boosted i.v. with 3 x 10 

CBA eosinophils. Spleen cells were fused with NS1 myeloma cells three 

days after the boost.

In fusion 2 (rat-mouse fusion) an AGUS rat was primed i.p. with 

2 x 107 CBA eosinophils and three weeks later boosted i.v. with 6 x 107 

CBA eosinophils. The spleen cells were passed through a nylon wool 

column (see Section 2.11.1.) and the adherent cells recovered and fused 

with NS1.

In fusion 3 (rat-rat fusion) a LOU rat received a single i.v.
7injection of 8 x 10 BALB/c eosinophils. The spleen cells were fused 

four days later to the rat myeloma Y3.

2.19.2. Fusion protocol

A single cell suspension of the rat spleen cells was prepared as 

with mouse spleen cells (see Section 2.06.1.). The spleen cells were then 

washed twice in RPMI-H, the second time together with the myeloma cells 

in a round bottom plastic tube. In the mixture, the spleen cell : myeloma 

cell ratio was of 10:1. The supernatant was aspirated and the pellet 

overlaid with 0.2 ml of PEG. After thoroughly mixing by flicking the 

bottom of the tube, the cells were centrifuged at 2 0 0 r.c.f. for 5'.

RPMI-H was then carefully added without disturbing the pellet. After one 

minute, the pellet was resuspended in the supernatant over 3-4 minutes.

The cells were then centrifuged at 250 r.c.f. for 10', the supernatant 

removed and the cells overlaid with RPMI-H-FCS without disturbing the 

pellet. After letting it stand for 5' this was resuspended and transferred
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to a 50 ml tube where the volume was brought up to 48 ml. After mixing, 

the cells were distributed in aliquots of 1 ml into each well of a 

24 well Linbro plate (Cat. No. 76-033-05, Flow Laboratories) and 

incubated at 37°C in an atmosphere of 5% C02> Two days later 1 ml of 
cloning medium containing double strength HAT was added to each well.

Every 3 to 4 days, 1 ml of each well was replaced with 1 ml of cloning 

medium containing IX HAT and a month later this was replaced by cloning 

medium containing IX HT. Two months after the fusion, cloning medium 

without HT was used. In each fusion, myeloma cells alone were plat'ed 

as a control for HAT solutions. After about 1 week all myeloma cells 

were dead.

2.19.3. Cloning

This was done in two ways: a) Limiting dilution; cells in cloning 

medium were placed in a microtitre plate (96 wells, flat bottom, Nunclon 

Delta Tissue Culture Plates, Catalogue No. N1480, Nunc U.K., division of 

Gibco Bio-Cult Ltd.) at approximately 1 cell/well. After about two weeks 

at 37°C in an atmosphere of 5% C02, colonies showed active growth and the 

supernatant was removed for testing. b) Cloning in agar; 15 ml of 

agar base layer were dispensed into a petri dish (90 mm diameter) and 

allowed to solidify at 22°C. Equal volumes (1-2 ml) of 5 x 10^ cells in 

cloning medium at 37°C and 0.55% agar at 40°C were mixed and quickly 

spread over the base layer to give the top layer of 0.275% agar.

5 x lO3 cells were used because this number of cells showed active growth 
with no overcrowding of the petri dish. Colonies appeared after 

about 12 days at 37°C in 5% COj. These were removed individually with a 

pastcur pipette and the cells placed in a small volume (1 - 2  ml) of 

cloning medium. After 4-5 days, the supernatants were removed for testing.
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2.20. Indirect immunofluorescence (IIF)

2.20.1. Visual examination of methanol-fixed cells

Methanol was chosen as a fixative because preliminary experiments 

showed a better membrane fluorescence than with cells fixed with acetone, 

0 .1 % glutaraldehyde, or 1 % formaldehyde.
410 cells in 5 pi were placed in each well of a tissue typing slide 

(tissue typing slides type H, Catalogue No. 999/801/140, G.D. Searle 5 

Co. Ltd.,High Wycombe, England), dried quickly at 60°C and fixed in 

methanol. The plates were then stored at 4°C in a sealed box containing 

CaCl. Prior to use each plate was washed three times in PBS and rinsed 

in distilled water. 5 pi of diluted antiserum was added to each well 

and incubated for 30' at 22°C in a humidified chamber. The plates were 

then washed with PBS (three changes of PBS over a 30' period) in a 

Coplin container with a magnetic stirrer. 5 pi of goat anti-rabbit IgG-FITC 

at a dilution of 1 : 2 0  (this was chosen as a preliminary chequer board 

titration showed good membrane fluorescence with a positive control and 

no fluorescence when cells were incubated with normal rabbit serum or 

goat anti-rabbit IgG-FITC alone) were then added and the samples examined 

under phase contrast and fluorescence with a Carl Zeiss microscope with a 

IV F 1 epi-fluorescence condenser (Carl Zeiss, Oberkochen, West Germany) 

and a X40 objective. Samples were scored from (-) to-(++^) according to 

the intensity of the membrane fluorescence observed.

2.20.2. Examination of live cells on the fluorescence activated cel 1 
sorter (FACS)

2S pi of cells (2 x 107 /ml) in RPMI-H-FCS were mixed with 25 pi of 

rabbit antiserum dilutions in 1 ml conical plastic tubes. After 30' at 

22°C, tho cells were washed three times in RPMI-H-FCS and resuspended in
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25 yl of goat anti-rabbit IgG-FITC at 1J8 (this dilution was determined 

by a chequer board titration as described in 2.20.1). After an 

incubation period of 20' at 22°C, the cells were washed twice and 

resuspended in RPMI-H-FCS, ready to be examined with the FACS.

2.21. Radioisotopes

The following isotopes were obtained from the Radiochemical Centre 

Amersham.

1252.21.1. Na I carrier free (Code No. IMS.30) was supplied in a 10 yl 

volume or less with an activity of 1 mCi.

2 .2 1 .2 . Na-^CrO^ was supplied as a sterile isotonic solution with an 

initial activity of about 5m Ci/ml (Code No. CJS.4).

2.22. Iodination of goat anti-rat IgG

Affinity purified goat anti-rat IgG (see Section 2.04.2) was 

iodinated by the Chloramin T method.

To 10 yl of Na*^SI (1 m Ci), 10 yl of 0.5 M phosphate buffer pH 7.5 

were added followed by 10 yl of the IgG antibody at an approximate 

concentration of 1 mg/ml. The reaction was then initiated by adding 

10 yl of freshly prepared chloramin T (0.5 mg/ml). The reaction was 

stopped within 30 seconds with 450 yl of a saturated tyrosine solution; 

50yl of FCS were then added as a carrier protein. The whole mixture was
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then placed on a prepacked Scphadex G-25M column (PD 10 Pharmacia 

Fine Chemicals Ltd.) The iodinated protein was collected and 1% FCS 

and 0.1% sodium azide added. It was stored at 4°C.

2.23. Binding assay

Preliminary experiments showed that cells fixed with 0.125% 

glutaraldehyde gave similar results to unfixed cells. Furthermore, by 

adhering the cells to the bottom of the wells of a microtitre plate 

(flexible polyvinyl chloride, 96 round "U" wells, Cat. No. 1-220-24, 

Dinatech Laboratories Incorporated, Alexandria, Virginia, USA) the washing 

was facilitated as centrifugation became unnecessary. Thus, each wash 

was carried out by filling the wells with the washing solution, and then 

flicking the plate to empty the wells.

The wells of a microtitre plate were treated with 200 wl of polybrene 

(Cat. No. P-4515, SIGMA) at 0.05 mg/ml for 40' at 22°C and then washed 

twice with PBS. The cell suspension was washed twice with PBS to remove 

protein and 50 wl of cells (2 x 10^/ml) were added to each well. The 

cells were then either allowed to settle for 1 h or centrifuged gently 

to allow cell attachment. After this, the cells were washed in PBS and 

each well covered with 200 wl of PBS-FCS for 30'. The cells were then 

washed twice and checked under the microscope for attachment to the 

plastic. Antibody samples (50 wl/wells) were added and incubated 40' 

at 22°c before washing three times in PBS-FCS. The *^®I labelled goat 

anti-rat IgG was then added, incubated 45' at 22°C before washing three 

times in PBS-FCS. After the last wash, the wells were filled with molten 

paraffin which was allowed to solidify before cutting out the wells.
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These were finally counted in a gamma counter (Neon 2000, Nuclear 

Enterprises, Edinburgh, Scotland).

2.24. Cytotoxicity assay by ^Cr release

In this assay, target cells in RPMI-H-FCS were labelled with about 

100 yCi of Cr for 1 h at 37°C. The cells were then washed, counted and 

diluted. The labelled target cells were then mixed with antibody and 

effector cells or complement, and incubated at 37°C.

The ^ C r  release was determined in the following ways:

2.24.1. Non-adherent target cells in LP2 tubes.

The cell mixtures were resuspended with a vortex mixer (Vortex 

Rotamixer deluxe, Hook and Tucker Instruments Ltd., Croydon, England) at 

the end of the incubation period and centrifuged 1' at 240 r.c.f.

From each sample (tested in duplicate or triplicate) half the 

supernatant was removed and dispensed into another LP2 tube (TUBE 2).

In the original tube (TUBE 1) remained the residual cells and the other 

half of the supernatant. Both tubes were then counted in a gamma counter 

(Wallac, LKB Instruments Ltd., South Croydon, England).

The gamma counter data were analysed by computer using a program 

(COL 2) written by Dr. C.J. Sanderson. The program output gave total 

isotope for each sample (as a control on the number of target cells used), 

percent isotope release, the log of this value for statistical analyses, 

and mean of replicates. This program calculated percentage ^ C r  release 

from counts in the two tubes (after substracting machine background) 

as:

TUBE 2 x CF 
TUBE 1 ♦ TUBE 2

x 1 0 0
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where CF (conversion factor) is the number obtained by dividing the 

total volume of the original sample by the volume removed for TUBE 2.

Percentage specific 5*Cr release was calculated from percent release:

Test-control ___--------------  x 1 0 0 ,
Total-control

where "control" is the isotope released in the absence of effector cells 

or antibody. "Total" releasable was determined in a different way for 

each case.

This type of assay was used in the following studies:

a) For the detection of mouse granulocyte receptors for IgG (Chapter 4): 

100 pi of ^*Cr labelled E (10^/ml) were mixed with an equal volume of

antibody and effector cells (5 x lO /ml) in LP2 tubes when the mouse anti 

was used. When IgG 1 and IgG2b were used, E were firstly incubated with 
these antibodies as in 2.14. The formed EA

-E

^IgGj or EAIg(,2b were then

labelled with 5 1 Cf, washed, and 100 pi (106 EA/ml) mixed with an equal 

volume of effector cells (5 x 106/ml) in LP2 tubes. The mixtures were 

then incubated for 4 hs at 37°C. For the calculation of specific 51Cr 

release, "Total" was the release of ^*Cr when E were treated with IgM 

83/SCC1 and rabbit complement.

b) For the detection of mouse granulocyte complement receptors (Chapter 4) 

EA igMwas first formed as in 2.14 and then labelled with ^*Cr. Coating 

with complement was as in 2.15. The same experimental conditions as with 

IgG) and IgG2b were then used. For the calculation of specific 5lCr 

release, "Total" was also obtained in the same way.

c) For the study of rat granulocytes and K cell cytotoxic activity 

against mouse cells (Chapter 6 ):

Equal volumes (100 pi) of 51Cr labelled target cells (105 /ml), antibody 

and effector cells, all in RPMI-H-FCS were mixed in LP2 tubes and
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incubated at 37°C. For the calculation of specific release,

"Total" was considered as 100.

2.24.2. Adherent target cells in Linbro plates

This was done in studies of granulocyte cytotoxic activity against cell 

line cells coated with T.cruzi antigen (Chapter 5).

S2 or Neuro-2a target cells (105) in RPMI-H-FCS were placed in each of 

a 24 well Linbro plate and allowed to settle and adhere to the plastic 

by incubation at 37°C for 4 hs. The 51Cr was then added (about 12 pCi/ 

well). After 1 h at 37°C the cells were washed and incubated with 

T.cruzi antigen (200 pg/well) for 1 h. After washing off the antigen,

0.2 ml of rabbit or mouse anti-T.cruzi serum and 0.3 ml of effector cells 

in RPMI-H-FCS were added and incubated with the target cells at 37°C.

At the end of the incubator period, 0.5 ml were removed from each well 

and dispensed in TUBE 2; 0.5 ml of 5% Triton X-100 (BDH Chemicals Ltd.) 

were added to the cells, and after about 10 hs dispensed in TUBE 1.

Both tubes were counted in a gamma counter.

Percentage ^Cr release was determined using the COL 2 program 

(see Section 2.24.1). The conversion factor in this case was 1.

2.24.3. Complement cytotoxicity in microplates

This assay was used for testing complement-mediated lysis of mouse 

cells by different antibody preparations (Chapter 7).

Target cells, antibody and complement, each in a 10 pi volume, were 

used. For each target cell used, six wells containing 10 ul of target 

cells and 20 pi of 5% Triton X-100, and six wells containing 10 pi of 

target cells, 10 pi of RPMI-H-FCS and 10 pi of complement were set up to 

obtain the total isotope release and the control isotope release 

respectively.
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1 0  pi of ^ C r  labelled target cells (1 0 ^/ml) were mixed with equal 

volumes of antibody dilution and complement dilution (all in RPMI-H-FCS) 

in a microtitre plate (U bottom, 96 wells, Linbro, Flow Laboratories) 

and incubated lh and 15' at 37°C. At the end of the incubation period, 

150 pi of PBS-FCS were added to each well, the mixtures centrifuged 1' 

at 240 r.c.f. and 100 pi taken from each well and counted in a gamma 

counter.

The gamma counter data were analysed by means of a computer program 

(SAHA) written by Dr. Sanderson. The program output, which has machine 

background substracted, gave percentage isotope release, percentage 

specific ^*Cr release and the mean of a group of replicates. Percentage 

specific 51Cr release was calculated from percentage 5lCr release:

Percentage specific ^*Cr release: — -s-t~cont—°* x 100,
Total-control

where "Total" is the isotope released in the presence of Triton and 

control is the isotope released in the presence of complement without 

antibody.

2.25. Statistical methods

Rosette and phagocytosis data were arc sin transformed (Tai 6 Spry, 

1980) and the standard deviation calculated.

Percentage 51Cr release data were analysed by analyses of variance by 

means of a program (BMD 02V-Health Service Computing Facility, UCLA) 

modified by Dr. Franks (University of Cambridge). Individual points were 

tested by Duncan's multiple range test (Duncan, 1955) using the standard 

error obtained from the analysis of variance and the log value from the 

percentage 51Cr release data.
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CHAPTER 3

PURIFICATION' OF MOUSE EOSINOPHILS AND NEUTROPHILS



■

INTRODUCTION

Before any experiments with mouse eosinophils and neutrophils 

could be attempted, the methods for obtaining these cells with a high 

degree of purity, good yield and maintaining function had to be developed. 

This is necessary as the use of highly purified cell preparations 

constitutes a necessary prerequisite in cytotoxic studies (Chapters 4,

5 and 6 ), so that activity and inhibition effects by other cell types 

can be ruled out. Similarly, separation from macrophages, which actively 

bind and phagocytose E has been found to increase the sensitivity of the 

rosette and phagocytosis assays (Chapter 4). Finally, the production 

of antibody preparations specific for mouse eosinophils and neutrophils 

requires highly purified cells for the immunization of animals and for 

the screening of antibody specificity (Chapter 7).

One of the problems encountered when working with mouse eosinophils 

and neutrophils is their difficult accessibility. August and AM-2 

(Instituto Biomedico, Universidade Federal Fluminense,Niteroi, Brazil) 

rats have a high number of resident peritoneal eosinophils. However, 

these appear to be special cases as none of the other readily available 

rat strains have comparable numbers of peritoneal eosinophils. The 

peritoneal cavity of normal mice is virtually devoid of granulocytes, and 

their numbers in the peripheral blood are relatively low.

Advantage is usually taken of the fact that a peritoneal eosinophilia 

occurs in mice carrying certain parasitic infections. Thus, high numbers 

of eosinophils obtained from S. mansoni-infected mice were used to raise 

an anti-eosinophil serum (Mahmoud, Warren 5 Boros, 1973). Similarly, 

eosinophils obtained from M.corti-infected mice allowed studies on their 

surface markers (Hoghart, Cruise, McKenzie fi Mitchell, 1980). In the 

case of neutrophils, they can be recovered from the peritoneal
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cavity after stimulation with a variety of agents (Watt, Burgess 5 

Metcalf, 1979). This has paved the way for workers to attempt the 

purification of these cells by different techniques, among which, 

isopycnic centrifugation has been the most extensively tested (James,

Leid 8 Sher, 1979; Watt et_ al_., 1979; Burgess, Cruise, Mitchell 5 Watt, 

1980).

Usually a compromise has to be made between the number of recovered 

cells and the purity, since the more the purification steps, the lower 

the yield. The effect of a separation technique on cell function is an 

important consideration. For example, carbonyl iron treatment to remove 

adherent cells has been shown to greatly impair the cytotoxic ability of 

non adherent granulocytes (Lopez, Bunn, Moreno 8 Sanderson, 1978).

In this chapter, procedures are compared for the induction and 

purification of mouse eosinophils and neutrophils. Subsequent chapters 

will show that the functions of the purified cells have been retained.

RESULTS

3.1. Search for resident peritoneal eosinophils in strains of mice

Fourteen strains (BALB/c, BALB/c nu/nu, A, DBA/2, C57BL/6, C57/BL/10, 

ATL, AQR, C57BL/6-Ly-la, NH, SJL, TO, CBA and AKR) were examined in the 

hope of finding a strain with a high number of peritoneal eosinophils. 

However, as none of these strains showed more than 10^ eosinophils per 

mouse (less than 5 \ of the total peritoneal cell population), experiments 

were carried out with different parasites to find a satisfactory method 

for inducing eosinophilia in mice.



3.2. Induction of mouse eosinophils

Three different parasites were tested:

3.2.1. Trichinella spiralis

BALB/c mice were given 1000 larvae in 0.5 ml of PBS directly into 

the oesophagus with a syringe and the peritoneal cavity examined at 

different intervals, from day 14 to day 77 after infection. No 

significant changes in the number of peritoneal cells or the percentage 

of eosinophils were seen in this period: the total number of cells was 

about 0.5 - 2 x 107 per mouse with less than 5% of these cells being 

eosinophils. Following reinfection with 1000 larvae per mouse, a slight 

increase in the total number of peritoneal cells occurred while the 

percentage of eosinophils rose to about 2 0 % by day 1 2  after reinfection.

3.2.2. Taenia crassiceps (Toi strain).

Packed cysticerci of T. crassiceps, obtained from the peritoneal 

cavity of heavily infected mice, were injected i.p. into BALB/c mice and 

the peritoneal exudate thus induced examined at different times. The 

total number of peritoneal cells per mouse was found to increase from 

about 3 x 107 on day 9 to 8 x 107 on day 15 after infection, remaining 

at this level up to day 33. The percentage of eosinophils present in the 

peritoneal exudate was about 25% throughout this period. No observations 

were carried out beyond this time.

3.2.3. Mesocestoidcs corti.

Experiments with this parasite were carried out following the 

observation that a prominent eosinophilic response takes place in the 

peritoneal cavity of BALB/c mice (Mitchell, personal communication and 

Johnson, Nicholas, McKenzie 8 Mitchell, 1979).



Approximately 150 pi of packed larvae of M. corti in PBS, obtained 

from the peritoneal cavity of animals with long standing infections, 

were injected i.p. in each mouse. At different times the peritoneal 

exudates were examined and the total number of each cell type determined. 

Eosinophils could be seen in greatest numbers and percentages by the 

fourth week after infection (Figure 3.1). At this time, about 8 x 10^ 

cells could be recovered from each mouse and about 50% of these cells 

were eosinophils. After the fourth week the total number and percentage 

of eosinophils were found to decrease while macrophages became the 

predominant cell type in the exudate. The number of lymphocytes and 

neutrophils remained low throughout the infection, although some individual 

animals have shown high numbers of neutrophils.

Although a detailed comparison was not carried out, M. corti appeared 

to induce fewer cells witha lower percentage of eosinophils in CBA mice 

than that observed in BALB/c mice.

Since M. corti was found to be superior to T.spiralis and T.crassiceps 

in inducing large numbers of eosinophils in mice (summarized in Table 3.1), 

it was used throughout these studies and the peritoneal cells collected 

in the fourth week after infection.

As the exudate obtained in this way consisted of about 50% 

eosinophils, techniques were compared for the removal of the other cell 

types present in this preparation. In all the fractionation experiments 

described below, the total cell number and the differential counts per 

fraction were determined, so that the absolute number and yield of each 

cell type could be calculated.



8

Figure 3.1. Cellular response in the peritoneal cavity of BALB/c 
mice injected with M.Corti. ■ = eosinophils;

macrophages; A  = lymphocytes; •  = neutrophils.
Each point between day 25 and 50 is a mean of 12 
animals. Other points are a mean of at least 3 animals. 
Bars represent the standard deviation for each point.



Table 3.1. Induction of eosinophils in the peritoneal cavity of 

BALB/c mice by different parasites

Parasites
Total number % Eosino- Total number# 
of cells/mouse phils eosinophils/mouse

T.spiral is 0.5-2.5 x 107* 5-20 0.5-5 x 106

T.crassiceps 3-9 x 107 10-30 0.5-2 x 107

M.corti 4-17 x 107 40-75 2-9 x 107

*
Ranges at the time of maximal eosinophilic response 
for each parasite.
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3.3. Comparison of different techniques for the purification of 
mouse eosinophils

3.3.1. Adherence to nylon wool column

This technique was used because previous experiments with rat 

eosinophils (Lopez et al., 1978) had shown these cells to have a loose 

adherence to the nylon wool which could be used to separate them from 

the more adherent neutrophils and macrophages.

With this technique, only about a third of the original eosinophil 

population could be recovered with a purity of approximately 70% in 

the non-adherent fraction (Table 3.2). However, an eosinophil enrichment 

could be seen in both adherent and non-adherent fractions probably due 

to the irreversible binding of macrophages and neutrophils to the 

nylon wool.

3.3.2. Isopycnic centrifugation

The isopycnic points of each cell type in the peritoneal exudate 

were established by centrifuging these cells on a continuous gradient of 

Metrizamide 10-20%. It can be seen (Figure 3.2) that eosinophils were 

very heterogeneous in density, with their peak at a Metrizamide 

concentration of 15.5% (density of 1.0814 gm/cm3). Macrophages overlapped 

with eosinophils over a wide range of densities and only high density 

eosinophils could be recovered with a purity of about 80-90%. The 

eosinophils recovered at Metrizamide 15.5% appeared to be smaller and to 

possess brighter granules than those eosinophils obtained at Metrizamide 

17.5%, suggesting that a selection of a subpopulation was taking place.

Other attempts were made by centrifuging the cells on a two step 

Metrizamide gradient using different combinations, but none gave 

satisfactory results.
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Table 3.2. Separation of M.corti-induced mouse peritoneal cells 

by filtration through nylon wool column

Fractions
Cell types

TotalMacrophages Lymphocytes Neutrophils Eosinophils

Unseparated 9x 106C36)* 3xl06(12) 5xl05(2) 1.2x107(50) 2.5xl07

Non-adherent 106(14) 1.1x106(1S) 7x104(1) Sx106(70) 7.2xl06

Adherent 3.4x 106(34) 9xlOSC9) 0+ S.7x106(57) 107

Total number of each cell type followed by the percentage between 
brackets.

♦ Zero represents no neutrophils seen in a scan of 200 cells 
(i.e. less than 0.5%).
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Figure 3.2. Distribution of M.corti- induced peritoneal cells 
on a continuous Mctri:amide gradient.
Cell numbers expressed in a log scale.

Total No. of Cells



Pretreatment of peritoneal cells by nylon wool filtration, 
followed by centrifugation of the non-adherent cells on a continuous or 

on a two step Metrizamide gradient did not appreciably improve the 

eosinophil separation.

3.3.3. Velocity sedimentation at unit gravity

Experiments in which sedimented cells were collected from the 

bottom of the chamber (Figure 3.3) indicated that eosinophils could be 

separated from macrophages and lymphocytes to about 80-85% purity.

A Coulter counter plot of this type of collection showed (Figure 3.4) 

that a separation of cells according to their size had been achieved.

A clear difference appeared between fraction 12 containing mainly 

macrophages and fraction 17 which was the peak for eosinophils. However, 

some overlapping between eosinophils and macrophages occurred as shown 

in fraction 14. Lymphocytes also overlapped with eosinophils, with their 

peak in fraction 19, but these were too few to be distinguished in the 

Coulter counter plot.

An improvement in the resolution of the sedimenting cells was 

achieved by collecting the cells from the top of the sedimentation chamber 

by upward displacement with 40% sucrose. The sedimentation profile of 

the cells sedimented in this way (Figure 3.5) showed a better eosinophil 

separation from macrophages, although some overlapping with eosinophils 

still persisted. With this type of collection about 85-95% o^psinophils 

could be obtained after a total sedimentation time of 3.5 hs. Eosinophils 

were found to sediment at about 5 mm/h, lymphocytes at about 4 mm/h and 

macrophages at about 6 mm/h and faster.

To further improve the purification, a second step using a 14.8% 

Métrizamide interface was carried out. This concentration was chosen as
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Figure 5.5. Fractionation of M.corti-induced peritoneal cells under
unit gravity. The fractions were collected from the bottom 
of the sedimentation chamber. Cell numbers expressed in a 
log scale.

Figure 3.4. Coulter counter plot of M.cort_i-induced peritoneal cells
fractionated under unit gravity. The numbers on each peak 
correspond to the fractions shown in Figure 3.3.
The same settings were used for all four fractions.
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Figure 3.5. Sedimentation profile of M.corti-induced peritoneal 
cells separated under unit gravity. The cells were 
collected from the top of the sedimentation chamber 
Cell numbers expressed in a log scale.
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Figure 3.5. Sedimentation profile of M.corti-induced peritoneal 
cells separated under unit gravity. The cells were 
collected from the top of the sedimentation chamber 
Cell numbers expressed in a log scale.
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the cut off point for eosinophils based on a continuous Metrizamide 

gradient (Figure 3.2). Thus, the fractions (obtained as shown in 

Figure 3.5) containing the highest number of eosinophils were pooled 

and centrifuged on the Metrizamide interface. In this way, while most 

mononuclear cells and some eosinophils were retained in the interface, 

the resulting pellet contained more eosinophils with a higher degree 

of purity than could be expected from any individual fraction (Table 3.3). 

Figure 3.6 illustrates this eosinophil preparation.

A combination of velocity sedimentation at unit gravity and 

isopycnic centrifugation was then found to give the best results from 

all the combinations tested (summarized in Table 3.4), and all eosinophil 

preparations used throughout these studies were obtained in this way.

3.4. Induction of mouse neutrophils

Preliminary experiments in which an i.p. injection of 3.5% dextran 

(Mol.wt. 5-40 x 106; Koch-Light Lab.) and an i.p. injection of 1% glycogen 

(Glycogen II, SIGMA) were compared, showed that dextran induced a 

higher number and percentage of peritoneal neutrophils.

Experiments were then carried out to determine the best conditions 

for inducing neutrophils with dextran. An i.p. injection of 2 ml and a 

collection of the peritoneal exudate 15 hs later was found to give the 

highest yield of neutrophils. Cells could also be collected 4 hs after 

an injection of dextran with a similar percentage of neutrophils in the 

exudate, although their total numbers were lower.

3.5. Purification of mouse neutrophils

Velocity sedimentation at unit gravity was not effective as neutrophils 

showed a very heterogeneous size distribution. Isopycnic centrifugation
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Table 3.3. Purification of mouse eosinophils by velocity sedimentation
at unit gravity, followed by isopycnic centrifugation

Cell sample Total no. 
of cells % Eos. Total no. 

of Eos. Eos. yield

Unfractionated 3.5 X 1 0 8 55 1.9 X >-* o 00

1 0 0 %

Fraction 7 2 . 6 X 1 0 7 73 1.9 X 1 0 7 1 0 %

Fraction 8 2 . 8 X 1 0 7 94 2 . 6 X 1 0 7 14%

Fraction 9 2.5 X 1 0 7 89 2 . 2 X 1 0 7 1 2 %

Fraction 10 1.9 X io7 77 1.4 X 1 0 7 7%

Fractions 8 
6 9 poo 1ed 5.3 X io7 90 4.8 X 1 0 7 25%

Fractions 7,8 
9 5 10 pooled(P) 9.8 X 1 0 7 83 8 . 1 X io7 43%

Pellet from P 4 X io7 97 3.9 X 1 0 7 2 1 %
centrifuged on 
14.8% Metrizamide
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Figure 3.6. Gicmsa stained cytocentrifuge preparation of 
purified mouse eosinophils
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Figure 3.6. Giemsa stained cytocentrifuge preparation of 
purified mouse eosinophils
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Table 3.4. Summary of the different techniques tested for the 

separation of mouse eosinophils

Method Eosinophil*
purity Yield*

Nylon wool column 60-75 35-45

Nylon wool column + isopycnic centri
fugation (continuous gradient)

80-90 5-10

Isopycnic centrifugation (continuous 
gradient )

80-90 1 0 - 2 0

Two step isopycnic centrifugation 60-75 40-60

Velocity sedimentation at unit gravity 
(collection from the bottom of the 
chamber). Peak fraction

80-85 1 0 - 2 0

Velocity sedimentation at unit gravity 
(collection from the top of the 
chamber). Peak fraction

85-95 1 0 - 2 0

Velocity sedimentation at unit gravity 
(collection from the top of the chamber) 
Pool of eosinophil-rich fractions ♦ iso
pycnic centrifugation on interface 
of Metizamide.

95-98 20-40

*
Range in percentage
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was more satisfactory as the density of neutrophils was sufficiently 

high to achieve a good separation from other cells.

Cells were centrifuged on a continuous gradient of Metrizamide 

10-20%. It can be seen (Figure 3.7) that the neutrophil peak occurred 

at a Metrizamide concentration of about 16% (density of 1.0842 gm/cm3) 

overlapping high density macrophages and lymphocytes. The cut-off points 

were then determined and a two step Metrizamide gradient of 17.5% and 

15.5% was found to give the best separation. Mononuclear cells were 

retained in the first interface while about 85% neutrophils could be 

obtained in the second interface. However, if the cells were first 

separated on an interface of Metrizamide 15.5% or Ficoll-Paque 

(Pharmacia) to remove a high proportion of macrophages, and the pellet 

then centrifuged on the two step Metrizamide gradient, a preparation 

containing more than 90% neutrophils could be routinely obtained 

(Table 3.5). This neutrophil preparation is illustrated in Figure 3.8.

DISCUSSION

The best method for purifying eosinophils was found to be a 

combination of velocity sedimentation at unit gravity and isopycnic 

centrifugation on an interface of Metrizamide 14.8%. In this way, 

preparations consisting of more than 95% eosinophils with a yield between 

20-40% can be routinely obtained. Previous attempts to purify mouse 

eosinophils have relied mainly on isopycnic centrifugation. Thus, 

centrifugation of cells (with a starting eosinophil percentage similar 

to the one described above) on sodium diatrizoatc (Mahmoud et_ al_. , 1973
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Figure 5.7. Distribution of dextran-induced peritoneal cells 
on a continuous Metrizamide gradient.
Cell numbers expressed in a log scale.
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Table 3.5. Purification of mouse neutrophils

Purification
step

Total no.of 
cells/mouse

Differential counts 
Macr. Lymph. Neutr. Eos.

Total no. 
neutr. Yield

Unseparated 2.5 x 107 27 6 65 2 1 . 6  x 1 0 7 1 0 0 %

After Ficoll- 
Paque

OHXHH

1 0  2 87 1 9.5 x 106 60%

After
Metrizamide

4 x 106 4 1 94 1 3.7 x 106 23%
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Figure 3.8. Giemsa stained cytocentrifuge preparation of 
purified mouse neutrophils
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Figure 3.8. Giemsa stained cytocentrifuge preparation of 
purified mouse neutrophils



Figure 3.8. Giemsa stained cytocentrifuge preparation of 
purified mouse neutrophils
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or hyper tonic metrizamide gradients(James et al., 1979) produced 

preparations of about 90% eosinophils with variable results.

Centrifugation on slightly hypotonic Percoll gradients (Burgess et al., 

1980) has been shown to produce preparations of about 77% eosinophils. 

This was improved to about 93% when the initial eosinophil percentage 

was increased. This could be achieved by irradiating the mice 24 hs 

before harvesting and selecting mice with less than 25% macrophages.

Of the parasites tested, M.corti induced the highest peritoneal 

eosinophilia with a total of about 5 x 107 eosinophils/mouse. The . 

number of eosinophils induced by each of these parasites was found to be 

consistent with the observations of Johnson et al. (1979) for M. corti, 

Coker (1956) for T.spiralis and Freeman (1964) for T.crassiceps.

S. mansoni is also known to induce a peritoneal eosinophilia although the 

percentage of eosinophils appears to vary in different laboratories, 

(Mahmoud et al., 1973; James et al̂ ., 1979). Recent reports indicate that 

Toxocara canis could induce a higher proportion as well as total numbers 

of eosinophils (Sugane S Oshima, 1980) than these results with M.corti. 

These authors infected mice with 500 eggs of T.canis, followed, two weeks 

later, by an i.p. injection of between 1 and 1 0  mg of protein from
g

T. canis. Two days after this, each mouse gave about 1.2 x 10 peritoneal 

cells, 80% of which were eosinophils.
Velocity sedimentation at unit gravity has proved-to be simple and 

reproducible. It is important not to overload the chamber with cells as 

this will produce "streaming", a phenomenon characterized by the 

excessively fast sedimentation rate of the cells which results in the 

distortion of the interface between the cell bands and the underlying 

medium (Miller $ Phillips, 1969). Streaming can be identified cither 

visually, or by analysis of the sedimenting profile of the cells. In the



experiments described above no streaming was observed by loading up
g

to 4 x 10 cells on a chamber with a 10 cm diameter. On the contrary, 

three clear bands were visible after approximately 2.5 hs of sedimentation, 

presumably representing from top to bottom lymphocytes, eosinophils and 

macrophages.

Because neutrophils could not be separated from eosinophils, 

peritoneal exudates from M.corti-infected mice were examined prior to 

loading in the sedimentation chamber, and those exudates containing 

neutrophils discarded.

The use of a buffered step Ficoll gradient plays only a . minor role 

in the cell separation but stabilizes the fluid in the chamber.

Furthermore, its use has been shown in practice (Miller 5 Phillips, 1969) 

and by theoretical considerations (Mason, 1976), to increase about four

fold the number of cells that can be loaded when compared to a sheer step 

gradient. A minor disadvantage is the low filling rate at which it must 

be used if disturbance of the cell layers is to be avoided.

Collection of cell fractions from the top of the sedimentation 

chamber gave a better resolution than collection from the inlet. Using a 

tilting procedure, Bont, de Vries, Geel, van Dongen 6 Loos (1979) have 

claimed a more rapid separation by increasing the surface area in which 

the cells sediment. This may also increase the capacity of cell separation 

at unit gravity. An apparatus of this type may therefore, be an 

improvement over the stationary chamber.
Separation of eosinophils by isopycnic centrifugation was found to 

be relatively unsatisfactory as these cells sedimented over a wide range 

of densities. This is probably a consequence of differences in the 

stages of maturation of these cells. Neutrophils also show some hetero

geneity in their isopycnic sedimentation but the fact that they are of
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higher density than eosinophils means that they separate more 

completely from lymphocytes and macrophages. Better results have been 

claimed using calcium caseinate to induce neutrophils, followed by 

purification on Percoll (Watt et al., 1979). This is probably not due 

to the use of Percoll since this does not appear to offer any advantages 

over Metrizamide (in fact Metrizamide is easier to use and its 

concentrations can be checked by refractive index), but to the fact 

that in this case the starting peritoneal exudate contained * 82% 

neutrophils.

It is interesting to note that there are species differences in the 

relative densities of eosinophils and neutrophils. Thus, while in mouse 

(Figures 3.2 and 3.7) and rat (Sanderson 5 Thomas, 1978), neutrophils 

are of higher density than eosinophils, in humans the reverse is the 

case (Vadas, David, Butterworth, Pisani 5 Siongok, 1979). The apparent 

differences in density between rat and mouse granulocytes may be a result 

of the osmolarity of the Metrizamide solutions used. It has been shown 

that rat eosinophils sediment at higher densities than 1.0869 gm/cm^ 

(Metrizamide 16.5%) and rat neutrophils at higher densities than 1.0924 

gm/cm"* (metrizamide 17.5%) (Sanderson 5 Thomas, 1978), while mouse 

eosinophils sediment at a density of 1.0814 gm/cm^ (Metrizamide 15.5%) and 

mouse neutrophils at a density of 1.0842 gm/cm^ (Metrizamide 16%).

Thus, it is likely that the use of Metrizamide (35.3% stock solution) at 

282 m Osm which is isotonic for the rat (rat serum « 282 m Osm) but 

slightly hypertonic for the mouse (mouse serum ■ 308 m Osm) may have 

induced a shift of mouse cells to lower densities as a result of cell 

swelling, an effect previously observed with mouse lymphocytes (Williams, 

Kraft G Shortman, 1972).



SUMMARY

The development of purification techniques for mouse eosinophils 

and neutrophils is shown. Eosinophils are induced in largest numbers 

to the peritoneal cavity of mice 25-28 days after an i.p. injection 

of Mesocestoides corti. By combining velocity sedimentation at unit 

gravity and isopycnic centrifugation on a Metrizamide interface a good 

yield of highly purified eosinophils is obtained. Neither adherence to 

nylon wool nor isopycnic centrifugation by itself have provided a 

satisfactory separation of eosinophils from other cell types. 

Neutrophils are shown to be induced to the peritoneal cavity of mice 

by an i.p. injection of dextran. An effective separation is achieved 

by using isopycnic centrifugation.
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CHAPTER 4

IgG AND COMPLEMENT RECEPTORS ON MOUSE 

EOSINOPHILS AND NEUTROPHILS



INTRODUCTION

Complement receptors have been recognized on human (Gupta, Ross,

Good & Siegal, 1976; Anwar 5 Kay, 1977a) rat (Ramalho-Pinto, McLaren § 

Smithers, 1978; Incanì § McLaren, 1981) and guinea pig (Henson, 1969) 

eosinophils and neutrophils. Complement receptors are also present on 

mouse neutrophils. However, a number of studies have failed to demonstrate 

such receptors on mouse eosinophils (Rabellino 5 Metcalf, 1975; Rabellino, 

Ross, Trang, Williams 5 Metcalf, 1978; Hoghart et al., 1980), and it 

was suggested that murine eosinophils might be different to eosinophils 

from other species (Rabellino et al., 1978). Fc receptors, on the other 

hand, have long been detected on eosinophils and neutrophils from a 

number of species, and their presence enables granulocytes to make contact 

and kill antibody-coated tumour cells (see Chapters 5 and 6 ), parasites 

(Lopez et al., 1978) and red cells in vitro (Archer 5 Hirsch, 1963; 

Sanderson 6 Thomas, 1978). It has also been shown that different antisera 

can preferentially react with eosinophils or neutrophils, probably due to 

the IgG subclass composition of each antibody preparation (see Chapter 6 ). 

The availability of mouse monoclonal anti-E antibodies of IgGl and IgG2b 
subclasses offers the possibility of comparing eosinophil and neutrophil 

binding to these two subclasses. These subclasses are of particular 

interest as they have been found associated with Schistosoma mansoni 

(Ramalho-Pinto, De Rossi 6 Smithers, 1979) and Mesocestoides corti 

(Mitchell, Marchalonis, Smith, Nicholas 6 Warner, 1977) infections in 

mice. In this chapter,the ability of mouse eosinophils and neutrophils 

to bind, phagocytose and lyse (as judged by ^*Cr release) E coated with 

mouse complement, IgGl and IgG2b has been investigated. Their relative 

antibody and complement requirements, and the advantages and limitations 

of using monoclonal reagents are also considered.
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RESULTS

4 .1 . Detection of complement receptors

Mouse eosinophils and neutrophils formed high numbers of rosettes 

with EAC3b complexes (Table 4.1). Figure 4.1 and Figure 4.2 show 

eosinophils and neutrophils respectively, completely surrounded by 

strongly adhering EAC3b, some of which have been phagocytosed. "*̂ Cr 

release was low in relation to the number of rosettes and phagocytosis 

observed. There was a marked difference between eosinophils and neutrophils 

when the amount of IgM (and presumably the amount of complement) was 

varied. Thus, while an IgM dilution of 1:10 induced similar numbers of 

rosettes on both cell types, IgM used at 1:50 showed a decrease in the 

number of eosinophils forming rosettes although the proportion of 

neutrophil rosettes remained essentially the same. The values obtained 

with IgM at 1:10 were not increased by using the IgM or complement 

undiluted.

These granulocytes were also found to react with EAC3bi complexes, 
although to a lesser extent than with EAC3b. Control pieparations of 
EAjgM alone or after incubation with heat inactivated mouse serum were 

found to be unreactive.

4.2. Detection of IgG receptors

Mouse eosinophils and neutrophils were found to form high numbers of 

rosettes with JgG2b coated E and to phagocytose this complex very actively 

(Table 4.2). More than 70% of eosinophils and 90% of neutrophils formed

rosettes when E were coated with IgG 2b at 1 : 1 0  and 1 :1 0 0 . However, 
when IgG2 b was used at 1:100°* 22* eosinophils formed rosettes compared
to 6 6 % neutrophils. Thus, eosinophil binding is decreased more than

neutrophil binding at high antibody dilution. A similar effect was

observed in the phagocytosis assay.

66



Table 4.1. Effect of two different concentrations of IgM on the
detection of complement receptors on mouse eosinophils and neutrophils

Indicator
cells

IgM
dilution Effectors % Rosettes % Phagocytosis % 51Cr 

release

EAC 3b 1 : 1 0 Eosinophils 89 ± 6 .0 * 34 ± 5.1* 9.4
Neutrophils 91 ± 4.2 51 ± 1 0 . 6 12.5

EAC 3b 1:50 Eosinophils 25 ± 3.1 13 ± 2.5 0 +
Neutrophils 90 ± 4.0 55 ± 4.6 14.5

EAC3bi 1 : 1 0 Eosinophils 60 ± 9.5 23 ± 8 . 0 9
Neutrophils 65 ± 1 2 . 2 37 ± 6 . 8 14.5

EAC3bi 1:50 Eosinophils 2 0 ± 6 . 2 1 0 ± 3.8 0

Neutrophils 45 t 8.5 29 ± 8.5 7.1

* Mean values ± 1 standard deviation of a representative experiment 
from a total of six experiments.
Phagocytosis was measured after 30' of incubation without 
centrifugation.
♦ Zero = not significantly different from controls at the 5% level.



Figure 4.1. Giemsa stained preparation of eosinophils 
forming rosettes and showing phagocytosis 
with EAC 3b.
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Figure 4.1. Giemsa stained preparation of eosinophils 
forming rosettes and showing phagocytosis 
with EAC 3b.
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Figure 4.2. Giemsa-stained preparation of neutrophils 
forming rosettes and showing phagocytosis 
with EAC 3b.
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Figure 4.2. Giemsa-stained preparation of neutrophils 
forming rosettes and showing phagocytosis 
with EAC 3b.
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Indicator cells Effectors % Rosettes % Phagocytosis

EA(IgG2b 1:10) Eosinophils
Neutrophils

EA(IgG 2b 1:100) Eosinophils
Neutrophils

EA(IgG.2b 1 :1 0 0 0 ) Eosinophils
Neutrophils

EA(IgG1 1:10) Eosinophils
Neutrophils

EA(IgGl 1:100) Eosinophils
Neutrophils

EA(lgG 1 1:1000) Eosinophils
Neutrophils

73 ± 7.8* 13 + 3.1
93 ± 4.2 41 ± 6.7

78 ± 4.6 1 1 ± 2.5
94 ± 3.2 49 ± 4.9

2 2 ± 9.1 4.5 ± 4.5
6 6 ± 1 2 . 8 31 ± 8 . 2

14 ± 4.5 2 ± 1.5
44 ± 8.7 32 ± 6 . 8

13 ± 3.5 2.5 ± 1 . 2
57 ± 7.1 29 4.6

1 0 ± 6 . 1 2 ± 1 . 2
43 ± 15.2 23 ± 8 . 0

* Mean values ± 1 standard deviation of a representative experiment 
from a total of five similar experiments.

Phagocytosis was measured after 1 h of incubation without 
centrifugation.
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Rosette formation and phagocytosis of E coated with IgGl was found 

to be lower than with IgG2b for both eosinophils and neutrophils. 

Approximately 12% eosinophils formed rosettes with EAj g G 1 and phagocytosis 

was virtually negative, while about 50% neutrophils formed rosettes and 

30% showed phagocytosis of this complex. Rosette and phagocytosis values 

for both types of granulocyte were not essentially changed by diluting 

the IgGl up to 1:1000.

The ^ C r  release assay showed IgG2b to induce about 40% cytotoxicity 

by both eosinophils and neutrophils (Figure 4.3). In correlation with 

the rosette and phagocytosis assays, IgGl induced lower levels of 51Cr 

release by neutrophils, and almost undetectable levels by eosinophils.

In contrast, the mouse anti-E serum induced very high levels of cytotoxicity 

by both cell types. It was consistently found that eosinophil activity 

decreased more than neutrophil activity following dilution of IgG2b or 

the mouse anti-E serum. Thus, it appears that comparisons between 

eosinophil and neutrophil activities can be critically determined by the 

dilution of the antibody preparation used.

4 • Effect of the incubation time on the phagocytosis assay

Effector cells and E coated with optimum concentrations of IgGl, 

igC2b and C3b were mixed, centrifuged and incubated at 37°C. At three 

different time intervals, the number of eosinophils and neutrophils showing 

phagocytosis was recorded. It was found (Table 4.3) that in each case, 

the highest values were obtained after 5 minutes of incubation. Longer 

incubation periods resulted in a marked reduction in the number of cells 

showing phagocytosis.

71



%
 S

pe
ci

fic
 51

C
r. 

R
el

ea
se

Dilution

Figure 4.3. Titration of IgGl, IgG2b and mouse anti-E serum with 
mouse eosinophils (filled blocks) and neutrophils 
(empty blocks). Eosinophil values are not significantly 
different (5% level) from neutrophil values at IgG2b 
dilutions of 1 0  and 1 0  , and at antiserum dilutions
of 10"* and 3 x 10'*. All other values are significantly 
different from control and between both effector cells 
at the 5% level or greater.
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Table 4.3. Percentage of effector cells showing phagocytosis at 

different times after incubation

Indicator
cells

Effector
cells 5

Incubation time 
30

(minutes)
60

EAIgG 1 Eosinophils 5 ± 2.3* 2 ± 1 . 8 3 ± 2 . 0

Neutrophils 57 ± 3.5 28 ± 6 . 2 29 ± 4.6

EAIgG2b Eosinophils 57 ± 5.9 2 0  ± 2 . 1 15 ± 3.3
Neutrophils 74 ± 9.2 43 ± 3.0 25 ± 7.8

EACôb Eosinophils 51 ± 6 . 0 2 0  ± 1 . 8 1 2 ± 1 . 8

Neutrophils NT NT NT

E Eosinophils 0 0 0

Neutrophils 2 ± 1 . 1 1 ± 1.5 2 ± 1.5

*
Mean values ± 1 standard deviation 

N'T «= not tested.
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DISCUSSION

Mouse eosinophils are shown to possess complement receptors and to 

have higher antibody and presumably higher complement requirements than 

neutrophils. Thus, it has been shown, that a five-fold dilution of IgM 

results in a marked decrease in the number of eosinophils forming rosettes 

with EAC3b, while the proportion of neutrophils forming rosettes remains 

essentially unchanged. This high complement requirement by mouse 

eosinophils is likely to be responsible for the failure of Hoghart et al. 

(1979) to detect complement receptors on M.corti_-induced eosinophils, as 

these authors used 25-fold less complement than in the experiments 

described in this chapter. Furthermore, the relatively long incubation 

period (30 minutes) of E A j ^  with mouse serum has probably been a 

contributing factor as this would lead to C3bi formation, and granulocyte 

reactivity with EAC3bi is not as strong as with EAC3b (Table 4.1). The 

apparent absence of complement receptors from normal eosinophils from 

blood and spleen (Rabellino et al̂ ., 1978) and from colony eosinophils 

grown in soft agar cultures (Rabellino 8 Metcalf, 1975; Rabellino et al., 

1978) may also be due to the low levels of complement on the indicator 

cells. Human eosinophils have been previously shown to require a larger 

amount of C4 than neutrophils or lymphocytes. However, the proportion 

of eosinophils forming rosettes remained well below neutrophil values, 

even with the highest amount of C4 added (Gupta et al., 1976).
Both eosinophils and neutrophils phagocytose EAC3b and EAC3bi very 

actively. Previous studies with human phagocytes (Ehlenberger § 
Nussenzweig, 1977) have indicated that complement itself does not induce 

phagocytosis but that it acts in a synergistic fashion with IgG. This 

synergistic effect could be mimicked by centrifugation or with a variety 

of non-immunological agents. In the experiments described in this chapter
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however, it is unlikely that complement is having a synergistic effect 

with IgG since a monoclonal IgM was used to sensitize E, and the mouse 

serum was twice absorbed with E. Moreover, no phagocytosis was seen 

after centrifugation of effector cells with complexes prepared with heat 

inactivated complement. It is possible that complement mediated 

phagocytosis is a property of stimulated cells. Phagocytosis of EAC 

complexes by eosinophils has been previously observed in studies with 

cells from patients with Loffler's cardiomiopathy but not when the cells 

were obtained from normal donors (Spry 6 Tai, 1976). Similarly, normal 

and induced macrophages have been shown to bind to EAC complexes but 

phagocytosis has only been observed with the latter (Bianco, Griffin 5 

Silverstein, 1975; Rabellino et al., 1978).

Mouse complement has been used in this study, as a homologous system 

is more representative of the situation _i_n_ vivo than heterologous 

combinations. Mouse cells react variably with complement of other species 

(Dierich, Pellegrino, Ferrone 6 Reisfeld, 1974), and have poor affinity 

for human complement in particular (Bianco, Patrick 5 Nussenzweig, 1970; 

Dierich et al., 1974). The unavailability of purified mouse complement 

components has prompted several workers to attempt the production of 

different fragments of mouse C3 by varying the incubation conditions of 

EA^m with mouse serum. Thus, previous studies have used incubation 

times of 10 minutes (Griffin, Bianco 6 Silverstein, 1975) 8 minutes 

(Rabellino et_ al_., 1978), and 5 minutes (McConnell 5 Hurd, 1976) to coat 

EAIgM with mouse C3b. A short time is necessary to avoid enzymatic 
degradation of C3b by Factor H and Factor I present in mouse serum. In 

these experiments, an incubation time of only 2 minutes was used to 

maximise the probabilities of having mainly C3b on the E surface.
However, since a variable proportion of Daudi cells were found forming



rosettes with this complex (see Section 2.1Sb), it is conceivable that 

some conversion of C3b into C3bi has already taken place; alternatively 

this could be due to cross-reactivity of human C3d receptors with mouse 

C3b. A long incubation of with mouse serum had been previously

shown to produce the C3d fragment of C3 (Rabellino et al., 1978b; Griffin 

et al., 1975). However, recent reports (Ross 8 Rabellino, 1979) suggest 

that the complex thus obtained, was not C3d but C3b - cleaved C3bi, and 

that C3d is produced by treating C3bi with plasmin or trypsin.

Furthermore, C3d appears to be unreactive with granulocytes (Tai 5 Spry, 

1980) and macrophages (Ross 5 Rabellino, 1979). The complex produced in 

the present study should therefore be regarded primarily as EAC3bi, 

although some C3d may have also been formed by the action of trypsin-like 

proteases present in the mouse serum. This complex (C3bi) reacted more 

strongly with Daudi cells than with mouse granulocytes; the reverse was 

seen with EAC3b. Thus, although these two indicator systems cannot be 

proven to represent pure components, granulocytes show a preference for C3b. 

Whether the interaction of granulocytes with this complex occurs via their 

receptor for C3b or via a receptor analogous to the one recently shown on 

Raji cells (Okuda 8 Tachibana, 1980) for Factor H-modified C3b, remains 

to be seen.

Mouse granulocytes are shown to react with mouse IgG2b and IgGl 

monoclonal anti-E antibodies. Monoclonal antibodies offer the possibility 

of studying receptors for a particular IgG subclass without the problem 

of contamination with other subclasses. However, the main disadvantage 

lies in the variation in the number of epitopes to which each monoclonal 

antibody binds. Thus, although eosinophils and neutrophils react more 

strongly with IgG2b than with IgGl, this could be attributed to differences 

in antibody density rather than to a subclass effect, as seven times more
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of the IgG 2b binds to E than the monoclonal IgGl antibody (Galfre,

Milstein & Wright, 1979), and IgG2b gives a higher titre by indirect 

haemagglutination (Table 2.3). Using the same monoclonal antibodies,

Kerbel (1980) found that lymphoid cells showed a similar pattern of 

reactivity as the one shown in Table 4.2 with granulocytes. Clearly, 

therefore, further studies on granulocyte reactivity with different IgG 

subclasses must await the availability of other monoclonal antibodies.

There was found to be a correlation between rosette formation, 

phagocytosis and cytotoxicity for both effector cell types, reacting with 

either EAigG2 k or EAlgGj‘ Neutrophils form more rosettes and are more 
active than eosinophils when EAjg^ is used. This difference may be 

related to the low numbers of IgGl molecules coating E, as eosinophils 

show a higher antibody requirement than neutrophils. This can be seen 

with IgG2b in all three assays and with whole anti-E serum in the ^ C r  

release assay. Thus, while eosinophils and neutrophils induce similar 

levels of ^*Cr release at high antibody concentrations, neutrophils are 

clearly the more active at high antibody dilutions.

For this reason, previous reports indicating higher EA binding by 

neutrophils than by eosinophils (Gupta et al., 1976; Anwar 5 Kay, 1977;

Tai 8 Spry, 1980) may be due to the limiting antibody dilution used.

The 51Cr release assay circumvents this problem, allowing the use of anti

serum at agglutinating concentrations, and has the further advantages of 

accuracy, objectivity and the small amount of reagents used. The ^*Cr 

release assay also shows that granulocyte activity is much higher in the 

presence of a whole antiserum than when IgG2b or IgGl monoclonal antibodies 

are used, suggesting the need for a higher antibody density on the E 

membrane than can be provided by these monoclonal antibodies, or the 

involvement of other IgG subclasses. *

In contrast to the results with IgG, eosinophils and neutrophils



consistently gave very little 51chromium release from complement-coated 

E, despite the fact that high numbers of rosettes and phagocytosis were 

observed. The reason for this is not clear. It may be that different 

stimuli induce a differential enzymatic release from the effector cell 
granules (Spry, 1978) .

Cinematography studies have shown that phagocytosis of opsonized 

red cells by granulocytes is very rapid (Archer G Hirsch, 1963; Sanderson 

6 Thomas, 1978). However, phagocytosis of red cells by granulocytes has 

been frequently measured after relatively long periods of incubation 

(Spry 5 Tai, 1976; Gupta et̂  al_., 1976; Sanderson 6 Thomas, 1978; Tai 6 

Spry, 1980). In the present study, the highest levels of phagocytosis 

were observed 5 minutes after centrifugation.

It is clear from these experiments that eosinophils have different 

IgG and complement requirements from neutrophils, which is probably a 

reflection of the lower number or affinity of the eosinophil membrane 

receptors. Thus, comparisons between eosinophil and neutrophil activities 

cannot be properly evaluated unless the optimal conditions for each cell 

type are fulfilled.

SUMMARY

Mouse eosinophil and neutrophil receptors for IgG and complement 

have been examined by means of rosette formation, phagocytosis and ^Cr 

release assays, using mouse monoclonal antibodies and complement-coated 

sheep erythrocytes. Mouse eosinophils and neutrophils form a high number 

of rosettes in the presence of mouse complement but eosinophils show a 

higher requirement for complement molecules. Both types of granulocyte 

phagocytose complemcnt-coatod sheep erythrocytes very actively although
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low levels of 51Cr release are obtained. Eosinophils and neutrophils 

show higher activity in the presence of IgG2b than in the presence of 

IgGl, and while both cell types are similarly active when the former 

antibody is used, neutrophils are the more active when IgGl is used. 

However, it remains uncertain whether this is a result of the higher 

binding obtained with the IgG2b monoclonal. Both cell types behave 

similarly at high antibody concentrations but neutrophils are the more 

active at high antibody dilutions. The ^Cr release assay is shown to 

be superior to the rosette assay as it allows comparisons between , 

eosinophils and neutrophils at high antibody concentrations. A time 

course study indicates that highest values of phagocytosis of opsonized 

red cells are obtained after 5 minutes rather than the half to one hour 

incubation periods normally used.
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CHAPTER 5

ANTIBODY-DEPENDENT CYTOTOXICITY OF TRYPANOSOMA CRUZI ANTIGEN-COATED

MURINE CELL LINE CELLS BY MOUSE EOSINOPHILS AND NEUTROPHILS



INTRODUCTION

American trypanosomiasis (Chagas' disease) has been estimated to 

affect more than 10 million people in South and Central America, and 

another 30 million are believed to be exposed to the infection. The 

causative agent is Trypanosoma cruzi, a parasite protozoan that has, as 

vectors, species of reduviid bugs of the family Triatominae and, as 

definite hosts, a wide range of vertebrates including many mammals.

The bugs ingest T.cruzi by taking the blood of infected vertebrates. 

The ingested blood trypomastigotes transform into amastigotes which divide 

in the foregut of the bug. The amastigotes transform into epimastigotes 

in the midgut of the bug and then into metacyclic trypomastigotes in the 

hindgut. These metacyclic trypomastigotes are the non-dividing infective 

form of the parasite which the bugs deposit with their faeces at the site 

of the bite after the blood sucking act. The trypomastigote then enters 

into the bloodstream of the vertebrate through the bite wound or a mucous 

surface like the conjunctiva, and actively parasitizes the tissue cells of 

the host. The tissue distribution apparently varies with the strain of 

T.cruzi. Within the host cell, the trypomastigote changes into a round 

amastigote which is the dividing form. After a few days, the cell is 

filled with amastigotes forming a pseudocyst. Shortly before the pseudo

cyst ruptures, the amastigotes transform into trypomastigotes which are 

subsequently released into the extracellular space and bloodstream 

perpetuating the cycle.
In American trypanosomiasis, two periods can be distinguished, the 

acute phase and the chronic phase which differ in their clinical 

manifestations and pathological findings.

The acute phase resembles many acute septicacmic conditions by its 

local inflammatory reaction at the site of parasite penetration and a



high parasitaemia. Moderate fever may be present together with weakness, 

tachicardia, disphagia or diarrhea. Antibodies to T.cruzi appear 

shortly after the onset of the symptoms, sometimes accompanied by an 

increase in serum IgM or IgG levels.

The acute phase subsides as the result of the immune response of 

the host (apparently regardless of the strain of T.cruzi), and the patient 

enters into the chronic phase of the disease. The number of trypanosomes 

and antibody levels in the peripheral blood decrease sometimes to become 

undetectable. It is generally accepted that there is no cure for the 

infection and in immunosupressive states the parasite can be shown again 

in the circulation.

This chronic phase is largely asymptomatic but after a variable 

period of time the so-called "Chagas**syndromes" may appear. The chagasic 

cardiopathy is one of these and by far the most frequent. Other syndromes 

are the result of the dilation and alterations in the motility of other 

organs mainly of the digestive tract. However, many patients remain 

asymptomatic for life, death usually occurring suddenly, presumably due to 

cardiac failure.

The pathology of the acute phase of American trypanosomiasis shows 

that although the parasite can be found in most tissues, it has a 

preference for muscle cells and an intense parasitism can be seen in the 

heart, all hollow muscular organs and the skeletal muscle. It is of 

interest to note that it is quite common to find parasitized cells without 

any inflammatory reaction in their surroundings (Vienna, 1911; Torres, 

1941; Koberle, 1968). A cellular infiltrate is however found in the 

vicinity of a ruptured pseudocyst where parasites can be seen to 

disintegrate in the extracellular space, due either to their incomplete 

differentiation into trypomastigotes or to the host effector mechanisms. 

Kobcrlc (1968) has found this cellular infiltrate to consist mainly of
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eosinophils and neutrophils and this observation has been confirmed 

by other authors (Tafuri, 1970; Deutschlander, Volhertun 5 Hungerer, 1978). 

Eosinophils and neutrophils have also been described with astrocytes 

and histiocytes in brain granulomas of a new-born child and in 

experimental animals carrying T.cruzi infections (Dominguez 8 Gavaller,

1962).

Perhaps the most significant pathological finding in the acute phase 

of T.cruzi infections is central and peripheral denervation. In humans, 

quantitative studies done on autopsies of patients who died of acute 

chagasic myocarditis have shown the number of heart neurons to be reduced 

to about a third of that found in humans who died of unrelated diseases 

(Becker, 1975; Lopes, Tafuri, Bogliolo, Almeida, Chapadeiro 8 Raso, 1977).

A great reduction in heart neurons has also been observed during the 

acute phase of T.cruzi infections in mice (Tafuri, 1970; Ribeiro dos 

Santos 8 Hudson, 1981) and rats (de Alcantara, 1959) . It has been 

suggested, therefore, that the lesions in the autonomic nervous system 

are responsible for the anatomical and functional disorders occurring in 

the heart, eosophagus and colon which lead to the cardiopathy and enteropathy 

encountered in the chronic phase.

The chronic phase of the disease in humans has occasionally shown 

inflammatory foci consisting mainly of mononuclear cells (Koberle, 1968).

A diminution in the number of neuron cells in the central and peripheral 

nervous system and attributed to damage in the acute phase of the disease 

has also been observed. In studies of chronically infected rabbits the 

presence of lymphocyte infiltrates in the heart has been described 

(Teixeira .Texeira 6 Santos-Buch. 1974).
While the pathogenesis of the disease remains largely unknown, 

different mechanisms have been postulated: Torres (1941), observing that the

82



inflammatory lesions are not initiated around the parasite or parasitized 

cells but at the level of the small vessels in the tissues suffering 

the most intensive colonization by T.cruzi, suggested the involvement 

of a T .cruzi toxin. Later Koberle (1968) proposed a similar explanation 

in which a "neurotoxic substance" liberated by the degenerated parasite 

would be responsible for the degenerative lesions and lysis of the 

uninfected ganglion cells in the vicinity. However, such a substance 

could not be isolated from preparations of T.cruzi grown in tissue culture 

(Jorg, 1964). A direct effect by the parasite does not seem to be an 

important factor since neurons are very rarely parasitized in T.cruzi 

infections (Koberle 5 Alcantara, 1960).

Some of the pathological changes may be due to an autoimmune 

phenomenon. Some patients have antibodies to endocardium , vascular and 

intersticium structures (Cossio, Laguens, Diez, Szarfman, Segal 5 Arana,

1974) or antibodies against neuronal tissue (Ribeiro dos Santos, Marquez, 

Von Gal Furtado, Ramos de Oliveira, Martins § Koberle, 1979). It should 

be noted that in other circumstances (rheumatic fever, chronic heart 

disease, idiopatic cardiopathy, after cardiotomy, and after myocardial 

infarction) antibodies to heart tissue have also been found (reviewed by 

Laufer, 1975). No correlation has been clearly established, however, 

between the presence of anti-heart antibodies and myocarditis in any of 

these cases or in T.cruzi infections.

Lymphocytes from infected mice have been shown to be cytotoxic against 

T.cruzi infected mouse fibroblasts (Kuhn 6 Murnane, 1977) or against 

adherent mouse cells coated with T.cruzi antigen (Ribeiro dos Santos 6 

Hudson, 1980b). Lymphocytes from chronically infected rabbits (Santos- 

Busch 6 Teixeira, 1974) and mice (Ribeiro dos Santos 5 Hudson, 1980b) have 

been found to lyse non-parasitized cells and it has been suesested
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(Santos Busch 6 Teixeira, 1974) that this is the result of cross

reactivity between host and parasite antigens. However, these findings 

have been reported using animals with chronic T.cruzi infections when 

the reduction in heart neurones has already taken place (Ribeiro dos 

Santos Hudson, 1981), suggesting that while a host auto-immune response 

may perpetuate the disease the damage to the nervous system has occurred 

in advance of it.

An effector mechanism that could be responsible for many of the 

pathological findings but has so far received little attention is 

granulocyte cytotoxicity. Eosinophils and neutrophils have been shown to 

phagocytose and lyse T.cruzi iri vitro as judged by ^H-uridine release 

(Lopez et al̂ ., 1978) and morphological criteria (Sanderson 5 de Souza, 

1979). This probably also occurs in vivo, as histological studies have 

shown parasites within granulocytes (Vianna, 1941). Furthermore, in 

several reports granulocytes have been described near the ruptured pseudo

cyst in the acute phase of T.cruzi infections and associated with the 

degenerative lesions of the non-infected cells in the vicinity (reviewed 

by Koberle, 1968).

Recent work (Ribeiro dos Santos 8 Hudson, 1980a) has shown that 

parasite antigen can be adsorbed to the membrane of cells in vitro. This 

observation raised the possibility that if antibody is bound to the 

adsorbed antigen, this may promote the attachment of .granulocytes by 

means of their Fc receptors, a situation potentially damaging for the 

host cells.
This hypothesis was tested by using two murine cell line cells,

S2 (muscle-derived) and Neuro-2a (neuroblastoma) as models for the tissues 

whore the most significant damage in T.cruzi infections is observed.

A parasite antigen derived from cultured epimastigotes (see Section 2.18)
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was used to coat the cell line cells, which were subsequently incubated 

with antibody to T.cruzi and granulocytes. It is shown that both 

eosinophils and neutrophils are cytotoxic to syngeneic cell line cells 

coated with T.cruzi antigen in the presence of anti T.cruzi antibody.

RESULTS

5.1. Comparison of two different incubation periods to detect cytotoxicity 
by granulocytes.

Purified mouse eosinophils and neutrophils were tested for cytotoxic 

activity against ^*Cr labelled S2 cell line cells coated with T.cruzi 

antigen and anti-T.cruzi antibody. It was found (Figures.1) that both 

types of granulocyte induced significant ^*Cr release from T.cruzi antigen- 

coated cells in the presence of rabbit anti-T.cruzi serum. Neutrophils 

showed a higher cytotoxic activity than eosinophils although they were 

tested at a lower effector to target ratio than eosinophils. The results 

show that 5 hr was an adequate time to detect cytotoxicity. After 18 hs 

incubation, the isotope released in the presence of antigen, antibody and 

effector cells increased but so did the control values. In all subsequent 

experiments ^*Cr release was measured after 5 hs of incubation.

S.2. Relative antibody requirement
An antiserum titration using S2 cells coated with T.cruzi antigen 

showed that the relative antibody requirement was similar for both types of 

granulocyte (Figuro 5.2). This experiment also showed that when a mouse 

antl-T.cruzi scrum was used, eosinophil and neutrophil activities were very
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Figure 5.1. Antibody-dependent killing of S2 cells coated with
T.cruzi antigen by eosinophils and neutrophils at two 
different incubation periods.
Eosinophils (filled columns) to target ratio of 50:1 
Neutrophils (empty columns) to target ratio of 20:1 
Rabbit anti-T-cruzi used at 1:100 
Values obtained in the presence of anti-T.cruzi 
antibody are significantly different from values 
obtained without antibody or effector cells at the 5^ 
level or greater. Neutrophil activity is significantly 
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Figure 5.2. Antibody titration of mouse anti-T.cruzi serum with
eosinophils (fillèd symbols) and neutrophils (open symbols) 
using S2 cells coated with T.cruzi antigen as target cells. 
Effector to target ratio of 20:1 
C « control with no antiserum.
Other controls, with thé percentage ^Cr release between 
brackets included: S2 cells alone (8 .2 ), S 2 cells + anti
serum at 1:100 ♦ eosinophils (10.0) or neutrophils (9.6), 
and S2 cells *  T.cruzi antigen + normal mouse serum at 
1:100 + eosinophils (9.2)or neutrophils (8.0).
Values obtained with antiserum at 1:100 and 1:1000 are 
significantly different from control values at the S'» 
level or greater. Values obtained with antiserum at 1:10 
1 :1 0 , 0 0 0  are not significantly different from control. 
Eosinophil and neutrophil activity are significantly 
different from each other at antibody dilutions of 1 : 1 0  

and 1 :1 0 0 0 .
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similar. Maximum ^ C r  release was observed when T.cruzi antigen-coated 

cells were incubated with the mouse anti-T.cruzi serum at 1:100 or 1:1000 

dilutions and effector cells. A higher concentration of antibody (1:10) 

completely inhibited cytotoxicity by granulocytes. No significant 

isotope release was observed when the antiserum was diluted to 1 :1 0 ,0 0 0 , 

or when either T.cruzi antigen, antibody or effector cells were omitted.

Essentially the same results were obtained when Neuro-2a cells 

coated with T.cruzi antigen were used as target cells (Figure 5.3).

5.3. Relative eosinophil activity

Different numbers of eosinophils were tested against S2 and Neuro-2a 

cells coated with T.cruzi antigen in the presence of the mouse anti- 

T.cruzi serum (Figure 5.4). Eosinophils induced significant ^*Cr release 

at an effector to target ratio of 5:1 and appeared to be reaching a plateau 

when used at a ratio of 10:1. As in previous experiments, no antibody 

independent activity was observed, and no cytotoxicity was detected in the 

absence of T.cruzi antigen.

discussion

Granulocytes could be involved in the pathogenesis of American 

trypanosomiasis in two ways. Firstly by being directly cytotoxic to the 

parasite when this is coated with antibody. Secondly, granulocytes can 

lyse host cells coated with T.cruzi antigen and antibody.
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Figure 5.3. Antibody titration of mouse anti-T.cTuzi serum with
eosinophils (filled symbols) and neutrophils (empty symbols) 
using N2a cells coated with T.cruzi antigen as target cells. 
Effector to target ratio of 2 0 :1 .
C «= control with no antiserum.

51Other controls, with the percentage Cr release between 
brackets, included: N2a cells alone (12.8), S'2 a ♦ eosinophils 
(12.5) or neutrophils (10.8), N2 a ♦ normal mouse serum at 
1:100 ♦ eosinophils (11.5) or neutrophils (12.0), and N2 a ♦ 
anti-T.cruzi serum at 1:100 + eosinophils (15.7) or 
neutrophils (14.2).
Values obtained with antibody at 1:100 and 1:1000 are 
significantly different from control at the 5’» level or greater. 
Values obtained with antibody at 1:10 and 1:10000 are not 
significantly different from control. Eosinophil values are 
significantly different from neutrophil values at antibody 
dilutions of 1 :1 0 , 1 : 1 0 0  and 1 :1 0 0 0 .
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Figure 5.4. Antibody-dependent killing of T.crazi antigen-coated 
S2 (filled symbols) and N2a (empty symbols) cells by 
eosinophils at different effector:target ratios.
Mouse anti-T.cruzi used at 1:100. Controls, with the 
percentage 5*Cr release between backets, included:
S2 (14.5) or N2a (17.3) alone, and S2 (16.3) or N2a 
(16.0) ♦ T.cruzi antigen.
Eosinophil activity is significantly different from 
control at all effector:target ratios at the 5?« level 
or greater. Values obtained at eosinophi1:target 
ratios of 2 0 : 1  and 1 0 : 1  are not significantly different 
from each other. Values obtained using S2 as target 
cells were not significantly different from values obtained 
using Nouro-2a as target cells.
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In this chapter, mouse eosinophils and neutrophils have been shown 

to be cytotoxic against two syngeneic cell line cells, S2 and Neuro-2a 

coated with T.cruzi antigen in the presence of anti-T.cruzi antibody.

An incubation time of 5 hs showed to be an adequate time to test 

granulocyte activity. No advantage resulted by using a longer incubation 

period. Both effector cell types were similarly cytotoxic in the 

presence of mouse anti-T.cruzi serum. However, when a rabbit anti- 

T.cruzi serum was used, neutrophils were the more active.

Titration of the mouse anti-T.cruzi serum showed maximum activity at 

1:100 and 1:1000 dilutions. Interestingly, no significant activity was detected 

when the antiserum was used at 1:10. This inhibition of granulocyte activity 

at high antiserum concentrations has been previously seen using chicken red 

cells as targets (Sanderson 5 Thomas, 1978). This effect may be due to an 

excessive amount of antibody competing for antigenic sites resulting in a low 

binding of antibody molecules which does not allow a close contact between 

granulocytes and target cells, or to the subclass composition of the anti

serum (i.e. a subclass that does not bind or does it weakly to granulocyte 

Fc receptors may have an inhibitory effect at high concentrations).

The mechanism by which the epimastigote antigen used in this experiment 

is adsorbed on the membrane of S2 and Neuro-2a cells has not yet been 

elucidated. Another antigen preparation obtained from the amastigote 

form of the parasite has also been shown to adsorb to S2 and Neuro-2a cells 

and it has been suggested that the antigen binds to the fibronectin net

work of adherent cells, as non-adherent lymphocytes and red cells fail 

to bind the antigen (Ribeiro dos Santos 6 Hudson, 1980a).

The fact that coating of muscle-derived and neurone-like cells with 

T.cruzi antigen renders them susceptible to the cytotoxic activity of 

granulocytes in vitro may provide an explanation for the tissue destruction
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observed in the acute phase of T.cruzi infections, although, clearly, 

other effector mechanisms such as T cells, K cells, or complement may 
also be involved.

It seems possible that the rupture of a pseudocyst with amastigote 

disintegration (Koberle, 1968), the lysis of parasites by antibody and 

complement (Krettli, 1978) or the release of degenerated parasites from 

granulocyte phagosomes (Sanderson 5 Thomas, 1979) may result in non

specific adsorption of parasite antigen to the host cells. Since in 

humans antibodies to T.cruzi have been detected early in the infection, 

(Schmunis, Szarfman, Coarasa § Vainstock, 1978), and in experimental 

animals all trypomastigotes recovered by day eight after infection have 

been shown to be coated by antibody (Krettli, 1978), it is possible 

that antibody and probably also complement may bind to the parasite 

antigen adsorbed to the surrounding cells. Indeed, T.cruzi antigen, 

antibody and complement have been detected on the surface of myocardial 

fibres of mice 10 days after T.cruzi infection (Ribeiro dos Santos 6 

Hudson, 1981). This can lead to granulocyte attachment and lysis of 

host cells as shown in this chapter. T cells have also been shown to be 

cytotoxic to T.cruzi antigen-coated host cells (Ribeiro dos Santos 6 

Hudson, 1980b). The destruction of host cells in the acute phase of the 

disease may then induce the production of auto-reactive T cells and 

autoantibodies.
The demonstration that granulocytes can lyse T.cruzi antigen and 

antibody-coated syngeneic nucleated cells raises the possibility that 

granulocytes may play an effector role in American trypanosomiasis by 

lysing parasitized cells. These appear to express an antigen (parasite 

or modified-sclf) that is recognised by T cells from infected animals 

(Kuhn & Murnane, 1977). The possibility remains to bo investigated whether
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antibody binding to this antigen, enables granulocytes to lyse T.cruzi

infected cells in an analoguous situation to that described using 

granulocytes and antibody-coated virus-infected cells (Siebens, Tavethia 
and Babior, 1979) .

In contrast to the numerous observations of granulocyte infiltration 

in the tissues, there are few reports concerning their level in the 

peripheral blood. Thus, Torres (1941) quotes E. Dias in 1912 as noting 

an increase in the relative number of eosinophils and neutrophils as 

the patients enter the chronic phase; this eosinophilia shows a variable 

number of immature eosinophils and is accompanied by a discrete basophilia. 

Mazza (1938) describes eosinophilia in one detailed case while emphasizing 

that this is a frequent finding. The relevance of these observations 

remains to be seen as these cases may have been carrying unrelated 

parasites which are responsible for the eosinophila. However, the level 

of eosinophils and neutrophils in the peripheral blood in T.cruzi 

infections does not itself indicate whether these cells play an effector 

role. The main activity of granulocytes probably takes place in the 

tissues where the parasite divides, a cellular response takes place and 

where the degenerative lesions of the host cells is observed. Thus, 

granulocytes may play a role in the pathogenesis of the disease in the 

absence of gross eosinophilia or neutrophilia.

On current evidence, granulocytes may be important in the pathogenesis 

of the disease as a result of their ability to kill the parasite and to 

lyse syngeneic cells coated with T.cruzi antigen and antibody iri vitro. 

However, it is not until eosinophils and neutrophils can be selectively 

depleted _in vivo that their role in the pathogenesis of American 

trypanosomiasis will be unravelled.
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SUMMARY

Eosinophils and neutrophils are shown to be cytotoxic against two 

syngeneic murine cell line cells when these are coated with T.cruzi 

antigen and anti-T.cruzi antibody. Activity is detected after 5 hs 

of incubation. Highest levels of cytotoxicity are obtained at antibody 

dilutions of 1 : 1 0 0  and 1 :1 0 0 0 , while antiserum at 1 : 1 0  is shown to be 

inhibitory. Eosinophils show significant activity at an effector to 

target ratio of 5:1. No cytotoxicity occurs in the absence of either 

antigen, antibody or effector cells. This phenomenon may be a modfel 

for the tissue destruction in acute T.cruzi infection, where the lysis 

of trypanosomes may lead to antigen coating of host cells, followed by 

antibody-dependent granulocyte-mediated cytotoxicity of the host cells.
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CHAPTER 6

ANTIBODY-DEPENDENT CELL MEDIATED CYTOTOXICITY OF NUCLEATED 

MAMMALIAN CELLS BY RAT EOSINOPHILS AND NEUTROPHILS



INTRODUCTION

Eosinophils are known to share several morphological and 

functional characteristics with neutrophils. Although more is known 

about neutrophils, mainly because of their ready availability, some 

comparative studies of their activities have been carried out.

For example, eosinophils have been reported to be less microbicidal 

and phagocytic than neutrophils (Baehner 5 Johnston, 1971; Mickenberg, 

Root 5 Wolf, 1972); they apparently have similar cytotoxic activity 

against Trypansoma cruzi (Lopez et al., 1978) and their relative 

activity against Schistosoma mansoni is still controversial (Vadas 

et al., 1979). Recent reports indicate that neutrophils can be 

active against antibody-coated tumour cells (Gale 5 Zighelboim,

1975; Clark 5 Klebanoff, 1977). On the other hand, although the 

major basic protein (Butterworth, Wassom, Gleich, Loegering 5 David, 

1979) and the peroxidase system (Jong 5 Klebanoff, 1980) of the 

eosinophil have been shown to be toxic to tumour cells in vitro, in 

the few studies of antibody-dependent eosinophil cytotoxicity carried 

out, only low activity was observed against antibody-coated tumour 

cells (Parrillo 5 Fauci, 1978).

In this chapter, rat eosinophils, neutrophils and K cells have 

been compared for their ability to kill mammalian cells in a 

homologous antibody-dependent system. The implications of the type 

and concentration of the antiserum used to mediate the reaction have 

also been examined.
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RESULTS

6.1.Cytotoxicity of target cells

A range of different target cells were tested for susceptibility 

to eosinophil, neutrophil and K cell cytotoxicity in the presence of 

antiserum A. Table 6.1 summarises this data giving the level of cyto

toxicity at the optimum antiserum dilution in each case. It can be seen 

that whereas all cells tested were susceptible to K cell killing, there 

were considerable differences in susceptibility to granulocyte killing. 

In general, tumour cells of lymphoid origin were more susceptible to 

granulocyte activity. Lymphoma cells (BW) were the most susceptible of 

the mouse cell lines tested. Human lymphoma cells (Daudi) were also 

highly susceptible when coated with anti-human antibodies (data shown in 

Table 6.3). Macrophages were not significantly killed by either 

eosinophils or neutrophils, and P815 cells which were used in the 

immunization scheme showed only low levels of cytotoxicity by granulocyt 

However, K cells were very active against both macrophages and P815 

target cells.

6 •2.Antibody requirement
Since BW cells were susceptible to granulocyte and K cell activity, 

they were used in experiments designed to compare the cytotoxic activity 

of each effector in the presence of three different antisera.

A titration of antiserum A (Fig.6.1) showed that while granulocytes 

were more active against BW cells at a high antiserum concentration, K 

cells induced maximum 51Cr release at an antiserum dilution of 1:1000 

and were still active at a dilution of 1:10,000. However, the effector 

cell activity was not only dependent on the amount of antibody present 

but also on the type of antiserum used. When all three effector cells

96



Tab1e 6.1. Summary of antibody dependent cytotoxicity of different 
mouse cell types

Targets Eosinophils 
(ratio 2 0 :1 )

Effectors 
Neutrophils 
(ratio 2 0 :1 )

K cells 
(Ratio 40:1)

B1V 48.8* 72.1 30.7
EL4 8.9 19.9 NT+
NS-1 31.2 52.7 NT
X63-Ag8 NT 41.6 NT

P815 3.6
(ratio 5:1)

1 0 . 0 48.1

Neuro-2a NT 0 37.4

BALB/c macrophages 0 0 53.7

BALB/c eosinophils 26.9 48.5 37.2

BALB/c neutrophils 0 33.2 2 2 . 2

* Percentage specific ^*Cr release

Values shown as zero were not significantly different from controls at 

the S?6 level. NT = not tested. Ratio expressed as effector:target cells.

♦ Not tested but known from other experiments to be susceptible.

The data for each target cell type comes from a single representative 

experiment.
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Figure 6.1. Titration of antiserum A with eosinophils,
ratio 2 0 : 1  (■); neutrophils, ratio 2 0 : 1  (•) and 
K cells, ratio 50:1 (A). All values are significantly 
different from control at the 5% level or greater.
The eosinophil preparation consisted of 8 8 * eosinophils, 
5% mast cells, 5% macrophages and 2% lymphocytes.
The neutrophil preparation contained 97* neutrophils,
2% eosinophils and 1?» macrophages. The K cell 
preparation contained lOO'o lymphocytes.
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were tested against BW cells in the presence of three different antisera 

(Table 6.2), each effector was shown to react better with a particular 

antiserum, which in turn was different for eosinophils, neutrophils and 
K cells.

6 .3 . Characteristics of the reaction

Eosinophils and neutrophils showed similar levels of activity at 

different effector : target ratios (Fig.6 .2), with significant activity 

detectable at a ratio of 2.5:1. Both types of granulocyte were also found 

to behave very similarly in kinetic studies (Fig.6 .3). Both cells induced 

a rapid ***Cr release, showing significant activity after only 15' of 

incubation. >.

The possibility that granulocytes interacting specifically with 

antibody-coated target cells might lead to non-specific killing of non- 

antibody-coated bystanders was investigated. It was found (Table 6.3) 

that while both BW and Daudi cells were susceptible to eosinophil and 

neutrophil cytotoxicity when coated with their specific antiserum, no 

cytotoxicity was observed when the same cells were used as bystanders, 

indicating the need for immunological contact.

6.4. Inhibition by macrophages
The fact that neutrophils and macrophages were the main cells 

recovered from the peritoneal cavity of AGUS rats injected with dextran, 

facilitated studies on the effect of varying numbers of macrophages on the 

cytotoxic activity of the effector cell preparation. By testing the 

effector cells obtained after each step of the purification procedure 

against BW cells (Table 6.4), it was found that a decrease in the number 

of macrophages was accompanied by an increase in the Cr release.
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Table 6.2. Cytotoxicity of BW cells by eosinophils, 

and K cells in the presence of different

neutrophils

antisera

Antiserum C Antiserum A Antiserum B

Eosinophil s 12.9* • 10.5 2 2 . 8
(ratio 1 0 :1 )

Neutrophils 
(ratio 2 0 :1 )

4.6 47.7 5.5

K cells 40.5 30.7 30.4
(ratio 40:1)

* Percentage specific ^*Cr release

All values shown are significantly different from controls (no antibody) 
at the 5% level or greater

Ratio expressed as effector:target cells

Values connected by bars are not significantly different at the 
5% level.

Antisera used at a 1:100 dilution. The eosinophil preparation contained 
95% eosinophils, 3% mast cells and 2% macrophages. The neutrophil 
preparation contained 98% neutrophils and 2% macrophages.
The K cell preparation contained 100% lymphoid cells.
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Figure 6.2. Cytotoxicity of BW cells at different effector:target 
ratio by eosinophils (■) and neutrophils (•) in the 
presence of antiserum A (dilution 1:50). All values 
are significant at the 5?. level. The eosinophil 
preparation consisted of 87?» eosinophils,' 6 * mast cells, 
4?. macrophages and 3% lymphocytes. The neutrophil 
preparation consisted of 95* neutrophils, 3?. macrophages 
and 2 % eosinophils.
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Figure 6.3. Kinetics of release of ^Cr from Bli cells by- 
eosinophils ( ■ , □ )  and neutrophils (*,o) at an 
effector to target ratio of 20:1. Empty symbols 
represent spontaneous 51Cr release. Filled symbols 
represent release in the presence of effectors and 
antibody. All eosinophil and neutrophi1'values are 
significantly different from their respective control 
values at the S’* level or greater. The eosinophil 
preparation consisted of 95» eosinophils, 3% mast 
cells, 1% macrophages and 1% lymphocytes. The 
neutrophil preparation consisted of 95» neutrophils, 
3t Macrophages and 2 \  eosinophils.
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Table 6.3. Cytotoxicity of antibody-coated tumour cells by eosinophils 

and neutrophils does not result in cytotoxicity of 

bystander cells

Antiserum 5 1 Cr-labelled
targets

Unlabelled
targets Eosinophils Neutrophils

anti-mouse(A) BW - 21.5* 72.1

anti-mouse(A) Daudi BW 0.3 (n.s) 1.36 (n.s)

anti-human Daudi - 6 8 . 1 82.6

anti-human BW Daudi 1.5 (n.s) NT

* Percentage specific ^Cr release. The experiments with eosinophils 

and neutrophils were performed on different days. Control values in the 

absence of antibody (eosinophils and neutrophils respectively) were 9.4 

and 13.4 for BW and 5.7 and 8.1 for Daudi. Antiserum A was used at a 1:50 

dilution. The anti-human serum was used at 1:100. Ratio effector:target 

cells of 20:1. NT «= not tested; n.s * not significant at the 5% level. 

The eosinophil preparation consisted of 92% eosinophils, 4°* mast cells,

2% macrophages and 2% lymphocytes. The neutrophil preparation consisted 

of 97% neutrophils, 2% eosinophils and 1% macrophages.
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Table 6.4. Antibody dependent cytotoxicity of BW cells by dextran-induced 

peritoneal cells at different stages of purification

Purification
stage

Differential counts % Specific
macroph. lymph. neutr. oesin. release

Untreated 23 1 74 i IS.9

After Ficoll- 
Paque

6 2 89 3 31.5

After Métriz
amide

2 0 97 1 42.3

Antiserum A, dilution 1:100 was used. All values are significantly 

different from each other, and from control values at the 5% level or 

greater. Effector to target ratio of 20:1.
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This effect cannot simply be explained by a higher neutrophil:BW 

ratio, and rather suggests that macrophages are inhibiting neutrophil 
activity.

DISCUSSION

Eosinophils and neutrophils are shown to be active at low ratios in 

a homologous antibody-dependent system, against a range of mammalian cells, 

with cells of lymphoid origin being the more susceptible. P815 cells, 

although highly susceptible to K cell activity, and widely used as a 

target cell for T cell killing, appear to be relatively resistant to 

granulocytes. Similarly, Neuro-2a cells and mouse macrophages which 

bear the same H-2 antigens as P81S cells show low susceptibility to rat 

granulocytes, although high levels of ^*Cr release were induced by K cells. 

This difference could be due either to the membrane resistance of these 

targets to the action of granulocytes or to a failure of the antisera used 

to provide adequate contact between granulocytes and the target cells.

Similar activity has been reported for human neutrophils (Clark 8 

Klebanoff, 1977). However, studies on eosinophils from patients with 

the hyperéosinophilie syndrome (Parrillo 8 Fauci, 1978) had shown low 

levels of cytotoxicity even at a ratio of 100:1. It is not clear whether 

this low activity is due to the altered state of these eosinophils (Spry, 

1978) or to the targets or the rabbit antiserum used. In general, 

experiments that use heterologous antisera to the effector cells arc 

difficult to interpret since these appear to be less effective than 

homologous antisera (Scornik, Cosenza, Lee, Kohler 8 Rowley, 1974), 

possibly because of Fc differences between the species (Leslie 8 Nicmetz,
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1979). The eosinophil in particular has shown large differences in 

its adherence to red cells coated with antibodies of different species 
(Butterworth, Coombs, Gurner 5 Wilson, 1976).

The type of antiserum used and its concentration is shown to play 

a central role in granulocyte-mediated cytotoxicity. Titration 

experiments (Fig.6.1) show that eosinophils and neutrophils need a large 

amount of antibody while K cells show maximum activity at high antisera 

dilution. In this context, the negative effect of neutrophils on a 

human lymphoblastoid cell line (Trinchieri, Bauman, de Marchi 6 Tokes,

1975) might have been due to the fact that an alloantiserum was used 

for the sensitization of the target cells, particularly since lymphoid 

cells used in these experiments and elsewhere (Gale 5 Zighelboim, 1975; 

Clark 5 Klebanoff, 1977) appear to be very susceptible to granulocyte 

activity.

The fact that each antiserum can react preferentially with one 

effector cell type constituted a surprising finding, since P815 cells 

were used for the immunization of the three rats and may reflect 

individual differences in the IgG subclass composition of each antiserum. 

It has been noted that the activity of effector cells involved in anti

body-dependent cell-mediated cytotoxicity can vary according to the 

IgG subclass present in the system (Holm, Engwall, Hammarstrom 6 Natvig, 

1974; Urbaniak 5 Ayoub Greiss, 1980), and inhibition studies with heat- 

aggregated IgG subclasses (Greenberg, Shen 6 Roitt, 1973; MacLennan, 

Howard, Gotch 6 Quie, 1973; Holm a^., 1974) have further strengthened 

this view. Furthermore, Fc receptor differences also exist between 

eosinophils and neutrophils (see Chapter 4). These differences in 

antibody requirement would explain previous observations showing 

susceptibility of tumour cells to K cell activity, but not to granulocyte
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activity (Sanderson, Clark § Taylor, 1975), although the low 

susceptibility of P815 cells to granulocytes might have also contributed 
to produce this effect.

Neutrophil phagocytosis of antigen-antibody complexes or their 

interaction with antigen-antibody complexes attached to the surface of 

non-phagocytosable particles have been shown to result in the secretion 

of granule contents to the outside of the cell (Henson, 1971). Similarly, 

eosinophils have shown intense degranulation into the extracellular space 

when exposed to antigen-antibody precipitates too large to ingest (Archer 

5 Hirsch, 1963). The further findings that neutrophils (Clark 5 Klebanoff, 

1975) and eosinophils (Jong 6 Klebanoff, 1980) could non-specifically kill 

mammalian cells upon stimulation with opsonized zymosan in the presence 

of halides, raised the possibility that intimate contact between 

granulocytes and tumour cells might not be essential. On the other hand, 

close contact was suggested by experiments in which hepatoma cells uncoated 

with antibody were not killed by neutrophils reacting with antibody-coated 

hepatoma cells (Hopkins 5 Dale, 1980). In the bystander experiment shown 

in Table 6.3, two different targets, BW and Daudi cells which were highly 

susceptible to granulocyte activity were used. These data show that 

eosinophil and neutrophil killing is specific for the antibody-coated 

target cells, and suggest that their granule contents may need to be 

concentrated at the site of contact with the target cells to prove effective.

The finding that macrophages can prevent the action of neutrophils 

on cell line cells extends previous studies where macrophages were found 

to inhibit granulocyte activity on chicken erythrocytes (Sanderson 5 

Thomas, 1978). It seems possible that stimulated macrophages by virtue 

of the high number or avidity of their Fc receptors (Rhodes, 1975) may 

be cytophilically absorbing antibody molecules that neutrophils need in

107



a large number. Indeed, a similar effect has been previously described 

by Hersey $ MacLennan (1973) who found that macrophages protected tumour 

cells from K cell killing.

The observation that individual antisera can preferentially react 

with a given effector cell in vitro, taken together with reports that a 

particular antigen like Rh can give rise to antisera consisting of IgGl, 

IgG3 (Holm et al_., 1974), or IgG^ (Frame, Mollison § Terry, 1970) sub

classes in different individuals, suggest that the effector cell type 

active iii vivo may vary in different individuals according to the subclass 

produced, even in a similar disease situation.

The fact that eosinophils and neutrophils can be cytotoxic against 

mammalian cells iii vitro suggests a possible involvement in tumour 

rejection or autoimmune phenomenon in vivo. Eosinophilia and neutrophilia 

have been detected in patients with a variety of malignant diseases 

(Beeson 5 Bass, 1977), and since eosinophils have been found infiltrating 

lesions in Hodgkin's disease (Lukes, Butler 5 Hicks, 1966) and tumour 

produced eosinophilotactic factors have been described (Wasserman, Goetzl, 

Ellman § Austen, 1974) the possibility that granulocytes could play an 

effector role in tumour immunity deserves further investigation.

SUMMARY

Rat eosinophils, neutrophils and K cells have been compared for 

their ability to kill antibody-coated mammalian cells. Eosinophils are 

shown to have similar cytotoxic activity to neutrophils. Both cells are 

active at a low effector to target cell ratio and induce a rapid Cr 

release. Eosinophil and neutrophil cytotoxic activity differ from K cell 

activity in that granulocytes need a higher antiserum concentration. 

Furthermore, when different homologous antisera were compared each effector
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cell reacted preferentially with a different antiserum. Cytotoxicity 

by eosinophils and neutrophils is shown to depend on specific contact 

with the target cells as susceptible bystander cells are not killed. 

Neutrophils appear to be inhibited by macrophages present in the 

effector cell population since higher levels of 51Cr releases are 

obtained following their depletion by the purification techniques 

employed.
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INTRODUCTION

Most of our knowledge on the biochemistry and function of eosinophils 

and neutrophils is derived from in vitro studies. Thus, eosinophils and 

neutrophils have been shown to kill bacteria, tumour cells and protozoans 

and metazoan parasites (see Chapter 6). However, very little is known about 

the role of these cells in vivo. Furthermore, the in vitro studies often 

show some conflicting results. For example, while some authors have described 

damage of S.mansoni by eosinophils (Butterworth £t al^, 1975; Ramalho 

Pinto, McLaren 5 Smithers, 1978) others have found eosinophils to be 

inefficient in this system (Dean, Wistar 8 Murrel, 1974). Similarly, while 

some workers have found both eosinophils and neutrophils to induce damage 

of S.mansoni (Anwar et al., 1979; Incani 5 McLaren, in press), 

others have found eosinophils but not neutrophils to be the active cells 

(Vadas e t _  aK , 1979) .

Another problem is that there appears to be a lack of correlation 

between the iji vitro data and the in vivo findings. Thus, eosinophils have 

been seen to be the most prominent cell in the inflammatory response in the 

skin following challenge of S.mansoni-infeeted mice, but they have been 

rarely observed in contact with the parasite (von Lichtenberg, Sher, Gibbons 

5 Doughty, 1976; Savage 6 Colley, 1980). In addition, mice sensitized with 

a cercarial preparation and mounting a marked eosinophil response, were not 

protected from cercarial challenge (Colley, Savage 6 Lewis, 1977).

Whatever the in vitro activity of eosinophils against infective agents, 

the role of these cells in the pathogenesis of a disease can only be 

determined indirectly by means of selectively depleting them with a specific 

antiserum.
Since the observations by Metchnikoff (1899) that anti-leucocyte 

scrum can be prepared by heteroimmunizations, attempts have been made to
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produce antisera specific for different cell types. An antilymphocyte 

serum has been produced and shown to be immunosuppressive (reviewed by 

Lance, Medawar 5 Taub, 1973). An anti-neutrophil serum has allowed studies 

on the kinetics of bone marrow release of neutrophils (Lawrence, Caddock $ 

Campbell, 1966). More recently, rabbit anti-eosinophil sera have been raised 

and shown to deplete eosinophils when injected in the appropriate species 

of animals (Mahmoud, Warren $ Boros, 1973; Gleich, Loegering 5 Olson, 1975; 

Jones 6 Kay, 1976) .

The use of the anti-mouse eosinophil serum in S.mansoni (Mahmoud, Warren 

$ Peters, 1975) and T. spiralis (Grove, Mahmoud 5 Warren, 1977)-infected 

mice suggests that the eosinophil can play a role iji vivo against these 

parasites. Similarly, experiments using anti-guinea pig eosinophil sera 

(Jones 6 Kay, 1976; Gleich, Olson 6 Loegering, 1979) indicate that eosinophils 

may be important in regulating inmediate-type hypersensitivity reactions.
The use of heterogeneous antisera suffers, however, from some 

disadvantages. Firstly, they are non-specific reagents and must be extensively 

absorbed to remove cross-reacting antibodies. Secondly, even after 

absorption, specificity is difficult to achieve and the antiserum titre may 

be markedly reduced. Thirdly, as individual animals produce antisera of 

different specificity, there is a limited supply which restricts its 

general use.

The development of a cell fusion technique between myeloma cells and 

antibody-producing cells with the production of cell lines (hybridomas) 

secreting antibodies to the immunizing antigen (Kohler 6 Milstein, 1975), 

has provided a new method for obtaining homogeneous (monoclonal) antibody 

preparations of exquisite specificity and virtually unlimited supply.

By appropriate cloning and screening ,t.echnxiques, hybrids secreting the anti

body of the desired specificity can be derived. With this technique,
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monoclonal antibodies to a wide variety of antigens have already been 
produced, for example monoclonal antibodies for the major histocompatibility 
complex of the mouse (Lemke et a K , 1978), for the Fc receptor of mouse 

macrophages and lymphocytes (Unkeless, 1979), and to malaria parasite 

(Yoshida, Nussenzweig, Potocnjak, Nussenzweig 5 Aikawa, 1980). Furthermore, 

the monoclonal antibody to malaria parasite has been shown to be effective 

in vivo conferring protection to mice (Potocnjak, Yoshida, Nussenzweig 8 

Nussenzweig, 1980).

Once a hybridoma-secreting antibody of the desired specificity has 

been derived, it can be made to grow in culture as an inmortal cell line 

or it can be injected into suitable animals where it will grow as a tumour. 

This second possibility offers the advantage of obtaining monoclonal anti

bodies from the serum and ascites of the tumour-bearing animals at a 

concentration 1,000 times higher than that obtained from tissue culture 

supernatants. However, tumour growth depends on both the antibody-producing 

cell and the myeloma parent used in the fusion, belonging to the same 

species.

Until the availability of a rat myeloma, antibodies to mouse antigens 

(apart from alloantigens) were produced by fusing rat spleen cells to a 

mouse myeloma. These would not grow as tumours and so antibody could only 

be obtained as culture supernatants.
Another problem derived from fusing rat spleen cells immunized with 

mouse eosinophils to mouse myeloma cells, is the presence in the rat spleen 

of cytotoxic T cells to mouse cells and K cells which could reduce the 

efficiency of the fusion.
In this chapter, attempts to produce conventional antibody preparations 

specific for mouse eosinophils and neutrophils are described. These were 

unsuccessful, but were not pursued because experiments that used the
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hybridoma technique were more promising. The production and testing of 

the monoclonal antibodies are described.

Due to the unavailability of the rat myeloma Y3 at the time, most of 

the monoclonal antibodies to eosinophils described were produced by fusing 

rat spleen cells to the NS1 myeloma. This originated rat-mouse hybrids 

which could not be grown in vivo, limiting therefore the amount of antibody 

for experimental use.

To overcome the problem of having cytotoxic T cells and K cells in the 

rat spleen, two fusions used rat spleens that had been immunized against 

eosinophils carrying a different H-2 to the myeloma parent. Furthermore, 

in one fusion spleen cells were first filtered through a nylon wool column 

with the aim of depleting T cells and K cells, and enriching for B 

lymphocytes. In this context, it should be noted that it has not yet 

been clearly established which cell (B cells or blast cells) participates 

in the fusing event. What has been shown in fusions that used spleen cells 

immunized with soluble antigens, is that the specific efficiency (i.e. = 

number of antigen specific hybridoma clones/total number of hybridomas) of 

this type of fusion directly correlates with the number of stimulated large 

lymphocytes formed in the spleen (Stahl i, Staehelin, Miggiano, Schmidt G 

Haring, 1980).

RESULTS

7.1. Rabbit antisera to mouse eosinophils and neutrophils

Antisera raised to eosinophils and neutrophils (see Section 2.04.2) 

wore cross-tested for specificity by means of three different assays.
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7.1.1. I.I.F.

The antisera were tested by I.I.F. for reactivity with eosinophils, 

neutrophils and P815 cells (Table 7.1). It was found that all of them 

reacted with the three cell types tested. One of these antisera (AEla) 

was absorbed with P815 cells to remove anti-mouse antibodies, however this 

lowered the fluorescence titre to all the cell types tested, indicating 

that very little antibody specific for eosinophils was present.

7.1.2. FACS analysis

Because I.I.F. can be a very subjective assay, and because the FACS 

is more sensitive, further studies were carried out using the FACS. 

Eosinophils and neutrophils were treated with each antiserum at a 1:100 

dilution followed by the goat anti-rat IgG-FITC (see Section 2.20.2).

When the cells were analysed with the FACS (Figure 7.1), a clear cross

reactivity of AEj and AN with eosinophils and neutrophils could be seen, 

while in the absorbed serum (AE^) the reactivity was reduced almost to 

that of the control.

7.1.3. ^*Cr release assay

A ^*Cr release assay using guinea pig complement with the rabbit anti

sera showed activity only against eosinophils (Figure 7.2). Because these 

antisera were shown to be cross-reactive by IIF and FACS' analysis, it was 

thought this might represent lack of complement lysis rather than antibody 

specificity. For this reason, different sources of complement were tested 

(see Section 2.05.3) and rabbit serum absorbed with mouse spleen cells was 

found to be effective against neutrophils. This was confirmed by experiments 

in which CBA leucocytes were tested for the presence of H-2 antigen on their 

membrane (Figure 7.3). Eosinophils, lymphocytes and macrophages were lysed
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Tabic 7.1. Indirect immunofluorescence of eosinophils, neutrophils 
and P815 cells with different rabbit antisera

i

Anti- Cell Antiserum dilution (reciprocal)
serum type 20 40 80 160 320 640 1280 2560 5120 None

AE x Eosinophils ♦ ♦♦ 4 4 4 4 4 4 4 4 4 ♦♦4 4 4 4 4 4 + + -
Neutrophils 4  + 4- 4 4 4 4 4 4 4 4 4 4 4 4 4 - - -

P815 + + + 4 4 4 4 4 4 4 4 4 4 4 4 - - -

AE.la E + + 4 4 4 - - - - - - -

N + 4 - - - - » - - -
P 4 4 - - - - -

a e2 E ♦ + + 4 4 4 4 4 4 4 4 4 4 4 4 - - -

N ♦ ♦ + 4 4 4 4 4 4 4 - « - - -

P + + + 4 4  4 4 4 4 4 4 4 4 - - -

ae3 E + ♦♦ 44 4 4 4 ± . . . - - - -

N ♦ ♦ 44 4 4 4 ± - - - - -
P ♦ ♦ 4 4 - - - - -

AN E + ♦♦ 4 4 4 4 4 4 4 ♦ 4 ± - - -

N ♦ ♦♦ 4 4 4 4 4 4 4 4 4 4 4 4 4 - - -

P ♦ ♦♦ 44 4 4 4 4 ± “ - - -

Normal E . . . . - -

rabbit N . . . - -

serum
P • . - - - - - -
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Figure 7.2. Cytotoxicity of eosinophils (■), and neutrophils (•) , 
by AEj (----), AEja and AN (--- ) antisera.

Eosinophil values with each antiserum are significantly 
different at the 5% level from eosinophil values obtained 
with the other antisera.
Neutrophil values are significantly different from
eosinophil values at the S% level when AEj and AN were
used but not when AE, was used.1 a
Neutrophil values obtained with AE^ and AN were 
significantly different from AEja values at the 5% level, 
but were not significantly different between each other.
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Figure 7.5. Cytotoxicity of eosinophils (■), neutrophils (•),
d klymphocytes (A) and macrophages ($) by H-2 anti-II-2 

scrum (unbroken line) and monoclonal antibody 
anti-H2*t 27 R9 (broken line)
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by H-2 anti-H-2 serum and guinea pig complement, while neutrophils were 

lysed in the presence of rabbit complement. Therefore, in all subsequent 

experiments with mouse neutrophils as target cells, rabbit serum absorbed 

with spleen cells was used as the source of complement.

To provide a baseline of comparison to the rabbit anti-eosinophil 

sera described above, Dr. A. Mahmoud kindly supplied some of his rabbit 

anti-^eosinophil serum. When this was tested for cytotoxicity against mouse 

leucocytes an extensive cross-reactivity with all the cell types tested 

could be seen (Figure 7.4).

7.2. Monoclonal antibodies to eosinophils

From six fusion experiments performed, one was lost due to excessive 

CO^ in the 37°C incubator, two did not show growth, and three produced the 

monoclonal antibodies described in this section.

The two fusions in which growth was not observed used rat spleen cells 

sensitized with BALB/c eosinophils for fusion with NS1 cells. In the 

second of these fusions, a ^*Cr release assay was set up in which the rat 

spleen cells were tested for cytotoxic activity against P815 cells (same 

H-2 as NS1). It was found that the rat spleen contained cells cytotoxic 

to P815 cells at an effector:target ratio of 100:1 in a 4 hrs cytotoxicity 

assay. This cytotoxic effect could be important in a long term culture 

and may be responsible for the lack of growth observed in the two fusions.

In order to avoid the induction of T cells cytotoxic to cells carrying 

H-2d antigen, the rat used in the next fusion was immunized with eosinophils 

obtained from CBA mice (H-2k). This produced the first successful fusion, 

in which the supernatants of 8 wells were found to react with CBA 

eosinophils (Table 7.2).
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Table 7.2. Summary of the three successful anti-mouse eosinophils fusions performed

Fusion Immunogen Myeloma Spleen cells No. of 
spleen cells

No. of wells 
showing growth

No. of posi
tive wells

1 CBA eosinophils NS1 Whole spleen io8 13/48 8

2 CBA eosinophils NS1 Non-adherent 
spleen cells

1.2 x 107 23/54 19

3 BALB/c eosinophils Y3 Whole spleen 1.2 x 108 56/96 5

The ratio spleen cells: myeloma cells used was 10:1 in all three fusions.



Because it was possible that cytotoxic T cells to mouse cells 
unrestricted to H-2 were present in the rat spleen, another fusion was 
carried out with spleen cells that had been filtered through a nylon 

wool column. In addition to removing T cells, this technique also 

removes non-adherent K cells. This second successful fusion using only 

adherent cells produced 19 wells showing antibody activity against CBA 

eosinophils.

Although hybrids secreting anti-eosinophil antibodies with a high 

degree of specificity could be obtained in this way (see below) the fact 

that they were derived from rat-mouse fusions meant that they could not 

be easily grown in vivo. In fact, an attempt was made to grow one of these 

hybridomas (M2/43.G4.A4) in 5 BALB/c nu/nu mice by injecting up to 5 x 107 

cells/mouse. However, the hybridoma did not grow. Thus, when the rat 

myeloma Y3 became available, another fusion was set up in which BALB/c 

eosinophils were used for the immunization and screening for specificity. 

This third successful fusion produced 5 wells showing antibody activity 

against BALB/c eosinophils.

In every case, hybridomas showing growth were screened for the 

production of antibodies to eosinophils by an antibody-binding assay, and 

tested for cytotoxic activity against a range of mouse cells. The anti

bodies produced showed different patterns of reactivity with each cell 

type (summarized in Table 7.3). 5 wells showing some specificity for

eosinophils were selected and the hybrids cloned.
Clones were tested by both binding and cytotoxicity assays. An 

example is shown in Figure 7.5. where it can be seen that most isolated 

clones showed similar activity, while only one F2, showed no production of 

anti-eosinophil antibody. Clones with highest activity were grown up and 

stored frozen in liquid nitrogen.
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Table 7.3. Summary of cytotoxic and binding activity of different
monoclonal antibodies to mouse eosinophils on eosinophils 

and other leucocytes

Cytotoxic titre 125I-anti IgG binding-cps
Eos. Neutr. Lymph. Macr. Eos. Neut. Lymph

Ml/1 650* NT 80 NT 27t NT 21
Ml/2.A4 15 <1 <1 <1 41 13 18
Ml/2. A4 
concentrated

300 <1 10 <1 NT NT NT

Ml/9 4 NT <1 NT 30 NT 18
Ml/20.Gl 100 50 25 <1 44 42 30
Ml/21.A9.H8.G5 100 5 5 <1 47 37 29
M2/26.A2 <1 <1 <1 <1 17 58 34
M2/32 5 NT 2 NT 46 NT 35
M2/4 2 10 NT <1 NT ‘ 27 NT 16
M2/43.G4.A4. 15 <1 <1 <1 55 9 11
Rl/16 1050 20 <1 <1 56 55 31
Rl/36 200 NT <1 <1 20 24 16
Rl/71 20 4 <1 . <1 30 23 15
Rl/84 1000 1200 3 <1 17 12 12

* Reciprocal of the antibody dilutions at which 50% specific 51Cr was
obtained.

+ After substracting the background (supernatant of the myeloma parent), 
this always being between 8-22 cps.

NT *= not tested.
<1 * 50% specific 51Cr release not reached with undiluted or diluted hybridoma 

supernatant.
For the designation of the hybridomas, the initial 1 etter corresponding to A 1),® 
species of the spleen parent, is followed by the number of the tusion and the 
clone and subclonc numbers.
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Those hybrids showing the highest degree of specificity for eosino

phils (M2/43.G4.A4 and M1/2.A4) were grown in bulk cultures. The super

natant pool of each of them was concentrated about 40 times by molecular 

filtration with a PM30 membrane (Amicon Ltd., High Wycombe, England).

These concentrated supernatants were then tested for cytotoxicity against 

mouse leucocytes. Hybrid M2/43.G4.A4 gave the highest degree of specificity 

for eosinophils (Figure 7.6). Cross-reactivity was higher with lymphocytes 

than with neutrophils or macrophages, but this reactivity was approximately 

100-fold less than with eosinophils.

All these hybridomas were tested against leucocytes obtained from 

both CBA and BALB/c mice. Similar results were obtained, indicating that 

these antibodies were not reacting with alloantigens.

7.3. Effect of monoclonal antibody M2/43.G4.A4 in vivo

BALB/c mice infected with M.corti were given injections of concentrated 

M2/43.G4.A4 antibody to test its ability to ablate eosinophils in vivo.

As a control, parent myeloma supernatants concentrated to the same degree 

were used. At different times after infection with M.corti, all animals 

or remaining animals were injected i.p. with 1 ml of antibody or NS1 

supernatant. Animals were sacrificed 8 hs after each injection and the 

blood and peritoneal exudate collected. Total numbers of cells and 

differential counts were determined in each case so that the total number 

of each cell typo could be calculated.
Examination of the peritoneal exudate revealed (Figure 7.7) that the 

number of eosinophils in the pcritononl cavity had been greatly reduced by 

the monoclonal antibody, while control supernatants had no effect.
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Figure 7.7. Effect of antibody M2/43. G4.A4 ( ---- ) compared to
control ( ---  ) on M.corti-induced peritoneal
eosinophils (■), neutrophils (•) and mononuclear 
cells (A). Each point represents the mean of two 
animals and is calculated from differential counts 
and total cell number determined in each case.
No detailed statistical analysis was done on these 
data, however, the difference between eosinophil 
percentages was well outside the normal counting 
error (see text).
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Differential counts showed eosinophils to constitute 2% or less of the 
peritoneal exudate at days 16, 19 and 24 after M.corti infection as 

compared to control exudates in which 20-30% of the cells were eosinophils. 

There was found to be no decrease in the number of neutrophils and 

mononuclear cells. Macrophages were seen with cells, presumably 

eosinophils, in their interior at different stages of degeneration.

Peripheral blood eosinophils appeared to be reduced by the monoclonal 

antibody (Figure 7.8) but not as completely as the peritoneal eosinophils. 

Differential counts showed that at days 19 and 24 after M.corti 

infection 5-8% of leucocytes were eosinophils in antibody-treated animals 

while between 6-22% were found to be eosinophils in control animals.

Again, no decrease in the number of neutrophils and mononuclear cells was 

evident.

DISCUSSION

Immunization of three rabbits with purified mouse eosinophils failed 

to produce an antiserum specific for eosinophils. The three anti-eosinophil 

sera cross-reacted with neutrophils and P815 cells. Absorption of one of 

these antisera with P815 cells did not improve specificity for eosinophils 

but resulted in a marked decrease in its reactivity with both eosinophils 

and neutrophils.

In contrast to the IIF assay and FACS analysis in which a cross

reactivity of these rabbit antisera with eosinophils and neutrophils was 

observed, a ^*Cr release assay suggested specificity for eosinophils as 

these were lysed to a greater extent than neutrophils. However, the 

reason for this was found to be the apparent resistance of mouse neutrophils
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Figure 7.8. Effect of antibody M2/43.G4.A4 ( ---- ) compared
to control ( ---  ) on M.corti-induced blood
eosinophils (■), neutrophils (•) and mononuclear 
cells (A). Each point represents the mean of two 
animals calculated as in Figure 7.7.
The difference between the eosinophil percentages 
is probably not statistically significant.
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to guinea pig complement as seen in experiments in which neutrophils 

were lysed by a monoclonal antibody and a rat anti-mouse cells serum (see 

Section 2.05.3) in the presence of rabbit complement but not when guinea 

pig complement was used.

The inability of guinea pig complement to lyse mouse neutrophils 

was first examined by treating these cells with 10 mM azide which would 

have inhibited antigen modulation and allowed lysis by antibody and 

complement (Gordon 5 Stevenson, 1981) . However, this failed to induce 

cytotoxicity. Rabbit complement was then tested, and preliminary experiments 

showed high levels of toxicity (antibody-independent lysis). The possibility 

that this was the result of activation of the alternative pathway by 

neutrophils as it has been shown with thymocytes (Kierszenbaum 5 Budzko,

1977) was ruled out as incubation of complement at 56°C for 20', a technique 

that reportedly destroys the activity of Factor B (Kierszenbaum 6 Budzko,

1977) failed to remove toxicity. Absorption with rabbit complement with 

S x 107 mouse spleen cells (see Table 2.1), however, removed toxicity and 

produced a reagent able to lyse mouse neutrophils in the presence of monoclonal 

antibodies or heteroantisera.

Although Mahmoud's antiserum showed some specificity for eosinophils, 

extensive cross-reactivity with neutrophils, lymphocytes and macrophages 

was observed. The apparent resistance of mouse neutrophils to guina pig 

complement may explain the apparent specificity for eosinophils by a rabbit 

anti-mouse eosinophil serum previously described (Mahmoud et̂  al_., 1973).

Attempts to produce rabbit antisera specific for guinea pig eosinophils 

were unsuccessful (Glcich et al_., 1975; Jones 8 Kay, 1976). These antisera 

were found to lack specificity as their activity against eosinophils could 

be removed by absorption with different guinea pig cell types including 

neutrophils.
One laboratory, however, has apparently succeeded in producing rabbit



antisera specific for mature mouse eosinophils (Mahmoud et al., 1973) and to 

immature mouse eosinophils (Mahmoud $ Warren, 1977). Specificity has also 

been claimed for two rabbit antisera to human mature eosinophils (Mahmoud , 

Kellermeyer 5 Warren, 1974). These observations have also been interpreted 

as an indication of stage specificity and suggest that eosinophils as they 

mature gain one antigen and lose another. However, in view of the clear 

cross-reactivity of one of these rabbit antisera to mouse eosinophils with 

other leucocytes (Figure 7.4), this interpretation seems unlikely.

The use of rabbit anti-eosinophil serum (Mahmoud et al., 1973) in 

S.mansoni (Mahmoud, Warren § Peters, 1975) and T. spiralis (Grove,

Mahmoud 5 Warren, 1977)-infected mice, has indicated that eosinophils have 

a protective role in parasitic infections. Animals injected with anti

eosinophil serum show a higher worm burden and a decrease in their resistance 

to these parasites when compared to untreated infeeted animals. It should 

be noted, however, that the mode of action of this rabbit anti-eosinophil 

serum is still unknown. Cross-reactivity with lymphocytes may impair the 

host immune response. Furthermore, this work has not yet been confirmed in 

other laboratories probably due to difficulties in producing specific 

antisera.

The production of monoclonal antibodies to mouse eosinophils described 

in this chapter, represents an attempt to produce a monoclonal reagent of 

high specificity. One monoclonal antibody (M2/43.A4.G4) has shown remarkable 

specificity for mouse eosinophils. Its isotype has not been determined, 

but comparison of these data with work on rat myeloma proteins (Medgyesi, Fust, 

Gergeley 5 Bazin,1978) suggests that this antibody belongs to the IgG2a 

°r IgG2b subclass since it is bound by the goat anti-rat IgG, fixes 

complement and appears to be bound by macrophages. This antibody reacts 

with an antigen on the surface of the eosinophil which is present in only
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small amounts on other cell types. Furthermore, antibodies to this 

antigen selectively ablate eosinophils in vivo as can be seen by the large 

decrease of eosinophil numbers in the peritoneal cavity of BALB/c mice.

It should be noted that these in vivo results have been produced using 

only one dose regime. It may be that M.corti-infected mice need a higher 

antibody dose or more frequent injections to produce a total ablation of 

eosinophils. Clearly, therefore, although this antibody is shown to 

specifically deplete eosinophils jin vivo, the best experimental conditions 

remain to be established.

The mechanism of eosinophil ablation is not known. Complement may 

have a direct lytic effect in vivo. Another possibility is that macro

phages may phagocytose antibody or antibody and complement-coated eosinophils 

by means of their Fc and complement receptors. Injection of heterologous 

anti-neutrophil serum in guinea pigs (Simpson Ç Ross, 1971) has been shown 

to result in phagocytosis and digestion of neutrophils by liver and spleen 

macrophages. No ultrastructural evidence of neutrophil lysis in the blood 

was obtained suggesting that the antiserum was not cytotoxic _in vivo but 

that it was effective in promoting opsonization and uptake of neutrophils 

by macrophages.

Although this antibody is of limited practical value as it can only 

be grown in tissue culture, these results indicate that a monoclonal anti

body can be produced with specificity for eosinophils and _in_ vivo activity.

A monoclonal antibody of this type produced by a rat-rat fusion will be a 

real advance as it will constitute a standard reagent for worldwide use 

with which to establish the role of the eosinophil ill vivo.
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SUMMARY

Conventional antisera raised against mouse eosinophils are shown to 

lack specificity as they cross-react with other cell types. The rabbit 

antiserum to mouse eosinophils obtained from Dr. A. Mahmoud shows very 

little specificity for eosinophils and to extensively cross-react with 

other leucocytes. With a hybridoma technique for the production of mono

clonal antibodies, hybrids secreting antibodies of higher specificity are 

obtained. One of these monoclonal antibodies shows a 100-fold difference 

between its reactivity with eosinophils and other leucocytes. This anti

body selectively ablates eosinophils from the peritoneal cavity of M.corti- 

infected mice. The hybridoma technique appears, therefore, to be the 

method of choice for producing a highly specific antibody preparation for 

mouse eosinophils.





Rodent eosinophil and neutrophil membrane receptors and effector 

functions have been studied in vitro, and efforts have been directed 

towards an examination of the role of these cells in v '■ o by developing 

antibody preparations that could identify specific antigens on their 

surface.

Mouse eosinophils, induced to the peritoneal cavity of mice by 

Mesocestoides corti were purified using a combination of velocity 

sedimentation at unit gravity and isopycnic centrifugation (Chapter 3).

Since the mouse eosinophils were induced, it is possible that a 

proportion of these cells were in an "activated" state. Although the 

meaning of activation in this case has not been well defined, it has 

been used to indicate that the granulocyte has undergone a series of 

changes in response to a stimulus. Sometimes, however, it appears 

impossible to distinguish activation from simply maturation.

Functional, biochemical and morphological changes have been reported 

based on comparisons between eosinophils from normal donors and from 

patients with the hyperéosinophilie syndrome. A functional change 

frequently reported has been the increased binding to EA complexes by 

eosinophils from patients with hypereosinophilia (Tai Ç Spry, 1976;

Spry Ç Tai, 1976; Tai 5 Spry, 1980). It has also been shown that there 

is an increase in the number of eosinophils obtained from normal donors 

that bind to EA and EAC complexes after incubation with the ECF-A (Capron, 

Capron, Goctzl 8 Austen, 1981), however if the eosinophils are obtained 

from patients with hypereosinophilia, only the binding to EAC complexes 

is increased (Anwar 8 Kay, 1977a). Similarly, eosinophils binding to 

EA complexes can bo increased by incubation with E.coli endotoxin and 

lipid A, only if the cells are obtained from normal donors (Tai 6 Spry,
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1980). These results suggest that the eosinophils from hyper- 

eosinophilic patients cannot increase their binding to EA complexes 

in vitro because they have already responded to a stimulus to increase 

their Fc receptors in vivo.

Another functional change observed in eosinophils from patients 

with hypereosinophilia is their increased antibody-dependent adherence 

and cytotoxic activity to S.mansoni regardless of the cause of the 

eosinophilia (David, Vadas, Butterworth, Azevedo de Brito, Carvalho,

David, Bina 5 Andrade, 1980). This suggests that high numbers of 

peripheral blood eosinophils and activation are concomitant phenomena 

probably induced by the same stimulus.

The biochemical changes observed in eosinophils from patients with 

hypereosinophilia include increased acid phosphatase activity, and higher 

membrane hexose transport and hexose monophosphate shunt activities 

(Bass, Grover, Lewis, Szejda, De Châtelet 6 McCall, 1980).
A morphological alteration seen in eosinophils from hyperéosinophilie 

patients is their hypogranular appearance (Tai 8 Spry, 1976; Spry 6 Tai, 

1976; Catovsky, Bemasconi, Verdonck, Postma, Hows, van der Does-van den 

Berg, Rees, Castelli, Morra 6 Galton, 1980). That this is a consequence 

of granule release in the circulation with damaging effects on the 

cardiovascular system remains an attractive possibility.

Mouse eosinophils have been found to be very heterogeneous in density 

(see Chapter 3) which may indicate different stages of maturation or 

activation. Recently, studies with human eosinophils showed that the 

low density eosinophils obtained from a patient with hypereosinophilia 

expressed some of the morphological and biochemical features of activation 

(Olsson, Olofsson, Venge G Winquist, 1980).
Rat eosinophils wore obtained from the peritoneal cavity of normal 

August rats and purified following previously developed isopycnic
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centrifugation techniques (Sanderson § Thomas, 1978). Whether these 

eosinophils are also in an activated state is not known. However, it 

should be noted that eosinophils show changes in their granules and in 

the activity of their enzymes as they reach the tissue (Parmley 6 

Spicer, 1975).

In this thesis neutrophils have been induced by high molecular 

weight dextran. Mouse neutrophils were purified (Chapter 3) by a slight 

modification of the isopycnic centrifugation previously described for 

rat neutrophils (Sanderson 5 Thomas, 1978). Although few comparisons 

have been carried out between normal and induced neutrophils, they show 

differences in their respiratory burst and C>2 production (Badwey,

Curnutte, Robinson, Lazdins, Briggs, Karnovsky 5 Karnovsky, 1980) . 

Furthermore, human neutrophils exposed to chemotactic factors have shown 

enhanced chemiluminescence, an enhanced ability to produce superoxide 

anion and increased bactericidal activity (Van Epps 5 Garcia, 1980) , 

suggesting a state of activation.

The demonstration of C3 receptors on mouse eosinophils deserves some 

comment as previous studies had not detected them (Rabellino 8 Metcalf, 

1975; Rabellino et a K  , 1978; Hoghart et jU., 1980). The fact that the 

cells used in the studies described in this thesis may have been activated, 

therefore probably expressing more receptors could be important.

It is more likely, however, that in view of the high complement requirement 

by eosinophils, previous workers have used suboptimal levels.

Previous studies with induced mouse neutrophils (Mantovani, 1976) 

and normal human peripheral blood neutrophils (Scribner 5 Fahrney, 1976; 

Ehlcnbcrger 5 Nussenzweig, 1977) had failed to detect phagocytosis of 

F.AC complexes in the absence of IgG molecules. In this thesis, however, 

a direct phagocytosis of EAC complexes is observed by both eosinophils
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eosinophils are also in an activated state is not known. However, it 

should be noted that eosinophils show changes in their granules and in 
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1975; Rabellino et ¿1_., 1978; Hoghart e t _  a l_., 1980). The fact that the 

cells used in the studies described in this thesis may have been activated, 

therefore probably expressing more receptors could be important.

It is more likely, however, that in view of the high complement requirement 
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Previous studies with induced mouse neutrophils (Mantovani, 1976) 

and normal human peripheral blood neutrophils (Scribner 6 Fahrney, 1976; 

Ehlenberger 8 Nussenzweig, 197/) had failed to detect phagocytosis of 

F.AC complexes in the absence of IgG molecules. In this thesis, however, 

a direct phagocytosis of EAC complexes is observed by both eosinophils
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and neutrophils (Chapter 4). This indicates that whether there are 

differences or not in the expression of complement receptors between 

normal and induced granulocytes, these will not be detected nor their 

phagocytic role observed unless the conditions described in Chapter 4 

are met.

The fact that eosinophils and neutrophils bind and phagocytose 

complexes formed with C3b and C3bi (Chapter 4) but not with C3d (Tai 5 

Spry, 1980), probably restricts the action of these cells to sites where 

complement activation is taking place as C3b is very short lived. In 

this way they could have a beneficial role for the host by clearing 

recently opsonized bacteria or attaching to and killing parasites in 

primary parasitic infections, as some parasites are known to activate 

the complement system via the alternative pathway (Mackenzie, Jungery,

Taylor 8 Ogilvie, 1980).
Binding and phagocytosis of E by granulocytes have been shown to 

occur when E were coated with either IgG or complement (Chapter 4), 

however, whereas IgG led to high levels of cytotoxicity, complement gave 

very little cytotoxicity. A possible explanation could be that as the 

EAC complex is internalized the C3 is broken down, so that although 

phagocytosis has occurred, ligand-receptor interaction no longer exists 

to induce degranulation.
Although different enzymes have been detected as eosinophils and 

neutrophils interact with IgG or complement-coated targets, there is no 

clear evidence that different enzymes are secreted as a consequence of 

different stimuli. It is important to determine cytochemically the 

enzymes released at the site of contact of granulocytes with C3 or IgG- 

coated non phagocytosablc targets rather than in the supernatant, as 
the nature and concentration of the enzymes released locally are responsible 

for the lyses of nucleated mammalian cells (Chapter 6 ).
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Eosinophils have been shown to have higher IgG and complement 

requirements than neutrophils (Chapter 4). This low affinity or paucity 

of eosinophil receptors may explain the need for coating parasites with 

both antibody and complement to induce high levels of cytotoxicity.

Although some cytotoxicity can be shown with antibody alone, this is 

greatly enhanced by the addition of complement (Anwar et al., 1979; 

Mackenzie et al., 1980). Although it is controversial, eosinophils do 

not generally appear to be cytotoxic when parasites are coated with 

complement alone (Mackenzie et̂  al_., 1980). In only a few cases has 

eosinophil killing of S.mansoni in the presence of complement alone been 

reported (Ramalho-Pinto et al., 1978; Anwar £t al_., 1979). In the former 

case it can be argued that the damage to the parasite has been started 

by the late complement components as whole normal rat serum was used, 

and complement has been previously shown to be cytotoxic to S.mansoni by 

itself (Clegg 5 Smithers, 1972).

Mouse eosinophils and neutrophils have been shown to bind an anti

body of the IgG2b subclass. The low binding with IgGl was difficult to 

interpret because of the low number of antibody molecules bound to E.

The availability of other monoclonal antibodies will certainly solve this 

problem allowing the characterization of granulocyte Fc receptors of all 

subclasses. This approach has already proved useful in studying macro

phage Fc receptors (see Introduction).

Another advantage of using monoclonal antibodies to detect granulocyte 

receptors will be that standardized reagents could be used by different 

laboratories. At the present time the large variation in the reported 

numbers of eosinophils forming rosettes could be explained by the species 

in which the antiserum was raised as well as the subclass properties of 

each particular antiserum. For example, while in one laboratory a rat

138



antiserum induces the formation of more EA.rosettes by human eosinophils 

than with a rabbit antiserum (Capron et al., 1981), in another laboratory 

highest values are obtained with a guinea pig antiserum followed by 

rat, rabbit and human antisera in that order (Tai 6 Spry, 1980).

The variability in the percentage of eosinophils forming rosettes 

according to the antiserum used is analogous to the observation that 

individual antisera raised in the same fashion can determine whether 

eosinophils, neutrophils or K cells will be the more active effector 

cell against antibody-coated tumour cells (see Chapter 6 ). This suggests 

that there may be differences among effector cell types in their binding 

to IgG subclasses and further emphasizes the need to design experiments 

to answer this question.

In contrast to previous reports (Parrillo 5 Fauci, 1978) eosinophils 

have been shown to induce high levels of cytotoxicity from antibody- 

coated nucleated mammalian cells (see Chapters 5 and 6 ). Both 

eosinophils and neutrophils showed similar activity and were effective 

at low effector to target ratio. It is interesting to note that while 

neutrophils reacting with antibody-coated non phagocytosable targets can 

induce cytotoxicity if the target is a tumour cell (Chapters 5 and 6 ;

Gale 8 Zighelboim, 1975; Clark S Klebanoff, 1977), parasites such as 

S.mansoni, Nippostrongylus brasiliensis and Trichinella spiralis appear 

to be resistant to neutrophil activity despite the fact that adherence 

is accomplished (Vadas ot al_., 1979; Mackenzie £t_ a K  , 1981). In the 

case of S.mansoni dcgranulation does not occur (Caulfield, Korman, 

Butterworth, tlogan 5 David, 1980), a phenomenon that may be related to 

the particular biology of this parasite. Eosinophils, on the other hand, 

adhere (McLaren, Mackenzie 5 Rumalho-Pinto, 1977) and kill these 

parasites (Butterworth et al., 1975; Mackenzie et_ al_., 1980).
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Granulocytes have been shown to require large numbers of antibody

molecules to exert their cytotoxic activity iji vitro whether this is 

carried out by internalization of the target (see Chapter 4) or by 

exocytosis (see Chapter 6 ). An exception to this was the inhibition at 

high antiserum concentration when granulocytes were tested against 

T.cruzi antigen-coated target cells (see discussion, Chapter 5). This 

situation is probably different jin vivo, where the concomitant binding 

of complement can reduce the effective number of antibody molecules that 

granulocytes need (Ehlerberger 6 Nussenzweig, 1977).

Granulocytes have been shown to be very active cells which exert 

their phagocytic, microbicidal and cytotoxic activity very rapidly.

Maximum phagocytosis of opsonized E has been observed at S' of incubation 

(see Chapter 4) and significant isotope release from phagocytosed E can 

be detected within a few minutes of incubation (Sanderson & Thomas, 1978). 

Similarly, phagocytosis of Staphyloccocus aureus by eosinophils and 

neutrophils has been shown to be complete by 1 0 ' and maximum microbicidal 

activity is achieved at 60' (De Châtelet et̂  al_., 1979). Phagocytosis 

and lysis of protozoa by granulocytes have also been found to be rapid 

events (Sanderson, Bunn Moreno 5 Lopez, 1978; Thorne et_ al_., 1979). 

Killing of non-phagocytosable targets can also be rapidly accomplished, 

and 15' after incubation of granulocytes with antibody-coated tumour cells, 

significant levels of cytotoxicity have been obtained (Chapter 6 ).

At 4-5 hs this type of reaction appears to be reaching a plateau (see 

Chapters 5 and 6).
In this thesis, lysis of target cells has been detected by means of 

a ^*Cr release assay. This assay has been widely used with mammalian 

target colls and is generally accepted to be an accurate indication of 

cell death. Experiments using cytotoxic T cells as effector cells 

(Sanderson, 1976) showed that 51Cr is released from mammalian cells at the
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same rate as cell macromolecules, indicating that cytoplasmic rupture 

and Cr release are causally related phenomena. Nevertheless, in order 

to provide evidence that the release of 51Cr from tumour cells caused 

by granulocytes was a result of cell death, experiments were carried out 

with BW cells, in which RNA was labelled by preincubation with uridine 

and the release of RNA and ^*Cr compared. It was found that the release 

of ^*Cr was parallel to the release of cell RNA (data not shown), 

indicating that ^Cr release was indeed a result of target cell death.

While cytotoxicity by granulocytes has been generally found to be 

antibody or complement-mediated, there are some reports of neutrophils 

causing direct lysis of cell line cells (Williams, Lyons 6 Brande, 1977) 

and phagocytosis and lysis of protozoa have been found to take place 

(Lopez et̂  ¿1., 1978; Thorne et a K , 1979) in the absence of antibody.

The reason for this is not clear but in the case of protozoa it may be 

that neutrophils but not eosinophils have receptors that mediate internal

ization and lysis of these parasites. A remote possibility is that these 

protozoa can actively enter neutrophils but not eosinophils.

The fact that granulocytes show cytotoxic activity against a large 

variety of opsonized particles, indicate a wide ranging potential in vivo. 

Thus, not only microorganisms but also metazoan parasites, tumour cells 

and host cells can become granulocyte targets when they are coated with 

antibody and complement. Interestingly, though, if the in vitro situation 

in which only cells making specific contact with granulocytes are lysed 

(see Chapter 6 ) also occurs in vivo, then the liberated enzymes may be 

Important in participating in a localized inflammatory process, without 

being directly detrimental to the surrounding host cells.

However, if the host cells themselves become coated with antibody 

and complement, a situation observed in some autoimmune phenomena, this
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can lead to the destruction of host tissue cells by granulocytes. This 

may be the case in glomerulonephritis and polyarteritis nodosa.

In human glomerulonephritis, for example, antibody and complement have 

been found deposited in the glomerular basement membrane and in acute 

exacerbations a neutrophil infiltrate can be found moving through 

endothelial cells to make contact with the basement membrane (reviewed 

by Cochrane, 1956). Furthermore, in experimental animals, only one 

neutrophil attack over a 1 2  hs period has been shown to induce gross 

damage to the glomerulos (Cochrane, 1954).

A similar situation can occur in American trypanosomiasis where 
the adsorption of parasite antigen to host cells and subsequent binding 

of antibody, may render these cells susceptible to granulocyte cytotoxic 

activity as observed in vitro (see Chapter 5). This phenomenon may 

provide an explanation for some of the tissue destruction observed in the 

pathogenesis of the disease.

The high cytotoxic activity of granulocytes towards tumour cells of 

lymphoid origin in vitro (see Chapter 6 ) suggests that granulocytes could 

play an effector role in tumour rejection. Recently, eosinophilia has 

been found directly associated with lymphoid malignancies (Catovsky et a 1., 

1980). In some patients with tumours eosinophilia has appeared before 

or at the time of diagnosis of the tumour with peripheral eosinophil 

counts decreasing during remission (Catovsky, et al .1980) or after 

removal of the tumour (Weiss, 1926) but rising again if a relapse occurs 

(Catovsky et a K  , 1980) .
Eosinophils have also been found infiltrating lymphoid tumours and 

tumours of other origins (Lukes et al., 1966; Goctzl et al_., 1978, and 

Catovsky et al_., 1980). The reason why eosinophils can accumulate at the 

site of the tumour is not known. It has been suggested that eosinophils
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may be induced by virtue of the T cell-like properties of some tumour 

cells (Catovsky et_ al_., 1980) in an analogous situation to a human 

leukaemic T cell line with potent colony stimulating activity (Golde,

Quan 5 Cline, 1978). Eosinophils could also be responding to a stimulus 

produced by T cells responding to tumour specific antigens (Spitzer 5 

Garson, 1973). In one case a product similar to the eosinophi chemotactic 

factor of anaphylaxis has been shown to be produced by an anaplastic 

squamous cell carcinoma which is chemotactic for eosinophils and neutrophils 

but not for mononuclear cells (Goetzl et a[., 1978). The significance 

of these observations remains to be seen in terms of diagnosis, prognosis 

or immunological state, but at least it has been shown iri vitro that 

eosinophils constitute yet another potential mechanism active against 

tumour cells.

Although there is an ever increasing amount of information regarding 

eosinophil and neutrophil function _in vitro, a definite role for these 

cells in the organism awaits the results of in vivo studies. Eosinophils 

and neutrophils are not easily accessible. Attempts to selectively deplete 

them with antiserum have been made; however, the specificity of these 

is doubtful.
The production of monoclonal antibodies to eosinophils and neutrophils 

has been shown (Chapter 7) to offer prospects of success in obtaining a 

reagent which will specifically ablate one cell type, and hence to 

establish its role in vivo. One of the monoclonal antibodies to mouse 

eosinophils developed has been shown to selectively ablate eosinophils iji 

vivo. Moreover, monoclonal antibodies could be valuable in identifying 

cellular antigens expressed as a result of cell maturation or activation 

and to study qualitative and quantitative changes in granulocyte membrane 

receptors that may accompany these processes.
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