

LSHTM Research Online

Sullivan, KR; (1994) Mortality patterns among civilian workers in Royal Navy Dockyards. PhD thesis, London School of Hygiene & Tropical Medicine. DOI: https://doi.org/10.17037/PUBS.04656717

Downloaded from: https://researchonline.lshtm.ac.uk/id/eprint/4656717/

DOI: https://doi.org/10.17037/PUBS.04656717

Usage Guidelines:

Please refer to usage guidelines at https://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license. To note, 3rd party material is not necessarily covered under this license: http://creativecommons.org/licenses/by-nc-nd/3.0/

MORTALITY PATTERNS AMONG CIVILIAN WORKERS IN ROYAL NAVAL DOCKYARDS

by

Keith Richard Sullivan

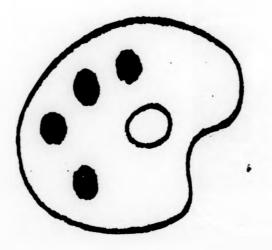
Thesis submitted for the degree of Doctor of Philosophy

University of London London School of Hygiene and Tropical Medicine

October 1994

ABSTRACT

This is a study of asbestos related disease in civilian workers at 3 Royal Naval Dockyards, namely: Devonport, Chatham and Portsmouth. Past work in these dockyards, along with Rosyth in Scotland (undertaken by the Institute of Naval Medicine and the Medical Research Council), has shown that just under 5% of this workforce might be expected to have radiographic abnormalities due to asbestos exposure. In the early 1970s workers in all 4 of these dockyards were invited to participate in health surveys, in which chest x-rays were performed and a health/employment history questionnaire given.


This work is an exact 17 year follow-up of these health surveys, analysing cause specific mortality its time trends and their correlates. The working population of the 3 dockyards, including female industrial workers and 'outstation' male workers was 32,931. However, excluding female workers and absolute non-responders reduced this to 28,265 male workers. The trace rate of this population, over the 17 years, was 97.3% (Rosyth with a rate of less than 70% was excluded from this analysis), 18% of the population traced were found to be dead. The mortality patterns of this cohort were inspected on a yearly basis by the use of a regionally adjusted SMR analysis. Expected rates were calculated, using the OPCS historic mortality data files, to provide a reference set of background mortality levels.

The striking result from this study is one of no excess risk due to lung cancer at the three dockyards, producing SMRs of: 99 (95%CI: 87-122) at Devonport, 85 (95%CI: 70-101) at Chatham, and 94 (95%CI: 81-106) at Portsmouth $[X^2 = 1.8, P > 0.1]$. However, an excessive risk was seen for pleural mesothelioma that produced SMRs of: 1983 (95%CI: 1505-2461) at Devonport, 1638 (95%CI: 1049-2437) at Chatham, and 1042 (95%CI: 693-1506) at Portsmouth $[X^2 = 8.4, P < 0.025]$. Excesses were also seen for peritoneal mesothelioma and asbestosis. No obvious relationships were seen when analysing lung cancer mortality by employment and asbestos exposure variables. A dose-response of lung cancer mortality to smoking habit was the only clear relationship found. Log-linear modelling supported the SMR findings of no overall excess or deficiency of lung cancer mortality compared to an excess of mesothelioma deaths. These results and their significance are discussed.

"If you poison your boss a little bit each day it's called murder; if your boss poisons you a little each day it's called a Threshold Limit Value."

J P Keogh

NUMEROUS ORIGINALS IN COLOUR

ABSTRACT

This is a study of asbestos related disease in civilian workers at 3 Royal Naval Dockyards, namely: Devonport, Chatham and Portsmouth. Past work in these dockyards, along with Rosyth in Scotland (undertaken by the Institute of Naval Medicine and the Medical Research Council), has shown that just under 5% of this workforce might be expected to have radiographic abnormalities due to asbestos exposure. In the early 1970s workers in all 4 of these dockyards were invited to participate in health surveys, in which chest x-rays were performed and a health/employment history questionnaire given.

This work is an exact 17 year follow-up of these health surveys, analysing cause specific mortality its time trends and their correlates. The working population of the 3 dockyards, including female industrial workers and 'outstation' male workers was 32,931. However, excluding female workers and absolute non-responders reduced this to 28,265 male workers. The trace rate of this population, over the 17 years, was 97.3% (Rosyth with a rate of less than 70% was excluded from this analysis), 18% of the population traced were found to be dead. The mortality patterns of this cohort were inspected on a yearly basis by the use of a regionally adjusted SMR analysis. Expected rates were calculated, using the OPCS historic mortality data files, to provide a reference set of background mortality levels.

The striking result from this study is one of no excess risk due to lung cancer at the three dockyards, producing SMRs of: 99 (95%CI: 87-122) at Devonport, 85 (95%CI: 70-101) at Chatham, and 94 (95%CI: 81-106) at Portsmouth $[X^2 = 1.8, P > 0.1]$. However, an excessive risk was seen for pleural mesothelioma that produced SMRs of: 1983 (95%CI: 1505-2461) at Devonport, 1638 (95%CI: 1049-2437) at Chatham, and 1042 (95%CI: 693-1506) at Portsmouth $[X^2 = 8.4, P < 0.025]$. Excesses were also seen for peritoneal mesothelioma and asbestosis. No obvious relationships were seen when analysing lung cancer mortality by employment and asbestos exposure variables. A dose-response of lung cancer mortality to smoking habit was the only clear relationship found. Log-linear modelling supported the SMR findings of no overall excess or deficiency of lung cancer mortality compared to an excess of mesothelioma deaths. These results and their significance are discussed.

Table of Contents

Abstract i
List of Tables vi
List of Figures
Acknowledgements xv
Frontispiece: General view of a Royal Naval Dockyard xvi
CHAPTER 1: INTRODUCTION 1
1.1 General Introduction 1
1.2 Asbestos materials in shipbuilding
1.3 Asbestos processes and trades in Royal Naval Dockyards 5
1.4 Project Introduction 7
1.5 Project Aims 9
CHAPTER 2: LITERATURE REVIEW OF ASBESTOS RELATED 10 DISEASE IN SHIPBUILDING AND REPAIR
2.1 Introduction
2.2 Historical Overview 15
2.3 Asbestos related disease in shipbuilding and repair 32
2.4 Royal Naval Dockyard asbestosis studies
2.5 Current concerns and controversies in asbestos related disease 56
2.5.1 Background to the controversies
2.5.2 Different dose-response gradients 59
2.5.3 Smoking as a co-factor
2.5.4 Fibre dimensions
2.5.5 Low level environmental exposure
2.5.6 The principal controversies

2.5.7 Summary 91
CHAPTER 3: MATERIALS AND METHODS
3.1 Materials
3.1.1 Introduction
3.1.2 Basic data 95
3.1.3 Questionnaires 95
3.1.4 Occupational history 99
3.1.5 Asbestos exposure rating 100
3.1.6 Chest radiographs 103
3.1.7 Study/data restrictions 108
3.2 Methods 114
3.2.1 Introduction
3.2.2 Standardised Mortality Ratios (SMRs) 115
3.2.3 Poisson regression
3.2.4 Logistic regression
3.2.5 Bias, confounding and the Healthy Worker Effect 128
3.2.6 Effect modification (statistical interaction)
3.2.7 Disease groupings and regional adjustment factors 137
CHAPTER 4: MORTALITY PATTERNS IN ROYAL NAVAL 141 DOCKYARDS
4.1 Introduction
4.2 Cause specific mortality for 50 disease groups
4.3 Non-responder mortality 150
4.4 Cause specific mortality according to questionnaire and x-ray type 157
4.5 Cause specific mortality according to employment-time variables . 159
4.6 Cause specific mortality according to health-status variables 168

4.7 Cause specific mortality according to 'asbestos' variables 178
4.8 Log-linear modelling 189
4.9 Summary 192
CHAPTER 5: MORTALITY REVISITED 196
5.1 Introduction
5.2 Case-control analysis 196
5.3 Mesothelioma modelling 199
CHAPTER 6: DISCUSSION AND CONCLUSION
6.1 Discussion 210
6.2 Conclusion and Recommendations
6.2.1 Conclusion
6.2.2 Recommendations 224
BIBLIOGRAPHY
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Index to Appendices

4.7 Cause specific mortality according to 'asbestos' variables 178
4.8 Log-linear modelling 189
4.9 Summary 192
CHAPTER 5: MORTALITY REVISITED 196
5.1 Introduction
5.2 Case-control analysis
5.3 Mesothelioma modelling 199
CHAPTER 6: DISCUSSION AND CONCLUSION 210
6.1 Discussion 210
6.2 Conclusion and Recommendations 219
6.2.1 Conclusion 219
6.2.2 Recommendations
BIBLIOGRAPHY 228
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Index to Appendices

3.5	Smoking status
3.6	Occupational code numbers 99
3.7	Occupational group by dockyard 100
3.8	Asbestos exposure codes 101
3.9	Exposure rating by dockyard 102
3.10	Period of asbestos exposure by dockyard 103
3.11	Classification for chest radiographs 104
3.12	X-ray abnormalities by dockyard 104
3.13	Comparison of reading methods
3.14	Prevalence rates of x-ray abnormalities by dockyard 108
3.15	Number of male workers in the dockyards 110
3.16	Number of deaths/emigrations in the 3 British Dockyards 111
3.17	Overall cohort numbers
3.18	Specific causes of death 115
3.19	SMRs by duration of follow-up in asbestos workers 129
3.20	SMRs by time since entering the industry 130

÷. I	groups, with and without regional adjustment.
4.2	Chatham dockyard. Cause specific mortality for 50 disease 144 groups, with and without regional adjustment.
4.3	Portsmouth dockyard. Cause specific mortality for 50 disease 145 groups, with and without regional adjustment.
4.4	Cause specific mortality by follow-up period and dockyard 152 for initial study non-responders
4.5	Responder and non-responder mortality for the disease groups: 156 all-causes, all-neoplasms and lung cancer
4.6	All cause mortality by length of service, time since 165 first exposure, and dockyard

4.7 Cause specific mortality according to 'asbestos' variables 178	3
4.8 Log-linear modelling 189	•
4.9 Summary	2
CHAPTER 5: MORTALITY REVISITED	5
5.1 Introduction	5
5.2 Case-control analysis 190	5
5.3 Mesothelioma modelling 19	9
CHAPTER 6: DISCUSSION AND CONCLUSION 210	0
6.1 Discussion	0
6.2 Conclusion and Recommendations 21	9
6.2.1 Conclusion	9
6.2.2 Recommendations 22	4
BIBLIOGRAPHY 22	8
Chapter 1	8
Chapter 2	9
Chapter 3	7
Chapter 4	60
Chapter 5	51
Chapter 6	52
Index to Appendices	57

List of Tables

1.1	Asbestos materials used in Naval Dockyards	5
	CHAPTER 2	
2.1	Fibre counts from an asbestos textile mill	24
2.2	Ranges of dust concentrations (data grouped across numerous yards)	39
2.3	Ranges of dust concentrations (data from Devonport dockyard)	44
2.4	Dust concentrations during application and removal of asbestos lagging (f/cc).	47
2.5	Prevalence of radiographic asbestos abnormalities (%) in 10% random sample.	51
2.6	Prevalence of radiographic asbestos abnormalities (%)	52
2.7	Excess mortality in cohorts exposed to asbestos	58
2.8	Cohort studies with individual estimates of accumulated exposure for male workers	61
2.9	Risks of lung cancer caused by asbestos exposure and smoking (multiplicative relationship)	67
2.1	0 Risks of lung cancer caused by asbestos exposure and smoking (additive relationship)	68
2.1	1 Lung cancer and smoking in six asbestos cohorts	69
2.1	2 Potential asbestos exposure ranges	77
2.1	3 Lung cancer in men employed less than 2 years	85
	CHAPTER 3	

3.1	Response rates	94
3.2	Questionnaire responses	96
3.3	Type of x-ray and questionnaire (male workers)	97
3.4	Medical history questions	98

3.5	Smoking status
3.6	Occupational code numbers 99
3.7	Occupational group by dockyard 100
3.8	Asbestos exposure codes 101
3.9	Exposure rating by dockyard 102
3.10	Period of asbestos exposure by dockyard 103
3.11	Classification for chest radiographs 104
3.12	X-ray abnormalities by dockyard 104
3.13	Comparison of reading methods
3.14	Prevalence rates of x-ray abnormalities by dockyard 108
3.15	Number of male workers in the dockyards 110
3.16	Number of deaths/emigrations in the 3 British Dockyards 111
3.17	Overall cohort numbers
3.18	Specific causes of death 115
3.19	SMRs by duration of follow-up in asbestos workers 129
3.20	SMRs by time since entering the industry 130

4.1	Devonport dockyard. Cause specific mortality for 50 disease 143 groups, with and without regional adjustment.
4.2	Chatham dockyard. Cause specific mortality for 50 disease 144 groups, with and without regional adjustment.
4.3	Portsmouth dockyard. Cause specific mortality for 50 disease 145 groups, with and without regional adjustment.
4.4	Cause specific mortality by follow-up period and dockyard 152 for initial study non-responders
4.5	Responder and non-responder mortality for the disease groups: 156 all-causes, all-neoplasms and lung cancer
4.6	All cause mortality by length of service, time since

4.7	All cause mortality by year of start of employment, 166 time since first exposure, and dockyard
4.8	All cause mortality by age at start of employment, 167 time since first exposure, and dockyard
4.9	Cause specific mortality by smoking habit and dockyard 173
4.10	Cause specific mortality by smoking amount and dockyard 174
4.11	Cause specific mortality by period of continuous asbestos 181 exposure and dockyard
4.12	Lung cancer mortality by smoking habit and 'asbestos' variables 183
4.13	Pleural mesothelioma mortality by smoking habit and 186 'asbestos' variables
4.14	Devonport dockyard. Goodness-of-fit statistics obtained 190 in Poisson regression models
	CHAPTER 5
5.1	Goodness-of-fit statistics obtained in Mesothelioma
5.2	Goodness-of-fit statistics obtained in Lung Cancer
5.3	Distribution by time since first employment and age at 201 first employment of 120 mesothelioma deaths.
5.4	Devonport Dockyard. Distribution by time since first employment . 202 and age at first employment of 70 mesothelioma deaths.
5.5	Chatham Dockyard. Distribution by time since first employment 203 and age at first employment of 23 mesothelioma deaths.
5.6	Portsmouth Dockyard. Distribution by time since first employment . 204 and age at first employment of 27 mesothelioma deaths.
5.7	Estimates of the power parameter (k) and the constant 205 of proportionality (b) .
5.8	Estimates of an annual mesothelioma death rate
	CHAPTER 6
6.1	Asbestos cohort studies showing no increase in lung cancer risk 214
6.2	Estimates of relative mesothelioma inicidence

viii

APPENDIX 1

A1.1	Coding schedule of dockyard datasets A1-2
	APPENDIX 2
A2.1	Causes of death, and International Classification of A2-2 Disease (ICD) groupings
	Regional adjustment factors for the South West (SW) and South . A2-21 East (SE) Standard Regions, for the years 1979-83 and 1989
	APPENDIX 3
A3.1	Devonport Dockyard, non-responders. Cause specific mortality A3-2 for 50 disease groups, with and without regional adjustment
A3.2	Chatham Dockyard, non-responders. Cause specific mortality A3-3 for 50 disease groups, with and without regional adjustment
A3.3	Portsmouth Dockyard, non-responders. Cause specific mortality . A3-4 for 50 disease groups, with and without regional adjustment
A3.4	Devonport Dockyard. Cause specific mortality for A3-5 12 disease groups by calendar year period, for study responders and non-responders
A3.5	Chatham Dockyard. Cause specific mortality for A3-7 12 disease groups by calendar year period, for study responders and non-responders
A3.6	Portsmouth Dockyard. Cause specific mortality for
A3.7	Cause specific mortality by age at death for the 3 dockyards A3-11
A3.8	Non-responder cause specific mortality by age at death \ldots A3-13 for the 3 dockyard
A3.9	Cause specific mortality by dockyard for questionnaire type \dots A3-15 (Free or Controlled)
A3.10	Cause specific mortality by dockyard for x-ray type A3-16 (Small or Large)
A3.11	Cause specific mortality by age at start of employment A3-17 and dockyard
	Cause specific mortality by year of start of employment A3-19

A3.13	Cause specific mortality by length of service and dockyard A3-21
A3.14	Cause specific mortality by time since start of employment A3-23 and by dockyard
A3.15	Lung cancer mortality by length of service, time since A3-25 first exposure, and dockyard
A3.16	Pleural mesothelioma mortality by length of service, A3-26 time since first exposure, and dockyard
A3.17	Lung cancer mortality by year of start of employment, A3-27 time since first exposure, and dockyard
A3.18	Pleural mesothelioma mortality by year of start of employment, . A3-28 time since first exposure, and dockyard
A3.19	Lung cancer mortality by age at start of employment, A3-29 time since first exposure, and dockyard
A3.20	Pleural mesothelioma mortality by age at start of employment, . A3-30 time since first exposure, and dockyard
A3.21	Cause specific mortality by medical symptom - cough A3-31
A3.22	Cause specific mortality by medical symptom - phlegm A3-32
A3.23	Cause specific mortality by medical symptom - breathlessness A3-33
A3.24	Cause specific mortality by medical symptom - chest-illness A3-34
A3.25	Cause specific mortality by x-ray group and dockyard A3-35
A3.26	Cause specific mortality by duration of smoking habit A3-37 and dockyard
A3.27	Cause specific mortality by occupational group and dockyard A3-39
A3.28	Cause specific mortality by exposure rating and dockyard A3-41
A3.29	Cause specific mortality by asbestos exposure period A3-43 and dockyard
A3.30	All cause mortality by smoking habit and 'asbestos' variables A3-45
	APPENDIX 4
A4.1	All cause mortality by x-ray group and by time since A4-2 first exposure
A4 2	Lung cancer mortality by x-ray group and by time since A4-3

A4.2 Lung cancer mortality by x-ray group and by time since A4-3 first exposure

A4.3	Pleural mesothelioma mortality by x-ray group and by A4-4 time since first exposure
A4.4	All cause mortality by medical history and by time since \ldots A4-5 first exposure
A4.5	Lung cancer mortality by medical history and by time since \ldots A4-6 first exposure
A4.6	Pleural mesothelioma mortality by medical history A4-7 and by time since first exposure
A4.7	All cause mortality by smoking habit and by time since A4-8 first exposure
A4.8	Lung cancer mortality by smoking habit and by time since A4-9 first exposure
A4.9	Pleural mesothelioma mortality by smoking habit A4-10 and by time since first exposure
A4.10	All cause mortality by smoking amount and by time since A4-11 first exposure
A4.11	Lung cancer mortality by smoking amount and by time since \ldots A4-12 first exposure
A4.12	Pleural mesothelioma mortality by smoking amount A4-13 and by time since first exposure
A4.13	All cause mortality by duration of smoking habit A4-14 and by time since first exposure
A4.14	Lung cancer mortality by duration of smoking habit A4-15 and by time since first exposure
A4.15	Pleural mesothelioma mortality by duration of smoking habit $\$. A4-16 and by time since first exposure
A4.16	All cause mortality by occupational group and by time A4-17 since first exposure
A4.17	Lung cancer mortality by occupational group and by time A4-18 since first exposure
A4.18	Pleural mesothelioma mortality by occupational group A4-19 and by time since first exposure
A4.19	All cause mortality by exposure rating and by time A4-20 since first exposure
A4.20	Lung cancer mortality by exposure rating and by time A4-21 since first exposure

A4.21	Pleural mesothelioma mortality by exposure rating and by time since first exposure	A4-22
A4.22	All cause mortality by asbestos exposure period	A4-23
A4.23	Lung cancer mortality by asbestos exposure period and by time since first exposure	A4-24
A4.24	Pleural mesothelioma mortality by asbestos exposure period \ldots and by time since first exposure	A4-25
A4.25	All cause mortality by period of continuous as bestos exposure $\ .$, and by time since first exposure	A4-26
A4.26	Lung cancer mortality by period of continuous asbestos exposure and by time since first exposure	A4-27
A4.27	Pleural mesothelioma mortality by period of continuous asbestos exposure and by time since first exposure	A4-28

List of Figures

CHAPTER 1

1.1	Royal Naval Dockyards	2
	CHAPTER 2	
2.1	Chrysotile - white asbestos	12
2.2	Amosite - varies from white to yellowish brown in colour	13
2.3	Crocidolite - blue asbestos	14
2.4	Stripping an asbestos carding machine, before the use of exhaust ventilation (circa 1940)	19
2.5	Principal asbestos related diseases and conditions,	30
2.6	Rise of production of asbestos 1890-1980, and the dates of acceptance of the causal relationship between asbestos and various diseases	31
2.7	Removal of sprayed crocidolite asbestos from a deckhead	45
2.8	Asbestos debris in a boiler room	46
2.9	Asbestos debris on storage boxes	48
2.10	Relative risk of lung cancer for different industrial	60
2.11	Values of K_t , the fractional increase in lung cancer per $\ldots \ldots \ldots f$ -y/ml of exposure	63
2.12	Summary of average airborne asbestos fibre concentrations in public and commercial buildings	74
2.13	Average TEM concentrations of asbestos fibres (>5 μ m) before, during and after an asbestos removal programme at a six-storey school building	76
2.14	Lung Cancer SMR by exposure to asbestos fibres	83
	CHAPTER 3	

3.1 The trends in relative risk that can be observed with two risk factors 136

CHAPTER 4

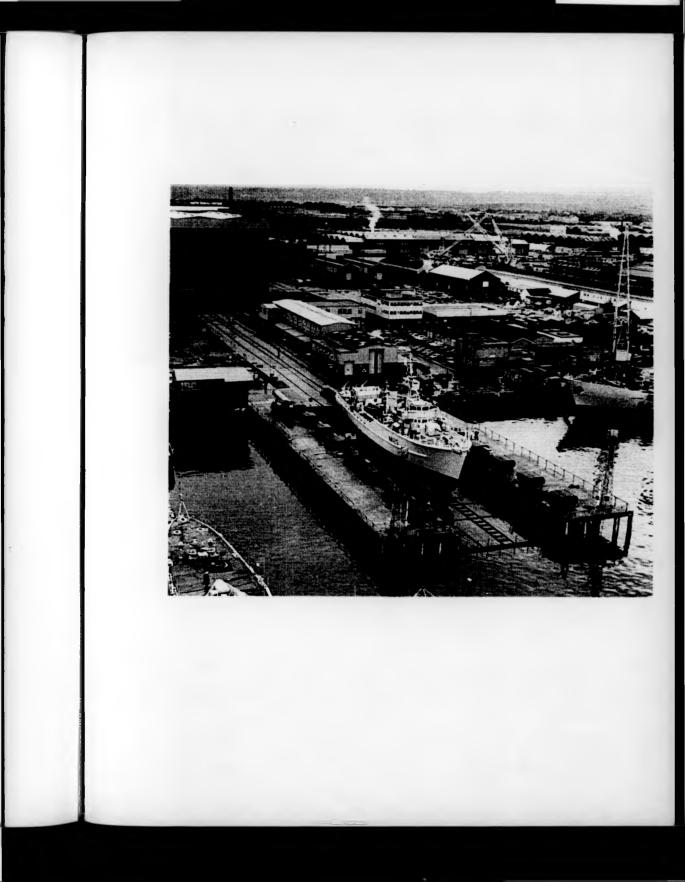
4.1 Standardised mortality ratios by calendar year period 153 for Devonport dockyard

4.2	Standardised mortality ratios by age at death 155 for Devonport dockyard
4.3	Standardised mortality ratios by employment-time variables 158
4.4	Standardised mortality ratios by age at start of employment 160 and year of start of employment for Devonport dockyard
4.5	Standardised mortality ratios by length of service and 162 time since start of employment for Devonport dockyard
4.6	Standardised mortality ratios by x-ray group and duration of 169 smoking habit for Devonport dockyard
4.7	Standardised mortality ratios by occupational group, exposure 177 rating, and asbestos exposure period for Devonport dockyard
	CHAPTER 5

CHAPTER 5

5.1	Cumulative risk of dying of mesothelioma for workers
	first employed in the dockyards at age 15-24 (),
	25-34 (), or 35 and over () against age (upper graph)
	and years since first employment (lower graph).

6.1	An active dockyard (circa 1989)	223
6.2	Dockyard workers	225


ACKNOWLEDGEMENTS

I am greatly indebted to Charles Rossiter for suggesting this project, and for his supervision. Thanks are due also to Patrick Vaughan for his help and guidance over the latter years of this work.

Throughout the development of this work, the advice and support of my friends and colleagues from the Department of Occupational Health, at the London School of Hygiene and Tropical Medicine, and from the Centre of International Child Health, at the Institute of Child Health, has acted as a continual encouragement. Particularly, I would like to thank Ted Cator, Mike Bailey, Richard Brown and Gwenda Hoare for this support.

From the School of Hygiene, I also wish to thank Bob Murray and Tim Haley for their invaluable comments on earlier drafts, I am very grateful for this contribution. My special thanks go to Molly Newhouse who introduced me to the amazing topic of occupational epidemiology.

This work could never have been completed, without the support and understanding of my family. I wholeheartedly thank my wife Navina who has cared for me whilst understanding my neglect of her. Last but not least I thank my parents, Lily and Michael Sullivan, who have given me much love and support over the years. This work is dedicated to my wife and family.

Chapter 1: INTRODUCTION

1.1 General Introduction.

This work is concerned with asbestos exposure and asbestos-related disease in shipbuilding and repair. In particular it is concerned with the risk of disease and death among civilian employees of the four Royal Naval Dockyards: Devonport, Chatham, Portsmouth and Rosyth. At any time in the post World War II period there have been some 50,000 civilians employed in these four yards, all potentially with some risk of asbestos exposure from the insulating materials used in shipbuilding and repair. In this study the mortality patterns of these civilian workers will be considered with regard to intensity and duration of such exposure.

Historically this country has always had a strong seagoing and Royal Naval tradition, from the early days of the Spanish Maine and the Spanish Armada, to Lord Nelson and Trafalgar, to more recently the World Wars and, lastly, to the Falklands and Gulf Wars. Throughout these times and conflicts there have been four main Royal Dockyards serving the fleet in this country at Devonport, Chatham, Portsmouth and Rosyth (figure 1.1). These dockyards in past times built and repaired Royal Ships of the Line, battleships of the Royal Navy. However, as iron replaced wood the nature of these yards changed. Now the main work of Royal Dockyards is the refitting and repairing of navy ships, and tourism. This century has seen many changes, with not the least of these being the modernization of the Royal Navy and with it the closure and partial closure of Naval Dockyards. Linked with this closure are the appearances of Naval Museums, Historic Dockyards, as at Chatham and Portsmouth. These Historic Dockyards bring money into the exchequer and tourists into the dockyards, giving an insight into both naval history and past dockyard working conditions.

Royal Naval Dockyards.

FIGURE 1.1: Royal Naval Dockyards.

Consequently in this century, the work of the Royal Dockyards has been mostly in refit and repair rather than shipbuilding, this last activity now being commonly undertaken in civilian contract yards. When civilian/commercial yards undertake refits, the extent of these can differ from the naval version. Naval refits are more frequent and extensive than merchant refits, routinely involving the complete removal and replacement of all insulating material in machinery spaces and both the environmental and structural insulation. As the removal of this material produces more dust than its application these should be considered very important differences.

When combined with the many engineering, construction, and workplace differences between naval and merchant ships, naval shipping containing much more machinery in smaller compartments and having no portholes, it is likely that the overall exposure to asbestos dust was higher in Naval Dockyards than in their commercial counterparts. It should be noted that asbestos has no respect for frontiers or nationalities and that in this respect the shipbuilding risk of asbestos exposure has been worldwide, from the UK to the USA to Japan.

1.2 Asbestos Materials in Shipbuilding.

The asbestos materials used in Royal Navy ships are largely the same as those used in Merchant ships only the amount applied differs. The various types of asbestos fibre used, have included chrysotile (white serpentine asbestos) and the iron silicates, crocidolite (blue asbestos) and amosite. Changes in the amount and type of material used may explain the emergence of asbestos-related diseases in dockyards, in particular asbestosis, lung cancer and mesothelioma.

Until the early 1950s most of the machinery insulation aboard naval ships was in the form of asbestos mattresses, that is, magnesia sections containing an amount of amosite asbestos (commonly 15-30% amosite), and asbestos cloth made entirely of chrysotile asbestos. These materials provided adequate insulation to the operating steam temperatures of below 750°F that existed until the 1950s. A certain amount of crocidolite asbestos would have been used in asbestos board and in magnesia sections as an available replacement for amosite. Crocidolite was also used in a sprayed asbestos process from the end of the war until the mid 1960s when this process was stopped.

Over the 1950s steam temperatures rose to 850°F and more efficient insulation was required. Magnesia sections were replaced by amosite sections (containing 90-95% amosite). A decreasing stock of amosite lagging was still used through the early 1960s with calcium silicate sections (containing 10-15% amosite) introduced as its replacement in this period. Operating temperatures aboard ship had by this time reached 950°F.

From 1968, only materials containing chrysotile asbestos were used in naval dockyards. Presently shipping worldwide contains little asbestos insulation, manmade mineral fibres are now used as its substitute. Obviously, the use of large amounts of amosite section and crocidolite in spraying processes up to the mid 1960s implies a corresponding increase in potential asbestos exposure from insulation removal, over the preceding decades.

There have been many uses of asbestos containing materials in ships, apart from heat insulation. Table 1.1 lists some of these other materials. This table has been arranged into those uses producing dust in their handling and those not. The non-dusty uses are those that would not usually produce dust unless the materials were ground, polished or sawn. We see from table 1.1, that although most of the asbestos aboard ship has been used for heat insulation it could also be found in sound and electrical insulating materials.

TABLE 1.1*:

Asbestos materials used in Naval Dockyards.

Ousty	Non dusty
Blankets Cement Cloth (untreated) Cord Fibre Millboard Packing fibre Rope Soft sound insulation	Cloth (treated) Condenser packing Sheets (compressed fibre) Gaskets Oilproof jointing Compressed fibre jointing Graphite packing Rings Compressed sound insulation Jointing strips Tape Tubing Twine Washers webbing Coated electric wire

1.3 Asbestos Processes and Trades in Royal Naval Dockyards.

There have been three main asbestos processes employed in Royal Naval Dockyards: Asbestos spraying, lagging and sound insulation.

Asbestos spraying was used for environmental insulation, the sealing of outer wall and bulkhead surfaces; the spray consisted of a mixture of asbestos fibre and cement applied to a thickness of 2-4 ins. From the mid 1960s, the existing crocidolite material has been extensively removed during refits and replaced by glass fibre and other forms of man-made mineral fibre. The dust concentrations during application and removal have been established as being very high (for removal, many thousands of times higher than the current UK standards).^{[1,2]**} Workers employed as asbestos sprayers and painters were responsible for the application and removal of this 'sprayed asbestos'.

 Adapted from: Harries PG (1967) "Asbestos Hazards in Naval Dockyards" Ann Occup Hyg 11:135-145.

•• The referencing throughout this work is unique to each chapter, each forming a separate section of the bibliography.

In the past, laggers were employed to insulate all hot surfaces in machinery spaces aboard ship with preformed 'asbestos' sections, covering them with asbestos cloth. The application and removal of these heat insulating materials would involve both cutting and fixing of the sections and cloth by hand and would produce high localized dust concentrations.

As with lagging, the application and removal of sound insulation involved the cutting and fitting by hand of asbestos boards of various types and thicknesses with again high localized dust concentrations. Sound insulation work would have been undertaken by joiners not laggers.

Other dockyard 'asbestos trades' have included shipwrights, sailmakers, boilermakers, masons, mattress makers, labourers and storemen. Of these, shipwrights and boilermakers cut and fitted asbestos boards in either bulkheads or boiler casings. Masons applied asbestos cement over sprayed asbestos. Sailmakers carried out water pipe and ventilation duct insulation with asbestos cloth. Mattress makers produced mattresses filled with amosite fibre and made from asbestos cloth. Labourers were employed to clear up asbestos debris and storemen issued asbestos materials to all the 'asbestos workers'.

In all of the above trades and processes there would have been a potential asbestos exposure hazard, but the main hazard would occur during what has been termed the vigorous tearing down of old material.^[1] The very nature of Royal Navy ships, with long thin watertight corridors, confined machinery spaces and a maze of pipes and fitments would only augment this problem.

1.4 Project Introduction.

The origin of the asbestos disease problem associated with shipbuilding and repair can, therefore, be traced, in part, to the enormous quantities of asbestos materials used by the industry from the start of World War II. During this war period the concern was to build and repair enough ships to win the war; health problems from materials used in construction took second place.

However, along with increased ship production came the requirement to reduce accidents and health hazards that might slow manufacturing. The known hazards then included silica dust, welding fumes, solvents, lead, mercury and asbestos, with asbestos being considered the least dangerous. The risks associated with lead, silica dust and welding received far more attention in the 1940s, they were better understood by the medical and industrial health community and were believed to be more dangerous and widespread.^[3,4,5,6] The stage was set, therefore, for future asbestos-related health problems to surface as the other diseases were controlled.

The work of Sheers and Templeton at Devonport Dockyard reported in 1968, highlighted this problem and acted as the catalyst for many Royal Naval research projects. These projects were all undertaken with the aim of improving the health of dockyard workers and settling the asbestos problem (they are reviewed extensively in chapter 2).

In the Devonport study 1,414 men, representing a 10% random sample of the dockyard workforce was drawn.^[7] From this sample it was seen that laggers and sprayers with up to 20 years of continuous asbestos exposure had the highest prevalence of asbestos-related disease, asbestosis. Asbestosis was also seen in a variety of intermittently exposed trades. It was also noted that 10 cases of mesothelioma had occurred among the workforce in the 3 years prior to this study. By 1980 Sheers was reporting on 96 mesothelioma cases in Devonport Dockyard; the incidence of mesothelioma correlating with time from first exposure and dockyard occupation.^[8]

Also in 1980, Rossiter and Coles reported on the striking finding of an elevated mortality risk of mesothelioma and pulmonary fibrosis among Devonport dockyard workers, but with no obvious accompanying increased risk for lung cancer.^[9] In this study 6,292 male workers were identified from dockyard records and their mortality experience followed from January 1947 to the end of 1978. Of these workers 1,043 (16.6%) had died; 31 from mesothelioma, 9 from pulmonary fibrosis and 84 from lung cancer. The number of expected deaths, obtained using estimated South West England mortality rates, was: 998, 0.4, 0.03 and 100 respectively, with associated standardised mortality ratios (SMRs) of 104 for all causes, 7700 (P < 0.0001) for mesothelioma, 32000 (P < 0.0001) for pulmonary fibrosis and 84 for lung cancer. These results were striking since much higher lung cancer death rates, along with increased mesothelioma rates, had previously been observed in Belfast shipyards and among American insulation workers; occupational groups which were considered to have similar levels of asbestos dust exposure as dockyard workers.^[10,11] However, these results were not completely unexpected. A proportional mortality study for the period 1958-1967 comparing Devonport dockyard workers with other Plymouth males showed only a slight (but not statistically significant) excess of lung cancer cases.^[12] Nevertheless, the question remains, why in this Royal Naval Dockyard was the risk of lung cancer, a known asbestos-related disease, not significantly different from that observed in the general population when elevated risks were observed for the other known asbestos-related diseases? Was this an artefact, a result produced simply by statistical chance, or does it imply that the asbestos exposures were somehow not high enough to allow lung cancer to develop, but could generate mesothelioma and asbestosis?

Rossiter and Coles commented in this report that the pattern of dockyard asbestos use was such, reaching its peak between 1950 and 1960, that the effect of mesothelioma on mortality may just be starting in the Naval Dockyards. They made no comment on the absence of an excess lung cancer risk. In general it can be said that through the 1960s and 1970s a rising incidence of asbestos-related disease was seen in Royal Naval Dockyards and a large number of deaths reported from mesothelioma of the pleura or peritoneum, with many thousands of Royal Naval dockyard workers appearing potentially at risk. Blot and Fraumeni in 1981 commented that 420,000

American shipyard workers might die of asbestos-related disease because of exposures in the 1940s.^[13] They suggested that mesothelioma now occurs exclusively in shipyard/dockyard workers and will probably continue to do so into the 1990s.

Over the period 1972-1973 all workers of the four Royal Naval Dockyards Devonport, Chatham, Portsmouth and Rosyth were invited to have a chest x-ray taken and complete a respiratory questionnaire. The results of these with employment history information will be used in this thesis to examine the relationship between dockyard occupation, exposure to asbestos, smoking habits and cause of death. A particular emphasis will be given to lung cancer and mesothelioma in an attempt to answer the questions produced in the work of Rossiter and Coles. Presented here is an exact 17 year follow-up of the civilian workforce employed in the Royal Naval dockyards during the period 1972-1973.

1.5 Project Aims.

The general aims of this work are twofold:

- To identify dockyard mortality patterns, across time, and relate these to dockyard occupation, personal medical history, dockyard asbestos exposure, the prevalence of x-ray abnormalities and smoking habits.
- 2. To assess the relationship between asbestosis, lung cancer and mesothelioma mortality and dockyard employment, and place this relationship into the content of the 'asbestos' literature.

The specific question addressed in this thesis, its null hypothesis, arises directly from the work presented in 1980 by Charles Rossiter and Ruth Coles.^[9] Simply stated it is: that there is no excess lung cancer risk in Royal Naval dockyard workers. Subsidiary questions concerning the level of this risk in relation to the mesothelioma risk (i.e. why was the lung cancer risk much lower than the mesothelioma risk) will also be considered.

Chapter 2: LITERATURE REVIEW OF ASBESTOS RELATED DISEASE IN SHIPBUILDING AND REPAIR.

2.1 Introduction.

Asbestos is the collective name given to a group of minerals that are fibrous silicates sharing the common property of high resistance to destruction by physical or chemical means. These minerals include chrysotile and the amphibole group of amosite, crocidolite, anthophyllite, tremolite and actinolite. Chrysotile is the softest type of asbestos and is used in most woven asbestos products (figure 2.1). Amphiboles are harsher, with more bulk, and are more readily used in asbestos-cement and insulation products (figures 2.2 and 2.3). There are three diseases that may commonly develop because of exposure to these minerals: asbestosis, mesothelioma and bronchial carcinoma.

The risk of mesothelioma appears to be greatest in those exposed to crocidolite, slightly less after exposure to amosite, and much less after exposure to chrysotile. Brief exposure to amosite and crocidolite seems to carry a high risk of lung cancer, while prolonged exposure to chrysotile and anthophyllite much less of a risk. Asbestosis may develop from exposure to any type of asbestos, however, amosite appears more fibrogenic than chrysotile and tremolite.^[1,2,3,4]

The study of asbestos-related disease has generated a vast amount of literature. It would not be practicable to provide here an exhaustive analysis of this literature; this review will concentrate on setting the scene for the asbestos-related health problems observed in naval dockyards. It will initially consider a historical overview of asbestos-related disease, then more specifically these problems in relation to shipbuilding and repair (with an emphasis on Royal Naval Dockyards studies), and will finally consider the very broad prevailing asbestos health related issues of present day concern. In most of the early reports no differentiation of asbestos fibre type was made. Where feasible, such differentiation is made in this work.


In 1965 Wagner gave a good description of the etiology of asbestosis.^[5] He described how due to its fibrous nature asbestos dust does not follow the same physical laws as other dusts, and that its characteristics allow long fibres to be inhaled and retained in lung tissue. The primary lodging site is in the alveoli arising directly from the respiratory bronchioles. The diameter and length of the fibre are factors resulting in aggregation on this site. He described how the fibrosis later spreads down into the alveolar ducts and atria, resulting in a linkage of the lesions to form a widespread fibrotic network in the lung. Wagner stated that asbestosis is not a sudden explosive diathesis following a dormant period, rather a slow insidious disease. This description can be equally applied to the other asbestos diseases, lung cancer and mesothelioma.

FIGURE 2.1: Chrysotile - white asbestos

FIGURE 2.2: Amosite - varies from white to yellowish brown in colour.

FIGURE 2.3: Crocidolite - blue asbestos.

2.2 Historical Overview.

The Lady Inspectors of Factories in their 1898 report to the Chief Inspector of Factories and Workshops expressed the first concern about the hazards of asbestos dust.^[6] To quote: "three occupations can easily be demonstrated as a danger to the health of the workers, ascertained through injury to the bronchial tubes and lungs: asbestos sifting and carding, silk opening and counting, and hemp spinning".

The first reported case of disease associated with the inhalation of asbestos dust was that of pulmonary fibrosis in an asbestos textile worker described by Montague Murray to the Departmental Committee on Compensation for Industrial Diseases in 1906.^[7] This worker had been employed for 10 years in the carding room of a textile factory and was the last survivor of a team of 10, all working in the carding room, each having died at around the age of thirty. This man first came to the attention of Murray in 1899 and died, aged 34, in 1900. No evidence was found at postmortem of pulmonary tuberculosis.

The second case, reported by Cooke in 1924, was of a woman aged 33 who died in 1924 having worked with asbestos for 18 years.^[8] Postmortem here revealed extensive fibrosis of the lungs, with pulmonary tuberculosis. Both these cases were important, since their publication directed attention to the possibility that inorganic dusts containing little or no free silica might be productive of extensive pulmonary fibrosis. Until then only the opposite view point had been considered, with silicosis occupying the attention of researchers. Cooke's case, though slightly weakened by the presence of a tuberculous infection, was of greater importance, however, as it described the discovery of 'curious' bodies resembling asbestos fibre in the lung tissue. In 1927 Cooke was to call the disease "pulmonary asbestos".^[9] In 1928 Seiler reported the case of an asbestos worker with pulmonary fibrosis for which no other obvious infectious or occupational cause, other than asbestos dust, was found.^[10] This report resulted in the Horne Office (Factory Department) undertaking investigations into the effects of asbestos dust on the lungs. This case had the four vital conditions necessary to establish a relationship between the inhalation of asbestos dust and the development of fibrosis, namely:

- 1. Work involving exposure to asbestos dust.
- 2. The existence, demonstrable clinically and radiologically, of definite pulmonary fibrosis.
- The absence of previous or present infections known to cause pulmonary fibrosis (for example, tuberculosis, influenza, or pneumonia).
- 4. The absence of previous or present work involving exposure to other dusts, which might cause pulmonary fibrosis.

By 1930 Merewether and Price, as a result of these Home Office investigations, had found a correlation between the incidence of the disease and the duration and intensity of dust exposure.^[11] From this study, 95 of the 363 asbestos textile workers examined clinically showed definite pulmonary fibrosis and a further 21 precursive signs. Of 133 workers examined radiologically, 52 showed signs of diffuse fibrosis and 22 early signs of fibrosis. The authors did not find any evidence of excess pulmonary tuberculosis among the asbestos workers (including those with asbestosis). A dose-response relationship in the development of asbestosis was suggested: fibrosis taking less than 10 years to develop with high exposure to asbestos, and between 15 to 25 years with low dust exposure.

Merewether and Price, in the same report, also reviewed the dust concentrations in textile factories, making numerous recommendations for dust suppression that formed the foundations of the Asbestos Industry Regulations of 1931.^[12] Before these regulations were enforced, asbestosis was also recognised as a compensable disease under the 1930 Workmen's Compensation Act (Silicosis and Asbestosis).

Again in 1930, Merewether gave a more detailed account of the clinical findings of the Home office investigations carried out over 1928-29.^[13] He described impairment of percussion note and reduced chest expansion as important physical signs of asbestosis, together with scattered fine rales (dry crackling sounds) at the bases and axillae. He also mentioned cyanosis, dyspnoea, finger clubbing, cough and sputum. The radiological changes were described as occurring in four stages:

Stage	I	+	increased linear striations;
	II		fairly definite fine dusty stippling;
	Ш	+	coarser mottling with increased linear striations;
	IV	-	gross lesions with pleural changes and displacements
			due to the pull of fibrosing lesions.

To sum up developments, by 1930 it may be said that:

The signs, symptoms, x-ray appearances, and pathological aspects of asbestosis were well recognised.

The disease had been found to be fatal in a number of reported cases.

The disease was capable of progressing after exposure to asbestos dust had ceased.

People still actively employed in asbestos mining, milling and manufacturing showed a high prevalence of asbestosis. Approximately half of those with 10 or more years in the industry were diagnosed as having asbestosis.

In reviewing the pathology and histopathology of asbestosis in 1933 Gloyne described the finding of tough, old, pleural adhesions and reported a 'ground glass' effect to the pleura as thickening increased, with the pleura becoming stiff, yellow and horn like.^[14] He noted that 'asbestos' bodies and fibres were found in the lungs of persons with asbestosis and that fibres were commonly found in the upper respiratory tract of asbestos workers. He also reported having seen a case of 'squamous carcinoma of the pleura' with asbestosis.

In a comprehensive three-part article covering the years 1933-34 Merewether summarised the state of asbestosis knowledge, and noted the difficulty of making a diagnosis and what he coined as the "insidiousness of the disease".^[15] He suggested that a minimum fibrosis-producing amount of asbestos had to be retained in the lung in order to produce disabling fibrosis, and that a certain development period was necessary before the fibrosis became disabling. He stressed that if dust concentrations could be kept below a certain level, the development of disabling asbestosis would not occur over an average working lifetime. The level he considered appropriate was the amount of dust produced by flyer spinning without dust exhaust. In effect Merewether recommended that flyer spinning of asbestos was acceptable uncontrolled.

Wood and Gloyne in 1934 analysed 100 cases of asbestosis, 12 of whom were autopsied; of these 2 also had lung cancer.^[16] Dyspnoea was excessive in the 100 cases and they suggested that asbestosis was a mono-symptomatic disease. It was noted that asbestosis was associated with tuberculosis to a much lower percentage level than was the case for silicosis.

In North America, the Industrial Health Service of the Metropolitan Life Insurance Company carried out similar investigations to the Home Office study of Merewether. This was reported in 1935 by Lanza et al.^[17] They examined 126 workers from asbestos mines and mills out of whom 67 had radiological signs of asbestosis, and another 37 doubtful signs. They could not correlate the development of asbestosis with dust exposure through lack of past dust data. The authors stated, without any supporting evidence, that asbestosis was clinically milder than silicosis.

Lynch and Smith in 1935 presented a case history of pulmonary asbestosis with associated bronchial carcinoma.^[18] The subject had worked in a cotton mill for 22 years and at an asbestos mill for 21 years. Their conclusion was that the carcinoma was due to chronic bronchial irritation bought on by occupational dust

FIGURE 2.4: Stripping an asbestos carding machine, before the use of exhaust ventiation (circa 1940).

exposure. Figure 2.4 shows the dust created in stripping and cleaning a carding machine.*

By 1938 Gloyne and Merewether reported that of the 95 cases with asbestosis, and 5 other cases of asbestosis with tuberculosis, found in the 1928 Home Office investigations 23 had died.^[19] Of these, 12 had died from asbestosis, 9 from asbestosis and tuberculosis and one from asbestosis and carcinoma of the pancreas. The last case, whose underlying case of death was not recorded, was stated to have a "considerable degree of asbestosis" on autopsy. They noted that asbestosis was comparable with the most serious silicosis risks with respect to length of exposure that will cause a fatal degree of fibrosis. They also reported that the association between asbestosis and tuberculosis was less than that between silicosis and tuberculosis.

In 1938 Dreessen et al published a study of American asbestos textile plants that recommended that dust concentrations should be kept below 5 million particles per cubic foot (mppcf)^{***}.^[20] This study was also reported on by Sayers and Dreessen in 1939.^[21] Their work was based on a group of 511 workers from which only 3 doubtful cases of asbestosis were found. It was unfortunate that of the 511 workers examined only 66 had worked with asbestos for more than 10 years; 333 had worked with asbestos for less than 5 years, and that, as the authors reported, 150 workers had been dismissed from the plants before the survey started as they were suspected cases of asbestosis. This large loss of men unfortunately reduced the value of this study.

Dreessen's study was, however, one of the first in which dust counts were undertaken at various stages of textile manufacture to estimate asbestos exposure to workers. Dust concentrations ranged from 5-75 mppcf without exhaust control

^{*} Photograph courtesy of the 'Donald Hunter slide collection' held at the London School of Hygiene and Tropical Medicine.

^{**} They recommended 5 mppcf, 8 hours per day, 40 hours per week for a working lifetime as a safe level of exposure.

and between 0.7-7 mppcf with control. The concentrations being highest for willowers, pickers, carders and cloth weavers, these along with spinners and twisters being more liable to develop severe asbestosis. Their value of 5 mppcf being used over the next thirty years as a tentative threshold limit.

In January 1943 the German Federal Government declared asbestosis in combination with lung cancer a compensable occupational disease.^[22] This was the first government to acknowledge that lung cancer occurs in clinically slight cases of asbestosis as well as in well-developed asbestosis.

In a thesis submitted to Glasgow University, Wyers in 1946 put forward the case that asbestosis was a clinical disease, not radiographical, and that x-ray change should be used only to confirm the clinical findings.^[23] He suggested that the 'ground glass' effect may have been due to poorer techniques and was in fact innumerable small opacities. He speculated that as the disease had changed from an acute to a chronic disease, it might emerge as a neoplastic disease as lower dust concentrations enabled people to live long enough to develop malignant tumours.

In 1947 Wegelius reported on the prevalence of asbestosis in 126 workers from the asbestos mines and factories of Finland.^[24] From this group 94 were described as Stage I asbestosis, 23 as Stages II and III and 9 as advanced Stage III, pleural and pericardial thickening being present in this last group. The radiological stages were given here as:

Stage	Ι	-	very fine network in the middle of the basal fields.
	н	-	denser picture with numerous small nodules.
	Ш	-	marked shadowing of middle and lower fields with
			confused heart shadow.

Smith in 1949 performed an analysis on data from current literature, on the etiologic relationship of pneumoconiosis with reference to silicosis, asbestosis and pulmonary cancer.^[25] He stated that evidence incriminating silicosis and asbestosis as an aetiologic agent in the development of lung cancer was

inadequate, but that such data should be reviewed frequently and cautioned against the use of insignificant data with respect to the referent community.

Published later in 1949, the Annual Report of the Chief Inspector of Factories for the year 1947, showed that of 235 cases of asbestosis reported 31 (13%) had lung cancer present either as a cause of death or as a concomitant.^[26] In addition to these one case, a male aged 77, was diagnosed at postmortem as having 'sarcoma' of the lung.

The association of carcinoma of the lung with asbestosis was highlighted in 1955. The Annual Report of the Chief Inspector of Factories, showed that 24% of 222 male and 12% of 143 female asbestos workers with asbestosis had accompanying lung cancer for the period 1922-55.^[27] Doll in the same year presented the postmortem findings of 105 workers from a single asbestos works.^[28] Of these, 75 had asbestosis, 15 having associated lung cancer, of the remaining 30 without asbestosis, 3 had lung tumours. The 15 with 'asbestosis cancer' had all worked for periods of 9-23 years before 1933.

In 1960, Leathart monitored the long term progression of asbestosis in 10 subjects.^[29] All had worked with chrysotile and amosite fibres. Sputum was routinely examined for asbestos and tubercle bacilli and the subjects were regularly x-rayed and examined clinically. Lung function tests were also performed. From this group, 'asbestos' bodies were found in 8 subjects; no tubercle bacilli was found. From the x-rays, the presence of hilar enlargement distinguished disease stage II from stage I, and the loss of cardiac outline indicated disease stage III. From the lung function tests, compliance was seen to be 20% of normal, vital and diffusing capacity 56% of normal and maximum voluntary ventilation was 45% of normal. Leathart concluded that the vital capacity of workers exposed to asbestos should be measured routinely as a decrease may warn of impending asbestosis. He also noted that lung function changes relate well to clinical abnormality, but not to radiological appearance.

The work of Wagner et al in South Africa in 1960 revealed the first major link between asbestos and mesothelioma.^[30] Although considered uncommon, mesothelioma was found in 33 histologically proven cases, 28 of which had mainly a non-occupational association with the Cape amphibole asbestos field. Also in South Africa, Hurwitz reported in 1961 on the radiological changes in asbestosis, among asbestos exposed workers. He stated that pleural changes far outnumbered the cases of lower zone parenchymal fibrosis more commonly reported.^[31]

To sum up, by the early 1960s it was known that:

Lung function tests along with radiographs were a good aid in the diagnosis of asbestosis.

As factory dust levels were lowered, the attack rate of severe asbestosis was lowered. Consequently, asbestos workers begun living long enough to develop asbestos-induced cancer.

Mesothelioma occurs with 'slight' asbestos exposure.

In a series of articles from 1963 to 1968 Leathart confirmed and strengthened his earlier findings, but also suggested that diffusing capacity not vital capacity should now be used to aid diagnosis of asbestosis.^[32, 33, 34] He further suggested that in asbestosis uneven alveolar perfusion existed, and that a restrictive ventilatory defect may have caused dyspnoea in cases with bronchitis. Leathart pointed out that reduced diffusing capacity limited exertion in subjects with 'pure' asbestosis.

Through 1964-65 the studies on insulators by Selikoff et al, finally confirmed the cancer hazard from occupational exposure to asbestos.^[35, 36, 37] In this work lung cancer mortality was 7 times higher than expected, and mortality from gastrointestinal cancer 3 times its expected rate. The authors reported that asbestosis was seen radiologically in 86% of 392 workers with more than 20 years employment.

Enterline and Kendrick conducted a study in 1967 of 21,755 workers from three American asbestos products industries.^[38] From the asbestos textile, asbestos

building products and asbestos friction materials industries excess mortality rates were found for respiratory cancer and asbestosis. For the asbestos textile industry, excess rates were also found for digestive cancer and cor pulmonale. Physical inspection of the plants showed the textile factories to be the most dusty.

Also in 1967 the Advisory Panel on 'Problems arising from the use of Asbestos' presented their report and recommendations to HM Senior Medical Inspector.^[39] This report described the increasing number of asbestosis cases, particularly in workers not covered by the asbestos regulations (e.g. pipe laggers). It recommended extending the scope of existing regulations while reporting that bronchial carcinoma appeared to be a complication of asbestosis rather than asbestos exposure and that there was strong evidence linking asbestos exposure with the development of mesothelial tumours.

The panel also emphasized the importance of fibre counts in the assessment of the environment and reported on one textile mill were the standard use of exhaust ventilation gave the following results:

TABLE 2.1: Fibre counts from an asbestos textile mill.

Process	Particles counts per cubic centimetre	Fibre counts per cubic centimetre
Carding	400-600	7.7
Beaming	150	4.5
Bag Slitting	100	4.3
Mechanical bagging	125	3.8
Weaving	120	1.9
Plaiting	150	3.8

The panel suggested that the above values should be regarded as immediate goals, but not as standards. Apart from carding, these values for particles not fibres were in the order of 15-45% lower than the American 1938 tentative limit of 5 mppcf (1 mppcf = 35 particles per cubic centimetre).

Correlation of environmental data with the mortality experience of 1,014 asbestos textile workers for the years 1931-1967 was undertaken by Doll and Knox in 1968.^[40] Analysis of trends in mortality showed a decrease in lung cancer and other deaths associated with asbestosis with reduction in length of employment before 1933, and an increase in lung cancer and other deaths, without asbestosis, with age. The authors concluded that the occupational risk of bronchial carcinoma had been largely eliminated, but that their data were insufficient to estimate the degree of any other remaining risk.

This work of Doll and Knox, finding a considerable excess of lung cancer in workers exposed before 1933 when the asbestos industry control regulations were enforced, but none in persons exposed for 10 years or more in the most dusty areas since then, was augmented in a study by Newhouse in 1969 at another textile factory.^[41] In this study of over 4,500 workers employed between 1st April 1933 (the implementation date of the regulations) and 1st May 1964, Newhouse showed an excess risk of lung cancer mortality for heavily exposed workers followed for at least 16 years with less than 2 years employment. Both studies highlighted the importance of latency considerations when dealing with asbestos exposed cohorts.

A synergistic interaction between cigarette smoking and asbestos exposure was shown in 1968 by Selikoff et al.^[42] The authors showed that "asbestos workers who smoke have 92 times the risk of dying of bronchogenic carcinoma as men who neither work with asbestos nor smoke". Weiss in 1971 considered the interactive effects between smoking and x-ray abnormalities.^[43] Here the prevalence of pulmonary fibrosis increased with amount and duration of cigarette smoking and with duration of exposure to asbestos dust.

In 1970 a standard of 2 fibres per cubic centimetre (f/cc) for chrysotile dust was adopted in Britain; this followed from a review of the work of Knox undertaken in 1968 by the subcommittee on asbestos of the British Occupational Hygiene Society.^[44] The subcommittee concluded that if the risk of clinically significant

25

disease was to be kept below 1%, for a working life of 50 years, then workers should not be exposed to dust concentrations higher than 2 f/cc. This was one of the many standards set that has lead ultimately to the limits of 0.5 f/ml for chrysotile and 0.2 f/ml for amosite and crocidolite, for daily average exposure, in the United Kingdom today.

The work of Doll, Knox and Newhouse presented in 1968-1969 acted as a spur to numerous studies but most notably to the work of McDonald in Canada examining Quebec chrysotile miners, and in the United Kingdom in the work of Harries in Royal Naval Dockyards. Harries work is considered in detail in section 2.4 of this review. McDonald's study of the Quebec industry was started in 1966, its aims were to relate dust exposure to mortality, radiographic appearances, respiratory symptoms, and lung function; the first reports of this study were presented in 1971-1972.^[45, 46, 47, 48]

In this work, Rossiter with McDonald investigated x-ray changes in chrysotile mill and mine workers from Quebec. At Thetford Mines, where dust levels were high (148-780 mppcf 'cumulative dust exposure'), they found that the prevalence of radiologic change was correlated with total dust level and with age; at Asbestos Mine, which was less dusty (101-300 mppcf), the main factors were age and years of exposure. Pleural calcification was common at Thetford but virtually absent at Asbestos. From these studies it was also seen that the overall mortality of the mill and mine workers was lower than expected for the population of Quebec but in the highest dust exposure category comprising 5% of the cohort, the age standardised death rate was 20% higher than in other groups. This excess was largely accounted for by an excess of bronchial carcinomas, 3 cases of mesothelioma were also found. McDonald's work among Quebec miners and millers is considered in detail in section 2.5 of this thesis.

Selikoff et al in 1972 reported on the mortality experience of 230 workers employed at an asbestos products factory.^[49] These workers had been employed during the war years in the manufacture of insulation, using amosite fibres, for

shipbuilding and repair. Total deaths were twice the number expected, the excess death rate being limited to two categories, cancer and asbestosis. Fourteen deaths were from asbestosis, 25 from lung cancer and 5 from mesothelioma (2 pleural, 3 peritoneal). It was concluded that occupational exposure to amosite can be associated with a serious cancer hazard, and its continued industrial use requires rigorous control.

In 1973, papers by Weill et al and Jones et al together produced a concise summary of the common radiological observation of the long latency of pleural effects of asbestos (particularly calcification), the frequent finding of extensive pleural abnormalities without parenchymal disease, and the correlation of progressive parenchymal disease, asbestosis, with heavy dust exposure.^[50, 51] Jones and Sheers in their paper also drew the following conclusions about pleural plaques:

- 1. There is ample evidence of an association between pleural plaques and all types of exposure to asbestos, and to all types of asbestos fibre. Asbestos is not the only cause of plaques but is certainly the most common.
- 2. There is insufficient evidence to establish a direct cause-effect relationship between pleural plaques and asbestos dust.
- 3. The prevalence of plaques is not related to total dust exposure; but, given a minimum initial exposure, the prevalence depends on age.
- 4. Pleural plaques are not harmful clinically, but they act as a useful marker to possible asbestos exposure.
- 5. The pathogenesis of plaque formation is unknown.

Webster in 1973 updated the information on the occurrence of mesotheliomas in South Africa.^[52] It was reported that 158 out of 360 recorded cases had definite exposure to asbestos but only 88 of these came from the mining areas where exposure to only one type of asbestos could be assumed. Of the 88 cases 84 had been exposed to crocidolite and four to amosite.

Newhouse and Berry in 1976, reporting on a group of workers exposed to chrysotile and a mixture of amphiboles, used a model relating mesothelioma risk

with time since first employment to predict mesothelioma mortality rates in man to the year 2000.^[53] They estimated a mortality rate of 7-11% per annum for male and 9-12% for female asbestos textile workers by 2000 AD. This model in many refined forms has been used extensively since then, in particular by Peto.^[54, 55, 56] All of the models used make use of the fact that the relationship of mesothelioma to asbestos differs in several ways from the relationship for lung cancer, the hazard appearing to be more strongly dependent on the type of asbestos, to be largely or wholly unaffected by smoking and independent of the age at which exposure first occurs.

In 1979 Irwig et al reported studies on 1,144 men from South African crocidolite mines and 548 who were involved in the mining of amosite.^[57] It was claimed that pleural abnormalities visible on chest radiographs were significantly more frequent among amosite workers than among those who had worked with crocidolite. There were no other differences in recorded pathology between the two groups.

By 1979 Hammond et al and Berry et al had carried the asbestos-smoking interaction a step further; to an increased risk of asbestosis.^[58,59] Hammond's work clearly showed that a multiplicative relationship may exist between smoking and asbestos (see table 2.9, in section 2.5.3), it further showed that mortality from asbestosis was 2.8 times higher for asbestos workers who smoked than for their nonsmoking colleagues. Berry after allowing for age showed that there were significantly fewer signs of asbestosis in nonsmokers and light smokers than in heavier and ex-smokers, for men first exposed to asbestos after 1950.

28

with time since first employment to predict mesothelioma mortality rates in man to the year 2000.^[53] They estimated a mortality rate of 7-11% per annum for male and 9-12% for female asbestos textile workers by 2000 AD. This model in many refined forms has been used extensively since then, in particular by Peto.^[54, 55, 56] All of the models used make use of the fact that the relationship of mesothelioma to asbestos differs in several ways from the relationship for lung cancer, the hazard appearing to be more strongly dependent on the type of asbestos, to be largely or wholly unaffected by smoking and independent of the age at which exposure first occurs.

In 1979 Irwig et al reported studies on 1,144 men from South African crocidolite mines and 548 who were involved in the mining of amosite.^[57] It was claimed that pleural abnormalities visible on chest radiographs were significantly more frequent among amosite workers than among those who had worked with crocidolite. There were no other differences in recorded pathology between the two groups.

By 1979 Hammond et al and Berry et al had carried the asbestos-smoking interaction a step further; to an increased risk of asbestosis.^[50, 59] Hammond's work clearly showed that a multiplicative relationship may exist between smoking and asbestos (see table 2.9, in section 2.5.3), it further showed that mortality from asbestosis was 2.8 times higher for asbestos workers who smoked than for their nonsmoking colleagues. Berry after allowing for age showed that there were significantly fewer signs of asbestosis in nonsmokers and light smokers than in heavier and ex-smokers, for men first exposed to asbestos after 1950. By the 1970s it was known that:

A high proportion of cancer deaths occur among subjects with asbestosis.

Asbestos acts synergistically with smoking to produce nonmalignant noninfectious pulmonary disease, although the synergism is not as strong as it is for lung cancer.

Asbestos-related cancer occurs after exposure to dust containing a high proportion of large asbestos fibres, i.e. fibres longer than 5 microns $(5\mu m)$.

Removal from exposure is unlikely to halt the progression of pleural changes once they have developed.

Amphibole asbestos, in particular amosite and crocidolite, appears more hazardous to health then chrysotile asbestos.

From the early 1970s the need for information on the occurrence of diseases related to asbestos, and their relationship to exposure levels was evident, and many studies followed, particularly in the USA and Britain. To review these here, extensively, would not be practicable as over 200 papers on diseases related to asbestos and its exposure have been published per annum. To summarise, however, the principal disorders related to asbestos exposure include:

Diffuse interstitial pulmonary fibrosis, termed asbestosis. Lung cancer and mesothelioma of the pleura and peritoneum. Pleural plaque formation and diffuse pleural thickening. It may also cause other cancers, including possibly cancers of the larynx and the gastrointestinal tract, and conceivably a wide range of others (figure 2.5).

Figure 2.6, taken from the ILO Encyclopaedia of Occupational Health and Safety (1983), outlines the rise in production of asbestos worldwide with the dates of acceptance of the causal relation between asbestos and the above diseases. Since the 1980s the use of asbestos in the industrialised world has diminished, with the increasing use of man-made mineral fibres as a substitute material. However, in the developing world (e.g. India and South America) the use of asbestos continues unabated. The worldwide use of asbestos may therefore have slowed but has clearly not stopped altogether. The following sections of this review will now consider asbestos-related disease in shipbuilding and repair, and also the present day concerns generated by past and present asbestos exposure.

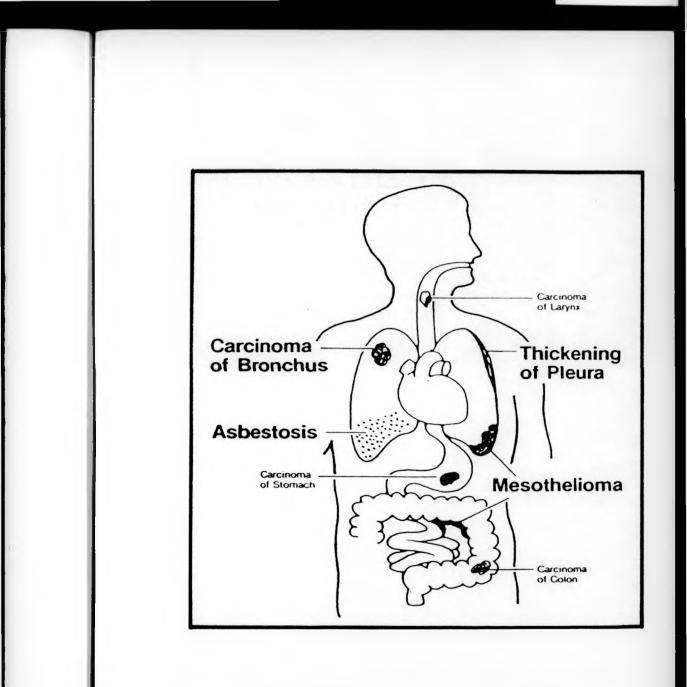
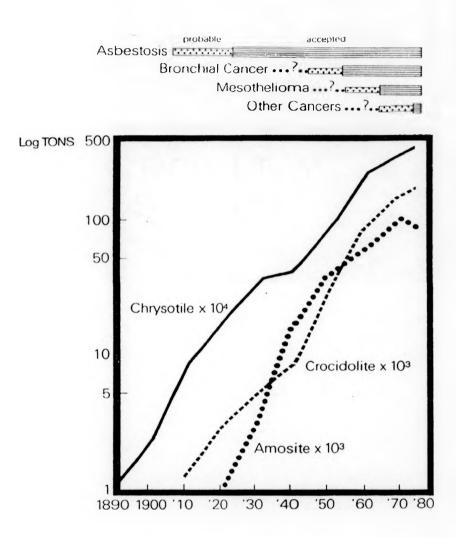
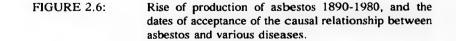




FIGURE 2.5: Principal asbestos related diseases and conditions, and their sites in the human body.

2.3 Asbestos Related Disease in Shipbuilding and Repair.

Health problems arising from the use of fibrous materials in Royal Naval Dockyards are not a new phenomenon. In a letter dated 17 June 1891, to the Fleet Surgeon, Naval Surgeon G Kirker^{*} reported on a workman suffering discomfort in his chest owing to breathing in the dust of cotton silicate, a fibrous silicate, used as a woven covering for boilers and steam pipes.^[60] Eventually cotton silicate was replaced by a better insulator, asbestos.

There was a gradual increase in the use of asbestos in British Dockyards and American Shipyards over the next 30-40 years, followed by a massive increase in use during World War II. Between 1939-45 over 6,500 vessels, all containing asbestos, were built in American yards.^[61] At the peak of the war more than 1,700,000 workers were employed in this industry; throughout the war a total of over 4,500,000 men and women were employed in shipbuilding and repair.^[62]

Expansion of the British and American shipbuilding and ship repair industries in the 1930s mirrored that of Germany. The first published reports linking asbestosis with shipbuilding coming from German researchers. Kuhn in 1940 reported on a fatal case of asbestosis that had occurred in a German shipyard insulation worker.^[63] He described how workers in German shipyards were rotated out of asbestos insulation handling after 2 years of work.

A United States Maritime Commission field survey in 1944, by Dreessen and Fleischer, at a civilian contract shipyard revealed 2 pipe coverers (asbestos laggers) with x-ray evidence of well-established asbestosis and 4 others with possible asbestosis, in all 38 pipe coverers were examined.^[64] They concluded that conditions in this yard presented a very real asbestosis hazard.

*

Kirker was the surgeon in Keyham Yard, now North Yard, HM Naval Base, Devonport.

In August 1945, HM Chief Inspector of Factories issued a warning to the shipbuilding and ship repair industry over the danger to health from the increasing use of asbestos in ships.^[65] This warning stressed that while asbestos dust had no immediately obvious effects on health, serious problems were likely to develop subsequently. Among the suggestions made were the need for better ventilation, damping the dust and the quick cleaning up of asbestos debris. The use of dust respirators was recommended for men fitting or removing dry asbestos, and during the spraying of asbestos.

Fleischer et al in 1946 conducted x-ray examinations and dust surveys at four US Naval Shipyards, this work was also reported on by Drinker in 1947.^[66,67] Total dust concentrations in these yards ranged from 7-32 mppcf, with an average on-ship exposure of 11-142 mppcf. They reported the lower values in units of 'mppcf asbestos dust'. Of the 1,074 workers examined, 948 had less than 5 years employment in the pipe covering industry and only 54 had more than 10 years employment. Three cases of asbestosis were found, all in workers with more than 20 years of employment. They concluded that pipe covering in the shipbuilding industry was not hazardous. This conclusion conflicted with the earlier statement of Dreessen and Fleischer in 1944 of a very real hazard. The low asbestosis prevalence, shown by Fleischer and Drinker, was clearly an artifact caused by their inadvertent dilution of the at-risk population with briefly exposed workers. Although these early studies did not stand the test of time epidemiologically, they did represent the best occupational health methods of their era.

The use of respiratory protection for asbestos exposed workers in American shipyards during World War II was reviewed by Stoll et al in 1951, who noted that protection was advised but not insisted upon.^[68] This was despite the US Navy's publication in 1943 of the minimal requirements of health and safety in contract shipyards.^[69] This document required the segregation of dusty work, use of exhaust ventilation and respirators, and periodic medical examinations of workers handling asbestos insulation materials. Stoll also reported on a 40 year old asbestos pipe coverer with bronchogenic carcinoma in association with

pulmonary asbestosis. The authors noted that amosite was the most widely used form of asbestos in shipyards during the War.

In an account of the health hazards of asbestos at Portsmouth Royal Naval Dockyard, Walters in 1959 noted that only one case of asbestosis had been reported among pipe coverers between the years 1946-58, with a further 6 possible cases unconfirmed by the Pneumoconiosis Medical Panel.^[70] Over the same years no cases were reported among asbestos sprayers.

Morgan in 1964 described a case of 'rheumatoid pneumoconiosis' associated with asbestosis in an arc-welder, exposure to asbestos was traced to welding of asbestos lagged pipes in the interior of ships.^[71] Also in 1964 Marr reported on 5 workers from the Long Beach Naval Shipyard compensated for asbestosis, one of whom had died of the disease.^[72] This study looked at the irregular exposure to asbestos occurring during its installation and removal in ship repair or overhaul. Total dust counts were given as 1-5 mpcf. These 'low' counts do not appear to give an adequate indication of the hazard, conflicting with the observation that "the work environment appears extremely dusty, respirator filters often clogging after an hour's work removing insulation". The shipyard also stated that amosite was seldom applied due to the excessive dust created during its removal!

In a follow up study, at one of Fleischer's four shipyards, Murphy and Ferris in 1966 analysed 101 pipe coverers and 94 age-matched controls from departments with minimal asbestos exposure.^[73] Of 68 pipe coverers with 5 or more years exposure significant differences were seen on comparison to their controls for symptoms of cough, phlegm, wheezing and shortness of breath. Over 25% of these workers were diagnosed as having asbestosis; no cases occurred with fewer than 8 years of exposure, the average length of exposure was 20 years. The study emphasized that low concentrations of asbestos can lead to pulmonary fibrosis and supported the need for lower threshold limit values. This work was extensively referred to by Murphy and Ferris in subsequent publications.^[74,75,76]

In 1967 Anton reported on 12 cases of multiple pleural plaques in shipyard workers.^[77] He suggested that the presence of pleural plaques might be a sign of a milder form of asbestosis and considered that pleural fibrosis might have been responsible for earlier researchers description of a 'ground glass' effect in the lower lung fields. The frequency of asbestos bodies in the lungs was studied by Ashcroft in 1968, in a shipbuilding area where asbestos was used in insulation for boilers, pipes and bulkheads.^[78] Asbestos bodies were found in 20% of all routine necropsy smears but there was no evidence of classical asbestosis.

Sheers and Templeton in 1966 carried out x-ray examinations of every tenth worker employed at Devonport Royal Naval Dockyard, this work was also reported on by James in 1971.^[79,80] From the 1,414 workers examined with possible exposure to asbestos, 4 had pulmonary fibrosis due to asbestosis, 11 extensive pleural fibrosis, 48 limited pleural plaques, 2 bronchogenic carcinoma and 1 mesothelioma. The intermittent nature of asbestos exposure in ship overhaul was suggested as the reason why pleural changes overshadowed parenchymal disease, exposure being insufficient to cause asbestosis except in high risk groups.

The work of Sheers and Templeton at Devonport Dockyard, and of Walters at Portsmouth Dockyard was extended in a series of Royal Naval Dockyard Asbestosis Research Project reports, to cover the four Royal Naval Dockyards: Devonport, Chatham, Portsmouth and Rosyth. This work together with other hygiene and medical reports from naval surgeons form a core of the published material from the United Kingdom for the 1970s and is considered in section 2.4 of this review.

By the late 1960s it was increasingly clear that:

The risk of disease was not confined solely to workers in mining and manufacturing asbestos. It extended to those workers who used asbestos products and in particular to insulation workers and dockyard workers.

That in the period of World War II through to the 1960s there was extensive use of asbestos in dock and shipyards with little control and minimum precautions in its use.

Horn in 1969 published a summary of the protective measures to be used when working with asbestos containing materials in shipbuilding.^[81] The use in Germany of suction devices was highlighted, with the recommendation that suction be improved so that asbestos dust concentrations in room air of 30 particles per cubic centimetre for particles up to 10 micrograms is not exceeded. A stipulation against employment of workers with chronic respiratory diseases or youths aged under 18 in jobs handling asbestos materials was given. The author concluded that "strict prophylactic measures for handling materials containing asbestos must be administered because there is no effective treatment for asbestosis".

The chance finding of asbestos bodies without asbestosis in the lungs of a shipyard worker who had not worked directly with asbestos was recorded in the Netherlands, in 1969, by Stumphius.^[62] This led Stumphius in 1971 to an investigation into the relationship between asbestos bodies in the sputum, occupation, and mesothelioma in the shipyard at Vlissingen on Walcheren Island.^[63] Examination of the sputum of 277 workers revealed asbestos bodies in 60%, the frequency varying from 39% in workers with no obvious exposure to asbestos to 100% among those with slight but definite exposure. Between 1962-68, 25 cases of mesothelioma were discovered on Walcheren; the attack rate for mesothelioma was estimated to be 100 per 100,000 males per year, 100 times higher than the rate for Dutch provinces with heavy industry. For different occupational categories in the shipyard the rates varied from 50 for 'clean work' to 280 for men with some exposure to asbestos dust.

The occupational classification used by Stumphius was based on exposure to both iron oxides or fumes and to asbestos. The categories used were:

- I Iron Vapour: Apparently negligible asbestos exposure welders and cutters.
- II Iron Oxides (Rust): Some exposure to asbestos fitters, welders, plumbers, etc. employed after launching or during repairs.
- III Iron Vapour and Rust: Apparently negligible asbestos exposure platers, shipwrights, and foundrymen employed on initial construction.
- IV Men exposed to other dust, including some asbestos, not exposed to iron vapour or rust: Painters, carpenters, etc. employed after launching or during repairs.
- V Clean Work: Not apparently exposed to iron vapour or rust nor to asbestos dust.

As can be seen by these categories, no workers were regarded as working solely with asbestos or as being heavily exposed to its dust. Those men employed by contractors on asbestos insulation work were not studied. Stumphius aired the suspicion that iron oxide might be an important cofactor in the genesis of shipyard mesothelioma.

Evidence of chest disease noted in the x-rays of shipbuilding and engineering workers at an industrial clinic was shown, by Fletcher in 1971, to correlate with trade within the industry.^[84] Joiners in particular were noted to have a high prevalence of pleural plaques, plaques occurring in approximately 30% of all joiners, followed to a lesser extent by caulkers, burners, drillers, laggers, and sheet metal workers. For joiners, the use of asbestos board containing 30% armosite in sound insulation was suggested as the probable cause of illness.

Ahlman and Siltanen in 1971 presented annotated tables of 56 cases of pulmonary asbestosis occurring among insulation workers in Finland during 1938-68.^[65] In this work they also presented data on Finish shipyard breathing zone exposures to asbestos dust. For pipe coverers, exposures ranged from 34-92 f/cc (fibres longer than 5 microns), total particle counts ranged from 26-50 mppcf. For workers sawing asbestos boards exposures ranged from 86-220 f/cc; 45-97 mppcf.

These concentrations emphasise the importance of dust suppression methods, with the large number of cases suggesting past ignorance of the health hazards of insulation work.

Also in 1971, Whitwell and Rawcliffe in a retrospective study of 52 pleural mesothelioma patients from three Merseyside hospitals confirmed occupational exposure to asbestos in 80% of the cases, the most common industry involved being shipbuilding and repair.^[86] The lungs of patients with industrial mesothelioma showed basal asbestosis in 17% of cases and excessive asbestos bodies in most others. The interval from first exposure to asbestos to the appearance of mesothelioma ranged from 13-63 years, with a reported mean of 42 years.

Elmes in 1971 reported on a high incidence of lung fibrosis in Belfast insulation workers.^[87] From 165 workers, over a 27 year period, 98 had died and from these 40 had radiological or postmortem evidence of extensive fibrosis (excluding tuberculosis). These workers were all trade union members who had worked either in the Belfast shipyards or on large Northern Ireland construction sites. Two other studies concerned with the health of Belfast insulators were presented by the same team of researchers in 1971.^[88,89] From these studies there was evidence suggesting that the pleural fibrosis was due to asbestos exposure in childhood, with many of the insulators family homes being in the shipyard area.

From the International Labour Office (ILO) publication on Safety and Health in Shipbuilding and Ship Repairing published in 1972 we are given the following asbestos exposure information by Cross:^[90]

TABLE 2.2: Ranges of dust concentrations (data grouped across numerous yards).

Process monitored	f/cc			
Insulation rip-out	159 - 353			
Spraying, undamped	150 - 1500			
Spraying, damped	1 - 4.7			
Pipe covering	11.2 - 61			
Hand sawing board, without exhaust	14 - 58			
Hand sawing board, with exhaust	1.1 - 3.4			
Power sawing, without exhaust	63 - 200			
Power sawing, with exhaust	1.4 - 4.5			

These data were supplied to Cross by industry and government in the UK. It should be noted that for 'rip-out' the values given were averages; the maximum was 3815 f/cc for sweeping and bagging debris. This value is approximately 20,000 times the current UK limit for amosite and crocidolite exposure and was obtained at Devonport Dockyard.^[91] In the same ILO publication Nicholson reported on electron microscopy findings that showed that some processes yielded only small fractions of airborne fibres longer than 5 microns (e.g. cutting asbestos block, 3.5%; removal of pipecovering, 5.9%).^[92] Nicholson believed exposures could be kept below 0.7 f/cc with the use of improved industrial hygiene practices.

At this point, the mid 1970s, it was clear that:

There was a high prevalence of pleural plaques in ship and dockyard workers and that asbestos bodies were being seen with and without asbestosis in these workers.

That asbestos-related diseases were occurring in 'non-asbestos' shipyard trades and were also present from childhood exposures.

In 1976, Stumphius continued his initial work on Walcheren Island, reporting that 52 cases of mesothelioma had occurred in shipyard workers during 1962-76.^[93] None of the cases was a typical asbestos worker but the majority had worked in the same areas as asbestos workers, their exposure was of an indirect occupational type. No asbestosis was seen. As a result of Stumphius work the Dutch authorities stopped the use of asbestos insulation aboard Royal Dutch Navy ships.

Blot with Harrington in 1978 investigated the high lung cancer rate among male residents in coastal areas of Georgia USA.^[94] This study consisted of 458 lung cancer cases and 553 controls (subjects hospitalised for reasons other than lung cancer) from 11 coastal counties. The occupational risk of lung cancer was calculated for 16 industrial categories, including shipbuilding. It was found that 95 cases (21%) and 80 controls had worked in shipyards during World War II. The relative risk for shipbuilding adjusted for smoking, age, race, occupation and county of residence was estimated to be 1.6; a synergistic relationship was found between shipyard employment and smoking. The authors concluded that asbestos and other shipyard exposures account in part for the excess mortality from lung cancer in coastal Georgia.

Renke in 1978 reported on a study which examined lung function in 60 Polish shipyard workers, 21 male and 39 female, over a four year period.^[95] Two cases of asbestosis were diagnosed in this group over the study period; the average duration of asbestos exposure being 5.8 years for men and 10.7 years for women. Renke noted on an increase in the number of obstructive and restrictive ventilation disturbances across the 4 years.

In a continuation of their previous work Murphy and Ferris in 1978 re-evaluated their cohort of 101 pipe coverers and 94 controls.^[96] Clinical findings indicative of asbestosis were noted in 16% of the pipe coverers compared to 9% in the earlier surveys. Asbestosis was considered present if three of the following chest abnormalities were found: bibasilar fine rales, irregular x-ray opacifications, forced vital capacity less than 80% of normal, or single breath diffusing capacity less than 80%. Eight pipe coverers had died since the original study, 3 of confirmed and 1 of suspected asbestosis, 1 from peritoneal mesothelioma and 1 suffered a fatal myocardial infarction; his lungs showing slight pulmonary fibrosis. Three pipe coverers had retired because of pulmonary insufficiency. Asbestosis was 11 times more common among pipe covers than their controls. The authors noted that the increasing prevalence of asbestosis was in spite of a massive reduction in the amount of asbestos used in the shipyard since 1969.

Blot continued his earlier work on lung cancer producing a succession of reports over 1979-81. In the first of these, lung cancer mortality rates over 20 years were calculated for 49 US shipyard counties, 80 urban counties of similar size but with no involvement in the construction of cargo vessels or warships served as controls.^[97,98] For females, 80% of the shipyard counties had higher lung cancer rates than the control counties; for males the cancer rates for all shipyard counties were at least 30% higher than their controls. In his later work, increased lung and laryngeal cancer risk among shipyard workers from Virginia USA employed before 1950 was reported.^[99] The relative risk, adjusted for smoking, was 1.7. This was of the same order of magnitude among those who had only worked in shipbuilding during the war years as among those whose careers were spent in the industry. This was followed by a study of 61 cases of mesothelioma, 47 from shipyards in Virginia.^[100] The median time between tumour diagnosis and first shipyard employment was 34 years. The conclusion from these studies was that shipyard exposures to asbestos are implicated as being partially responsible for the parallel clustering of mesothelioma and lung cancer in shipyard areas.[101]

The incidence of bronchial carcinoma in shipyard workers from Barrow-in-Furness with pleural plaques was reported by Edge in 1979.^[102] Pulmonary asbestosis was verified in chest x-rays of 429 male shipyard workers, this group was compared to age-matched males from Carlisle with no asbestos exposure. Over a 7 year period 127 deaths occurred among the shipyard workers, 19 from bronchial carcinoma and 23 from mesothelioma; in the control group 74 men died, 4 from bronchial carcinoma and none from mesothelioma.

The hazardous effects of asbestos exposure were again highlighted by Selikoff et al in 1980 in a study of 286 ship repair workers.^[103] The workers were retired or still active with at least 20 years of exposure; x-ray evidence of asbestosis was found in 86%, 5 cases of previously undiagnosed lung cancer were reported. Selikoff noted that ships constructed before 1975 contained extensive amounts of

asbestos and pointed out that the risks were not limited to ship repair workers, they also extend to crew members who performed emergency repairs at sea.

During World War II, women were encouraged to replace men in shipyards with many becoming welders and insulators; upon demobilization they returned to other work and consequently had only limited durations of asbestos exposure. Boylen et al in 1983 presented one of the first studies on the frequency of asbestos-related diseases in such women.^[104] In this study 60 women were considered, 13 of whom had sufficient asbestos exposure to produce stigmata after 40 years.

Kilburn in a series of reports during 1985-86 continued the investigation into asbestos-related disease among female shipyard workers and extended this to include family contacts of shipyard workers. [105, 106, 107] In his first report 71 female workers who had been employed before May 1961 were studied; 15 had x-ray signs of asbestos disease, of which 7 had irregular opacities in the lung parenchyma and 8 pleural disease (2 had pleural calcifications). Chronic bronchitis was diagnosed in 21% and symptoms of dyspnoea and wheezing in 71% and 42%, respectively. These prevalences were 50% higher than in the wives of male shipyard workers. In his later work the incidence of asbestosis in 338 male and 81 female workers (each with at least 20 years asbestos exposure) and their families was investigated. The family members included 280 wives, 144 daughters and 81 sons. Among the workers there was x-ray evidence of asbestosis in 185 males and 15 females. Among their family members with no occupational exposure to asbestos, the disease was found in 31 wives, 6 sons and 3 daughters. This was higher than the corresponding incidence in a control group taken from the general population. From this study, it was concluded that family members of shipyard workers face a serious asbestosis risk along with the workers of either sex.

asbestos and pointed out that the risks were not limited to ship repair workers, they also extend to crew members who performed emergency repairs at sea.

During World War II, women were encouraged to replace men in shipyards with many becoming welders and insulators; upon demobilization they returned to other work and consequently had only limited durations of asbestos exposure. Boylen et al in 1983 presented one of the first studies on the frequency of asbestos-related diseases in such women.^[104] In this study 60 women were considered, 13 of whom had sufficient asbestos exposure to produce stigmata after 40 years.

Kilburn in a series of reports during 1985-86 continued the investigation into asbestos-related disease among female shipyard workers and extended this to include family contacts of shipyard workers. [105, 106, 107] In his first report 71 female workers who had been employed before May 1961 were studied; 15 had x-ray signs of asbestos disease, of which 7 had irregular opacities in the lung parenchyma and 8 pleural disease (2 had pleural calcifications). Chronic bronchitis was diagnosed in 21% and symptoms of dyspnoea and wheezing in 71% and 42%, respectively. These prevalences were 50% higher than in the wives of male shipyard workers. In his later work the incidence of asbestosis in 338 male and 81 female workers (each with at least 20 years asbestos exposure) and their families was investigated. The family members included 280 wives, 144 daughters and 81 sons. Among the workers there was x-ray evidence of asbestosis in 185 males and 15 females. Among their family members with no occupational exposure to asbestos, the disease was found in 31 wives, 6 sons and 3 daughters. This was higher than the corresponding incidence in a control group taken from the general population. From this study, it was concluded that family members of shipyard workers face a serious asbestosis risk along with the workers of either sex.

To summarise, by the early 1980s:

It was clear that the asbestos disease problem that has caused so much public concern could be traced, in part, to the use of asbestos aboard ships. Contributing to this problem was its massive use during World War II and immediately thereafter.

That first impressions of the problem suggested that only those workers continuously involved with asbestos were at risk. In the dockyards these would have been mattress workers, laggers, joiners, sailmakers working with asbestos cloth, and asbestos sprayers and strippers. However, experience has shown, that first impressions can be false, with light and intermittent exposure, indirect occupational exposure and non-occupational exposure carrying serious risks.

It is obvious that ships are not factories and that shipbuilding and repair conditions, and their asbestos exposures, must differ from those in asbestos mills and factories. These conditions in Royal Naval Dockyards are highlighted in the following section. 2.4 Royal Naval Dockyard Asbestosis Studies.

During the late 1960s and early 1970s a series of research projects were supported jointly by the Institute of Naval Medicine (MOD), Alverstoke, and the Medical Research Council (MRC) Pneumoconiosis Unit, Penarth. These projects have been termed the 'Royal Naval Dockyard Asbestosis Studies'. They were set up to investigate and answer the medical and hygiene problems associated with asbestos use in Royal Naval Dockyards. This section will concentrate on these studies, and in particular the work of Harries at Devonport Dockyard.

Harries was to bring to the attention of the scientific community the need for better preventive measures in asbestos handling. In a series of reports he looked at dust concentrations and dust sampling techniques involved in asbestos application and removal.^[91,108,109,110,111] In this work, the highest fibre concentrations were found in bagging and sweeping up debris and in the removal of sprayed crocidolite asbestos. Fewer fibres were observed in the removal of asbestos section and board (table 2.3). All debris had to be carried out by hand, through narrow passageways and vertical ladders (figures 2.7 and 2.8).

TABLE 2.3 :	Ranges of dust concentrations	data from	Devonport dockyard).
--------------------	-------------------------------	-----------	----------------------

Process monitored	f/cc			
Storerooms	0.1		36	
Application of amosite sections	9	-	40	
Application of asbestos cloth	0.05	-	0.20	
Removal of amosite sections	29	+	1040	
Removal of sprayed asbestos	112	-	1906	
Removal of asbestos acoustic board	48	-	683	
Bagging asbestos debris	106	-	3815	

As mentioned in the last section, the high value found for bagging waste is approximately 20,000 times the current UK limit for amosite and crocidolite exposure. It should also be borne in mind that these fibre counts are generally

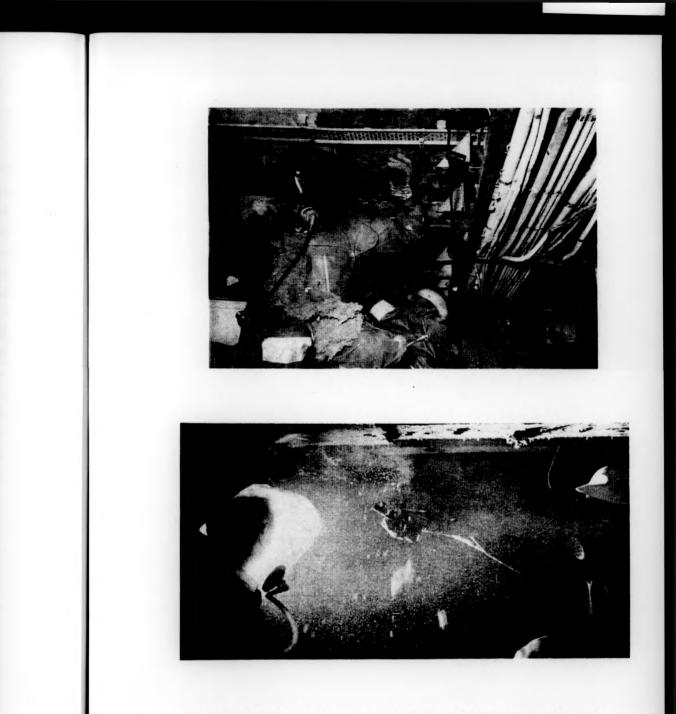
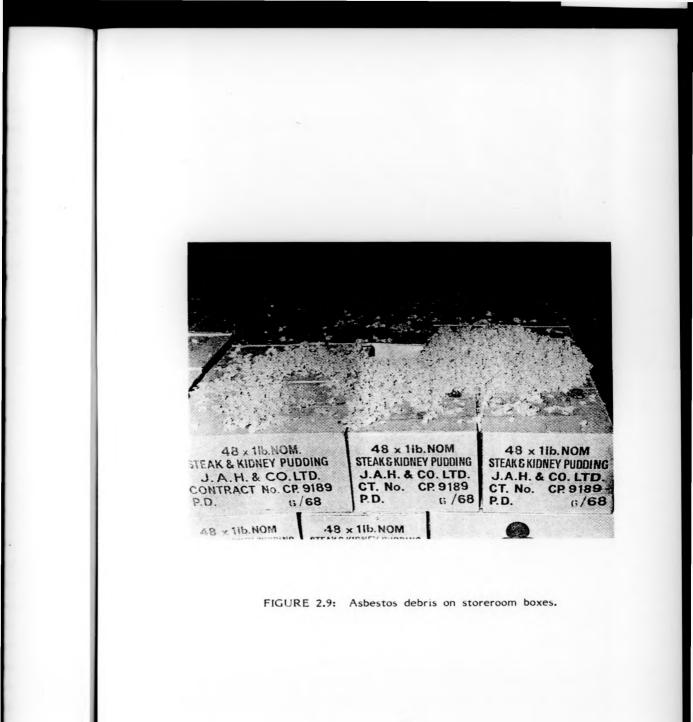


FIGURE 2.7: Removal of sprayed crocidolite asbestos from a deckhead.

FIGURE 2.8: Asbestos debris in a boiler room.


much higher then those stressed as immediate goals in 1967 by the government advisory panel on asbestos who suggested a maximum range of 1.9-7.7 f/cc.^[39]

It was also seen that average dust levels were much higher in boiler rooms then in engine rooms (table 2.4). A boiler room would have more insulating material, but would also have at least two levels and it was common place for debris to fall 3-4 metres to the deck creating high levels of dust in the general atmosphere.

TABLE 2.4: Dust concentrations during application and removal of asbestos lagging (f/cc).

	General Atmosphere	Breathing Zone		
	Mean value Range	Mean Value Range		
Removal:				
Boiler rooms	171	97		
Engline rooms	0.04 - 1062 88 0.16 - 3021	25 – 220 91 2 – 490		
Application:				
Boiler rooms	22.4	16.8		
Engine rooms	1.0 - 61 2.1 0.1 - 14	0.1 - 68 7.3 0.04 - 40		

Additionally, in the above work Harries noted that adequate preventive measures were not introduced into Naval Dockyards until 1967; before this it was common to see asbestos waste left scattered about ships for most of the refit period (sometimes up to 3 years). This clearly shows that the health risks associated with asbestos dust and waste were not fully appreciated. Lumley in 1971 emphasized this point in a survey of sprayed asbestos in dockyard buildings.^[112] In storehouses, roof insulation was found to be unsealed and damaged. Crocidolite dust concentrations of 0.3-52.6 f/cc were obtained from these floors. Roof dampness and birds nesting in the roof spaces were seen as the main reasons for asbestos debris falling onto ledges, boxes and the floor (figure 2.9 illustrates the extent of this debris).

Harries also made an evaluation of respirators and respirator usage, with the following observations: for respirators to be efficient they had to be of good fit, comfortable to wear, and the workers had to be encouraged to wear them. In fact, almost the opposite was true with little encouragement given and no attempt made to see that a respirator fitted a worker's face. Consequently, it was common for respirators not to be worn completely, if at all, over a working shift. It was, therefore, practically impossible to measure respirator efficiency in reducing asbestos dust exposure. Added to this was Harries commentary that many of the respirators issued were unfortunately fitted with fume cartridges and not dust filters.^[110] This situation was soon to change with enforced use of air-stream hoods and better quality dust respirators.

The measures then taken to reduce the asbestos hazards, are described in the above publications and by the Ministry of Defence in 1970.^[113] They included a review of the use of asbestos, and where possible the introduction of substitute materials (i.e. man-made mineral fibres and plastics) and enforcement of a Code of Practice.

The Code of Practice consisted of the following safeguards:

- 1. To isolate asbestos work, and restrict entry to those properly protected.
- To reduce the amount of dust created by asbestos work by improving work methods and the materials themselves.
- To protect all workers whether they worked directly with asbestos or not.
- 4. To keep a register of all men directly employed on asbestos work.
- 5. To ensure that all Registered Asbestos Workers have regular medical supervision.
- 6. To provide protective clothing adequate for the degree of risk involved and to provide changing and washing facilities.
- 7. To carry out regular dust monitoring whenever asbestos is handled.

The medical supervision of 'asbestos workers', before implementation of the code of practice, was shown in the above work by Harries to apply only to sprayers and laggers, all others were unsupervised. The Navy policy, from 1949 onwards, was

confused with recommendations of monthly, six monthly and annual examinations, enforcement of which was uncertain. From 1965 laggers were given annual medical examinations. The following articles show how ineffective this protection was for this group of workers, sizeable proportions developing asbestosis.

Before moving on to the dockyard medical reports it should be noted that by the early 1970s the following had occurred:

Sprayed crocidolite asbestos was completely removed from Royal Navy ships in the 1960s. It was removed, not for health reasons, but when it was found to be increasing the top weight of warships.

All forms of amphibole asbestos were prohibited from use after 1968. Only chrysotile asbestos and man-made mineral fibres were used from then on.

A detailed study of the clinical and radiological changes occurring in men exposed to asbestos at Devonport was reported on by Harries in 1971.^[110] This supported, and was founded on, the work of Sheers and Templeton in 1966, which was further continued by Harries et al in 1972 to cover Portsmouth, Chatham and Rosyth.^[79,114] Here the prevalence of radiographic asbestos-related abnormalities was related to both dockyard occupation and duration of exposure (table 2.5 shows prevalence by dockyard). No association was found between smoking habits and the incidence of parenchymal or pleural disease due to asbestos. Pleural abnormalities were reported 10 times more frequently than paranchymal disease. However, concern was expressed over the uncertainty of the prognosis in men with pleural abnormalities. At Devonport 37 men developed pleural mesothelioma and 128 asbestosis cases were reported since 1965.

A further component of Harries initial study was a proportional mortality analysis.^[110] In this analysis, which compared male Devonport dockyard workers with a control group of other Plymouth males, it was observed that lung cancer had only a slightly raised mortality rate that was not statistically different from that in the general public.

Dockyard	No. Examined	No. with abnormality	Prevalence
Devonport	1414	63	4.5
Portsmouth	1017	32	3.1
Chatham	765	25	3.3
Rosyth	660	12	1.8
All yards	3856	132	3.4

TABLE 2.5 :	Prevalence	of	radiographic	asbestos	abnormalities	(%)	in	10%
	random san	nple						

The randomly selected 10% samples of the population at Devonport, chosen by Sheers and Templeton, at Portsmouth, Chatham and Rosyth, chosen by a team of investigators (including Sheers and Harries) formed the baseline data for future 'Royal Naval Dockyard Asbestosis Studies' reported on in the late 1970s and early 1980s. In these studies 10% samples and the complete workforce of the dockyards were scrutinised for radiographic abnormalities, morbidity and mortality.

Harries et al in 1975, in the first Royal Naval report on the asbestosis studies, summarised asbestos research in naval dockyards and reported on morbidity at Devonport, Chatham, Portsmouth and Rosyth.^[115] Here the entire workforce of the four yards was examined radiographically, using mobile radiographic units. The results confirmed those of the 10% sample and gave an overall prevalence of radiographic asbestos abnormalities of 4.6% (table 2.6). In both tables 2.5 and 2.6 the term radiographic abnormalities is given to these workers with x-ray evidence of pleural thickening, pleural calcification, or either suspected or definite pulmonary fibrosis. Tuberculosis (active and clinically inactive) was not included in this definition. The higher prevalence seen at Devonport and Portsmouth is explained by the larger number of major warship refits undertaken at those dockyards. For pleural thickening the risk in smokers was shown to be approximately 25% greater than that for nonsmokers.

Dockyard	No. Examined	No. with abnormality	Prevalence
Devonport	10165	468	4.6
Portsmouth	6779	386	5.7
Chatham	4828	179	3.7
Rosyth	2803	101	3.6
All yards	24575	1134	4.6

TABLE 2.6: Prevalence of radiographic asbestos abnormalities (%) in entire workforce.

Evidence of an occupational effect due to asbestos exposure was sought by Lumley in 1976 when comparing cancer registrations for Devonport dockyard workers with those for Plymouth men in the same age groups for 1960-69.^[116] The overall death rate was similar in both groups. However, an excess of cancers of the respiratory tract was found in this period (confined to pleural tumours). Twenty-two cases of pleural mesothelioma were recorded in the dockyard compared to only 3 in other Plymouth males. A trend of increasing annual excess of stomach and gastrointestinal registrations was also observed in the dockyard group.

Harries and Lumley in 1977 presented a survey of Registered Asbestos Workers (RAWs) in the four dockyards.^[117] In this survey 990 male RAWs were studied, these included laggers, sprayers, storemen and workers indirectly exposed to asbestos (i.e. boilermakers, shipwrights, electrical fitters, etc). It was found that radiographic, clinical and physiological abnormalities associated with exposure to asbestos only occurred in older men exposed before enforcement of the Code of Practice.

In a sample of 1200 men aged 50-59 years from all four dockyards, Rossiter and Harries in 1979 confirmed that smoking partly accounts for the increasing dockyard prevalence rates of radiographic, clinical and lung function abnormalities.^[118] However, the prevalence of pleural calcification, seen to be related to duration of asbestos exposure, was highest in nonsmokers. The most extensive disease was seen in laggers and sprayers employed before 1957.

Sheers, also in 1979, reported on a follow-up of his 1966 cohort.^[119] It was shown that of 971 workers with normal radiographs in 1966, 96 (9.9%) had developed nonmalignant asbestos-related abnormalities by 1977. Thirty-eight deaths from mesothelioma had occurred during the study interval among men aged 35 to 64 with 20 or more years of asbestos exposure.

The incidence of mesothelioma among workers at Devonport dockyard was further scrutinized in 1980 by Sheers and Cole.^[120] In this work, asbestos exposure histories were ascertained for 96 dockyard mesothelioma cases; the cases were classified as continuously or intermittently exposed to asbestos. The latency period from first exposure averaged 41 years; the shortest latency was associated with continuous exposure. Mesothelioma incidence was found to be correlated with both time from first exposure and occupation.

A nine year follow-up of men at Devonport dockyard was presented in 1980.^[121] In this Rossiter et al showed that despite the almost complete removal from exposure to asbestos in 1968, radiographic parenchymal abnormalities increased in a group of 253 workers initially seen in 1966 and followed for the next 9 years. Progression of disease was greater for smokers than nonsmokers. Also in 1980 Rossiter and Coles undertook a mortality study in Devonport dockyard.^[122] In this study highly elevated risks were observed for mesothelioma and pulmonary fibrosis, but no clear excess risk was present for lung cancer. As was mentioned in chapter 1 this was a very striking result, but not completely unexpected. The proportional mortality study of Harries in 1971 had already shown that there could well be only a negligible lung cancer risk at Devonport dockyard.^[110] These studies, and the questions arising from them, effectively form the foundation of this thesis.

In another follow-up study, this time at Devonport and Portsmouth dockyards, McMillan et al in 1980 reported on the attack rates of pulmonary and pleural lesions due to asbestos dust.^[123,124] The overall prevalence of asbestosrelated lesions was over 13% at both yards, the prevalence rate being higher for current and ex-smokers than for nonsmokers. McMillan and Rossiter continued this work at Devonport dockyard and reported in 1982 on the development of parenchymal fibrosis in men with pleural lesions.^[125] Here they concluded that the lesions may not be merely "markers" of previous asbestos exposure but may be identifiers of future parenchymal fibrosis.

McMillan in further work, at the Medical Research Unit of Devonport Dockyard over 1979-84, looked at the health of dockyard welders in relation to other trades, i.e. boilermakers, drillers, fitters, joiners, painters, plumbers and shipwrights. [126, 127, 128, 129, 130, 131, 132]

One of McMillan's conclusions was that there was no evidence of an association between shipyard exposure to welding fumes and gases and an increased risk of mortality due to respiratory diseases and gastrointestinal cancers. The risk of asbestos-related disease, apart from mesothelioma, among the welders being accredited to the heavy asbestos exposure during shipyard welding. It was shown that less than 1% of welders developed parenchymal fibrosis but that 13% had nonmalignant pleural lesions.

Wagner et al in 1986 reported on 333 necropsies on workers from Devonport dockyard.^[133] These had been collected from 1966 to 1982. An exposure rating based on each worker's occupation and the number of years employed was formed. Severity of asbestosis correlated with exposure rating and fibre count. The fibre counts of crocidolite and amosite fibres found in lung sections increased with severity of asbestosis, the counts for chrysotile remained constant. Mesothelioma was seen to occur in those with minimal or slight asbestosis and low exposure rating, pulmonary carcinoma with moderate to severe asbestosis and high

rating. It was concluded that amphibole lung content may be correlated with severity of asbestosis.

In summary by the 1980s it was seen that:

The prevalence of asbestos-related disease, particularly asbestosis and mesothelioma, was increasing in Royal Naval Dockyards.

Before the mid 1960s there was no suggestion of any type of pneumoconiosis occurring in these yards, due to the long latency of these diseases. This must have been the main reason why energetic preventive measures were not undertaken earlier.

By the 1980s sufficient time had elapsed for the effects of asbestos exposure to be seen in multiple diseases. This was aided by more intensive and improved medical investigations.

All of the studies in this section have shown that in Royal Naval Dockyards workers were exposed to asbestos, not only directly, but also by working in close proximity to other workers handling asbestos products. Before enforcement of the Code of Practice, those workers handling asbestos may well have used some form of respiratory protection and come under a limited medical supervision scheme, those working nearby were completely unprotected.

Since the 1980s the attention of the medical and scientific community has begun to focus more on the health effects of the asbestos replacement material, manmade mineral fibres. However, certain controversies concerning asbestos exposure still remain. Namely, is chrysotile asbestos less carcinogenic than the amphiboles, is lung cancer really only a complication of asbestosis, and is there a threshold dose below which asbestos is non-carcinogenic? These questions will be considered in the following section. The removal of asbestos from buildings insulated with asbestos material and the public's concern with possible environmental exposure will also be considered.

2.5 Current Concerns and Controversies in Asbestos Related Disease.

This section will consider the asbestos health related issues, debated in contemporary medical and scientific literature. It will focus on the concepts of cancer thresholds, linear dose-response relationships, the carcinogenic potential of different asbestos fibre types and dimensions. and the issue of fibrogenicity/carcinogenicity - which one comes first? It will consider the pros and cons of each side of the present debate. Specifically, the following questions will be addressed:

- 1. Is lung cancer a complication of pulmonary fibrosis (asbestosis), or a risk for exposed individuals with or without asbestosis? This question has been posed in many ways by researchers and linked with question two below. Browne in 1986 asked the question "is asbestos or asbestosis the cause of the increased risk of lung cancer in asbestos workers?"^[134] McDonald, at the 1991 British Occupational Hygiene Society Annual Conference, more directly asked "does asbestos cause lung cancer in the absence of fibrosis?"^[135]
- 2. Is there a threshold dose of asbestos exposure beneath which asbestos is non-carcinogenic, and is a linear dose-response relationship for lung cancer and mesothelioma realistic?
- 3. Is chrysotile asbestos less carcinogenic than the amphiboles? This question has sometimes been rephrased in the literature as "are the amphiboles alone responsible for asbestos disease risk" and termed the "amphibole hypothesis".^[136,137] The current debate concerns the contamination of chrysotile asbestos with fibrous tremolite and whether this is the cause of an increased lung cancer risk in textile plants, and a high rate of mesotheliomas in asbestos miners and millers.^[138]

Consideration will also be given to secondary questions, which concern smoking as a co-factor, and how the strikingly different dose-response gradients of risk observed, in the assorted asbestos trades and industries (over many studies), can be interpreted. High exposures to asbestos are clearly hazardous. The public controversy today concerns risk at low doses, and how large that risk is. The question arising from this is whether high occupational risks can be extrapolated to low public risks (the form of the dose-response relationship clearly has great importance in this question). An associated question commonly asked is; are we increasing exposure to the general public by improperly removing asbestos from buildings that is best left in place? This point will also be considered.

2.5.1 Background to the Controversies.

The link between asbestosis and lung cancer bears directly on the relationship between the amount of exposure to asbestos and risk of lung cancer (i.e. the dose-response relationship). At the low doses of exposure (below 0.001 fibres per millilitre of air) that are a public health issue today, there are no data that directly address this point, however, several possibilities exist. If asbestosis develops first (and then sharply increases the risk of lung cancer), the dose-response relationships for lung cancer and asbestosis should be similar. Many scientists now believe that exposures above a certain threshold are needed for asbestosis to develop, with 25 f/ml years being the best judgement of lifetime occupational exposure, below which clinical manifestations cannot advance.^[139,140] If lung cancer is directly connected to asbestosis, its risk should also be zero below some threshold of exposure. Conversely, if asbestos can cause lung cancer in the absence of asbestosis, an individual might incur some risk even at low levels of exposure.

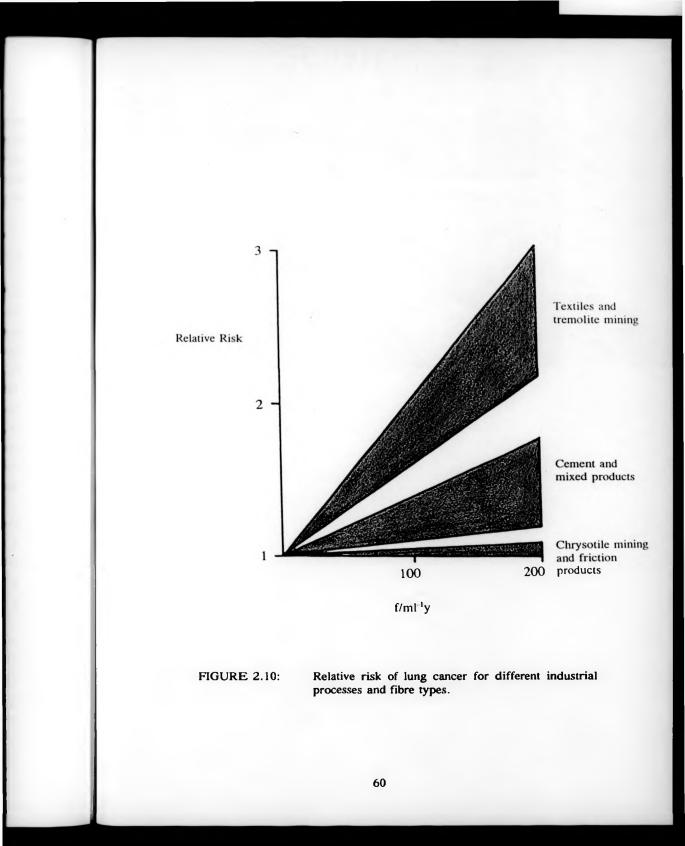
The relationship between asbestos dose and carcinogenic risk is clearly important. A linear relationship between dose and risk suggests that if the dose is halved, the risk is halved. This also implies that some risk remains, even at very low levels of asbestos exposure. In a nonlinear relationship, the risk may fall off faster at low doses, perhaps exhibiting a threshold exposure below which the risk is zero. Consequently, a linear dose-response relationship would imply higher (more conservative) levels of cancer risk at lower doses than a threshold or other nonlinear (perhaps sigmoid) model. For this reason alone the linear dose-response model has been supported by scientists and regulatory agencies.^[3,141] In 1984 the National Academy of Sciences concluded in a review document that although a linear dose-response assumption may not be always justified it should lead to an appropriate upper bound for risk assessments of asbestos.^[142]

Differences in lung cancer and mesothelioma risk have been shown with both fibre type and industrial process in numerous studies, and these studies have in turn been extensively reviewed.^[143,144,145,146,147,148] From these reviews, the overall influence of asbestos exposure on health is clearly very substantial. An indication of the extent of this influence is shown in table 2.7, which summarizes the results of the cohort studies considered by McDonald and McDonald in 1987.^[146,147]

Disease group	Chrysotile only	Amphiboles only	Chrysotile- amphibole mixtures
Pneumocontosis	83/4996	102/2008	254/6471
(taken from 21 studies)	1.7%	5, 1%	3.9%
Lung cancer	102/5827	137/2187	772/10882
(taken from 42 studies)	1.8%	6.3%	7.1%
Mesothelioma	12/5476	78/2187	422/10904
(taken from 40 studies)	0.2%	3.6%	3.9%
Total excess	3.6%	14.9%	14.9%

TABLE 2.7^{*}. Excess mortality in cohorts exposed to asbestos.

Each cell in this table shows the excess number of deaths for each disease group divided by the total number of deaths, with the proportional mortality expressed below. This meta-analysis shows that even without data on age, sex, smoking and


Adapted from: McDonald JC (1990) "Cancer risks due to asbestos and man-made fibres" Recent Results in Cancer Research 120:122-131.

asbestos exposure intensity there is a consistent pattern of mortality across asbestos fibre grouping. The excess mortality of cohorts exposed to the amphiboles and chrysotile-amphibole mixtures appears similar but several times worse than those exposed to chrysotile alone. This large difference is partly explained by the rarity of mesothelioma in the chrysotile only cohorts.

2.5.2 Different Dose-Response Gradients.

As cited by McDonald in 1990, a more reliable indication of risk would be obtained from those studies that have attempted to estimate individual asbestos exposures in terms of intensity and duration.^[149] When considering only lung cancer, this reduced the number of cohorts from those seen in the meta-analysis to 11 industrial populations presented by McDonald and McDonald in 1987.^[147] Table 2.8 and figure 2.10 are taken from this publication. The exposure estimates from these studies were, however, considered to be usually scanty and inadequate in quality and little more than informed guesses.^[147,149] There was also the associated problem of conversion from total respirable dust particles to fibre concentrations, considered problematic at best, with no one simple conversion factor.^[144]

From the review of McDonald and McDonald, summarized by table 2.8 and figure 2.10, two features are evident. The first is that the exposure-response relationships appear linear and, if expressed as relative risks, pass through the origin. The second feature is that the gradients vary greatly with industrial process and fibre type. The risk of lung cancer from chrysotile exposure is seen to be far greater in the manufacture of textiles than in cement or friction products manufacture. Similarly, a difference of equal magnitude is exhibited between miners and millers of chrysotile and miners and millers exposed to tremolite. There were too few female lung cancer cases (23 over three industrial cohorts) to allow any interpretation. Although the relationships for mesothelioma were not as well quantified, higher risks were also observed in the same type of industry (e.g. mining, textiles and cement plants) when exposure included amphibole fibres rather than chrysotile alone.^[146]

Reference	Place	fibre	Lung cancer deaths	Increase in relative risk risk per f/ml ⁻¹ year
Mining and milling				
McDonald et al, 1979 [150]	Quebec	Chrysotile	230	0.0004
Amandus et al, 1987 [151]	Montana	Tremolite	20	0.006
McDonald et al, 1986 [152]	Montana	Tremolite		0.01
Textiles				
Dement et al, 1982 [153]	South Carolina	Chrysotile	26	0.01
McDonald et al, 1983 [154]	South Carolina	Chrysotile	59	0.01
McDonald et al, 1983 [155]	Pennsylvania	Mixed	53	0.0009
Peto et al. 1985 [156]	Rochdale	Mixed	93	0.01
Building materials				
Henderson and Enterline, 1979 [157]	USA	Mixed	63	0.001
Hughes and Waill,	Louisiana	Mixed	51	0.004
1980 [158]				
Finkelstein, 1984 [159]	Ontario	Mixed	26	not linear
Albin et al, 1984 [160]	Sweden	Mixed	16	not linear
Friction_products				
Berry and Newhouse, 1983 [161]	UK	M1xed	143	effectively zero
McDonald et al, 1984 [162]	Connecticut	Chrysotile	73	effectively zero

TABLE 2.8: Cohort studies with individual estimates of accumulated exposure for male workers.

For lung cancer the picture seen in figure 2.10 had lead Liddell et al earlier to conclude, for the Quebec study, that "there was a clear direct relationship, which may well be linear, between excess lung cancer mortality and total dust exposure".^[163] This conclusion was for workplace exposures with little thought given to possible future extrapolations to the very low levels of airborne asbestos fibre concentration experienced by the general public, or as Gaensler termed in 1992 to the following "pandemic of mediagenic disease".^[164]

When considering asbestos friction product manufacture, table 2.8 highlights a remarkable finding. Although environmental measurements were similar in order of magnitude to those in the chrysotile textile plants, there was little if any convincing evidence of excess lung cancer in either the USA or UK cohorts. Also, the exposures classified as mixed for the study of Berry and Newhouse, in

fact consisted entirely of chrysotile asbestos, except for one well-defined work area were crocidolite asbestos was used for two short periods before 1944.^[161] In a follow-up study at this factory Newhouse and Sullivan in 1989 reported on 13 mesothelioma deaths, 11 of which occurred to workers known to have been exposed to crocidolite in this work area.^[165] No excess risk was observed for lung cancer in the workers followed-up from 1941 to 1986, and it was reported that since 1950 the asbestos fibre concentrations in air were maintained at between 0.5 and 1.0 f/ml.

Nicholson in 1986 showed, in a report to the EPA, that risk estimates for lung cancer derived from 14 asbestos-exposed cohorts varied by approximately two orders of magnitude.^[145] This in part could reflect statistical variation, differences in hazards associated with different fibre types and dimensions, inaccuracies in exposure estimates, and/or the use of inappropriate lung cancer rates in calculating standardized mortality ratios. Nonetheless, wide variation was seen in the fractional increased risk of lung cancer for a one year exposure to one fibre per millilitre in all fibre groups (see figure 2.11). This report substantially covered the same ground as the review of McDonald; 10 of the 14 studies were also reviewed by McDonald. The EPA report, however, also included a separate section on insulation workers exposed to amosite asbestos.

In figure 2.11, considering chrysotile exposure, the highest unit exposure risk was found among workers in a textile plant that used chrysotile whereas the lowest risk was observed among chrysotile mine and mill workers; matching the pattern observed in figure 2.10. It was suggested that these differences may be related to differences found in the fibre size distributions (fibres being longer and more curly in mining and milling), and that fibre length and diameter strongly influences the potential for fibres to produce lung cancer.^[145,162,166] A further unsubstantiated suggestion has been that the high lung cancer rates seen in American textile plants were related to the use of a co-carcinogen, mineral oil spray that was used in these plants over a 30 year period to reduce airborne dust levels.^[167] A further observation was that tremolite asbestos contaminated the

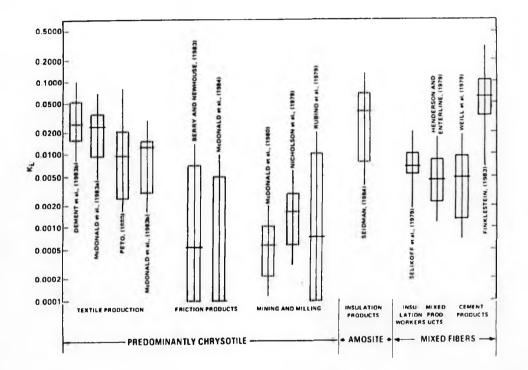


FIGURE 2.11: Values of K_L , the fractional increase in lung cancer per f-y/ml of exposure. The open bar reflects the estimated 95% confidence limits associated with measures of response. The line represents the uncertainties associated with measures of exposure.

63

chrysotile asbestos used in these plants, with the suggestion that this may be partially responsible for the high lung cancer risk.^[167] Figure 2.11 shows 95% confidence limits for the unit exposure and indicates that there are highly significant differences between the different estimates. Nicholson pointed out "that differences between studies using the same fibre type far exceed those that exist between studies using different fibres".

The review of Nicholson, therefore, attempted a formal analysis of the variation seen between the different cohorts. It presented explicit confidence intervals for each estimate K_L , the fractional increase in lung cancer per fibre-year/ml of exposure, allowing for statistical variation and assuming a two-fold uncertainty in exposure estimates. In some cohorts, adjustments were made for suspected biases (i.e. the use of inappropriate lung cancer rates). When excluding the significantly lower risks per unit exposure for chrysotile mining and milling this analysis gave a geometric mean for K_L of 0.01, with an associated 95% confidence interval of 0.004 to 0.027 (i.e. approximately a factor of 2.5). This was based on an analysis of variance of 11 separate estimates. Nicholson estimated that the factor would be approximately 10 (i.e. a 10-fold range of uncertainty) for any unstudied exposure circumstance, with the proviso that it may be greater.

The only study to have a significantly higher unit risk than 0.01, in the 11 studies used in its estimation, was the Ontario asbestos cement products factory reported on by Finkelstein; a study considered to have questionable exposure estimates.^[145] Nicholson observed that the data illustrated in figure 2.11 provides no evidence of a substantially different lung cancer unit exposure risk among different fibre types (after excluding studies of chrysotile miners and millers).

Data presented on the unit risk for mesothelioma (K_{μ}) closely parallelled that found for lung cancer; very similar ratios of the unit exposure risks of mesothelioma and lung cancer were observed irrespective of the type of exposure experienced (although the magnitude of these varied greatly across fibre grouping). Suggesting that similar factors affect the variability of mesothelioma risk as affect lung cancer risk. The best estimate for K_{μ} was found to be 1.0 x 10⁻⁸, with a 20fold range of uncertainty. Nicholson noted that peritoneal mesothelioma was largely associated with amphibole exposure, whereas pleural mesothelioma was associated with exposure to chrysotile and crocidolite. Doll and Peto in their 1985 review concluded that peritoneal mesotheliorna is rarely or never caused by chrysotile exposure, and that crocidolite and amosite are more dangerous (fibre types) than chrysotile when used in the same way.^[144]

From the 1991 review undertaken by the Health Effects Institute (HEI) the clearest difference between the effects of different fibre types is seen in the proportion of mesotheliomas that are present in the peritoneum.^[148] Almost all cases among chrysotile workers (usually with some exposure to crocidolite or tremolite) or among crocidolite miners are pleural, whereas workers with some amosite exposure have suffered similar and sometimes higher risks of peritoneal than pleural mesothelioma. The only exception appears to be female gas mask workers exposed mainly to crocidolite, among whom several mesotheliomas were peritoneal. [168, 169, 170] The possibility of some amosite exposure in these workers was not discussed by the authors of these reports. The inference is that most peritoneal mesotheliomas are caused by amosite exposure. For pleural mesothelioma a direct comparison was undertaken of workers employed for similar durations to different forms of asbestos in varying asbestos industries. This comparison displayed evidence of a higher risk for amphiboles than for chrysotile, supporting the conclusion of Doll and Peto.

There are marked differences between cohorts in the ratio of excess lung cancer to pleural mesothelioma.^[144] The lowest reported ratio based on substantial numbers of mesothelioma cases occurred in British Dockyard workers exposed to a mixture of asbestos types.^[122] This was the study of Rossiter and Coles at Devonport Dockyard, reporting a high mesothelioma risk with no corresponding excess of lung cancer, which was the foundation of this thesis. The highest occurred at a South Carolina chrysotile textile plant were there was a marked excess of lung cancer and no pleural mesothelioma.^[153,154] These data have been almost universally accepted as demonstrating that amphiboles, particularly crocidolite, cause a disproportionate mesothelioma risk.

Both Doll and Peto, and Nicholson showed that among men the ratio of excess lung cancer to pleural mesothelioma is approximately three times greater for chrysotile than crocidolite, varying from at least four for chrysotile to between one and two for crocidolite, with substantially lower ratios for women. It should be noted, however, that such pooling of often inconsistent cohort data is of dubious value. In fact, it conceals the most extreme inconsistencies, most notably the marked excess of mesothelioma without any detectable excess of lung cancer observed among British Dockyard workers, and in the subgroup of friction product workers with crocidolite exposure studied by Newhouse.^[122,161,165]

The opposite view is that nearly all mesotheliomas are caused by amphibole exposure and that chrysotile causes a negligible mesothelioma risk. The only strong evidence against the inference that mesothelioma is almost never caused by chrysotile alone is the observation of substantial numbers of cases among Quebec chrysotile miners and millers. It has, however, been suggested that these are related to the presence of fibrous tremolite in the raw material.^[136,171] Tremolite was found to compose less than 1% of the raw fibre but more than half of the long fibres (> 5µm) found in the lung tissue of workers at autopsy.^[167] Similarly, high levels of crocidolite were found in lung tissue from British textile workers who were exposed mainly to chrysotile but suffered a high incidence of mesothelioma.^[172] The evidence that chrysotile rarely causes pleural mesothelioma is consequently consistent but not conclusive.

2.5.3 Smoking as a co-factor.

Any discussion of dose-response relationships for asbestos and cancer is complicated by the fact that asbestos seems to exert its effect synergistically with cigarette smoke, that is, the cancer risk is more than that from asbestos exposure and smoking considered separately. The usual reference for this is the 1979 study of insulation workers undertaken by Harnmond et al.^[58] Table 2.9 is adapted from that study. A further complication is that from the numerous asbestos studies appraised above most considered only male workers employed initially over the period 1940 - 1960, a time when male industrial workers were known to be cigarette smokers. Therefore, the number of asbestos workers with lung cancer who had never smoked in these cohorts is small and their smoking histories very uncertain.

TABLE 2.9: Risks of lung cancer caused by asbestos exposure and smoking (multiplicative relationship).

Asbestos/smoking group	Death rate*	Mortality difference	Mortality ratio	Predictive equation
Nonsmoker, non asbestos exposed	11.3	0.0	1,00	1
Nonsmoker, asbestos exposed	58.4	47.1	5.17	5
Smoker, non asbestos exposed	122.6	111.3	10.85	11
Smoker, asbestos exposed	601.6	590.3	53.24	55

* rate per 100,000 person years

The third column of table 2.9 records the mortality ratios (i.e. the relative risks) of asbestos exposure with and without smoking. Based on this, Hammond et al suggested that the risks of asbestos and cigarette smoking combine in a multiplicative fashion. In fact the relative risks can be simplified to the following expression:

Relative Risk = (1 + a)(1 + c) = 1 + a + c + ac.

Where *a* and *c* represent asbestos exposure and cigarette smoking and the term *ac* the synergistic effect between smoking and asbestos (a = 4, c = 10). Therefore, compared with a nonsmoker with no asbestos exposure, a smoker has a 11-fold higher risk for lung cancer, a nonsmoking asbestos worker has a 5-fold higher risk, and a smoker with asbestos exposure has a 55-fold higher risk. The results of this predictive equation agree remarkably well with the data (table 2.9). No other study has produced such a good fit to an equation like this that includes a multiplicative term. By contrast, McDonald in 1980 found something closer to an additive effect, in which the relative risk is close to the sum of risks from smoking and asbestos considered separately (table 2.10).^[173]

TABLE 2.10:	Risks of	lung	cancer	caused	by	asbestos	exposure	and
	smoking	(additi	ve relati	onship).				

Smoking group	Asb	8	
	Little	Moderate	Неа∨у
Nonsmokers Moderate smokers Heavy smokers	1.0 6.3 11.8	2.0 7.5 13.3	6.9 12.8 25.0

Berry et al in 1985 pooled the results from 6 cohort studies (table 2.11) and expressed the relative asbestos effect (the ratio of the relative risk in nonsmokers to smokers) for each.^[174] Except the study of Quebec miners and millers expected numbers of cases in smokers and nonsmokers were obtained from data outside the cohort database. For the three American studies this was obtained from samples matched for education and occupation from data collected by the American Cancer Society. For the remaining UK studies it was obtained from the results of Doll on lung cancer in British doctors.

From table 2.11 a multiplicative relationship between smoking and asbestos exposure is seen when the 95% confidence interval is significantly greater than one. Therefore, a multiplicative interaction is detected by this method only for

Where a and c represent asbestos exposure and cigarette smoking and the term ac the synergistic effect between smoking and asbestos (a = 4, c = 10). Therefore, compared with a nonsmoker with no asbestos exposure, a smoker has a 11-fold higher risk for lung cancer, a nonsmoking asbestos worker has a 5-fold higher risk, and a smoker with asbestos exposure has a 55-fold higher risk. The results of this predictive equation agree remarkably well with the data (table 2.9). No other study has produced such a good fit to an equation like this that includes a multiplicative term. By contrast, McDonald in 1980 found something closer to an additive effect, in which the relative risk is close to the sum of risks from smoking and asbestos considered separately (table 2.10).^[173]

TABLE 2.10:

Risks of lung cancer caused by asbestos exposure and smoking (additive relationship).

Smoking group	Asb	estos exposure	8
	Little	Moderate	Heavy
Nonsmokers	1.0	2.0	6.9
Moderate smokers	6.3	7.5	12.8
Heavy smokers	11.8	13.3	25.0

Berry et al in 1985 pooled the results from 6 cohort studies (table 2.11) and expressed the relative asbestos effect (the ratio of the relative risk in nonsmokers to smokers) for each.^[174] Except the study of Quebec miners and millers expected numbers of cases in smokers and nonsmokers were obtained from data outside the cohort database. For the three American studies this was obtained from samples matched for education and occupation from data collected by the American Cancer Society. For the remaining UK studies it was obtained from the results of Doll on lung cancer in British doctors.

From table 2.11 a multiplicative relationship between smoking and asbestos exposure is seen when the 95% confidence interval is significantly greater than one. Therefore, a multiplicative interaction is detected by this method only for

which is directly cytotoxic, effectively absorbs hydrocarbons and this probably accounts for the higher (multiplicative) risk of lung cancer in individuals who have histories of asbestos and cigarette smoking.^[176] Antman additionally speculated that the lack of any relationship between cigarette smoking and malignant mesothelioma most likely reflects the earlier development and death from lung cancer in smokers, removing them from the risk pool for mesothelioma. An alternative, and more reasonable explanation, is that translocation may move fibres, but not the hydrocarbons.

When considering the probability of causation (i.e. the probability that asbestos caused any particular case of mesothelioma or lung cancer) the following appears to be the case for mesothelioma and lung cancer:

For mesothelioma, which is so rare that whenever it develops in an exposed individual the cause is usually assumed to be asbestos, asbestos appears to be the causative factor. Against this hypothesis, however, are cases of mesothelioma and lung cancer occurring in a Turkish village attributed to exposure to erionite, a locally obtained fibre used in building materials.^[177] Also against this argument are the cases of spontaneous mesothelioma occurring in the general public (i.e. the background level of mesothelioma). Pelnar in 1988 reviewed cases of nonasbestos related mesothelioma; in this work spontaneously occurring mesothelioma included mesotheliomas of the tunica vaginalis testis, pericardium, anterior mediastinum, and myocardium.^[178] It was also noted that the Salk polio vaccine, used by injection in the early 1960s, was contaminated with the SV40 virus, a virus that was shown to cause mesothelioma in laboratory animals. It was pointed out by McDonald in 1985 that the background level of mesothelioma incidence (non-asbestos related) was approximately 2 cases per million, supporting the argument that mesothelioma is a rare disease despite the SV40 virus and the more spontaneous forms of mesothelioma.^[179]

Lung cancer is more difficult to attribute simply to asbestos because of the strong synergistic relationship between asbestos and smoking. Lung cancer in a

nonsmoker would normally be attributed to asbestos when there is a history of asbestos exposure. With smokers the situation is not as clear. A nonsmoker exposed to asbestos is less at risk of lung cancer than a smoker with no exposure to asbestos. The inference from this is that smoking is the main causative factor, however, the combined risks of smoking and asbestos exposure far exceed those of smoking alone (by a factor of 5). Sound public health practice, whatever the form of the smoking/asbestos interaction, is accordingly to advise asbestos-exposed individuals not to smoke.

2.5.4 Fibre Dimensions.

Considering now the dimensions of the asbestos fibre, and the associated question of what are the critical fibre dimensions for carcinogenicity? The original fibre size, for regulatory purposes^{*}, was set long before there was any consensus on biologically critical sizes and was based on the use of the membrane filter and light microscope methods. Each of the asbestos fibre types appears to possess its own size range in airborne and tissue evaluations with amosite fibres generally being the thickest in diameter followed by crocidolite and then chrysotile (the finest).^[180, 181] Industrial hygienists currently classify fibres of asbestos as fibres that are greater than 5 microns (5 μ m) in length with a diameter greater than $0.25\mu m$ having an aspect ratio (length/diameter) greater than 3:1. This classification is often used to evaluate whether fibres are possibly carcinogenic (those longer than 5μ m are commonly taken as effective carcinogens). Generally, shorter fibres are considered less effective per fibre than long fibres (>5 μ m) because the macrophages, the white blood cells, can envelop and remove these but not the long fibres.

The original regulatory fibre size for asbestos fibres was: fibres with a minimum length of 5μ m, a diameter less than 3μ m, and a length to diameter ratio greater than 3:1. The HSE regulatory document was MDHS 39 issued in 1984, superseded in 1988 by MDHS 39/2, and finally superseded in 1990 by MDHS 39/3.^[182,183,184]

Lippmann has comprehensively reviewed the available hygiene and medical data and concluded that fibres of different shapes and sizes cause different diseases, dependant on a certain critical minimum length that varies with disease.^[185,186] This length was stated to be 2μ m for asbestosis, 5μ m for mesothelioma, and 10μ m for lung cancer. For asbestosis and lung cancer, where the fibres must be retained in the lungs, fibres with a diameter less than 0.15μ m appeared to pose no risk; for mesothelioma the hazard seemed linked to diameters finer than 0.5μ m. These conclusions on the biologically critical size of asbestos fibres support the regulatory guidelines that fibres longer than 5 μ m are effective carcinogens, however, they have not been conclusively established. McDonald et al in 1989 performed an autopsy study on 78 mesothelioma cases and matched controls.^[187] In this study it was observed that long amphibole fibres ($\geq 8\mu$ m) differentiated effectively between cases and controls, whereas no difference was observed for chrysotile or short fibres. Suggesting here a minimum critical fibre length for mesothelioma of 8μ m.

It seems very probable that the proportion of airborne or tissue fibres of different size will vary with the origin and treatment of the asbestos, whether it is being mined or milled, and what it is being used to manufacture. As previously mentioned it is also probable that the physical attributes of the varying fibre types and their dimensions may control their carcinogenic potential.^[144, 162] The debate being that the curlier chrysotile fibres found in mining and milling are less carcinogenic than the chrysotile fibres found in textile factories (these in turn being less carcinogenic than the sharper amphiboles), curlier fibres being more easily cleared from the upper bronchus. Timbrell showed that chrysotile fibres have a large effective diameter because of their curliness and so tend to be intercepted and deposited at the bifurcations of airways before they penetrate lung tissue.^[188] Against this hypothesis are animal studies which show that chrysotile is more harmful than the amphiboles.^[189,190] The inference is that in humans, because of their longer life span, chrysotile fibres are removed from the lungs before disease can develop. Clearly fibres dissolve according to chronological time, but interactions with cells occur in relation to biological time,

two very different time scales. Using life span as an index, human biological time runs approximately 30 times slower than that of a rat.

In all considerations of lung fibre dimension and burden the carcinogenic mechanism is important. If asbestos fibres are primary carcinogens, then retention is important. If they transport chemical carcinogens or activate some latent virus, then fibre retention may not be relevant. Whatever the case it may still be speculated that fibre type and dimension play a part in explaining the variable dose-response gradients seen across the numerous asbestos cohorts.

2.5.5 Low Level Environmental Exposure.

With respect to low level environmental asbestos exposure the 1991 review undertaken by the Health Effects Institute compiled the available American nonlitigation data, both published and unpublished.^[148] From this the concentrations of asbestos fibres longer than 5μ m generally showed average concentrations in the order of 0.00001 f/ml for outdoor rural air (except near asbestos containing rock outcroppings) and average concentrations up to 10-fold higher in the outdoor air of urban environments. However, outdoor urban average concentrations above 0.0001 f/ml were reported close to major roads (presumably due to vehicle braking) and near building demolitions. Data on ambient indoor levels of asbestos from direct transmission electron microscopy measurements were averaged from a number of buildings and building types (see figure 2.12). From 1,377 air samples (obtained from 197 buildings) the overall average concentrations (by building type) ranged from 0.00019 to 0.00051 f/ml. The overall recommendation from this was that asbestos containing materials in well-maintained buildings are unlikely to expose office workers and other general building occupants to toxic levels of asbestos fibre concentration, with the suggestion that it was better not to remove such material. This review felt that exposure to radon and environmental tobacco smoke was more of a health threat.

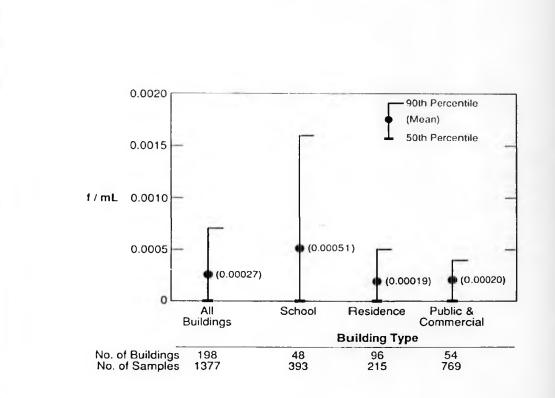


FIGURE 2.12: Summary of average airborne asbestos fibre concentrations in public and commercial buildings.

Burdett et al in 1989 had undertaken a similar summary of UK buildings.^[191] The data supported the above recommendation, with indoor asbestos concentrations in the same range for well-maintained buildings (<0.001 f/ml). However, it was observed that after asbestos had been removed from buildings the average airborne concentrations increased for several months after removal. In certain cases the airborne levels were approximately 40 times higher than normal background levels 6 months after removal (figure 2.13). The authors concluded that the management (in place) of undamaged asbestos material may be preferable to large scale removal projects. In which case it would be unlikely that levels would exceed 0.0005 f/ml in normal occupancy. This view has wide support, with large scale removal seeming to give more risk from increased exposure. Peto addressing environmental health students in April 1994, theorised that among construction workers exposed to asbestos during removal operations the risk would eventually materialise in higher mesothelioma mortality rates.^[192]

These low level environmental exposure ranges should be placed in context, table 2.12 attempts this. From this table typical average exposure ranges are illustrated for various settings with a crude ranking of exposure (taking building occupancy exposures as the baseline measure). From this we can see that past occupational exposures carried a very high risk when compared to present day general public exposures. The present day exposures being in the order of 4×10^{-6} smaller than dockyard and insulation exposures and 3×10^{-5} less than those seen in textile factories, mining and milling, and asbestos cement manufacture. The data taken from Burdett et al support Peto's theory showing that construction workers may well face an elevated risk of asbestos-related disease.^[191] In Third World countries strip mining and milling of asbestos continues unabated (particularly in South America and India) with limited control measures and not surprisingly an increasing risk of asbestos-related disease matching that seen in industrialized countries 20 years ago.^[193,194]

FIGURE 2.13:

Outside an enclosure while removal was taking place.

2 weeks after removal, no disturbance.

35 weeks after removal.

refurbishment.

building.

Average TEM concentrations of asbestos fibres $(>5\mu m)$ before, during and after an asbestos removal programme at a six-storey school building.

Average concentration of asbestos fibres (f/ml)

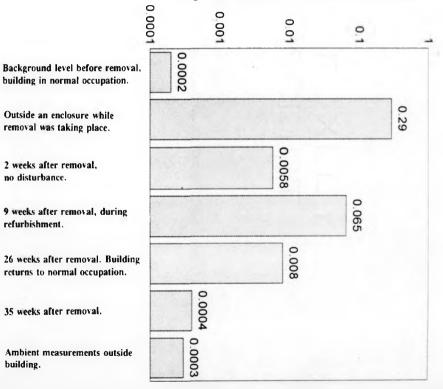


TABLE 2.12:

Potential asbestos exposure ranges.

Occupational satting	Average exposure f/m1	Exposure ranking
Building in normal occupation	<0.001	1
Construction workers (during asbestos removal, from figure 2.13)	0.29	290
Historical and potentially present		
Third World exposures:		
Asbestos miners and millers	4-50	27000
Textile workers	30	30000
Asbestos cement workers	6-60	33000
Dockyard workers	10-500	255000
Insulation workers	50 - 500	275000

Peto in 1989 predicted that for an average fibre concentration of 0.001 f/ml the life long risk is of the order of 1 in 100,000 for 10 years building occupancy.^[195] The number of individuals exposed to this level of airborne asbestos are unknown. However, Peto assumed that 1 in 5 of the population are exposed and concluded that this would imply approximately one death per year in the UK, 5 per year in the USA, or correspond to an average loss of expected life of about 15 minutes. For comparison, more than 100 deaths occur in the city of Leeds each year due to transport accidents.^[196] Peto's calculation would imply that low level environmental asbestos exposure with concentrations less than 0.001 f/ml presents a negligible public risk. It should be noted that asbestos concentrations in buildings, except during asbestos removal, are seldom much higher than concentrations in the air outside and that much of this small risk is related to the entry of outdoor fibres into the buildings with the ventilation air. The risk estimate would obviously increase when removal activity increases cumulative doses to both workers and occupants (and for individuals involved in other asbestos work). Peto concluded that the campaign to eliminate all asbestos on the grounds that 'one fibre can kill', besides being a cost-benefit absurdity, may actually increase the public risk.

2.5.6 The Principal Controversies.

In this section I will consider the arguments both for and against each of the principal asbestos controversies.

Controversy 1 concerns the possibly that lung cancer occurs in asbestos exposed workers as a complication of asbestos-induced fibrosis and not as a primary pathologic event. The issue could further be stated as whether fibrogenesis plays a role in carcinogenesis independent of exposure dose? The question addressed here, however, is:

Is lung cancer a complication of asbestosis, or a risk for exposed individuals with or without this disease?

When considering disease prevention, if lung cancer risk was simply limited to those individuals with asbestosis then primary and secondary prevention of lung cancer could be obtained by both preventing sufficient exposure to induce fibrosis (assuming a threshold level exists for asbestosis) and then by focusing on those who have (or have a chance of developing) asbestosis. If pulmonary fibrosis is not the root cause of lung cancer, then the shape of the lung cancer dose-response relationship (whether linear or sigmoid, etc.) clearly becomes more significant and its implications applied to a larger population of exposed individuals both with and without non-malignant pulmonary disease.

The arguments that have been presented in support of lung cancer being a complication of asbestosis are as follows:

In laboratory inhalation experiments close relationships have been observed between the degree of asbestosis and the incidence of lung tumours in animals exposed to asbestos.^[187,197,198,199] Also in laboratory experiments, asbestos fibres do not appear to be cancer initiators in any of the standard in vitro tests suggesting an alternate route for the observed in vivo carcinogenesis.^[200,201,202,203] In one of the largest and most detailed of the published asbestos cohort studies (the Quebec chrysotile miners and millers) most of the lung cancers occurred in a subgroup of individuals with prior radiographic evidence of asbestosis.^[204] The study of Louisiana asbestos cement product workers, though much smaller, supports this finding.^[158,205] When reviewing the published mortality data from the remaining asbestos cohort studies (including those without exposure-dose data) a close association is observed between the relative risks of lung cancer and non-malignant respiratory disease.^[3,139,143,144,145,148]

Lung cancers in asbestos exposed workers are seen to frequently originate in the lower lobes; since the interstitial fibrosis of asbestosis normally begins in the lower lobes an aetiological connection suggested. [134, 206, 207, 208, 209, 210] An excess of adenocarcinomas (the cell variant bearing the least relation to smoking) has also been observed in subjects with confirmed asbestosis, suggesting a potential mechanistic relationship.^[207,208,211] Certain other fibrotic lung diseases unrelated to asbestos (e.g. idiopathic pulmonary fibrosis) are associated with interstitial pneumonitis (the typical pathologic lesion in asbestosis) and are also associated with an increased risk of lung cancer. [212,213,214] This may imply that the lesion, not asbestos fibres, is the basis of succeeding lung cancers.

The arguments against lung cancer being a complication of asbestosis are as follows:

Asbestos fibres are not seen to have tumour-initiating properties in standard laboratory tests, but experimental animal models have demonstrated an in vitro tumour-promoting effect.^[215,216,217] These have included direct fibre acceleration of squamous metaplasia and intracellular fibre-born delivery of polyaromatic hydrocarbons. These models would support a theoretical mechanism for asbestos carcinogenesis independent of any fibrogenic effect.

Lung cancers appear to occur in excess in heavily exposed individuals without clinical or pathologic evidence of asbestosis; giving no support to the argument that lung cancer is simply a complication of fibrosis.^{(172,218]}

In the Quebec chrysotile miners and millers study a limited amount of the excess lung cancer mortality occurred in individuals without prior

radiological evidence of asbestosis.^[204] In the study of American friction products workers exposed to chrysotile asbestos (undertaken by the same research team as the Quebec project, viz. Professors JC McDonald and AD McDonald) it was further suggested that asbestos may be a complete carcinogen for mesothelial cells but only a promoter for bronchial cells.^[162] A study of short term American amosite insulation workers also displayed a clear excess of lung cancer in workers with no demonstrable mortality from asbestosis.^[219] In this study it was also concluded that asbestos acts as a classical tumour promoter (requiring earlier interaction with an initiator before malignant change can take place).

With the reported excess of adenocarcinomas in subjects with asbestosis, squamous cell tumours have also been observed in asbestos exposed workers.^[218,220] It is therefore likely that the phenomenon of adenocarcinoma being secondary to asbestosis would explain only a relatively small portion of the total cancer burden associated with asbestos exposure.

Finally, the multiplicative relationship between asbestos and tobacco is hard to equate with the view that fibrosis, which if at all, is only minimally related to smoking, is the primary pre-neoplastic lesion.

From these arguments the current data clearly supports the idea of a close biological relationship existing between these two respiratory tract toxicities of asbestos. However, the evidence that asbestosis is a required precursor to lung cancer remains at best unclear (there appears to be equally good evidence to both support and reject this hypothesis). It consequently remains plausible that asbestos could be carcinogenic without the interposition of asbestosis. From the available data a simple inference could be that where fibrogenic dust goes so goes carcinogenic dust. From this if it is assumed that the risk of asbestosis increases with increasing total dose of asbestos it cannot be firmly established whether an increase in lung cancer risk is due to cumulative asbestos exposure or the asbestosis itself. Because the effects of asbestos exposure combined with smoking increase the risk, any assessment of lung cancer risk must allow for smoking habits of the asbestos workers and comparisons. Until this is done the influence of asbestosis on the risk of developing lung cancer cannot be clearly established. Finally the question "Is it statistical?", meaning is this controversy really a

statistical artefact (as it is very difficult to disentangle the causation from the association, when lung cancer has a number of causes) will also need to be addressed.

Controversy 2 concerns the likelihood of there being a threshold dose of asbestos below which there is no carcinogenic effect. This is a question of great importance, particularly to regulatory agencies. If a threshold can be shown for individuals occupationally exposed to asbestos then most of the anxieties about current environmental exposures are misplaced. Current environmental exposures are many orders of magnitude less then past occupational exposures and the anxieties are concerned with extrapolations of the linear dose-response model to these low levels, and the associated 'one fibre can kill' theory. Conversely, if a threshold does not exist then this would be evidence against the idea that asbestosis is a prerequisite for the development of lung cancer (again assuming that asbestosis itself requires some minimal threshold dose). The question addressed here then is:

Is there a threshold dose of asbestos exposure beneath which asbestos is non-carcinogenic, and is a linear dose-response relationship for lung cancer and mesothelioma realistic?

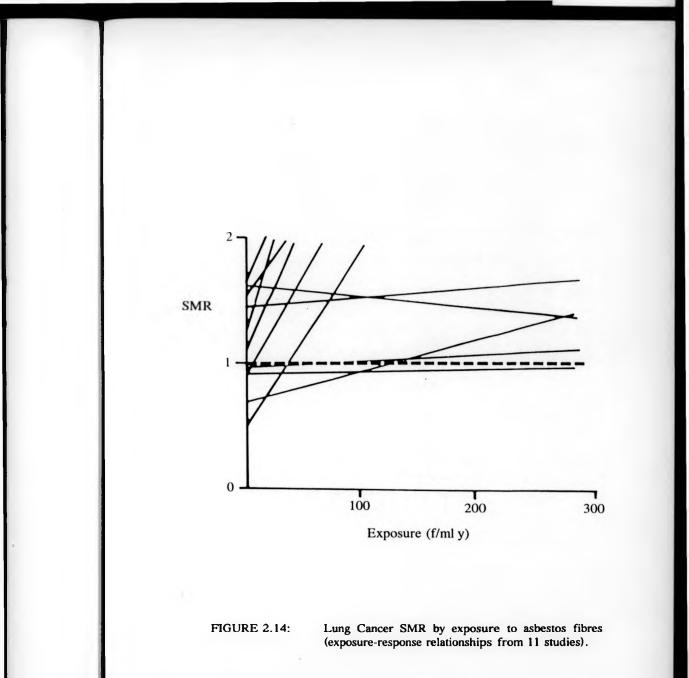
The arguments that have been presented in support of a threshold for lung cancer are as follows:

If lung cancer is a complication of asbestosis (despite the arguments presented above), then the evidence that induction of asbestosis requires at least some minimum threshold dose of exposure would be prima facie evidence for a cancer threshold as well.

Reviewing the published asbestos studies that provided information on individual duration and intensity of exposure revealed evidence of a threshold of exposure below which the risk of lung cancer does not appear to be raised.^[221] Of the studies reviewed the study of UK friction product workers failed to show a significant excess at any measured dose,

and several other studies in dockyards and asbestos cement factories showed no excess cancers despite other asbestos-related effects. ^[122,161,165,222,223,224,225] One well-studied general population, non-mining residents of Quebec asbestos mining regions, has been shown to have higher than normal ambient exposures to asbestos but with no suggestion of an increased cancer risk. ^[180,226,227] This would suggest a possible threshold effect in these settings.

A linear dose-response relationship is used by many regulatory agencies. Unfortunately, the inaccuracies in exposure estimates will tend to smooth curves and obscure thresholds, making a threshold response appear linear.^[221,228]


Asbestos fibres do not appear to be tumour initiators.^[200,201,202,203] Consequently there is no compelling theoretical reason for assuming absence of a threshold. In animal experiments spontaneous lung neoplasms periodically develop.^[190,199,208] The carcinogenic response to low dose exposures in the laboratory has accordingly not been positive, giving some support to the idea of a dose threshold.

It is difficult to believe that the physiological defence and repair mechanisms are without effect. Such mechanisms must surely prevent or reduce disease at low dust concentrations generating an effective threshold.

The arguments against a dose threshold are:

In the cohort mortality studies with dose information showing possible threshold levels, a linear dose-response has nevertheless also been demonstrated suggesting perhaps that methodological problems and not biological discontinuities are the reason for the apparent threshold observed. In particular, errors and bias in exposure assessment and in death certification may obscure excesses in the least exposed subjects.

In the 11 asbestos studies reviewed by McDonald and McDonald in 1987 there is no clear evidence of a single potential threshold level.^[147] Figure 2.14 illustrates the problem of detecting whether the 11 fitted dose-response lines show evidence of a threshold. Mortality ratios at zero exposure range from approximately 0.5 to 1.5, none passing through the origin. The explanation for this is presumably the incomparability of the reference populations.^[149]

In two asbestos cohorts with steep linear dose-response gradients (the chrysotile textile workers studied by Dement and the amosite insulation workers studied by Selikoff), workers with very low exposure (less than 5 f/ml years in one, and less than 1 month exposure in the other) had an increased cancer risk.^[153,219,229] These studies and a further study of Australian crocidolite miners where asbestosis occurred at very low levels of exposure, therefore, produced evidence in favour of a linear no threshold model.^[228,230] This last point argues against the view that pulmonary fibrosis requires a minimal threshold dose. The inference being that even if asbestosis is a precursor for asbestos-induced lung cancer, there may still be no safe exposure threshold in terms of lung cancer risk.

There is growing evidence that asbestos is a direct tumour promoter.^[215,216,217] Linked with this is the knowledge that asbestos fibres can remain in the lung for many years. This provides a possible basis for concluding that a threshold is unlikely, as each fibre may confer a finite promotional effect. Animal inhalation studies have also shown a clear linear dose-response relationship for all levels of asbestos dose.^[190,198]

The arguments for and against a dose threshold for cancer are each seen to lack conclusive evidence. For the argument against the threshold effect the strongest evidence is given by the studies of Dement and Selikoff were workers with low exposures, or limited duration of exposure, are seen to have a positive cancer risk. These analyses are weakened, however, by being standardized mortality studies in which the comparison with the general population could falsely elevate relative risks. Lamm et al in 1988 pointed out that finding an excess of lung cancer among workers with short durations of exposure and employment is common because of the effect of undocumented past exposures in previous employment.^[231] This would also weaken the argument. The clearest evidence for a threshold is the absence of a significant excess of lung cancer at the lowest doses in the published occupational studies. Unfortunately, given the difficulties of past dose assessment and possible misclassification biases, it would be an error to over interpret these findings. On the other hand the biological argument for a threshold is fairly compelling but somewhat speculative.

In all the published studies exposure is commonly expressed as the simple product of duration of employment and average dust concentration, the effect of these two components being used almost interchangeably. From these studies duration of employment is normally well documented but average dust concentrations are approximate at best. Considering this point the linear nature of the fitted doseresponse lines might be more easily explained by duration of exposure with only a limited contribution from concentration.^[147] This would be a problem since it is the relationship to dust concentration that is required to be generalised. McDonald in 1990 presented an analysis of 58 cases of lung cancer in the Quebec cohort with less than 2 years employment and of 98 controls matched for smoking habit, year of birth, date of employment, gross service and mining area.^[149] No relationship (either linear or threshold) was seen in this analysis between dust concentration and lung cancer risk after allowing for duration of exposure (see table 2.13). This clearly underlines the problem in the linear dose-response models, is it duration of employment or average dust concentration that has a straight line effect? Only future studies will be able to definitely answer this point.

TABLE 2.13:

Lung cancer in men employed less than 2 years.

Concentration (f/ml)	Cases (n)	Controls (n)	Risk Ratio
<10	27	44	1
10-29	8	18	0.7
30-99	16	18	1.4
100+	7	18	0.6

It is worth noting that where estimates of exposure are given, the threshold for increased risk of lung cancer appears to be somewhere between 25-100 f/ml years.^[221] The lower end of this range matches the threshold for asbestosis suggested by the Ontario Royal Commission (25 f/ml years; equivalent to inhaling about 30,000 million fibres in a lifetime).^[3] A threshold for asbestos-related lung

cancer at or above the threshold for asbestosis does not prove that the risks are linked. However, it is consistent with the hypothesis that an increased risk of lung cancer occurs in individuals with asbestosis. It should be noted that further work has been undertaken which implies that this threshold level for asbestosis may be too high. In an autopsy study of South African amphibole asbestos miners, significant proportions of the workforce exposed to fibre concentrations of 2 f/ml or less were seen to develop asbestosis. It was concluded that if there is an average fibre concentration to which workers can be exposed for prolonged periods without developing asbestosis it is certainly less than two fibres at the working place.^[232]

Regulatory agencies have taken a utilitarian view of the dose-response relationship. They have chosen to use a linear (non-threshold) model since the risk estimates from this would lead to the most conservative upper limits for risk assessment at low levels of asbestos exposure. Unfortunately, this view point has also caused much public anxiety when it resulted in the 'one asbestos fibre can kill' theory. A theory difficult to apply under a threshold or sigmoid dose-response model. Which is the correct, or the best, dose-response model? Epidemiologically this question can only be answered by the long-term follow-up of those cohorts of workers who have had well-quantified but low-level exposures (e.g. present day construction workers involved in asbestos removal).

The arguments above also apply to mesothelioma, although here there are no data on the form of the relationship to cumulative dust exposure. Nonetheless these tumours because of their highly specific relationship to asbestos and their distinctive clinical features provide a measure of environmental impact. During the past two to three decades the patterns of mesothelioma incidence in North America and the United Kingdom have been very similar. Mortality attributed to mesothelioma has increased steeply in men but remained relatively unchanged in women. In the UK mortality rose from 4 per million in 1968 to 8 per million in 1978 for men, whereas the incidence in females remained steady at 2 per million.^[146] As was mentioned in section 2.5.3 McDonald has calculated that a normal background level of mesothelioma incidence is approximately 2 per million.^[179] The deduction from this is that the rate for males reflects an occupational effect, whereas that seen in females represents a more ambient environmental exposure. As there have certainly been some cases in women resulting from both occupational and domestic exposure, the absence of any increased risk over these years is striking. It suggests that cases due to very low level exposure are too few to be detectable. Supporting this is also the idea of a threshold for mesothelioma, although this has not been clearly proven.^[233]

Browne in 1987 when reviewing the 'one fibre' theory summarised an address given by Professor M Kuschner at the WHO 1986 Copenhagen conference on man-made mineral fibres.^[234] Professor Kuschner is reported to have concluded that it is his belief that fibres (presumably all mineral fibres) have a single pathological effect, not three separate pathologies, namely cancer of the lung, mesothelioma of the pleura and lung fibrosis. If this is the case then the threshold/non-threshold controversy for lung cancer also applies to mesothelioma. Whatever the case the arguments both for and against a dose threshold or a linear model for asbestos-related cancer are each seen to lack conclusive evidence.

Controversy 3 concerns the possibility that chrysotile asbestos is less potent as a lung carcinogen than amphibole asbestos. In a testimony to NIOSH, Lemen in 1990 concluded that chrysotile is much more chemically and biologically reactive than amphibole fibres.^[235] He further concluded that there is no compelling evidence at this time to justify different public health policies for different asbestos fibre types, with the scientific evidence suggesting that fibre shape and size are the most critical factors in the pathogenicity of asbestos. The arguments below will address this point, however, clearly the question of chrysotile's potency is very important not only to regulatory agencies, and the many individuals exposed to it, but also to the asbestos mining and manufacturing interests.

Manufacturers would obviously benefit financially from an official report that said chrysotile is a less potent carcinogen than amosite or crocidolite and that mesothelioma does not occur among workers who used their chrysotile products. Equally the asbestos mining and manufacturing interests would very much like to prevent their remaining markets (in third world countries) from adopting policies to phase out the use of chrysotile.

However, the question addressed here will ignore the financial and political views and will consider the scientific issue:

Is chrysotile asbestos less carcinogenic than the amphiboles?

The background to this controversy has been thoroughly explored in sections 2.5.1 and 2.5.2. The following arguments for and against chrysotile being less carcinogenic than the amphiboles are mainly derived from the material already given in section 2.5.2. The arguments in support of chrysotile being less potent are as follows:

The lower rates of lung cancer observed in heavily exposed chrysotile miners and millers, compared to those found in other industries with workers heavily exposed to either amphibole or a mixture of asbestos types. Suggesting pathogenic differences in fibre types, with chrysotile being the least pathogenic.

In asbestos cement manufacturer workers exposed to chrysotile alone have been observed to have no excess risk of lung cancer.^[236,237] In friction product manufacture, an industry that has largely used only chrysotile asbestos, there is very little convincing evidence of excess lung cancer occurring.^[161,162,165] The conclusion from one UK study was that under good environmental conditions products containing chrysotile can be manufactured with no detectable excess mortality.^[165]

In animal studies chrysotile fibre clearance from the lung appears to be greater than that for amphibole fibres.^[199] Human autopsy studies have shown that low levels of chrysotile dust are retained in the lungs (relative to apparent dose of exposure) when compared to amphibole levels.^[167,238] Suggesting that chrysotile has greater pulmonary clearance, which leads to a basis for its possible lower pathogenicity.

The accumulated evidence favours chrysotile fibres being less potent as a cause of mesothelioma than the amphiboles.^[122,153,154,239] Suggesting a generally lower level of carcinogenicity for chrysotile fibres.

The arguments that have been presented against chrysotile being less carcinogenic are as follows:

The high rate of lung cancer seen among textile workers exposed exclusively to chrysotile.^[153,154] These studies have generated the steepest linear dose-response gradients. For mesothelioma the substantial number of cases observed in Quebec miners and millers, predominantly exposed to chrysotile, argues against chrysotile being generally less carcinogenic than the amphiboles.^[139,150,204]

Animal studies have shown that chrysotile is as potent as crocidolite in inducing mesothelioma after intrapleural injection and pulmonary neoplasms after inhalation exposure.^[240] Animal studies have also shown a higher level of carcinogenicity for chrysotile at any given dose compared to amosite and crocidolite.^[190, 199]

The analysis undertaken by Nicholson in 1986 clearly shows that certain chrysotile using industries (namely mining and milling) have significantly lower lung cancer risks than other asbestos industries.^[145] Equally, from this work and that of McDonald and McDonald, and Doll and Peto, there is evidence to conclude that chrysotile alone has a limited mesothelioma producing potential.^[144,146] The view of the Asbestos Institute was put forward by Dunnigan in 1988, who stated that amphiboles are mainly responsible (presumably for lung cancer and mesothelioma), whereas chrysotile alone has little or no mesothelioma producing potential.^[241] These commentaries are very similar but Dunnigan's view appears to close the case. In fact, the contemporary literature suggests, but does not prove, that a contaminant of some chrysotile ores, tremolite, has caused the mesothelioma seen in asbestos miners and millers.^[138,167] A truer conclusion would be that processed chrysotile has not been shown alone to cause mesothelioma; animal studies have been of little assistance in resolving this question. As mentioned earlier in this chapter, the evidence that chrysotile rarely causes mesothelioma is consequently consistent but not conclusive. A similar

conclusion could be drawn for lung cancer, with the qualification that high risks have often been observed in chrysotile textile workers. It has been suggested that the fibre size distributions found in this industry (the fibres are commonly shorter and sharper than the chrysotile fibres found in mining) strongly affect the fibres potential for producing lung cancer.^[145,166] A further possibility concerns tremolite contamination. The American textile factories were mainly supplied with Quebec asbestos, therefore, the same problem of tremolite contamination holds for the textile workers as for the miners and millers (but reasonably with different fibre dimensions).^[167] In the chrysotile textile plants, a flotation process was used to remove the tremolite from the chrysotile before weaving the cloth. However, United States lawyers have failed to find any evidence that the cloth contained any tremolite.^[242] So where did the tremolite go? Could the flotation process have liberated the tremolite to be inhaled? Unfortunately, there appears to be no past environmental exposure data from the textile plants which analysed fibre type in this work area.^[242]

In conclusion, from animal studies chrysotile fibres are seen to be extremely carcinogenic, more so than the amphiboles, but are also cleared very efficiency from the lungs. In human studies low levels of chrysotile dust are seen to be retained in the lungs and there is evidence that chrysotile fibres may have less carcinogenic potential than amphibole fibres. This produces a theory where the longer human life span allows chrysotile fibres to be removed from the lungs before carcinogenesis can fully develop. The paradox here is that chrysotile on simple biological grounds might be evaluated to be both more or less harmful than the amphiboles. The conservative and most sensible view in these circumstances would be to support Lemen's view and conclude that it is to soon to define a specific differential fibre factor, although the evidence is building up in favour of chrysotile being less carcinogenic.

2.5.7 Summary.

There is clear agreement medically, scientifically and epidemiologically that exposure to asbestos can cause asbestosis, lung cancer and mesothelioma. However, wide disagreement exists in the medical and scientific literature on the shape of the dose-response curve (particularly at low levels of exposure), on the biologically relevant measure of dose, and on the relationship between carcinogenic potential and the fibrogenic properties of asbestos fibres. The inadequacies of historic exposure estimates, the use of inappropriate rates in calculating standardized mortality ratios, the effect of statistical variation, and the differential effect of variable fibre types (and other contaminants) may all have played a role in obscuring both the shape of the dose-response curve, the effect of a threshold, and the potency of chrysotile asbestos. These factors are likely also to partially explain the distinct dose-response gradients of lung cancer risk seen in the assorted asbestos trades and industries.

A WHO consultation meeting was held in 1992 to address the current debate on the interpretation and relevance to humans of data derived from various animal models to assess fibre carcinogenicity.^[243] The meeting concentrated on manmade fibres nonetheless the conclusions could be applied to all mineral fibres. From this meeting it was felt that to compare risks extrapolated from animal models, the full specifications of the fibrous materials used in the model needs to be allowed for. Comparisons on a simple fibre number basis were considered misleading because of the different size distributions of the fibres and the uncertainty about the fraction responsible for biological activity. It was also felt that comparisons of exposure-dose-response relationships should be made using a range of dose parameters until the most appropriate ones are defined. It is clear that these conclusions also hold for asbestos fibres and would help in answering the current asbestos controversies. It is equally clear that for asbestos a large amount of animal data has accumulated with results that are at odds with the human data from cohort studies. Possibly the answer is for further cohort investigations that include a full mineralogic analysis, as well as detailed information on the full distribution of fibre sizes occurring to the exposed population. This research is needed both at very low levels of asbestos exposure and also potentially at very high levels of airborne fibre concentration to confirm either a linear relationship, a sigmoid relationship (which is biologically plausible and consistent with the available data), or a threshold effect. To date it is conceivable that the linear model for lung cancer risk is valid only over a middle range of asbestos exposures, which probably cannot be applied to the current ambient environmental levels.

To conclude this review, the specific diseases primarily associated with dockyard asbestos exposure have been shown to be asbestosis and mesothelioma. There is however only limited evidence that lung cancer is associated with this form of exposure. This evidence comes mostly from studies outside of the naval dockyards. For example, from Belfast and Barrow-in-Furness shipyards, from American insulation workers, and from studies of Coastal North America. As mentioned in section 1.4 the lack of a statistically significant excess of lung cancer cases in naval dockyard workers may well be a statistical artefact or it may suggest that the asbestos exposure patterns somehow did not allow lung cancer to develop, but could induce asbestosis and mesothelioma. The following chapters will consider this point.

For all asbestos-related diseases the essential feature in prevention is the strict use and control of all materials containing asbestos. This statement holds for both past dockyard occupational exposures and the public environmental exposures causing concern today. However, in the shipbuilding and repair industry the damage has already been done, with the past uncontrolled use and removal of vast quantities of asbestos containing material. Ramazzini in his *Treatise on the Diseases of the Tradesmen* urged his fellow physicians to care for the well-being of workers and to "see to it that, so far as possible, they should exercise their callings without harm".^[244] This credo was written nearly 280 years ago. In this work Ramazzini also recognized the need for dust control and ventilation long before the invention of industrial exhaust machines. If society had adopted Ramazzini's credo at the start of the industrial revolution the shipbuilding asbestos problem might have been avoided.

Chapter 3: MATERIALS AND METHODS.

3.1 MATERIALS.

3.1.1 Introduction.

Medical surveys were carried out at each of the four Royal Naval Dockyards: Devonport, Chatham, Portsmouth and Rosyth over the period 1972-1973. These were morbidity surveys and commenced on the following dates: for Devonport 1st March 1972, for Chatham 4th September 1972, for Portsmouth 5th March 1973, and for Rosyth 1st August 1973. These surveys form the baseline data of this dissertation and their inception dates are taken as the enumeration dates of this work. In this study the workers enumerated at each dockyard are followed for exactly 17 years. Consequently, the follow-up ended on the following dates for each dockyard: for Devonport 28th February 1989, for Chatham 3rd September 1989, for Portsmouth 4th March 1990, and for Rosyth 31st July 1990.

The study population in these morbidity surveys included all male employees, and female industrial employees on the dockyard payroll on these dates who had been employed for at least six months. Each worker was asked to complete and return a health questionnaire and to attend for a chest radiograph (small 100mm chest x-rays were used). Non-responders were identified and reissued with questionnaires and invited to attend once again for a radiograph. A further recall procedure was used for subjects with radiographs showing possible asbestos related abnormalities. These workers were given a more detailed questionnaire and a full size chest radiograph was taken.

Definition of the study population at each dockyard occurred approximately one month before the issue of questionnaires, and approximately three months before the radiographic screening. It is possible that the delay between the definition of the population and the start of these cross-sectional studies may have affected the

TABLE 3.1: Response Rates*.

Dockyand	Survey Population	Eiti X-1 Respon	ray	Eithe Question Respon	naire	X-ray Questic			ute m- mders
Devonport:									
In-yard males	13185	11107	(84%)	11568	(88%)	10289	(78%)	798	(6%)
Outstation males	1079	782	(72%)		(71%)	647	(60%)		(17%)
Female workers	-	-		-		-		-	
Total	14264	11889	(83%)	12330	(86%)	10936	(77%)	980	(7%)
Chatham:									
In-yard males	6694	5205	(78%)	4465	(67%)	4004	(60%)	1028	(15%)
Outstation males		-		-		-	(205)		(20 -
Female workers	434	270	(62%)	200	(46%)	166	(38%)	130	(30%)
Total	7128	5475	(77%)	4665	(65%)	4170	(58%)	1158	(16%)
Portsmouth:									
In-yard males	10255	7877	(77%)	6904	(67%)	6122	(58%)	1597	(16%)
Outstation males	1256	466	(37%)	444	(35%)	246	(20%)	592	(47%)
Female workers	35	27	(77%)	4	(11%)	4	(11%)	8	(23%)
Total	11546	8370	(72%)	7352	(64%)	6372	(55%)	2197	(19%)
Rosyth:									
In-yard males	6580	4782	(73%)	3420	(52%)	2925	(44%)	1303	(20%)
Outstation males	496		(42%)		(38%)		(25%)		(45%)
Female workers	261	157	(60%)	105	(40%)	85	(32%)	84	(32%)
Total	7337	5148	(70%)	3712	(51%)	3134	(43%)	1611	(22%)
All Dockyards:									
In-yard males	36714	28971	(79%)	26357	(72%)	23340	(64%)	4726	(13%)
Outstation males	2831		(51%)		(49%)		(36%)		(35%)
Female workers	730	454	(62%)	309	(42%)	255	(35%)	222	(30%)
Grand Total	40275	30882	(77%)	20060	(79%)	24612	(617)	5046	(15%)

This table is reproduced from: Harries PG, Rossiter CE, Coles RM (1976) "Royal Naval Dockyards Asbestosis Research Project, Report No. 1, December 1975" Institute of Naval Medicine, CRWP Report 1/76, Gosport. response rates (see section 3.1.7). The rates are given in table 3.1. The non-response rate varied from 7% at Devonport to 22% at Rosyth.

3.1.2 Basic Data.

In this work the data obtained from the questionnaire responses and chest radiographs have been combined with payroll/employment information and death certificate information to form the basic dataset for each dockyard. The format of this data is given in table A1.1. Briefly, the data consists of the following: a unique identifier, formed using the individuals national insurance number and the first three letters of the surname, the date of birth, year of employment, occupational code, medical history, cause and date of death. Smoking habits were determined from the questionnaire responses of the workforce. Section 3.1.7 discusses the practical problems experienced in the creation of each dataset.

The initial characteristics of the morbidity data, i.e. prevalence rates of respiratory illness, etc., have been described in detail elsewhere by Harries et al.^[1]

3.1.3 <u>Questionnaires</u>.

The questionnaires used in the morbidity surveys were based on the Medical Research Council (MRC) Questionnaire on Respiratory Symptoms (1966). Questions included details of personal medical history, smoking history and employment history. Those workers who were recalled for full size x-ray were given a more detailed doctor-administered questionnaire. Copies of the health questionnaires are given in Appendix 1.

The doctor administered ('controlled') questionnaire more closely followed the format of the MRC questionnaire, asking detailed questions on past illnesses, cough, phlegm and breathlessness, and included a section on physiological tests. When responses were available to both questionnaires, those from the 'controlled' questionnaire were used in preference to those from the self-administered

questionnaire. This was seen to give little if any resulting bias for the majority of the questionnaire derived variables, except possibly in the case of the question concerning breathlessness with had the lowest calculated sensitivity of test. In table 3.2 the questions concerning cough, breathlessness and smoking history have been used for illustrative purposes to show the level of agreement between the responses to the controlled and free questionnaire. The responses shown in this table are for those workers with both self-administered and controlled questionnaires (i.e. 4,762 workers across all 4 dockyards). When taking the doctor controlled result as the 'gold standard' the diagnostic sensitivities and specificities were seen to be high for symptoms of cough and smoking habit; exceptionally so for cough (a perfectly valid diagnostic test would have a sensitivity and specificity both equal to 100%). For smoking habit, ex-smokers and those with unknown habit where included in the smoking group. For breathlessness it could be speculated that the sensitivity was reduced simply because it is very difficult for the workers to accurately define their own breathlessness (even given reasonable guidelines, see question 14 from the self-administered questionnaire in appendix 1).

	<u><u>Co</u></u>	ntrolled	question	maire	Sensitivity	Specificity
				Cough		
		Yes	No	Total		
	Yes	937	75	1012	95.5%	98.0%
	No	44	3706	3750		
	Total	981	3781	4762		
			8	mathless	ess	
<u>Self-administered</u> <u>questionnaire</u>		Yes	No	Total		
	Yes	327	346	673	68.5%	91.9%
	No	150	3939	4089		
	Total	477	4285	4762		
				Smoking		
		Yes	No	Total		
	Yes	963	17	980	89.32	99.5%
	No	115	3667	3782		
	Total	1078	3684	4762		

TABLE 3.2: Questionnaire responses.

96

Table 3.3 shows the type of questionnaire and x-ray film used by dockyard. The slight differences seen in tables 3.1 and 3.3 are due to record duplication and some cases of prior enumeration at another dockyard. The difference in take-up rates of large film (400mm) x-ray and controlled questionnaire seen in table 3.3 are indicative of technical and equipment problems in the radiographic machinery and not abnormalities.^[1] This was particularly the case at Rosyth with approximately 19% of the workforce recalled for controlled questionnaires, but 49% receiving large film x-rays. Overall, just under 9% of the dockyard population (from all four yards) appear to have received large film x-rays due to equipment failure of the 100mm (small film) mobile x-ray unit.

Dockyard	X-	ray	Questionnaire		
	Small Film only	Large Film	Self-completed only	Controlled	
Devonport	9554	2335 (19.6%)	10431	1899 (15.4%)	
Chatham	4283	920 (17.7%)	3829	634 (14.2%)	
Portsmouth	6135	2204 (26.4%)	5798	1548 (21.1%)	
Rosyth	2543	2448 (49.0%)	2926	681 (18.9%)	
All yards	22515	7907 (26.0%)	22984	4762 (17.2%)	

TABLE 3.3: Type of x-ray and questionnaire (male workers).

From the medical history section of the questionnaires the following questions will be considered in this study. Do you usually cough during the day or night at work? Do you usually bring up any phlegm from your chest first thing in the morning in winter? Do you get short of breath when walking with people of your own age on level ground? These questions are associated with the known symptoms of asbestos related respiratory illness: cough and breathlessness. The following two linked questions will be considered for chest-illness. During the past three years have you had any chest illness which has kept you from your usual activities for as much as a week? Did you bring up more phlegm than usual in any of these illnesses? Table 3.4 shows the positive responses to these questions by dockyard.

TABLE 3.4: Medical History Questions.

Dockyard	Cough	Phlegm	Breathlessness	Chest-illness
Devonport	2523 (20.5%)	2836 (23.0%)	1102 (8.9%)	1119 (9.1%)
Chatham	784 (17.6%)	836 (18.7%)	305 (6.8%)	319 (7.1%)
Portsmouth	1620 (22.1%)	1638 (22.3%)	608 (8.3%)	585 (8,0%)
Rosyth	688 (19.1%)	782 (21.7%)	254 (7.0%)	223 (6.2%)
All yards	5615 (20.2%)	6092 (22.0%)	2269 (8.2%)	2246 (8.1%)

Smoking habits were also discerned from the questionnaire responses and the groups shown in table 3.5 were identified. Only 0.9% of the returned questionnaires were without smoking history. If a worker had given up smoking for less than a month before completion of the questionnaire he was considered a smoker. Smokers were further subdivided by amount of tobacco smoked per day into the following groups: < 15 gms/day, 15-24 gms/day, and ≥ 25 gms/days. The amount of tobacco was determined by calculating cigarette-gramme equivalents; 1 manufactured cigarette = 1 gm. The following scale was used to convert other smoking types.

1	oz tobacco in hand rolled cigarettes/week	= 4 gms/day
1	oz tobacco in pipes/week	= 4 gms/day
1	large cigar/day	= 5 gms/day
1	small cigar/day	= 2 gms/day

TABLE 3.5: Smoking Status.

Non-smokers	Ex-smokers	Smokers	Unknown
2838 (23.0%)	2488 (20.2%)	6842 (55.5%)	162 (1.3%)
1081 (24.2%)			59 (1.3%)
1700 (23.1%)	1635 (22.3%)	3970 (54.0%)	41 (0.6%)
956 (26.5%)	675 (18.7%)	1973 (54.7%)	3 (0.1%)
6575 (23.7%)	5677 (20.5%)	15229 (54.9%)	265 (0.9%)
	2838 (23.0%) 1081 (24.2%) 1700 (23.1%) 956 (26.5%)	2838 (23.0%) 2488 (20.2%) 1081 (24.2%) 879 (19.7%) 1700 (23.1%) 1635 (22.3%) 956 (26.5%) 675 (18.7%)	2838 (23.0%) 2488 (20.2%) 6842 (55.5%) 1081 (24.2%) 879 (19.7%) 2444 (54.8%) 1700 (23.1%) 1635 (22.3%) 3970 (54.0%) 956 (26.5%) 675 (18.7%) 1973 (54.7%)

3.1.4 Occupational History.

Employment histories were sought from the questionnaire responses, the workers being asked to list and code all jobs held since leaving school. A list of dockyard jobs was given with a list of non-dockyard jobs thought to be in someway associated with exposure to asbestos and dusty environments such as mines and quarries. Table 3.6 gives this list and the occupational code numbers. The workers chronologically listed their employment to the nearest year.

To enable comparison with the past work of Sheers and Templeton^[2] the occupational codes, of the workers last held dockyard trade, were used to form the following four occupational groups:

Group 1.	All registered asbestos workers (RAWs).
Group 2.	Electrical fitters, burners, welders, riveters, caulkers, drillers,
	shipfitters, plumbers, coppersmiths.
Group 3.	Shipwrights, engine fitters.
Group 4.	All dockyard trades not in groups 1, 2 and 3.

TABLE 3.6: Occupational code numbers.

	Dockyard employment.		Other employment
01 02	Labourer or skilled labour afloat Lagger afloat	30	Royal Navy engine or boiler room branch
03	Lagger ashore or in mattress shop	31	Royal Navy - other than code 30
04	Asbestos storeman	32	
05	Asbestos sprayer or stripper	40	lagger or insulation worker
06	Satlmaker lagger		with asbestos
07	Mason afloat	41	Any other job with asbestos
08	Welder afloat	42	Coal miner - underground
09	Boilermaker afloat	43	Coal miner - surface
10	Engine fitter afloat	44	Any other mine work
11	Electrical fitter afloat	45	Foundry work
12	Painter afloat	46	Steelworks
13	Coppersmith afloat	47	Quarrying
14	Plumber afloat	48	Pottery
15	Joiner afloat	49	Cotton, Flax, Hemp Mill
16	Burner, Riveter, Caulker, Driller	50	Refractory brick works
17	Foundry worker	51	Masons yard
18	Shipfitter afloat	52	Any other dusty job
19	Shipwright afloat	53	Any job exposed to irritant gas
20	All other dockyard jobs not		or chemical fumes
	listed above	60	All other jobs not listed above
22	Any other dusty job	61	Unemployed

Group 1, the registered asbestos workers, consists of laggers, sprayers, masons, sailmakers, painters and asbestos storemen. This group differs from the other three, in that, it forms the core of the register of dockyard asbestos workers. Registers were formed in the late 1960s of all workers in the trades listed under group 1. This was to enable those workers heavily exposed to asbestos to be monitored in the dockyards even if they subsequently stopped working with asbestos. All RAWs supplied questionnaires and x-rays.

Clearly, these four groups may give fairly ambiguous measures of asbestos exposure, they only allow for the last job held and therefore only that exposure. In practice workers exposed to asbestos and affected by asbestos disease can be found in all the groups. Promotion and job transfer would account for this. Table 3.7 gives a breakdown of the occupational groups by dockyard. In all, only 3.0% of the questionnaire responses omitted any mention of employment history.

TABLE 3.7: Occupational Group by Dockyard.

Dockyard		0	ccupational Gro	мр	
	1	2	3	4	Unknown
Devonport	591 (4.8%)	1392 (11.3%)	1315 (10.7%)	8781 (71.2%)	251 (2.0%)
Chatham	196 (4.4%)	461 (10.3%)	462 (10.4%)	3255 (72.9%)	89 (2.0%)
Portsmouth	304 (4.1%)	747 (10.2%)	707 (9.6%)	5292 (72.0%)	296 (4.0%)
Rosyth	102 (2.8%)	281 (7.8%)	264 (7.3%)	2751 (76.3%)	209 (5.8%)
All yards	1193 (4.3%)	1429 (10.4%)	2748 (9.9%)	20079 (72.4%)	845 (3.0%)

3.1.5 Asbestos Exposure Rating.

The crude classification of asbestos exposure by occupational groups can be improved upon. For instance, a grading of High, Medium and Low exposure may be made by job type and years in service. For this, occupational codes 02-06 and codes 40 and 41 could form the high group; codes 01, 07-16, 18, 19, 22, 30 and 32 could than be considered as the medium group; the residue would then form the

low group. This takes us from four to three groups! A better approach would be to code asbestos exposure for each dockyard trade and produce an exposure rating.

This rating would take the form:

Exposure rating = Exposure code * Years in that job.

So a rating could be found for each worker by selecting the occupational codes given in the questionnaire and multiplying the years spent in those jobs by a number taken as the exposure code for that particular trade. Table 3.8 gives exposure codes used for all dockyard occupations. The codes were chosen by qualified dockyard industrial hygienists and medical officers.^[3] These codes were in fact empirically chosen, without verification with fibre counts. However, the hygienists involved believed these to be the best relative estimates available for each dockyard trade.^[4,5] These numbers can therefore only be considered to give informed relative guesses ('guestimates') of dust exposure; however, they go further towards a more accurate reflection of asbestos exposure than, for example, describing a worker as a lagger when in fact he has lagged for only one year and worked as a labourer ashore for thirty.

TABLE 3.8 :	Asbestos	Exposure	Codes.
--------------------	----------	----------	--------

Exposure Code	Occupation
1	Office work, messengers, outstation personnel.
2	All industrial work ashore, non-industrial supervisory staff with very occasional exposure afloat.
5	Foundry workers.
10	Labourer or skilled labourer afloat, joiner, coppersmith, rivater, plumber, caulker, burner, driller, shipfitter, engine fitter, electrical fitter.
12	Boilermaker, shipwright, welder.
15	Painter, mason.
20	Sailmaker lagger, asbestos storeman.
25	Lagger afloat and ashore, asbestos sprayer or stripper.

Table 3.9 gives the calculated exposure rating for each dockyard. From this it can be seen that 4.7% of the responders had an unknown rating. Most of the workforce had a rating of less than 100 (e.g. were employed less than 10 years as labourers, or less than 4 years as laggers). Only 610 workers had a rating over 400 (e.g. were employed as laggers for over 16 years).

TABLE 3.9 :	Exposure	rating	by	Dockyard.
--------------------	----------	--------	----	-----------

Dockyard			Exposure			
	<100	100-	200-	300-	400+	Unknown
Devonport	7851 (63.7%)	1966 (15.9%)	1077 (8.7%)	559 (4.5%)	275 (2.2%)	602 (4.9%)
Chatham	2965 (66.4%)	649 (14.5%)	363 (8.1%)	211 (4.7%)	113 (2.5%)	162 (3.67)
Portsmouth	4482 (61.0%)	1205 (16.4%)	696 (9,5%)	449 (6.1%)	183 (2.5%)	331 (4.5%)
Rosyth	2687 (74.5%)	418 (11.6%)	169 (4.7%)	85 (2.4%)	39 (1.1%)	209 (5.8%
All yards	17985 (64.8%)	4238 (15.3%)	2305 (8.3%)	1304 (4.7%)	610 (2.2%)	1304 (4.7%)

In addition to the calculated exposure rating, estimates of individual periods of asbestos exposure are available. These estimates were obtained from additional questions present only in the controlled questionnaire, and are illustrated in table 3.10. From this table it can be seen that 3,792 (9.6%) of the workforce assessed their period of asbestos exposure, with only 778 (2.0%) reporting more than 30 years of exposure. The form of exposure, whether to asbestos materials only or to asbestos dust and debris is unknown. However, 35,746 (90.4%) of the workforce did not supply these estimates. The percentages shown in table 3.10 are based on the 4,762 workers with controlled questionnaire information.

TABLE 3.10: Period of asbestos exposure by dockyard.

Dockyard			ure period (yrs)	
	< 10	10-	20-	30+
Devonport	514 (27.1%)	445 (23.4%)	369 (19.4%)	293 (15.4%)
Chatham	173 (27.3%)	113 (17.8%)	112 (17.7%)	114 (18.0%)
Portsmouth	350 (22.6%)	291 (18.8%)	273 (17.6%)	312 (20.1%)
Rosyth	166 (24.4%)	127 (18.6%)	81 (11.9%)	59 (8.7%)
All yards	1203 (25, 3%)	976 (20,5%)	835 (17.5%)	778 (16.3%)

3.1.6 Chest Radiographs.

All workers were invited to attend for chest x-rays. Small 100mm films were used, each film being read by two members of a panel of four readers. All subjects with films showing possible asbestos related abnormalities or technical faults were recalled for further investigation with large (400mm) films. Table 3.3 shows the x-ray type used.

The readers scored each film according to the classification given in table 3.11. Each reading was then allocated to one of the following x-ray groups.

X-ray score

X-ray group

00 or 19	1.	Normal and technical faults.
01 or 03	2.	Pleural thickening.
02 or 04	3.	Pleural calcification.
05 or 06	4.	Suspected or definite pulmonary fibrosis.
07 or 08	5.	Active or clinically significant healed pulmonary tuberculosis. Not primary complex.
09 to 18	6.	All other abnormalities.

The prevalence of x-ray abnormalities are calculated by counting $\frac{1}{2}$ for each reading and allocating that reading to the x-ray group. Therefore, a film with two readings of 00 would score 1 in group 1, a film with readings 00 and 01 would

score $\frac{1}{2}$ in groups 1 and 2 respectively. Table 3.12 gives these prevalences by dockyard. In this table the more sensitive large film reading has been used, when recorded, in place of the small film score, to obtain the most accurate measure of disease prevalence.

TABLE 3.11: Classification for Chest Radiographs.

Code Numbers	Disease
00	Normal
	Suspected Asbestos Abnormalities
01	Limited pleural thickening without calcification
02	Limited pleural thickening with calcification
03	Extensive pleural thickening without calcification
04	Extensive pleural thickening with calcification
05	Pulmonary fibrosis suspected
06	Pulmonary fibrosis definite
	Other diseases
07	Tuberculosis active
08	Tuberculosis inactive
09	Malignant tumours
10	Other tumours including thyroid enlargement
11	Lymphadenopathies
12	Cardiovascular disease
13	Pulmonary infections
14	Pleural effusions
15	Emphysema
16	Simple unilateral costophrenic occlusion
17	Bilateral occlusion of costophrenic angles
18	Other abnormalities
19	Technical faults, poor position etc.

TABLE 3.12: X-ray Abnormalities by Dockyard.

Dockyard						X-ray	group	p				
		1		2		3		4		5		6
Devonport.	10171	(85.6%)	467	(3.9%)	147	(1.2%)	119	(1.0%)	364	(3.1%)	621	(5.2%)
Chatham	4468	(85.9%)	177	(3.4%)	53	(1.0%)	41	(0.8%)	152	(2.9%)	312	(6.0%)
Portsmouth	7019	(84.2%)	414	(5.0%)	120	(1.4%)	60	(0.7%)	198	(2.4%)	528	(6.3%)
Rosyth	4263	(85.4%)	221	(4.4%)	43	(0.9%)	36	(0.7%)	124	(2.5%)	304	(6.1%)
All yards	25921	(85.2%)	1279	(4.2%)	363	(1,2%)	256	(0.8%)	838	(2.7%)	1765	(5.8%)

It should be clearly noted that the x-ray reading scale used predated that of the full ILO U/C 1971 classification which is considered one of todays standard methods. The classification used here (and used previously in dockyard surveillance studies^[2,6]) was employed over the period 1972-1973, the full ILO classification was however only published in 1972.^[7] The initial studies effectively started too early to implement this new ILO classification; the readings being undertaken quickly after the x-ray examination using the then well established naval reading scale.^[4] This researcher is unaware why the UICC/Cincinnati 1968 classification, or the short ILO U/C 1968 classification was not used. It could be speculated that this was for the same reason that the full ILO classification was not implemented; possibly due to established techniques and/or naval policy.

	Ĩ	<u>arge fi</u>	<u>lm reading</u>	g positive	Overall agreeme∩t	Agreement among films positive at standard level
			tandard le bnormality			
		Yes	Na	Total		
Small film positive	Yes	71	12	83	90.2%	56.82
ILO standard level of abnormality	No	54	537	591		
Small film positive	Yes	80	43	123	86.9%	64.0%
screening reading	No	45	506	551		
Large film positive	Yes	87	57	144	85.9%	69.6%
screening reading	No	38	492	530		
			ening lev bnormalit			
		Yes	No	Total		
Small film positive	Yes	83	40	123	84.4%	57.6%
screening reading	No	61	490	551		

TABLE 3.13: Comparison of reading methods.

Subsequently attempts were made to validate what was then considered to be a screening method (the method described in this work) with the ILO classification.^[8,9] This validation was undertaken by Sheers et al in 1978 on a group of 674 men randomly drawn from all four dockyards for which both x-ray film types (100mm and 400mm) were available. This study was designed to attempt to decide which type of film (small or large), which method of classification, and how many film readers should be employed to achieve a satisfactory level of surveillance for asbestos workers. The study consisted of a controlled trial by five readers using the full ILO classification, which was compared to the earlier screening classification (undertaken by two readers as earlier documented). Table 3.13 shows the study sensitivities obtained.

In order to compare the overall results of the two reading methods (i.e. to calculate the sensitivities seen in table 3.13) a common reference standard was defined. The standard was set as the ILO classification with large films. The standard level was defined as: width b or more for pleural thickening, grade 2 or more for pleural calcification and category 1/1 or more for small opacities. This standard was chosen to deliberately exclude the lowest categories of small opacities and the lowest grading of pleural thickening and calcification in order to avoid the problems caused by borderline abnormalities. Table 3.13 clearly demonstrates that there is a deficiency in the detection of abnormalities by small film, when large and small films are read to the same standard (giving sensitivities of only 56.8% and 57.6%). This is despite the fact that the screening reading includes all grades of abnormality (codes 1 to 6 in table 3.11) found by either reader. When considering only the ILO classification for small films the sensitivity was seen to increase when lower categories and grades of abnormality were scored (and when the number of readers was reduced). The sensitivities obtained from this approach were: 72.8%, 80.0% and 92.8% (table 4, Sheers et al^[9]). These were for any level of abnormality found by 3 readers, by 2 readers, and by any reader, respectively. This approach resembles the situation in the screening classification (i.e. 2 readers with any level of abnormality), when all grades of abnormality recorded by any reader on the small films would lead to recall of the subject for re-examination on large film. Table 3.13 also highlights a problem with the screening readings. When these are compared to the standard reading a deficiency is seen in the results of the screening reading regardless of film size (sensitivities of 64.0% and 69.6%).

The conclusion of this comparison study was that the screening classification showed a deficiency, independent of film size, of at least 30% in the detection of asbestos-related radiographic abnormalities. It was further concluded that for adequate diagnostic sensitivity the ILO U/C classification, with a minimum of 3 readers, appears to be essential (having a minimum sensitivity of approximately 73%). This creates limitations in the use of the dockyard screening classification, even though this method had a sensitivity of 64% for small films and approximately 70% for large films. A possibility would be to reread all the radiographs to the full ILO classification, a massive and costly operation. However, these dockyard radiographs are no longer available.^[5] Accordingly the classification used in this work, with its estimated sensitivity of approximately 70%, is that used in the original dockyard surveillance studies. A final recommendation of the comparison study, on the grounds of cost-effectiveness, was the use of small films in large-scales studies were the abnormality rate is expected to be low, with a recall procedure used for the more sensitive (and expensive) large films.

The analysis of Sheers et al emphasised that the small film, regardless of the classification method used, had a much poorer diagnostic sensitivity then the large (i.e. a sensitivity of only 57.6% when using the dockyard reading scale). For this reason the large film reading will be used in the following analysis when both readings are present.

Table 3.12 gives an overall prevalence of dockyard asbestos-related abnormalities of 6.2% (groups 2, 3 and 4 combined). This result is somewhat higher than the prevalence found by Harries in 1972 and 1975 (illustrated in tables 2.5 and 2.6).^[1,6] Here the prevalence of asbestos-related abnormalities was quoted as being 3.4% (in a 10% sample) and 4.6% (in the entire population). By comparing the total number of workers examined (24,575 in 1975 against 30,422 in this

work), it is clear that some 5,847 workers were excluded in 1975. By inspection of table 3.1, after allowing for enumeration errors (e.g. female workers coded as male workers), it is probable that the 1975 analysis included only those workers with both paired x-ray and questionnaire results. When the calculation was repeated allowing for this the prevalence of 6.2% was reduced slightly to 5.8%. However, the 1975 Naval report also quoted prevalence rates of radiographic abnormalities for workers with either large or small films (excluding outstation workers). Table 3.14 shows these rates. By estimation from this table there appears to be a total prevalence of x-ray abnormalities of 6.0% (again combining groups 2, 3 and 4). A result in very close agreement with the value of 6.2% presented here (which includes outstation workers). It should be noted that if group 3 (i.e. pleural calcification) is omitted in the calculation of prevalence the results here closely match those of the 1975 study (i.e. 5.0% verses 4.6%). Section 3.1.7 will further consider issues of data integrity and possible associated study restrictions.

TABLE 3.14: Prevalence rates of x-ray abnormalities by Dockyard.

Dockyard	Number of			X-ray gi	roup		
	workers x-rayed	1	2	3	4	5	6
Devonport	11107	86.2X	3.6%	1.3%	1.1%	3.0%	4.8%
Chatham	5205	84.2%	3.2%	1.0%	0.6%	2.4%	8.5%
Portsmouth	7877	85.8%	4.9%	1.4%	0.6%	1.8%	5.5%
Rosyth	4782	85.4%	3.9%	1.0%	0.7%	2.6%	6.5%

3.1.7 Study/Data Restrictions.

The Ministry of Defence (Navy) had available in the early 1970s, information only on current occupation for its civilian employees. Records of earlier jobs within or outside the dockyards, and their start dates, were not available. In fact, the occupational codes used in the definition of the morbidity surveys were obtained from the dockyard payroll grade codes. This crude occupational code has many drawbacks, not the least of these being the absence of any measure of intensity of asbestos exposure (i.e. length and type of exposure). Fortunately, the health questionnaires were augmented with questions on workers occupations since starting employment. The occupational codes used in this work are, therefore, based on the questionnaire data.

The use of questionnaire responses to assess occupation, and also respiratory illness and smoking habits, confines us to the questionnaire responders. However, radiographic abnormalities, as seen on either type of film, form an important part of this work, so responders to x-ray examination must also be considered. Both considerations restrict the following analysis to those workers who were not 'absolute non-responders' in the initial cross-sectional studies, that is, approximately 85% of the defined population. It should be noted that the use of 100mm film rather than full sized films, and reading to the simplified x-ray classification, rather than to the ILO U/C classification may lead to a possible underestimation of the prevalence rates of asbestos abnormalities. This would be the case even though men were recalled for large films when there was any suspicion of asbestos related abnormally on the small film. This would clearly weaken the value of the x-ray groups illustrated in table 3.12, the results of which have to be used with caution.

From table 3.1 it can be seen that male employees fall into two categories, 'in yard' and 'outstation' workers, 2831 (7.0%) males being outstation workers. Outstation workers were dockyard employees working, at that moment, in dockyard outstations (substations outside the main yard); in yard workers were those working at the main dockyard. The workforce would have been very mobile with much interchange and exchange between these categories. Consequently no differentiation is made in this work between in yard and outstation workers.

It should be noted that in all dockyards, the outstation workers had the highest nonresponder rates. This is likely to be due to the survey entry policies, crosssectional studies being limited to one time point, and the outstation workers being more geographically difficult to pursue after study definition. The time delay of up to two months between issue of questionnaires and the x-ray screening must have exacerbated this.

The 730 female employees, who formed less than 2% of the original surveys, were not followed-up in this study. Overall females had a high non-response rate 30% (from table 3.1). Therefore, only 508 'responded' females were omitted due to this exclusion. This was felt to produce little resulting bias and eliminated the need for female expected mortality rates to be calculated.

As in most mortality studies undertaken in the United Kingdom, details of all workers were submitted to the Office of Population Censures and Surveys (OPCS) to be flagged so that subsequent mortality could be recorded and analysed. The follow-up rate for Rosyth was particularly poor as the records submitted to the OPCS had to be passed to the equivalent office in Scotland if the required Health Service Number was believed to be of Scottish origin. No attempt was made to resubmit details of those not flagged at the first search. Table 3.15 shows the trace rates for the four dockyards over the 17 year period.

TABLE 3.15: Number of male workers in the Dockyards.

Dockyard	Total male workers	OPCS flagged	No. of deaths/ emigrations	No. of valid responders*	OPCS flagged	No. of deaths, emigrations
Devonport	14264	97.5%	2744 (19.2%)	13283 (93.1%)	98.3%	2441 (18.4%)
Chatham	6691	96.8%	1484 (22.2%)	5663 (84.6%)	97.5%	1147 (20.3%)
Portsmouth	11507	93.7%	2358 (20.5%)	9319 (81.0%)	95.7%	1794 (19.2%)
Rosyth	7076	69.8%	926 (13.1%)	5549 (78.4%)	77.0%	733 (13.2%)
All yards	39538	91.3%	7512 (19.0%)	33814 (85.5%)	94.0%	6115 (18.1%)

No. of male workers with either x-ray or questionnaire information.

Because of the low follow-up rate at Rosyth (69.8%), in comparison with the other dockyards, and because of the overall lower response rates seen in table 3.1, Rosyth has been removed from all subsequent analyses in this dissertation. This has the advantage of eliminating the need for Scottish mortality rates in the following analysis and the use of the 'Scottish OPCS'. The number of Dockyards actively analysed was, therefore, restricted to the three British yards (Devonport, Chatham, and Portsmouth) with 28,265 male workers followed-up for a 17 year period. The overall proportion traced by OPCS in these yards was 97.3%.

It can be seen that the main data and study restriction in this investigation is its use and reliance on the morbidity surveys study base. These cross-sectional studies were not planned as the first phase of a longitudinal study and this has resulted in restrictions on the use of the cross-sectional dockyard population of 40,275 male and female workers. These restrictions, the exclusion of female workers and the initial surveys non-responders and finally the exclusion of Rosyth Dockyard reduce the study population to 28,265 male civilian workers. Of these 5,031 (18.0%) have died and 351 (1.2%) emigrated over the study period (table 3.16).

		Responders			Non-responders			
Dockyard	No. of workers	Deaths	Emigrations	No. of workers	Deaths	Emigrations		
Devonport	13283	2292 (17.3%)	149 (1.1%)	981	295 (30,1%)	8 (0.8%)		
Chatham	5663	1046 (18.5%)	101 (1.8%)	1028	321 (31.2%)	16 (1.6%)		
Portsmouth	9319	1693 (18.2%)	101 (1.1%)	2188	540 (24.7%)	24 (1.1%)		
All yards	28265	5031 (18.0%)	351 (1.2%)	4197	1156 (27.5%)	48 (1.1%)		

TABLE 3.16: Number of Deaths/Emigrations in the 3 British Dockyards.

From table 3.16 we can see that the emigration rates for responders and nonresponders are almost identical. However, the same is not true for the rates of death, the non-responders appear to have a higher death rate. This may be a measure of self-selection bias, the unhealthy workers deselecting themselves from Because of the low follow-up rate at Rosyth (69.8%), in comparison with the other dockyards, and because of the overall lower response rates seen in table 3.1, Rosyth has been removed from all subsequent analyses in this dissertation. This has the advantage of eliminating the need for Scottish mortality rates in the following analysis and the use of the 'Scottish OPCS'. The number of Dockyards actively analysed was, therefore, restricted to the three British yards (Devonport, Chatham, and Portsmouth) with 28,265 male workers followed-up for a 17 year period. The overall proportion traced by OPCS in these yards was 97.3%.

It can be seen that the main data and study restriction in this investigation is its use and reliance on the morbidity surveys study base. These cross-sectional studies were not planned as the first phase of a longitudinal study and this has resulted in restrictions on the use of the cross-sectional dockyard population of 40,275 male and female workers. These restrictions, the exclusion of female workers and the initial surveys non-responders and finally the exclusion of Rosyth Dockyard reduce the study population to 28,265 male civilian workers. Of these 5,031 (18.0%) have died and 351 (1.2%) emigrated over the study period (table 3.16).

		Responders		Non-responders			
Dockyard	No. of workers	Deaths	Emigrations	No. of workers	Deaths	Emigrations	
	12002	2202 (17.25)		981	295 (30.1%)	8 (0.8%)	
Devonport	13283	2292 (17.3%)	149 (1.1%)			16 (1.6%)	
Chatham	5663	1046 (18.5%)	101 (1.8%)	1028	321 (31.2%)		
Portsmouth	9319	1693 (18.2%)	101 (1.1%)	2188	540 (24.7%)	24 (1.1%)	
All yards	28265	5031 (18.0%)	351 (1.2%)	4197	1156 (27.5%)	48 (1.1%)	

TABLE 3.16: Number of Deaths/Emigrations in the 3 British Dockyards.

From table 3.16 we can see that the emigration rates for responders and nonresponders are almost identical. However, the same is not true for the rates of death, the non-responders appear to have a higher death rate. This may be a measure of self-selection bias, the unhealthy workers deselecting themselves from the initial studies. Selection bias is considered in section 3.2.5 and the non-responder death rates studied in chapter 4.

When considering the final dockyard datasets generated for this work, a limitation is apparent. Lung function information is missing. Physiological tests were undertaken and recorded in the initial surveys, however, these were not available to this researcher. These tests were only performed for those workers recalled for the large x-ray and 'controlled' questionnaire, and should have been assembled into the separate dockyard data files at that time. These files were received at the London School of Hygiene and Tropical Medicine (LSHTM), by myself in 1986, from the MRC Pneumoconiosis Unit, Penarth. They were initially compiled at the Medical Research Unit of Devonport Dockyard. The files consisted of computerised magnetic tapes, computer listings and a haphazard number of both free and controlled questionnaires. This with the death certificates, which were reported directly to LSHTM from 1986, comprised all the available 'raw' dockyard data. Unfortunately the physiological data was missing. This omission is likely to have happened during the exchange of data across its many sites. The final LSHTM datasets created by myself therefore omitted all physiological data.

Unfortunately, a further problem existed with the raw data. The magnetic tapes holding the radiographical information were all found to be corrupted and unreadable. To remedy this entailed many visits to Penarth and Devon, where further computer listings (and coding sheets) were eventually obtained and the x-ray scores were then reentered onto computer file. During the data entry of the x-ray and death certificate information, range and consistency checking was performed along with double entry of all data. By this technique data entry errors were minimised and an overall data entry error rate of less than 0.5% was achieved. The integrity of the remaining magnetic tape information was confirmed by undertaking a re-inputting of a 10% sample of the data documented on original Devonport Research Unit computer listing. Table 3.17 illustrates the final cohort numbers obtained in this re-generation of the data in relation to the first reported morbidity study. Apart from the point raised in section 3.1.6 concerning the

prevalence of x-ray abnormalities the characteristics of the final LSHTM datasets match those earlier itemised by Harries.^[1] The very slight difference illustrated for male workers in table 3.17 is simply due to past record duplication; the larger difference for females is probably due to initial x-ray coding errors.

All Dockyards	Population	Either X-ray Responders	Either Questionnaire Responders	X-ray and Questionnaire	Absolute Non- Responders
1975 Naval report [1]:					
Male workers Female workers	39545 730	30428 (77%) 454 (62%)	27750 (70%) 309 (42%)	24357 (62%) 255 (35%)	5724 (14%) 222 (30%)
This study:					
Male workers Female workers	39538 711	30422 (77%) 319 (45%)	27746 (70%) 287 (40%)	24354 (62%) 203 (28%)	5724 (14%) 308 (43%)

TABLE 3.17: Overall cohort numbers.

3.2 METHODS.

3.2.1 Introduction.

The main objective of this study is to consider the total mortality (generally, mortality from the causes listed in table A1.2) and mortality from the specific causes shown in table 3.18, with regard to dockyard occupation, length and intensity of asbestos exposure, however measured, for the workers described in section 3.1, followed-up for 17 years. The specific causes of death detailed in table 3.18 have been shown 'a priori', in the literature review, to be related to asbestos exposure. As was stated in chapter one, lung cancer and mesothelioma will be considered throughout with a view to addressing the research question of this work. Asbestosis has not been excluded from this question, however, since only 10 deaths were observed in the 17 year follow-up period for this disease definitive results are unlikely.

The objectives will be considered in the following ways:

- 1. Use of standardised mortality ratios (SMRs) as traditionally used in cohort studies.
- 2. Use of log-linear models, to explore the ways in which confounders relate to one another and to the exposure.
- 3. Use of logistic regression on nested case-referent data, evaluating smoking habits, using conditional maximum likelihood estimation.
- 4. Use of mathematical modelling to estimate the relationship between mesothelioma death rate and time since first exposure.

Where possible, these methods and their results are compared and contrasted. Time trends are isolated and analysed to give a view of the mortality patterns with time. The effect of confounders (i.e. age, length of employment, etc.) on mortality will be measured and, if possible, removed. A major problem in epidemiology is the existence of competing risks. These have to be allowed for when analysing mortality from a specific cause of death. Consideration will be given to this. As a consequence the results from analyses of cause specific mortality must be interpreted very cautiously. Selection bias is also a problem in epidemiology, particularly in occupational epidemiology. Consideration will also be given to this and its most common form, the healthy worker effect.

TABLE 3.18: Specific Causes of Death.

Causes of Death	Deaths (all 3 yards)		ICD (9th revision)
	5031		0 - 999
All Neoplasms	1729	(34.4%)	140 - 239
Cancer of Stomach	160	(3.2%)	151
Cancer of Peritoneum (Mesothelioma)	13		158
Cancer of Lung	575	(11.4%)	162
Cancer of Pleura (Mesothelioma)	118	(2.3%)	163
Diseases of the Circulatory System	2259	(44.9%)	10 - 18
Diseases of Pulmonary Circulation	36	(0.7%)	415 - 417
Diseases of the Respiratory System	459	(9.1%)	460 - 519
Bronchitis, Emphysema and Asthma	119	(2.4%)	490 - 493
Asbestosis	10	(0,2%)	501
Pulmonary Fibrosis	4	(0, 1%)	515

3.2.2 Standardised Mortality Ratios (SMRs).

The most elementary technique used to analyse cohort survival data is to calculate fixed-period survival rates for various subgroups of the cohort and use these rates to determine which of the subgroups have a better expectation of life.^[10] However, this approach has a certain weakness - it ignores mortality patterns during the period of follow-up. This method may be further criticised for making it cumbersome to compare two populations because of the multiplicity of the subgroups needed.^[11]

In all cohort studies subgrouping has to be undertaken. This grouping will be by exposure level and all other factors expected to influence mortality. The most important of these factors is age. This important determinant of mortality obviously changes with time and clearly in a cohort subjects move from one age group to another every year and generally die in an age group different to the one they started in. To show the true effect of age in these studies the age distribution of the deaths has to be divided by the corresponding age distribution of the personyears at risk. The technique of using person-years at risk, and the construction of age and cause specific mortality rate tables, leading to the use of standardised death rates, avoids, to some extent, the problem of multiple subgroup comparisons and overcomes the weaknesses of using simple fixed-period survival and fatality rates.

Thus in a cohort, the age distribution changes each year and this has to be reflected when calculating age-specific death rates. This is achieved by making each subject contribute a value to the person years at risk for each age group and year moved through in the study. The contribution will be one, a fraction, or zero, depending on whether the subject survives, dies during, or dies before that age and year. The subject contributes zero person-years to the ages he lived through before the start of the study. This process of calculating person-years at risk is often illustrated by a Lexis diagram.^[12, 13] In these diagrams a subjects life in a study is represented by a 45° line passing through the two time axes, age group and calendar time period.

Considering this 45° line, suppose we have N_o subjects in a cohort which is followed for a maximum period of T years. Let t_{oi} be the time in the study for a subject who dies or is lost to follow-up before the end of the study. So for each subject we have the following person-years at risk (y_{oi}) :

 $y_{0i} = \begin{vmatrix} t_{0i}, & if the individual dies during the study$ T, otherwise. The person-years at risk for the whole cohort is, therefore, given by:

$$Y_0 = \sum_{i=1}^{N_0} y_{0i}.$$

Stratifying into K age groups and J periods, and considering the number of personyears spent in each age-group/period cell, say y_{ijk} for subject *i*, gives the following total person-years at risk for each cell:

$$y_{jk} = \sum_{i} y_{ijk}, j = 1, 2, \dots, J; k = 1, 2, \dots, K.$$

If the total number of deaths occurring in the cohort is *D*, an estimate of the crude death rate in the cohort is given by:

$$\hat{\lambda}_c = \frac{D}{Y_0}.$$

If a distribution of the deaths by age at death and by calendar year of death is formed, with the same grouping as a table of age/calendar person-years at risk formed in a Lexis diagram, we can compute the age-period specific death rates as:

$$\hat{\lambda}_{cjk} = \frac{d_{jk}}{y_{jk}}, \ j=1,2,\ldots,J; \ k=1,2,\ldots,K$$

where d_{jk} is the number of deaths occurring in age group k and period j. Agecause specific death rates can also be obtained using this procedure, limiting the calculation to the cause of death of interest. This is equivalent to treating the deaths from other causes as censored observations. An example of the mechanics of the person-years at risk calculation, applied to a cohort of asbestos workers, is given by Doll.^[14]

Commonly in cohort studies it is necessary to compare mortality patterns across subgroups (i.e. calendar year period, cause of death, etc.). The problem of multiple comparisons is removed by calculating a single measure of mortality for each subgroup. To avoid comparison of two subgroups with different age distributions, this single statistic has to be standardised. Liddell suggested numerous methods for this standardisation.^[15] The basis of all these methods is the comparison of the mortality of a defined group of subjects with the mortality that would have been expected if the group had experienced death rates similar to those of the community of which the group is a part. The expected mortality is usually calculated using published national or regional death rates (see section 3.2.7 for a discussion on the rates used in this analysis).

The most commonly used mode of standardisation is the 'indirect' method. In this method age specific death rates of the 'standard' population (national or regional, etc.) are multiplied by the number at risk in the appropriate age groups in the study cohort to give the cohorts expected deaths. The total number of these expected deaths, over all ages, divided into the number of observed deaths produces the Standardised Mortality Ratio (SMR). This is the method used in this dissertation. This ratio should be equal to 1 (or 100%) if the mortality in the study cohort equals that of the standard population.

To compute the death rate in the chosen standard population for a particular age group and year entails dividing the number of deaths in that age group during the year by the midyear population of the age group. For example:

$$\lambda_{0jk} = \frac{d_{0jk}}{P_{0jk}}, \ j=1,2,\ldots,J; \ k=1,2,\ldots,K.$$

For periods that are greater than one calendar year an average age-specific annual death rate is obtained from:

$$\hat{\lambda}_{0jk} = \sum_{j=1}^{m} d_{0jk} / \sum_{j=1}^{m} P_{ojk}.$$

To obtain the expected number of deaths in the $j-k^{th}$ cell, i.e. for age group k and period j, that cells population death rate is multiplied by the cohorts person-years at risk contribution.

$$E_{jk} = \lambda_{ojk} \times Y_{jk}$$

and from this we obtain:

$$E_j = \sum_k E_{jk}$$

which is the expected number of deaths over all ages in period j. A more formal description of the properties of this person-years method has been given by Berry.^[16]

If D_j is the observed number of deaths in the cohort during the same period j, the SMR for the cohort for that period is then given by:

$$SMR_j = 100 \times \frac{D_j}{E_j}$$
.

SMRs for cause-specific mortality are calculated by the above method by using cause specific death rates in place of an all-cause rate.

Mortality in the study is then compared with mortality in the standard population by testing departures of the SMR from 1 (or 100%). This is commonly undertaken by constructing confidence intervals around the SMR. There are various methods and assumptions used in calculating these confidence intervals. One suggested by Gilbert is to assume that D is a Poisson variable with expectation E.^[17] The statistic

$(D-E)^{2}/E$,

can then be treated as a x^2 variable with 1 degree of freedom. If E is small, this Normal approximation to the Poisson loses accuracy and Poisson tables should be used. An alternative is to use the following variance estimate,

$$Var(SMR) = \frac{D}{E^2}$$

to create a confidence interval for the SMR. The generalised $(1-\alpha)100\%$ confidence limits for this would be:

$$\left[\left(\frac{Z^{\frac{a}{2}}}{2}-\sqrt{D}\right)^{2}/E, \left(\frac{Z^{\frac{a}{2}}}{2}+\sqrt{D}\right)^{2}/E\right].$$

This can be simplified as:

$$SMR \pm (Z^{\frac{\mu}{2}} \times \frac{SMR}{\sqrt{D}}),$$

for a 95% confidence interval this becomes:

$$(D \pm 1.96 \times \sqrt{D})/E.$$

Again this approximation to the Poisson distribution can lose accuracy for small numbers. In this study the exact Poisson distribution was used in the formation of the SMR confidence limits when the observed deaths were less than 30 (D < 30).

The SMR and its confidence interval produced by the above technique compare the cohort mortality with the mortality pattern found in the standard population. In cohort studies this technique is sometimes used in the comparison of subgroups of the same cohort. Here the comparison of each group to the standard population would become a comparison between subgroups. This procedure has been criticised for not allowing for the separate age structures of each subcohort or strata.^[18]

A more formal approach for comparing subcohorts is given by using an extension of Armitage and Berry's test of trend in proportions.^[19] The test needed in the comparison of subgroup SMR's is a test of homogeneity of these ratios (leading to

a test of trend). If there are K subgroups (strata) to be compared, the test would then take the following form:

$$H_0: b_1 = \ldots = b_K$$

where b_k is the coefficient of the k^{th} binary indicator variable representing membership to subgroup k. Let,

$$\hat{E}_k = E_k \times \frac{D}{E}$$
 where $\sum_k \hat{E}_k = D$.

The test statistic, for the test of homogeneity, with K-1 degrees of freedom becomes:

$$X_{K-1}^2 = \sum_k \frac{(D_k - \hat{E}_k)^2}{\hat{E}_k}.$$

If the groups correspond to levels of a single quantitative covariable with values x_k , a test for trend in the SMR is given by:

$$X_1^2 = \left[\sum_k X_k (D_k - \hat{E}_k)\right]^2 / \left[\sum_k X_k^2 \hat{E}_k - \left(\sum_k X_k \hat{E}_k\right)^2 / D\right].$$

An example of the application of tests of homogeneity and trend applied to subgroups of a cohort of smelter workers exposed to arsenic has been given by Breslow and Day.^[20]

A major objective of this study is to compare subcohort mortality patterns with each other. This will produce many multiple comparisons. How can we overcome this and the potential problem of varying age distributions in the subgroups? The problem is exacerbated if further subclassification on explanatory variables is attempted. One solution is to use a more parametric approach, that is, regression modelling to analysis mortality, in effect to smooth the data across the subgroups. Subsequently, the methods we now consider will be regression type procedures.

3.2.3 Poisson Regression.

The most important use of an SMR is in the comparison of the mortality of a study cohort with that of a standard population from which the cohort was drawn. If a cohort can be characterised by other covariates, and an SMR is available for each of the subgroups resulting from the cross-classification of these covariates, it may be of interest to test the following.

- 1. That the SMRs are all equal.
- 2. That the SMRs are all equal to 1 (or 100%).
- 3. That the SMRs show a trend with increasing levels of an ordered categorical variable (i.e. exposure level).

Since the subgroups of the cohort are likely to have different age distributions, it may be necessary to use age and calendar year or follow-up period as additional classifying variables so that in the comparison of the different subgroups, the residual age and period effects are excluded.

To this end Poisson regression is considered in this section. In this form of regression a mathematical model is constructed in which the logarithm of the incidence rate is modelled as a linear combination of a set of risk factors. Poisson regression is used here since it can be formulated as an extension of the SMR method, and because the rate ratio estimates produced are unaffected by small numbers in particular strata. The number of deaths in each cross-classified subgroup is assumed to have an independent Poisson distribution.

Several authors have suggested a method for testing for homogeneity and trend in SMRs by way of regression parameters.^[17,21,22] They have suggested the following model:

$$\lambda_{i}(i) = \exp(Z'_{i}(i)b)\lambda_{i}(i)$$

where $\lambda_j(i)$ is the death rate for the j^{th} individual in the follow-up period *i*, and $Z'_j(i)$ is that individuals covariate vector. From this,

$$\lambda_{j}^{*} = \lambda_{j}^{*}[t_{1j}(i), t_{2j}(i)]$$

is the rate determined by the individuals age $t_{1j}(1)$ and calendar period $t_{2j}(1)$ at that time. The model is similar to that proposed by Cox in 1972.^[23] However, Cox's hazard is replaced here by a known constant, i.e. the threshold rate. Indeed theoretical analysis has shown an inherent link between Poisson regression and the proportional hazards model.^[24]

With classification into K subgroups such that $Z'_j(i) = Z'_k$ the log-likelihood can be written as:

$$L(b) = \sum_{k} [D_{k}Z_{k}'b - \exp(Z_{k}'b)E_{k}],$$

where D_k is the total number of deaths in subgroup k and E_k is the expected number depending on the person-years at risk in subgroup k. This log-likelihood is similar to that when D_k are independent Poisson variables with means,

$$\exp\left(Z_{k}^{\prime}b\right)E_{k}$$

where E_k are constants. This implies that standard routines for Poisson regression can be used once a distribution of observed and expected deaths is obtained. For example, in the statistical package GLIM you have only to specify that D_k have Poisson errors, invoke the logarithmic link function and introduce $logE_k$ in the model as OFFSETS.

The present data are cross-classified, so the covariate vector associated with each cell is in general a set of indicator variables showing membership/non-membership of the various levels of the factors of interest and their interactions. Because of this the linear predictor, $Z'_k b$, can be written using the ANOVA notation outlined by Bishop.^[25] The fitted model has the form:

$\begin{array}{l} \log E(D_{ijk}) = \log E_{ijk} + \alpha + \alpha_1(i) + \alpha_2(j) + \alpha_3(k) + \\ \alpha_4(ij) + \alpha_5(ik) + \alpha_6(jk) + \alpha_7(ijk) \end{array}$

where, for example, there are *I* age-groups, *J* follow-up periods, and *K* categories of asbestos exposure. The use again of GLIM ensures a unique solution by constraining to zero the parameters associated with terms involving the first level of any of the factors. All interaction terms which involve the first level of any of the factors are also set to zero. Testing the models goodness-of-fit can be based on the deviance found in GLIM, which is equivalent to the likelihood-ratio statistic:

$$G^2 = -2\log(\max L),$$

where G^2 is approximately distributed as a Chi-square variable with h - m degrees of freedom, $h=I \times J \times K$, and m is the number of parameters in the model.

The model can be described by the *h* data points with *h* parameters. This would be fitting a 'saturated' model. More commonly a model is obtained with less than *h* parameters by including only those factors and interactions that are significant in order to explain the underlying structure with as few parameters as possible, i.e. building a parsimonious model. In this work a forward selection approach will be used: after fitting the constant term, the factor which produces the largest change in G^2 will be included, followed by the second and then the third, etc. Interaction between the factors with significant main effects will be considered in the following way. If there are at least two significant two-factor interactions than a three-factor interaction will be considered, and so forth. Interaction and effect modification is considered in section 3.2.6.

Significance testing for specific α terms in the model can then be based on the difference between the G^2 statistics for two 'nested' models, one of which does not contain the α term being tested. This difference between the G^2 statistics has an approximate Chi-square distribution with degrees of freedom equal to the difference in degrees of freedom of the two models. In GLIM the comparison of different models is undertaken through 'Analysis of Deviance'.^[26]

Testing for homogeneity and trend in the SMR can then be undertaken by the method outlined in the previous section. The parameters of the fitted model are interpretable as logarithms of the relative risks, i.e. the α_k , $k=1,\ldots,n$, parameters are the logarithms of the SMRs in the k^{th} subgroup relative to that in the first subgroup. Anti-logging these parameter estimates yields the mortality rates for particular subgroups relative to the first. This clearly takes the same form as that of the relative risks obtained using the traditional SMR method. For example, the relative risk associated with the k^{th} subgroup is given by:

$$\Phi_k = SMR_k / SMR_o.$$

This is perhaps the major reason for the assumption of the multiplicative form of the model. Models specifying non-multiplicative relationships result in parameters not easily related to the relative risk, and may also pose estimation problems because of the range restrictions that have to be imposed on the parameters.

3.2.4 Logistic Regression.

Logistic regression techniques are employed in this thesis on nested case-control data sampled from the cohort population. Conditional maximum likelihood estimation is applied. This method is the modelling analogue of the Mantel-Haenszel stratification procedure.

The sampling method employed in this study is incidence density sampling. In this each case is matched to one or more controls selected at random from a set of subjects who are still at risk (the risk set) at the time that the case was identified. The risk set includes subjects who may subsequently develop the disease. Nested case-control data will yield unbiased estimates of the relative risk from the full cohort.

The parameter of interest in this type of study is the odds ratio. This ratio has the same value whether calculated from the disease or exposure probabilities. That is, the ratio of the odds of being exposed for the cases against the odds of exposure for the controls (exposure odds ratio) is equal to the ratio of the odds of having the disease in the exposed against the unexposed subjects (disease odds ratio). In the analysis the odds ratio estimates the increase in the odds of disease for the k^{th} factor (for example, exposure level) relative to the baseline level, k=0, of that factor.

Logistic regression produces a mathematical model in which the log odds is modelled as a linear combination of a set of risk factors. This model is derived from the mathematical function:

$$f(y) = 1/(1 + e^{-y})$$
 where $-\infty < y < +\infty$,

f(y) ranges from zero to one, as a sigmoid curve, as y increases from negative to positive infinity. This regression technique is also known as linear logistic regression. The word linear referring to the property that the logit transformation,

logit
$$f(y) = \log \left[\frac{f(y)}{1-f(y)}\right] = y$$

is linear in y. The properties of this transformation are, therefore, used in epidemiology to model the risk of disease development during some specified time interval as a function of various independent variables known or suspected to be related to disease development.

If we now consider that Y is the odds of a subject being a case and that p is the proportion of subjects who are cases. This implies that:

$$Y=\frac{p}{(1-p)}.$$

If we now consider the logarithm of the odds. A linear model can be created with the logit as the dependent variable in the following equation:

$$\log\left[\frac{p}{(1-p)}\right] = \alpha + \alpha_1 x_1 + \ldots + \alpha_k x_k,$$

where x_j , $j=1, \ldots, k$ are the set of k explanatory variables. From this we have a linear model sometimes called a multiple logistic regression model, multiple in its number of k independent variables. So, the logit is the logarithm of the odds and logit differences are in turn logarithms of odds ratios. In GLIM you would perform a logistic analysis by specifying Binomial errors and declaring the link function to be logit. The goodness-of-fit of the generated models is then tested by scrutinising the deviances produced in GLIM.

Confidence intervals can then be used to test if the odds ratio produced is statistically different from unity. Miettinen has suggested an approximate confidence interval of the form:^[27]

$$\Psi^{W}$$
, where $w = (1 \pm Z^{\frac{1}{2}} / \sqrt{\chi^{2}})$

and χ^2 is the Mantel-Haenszel chi-square. An alternative is to calculate an estimate of the variance of the log odds and use the following logit confidence limits:

$$\exp(\log(\psi) \pm Z^{\frac{\alpha}{2}}\sqrt{Var[\log(\psi)]}).$$

A limitation of the multiple logistic model is the multiplicative relationship of separate explanatory variables in the model with each other. In the model each variable contributes towards the sum that is the log odds of disease. The different variables then have a multiplicative relationship with each other with regard to the rate of disease occurrence. This is equivalent to assuming a constant ratio measure of effect for a given factor over categories of the other factors.

3.2.5 Bias. Confounding and the Healthy Worker Effect.

Selection bias, as defined by Rothman, is the distortion in result that occurs from the techniques by which study subjects are chosen from the total population that could theoretically be studied.^[28] In theory every occupational epidemiology study should include every worker ever employed in a specific industry followed up to the end of their life. In practice most studies use a subset of this information and from these subsets bias may occur. Bias may also be increased by various methodological errors, for example, considering subjects lost to follow-up as alive at the end of the study.

The most common form of selection bias in occupational studies is the healthy worker effect. It occurs when 'healthy' individuals are more likely to gain employment and to remain employed than the 'non-healthy'. In part this is due to self-selection, the individuals must be sufficiently healthy to seek work, and in part to employer selection, i.e. the use of pre-employment medical screenings. The effect can be typified by considering the general population. This population includes people who are too sick to work or who have been refused employment on health grounds and also employed people. Consequently, mortality rates in workforces are often lower than those of the general population. The healthy worker effect is the term sometimes used to refer to this phenomenon.

The healthy worker effect is of concern in the interpretation of occupational mortality studies because adverse effects of exposures at work may be wholly or partly masked by an apparent deficit of mortality in the workforce when compared to the general population. The inclusion of all person-time experience of every worker ever employed in a particular industry reduces bias, but it does not remove the bias resulting from initial selection of healthy workers into employment.

Healthy worker effects were first described by Ogle in 1885.^[29] He saw the "considerable standards of muscular strength and vigour" required of individuals in certain occupations as introducing a "great flaw in all calculations of death rates in different industries". In brief three factors have been recognised in the healthy worker effect;^[30]

- 1. The selection of healthy members from the source population.
- 2. The survival in the industry of healthier workers.
- 3. The length of time for which the population is followed.

Therefore, it is possible to characterise the healthy worker effect according to the events on which it operates, the start and end of work.

TABLE 3.19:

SMRs by duration of follow-up in asbestos workers (taken from McMicheal^[18]).

<u>Causes of Death</u>	Follow-up (years)							
	0-4	5-9	10-15					
All Causes	95 100	112 136	123					
All Neoplasms Non-cancers	83	100	153 106					

It has been shown in many studies that the mortality of employed persons, compared with the general population, is lowest during the period immediately after starting employment (table 3.19).^[18, 30, 31] A common characteristic of these studies has been low SMRs for the early years of follow-up, with these ratios approaching unity (or 100) and beyond as follow-up continued. The relative mortality advantage of employed persons then diminishes with length of follow-up. Conversely, the advantage is also most pronounced in workers with the longest duration of employment. This is attributable to the survival in the workforce of relatively healthier workers.^[31]

The healthy worker effect is obviously most marked in chronic diseases that are readily detectable. McMicheal argued that heart disease is therefore more likely to be selected against than cancer, with its "long-deferred clinical manifestations", in the recruitment and retention of active workers.^[18] This in turn would result in a reduction in 'non-cancer' mortality in comparison to 'cancer' mortality shortly after study definition in an occupational cohort (table 3.19). Fox and Collier also showed differential patterns in SMRs according to the cause of death examined.^[30] In their study of polyvinyl chloride production workers, SMRs for respiratory diseases were lowest and increased more slowly with time since entry to the industry (table 3.20). SMRs in this study were highest for cancer, those for circulatory disease were intermediate. Another example of differential patterns in SMRs is given by the OPCS Longitudinal Survey.^[32] In this survey SMRs in employed males were lower for respiratory and circulatory diseases than for malignant neoplasms, all increasing with time since cohort definition.

 TABLE 3.20:
 SMRs by time since entering the industry (taken from Fox and Collier^[30])

<u>Causes of Death</u>	<u>Time si</u> 0-4	ndustry 15+			
All Causes	37	63	75	94	
All Neoplasms	45	71	94	112	
Circulatory Disease	22	70	85	91	
Respiratory Disease	21	39	31	93	

In Fox and Collier's study of the polyvinyl chloride manufacturing industry a survival effect was shown by separating workers who survived 15 years, from study definition, according to whether they were still in the industry or not. The all cause mortality rate among those who left the industry was approximately 50% higher than those still employed. Other studies have supported the hypothesis that the healthy worker effect is strongest during active employment and rapidly disappears following the cessation of employment, particularly if this occurs before

the usual retirement age.^[33, 34] It has even been suggested that the term "active worker effect" be used in place of heathy worker effect.^[35]

Whether the effect is called 'healthy worker', 'active worker', 'comparison bias', as suggested by Hernberg^[36], or health-related selection bias, it is often observed in occupational cohorts. Its main characteristic are initial low mortality following study definition becoming less apparent with time. The effect is, therefore, time-dependent. This suggests a method of managing this form of bias, e.g. by investigating the way in which SMRs change with time since entry into a workforce, as opposed to using the overall magnitude of SMRs at any one point in time. As an alternative to this, regression models as outlined in section 3.2.3 may be used to eliminate any confounding due to the healthy worker effect, i.e. due to length of employment, length of follow-up and age.

Selection bias and confounding can be viewed as aspects of the same phenomenon: distortions that the investigator hopes to prevent or, if necessary to remove from the data. A method outlined by Rothman to counteract these is to consider any bias that can be controlled in the analysis as confounding.^[28] Confounding can be considered as a mixing of the effect of the study factor/exposure of interest with the effect of other risk factors. A confounder is, therefore, a factor in someway associated with both exposure and disease. In occupational studies time-related factors are good predictors of disease states and will be confounders if they are also associated with exposure. For example, calendar year will be a confounder if disease incidence and exposure patterns vary over time. Another example of this concerning both bias and confounding would be if more recently employed workers (with better workplace conditions and lower levels of exposure), followed for a short period, are compared to workers employed in a previous period (with higher exposure levels).

Confounding can be controlled in the study design, in the analysis or in both. Controlling during study design can involve three methods:

- 1. Randomisation. That is, random allocation to exposure categories. This is not possible in occupational studies.
- 2. Restriction. Restricting the study to narrow the range of potential confounders (e.g. restricting a study to workers aged less than 45). This method as well as restricting confounding may also restrict the usefulness of a study.
- 3. Matching. Matching study subjects on potential confounders. This is the preferred method of control, its main limitation is that it is expensive in time and project costs. It is effective in cohort studies and very effective in nested case-control studies. It should be noted that matching does not remove the confounder, but aids in its control during analysis.

Controlling confounding during analysis involves the simultaneous control of all confounding factors. This is undertaken by stratifying the data according to the levels of the confounders and calculating an effect estimate that summarizes the information across each subgroup (strata) of confounder. The study size clearly restricts the number of confounders that can be simultaneously controlled. The ideal method of stratifying for all confounders has to be limited by the data, and care taken not to over stratify or produce too many strata cells with no data. The problem of over stratification can be solved by regression modelling, allowing for the simultaneous control of confounders by smoothing the data across subgroups.

Control of confounding is important and requires careful use of prior knowledge, and also inference from the observed data. Most occupations involve exposure to more than one potential risk factor and the possibility of confounding by other occupational exposures must be considered in the context of each study.

3.2.6 Effect Modification (Statistical Interaction).

In epidemiology the concept of effect modification and interaction is more difficult to define than in experimental studies. The aetiology of a disease is often very complex, with many causative and confounding factors. For cancer, carcinogens may act at different stages independently of each other, but each stage is required to occur before the next one can start. The question is therefore, can occupational epidemiology and its use of probability theory to identify risk factors provide an insight into the biological mechanisms of disease causation? A following question is whether an interaction term in a regression model can be interpreted on any biological scale?

Other factors which complicate the issue are the statistical models used to analyse epidemiological data. The commonest model used is logistic regression, where the odds of disease, transformed by the logarithmic function, are related to a linear combination of risk factors. The logistic model assumes that the risk factors combine on a multiplicative scale to estimate the risk of disease. Thus, even when no interaction term (product term) is present in the model, the effect of the individual terms is additive on the log scale, i.e. multiplicative on the non-log scale. This leads to the question of whether there is independence of the risk factors if additivity on a log scale applies. The same question applies to poisson regression (log-linear modelling) since it also measures interaction on this scale.

Clearly to demonstrate biological interaction by means of statistical models requires knowledge of the underlying biological model and reasoning, and cannot be done mechanically. Helping to clarify the situation, Rothman in 1980 suggested that interaction in epidemiology can be defined in four broad contexts: statistical, biological, public health and individual decision making.^[37] His definitions are as follows:

Statistical interaction. This is dependent on the mathematical model fitted to the data. If the regression coefficient for the product term of the risk factors is significantly different from zero and the goodness-of-fit statistic shows that presence of the interaction term improves the fit, then statistical interaction is present and should be included in the model.

<u>Biological interaction</u>. This is present when two or more causative factors act interdependently to produce the disease. Two categories are of interest: 1) those in which the aetiological factors act interchangeably in the same step in a multiple process and thus the effect of each factor adds to the effect of the other. 2) those that act at different steps in the process. For example, smoking may cause damage to lung cells and subsequent exposure to dust acts on those cells to increase the probability of lung cancer. The two categories correspond to the statistical models in which the combined effect of exposure factors is assumed to be additive or multiplicative, respectively. The best fitting of the two models can suggest the nature of the interrelation between the causal factors.

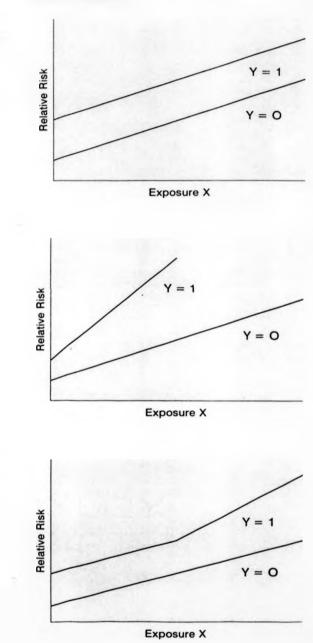
<u>Public-health interaction</u>. This is present when the effect of one risk factor on the disease occurrence is modified by the presence of another and when departure from the additivity of the individual effects is observed. For statistical models, applied to test the combined effect, it means that a significant interaction term is present in the model that assumes additivity of relative risks, and that the model that assumes multiplicativity of the effects may fit the data significantly better than the model that assumes additivity of the effects.

Individual-decision making. This involves evaluating personal risk of disease considering that the causal factors acting in combination lead to an increased/decreased risk of disease above/below the sum of the individual risks.

Considering now a visual assessment of interaction. By plotting calculated relative risks against the exposure of interest, a trend in a dose-response relationship would be detected. If we choose a continuous variable for exposure X and a dichotomous

(0,1) indicator variable for exposure Y, then by plotting the relative risks for each exposure Y against the exposure X, an indication of whether an interaction affect is present or not can be detected. For example, if the exposure Y modifies the effect of the exposure X, then effect modification (interaction) is present. Figure 3.1 shows some possible relationships.

The detection of the presence of an effect modification depends to some extent upon the transformation scale applied when analysing the data. When we try to infer the presence of an interaction from the data plotted in figure 3.1 in terms of the additive or the multiplicative models, the following can be observed:


- 1) [Figure 3.1a]: The lines are parallel, therefore, there is no evidence of an interaction on the additive scale, but there is a negative interaction on the multiplicative scale.
- 2) [Figure 3.1b]: There may be no interaction on the multiplicative scale, but a positive interaction on the additive scale.
- 3) [Figure 3.1c]: An interaction is present, but may be detected only by means of indicator variables for the exposure X, in which case an additive relative risk model is more likely to detect the interaction.

Epidemiology should go beyond pure statistical modelling. The idea of effect modification and statistical interaction, linked as it is to an arbitrariness in the choice of model, can lack interpretation in occupational epidemiology since it does not rest on a definite theoretical foundation. Without implication for inference beyond the model, a purely statistical notion of interaction does not contribute to the study of occupational epidemiology. If the occurrence of interaction were simply a statistical construction that allowed contradictory interpretations from the same data, it would not contribute to scientific and medical knowledge.

FIGURE 3.1:

a)

The trends in relative risk that can be observed with two risk factors.

b)

c)

3.2.7 Disease Groupings and Regional Adjustment Factors.

This section is concerned with the standard death rates used in this thesis and in particular their formation from the OPCS 'Historic Mortality Data Files' and the use of regional adjustment factors.

In the analysis of cohort mortality a pivotal role is frequently played by published national death rates (this was outlined in section 3.2.2). Clearly, their use restricts the researcher to the published structure of these rates. The Office of Population Censuses and Surveys (OPCS) recognised this limitation and in 1979 created their historic deaths file. This file contains death information by age, sex, and International Classification of Disease (ICD) code for England and Wales on a yearly basis from 1901. This data file is, therefore, a basic building block that when linked with corresponding population data can be formed to fit research project needs. The ICD codes recorded (i.e. 7th, 8th or 9th revision of ICD) are those in operation at the time of registration of death.

For this work OPCS supplied annual national death information for the years 1972 to 1988. This period presents two problems in the construction of a death rate database. First, it overlaps two revisions of the ICD, the 8th revision was in force through 1968-1978, the 9th revision has been used since 1979. Secondly, the follow-up period in this study is 17 years and based on the enumeration dates presented in section 3.1.1 we have a study period extending between 1972 and 1990.

The last problem was solved by using the death rates constructed for 1988 as 'best' estimates for those of 1989 and 1990. Considering the first problem, that is the overlapping ICD revisions. All observed deaths in this study have been coded by a nosologist to the 9th revision of the ICD. The death rates generated from the OPCS file for the years 1972-1978 are based on 8th revision disease groupings. Since these have to be compared with 9th revision observed deaths approximate disease groupings have been used for certain conditions. Table A2.1 lists the causes of death used in this study with their attendant 9th revision grouping and its

8th revision estimate. From this table it can be seen that three disease groupings are principally affected by this approximation, namely, diseases of pulmonary circulation (9th ICD: 415-417, estimated 8th: 426 and 450), chronic obstructive pulmonary disease (9th ICD: 490-496, estimated 8th: 490-493 and 518) and pneumoconiosis (9th ICD: 500-508, estimated 8th: 515-516). All three of these groups are new to the 9th revision. Of these only disease of pulmonary circulation is used as a specific cause of interest in this study (table 3.18), this is to give an estimate of *cor pulmonale* mortality, a major constituent of the 9th revision grouping of codes 415-417. The disease grouping of bronchitis, emphysema and asthma (8th and 9th ICD: 490-493) is used as a surrogate for chronic obstructive pulmonary disease. The disease grouping of pneumoconiosis is considered only as a general grouping of interest, whereas, its included condition asbestosis (9th ICD: 501, 8th ICD 515.2) is obviously considered as a specific cause.

The disease grouping of pneumoconiosis (9th ICD: 500-508) was mainly classified to codes 515 and 516 in the 8th revision. However, aspiration bronchopneumonia and aspiration pneumonitis, coded as part of 8th revision groups 485 and 486, are included in the 9th revision pneumoconiosis group under code 507 (pneumonitis due to solids and liquids).^[38] The 8th revision codes, 485 and 486, are both broad codes covering unspecified bronchopneumonia and pneumonia. It is impossible to singly subtract the effect of aspiration bronchopneumonia and aspiration pneumonitis from these groups and include them in the construction of the 1972-1978 death rates for pneumoconiosis. The construction of pneumoconiosis death rates, from the OPCS historic deaths file, will, therefore, only produce approximate estimates of the true rates. This is particularly true for all disease groupings that are new in the 9th revision of the ICD.

Apart from changes to the classifications, new groupings etc., changes were also made in the rules for the coding of the underlying cause of death from the 8th to 9th revision. The change that most affects this study is the removal of the precedence in coding for asthma when reported with bronchitis. This has resulted in an increase in the number of reported asthma cases and a decrease in the number with bronchitis from 1979. This rule change is effectively covered by using the

broad disease group of bronchitis, emphysema and asthma. However, any change in coding rule adds extra problems to the use of death rates across ICD revision. They tend, obviously, to make changes also to the measurement of disease frequency that can be both elusive and subtle and can only be counteracted by using broad disease groups.

The England and Wales death rates constructed for this study are given in appendix 2. These rates are in 5 year age groups starting at age 10 and continuing until age 84, ages over 84 are grouped together to form a '85 plus' group. In total 50 disease groups are given in this appendix.

Ideally, the standard population used in calculating expected mortality should be one that is similar in both demographic and environmental characteristics, apart from exposure history, to the cohort population. Attempts to achieve this include using standard populations that are of the same sex, race and geographical location as the occupational cohort. The standard population death rates created and used in this study are male rates for the whole of England and Wales. To produce rates that more closely characterise the cohort, i.e. regional rates instead of national rates, was not possible when using the OPCS historic deaths file. This data file was only available for the whole of England and Wales.

As an approximation to the direct formation of regional rates an alternative is needed. This alternative can take the form of applying a regional adjustment to the calculated national death rates. Considering the study period of this work, i.e. 1972 to 1990, the microfiched area mortality information from the last decennial supplement of the OPCS that covers the years 1979 to 1983, approximately the midyears of this study, can be used to produce these regional adjustment factors.^[39] From the decennial supplement SMRs are given for the standard regions of England and Wales, i.e. South East, North West, etc., for all ages, for the age group 15 to 64 and for the age group 65 plus. They are also given for both sexes and for selected causes of death. These SMRs, represented as proportions and not percentages, can be used as weighting factors to adjust the national rates

into regional estimates, for the relevant ages and causes of death. Table A2.2 gives the regional adjustments used in this thesis.

From table A2.2 it can be seen that many causes of death considered in this study have no applicable adjustment factor from the 1979-1983 OPCS data. For these the nearest available OPCS area information is used. This is the data from the OPCS 1989 area mortality statistics microfiche.^[40] Where the 1979-1983 information is present it is used to produce an adjustment, when absent the 1989 data have been used. For 18 causes of death, indicated in table A2.2, no adjustment factor was possible. Mesothelioma of the pleura and peritoneum and also asbestosis are included among the causes with no regional adjustment factor.

The regional adjustment factors used are for the South West and South East standard regions. The south west adjustment is used for Devonport dockyard and the south east for both Chatham and Portsmouth dockyards. When no adjustment is given, i.e. for ages 10 to 14 and for causes of death with no obvious factor, unity is used as the factor.

There are several reasons why national or regional death rates may not be completely appropriate to the group under study. For example, the social-class structure or the smoking habits of the group may differ from those of the region. Another reason is the healthy worker effect, due to the selective mechanisms that contribute to deciding an individuals occupation. As mentioned in section 3.2.5 the national population contains some people not fit enough to engage in certain types of work. These people contribute to the death rates of the national population but are inappropriate for comparison with a working population of which they could not be members. The difficulty of interpretation that arises because the comparisons may not be completely appropriate is an inevitable feature of the epidemiological approach, as opposed to the experimental one - but, of course, the experimental approach makes the assumption that the rat in his artificial environment is comparable to man in his 'free' environment. Chapter 4:

MORTALITY PATTERNS IN ROYAL NAVAL DOCKYARDS.

4.1 Introduction.

This chapter describes the results of standardised mortality ratio (SMR) and Poisson regression analyses performed to investigate dockyard mortality patterns with regard to occupation, exposure to asbestos and time. Consideration is given to the effect of self-selection into the study base, i.e. the mortality rates of study non-responders, as defined in the last chapter, are appraised and compared to responder rates. Attention is also given to the healthy worker effect and its influence on mortality. This involves examining associations between mortality and the factors of greatest relevance to health-related selection, namely time since employment and duration of employment. Before describing the results of these analyses on the specific causes of death given in table 3.18, the overall mortality in the workforce is summarised for the 50 disease groups given in table A1.2. Lung cancer and pleura mesothelioma are given special consideration throughout this chapter in an attempt to address the questions arising from the past dockyard studies (i.e. the finding of a non-significant lung cancer risk accompanied by a very significant mesothelioma risk^[1,2]). Peritoneal mesothelioma and asbestosis will also be considered in this light, however, the small number of reported deaths from these causes (13 and 10 respectively) make any conclusive results unlikely.

The analyses performed in this chapter were undertaken only for those workers traced by the Office of Population Censuses and Surveys (OPCS): 27,502 workers across the three dockyards, that is, 97.3% of the study base. Workers that emigrated were considered lost to follow-up at their date of emigration. Censoring was undertaken for subjects who reached the age of 85, i.e. 85 was considered the age above which the reliability of data concerning the events of interest would be considered inadequate. This censoring prevents the bias that would result from allowing subjects to contribute time at risk to the rate denominator of the SMR,

when they are not in fact at risk of suffering an event that could be both observed and counted in the numerator. This had the effect of reducing the number of observed deaths in the study by 5, i.e. from 5,031 to 5,026. The results for each dockyard are reviewed independently. The main results tables are given in appendix 3. Appendix 4 contains supplementary results.

4.2 Cause specific mortality for 50 disease groups.

This section is concerned both with the overall mortality pattern shown in the 50 disease groups and the effect of regional adjustment on this pattern. The results for the three dockyards are given in tables 4.1 to 4.3.

From these tables it can be seen that the workforce experienced mortality rates that were, generally, 13-18% lower than national rates; the all-cause SMR was 87 for Devonport (95%CI: 83-91), 85 for Chatham (95%CI: 80-91) and 82 for Portsmouth (95%CI: 78-85)*. The effect of applying a regional adjustment was to increase these SMRs to the following levels; 97 (93-101), 91 (86-97) and 88 (83-92) for Devonport, Chatham and Portsmouth respectively. The observed mortality being generally significantly lower than expected, both with and without regional adjustment. The variation in all-cause SMR across dockyard was also found to be statistically significant [$X^2 = 9.7$, P < 0.01]**.

For the disease group 'all-neoplasms' a statistical deficit is not seen. This is best illustrated by considering the regionally adjusted all-neoplasm SMR. For the three dockyards in the order Devonport, Chatham and Portsmouth^{***} we have the following SMRs: 117 (109-125), 107 (96-118) and 98 (90-106). Devonport

Throughout, 95% confidence intervals will henceforth be shown in parentheses, e.g. (83-91) in place of (95%CI: 83-91).

^{••} Chi-squared tests for a difference between SMRs will be given, when appropriate, inside square brackets [].

This order of Devonport, Chatham and Portsmouth will be used throughout the remainder of this work.

the rest is a set of the other means of the set of the other is a set of the other in a set of the other is a

- Cause specific mortality for 50 disease groups

The school is oncerned both with the overall mortality pattern shown in the 50 diseast groups are the effect of regional adjustment on this pattern. The results for the three dockwards are given in tables 4.1 to 4.3.

From these table is can be seen that the workforce experienced mortality rates that were generally, 13–18% lower than national rates; the all-cause SMR was 87 for Devondor (95% C1 E3–91), 85 for Chatham (95% C1: 80-91) and 82 for Portsmouth (95% C1 E3–91), 85 for Chatham (95% C1: 80-91) and 82 for Portsmouth (95% C1 76–85). The effect of applying a regional adjustment was in morease these SMRs to the following levels; 97 (93-101), 91 (86-97) and 88 (81–42) for Devonport. Chatham and Portsmouth respectively. The observed mortality being generally significantly lower than expected, both with and without regional adjustment. The variation in all-cause SMR across dockyard was also found to be statistically significant: $[X^2 = 9.7, P < 0.01]^{**}$.

For the disease group all-neoplasms a statistical deficit is not seen. This is best dissinated to considering the regionally adjusted all-neoplasm SMR. For the three order and in the order Devonport, Chatham and Portsmouth^{***} we have the following States 117 99 125), 197 (96-118) and 98 (90-106). Devonport

Throughout 95% confidence intervals will henceforth be shown in parentheses, e.g. (83.91) in place of (95%/11, 83.91).

 Champion of sould for a difference between SMRs will be given, when appropriate, made square brackets [].

This sector of Decompose, Contain and Portsmouth will be used throughout the companying of this work. when they are not in fact at risk of suffering an event that could be both observed and counted in the numerator. This had the effect of reducing the number of observed deaths in the study by 5, i.e. from 5,031 to 5,026. The results for each dockyard are reviewed independently. The main results tables are given in appendix 3. Appendix 4 contains supplementary results.

4.2 Cause specific mortality for 50 disease groups.

This section is concerned both with the overall mortality pattern shown in the 50 disease groups and the effect of regional adjustment on this pattern. The results for the three dockyards are given in tables 4.1 to 4.3.

From these tables it can be seen that the workforce experienced mortality rates that were, generally, 13-18% lower than national rates; the all-cause SMR was 87 for Devonport (95%CI: 83-91), 85 for Chatham (95%CI: 80-91) and 82 for Portsmouth (95%CI: 78-85)*. The effect of applying a regional adjustment was to increase these SMRs to the following levels; 97 (93-101), 91 (86-97) and 88 (83-92) for Devonport, Chatham and Portsmouth respectively. The observed mortality being generally significantly lower than expected, both with and without regional adjustment. The variation in all-cause SMR across dockyard was also found to be statistically significant [$X^2 = 9.7$, P < 0.01]**.

For the disease group 'all-neoplasms' a statistical deficit is not seen. This is best illustrated by considering the regionally adjusted all-neoplasm SMR. For the three dockyards in the order Devonport, Chatham and Portsmouth^{***} we have the following SMRs: 117 (109-125), 107 (96-118) and 98 (90-106). Devonport

Throughout, 95% confidence intervals will henceforth be shown in parentheses, e.g. (83-91) in place of (95%CI: 83-91).

^{••} Chi-squared tests for a difference between SMRs will be given, when appropriate, inside square brackets [].

This order of Devonport, Chatham and Portsmouth will be used throughout the remainder of this work.

TABLE 4.1: Devonport_Dockyard. Cause specific mortality for 50 disease groups, with and without regional adjustment.

Causes of Death		nout regi Exp	With regional adj SMR 95% CI			
All Causes	2289	2629.8	87	83- 91	97	93-101
Infectious and Parasitic Diseases Tuberculosis	6	12.5	48 37	18-105 5-135	56 57	21-122
			37	3-133		
All Neoplasms	789	758.9	104	97-111	117	109-125
Ca. Lip, Oral Cavity and Pharynx	5	11_1	45	15-105	51	16-118
Ca. Digestive Organs and Peritoneum	244	220.9	110	97-124	118	103-132
Ca. Oesophagus	31	26.0	119	77-161	127	82-172
Ca. Stomach	81	66.9	121	95-147	145	113-176
Ca. Peritoneum (mesothelioma)	10	1.4	731	351-1344		
Ca. Respiratory System	318	312.7	102	90-113		
Ca. Lung	241	301.3	80	70- 90	99	87-112
Ca. Pleura (mesothelioma)	66	3.3	1983	1505-2461		
Ca. Bone, Tissue, Skin and Breast	14	11.9	118	65-198	00	
Ca. Genito-urinary Organs	84	87.6	96	75-116	90	71-110
Ca. Prostate	40	41.9	95	66-125	89	61-117
Ca. Other and Unspecified Sites	74	60.3	123	95-151		
Ca. Lymphatic and Haematopoietic Tissue	42	46.5	90	63-118	94	66-122
Benign Neoplasms Unspecified Neoplasms	3	2.2	138	28-402 30-216	172	36 - 504
Endocrine and Nutritional Diseases	29	28.4	102	68-147	101	67-145
Diseases of Blood and Blood-forming Organs	3	5.2	58	12-169	63	13-184
Diseases of the Nervous System	26	34.7	75	49-110	75	51-116
Diseases of the Circulatory System	1152	1310.4	88	83- 93	95	90-101
Hypertensive Disease	17	24.9	68	40-109	74	43-119
Ischaemic Heart Disease	868	924.0	94	88-100	102	95-109
Diseases of Pulmonary Circulation	28	12.3	227	151-329	232	154-335
Cerebrovascular Disease	148	205.8	72	60- 84	78	66- 91
Diseases of the Respiratory System	192	255.4	75	65- 86	95	82-109
Acute Respiratory Infections	1	2.8	36	91~199	33	02-103
Other Disease of Upper Respiratory Tract	ó	0.2		0-1836		
Pneumonia and Influenza	39	79.6	49	34- 64		
Bronchitis, Emphysema and Asthma	45	106.8	42	30- 54	60	43- 78
Chronic Obstructive Pulmonary Disease	85	156.8	54	43- 66	72	57-88
Pneumoconiosis	7	3.6	197	79-406	352	141-726
Coalworkers Pneumoconiosis	Ó	1.8	-	0-203		
Asbestosis	7	0.4	1718	690-3538		
Silicosis	Ó	0.3	-	0-1308		
Other Diseases of the Respiratory System	8	11.3	71	30-139		
Pulmonary Fibrosis	2	3.0	68	8-245		
Diseases of the Digestive System	33	65.9	50	33- 67	56	37- 76
Diseases of Desophagus and Stomach	11	21.6	51	25- 91		
Diseases of the Genito-uninary System	11	24.7	45	22- 80	51	25- 91
Diseases of the Skin and Subcutaneous Tissue	1	1.0	102	3-568	91	2-506
Diseases of the Musculoskeletal System	1	7.3	14	0- 76	15	0- 83
Symptoms, Signs and Ill-defined Conditions	0	2.4	-	0-153	-	0-199
Accidents, Poisonings and Violence	35	104.3	34	22- 45	34	23- 46
Transport Accidents	5	32.1	16	5- 36		
Accidental Poisoning	2	4.1	49	6-177		
Accidental Falls	1	10.8	9	0- 51		
Suicide and Self-inflicted Injury	10	30.5	33	16- 60		

TABLE 4.2: Chatham Dockyard. Cause specific mortality for 50 disease groups, with and without regional adjustment.

Causes of Death	With Obs	Exp	onala SMR	djustment 95% Cl	With re SMR	gional ad 95% CI
All Causes	1045	1223.9	85	80- 91	91	86- 97
Infectious and Parasitic Diseases	6	5.5	109	40-237	106	39-231
Tuberculosis	0	2.3	-	0-158	-	0-154
All Neoplasms	365	351.0	104	93-115	107	96-118
Ca. Lip, Oral Cavity and Pharynx	3	4.9	61	13-178	72	15-211
Ca. Digestive Organs and Peritoneum	103	102.0	101	81-120	112	90-134
Ca. Oesophagus	8	11.9	67	29-132	73	31-144
Ca. Stomach	34	31.1	109	72-146	122	81-162
Ca. Peritoneum (mesothelioma)	2	0.6	338	41-1222		
Ca. Respiratory System	146	144.3	101	85-118		
Ca. Lung	116	139.1	83	68- 99	85	70-101
Ca. Pleura (mesothelioma)	24	1.5	1638	1049-2437		
Ca. Bone, Tissue, Skin and Breast	6	5.3	114	42-249		
Ca. Genito-urinary Organs	38	42.4	90	61-118	90	61-118
Ca. Prostate	20	21.1	95	58-146	90	55-140
Ca. Other and Unspecified Sites	47	27.4	171	122-220		55 .40
Ca. Lymphatic and Haematopoietic Tissue	18	21.0	86	51-135	86	51-137
Benign Neoplasms	1	1.0	104	3-580	116	3-646
Unspecified Neoplasms	3	2.5	121	25-354	110	3-040
Endocrine and Nutritional Diseases	8	13.4	60	26-118	62	27-123
Diseases of Blood and Blood-forming Organs	0	2.5	-	0-147	-	0-151
Diseases of the Nervous System	12	16.3	74	38-129	76	39-133
Diseases of the Circulatory System	487	610.2	80	73- 87	89	81- 96
	14		123	67-206		
Hypertensive Disease		11.4		76-93	124	68-208
Ischaemic Heart Disease	360	424.7	85	19-177		84-103 18-170
Diseases of Pulmonary Circulation Cerebrovascular Disease	71	5.8 99.8	69 71	55-88	66 84	65-104
Diseases of the Respiratory System	107	124.0	86	70-103	93	75-110
Acute Respiratory Infections	2	1.3	155	19-559	1 13	15 110
Other Disease of Upper Respiratory Tract	i õ	0.1	133	0-3672		
Pneumonia and Influenza	23	38.8	59	38-89		
Bronchitis, Emphysema and Asthma	35	50.9	69	46-91	77	51-102
	62	76.1	82	61-102	89	66-111
Chronic Obstructive Pulmonary Disease					69	
Pneumoconiosis	0	1.7	-	0-212	-	0-512
Coalworkers Pneumoconiosis	U O			0-404		
Asbestosis		0.1	-	0-1992		
Silicosis	03	0.3		0-2639		
Other Diseases of the Respiratory System Pulmonary Fibrosis	3	5.5 1.4	55 72	11-160 2-399		
Diseases of the Digestive System	14	30.3	46	25- 78	49	27- 82
Diseases of Oesophagus and Stomach	7	10.2	69	28-142		E/- OE
liseases of the Genito-uninary System	11	11.9	92	46-165	94	28-142
Diseases of the Skin and Subcutaneous Tissue	0	0.5	-	0-777	-	0-771
Diseases of the Musculoskeletal System	1	3.5	28	1-159	30	1-166
Symptoms, Signs and Ill-defined Conditions	0	1.1	-	0-335	-	0-271
ccidents, Poisonings and Violence	22	44.5	49	31- 75	51	32- 77
Transport Accidents	6	13.7	44	16- 96		
Accidental Poisoning	2	1.7	117	14-422		
Accidental Falls	1	4.9	21	1-115		
Suicide and Self-inflicted Injury	6	12.8	47	17-102		

TABLE 4.3: Portsmouth Dockvard. Cause specific mortality for 50 disease groups, with and without regional adjustment.

Causes of Death	With Obs	nout regi Exp	onala SMR	djustment 95% CI	With re SMR	gional ad 95% CI
All Causes	1692	2072.7	82	78- 85	88	83- 92
Infectious and Parasitic Diseases	7	9.3	75	30-155	73	29-151
Tubercu los is	2	3.8	52	6-189	51	6-184
All Neoplasms	575	604.2	95	87-103	98	90-106
Ca. Lip, Oral Cavity and Pharynx	12	8.7	1.38	71-240	164	85-286
Ca. Digestive Organs and Peritoneum	164	175.6	93	79-108	104	68-120
Ca. Oesophagus	27	21.1	128	84-186	139	92-203
Ca. Stomach	45	52.6	86	61-111	95	68-123
Ca, Peritoneum (mesothelioma)	1	1.0	99	2-551		
Ca. Respiratory System	251	248.3	101	89-114		
Ca. Lung	218	239.1	91	79-103	94	81-106
Ca. Pleura (mesothelioma)	28	2.7	1042	693-1506	1	01-100
Ca. Bone, Tissue, Skin and Breast	6	9.0	88	38-174		
Ca. Genito-urinary Organs	42	71.9	58	41- 76	58	41- 76
Ca. Prostate	26	35,6	73	48-107	70	41-76
	62				10	46-102
Ca. Other and Unspecified Sites	33	48.2	129	97-161		07
Ca. Lymphatic and Haematopoletic Tissue		36.2	91	60-122	92	97-161
Benign Neoplasms	2	1.6	122	15-439	136	61-124
Unspecified Neoplasms	1	4.3	23	1-130		
Endocrine and Nutritional Diseases	17	.23.0	74	43-119	77	45-124
Diseases of Blood and Blood-forming Organs	4	4.2	95	26-242	97	26-248
Diseases of the Nervous System	15	27.7	54	30- 89	56	31- 92
Diseases of the Circulatory System	820	1037.0	79	74-84	88	82- 94
Hypertensive Disease	24	18.9	127	81-189	129	83-193
Ischaemic Heart Disease	582	731.4	80	73-86	88	81- 95
Diseases of Pulmonary Circulation	4	9.5	42	11-108	40	11-103
Cerebrovascular Disease	122	164.3	74	61-87	88	72-104
Diseases of the Respiratory System	160	200.2	80	68- 92	86	73- 99
Acute Respiratory Infections	5	2.1	240	78-559		
Other Disease of Upper Respiratory Tract	0	0.2	-	0-1530		
Pneumonta and Influenza	29	59.0	49	33-71		
Bronchitis, Emphysema and Asthma	39	81.2	48	33- 63	54	37- 71
Chronic Obstructive Pulmonary Disease	78	126.2	62	48-76	67	52-82
Pneumoconiosis	3	2.8	106	22-310	251	52-733
Coalworkers Pneumocontosts	ō	1,4	-	0-256		
Asbestosis	3	0.3	905	187-2646		
Silicosis	õ	0.2	-	0-1669		
Other Diseases of the Respiratory System	7	9.3	75	30-155		
Pulmonary Fibrosis	i	2.4	43	1-237		
Diseases of the Digestive System	38	51.7	74	50- 97	78	57- 99
Diseases of Oesophagus and Stomach	9	17.0	53	24-100		
Diseases of the Genito-urinary System	9	19.2	47	22- 89	48	22- 90
Diseases of the Skin and Subcutaneous Tissue	2	0.8	252	30-908	250	30-903
Diseases of the Musculoskeletal System	6	6.0	100	37-218	106	39-230
Symptoms, Signs and Ill-defined Conditions	0	1.8	-	0-201	-	0-160
Accidents, Poisonings and Violence	31	72.2	43	28- 58	44	29- 60
Transport Accidents	3	21.4	14	3-41		
Accidental Poisoning	1	2.7	37	1-205		
Accidental Falls	2	8.0	25	3-90		
Suicide and Self-inflicted Injury	14	21.3	66	36-111	1	

showing a clear excess of cancer mortality. The difference in SMRs was significant $[X^2 = 10.5, P < 0.01]$. This picture, of SMRs close to, or above, 100 for cancer mortality and a deficiency in all-cause mortality, may imply the existence of the healthy worker effect. Accordingly, non-cancer disease groupings will now be considered and in particular the two groups, diseases of the circulatory system, and diseases of the respiratory system.

For diseases of the circulatory system the following regional SMRs were obtained: 95 (90-101), 89 (81-96) and 88 (82-94) $[X^2 = 3.3, P > 0.1]$. For diseases of the respiratory system we have: 95 (82-109), 93 (75-110) and 86 (73-99) $[X^2 = 0.1, P > 0.1]$. From this there is only a slight suspicion of the healthy worker effect, with the upper limit of the confidence intervals either overlapping 100 or being less than 6% beneath it. In the presence of the healthy worker effect a reduction in 'non-cancer' SMRs could have been expected in comparison to 'cancer' SMRs. However, this phenomenon may be obscured here by the long follow-up period. Accordingly, mortality patterns for the 12 specific disease groups will be scrutinised by time since start of employment for the healthy worker effect in section 4.5.

This pattern of SMRs, the 'non-cancer' SMRs having confidence intervals overlapping 100, generally holds for all subgrouped diseases within the circulatory system grouping, with the exception of disease of pulmonary circulation at Devonport dockyard. In this instance, the SMR is significantly elevated: 232 (154-335). Clearly, this does not support the idea of an important healthy worker effect. However, this disease group is one of the three commented upon in the last chapter as being only an estimated grouping, and therefore having only estimated death rates (section 3.2.7). It is used here as a limited indicator of *cor pulmonale* mortality, a disease suspected 'a priori' to be related to asbestos exposure.^[3] Caution should, however, be applied in the over interpretation of this single result.

Within the 'diseases of the respiratory system' grouping, we have the following four interesting groups: 1) Pneumonia and Influenza, 2) Bronchitis, Emphysema and Asthma, 3) Asbestosis, and 4) Pulmonary Fibrosis. From these only bronchitis, emphysema and asthma is regionally adjusted, giving the following SMRs over the three dockyards: 60 (43-78) at Devonport, 77 (51-102) at Chatham, and 54 (37-71) at Portsmouth $[X^2 = 2.4, P > 0.1]$, generally indicating a deficiency in mortality due to bronchitis, emphysema and asthma. This deficiency is also seen for pneumonia and influenza, the upper limit of the confidence intervals reaching only 89%. For asbestosis, a large excess mortality is clearly seen at two dockyards: the SMR at Devonport is 1718 (690-3538), no deaths from asbestosis were recorded at Chatham, and at Portsmouth the SMR is 905 (187-2646). However, these SMRs are based upon only 7 and 3 deaths, respectively, $[X^2 = 0.9, P > 0.1]$. It is therefore likely that this large difference in SMRs has arisen simply due to statistical chance. For pulmonary fibrosis, that is, fibrosis coded without mention of asbestos on the death certificate, the following SMRs were obtained: 68 (8-245), 72 (2-399) and 43 (1-237). These, however, are based upon only 4 deaths across the three dockyards $[X^2=0.2, P>0.1]$. Asbestosis and pulmonary fibrosis (9th revision ICD codes 501 and 515), although arguably the same clinical condition without postmortem verification of the death certificate, are analysed separately throughout this work. All death certificates are analysed as coded by the nosologist (the professional death certificate coder) to avoid bias.

Pneumoconiosis is also a subgroup of diseases of the respiratory system. It has a regional adjustment factor and the following SMRs were produced: 352 (141-726) at Devonport, no deaths were recorded at Chatham, and 251 (52-733) at Portsmouth [$X^2 = 0.2$, P > 0.1]. Clearly, the mortality due to pneumoconiosis at Devonport dockyard is significantly elevated. However, since this is again one of the estimated disease groups referred to in chapter three, care should be exercised in interpreting this result. Coalworkers' pneumoconiosis and silicosis were also considered among the 50 disease groups. This was to allow for any effect of previous mining or quarrying employment, however, there were no recorded deaths from these conditions at any dockyard.

The final estimated disease group, that of chronic obstructive pulmonary disease, follows the same pattern as its surrogate group 'bronchitis, emphysema and asthma' with slightly higher regional SMRs of 72 (57-88) at Devonport, 89 (66-111) at Chatham, and 67 (52-82) at Portsmouth $[X^2 = 3.0, P > 0.1]$. Showing, as with its substitute grouping, a general deficiency in mortality due to chronic obstructive pulmonary disease. The grouping of bronchitis, emphysema and asthma will be used in place of the estimated group of chronic obstructive pulmonary disease in the analysis of the 12 specific disease groups.

Returning to all-neoplasms, by observation the two disease groups showing clear excess mortality across all three dockyards are cancers of the peritoneum and pleura, the two forms of mesothelioma. For pleural mesothelioma the following unadjusted SMRs are obtained: 1983 (1505-2461), 1638 (1049-2437), and 1042 (693-1506); based on 66, 24 and 28 observed deaths $[X^2 = 8.4, P < 0.025]$. For peritoneal mesothelioma we have the following: 731 (351-1344), 338 (41-1222), and 99 (2-551); based on 10, 2 and one death, respectively $[X^2 = 5.9]$, 0.05 < P < 0.1]. Stomach cancer showed a slight excess. Here the adjusted SMRs were: 145 (113-176), 122 (81-162), and 95 (68-123) $[X^2 = 5.2, 0.05 < P < 0.1]$. Mortality due to lung cancer is not seen to be in excess. The three dockyards show the following regionally adjusted lung cancer ratios: 99 (87-112) at Devonport, 85 (70-101) at Chatham, and 94 (81-106) at Portsmouth $[X^2 = 1.8]$, P > 0.1]. Lung cancer appears to be neither significantly in excess or in deficit at these dockyards, but would appear to be similar with the background population rate. Whereas, both forms of mesothelioma and asbestosis show potentially a large excess risk.

Regional adjustments were not available for the three disease groups that at this point show a clear excess mortality - namely asbestosis, and mesothelioma of both the pleura and peritoneum. By examination of the other disease groups it is

apparent that any adjustment applied would very probably increase the calculated SMR. Only in four disease groups at Devonport and Portsmouth and in three at Chatham were the SMRs reduced by the regional adjustment. However, regarding asbestosis and the two forms of mesothelioma, would any form of regional adjustment be appropriate? Would this be comparing like with like? These are rare diseases and it is likely that the majority of reported cases in OPCS 'coastal' regions (here the south west and south east regions) are concentrated around dockyard conurbations. If this is the case no regional adjustment should be For lung cancer, the other 'known' asbestos related disease, a undertaken. regional adjustment is both available and used. This has its main affect at Devonport dockyard, taking the lung cancer SMR from 80 (70-90) to 99 (87-112), i.e. taking the ratio from a statistically significant deficiency to being no different from that expected for the south west regional population. This affect is also seen at Chatham dockyard. Since lung cancer is a relatively more 'common' disease, the regional adjustment was judged to be required.

When considering the 50 disease groups there is slight evidence of a difference in mortality between the dockyards for certain diseases. Possibly, with the mortality rates at Devonport being higher than Chatham, which in turn may be higher than Portsmouth. However, the variation in SMRs across dockyard is not consistent over all groups, and the pattern of disease for each dockyard is very similar. As a footnote to this section, mortality due to accidents, poisoning and violence was significantly reduced in all three dockyards, as was disease of the digestive system.

4.3 Non-responder mortality.

The fifty disease groups were also scrutinised for those who were absolute nonresponders in the cross-sectional surveys. The results are given in tables A3.1 to A3.3. From these tables, it is readily apparent that the non-responders experienced higher overall mortality rates than their colleagues who responded. The former were 7-41% higher than expected from the general population. The all-cause SMR being 141 (125-157) for Devonport, 126 (112-140) for Chatham, and 107 (98-116) at Portsmouth. With regional adjustment these become: 156 (138-173), 135 (120-149) and 114 (104-124) [$X^2 = 19.6$, P < 0.001]. The SMRs all being elevated, and generally significantly so (i.e. they are unlikely to be chance statistical findings).

For all-neoplasms, the regionally adjusted SMRs are: 143 (111-176), 130 (104-157), and 125 (106-144) $[X^2 = 1.0, P > 0.1]$. Again all statistically elevated from 100. In the case of lung cancer, the SMRs are all in excess of 100, but only Portsmouth reaches statistical significance. The lung cancer SMRs are: 142 (94-207), 121 (78-161), and 139 (106-169) $[X^2 = 0.6, P > 0.1]$. Pleural mesothelioma follows the same general pattern for non-responders and responders, with a clear statistical excess appearing at all yards. The SMRs are: 2917 (1070-6349), 1558 (425-3989), and 907 (294-2117); based on 6, 4 and 5 deaths, respectively $[X^2 = 4.1, P > 0.1]$. Peritoneal mesothelioma is seen only at Devonport and Portsmouth: 1076 (27-5993) and 457 (12-2544); based on one case at each yard $[X^2 = 0.4, P > 0.1]$.

This picture of excess mortality, occasionally reaching a statistical excess, is generally observed throughout the disease groups of all-neoplasms, diseases of the circulatory system, and diseases of the respiratory system. It is very apparent for tuberculosis and pulmonary fibrosis, though based on low numbers of observed deaths. The tuberculosis SMRs are: 363 (9-2022), 407 (49-1469), and 109 (3-609) for 4 cases in total [$X^2 = 1.4$, P > 0.1]. A single case of pulmonary fibrosis is seen at each dockyard, producing the following SMRs: 404 (10-2248) at Devonport,

333 (8-1856) at Chatham, and 172 (4-956) at Portsmouth $[X^2=0.4, P>0.1]$. No cases of asbestosis were reported. No single cause of death was seen to have significantly reduced SMRs.

This suggests that an element of the non-responders may have been chronically ill and deselected themselves out of the initial surveys on health grounds. If this hypothesis is correct the non-responder mortality rates may be expected to be high at study definition, declining to 'normal' levels (i.e. responder levels) as follow-up continued. To explore this, non-responder mortality rates were initially examined by period of follow-up for the 12 specific causes of interest given in table 3.18. Table 4.4 gives these results.

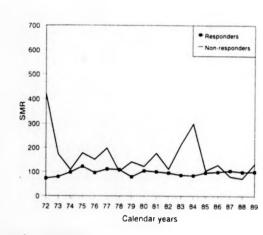
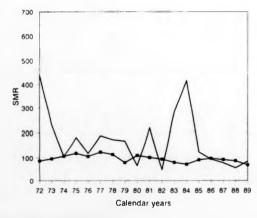
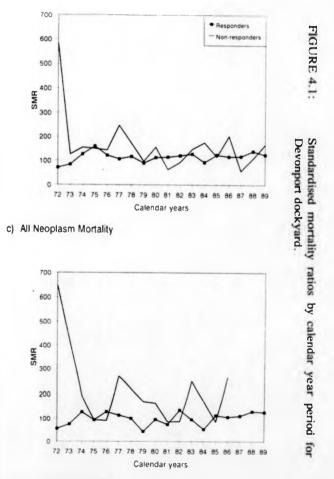

From table 4.4 the largest SMRs generally appear to occur in the early years of follow-up (i.e. in either the group <5 years or the group of 5-9 years of follow-up). There is an indication of significant differences in the SMRs over follow-up period at Devonport and Portsmouth, however, at Chatham the rate appears constant. For example, considering all-cause mortality, at Devonport a chi-squared test of the difference between SMRs approached statistical significance $[X^2 = 5.5, 0.05 < P < 0.1]$, likewise at Portsmouth $[X^2 = 4.6, P = 0.1]$. However, at Chatham no difference was seen $[X^2 = 0.05, P > 0.1]$. For all-neoplasms only the difference between SMRs at Portsmouth was statistically significant $[X^2 = 6.5, P < 0.05]$. For diseases of the respiratory system, the difference in SMRs at Devonport $[X^2 = 6.3, P < 0.05]$ and Portsmouth $[X^2 = 9.3, P < 0.01]$ were both significant. The large change in SMR at Devonport for pleural mesothelioma was also significant $[X^2 = 6.5, P < 0.03]$, but was based on only 6 cases.

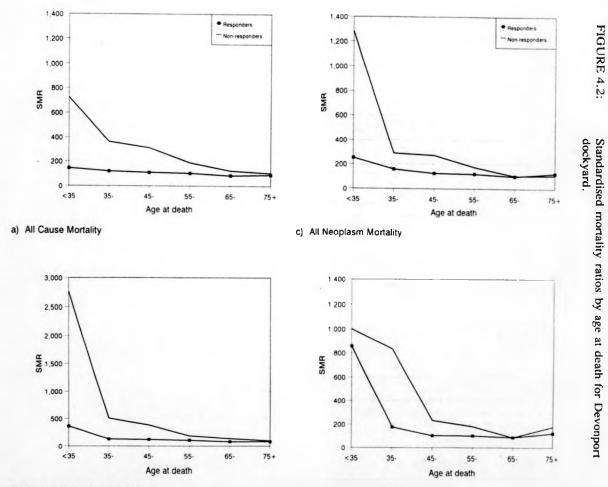
TABLE 4.4:

Cause specific mortality by follow-up period and dockyard for initial study non-responders.*


Causes of Death Follow-u period (yrs)		rlod			Chat	<u>nam</u>	Portsmouth			
	(yrs)	Obs	SMR	95% CI	Obs	SMR	95 % CI	Obs	SMR	95% CI
All Causes	<5	88	193	153-234	78	137	107-168	126	126	104-148
	5-9 10+	81 125	146 142	115-178 117-167	94 148	135 133	108-163 112-154	130 276	98 118	81-114 104-132
All Neoplasms	<5	26	205	134-301	22	132	83-201	49	167	120-213
	5-9 10+	18 31	117 128	70-185 83-172	30 39	147 119	99-209 82-157	39 85	98 123	67-129 96-149
Ca. Stomach	<5 5-9	4	319	87-816 2-397	23	124	15-449 35-491	7	251	101-518
	10+	2	103	12-370	7	280	112-577	6	118 114	32-301 42-248
Ca. Peritoneum	«5 5-9	1	3235	82-18018 0-12467	0	-	0-10121	0	-	0-5474 0-5541
	10+	ŭ	-	0-11381	ŏ	-	0-9500	1	1178	30-6560
Ca. Lung	<5 5-9	9 B	177	81-337 59-271	10 13	137 150	66~251 80-257	19 19	148 114	89-231 69-179
	10+	10	123	59-226	11	90	45-161	39	151	103-198
Ca. Pleura	<5 5-9	4 2	9344 3653	2546-23921 442-13188	1 2	1826 2975	46-10171 360-10741	3	2830	584-8272 0-267
	10+	ō	-	0-3412	ĩ	742	19-4134	2	651	79-235
Circulatory System	<5 5-9	45 47	194	138-251 115-208	42	154 135	107-200 96-174	52 65	108	79-137 75-124
	10+	71	156	120-192	75	140	108-172	123	109	90-129
Pulmonary Circulation	<5 5-9	2	868 512	105-3135 62-1850	0	-	0-1239	0	98	0-709 2-547
	10+	ī	239	6-1331	l i	197	5-1097	Ó	-	0-377
Respiratory System	<5 5-9	13 10	293 179	156-502 86-328	10	161	77-296 97-296	22 11	214 75	134-325 38-135
	10+	9	103	47-195	15	121	68-199	30	120	81-172
Bronchitis, Emphysema and Asthma	<5 5-9	2	90 178	11-325 49-457	32	91 59	19-265 7-213	83	148 49	64-292 10-144
	10+	2	80	10-287	à	205	89-404	ě	102	44-201
Asbestosis	<5 5-9	0	-	0-65776	0	-	0-48884 0-35608	0	-	0-252
	10+	ŏ	-	0-25513	ŏ	-	0-20942	ő	-	0-963
Pulmonary Fibrosis	<5 5-9	0	-	0-5175	0	1328	0-4287 34-7398	0	-	0-247
	10+	1	896	23-4992	ò	- 320	0-2660	1	336	0-187

The quoted SMRs from this table onwards will, where appropriate, be with regional adjustment.




b) Circulatory System Mortality

d) Lung Cancer Mortality

Annual patterns of mortality for both responders and non-responders, over the 17 year follow-up period, were considered next (these are given in tables A3.4 to A3.6). These clearly illustrate, for each dockyard, a 'fading-away' affect in the non-responder mortality rate with time. Figure 4.1 demonstrates this affect graphically for Devonport dockyard for the disease groups of: all-causes, allneoplasms, lung cancer, and diseases of the circulatory system. For all-causes a chi-squared test of difference in SMRs for study responders was significant $[X^2 = 28.9, P < 0.05]$ and a test of a decreasing trend in their SMRs was nonsignificant [X^2 for trend = 0.01, P > 0.1], the non-responders produced both a significant difference and trend $[X^2 = 71.1, P < 0.001; X^2$ for trend = 10.3. P < 0.005]. For all-neoplasms the responders produced non-significant results in both tests [$X^2 = 18.7$, P>0.1; X^2 for trend = 1.2, P>0.1], and again the nonresponders gave significant results $[X^2 = 33.6, P < 0.01; X^2$ for trend = 9.6, P < 0.005]. It may be concluded from these results and observation of figure 4.1. that the responders do indeed represent a baseline level of mortality that the initial surveys non-responders slowly approach over time. These tables and figures then give some evidence to support the idea of certain non-responders being chronically ill at study definition and in turn succumbing to disease and death in the first years of follow-up, the overall non-responder mortality rate then reducing to responder levels.

Age effects on non-responder mortality were considered next. The only information available concerning the age of non-responders was their date of death. Accordingly, mortality rates by age at death are compared for responders and non-responders (these are given in tables A3.7 and A3.8). From these tables there appears to be a slight overall decline in SMR with age at death for study responders and a more substantial decline for non-responders. The rate of decline is affected by the relatively low numbers of observed deaths at the younger ages producing the highest SMRs. Figure 4.2 illustrates this point. After omitting the youngest group (< 35 years of age) the decline in SMR for non-responders was generally still very significant (P < 0.01). This again gives support to the idea of

b) Circulatory System Mortality

d) Lung Cancer Mortality

155

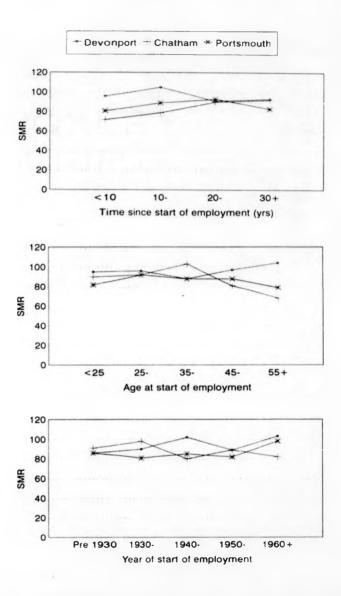
certain non-responders being chronically ill, producing much higher than expected SMRs at younger ages in comparison to the responder SMRs.

It is possible that the overall excess mortality rates found in the non-responder group may explain, in part, the deficiency seen in section 4.2 for the study responders. To examine this the following three disease groups were considered: all-causes, all-neoplasms, and lung cancer. By combining the responder and non-responder observed and expected mortality at each dockyard table 4.5 was produced.

	Dockyard	Obs	SMR	95 % C1
All Causes.	Devonport: Chatham:	2583 1365	101 99	97-105 93-104
	Portsmouth:	2224 [X	93 2=8.6, P<	89- 97 0.025]
All Neoplasms.	Devonport: Chatham:	864 456	119 111	111-127
	Portsmouth:	748 [X	² =8.4, P<	96-111
Lung Cancer.	Devonport: Chatham:	268 150	102 91	90-114 77-106
	Portsmouth:	205	2=1.7, P>	91-114

TABLE 4.5: Responder and Non-responder mortality for the disease groups: All-Causes, All-Neoplasms and Lung Cancer.

From this table it is clear that an 'all-worker' study would not have generally found a deficit mortality rate in these disease groups. The all-cause SMRs being more or less 100, the all-neoplasm SMRs being raised above 100 and showing no statistical deficit. The lung cancer SMRs show no signs of either a significant excess or deficit in mortality. It is possible that any healthy worker effect to be seen among the study responders may be overshadowed by the absolute deselection effect of the non-responders.


It should be noted that the non-responders had poor OPCS trace rates. In total 527 non-responders from the three yards could not be traced; by dockyard this was: 131 (13.4% of the non-responders) at Devonport, 72 (7.9%) at Chatham, and 324 (14.8%) at Portsmouth^{*}. This is likely to be an artifact of the initial surveys follow-up requirements (non-responders being invited to attend only once more after initial failure to attend), and a problem of definition of the study population. It has the effect of reducing the number of non-responders analysed in this section to 3,670 workers (i.e. to only those non-responders who were successfully flagged at OPCS).

4.4 Cause specific mortality according to questionnaire and x-ray type.

Before progressing to a more detailed analysis of mortality, the study responders are briefly inspected according to questionnaire and x-ray type. Tables A3.9 and A3.10 give the results of this. In these tables the mortality rates of workers replying to the self-administered (free) questionnaire are compared with those responding to both the free and doctor-administered questionnaire, and against those not supplying a questionnaire. For x-ray type, workers with only small x-rays are compared to those with both small and large x-ray, and to those with no x-ray.

By inspection the mortality rates by questionnaire type at Chatham dockyard appear reasonably constant; when tested all differences were non-significant (P>0.1). At Devonport significant differences were found in the SMRs for allcause mortality [$X^2 = 9.1$, P<0.025], all-neoplasm mortality [$X^2 = 11.7$, P<0.005], mortality due to lung cancer [$X^2 = 10.0$, P<0.01], and pleural mesothelioma [$X^2 = 13.2$, P<0.005]. Similar results were observed for Portsmouth. Generally the pattern of mortality over questionnaire type at Devonport and Portsmouth is variable, no one type being seen to have consistently

At Rosyth 666 (43.3%) of the non-responders were untraced.

Standardised mortality ratios by employment-time variables.

higher mortality rates. This variability of rate is also observed over x-ray type for all three dockyards. From this it could be concluded that the questionnaire and x-ray non-responders (i.e. the groups designated 'neither' in tables A3.9 and A3.10) generally experienced similar mortality rates to the questionnaire and x-ray responders (the groups entitled either 'free' and 'both' in table A3.9 or 'small' and 'both' in table A3.10).

The majority of the following analyses will exclude those workers with no questionnaire information. These workers are not initial survey 'absolute non-responders' since they all supplied x-ray information. However, no employment, medical history, or asbestos exposure information was available for these subjects. This reduces the number of observed deaths in the bulk of the following analyses from 5,026 to 4,373.

4.5 Cause specific mortality according to employment-time variables.

This section is concerned with a description of mortality over certain employment variables. These variables are all time related and consist of the following: time since start of employment, length of service, year of start of employment, and age at start of employment. Mortality related to these variables is cited when there are sufficient deaths to allow sensible analysis.

When analysed according to age, the patterns in each dockyard were similar (figure 4.3), with the SMRs generally appearing to be reasonably constant over recruitment age. The results are given in table A3.11; these are illustrated, for Devonport only, in figure 4.4^* . For the 12 causes of death analysed, the SMRs commonly showed little change over age at start of employment group, chi-squared tests of a difference in SMRs were mostly non-significant (P > 0.1). The

Throughout, SMR histograms are presented taking Devonport as a representative dockyard.

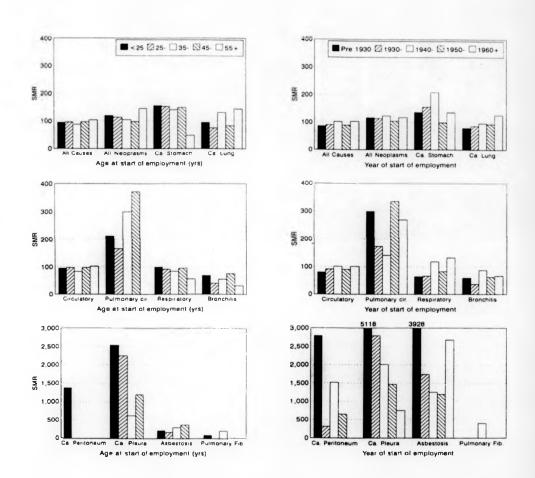


FIGURE 4.4:

Standardised mortality ratios by age at start of employment and year of start of employment for Devonport dockyard.

exception to this is lung cancer and pleural mesothelioma both of which approached a statistically significant difference in SMR with age $[X^2=9.4, P=0.05 \text{ and } X^2=8.2, 0.05 < P < 0.1, at Devonport], lung cancer appearing to$ increase, while pleural mesothelioma appears to decrease with age. Pleural $mesothelioma also showed a significant trend in its decreasing SMR <math>[X^2$ for trend = 4.4, P < 0.05]. Both forms of mesothelioma and asbestosis continue to show a clear excess mortality. However, as noted before, the peritoneal mesothelioma and asbestosis SMRs are based on low numbers (similarly for pulmonary fibrosis).

Disease of pulmonary circulation shows a marked affect in table A3.11 and figure 4.4; with high recorded SMRs over age at start of employment group, the SMRs appearing to increase with age. However, this increase is statistically non-significant [e.g. $X^2 = 2.2$, P > 0.1, at Devonport]. As mentioned previously this disease group was formed as a surrogate for *cor pulmonale*, which has been considered associated with both lung disease and asbestos exposure.^[3] It is possible that overly low estimates of expected numbers has resulted in these huge SMRs with their accompanying wide standard errors (producing chi-squared tests of a difference in SMRs that are non-significant). For this reason, disease of pulmonary circulation will not be considered further, however, it will continue to be tabulated in the appendix tables and illustrated in the forthcoming figures.

Calendar year of employment is considered next (figures 4.3, 4.4 and table A3.12). The associations seen are in slight contrast with those for age at start of employment. Overall, statistical differences are not seen in SMR across calendar period, however, lung cancer, pleural mesothelioma and diseases of the respiratory system are exceptions to this (generally, P < 0.05). Another exception is all-cause mortality at Devonport dockyard [$X^2 = 10.4$, P < 0.05]. As with age at recruitment a trend in decreasing pleural mesothelioma SMR is seen at Devonport [X^2 for trend = 14.7, P < 0.001]. The highest SMRs for this disease all occurring before World War II. Mesothelioma SMRs prior to 1930 were: 5118 (2207-10082), 1424 (36-7933), and 5072 (1643-11838); based on 14 deaths. Peritoneal mesothelioma

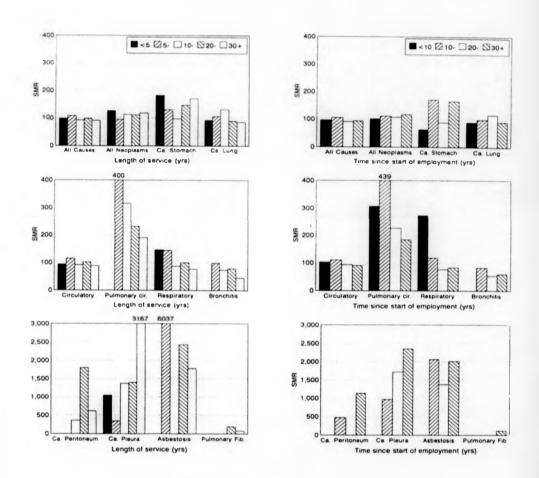


FIGURE 4.5:

Standardised mortality ratios by length of service and time since start of employment for Devonport dockyard.

in the same period produced SMRs of 2789 (338-10070) at Devonport and 3206 (81-17857) at Chatham; based on 3 deaths. An increasing trend is also seen at Devonport for diseases of the respiratory system [X^2 for trend = 8.4, P < 0.005].

Few notable patterns emerged when SMRs were analysed according to length of service (figure 4.5 and table A3.13). However, an increasing trend in SMR is seen for pleural mesothelioma (generally, P < 0.01). By observation of table A3.13 there was a tendency for SMRs to be lowest for individuals employed for 30 years or more. For these workers mortality due to all-causes, diseases of the circulatory and respiratory systems and bronchitis was seen to be significantly reduced from that expected in the regional population for Devonport and Portsmouth.

When analysing mortality by time since first employment (figure 4.5 and table A3.14) only respiratory system diseases showed a significant trend, indicating a decreasing SMR over time $[X^2=23.4, P<0.001 \text{ at Devonport}, and X^2=20.9, P<0.001 \text{ at Portsmouth}]$. This decreasing trend was significant only at Devonport $[X^2 \text{ for trend} = 12.7, P<0.001]$. A slight deficiency in mortality is seen at more than 30 years since first dockyard employment. This is again for all-causes, diseases of the circulatory and respiratory systems and bronchitis. However, apart from diseases of the respiratory system no other disease group gave any evidence of a systematic increase or decrease in SMR over time since first employment. SMRs for all causes of death combined for the three dockyards were very similar throughout the period of follow-up (figure 4.3), generally being just below 100 and non-significant.

SMRs showed no obvious pattern when time since first employment was analysed by length of service stratum (table 4.6 gives the results for all-cause mortality, tables A3.15 and A3.16 for lung cancer and pleural mesothelioma). There is only a very slight hint that the lowest SMRs fall on the main diagonal of these tables; lowered SMRs on this diagonal are a feature common in studies showing the healthy worker effect. The empty cells to the right of the diagonal would have referred to individuals who had left dockyard employment (in this study this would be before the enumeration dates), a group whose mortality patterns are unavailable in this study. This is another factor that may aid in obscuring a healthy worker effect and assist in producing the patterns seen at the three dockyards of little, if any, overall excess or deficiency of mortality.

Only for those workers with 30 or more years of service and 40 plus years since first potential exposure were effects being seen with significant declines in allcause SMR showing at both Devonport and Portsmouth. Chatham dockyard had no result that was either in excess or significantly reduced. No obvious trends in mortality pattern were seen. This result is generally repeated for lung cancer. However, there is an indication of excess mortality occurring at long intervals from first exposure, i.e. for those workers with less than 20 years employment who had first been employed over 30 years ago, with an SMR of 199 (114-324) at Devonport. In fact for those workers with between 10 and 19 years of employment an increasing lung cancer SMR was observed at Devonport with time since first exposure. The SMRs were: 104 (52-186) for 10-19 years since first exposure, 122 (79-164) for 20-29 years, and 199 (114-324) for 30-39 years. However, this was not a statistically significant trend $[X^2=3.5, P>0.1]$ and X^2 for trend = 2.8, P > 0.1]. This pattern, also with a non-significant trend, was further observed for those workers with between 20 and 29 years of employment at Chatham.

When considering pleural mesothelioma the numbers become very small for Chatham and Portsmouth (table A3.16), however, it is clear that there is a large excess mortality at all three dockyards for this condition clustered among those workers with long follow-up and long duration of service. For the longest period of service and follow-up the following SMRs are observed: 3337 (2215-4459) at Devonport, 3080 (1725-5080) at Chatham, and 1756 (959-2946) at Portsmouth; based on 34, 15 and 14 deaths respectively. No clear trends are seen in this excess mortality, the SMRs being very variable and singly highly significant. At Chatham one mesothelioma death occurred for a worker within 10 years of first

TABLE 4.6:

All cause mortality by length of service, time since first exposure, and dockyard.

		Time since	first exposure (em	ployment)	
Length of	0 - 9	10 - 19	20 - 29	30 - 39	40+
service (yrs)	Obs SMR (95% CI)				
			DEVONPORT		
<5	51 116 (84-148)	73 86 (67-106)	4 165 (45-422)	-	-
5 - 9	20 68 (41-105)	143 119 (99-138)	61 105 (78-131)	-	-
10 - 19	-	108 105 (85-125)	223 87 (75- 98)	81 94 (74-115)	-
20 - 29	-	-	109 91 (74-108)	257 97 (85-109)	65 120 (91-149)
30+	-	-	-	167 95 (81-110)	721 90 (83-97)
			CHATHAM		
«5	17 75 (44–121)	38 79 (54-105)	1 39 (1-218)	-	-
5 - 9	7 65 (26-135)	43 87 (61-114)	22 89 (56-135)	-	-
10 - 19	-	14 61 (33-103)	57 93 (69-118)	16 69 (40-112)	-
20 - 29	-	-	33 88 (58-118)	96 92 (73-110)	25 86 (55-126)
30+	-	-	-	66 88 (66-109)	385 95 (85-104)
			PORTSMOUTH		
<5	26 96 (63-140)	43 79 (56-103)	3 173 (36-507)	-	
5 - 9	6 50 (18-108)	54 104 (76-132)	23 88 (56-133)	-	-
10 - 19	-	49 84 (61-108)	143 95 (79-111)	41 91 (63-119)	-
20 - 29	-	-	87 91 (72-110)	188 78 (67-90)	58 87 (65-110)
30+	-	-	-	108 103 (83-122)	502 81 (74-88)

TABLE 4.7:

All cause mortality by year of start of employment, time since first exposure, and dockyard.

		Time since	first exposure (em	ployment)	
Year of	0 - 9	10 - 19	20 - 29	30 - 39	40+
Start	Obs SMR (95% C1)	Obs SMR (95%7 C1)	Obs SMR (95% CI)	0bs SMR (95% CI)	Obs SMR (95% CI)
			DEVONPORT		
Pre 1930	-	-	-	-	329 86 (72-99)
1930-	-	6	-	91 81 (64- 97)	493 92 (84-100)
1940-	- 0	-	53 107 (78-136)	237 102 (89-115)	1 44 99 (83-115)
1950-	-	44 93 (66-121)	214 B4 (72-95)	175 96 (82-111)	-
1960+	71 96 (74-118)	280 107 (95-120)	132 99 (82-116)		-
			CHATHAM		
Pre 1930	-	-	-	-	74 91 (70-111)
1930-		-	-	56 102 (75-129)	281 97 (86-109)
1940-	•	-	15 75 (42-124)	76 78 (61-96)	55 85 (62-107)
1950-	-	4 42 (11-108)	58 95 (70-119)	46 90 (64-116)	-
1960+	24 72 (46-107)	91 82 (65-99)	40 90 (62-117)	-	-
			PORTSHOUTH		
Pre 1930	-	-		-	97 86 (69-103)
1930-	-	-	•	61 105 (78-131)	331 78 (70-87)
1940-		-	28 70 (46-101)	176 87 (74- 99)	132 86 (72-101)
1950-	-	11 49 (24- 87)	136 90 (75-105)	100 78 (62- 93)	-
1960+	32 81 (53-109)	135 95 (79-111)	92 110 (88-133)	-	-

TABLE 4.8:

All cause mortality by age at start of employment, time since first exposure, and dockyard.

		Time since	first <u>exposure (e</u> m	ployment)	
Age at start (yrs)	0 – 9 Obs SMR	10 - 19 Obs SMR	20 - 29 Obs SMR	_	40+ Obs SMR
	(95% CI)	(95% CI)	Obs SMR (95% CI)	(95% C1)	Obs SMR (95% C1)
			DEVONPORT		
<25	9 78 (36-149)	46 134 (95-173)	79 108 (84-132)	192 93 (80-107)	613 92 (85-99)
25-	1 31 (1-173)	28 144 (95-207)	71 93 (71-114)	181 100 (85-114)	161 90 (76-104)
35-	7 83 (34-172)	58 89 (66-113)	138 83 (69-97)	117 94 (77-111)	12 106 (55-185)
45-	26 90 (59-132)	147 105 (88-122)	99 88 (71-106)	13 93 (50-159)	-
55+	28 127 (85-184)	45 89 (63-115)	12 126 (65-220)	-	-
			CHATHAM		
<25	3 80 (17-235)	9 79 (36-149)	16 71 (40-115)	72 95 (73-117)	
25-	-	3 59 (12-173)	18 83 (49-131)	68 83 (63-103)	106 105 (85-125
35-	3 107 (22-312)	15 92 (51-151)	46 116 (82-149)	37 91 (61-120)	5 142
45-	12 117 (60-204)	37 82 (56-109)	23 73 (46-110)	1 27 (1-153)	-
55+	6 39 (14-84)	31 74 (48-100)	10 96 (46-177)	-	-
			PORTSMOUTH		
<25	3 62 (1 3 -181)	15 97 (54-160)	33 80 (52-107)	124 88 (73-104)	436 80 (72-87
25-	1 60 (2-334)	7 76 (30-156)	51 107 (78-137)	130 95 (78-111)	110 84 (68-100)
35-	4 93 (25-238)	38 104 (71-137)	108 95 (77-113)	73 72 (55-88)	14 105 (58-177
45-	11 75 (38-135)	62 85 (64-107)	62 93 (70-116)	10 99 (48-182)	-
\$5+	13 93 (49-159)	24 78 (50-117)	2 40	-	-

dockyard exposure (the worker had less than 5 years dockyard employment). No previous occupational history was available for this worker.

The same picture is seen when considering time since first employment by period of first employment (tables 4.7, A3.17 and A3.18). No clear trends emerge from these tables. All-cause mortality together with lung cancer mortality is not seen to be in significant excess or deficit. Pleural mesothelioma, though again suffering from low numbers, can be seen to be generally in great excess, concentrating around those workers with long follow-up, having been first employed before World War II.

When examining age at start of employment strata over time since first employment period a problem arises. These factors are correlated, i.e. there are more recent recruits among younger workers than among older workers, etc. This problem will be addressed by the use of regression modelling (section 4.8). However, by inspection no obvious excess or deficit is seen for lung cancer and all-cause mortality (tables 4.8 and A3.19). Pleural mesothelioma (table A3.20) again shows an excess, mainly for those workers employed at a young age over 30 years ago.

4.6 Cause specific mortality according to health-status variables.

Under this general heading the following factors will be considered: personal medical history, i.e. the prevalence of cough, phlegm, breathlessness and chestillness, smoking habits and smoking history, and also x-ray grouping. This last category, x-ray group, is considered here since in its grouped form this also represents a health status variable, i.e. the presence or absence of pulmonary fibrosis, tuberculosis, etc. In this sense, x-ray group and the personal medical symptoms may be considered predictive variables of disease outcome.

Cough is examined in table A3.21. From this table it is reasonable to conclude that there is no overall difference seen in this possible symptom of asbestos related

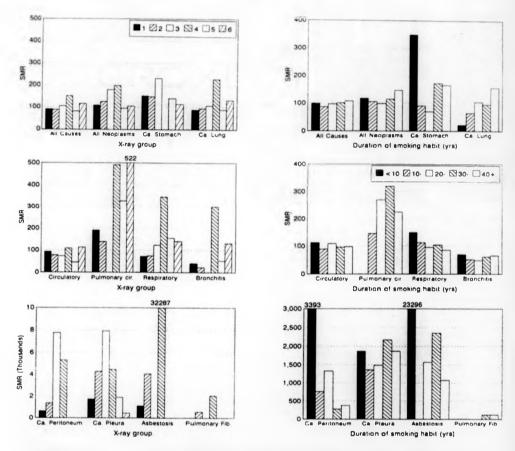


FIGURE 4.6:

Standardised mortality ratios by x-ray group and duration of smoking habit for Devonport dockyard.

respiratory illness over the dockyards. For all-cause mortality, the SMRs in each dockyard are significantly in excess for those workers responding positively to the question 'do you usually cough during the day or night at work?'. However, there is no significant difference between the dockyards (P > 0.1). The SMRs are: 121 (111-130), 119 (103-135), and 127 (115-139). For those workers responding 'No' to the above question the following significantly reduced SMRs are obtained: 88 (83-93), 83 (76-89), and 73 (68-78). Not surprisingly, there are highly significant differences between the SMRs in the different response-type groups, i.e. between the yes or no response, (commonly, P < 0.01). This pattern generally holds across all 12 disease groups. However, an obvious exception is for diseases of the circulatory system. Here the difference over response type has borderline significance at Devonport [$X^2 = 4.0$, 0.05 < P < 0.1], non-significance at Chatham [$X^2 = 0.6$, P > 0.1] and significance at Portsmouth [$X^2 = 15.3$, P < 0.01].

The patterns seen for cough are also generally observed for phlegm, breathlessness and chest-illness (tables A3.22 to A3.24). The significant and non-significant results are seen to be very variable over disease group and dockyard, with the likelihood of these being chance findings varying considerably. From tables A3.21 to A3.24 it is reasonable to conclude that the four medical symptoms may be used as predictive variables for lung disease and possibly asbestos related lung disease. Accordingly, these symptoms will be used in the following log-linear modelling.

As expected no obvious patterns or trends emerge over x-ray group, the grouping being a nominal scale (figure 4.6 and table A3.25). The 'normal' x-ray group, group 1, has significantly low overall SMRs for each dockyard: 91 (86-95), 85 (79-91), and 80 (75-85); the variation over dockyard being significant [$X^2 = 9.8$, P < 0.01]. Group 4, the pulmonary fibrosis group, generally has significantly raised SMRs. For all-cause mortality the SMRs for group 4 are: 151 (112-191) at Devonport, 125 (77-191) at Chatham, and 151 (101-218) at Portsmouth; with no variation showing across dockyard [$X^2 = 0.6$, P > 0.1]. Not surprisingly the highest SMRs for this x-ray group are found in the disease groups of asbestosis (with an SMR of: 32287 (3919-116917) at Devonport), pulmonary fibrosis (with SMRs of: 2049 (52-11413) and 4637 (117-25829) at Devonport and Chatham, respectively), and the two forms of mesothelioma. Peritoneal mesothelioma occurring only at Devonport with an SMR of 5303 (134-29539), pleural mesothelioma occurring at Devonport and Portsmouth with SMRs of 4456 (539-16085) and 4405 (111-24538). These are all based on very low numbers of deaths. The very high SMR for asbestosis at Devonport dockyard being based upon two reported cases. For lung cancer the following high SMRs were reported: 227 (104-430) at Devonport, 142 (29-415) at Chatham, and 375 (171-711) at Portsmouth. In absolute terms these lung cancer SMRs are smaller than those reported above, but it should still be noted that there is a clear excess risk being reported at Devonport and Portsmouth.

High SMRs are seen for subjects with pleural calcification, i.e. for x-ray group 3, for peritoneal and pleural mesothelioma. Peritoneal mesothelioma being seen only at Devonport in this x-ray group and producing an SMR of 7761 (939-28016), based on two cases. Pleural mesothelioma is seen at all three dockyards with the following SMRs: 7910 (2563-18463), 7894 (955-28497), and 1760 (45-9805); based on 5, 2, and one death respectively. No deaths occurred, as anticipated, in this x-ray group from asbestosis and pulmonary fibrosis. For lung cancer the following non-significant SMRs occurred: 107 (39-234), 110 (23-323), and 52 (11-152).

Excessive SMRs are also seen for x-ray group 2, the workers with pleural thickening. These centre around pleural mesothelioma and asbestosis. For Pleural mesothelioma the following SMRs were produced: 4277 (1844-8426) at Devonport, 2137 (258-7693) at Chatham, and 3726 (1607-7339) at Portsmouth; based on 18 deaths in total. For asbestosis an SMR of 4060 (107-22614) was obtained at Devonport; based on one death. Lung cancer was again seen to be neither in excess or deficit with SMRs of: 95 (52-159), 64 (24-140), and 115 (73-173).

High lung cancer SMRs are generally seen only for x-ray groups 3, 4 and 6; group 6 being a general catchment group of 'all other abnormalities'. Lung cancer SMRs for this group were: 132 (86-195), 137 (75-230), and 123 (81-181). Pleura mesothelioma was reported with the following SMRs: 44 (11-2473), 3138 (647-9172), and 941 (114-3398); based on 6 deaths. There were no cases of asbestosis or peritoneal mesothelioma in group 6. Generally x-ray group 5, those workers with tuberculosis, gave non-elevated SMRs. Apart from pleura mesothelioma with SMRs of: 1894 (391-5538) at Devonport, no deaths at Chatham, and 1264 (32-7041) at Portsmouth. The SMRs for lung cancer were: 89 (44-159), 74 (20-190), and 180 (99-303); with the raised SMR at Portsmouth being very close to statistical significance (P=0.056). From these results it would appear that x-ray groups 2, 3 and 4 (the groups indicating pleural thickening, pleural calcification and pulmonary fibrosis) could provide reasonable predictive properties for asbestos related lung disease. Therefore, these factors will be considered in the subsequent log-linear modelling.

When considering mortality by smoking habits no apparent differences appear between dockyards. However, a gradient of SMR from low in nonsmokers (significantly reduced), to higher in ex-smokers (with no difference from an SMR of 100), to significantly high in current smokers is generally observed over all disease groups in all three dockyards (table 4.9). Smoking habits were defined in the initial 1972-73 surveys; the definition of a current smoker is, therefore, a worker who smoked as much as one cigarette per day, or its equivalent, in the early 1970s. The above mentioned gradient produces a highly statistically significant trend over smoking habit for the following disease groups in each dockyard: all-cause mortality [X² for trend = 82.9, P < 0.001]^{*}, all-neoplasms [X² for trend = 33.1, P < 0.001], lung cancer [X² for trend = 58.1, P < 0.001], diseases of the circulatory [X² for trend = 14.7, P < 0.001] and respiratory systems [X² for trend = 17.1, P < 0.001], and bronchitis [X² for trend = 8.0, P < 0.005]. No trend

The tests for trend are for Devonport dockyard. Those for Chatham and Portsmouth were generally lower, however, still highly significant.

TABLE 4.9: Cause specific mortality by smoking habit and dockyard.

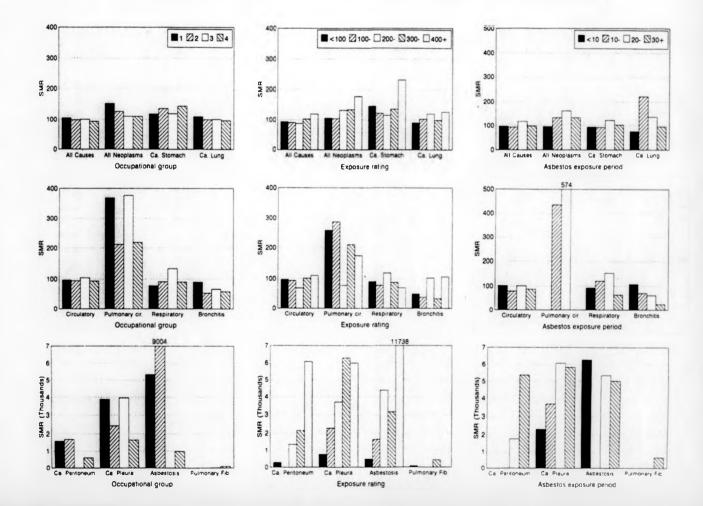
Causes of Death	Smoking Habit		Devonp	ort		Chatl	nam		Portsm	outh
		Obs	SMR	95% CI	Obs	SMR	95% CI	Obs	SMR	95% CI
All Causes	Non	251	72	63-80	95	58	46- 70	171	58	49- 66
	E×	427	75	68-82	165	70	59- 81	315	68	60- 75
	Current	1415	112	106-118	569	109	100-118	906	104	97-111
	Unknown	37	76	52-101	14	73	40-123	8	83	36-163
All Neoplasms	Non	77	78	61- 96	33	68	45- 92	57	64	47- 80
	E×	149	91	76-105	60	85	63-106	97	68	55- 82
	Current	489	135	123-147	214	137	118-155	334	126	113-140
	Unknown	13	96	51-165	3	55	11-162	2	67	8-243
Ca. Stomach	Non	10	126	60-231	3	77	16-226	4	56	15-144
	Ex	18	131	78-208	7	120	48-247	12	104	54-182
	Current	48	159	114-205	20	155	95-240	24	112	72-167
	Unknown	2	172	21-619	0	-	0-813	0	-	0-1540
Ca. Peritoneum	Non	1	454	11-2530	1	1097	28-6111	0	-	0-224
	Ex	2	634	77-2289	, i	-	0-3188	1	436	11-2429
	Current	6	822	301-1789	ŏ	-	0-1355	ò	-	0- 812
	Unknown	0	-	0-15847	i	123	311-68557	ō	-	0-7510
Ca. Lung	Non	6	18	6- 38	3	16	3-47	7	20	8-41
	E×	32	54	35- 72	14	49	27-82	24	42	27- 63
	Current	183	140	120-160	78	124	97-152	156	148	125-171
	Unknown	2	41	5-148	1	47	1-260	1	84	2-469
Ca. Pleura	Non	13	2511	1337-4294	5	2246	728-5242	7	1605	644-330
	E×	14	1776	971-2980	4	1350	368-3455	8	1287	555-2534
	Current	34	1912	1269-2555	12	1775	917-3101	11	911	455-1629
	Unknown	1	1791	45-9978	0	-	0-19160	0	-	0-277
Circulatory System	Non	131	75	62- 88	49	63	46- 81	92	65	52- 78
	Ex	229	78	68- 88	76	66	51-81	169	75	63-86
	Current	703	109	101- 117	257	102	90-115	408	97	87-106
	Unknown	161	72	42- 113	9	97	45-185	5	107	35-249
Pulmonary Circulation	Non	3	176	36- 514	1	120	3-670	1	68	2-378
	Ex	7	238	95- 490	0	-	0-294	0	-	0-152
	Current	17	262	153- 420	3	108	22-317	1	22	1-124
	Unknown	0	-	0- 1407	0	-	0-3505	0	-	0-739
Respiratory System	Non	18	64	38- 101	7	44	18- 91	5	18	6- 42
	E×	23	47	29- 70	16	66	38-107	26	56	37-82
	Current	130	121	100- 141	56	107	79-135	99	118	95-141
	Unknown	4	84	23- 216	1	43	1-241	1	107	3-595
Bronchitis, Emphysema	Non	4	39	11- 99	2	32	4-117	1	9	0- 52
and Asthma	E×	4	22	6- 56	5	52	17-122	6	33	12- 73
	Current	32	80	52- 107	19	91	55-142	27	82	54-119
	Unknown	1	59	1- 328	1	117	3-654	1	273	7-152
Asbestosis	Non	0	-	0-6293	0	-	0-14120	0	-	0-7250
	Ex	3	3008	621-8792	0	-	0-9509	0	-	0-462
	Current	4	1828	498-4679 0-48336	0	-	0-4303 0-140652	1	-	17-371
		-			-	_		-	-	
Pulmonary Fibrosis	Non Ex	0	-	0- 884 0- 510	0	-	0-1911 0-1256	0	_	0-105/ 0-638
	Current	2	158	15- 457	i i	156	4-871	ů ů	-	0-6.38
	Unknown	ĥ		0-5873	i i		0-15707	ŏ	-	0-310

TABLE 4.10:

Cause specific mortality by smoking amount and dockyard.

Causes of Death	Smoking amount (gms/day)		<u>Devanp</u>	ort		<u>Chat</u>	ham		Portsm	outh
	(gms/day)	0bs	SMR	95% CI	Obs	SMR	95% CI	Obs	SMR	95% CI
All Causes	< 15	712	68	82- 95	359	94	84-103	485	85	77- 92
	15-24 # 25	771 360	108 114	100-116 102-126	261 116	100 100	88-112 82-118	471 266	93 101	85-102 89-113
All Neoplasms	< 15 15-24	236	102 133	89-115 117-149	139	120	100-140 91-139	177	102 103	87-117 87-119
	2 25	131	144	119-168	45	129	92-167	95	119	95-143
Ca. Stomach	< 15 15-24	26 32	134 189	88-196 124-255	13	136	73-233 85-306	17	120 89	70-193 44-158
	¥ 25	8	107	46-210	3	106	22-310	8	125	54-246
Ca. Peritoneum	< 15 15-24	5	1142 480	370-2664 58-1732	0	-	0-1918 0-2720	1	349	9-1945 0-1418
	₹ 25	ī	524	13-2918	Ō	-	0-6031	Ő	-	0-2670
Ca. Lung	< 15	56 98	67 133	49-84 107-159	42 32	90 102	63-118 67-137	51 80	73 130	53- 93 102-159
	≥ 25	61	186	139-233	18	130	77-206	49	155	112-199
Ca. Pleura	< 15 15-24	20 19	1852 1865	1132-2861 1123-2912	· 12 2	2494 590	1289-4356 71-2131	12 4	1559 576	805-2723 157-1474
	≥ 25	10	2134	1025-3925	2	1290	156-4658	3	817	169-2389
Circulatory System	< 15 15-24	365 376	88 103	79-97 93-114	159 126	85 100	72- 99 83-118	217 238	78 97	68-89 85-110
	≥ 25	191	118	101-135	50	90	65-115	123	97	80-114
Pulmonary Circulation	< 15 15-24	10 9	238 248	114-438 113-470	1 2	49 145	1-270 18-522	0	- 38	0-124 1-214
	2 25	5	313	101-730	0	-	0-614	0	-	0-274
Respiratory System	< 15 15-24	69 67	97 112	74-120 85-138	33 27	84 103	55-112 68-151	48 49	85 100	61-109 72-128
	≥ 25	17	66	38-105	12	105	54-183	28	111	74-161
Bronchitis, Emphysema and Asthma	< 15 15-24	16 15	61 67	35- 98 37-110	12 10	76 96	39-133 46-177	12 15	55 78	28- 95 44-129
	2 25	5	51	17-120	2	45	5-161	6	61	22-133
Asbestosis	< 15 15-24	3	2170 2413	448-6345 498-7055	0	-	0-5887 0-8586	1	1018	26-5670 0-424
	≥ 25	ĩ	1781	45-9919	ŏ	-	0-19123	ő	-	0-8184
Pulmonary Fibrosis	< 15 15-24	1	97 113	2-542 3-528	0	-	0-773 0-1157	0	-	0-522 0-596
	≥ 25	ó	113	0-948	1	711	18-3960	ő	-	0-115

whatsoever is seen for stomach cancer and the two forms of mesothelioma (P > 0.1, at all yards). Asbestosis and pulmonary fibrosis are again affected by low numbers. It should be noted, that for current smokers significantly elevated lung cancer SMRs were observed as follows: 140 (120-160) at Devonport, 124 (97-152) at Chatham, and 148 (125-171) at Portsmouth; based on 417 deaths.


This picture of an increasing risk of death over smoking group is further considered by examining the amount of tobacco smoked (table 4.10). In this table the amount smoked per day by ex-smokers and current smokers is analysed by dockyard. Generally this analysis supports that shown by smoking habit, with its most obvious effect a lung cancer dose-response. At Devonport the lung cancer SMRs were: 67 (49-84) less than 15 gms/day, 133 (107-159) 15-24 gms/day, and 186 (139-233) 25 or more gms/day. At Chatham: 90 (63-118), 102 (67-137), and 130 (77-206). Similarly at Portsmouth: 73 (53-93), 130 (102-159), and 155 (112-199). In table 4.9 mortality gradients were seen with smoking group. However, from table 4.10 there appears to be a more limited gradient (i.e. dose-response) with amount smoked. This is clearly seen at Devonport and Portsmouth for allcause mortality $[X^2 \text{ for trend} = 78.5 \text{ at Devonport and } X^2 \text{ for trend} = 48.3 \text{ at}$ Portsmouth, both P < 0.001, and lung cancer [X² for trend = 74.7 at Devonport and X^2 for trend = 46.1 at Portsmouth, P < 0.001]. At Chatham dockyard no specific cause of death produced a significant trend. Pleural and peritoneal mesothelioma have non-significant differences in their SMRs at each dockyard over amount smoked.

The amounts recorded by the workforce may have affected the results here. They appear generally low and have forced the creation of the groups < 15, 15-24, and 25 or more grammes smoked per day, chosen to separate the smokers into approximately equal sized groups. To further scrutinise smoking history, duration of smoking was considered (figure 4.6 and table A3.26). This generally repeated the above findings, with an increasing SMR seen with duration of smoking. Considering Devonport dockyard, significant trends in SMR over smoking period are seen in the following disease groups: all-causes [X² for trend=69.0,

P < 0.001], all-neoplasms [X² for trend = 42.4, P < 0.001], and lung cancer [X² for trend = 53.4, P < 0.001]. Significant differences, without a statistical trend, were approached in the SMRs for stomach cancer [X² = 7.9, 0.05 < P < 0.1], and peritoneal mesothelioma [X² = 8.7, 0.05 < P < 0.1], with asbestosis producing a significant difference [X² = 22.3, P < 0.001]. For asbestosis this difference reflects the very high SMR obtained for those workers with less then 10 years duration of smoking habit. However, these results should be treated with caution since they are again based on low numbers of deaths. From figure 4.6 diseases of the respiratory system appears to show a decreasing trend over time, however, this was statistically non-significant (P>0.1). The remaining disease groups all produced non-significant results in tests of a difference between SMRs and tests of trend. Similar results were obtained for Chatham and Portsmouth, supporting the suggestion of a lung cancer time and dose-response.

Mortality has further been considered for these health-status variables, i.e. x-ray group, smoking habit etc., by time since first employment. The results of this examination are given in appendix 4 (tables A4.1 to A4.15). In these tables all-cause mortality, lung cancer mortality and pleural mesothelioma mortality is analysed by health-status variable and time since first dockyard employment. Generally, little clear effect is seen on mortality in these tables, with no obvious novel patterns of an excess or deficiency in all-cause and lung cancer mortality demonstrated. Pleural mesothelioma continues to show excessive SMRs over each variable for each time period; however, based on low observed numbers.

FIGURE 4.7: Standardised mortality ratios by occupational group, exposure group, and asbestos exposure period.

177

4.7 Cause specific mortality according to 'asbestos' variables.

This section is concerned with the following 'asbestos' variables: occupational group (indicating registered asbestos workers, laggers and sprayers, etc.), asbestos exposure rating, asbestos exposure period, and period of continuous asbestos exposure. The results are given in tables A3.27 to A3.29, and illustrated in figure 4.7.

Considering occupational group (table A3.27), the SMRs commonly showed little change over this grouping. For example, for lung cancer the SMRs found at Devonport were: 109 (56-190) for group 1, 99 (59-154) for group 2, 100 (50-178) for group 3, and 96 (82-11) for group 4. At Chatham these were slightly lower with SMRs of: 79 (26-185), 88 (35-181), 68 (14-200), and 86 (67-105). At Portsmouth: 106 (42-218), 157 (102-230), 77 (33-515), and 90 (75-105); with a significant result being obtained for group 2, the electrical fitters, and burners, etc. The exceptions to this limited change over grouping are pleural mesothelioma and asbestosis. For pleural mesothelioma a decreasing trend in SMR is observed from group 1 to group 4, for all dockyards [X^2 for trend = 4.3, P < 0.05; at Devonport]; this is likely to be due to the high number of mesothelioma deaths occurring in group 4, the catchment group of 'all other dockyard trades'. For asbestosis no trend is observed, however, the SMRs are significantly different over occupational grouping at Devonport (P < 0.01). A further exception is seen at Portsmouth for stomach cancer which appears to decrease over grouping with SMRs of: 223 (46-653), 150 (48-351), 141 (29-413), and 93 (62-133). However this was not significant $[X^2 = 3.1, P > 0.1 \text{ and } X^2 \text{ for trend} = 2.5, P > 0.05].$

The nature of this occupational grouping, as defined in 3.1.4, with group 1 indicating registered asbestos workers, etc., could well imply that this variable is a good substitute for asbestos exposure. Group 1 indicating very high exposure, group 2 high exposure, etc., down to group 4 which indicates low exposure. This is supported by the results for pleural mesothelioma; however, lung cancer has no

trend whatsoever across this variable [$X^2 = 0.2$, P > 0.1; at Devonport], nor indeed does peritoneal mesothelioma, giving no support to this theory.

A potentially better reflection of asbestos exposure is given by considering asbestos exposure rating (table A3.28). In this table increasing asbestos exposure should be seen with increasing rating. There is a general suggestion from the table that mortality increases with increasing rating; implying increasing SMR with increasing asbestos exposure. This is seen at all three dockyards. The following disease groups show increasing trends in their SMRs at Devonport: all-neoplasms $[X^2 \text{ for trend} = 16.2, P < 0.001]$, peritoneal mesothelioma $[X^2 \text{ for trend} = 21.7, N]$ P < 0.001], pleural mesothelioma [X² for trend = 50.9, P < 0.001], and asbestosis $[X^2 \text{ for trend} = 10.4, P < 0.005]$. A borderline trend is also seen for all-cause mortality $[X^2 \text{ for trend} = 3.0, 0.05 < P < 0.1]$. Lung cancer, unlike the other asbestos related diseases, again has no clear statistical trend $[X^2 = 3.1, P > 0.1]$. However, by observation of the SMRs there is a hint of an increasing trend. For example, at Devonport the lung cancer SMRs are: 90 (74-107), 102 (68-135), 120 (79-162), 98 (59-154), and 126 (69-212). At Chatham: 94 (70-117), 65 (31-120), 81 (39-149), 67 (24-145), and 76 (24-176). At Portsmouth: 97 (78-116), 75 (48-112), 68 (39-110), 112 (69-170), and 193 (114-305). This last group at Portsmouth, those workers with an exposure rating of 400 or above, being clearly statistically significant. Pulmonary fibrosis has too few deaths to allow sensible analysis, 3 deaths over two dockyards.

An even better indication of asbestos exposure should be given by the workers own estimated period of asbestos exposure (table A3.29). The only limitation of this variable is the fact that less than 10% of the total workforce estimated this period. From the 3 dockyards 3359 workers responded to this question, out of which 887 (26.4%) have died. From table A3.29 increasing trends in mortality are seen at Devonport for: all-neoplasms [X² for trend=18.6, P<0.001], peritoneal mesothelioma [X² for trend=21.0, P<0.001], and pleura mesothelioma [X² for trend=37.4, P<0.001]. A decreasing trend is seen for lung cancer [X² for trend=9.0, P<0.05], this is however not repeated at Chatham and Portsmouth. The lung cancer SMRs obtained at Devonport are: 75 (30-155), 222 (137-339), 136 (76-225), and 95 (49-166). At Chatham these were: 83 (230212), 27 (1-148), 44 (5-158), and 111 (70-108). At Portsmouth: 116 (56-213), 101 (46-191), 124 (66-213), and 108 (63-174). An excess of lung cancer is therefore seen at Devonport for those workers with between 10 and 20 years of asbestos exposure. Non-significant results were obtained for asbestosis, and again the numbers were too small for pulmonary fibrosis.

From the workers who estimated their asbestos exposure period, 429 from the 3 dockyards, also estimated their period of continuous exposure. From these 104 (24.2%) have died. Table 4.11 shows the mortality by period of continuous exposure for these workers. The numbers are very small, however, there appears generally to be significantly raised SMRs at Devonport and Portsmouth for those workers with more than 10 years of continuous asbestos exposure. Particularly lung cancer has SMRs of: 361 (132-786) at Devonport, and 490 (211-965) at Portsmouth; clearly showing an excess risk for lung cancer in this group of workers. However, only based on 14 deaths. Pleura mesothelioma is once more seen to be very high: 9232 (1117-33328) at Devonport, and 4994 (126-27818); based on 3 deaths. The numbers are to small for peritoneal mesothelioma and asbestosis to allow evaluation.

Mortality has also been appraised for the 'asbestos' variables by time since first employment. The results of this are given in appendix 4 (tables A4.16 to A4.27). In these tables all-cause, lung cancer and pleural mesothelioma mortality is analysed by the 'asbestos' variables and time since first dockyard employment. Similar to the health-status variables, no obvious new patterns of an excess or deficiency in all-cause and lung cancer mortality is generally apparent in these tables. Pleural mesothelioma again continues to show highly elevated SMRs over each variable for each time period. The results are obviously affected by low numbers, particularly in tables A4.25 to A4.27.

TABLE 4.11:

Cause specific mortality by period of continuous asbestos exposure and dockyard.

Causes of Death	Continuous asbestos		Devonp	ort		Chat	ham		Portsm	outh
	exposure (yrs)	Obs	SMR	95 % CI	Obs	SMR	95% CI	Obs	SMR	95% CI
All Causes	<10 10+	23 27	117 170	74-176 112-247	16 5	143 108	82-233 35-251	15 18	119 138	67-197 82-218
All Neoplasms	«10 10+	4 14	71 308	19-181 168-517	9 1	264 73	121-502 2-408	5 14	132 346	43-307 189-580
Ca. Stomach	<10 10+	1	222 260	6-1239 7-1446	20	723	88-2611 0-3167	1	328	9-1882 0-1137
Ca. Peritoneum	<10 10+	0 1	11216	0-28311 284-62475	0	:	0-56870 0-181558	0	1	0-48353 0-50799
Ca. Lung	<10 10+	1 6	50 361	1-280 132-786	20	147	18-530 0-666	0 8	490	0-253 211-965
Ca. Pleura	<10 10+	02	9232	0-11421 1117-33328	1	6203	157-34550 0-77076	2	9976 4994	1207-36015 126-27818
Circulatory System	<10 10+	12	121 85	63-212 34-174	52	93 88	30-218 11-317	4	67 63	18-172 17-161
Pulmonary Circulation	<10 10+	0	2370	0-3946 287-8554	0		0-6263 0-13985	0		0-6147 0-5573
Respiratory System	<10 10+	56	340 427	110-793 157-929	22	194 373	24-702 45-1348	2	186	23-673 0-316
Bronchitis, Emphysema and Asthma	<10 10+	1	183 190	5-1017 5-1058	20	475	57-1714 0-1752	0	5	0-892 0-784
Asbestosis	<10 10+	1	27969 36317	708-155786 919-202285	0	Ξ	0-188727 0-546965	0	-	0-166003 0-151071
Pulmonary Fibrosis	<10 10+	10	4308	109-23995 0-18285	8	Ξ	0-28027 0-62290	0 0	:	0-25595 0-23521

The 'asbestos' variables have been further scrutinised by smoking habit (tables A3.30, 4.12 and 4.13). In these tables all-cause, lung cancer and pleural mesothelioma mortality is again considered, here for nonsmokers, ex-smokers and current smokers. No obvious patterns occur when considering all-cause mortality (table A3.30). For lung cancer, significantly high SMRs are seen in 'smoking groups', the highest SMRs occurring in current smokers, except at Portsmouth where ex-smokers are seen to have generally high SMRs. Pleural mesothelioma (table 4.13) is affected by the low numbers of observed deaths, but significantly high SMRs are seen once again. These are however not related to smoking habit, there being no clear statistical trends (generally, P > 0.1). When considering lung cancer (table 4.12) increasing SMRs across smoking habit, which reach statistical significance, are seen only for occupational group 4. At Devonport these are: 72

(52-92) for nonsmokers, 134 (104-163) for ex-smokers, and 177 (125-230) for smokers [$X^2 = 21.4$, P < 0.001 and X^2 for trend = 21.6, P < 0.001]. At Chatham: 102 (70-135), 96 (61-143), and 137 (77-226) [$X^2 = 1.3$, P > 0.1 and X^2 for trend = 0.6, P > 0.1]. At Portsmouth: 72 (49-94), 119 (88-150), and 152 (103-201) [$X^2 = 11.6$, P < 0.005 and X^2 for trend = 11.9, P < 0.001]. Indicating generally that for occupational group 4 (i.e. the catchment group of all other dockyard workers) there is undoubtedly an increasing trend in lung cancer mortality by smoking habit.

The relationship between lung cancer and pleura mesothelioma to these asbestos variables will be further considered in section 4.8. Here Poisson regression techniques will be used to focus on these variables taking into account other factors such as smoking habit, and x-ray group, etc.

TABLE 4.12:

<u>Devonport Dockyard</u>. Lung cancer mortality by smoking habit and 'asbestos' variables.

	Non-smokers	Ex-smokers	Smokers
	Obs. SMR	Obs SMR	Obs SMR
	(95% C1)	(95% CI)	(95% CI)
		Occupational group	
1	3 88	5 140	3 151
	(18-256)	(45-327)	(31-440)
2	2 32	9 143	7 226
	(4-115)	(65-271)	(91-466)
3	1 30	³ 82	6 289
	(1-166)	(17-241)	(106-628)
4	49 72	79 134	44 177
	(52-92)	(104-163)	(125-230)
		Exposure rating	
< 100	26 58	56 141	25 140
	(38-85)	(104-178)	(91-207)
100-	7 52	13 119	15 294
	(21-107)	(63-204)	(164-484)
200-	9 100	15 159	8 194
	(46-190)	(89-263)	(84-383)
300-	5 67	5 80	8 342
	(22-157)	(26-186)	(148-675)
400+	5 132	6 164	3 181
	(43-309)	(60-358)	(37-530)
		tos exposure period ((yrs)
< 10	1 28	4 126	1 64
	(1-155)	(34-323)	(2-356)
10-	6 181	7 189	7 449
	(66-394)	(76-389)	(180-924)
20-	6 147	6 151	3 156
	(54-321)	(55-328)	(32-456)
30+	4 85	3 78	5 256
	(23-218)	(16-229)	(83-597)
	Contin	uous asbestos exposu	re (yrs)
< 10		-	1 220 (6-1228)
10-	4 601 (164-1540)	2 285 (35-1030)	-

183

<u>Chatham Dockyard</u>. Lung cancer mortality by smoking habit and 'asbestos' variables.

	Non-smokers	<u>Ex-smokers</u>	Smokers
	Obs SMR (95% CI)	Obs SMR (95% CI)	0bs SMR (95%7 CI)
		Occupational group	
1	2 57 (7-205)	2 124 (15-448)	1 73 (3-761)
2	1 <u>32</u> (1-176)	4 165 (45-423)	2 163 (20-588)
3	-	1 63 (2-352)	-
4	38 102 (70-135)	24 96 (61-143)	15 137 (77-226)
		Exposure rating	
< 100	25 93 (60-138)	21 123 (76-187)	14 180 (99-303)
100-	5 82 (26-191)	4 90 (25-231)	1 40 (1-225)
200-	7 129 (52-267)	-	-
300-	3 79 (16-230)	2 68 (8-247)	1 110 (3-612)
400+	-	3 133 (28-390)	2 312 (38-1127
	Asbes	itos exposure period ((yrs)
< 10	3 131 (27-384)		-
10-	-	1 87 (2-483)	
20-	-	1 88 (2-491)	1 135 (3-753)
30+	3 129 (27-376)	2 105 (13-379)	1 219 (6-1220
	Contin	nuous asbestos exposu	re (yrs)
< 10	1 143 (4-799)	1 279 (7-1556)	-
10-	-		-

184

TABLE 4.12 (cont.):

Portsmouth Dockyard. Lung cancer mortality by smoking habit and 'asbestos' variables.

	Non-smokers	Ex-smokers	Smokers
	Obs SMR	Obs SMR	Obs SMR
	(95% CI)	(9577 CI)	(95% CI)
		Occupational group	
1	3 133	2 104	2 137
	(27-388)	(13-376)	(17-493)
2	5 87	16 334	5 173
	(28-204)	(191-543)	(56-403)
3	1 26	3 98	2 145
	(1-147)	(20-286)	(18-523)
4	39 72	58 119	37 152
	(49- 94)	(88-150)	(103-201)
		Exposure rating	
< 100	28 76	41 125	28 175
	(50-110)	(87-164)	(116-252)
100-	6 51	10 113	6 119
	(19-111)	(54-207)	(44-259)
200-	3 42	7 91	6 124
	(9-122)	(36-187)	(46-270)
300-	7 102	12 212	2 70
	(41-211)	(109-369)	(8-252)
400+	4 126	9 273	3 293
	(34-323)	(125-519)	(61-857)
	Asbes	tos exposure period	(yrs)
< 10	391	3 101	4 284
	(19-266)	(21-296)	(77-728)
10-	2 49 (6-177)	7 283 (114-583)	-
20-	4 106	6 196	3 137
	(29–272)	(72-427)	(28-399)
30+	3 47	10 212	4 201
	(10-137)	(102-389)	(55-514)
	Contin	uous asbestos exposu	ra (yrs)
< 10	-	-	-
10-	3 617	4 574	1 429
	(127-1803)	(157-1470)	(11-2388

TABLE 4.13:

Devonport Dockyard. Pleural mesothelioma mortality by smoking habit and 'asbestos' variables.

	Non-smokers	Ex-smokers	Smokers
	Obs SMR (95% CI)	Obs SMR (95% CI)	Obs SMR (95% CI)
		Occupational group	
1	4 8564 (2334-21925)	1 1893 (48-10541)	1 3655 (92-20357)
2	2 2304 (279-8317)	3 3178 (656-9290)	-
3	2 3421 (414-12351)	2 2985 (361-10775)	2 5559 (673-20068)
4	12 1395 (721-2436)	12 1522 (786-2658)	7 2029 (815-4181)
		Exposure rating	
< 100	2 343 (41-1238)	5 908 (294-2120)	2 784 (95-2830)
100-	6 3244 (1189-7061)	3 1800 (371-5261)	-
200-	4 3308 (901–8467)	4 2934 (799-7510)	5 8297 (2688-19365)
300-	5 5589 (1811–13045)	6 7820 (2869-17030)	1 <u>3245</u> (82-18075)
400+	3 7764 (1602-22697)	-	2 11178 (1353-40353)
	Asbest	os exposure period (yrs)
< 10	1 2078 (53-11573)	1 2330 (59-12977)	-
10-	2 4440 (537-16029)	2 3800 (460-13718)	-
20-	4 7428 (2024-19016)	4 7317 (1994-18732)	1 4017 (102-22372)
30+	3 6034 (1245-17640)	1 2415 (61-13451)	3 13569 (2800-39667)
	Continu	ious asbestos exposur	e (yrs)
< 10	-	-	-
10-	2 23469 (2840-84724)	-	-

TABLE 4.13 (cont.):

<u>Chatham Dockyard</u>. Pleural mesothelioma mortality by smoking habit and 'asbestos' variables.

	Non-smokers	Ex-smokers	Smokers
	Obs SMR (95% CI)	Obs SMR (95% CI)	Obs SMR (95%/CI)
		Occupational group	
1	1 3035 (77-16907)		-
2	5 13775 (4463-32150)	-	1 6863 (174-38228)
3	1 4219 (107-23501)	-	-
4	5 1321 (428-3082)	2 757 (92-2734)	1 B24 (21-4590)
		Exposure rating	
< 100	-	1 - 535 (14-2981)	-
100-	-	•	1 3357 (85-18696)
200-	5 8416 (2727-19643)	-	-
300-	4 10720 (2921-27443)	1 3366 (85-18749)	1 11519 (291-64163)
400+	2 8471 (1025-30581)	-	-
	Asbest	os exposure period ()	rs)
< 10	-	-	-
10-	1 4752 (120-26471)	•	-
20-	2 8720 (1055-31480)	-	-
30+	2 8933 (1081-32247)	-	1 23190 (587-129171)
	Continu	ous asbestos exposure	a (yrs)
< 10	1 11188 (283-62311)	•	-
10-	-	-	-

TABLE 4.13 (cont.):

Portsmouth Dockyard. Pleural mesothelioma mortality by smoking habit and 'asbestos' variables.

	Non-smokers	Ex-smokers	Smokers
	Obs SMR (95% C1)	Obs SMR (95% C1)	Obs SMR (95% C1)
		Occupational group	
1	1.0		
2	2 2949 (357-10646)	2 3255 (394-11750)	-
3	-	-	1 5193 (131-28927)
4	10 1689 (811-3106)	2 371 (45-1338)	2 721 (87-2604)
		Exposure rating	
< 100	4 973 (265-2490)		-
100-	2 1496 (181-5400)	-	1 1534 (39-8542)
200-	2 2345 (284-8465)	3 3432 (708-10033)	-
300-	3 4156 (857-12149)	-	1 3431 (87-19108
400+	1 3453 (87-19233)	1 3551 (90-19778)	1 9505 (240-52943
	Asbest	os exposure period (yrs)
< 10	1 2632 (67-14658)	-	-
10-	2 4405 (533-15903)	-	-
20-	-	1 3215 (81-17909)	-
30+	5 8359 (2708-19511)	1 2216 (56-12343)	1 5005 (127-27880
	Continu	ous asbestos exposur	e (yrs)
< 10	1 10522 (266-58610)	1 17455 (442-97233)	-
10-	-	-	-

4.8 Log-linear modelling.

The modelling presented in this section is for Devonport dockyard only, it has been chosen as a representative dockyard and for the cause of brevity. Chatham and Portsmouth have also been examined and generally have shown the same relationships, however, to a less significant level.

The two disease groups considered are the principal conditions seen to be of interest in this study, namely: lung cancer and pleural mesothelioma. The disease group of 'all-causes' is also examined. These three specific disease groupings have substantially enough numbers of observed deaths to allow sensible modelling. The groups of: pulmonary fibrosis with 2 deaths (at Devonport), asbestosis with 7 deaths, and peritoneal mesothelioma with 10 have not been modelled.

Statistical variation in strata-specific mortality (SMRs) was assessed by comparing the fit of Poisson regression models with and without terms representing the stratifying factor, i.e. by the use of log-linear models for grouped data. The goodness-of-fit of each model was tested by considering the change in 'deviance' (the approximate Chi-squared statistic) found in GLIM; the technique used was that described in section 3.2.3.

When exponentiated, the coefficients gained from the regression analyses are relative standardised mortality ratios (RSMRs), i.e. the exponential coefficients estimate the mortality rate for workers in a particular stratum (subgroup) relative to that in stratum 1. From these RSMRs, tables similar to those given for the SMRs in appendix 3 can be produced. Generally the RSMRs have shown little variation from the SMRs, even when adjusted for statistical interactions and confounding factors, therefore, RSMR tables have not been furnished. In their place, this section will concentrate on describing the appropriateness of fit of the 'employment-time', 'health-status', and 'asbestos' variables considered in sections 4.5 to 4.7, on the regression models.

TABLE 4.14:

Devonport dockyard. Goodness-of-fit statistics obtained in Poisson regression models.

Constant+ Constant+ Constant+ ag 22.9** 4 ag 99.8** 4 ag 7.4 4 ag 7.9 4 ys 8.3 4 ys 10.1* 4 ag 7.9 4 ys 8.3 4 ys 10.1* 4 ag 7.9 4 ys 8.3 4 ys 10.1* 4 ag 5.7 3 ts 6.1 3 ts 6.4 3 cq 4.6 1 cq 4.3 3 oq 4.4 1* 6.4 3 ce 5.7* 1 cc 7.9** 1 cc 7.7 7 7 7 7 7 7 7 7 7 7 7 7 7	All Cause	15	Lung Cance	ar	Ca. Pleura	
aq 22.9** 4 aq 99.8** 4 aq qq is 6.4 4 1s 9.6* 4 1s 13.3** is 6.4 4 1s 9.6* 4 1s 13.3** oq 4.1 3 oq 4.3 3 oq 8.0* es 3.7 3 ae 12.4** 3 ae 9.7* ce 5.7* 1 ce 7.9** 3 ae 9.7* ce 5.7* 1 ce 7.9** 3 ae 9.7* ce 5.7* 1 ce 7.9** 3 ae 9.7* co 4.6* 1 ph 3.9* 1 ph 1.2 ch 3.5 1 ch 3.9* 1 ph 1.2 ch 3.5 1 ch 3.6 1 ch 3.9* 1 pf 18.1* pf 2.7 1 pf 3.9* 1 ch 3.5 1 ch 37.5** 1 oq 6.7 pf 3.6 1 pf 2.8* 1 og 6.7 <t< th=""><th>Mode1</th><th>Adev df</th><th>Mode1</th><th>Adev df</th><th>Mode1</th><th>∆dev df</th></t<>	Mode1	Adev df	Mode1	Adev df	Mode1	∆dev df
ye 7.9 4 ye 8.3 4 ye 10.1* 4 1s 6.4 1s 9.6* 4 1s 13.3** 4 1s 6.4 4 1s 9.6* 4 1s 13.3** 00 4.1 3 00 4.3 3 00 8.0** ex 6.3 4 ex 5.8 4 as 14.1** 4.0** ex 5.7*1 cas 7.9**1 as 9.7**3 as 9.7**3 as 9.7**3 cc 4.6* 0 5.6**1 cc 7.7**3 as 9.7**3 cc 4.6*1 br 3.9**1 ph 3.2**1 as 9.7**2 1.7**1 cd 1.4 br 3.9**1 9.7**2 1.7**1 1.2**1 3.9**1 1.2**1 3.9**1 1.2**1 3.9**1 1.2**1 3.9**1 1.2**1 3.5**1 1.2**1 3.5**1	Constant+		Constant+		Constant+	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ys ls ts og æx æe ce co ph br ch sm	7.9 4 6.4 4 5.7 3 4.1 3 6.3 4 3.7 3 5.7" 1 4.6" 1 4.6" 1 4.0" 1 3.5 1 12.2"" 2	ys ls ts og ex ce ce co ph br ch sm	8.3 4 9.6* 4 6.1 3 4.3 3 5.8 4 12.4** 3 7.9** 1 5.6* 1 3.9* 1 4.2* 1 3.6 1 25.1** 2	ys ls cg ae ce co ph br ch sm	10.1* 4 13.3** 4 6.4 3 8.0* 3 14.1** 4 9.7* 3 - 1.7 1 1.2 1 3.9* 1 0.9 1 2.5 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	pc pf	2.0 1	pc pf	3.7 1	pc pf	4.1* 1
$\begin{array}{cccc} ce & 1.3 & 1 & ce & 3.2 & 1 & ae & 7.2 & 1 \\ pf & 0.4 & 1 & pf & 2.8^{**} & 1 & pf & 3.7 & 1 \\ co & 8,9^{**} & 1 & pf & 3.7 & 1 \\ br & 6.3^{*} & 1 & 1 & 1 \\ \end{array}$	sm Ce ae	6.2* 1 3.8 3	sm ce ae pf	10.9** 1 5.5* 3 2.8 1	ls og ae	11.3* 3
ag [#] sm 1.4 2 ag [#] sm 12.0 ^{**} 2 ex [*] 1s 6.7 4 ag [#] ce 0.1 ag [#] ce 0.7 1 ag [#] ae 0.3 4 Constant+ag+	се		ce pf co	7.8** 1 8.9** 1	ae	
	ag*sm		ag*sm ag*ce ag*ae Constant+ag+ ag*sm+	0.7 1 0.3 4		6.7 4

Adev = change in model deviance df = degrees of freedom

* P<0.05 ** P<0.01

Grouped variable definitions:

'Employment' variables.

- ts time since start of employment ls length of service ys year of start of employment

'Asbestos' variables

- og occupational group ex exposure rating ae asbestos exposure period ce continuous asbestos exposure

- 'Health-status' variables.

- nealth-status variables. Co cough ph phlegm br breathlessness c chest-illness sm smoking habit pt pleural thickening pc pleural taictfication of pilenary filmesis
- pc pf pulmonary fibrosis
- ag age at death

The results of the main regression models are given in table 4.14. Considering all-cause mortality, the models clearly show that there is a significant variation in the SMRs with age, smoking habit (nonsmokers, ex-smokers, etc.), breathlessness, asbestos exposure period and period of continuous asbestos exposure. It should be noted, as stated in the last section, that the continuous exposure variable is based on a limited number of workers (i.e. 429 in total). Occupation group, asbestos exposure rating and time since start of employment are seen to have no effect, the same is true of the remainder of the descriptive variables used in this modelling. No interaction terms produced statistically significant results. The conclusion for the disease group of 'all-causes' is that age and smoking are the main factors of interest. This result in no way contradicts the results given in earlier sections of this chapter, and supports the conclusions of no excess risk for the majority of the employment and asbestos variables considered.

For lung cancer the smoking dose-response is reinforced, and smoking with age seen to be a very good predictor of death. Age and smoking are in fact seen to have a significant interaction. Asbestos exposure period and period of continuous asbestos exposure are again seen to have significant variation in their SMRs. Cough, phlegm and breathlessness are also seen to be fairly good predictive variables of lung cancer mortality. Radiographs with pulmonary fibrosis present also show a slight predictive value. However, occupational group and asbestos exposure rating are not significant, i.e. the SMRs do not vary over occupational group and exposure rating, supporting the findings of section 4.7. The fact that man is a better predictor of his own health than exposure ratings is shown by the significance and high SMRs for cough, phlegm, breathlessness and chest-illness and supported by the regression analysis.

Pleural mesothelioma is not seen to be related whatsoever to smoking. The only significant variation in SMR seen in the regression models is with the employment and asbestos variables. The main predictive factors for mesothelioma in this dockyard appear to be asbestos exposure rating and length of service in the dockyard. Pulmonary fibrosis on radiograph is again seen to have reasonable

predictive values together with pleural thickening and pleural calcification. The same is true for breathlessness and occupational group.

Generally, the results of the log-linear modelling support the previous SMR analyses, showing that smoking is a highly significant variable in predicting lung cancer death, whereas, occupational grouping is not. The reverse is seen for mesothelioma.

It should be noted that a major advantage of the models used in this section is their ease of implementation using such packages as GLIM or GENSTAT. These packages have the outstanding feature of enabling the user to specify factors and their interactions without having to generate the dummy variables him/herself, providing a useful means of carrying out detailed comparisons of mortality among subgroups defined by a multitude of covariates.

4.9 Summary.

For the three dockyards Devonport, Chatham and Portsmouth, a slight deficiency in all-cause mortality has been observed. Linked with this deficiency is the fact that mortality due to 'all-neoplasms' is not seen to be in either excess or deficit. For example, all-neoplasm SMRs are not generally different from 100, although at Devonport the SMR is statistically raised, i.e. 117 (109-125). Generally, 'noncancer' mortality is seen to be reduced, with SMRs commonly reduced below 100 (but in most cases not significantly). For asbestosis and the two forms of mesothelioma, large significant excesses in mortality are seen, with SMRs commonly being at least an order of magnitude higher than 100. However, low, non-significant SMRs are seen for pulmonary fibrosis.

It is possible that there is some death certificate confusion between asbestosis and pulmonary fibrosis. They are indeed practically the same medical condition, and it is likely that a mis-coding may have transpired between these conditions. Although it may be argued that we are dealing with an 'asbestos environment', i.e. the dockyards, and that this fact may have influenced the reported death certificate cause of death, these conditions have been analysed separately in this work. It is hoped by this, that any recording bias by the nosologist will be balanced over all death certificates.

The interesting result of this study is the lack of notable excess lung cancer mortality. In fact, an overall significant deficiency in lung cancer mortality is also absent. For all three dockyards, we generally have neither a statistically significant excess or deficit of lung cancer mortality from that expected in the South West and South East regional populations. This gives little support to any suggestion that dockyard exposure to asbestos is an aetiological factor in lung cancer production.

The disease groups of all-cause and all-neoplasm mortality in the 'absolute nonresponders' from the initial surveys, have significantly high SMRs. For lung cancer, SMRs are all high, with the SMR at Portsmouth being statistically elevated from 100. Mesothelioma again shows a huge excess. Overall, an excess mortality is seen in all disease groups, occasionally reaching a statistical excess. It appears that a proportion of the non-responders may have been chronically ill at study definition, in the early 1970s, and deselected themselves out of the surveys for health reasons. These workers were reinvited to attend for interview and radiograph only once more after initial non-response. This deselection of workers also overshadows any healthy worker effect to be seen in the study responders.

Generally then, there was little, if any, overall excess or deficiency of mortality seen in the initial surveys responders, over the three dockyards, apart from the asbestos related diseases of pleural and peritoneal mesothelioma, and asbestosis. These disease groups together with the other 9 specific disease groups were also considered by 'employment-time', 'health-status', and 'asbestos' variables.

When considering mortality by the 'employment-time' variables (length of employment, time since start of employment, etc.), the lung cancer risk appears

to increase with increasing age at start of employment. Whereas, mesothelioma appears to decrease, the youngest workers at start of employment having the highest mortality rates; showing the possible effects of early asbestos exposure. A decreasing trend in mesothelioma SMR is also seen over calendar year of employment, with the highest SMRs occurring for those workers employed before World War II. Lung cancer appears to increase with calendar period (figure 4.4), however, there is no statistical trend evident. Asbestosis and pulmonary fibrosis mortality is based on too few numbers to allow sensible analysis.

An increasing mortality trend is seen for pleural mesothelioma over length of service grouping, the highest mortality rates occurring in those workers with 30 or more years employment. Supporting the suggestion of a long disease latency period. When considering time since first employment, only disease of the respiratory system showed a significantly increasing trend in mortality. No other disease group gave any evidence of a systematic increase or decrease in mortality with time since first employment and possible first exposure to asbestos. A huge excess of mesothelioma was, however, seen at all three dockyards, clustered around those workers with long follow-up and long duration of service. Lung cancer was seen only to be in excess for workers with between 10 and 19 years of employment first exposed to asbestos over 30 years ago.

From the 'health-status' variables (i.e. personal medical history, smoking habits, etc.) cough, phlegm, breathlessness and chest-illness, were seen to be reasonable predictive variables for lung disease. Radiographic grouping was another such variable, and in particular x-ray groups 2, 3 and 4. That is, the groups showing pleural thickening, pleural calcification, and pulmonary fibrosis, present on radiograph. When examining mortality by smoking history, a clear dose-response relationship was seen for lung cancer. The relative risks for lung cancer at Devonport across smoking group are: 1, 3, and 7.8; for nonsmokers, ex-smokers and smokers, respectively (table 4.9). No such relationship was seen for mesothelioma. Asbestosis and pulmonary fibrosis were again affected by low numbers. Considering the 'asbestos' variables, lung cancer shows no pattern

whatsoever across these occupation and asbestos exposure parameters, except when analysed by smoking habit. When this is undertaken there appears to be an elevated lung cancer risk for the workers in occupational group 4 (i.e. the group of 'all other workers'). Lung cancer risks are also present in the small group of 429 workers (i.e. 1.5% of the cohort) who estimated their period of continuous asbestos exposure. Here workers with more than 10 years of continuous exposure appear most at risk. Pleural and peritoneal mesothelioma all show increasing trends with asbestos exposure rating.

In conclusion, there is only limited evidence in this study to link dockyard asbestos dust exposure aetiologically with lung cancer. There is, however, support for the idea of a lung cancer dose-response with tobacco smoking. For both forms of mesothelioma the reverse is seen; no relationship with smoking, but evidence of a relationship with asbestos exposure. The log-linear modelling supported these results. Indeed the two approaches used, the SMR and regression analyses, produced virtually the same results.

5.1 Introduction.

This chapter describes the results of nested case-control analyses performed on the workers from the three dockyards to further evaluate lung cancer and mesothelioma mortality, with regard to smoking habit and asbestos exposure. Pleural and peritoneal mesothelioma are grouped in this chapter as one cause of death 'mesothelioma'. The cases are all lung cancer and mesothelioma deaths occurring in the dockyards over the 17 year study period. The controls are matched to the cases by age and year of first dockyard employment. Logistic regression, as described in chapter 3, will be used in this chapter to analysis the case-control data.

The relationship of mesothelioma with time since first possible asbestos exposure, i.e. first dockyard employment, is also scrutinised in this chapter. Section 5.3 summarises a mathematical model relating dockyard mesothelioma incidence over all three dockyards, Devonport, Chatham and Portsmouth, exponentially with time since employment. This model is compared and contrasted to the model suggested by Peto in 1982.^[1]

5.2 Nested case-control analysis.

The only conceptual difference between a full cohort study and a case-control study based on the same cohort is that the latter involves a sample of the study base rather than an analysis of the entire study base. There is little loss of precision in a nested case-control analysis compared to a full cohort analysis, indeed the case-control approach is particularly valuable if the study disease is rare or has a long induction period, as often happens with mesothelioma. In essence this chapter is chiefly concerned with mesothelioma. An advantage of the case-

control method over a full cohort analysis is its ability to control confounders in the matching of cases and controls. An associated advantage is therefore its ability to negate the health worker effect.

In the analyses presented here, the controls were matched to the cases by incidence density sampling, according to age and year of first employment (± 1) year for each of these). Four controls per case were employed, giving for mesothelioma: 70 case-control sets at Devonport, 23 at Chatham, and 26 at Portsmouth. For lung cancer 216 case-controls sets were obtained for Devonport, 84 for Chatham, and 183 at Portsmouth. Only 2 mesothelioma deaths were unmatched, and omitted, in these analyses (one at both Devonport and Portsmouth). In total 24 lung cancer deaths were not matched to controls; 7 at Devonport, 12 at Chatham, and 5 at Portsmouth.

Table 5.1 summarises the results of the mesothelioma logistic regression analysis. From this table it can quickly be seen that after matching for age the main effect on mortality across all three dockyards was asbestos exposure rating. At Devonport occupational group was also seen to be significant in the regression model; at Chatham phlegm production takes the place of occupational group and is seen in the model. The other factors considered, cough, breathlessness, and smoking habits, etc., are not seen to have any effect.

When modelling just the exposure rating term the following elevated mesothelioma odds ratios were produced: 1.84 (95%CI: 1.45-2.33) at Devonport, 1.64 (95%CI: 1.12-2.41) at Chatham, and 1.65 (95%CI: 1.17-2.33) at Portsmouth. These show a clear excess mortality due to mesothelioma over all three dockyards, when relating mesothelioma incidence to asbestos exposure rating.

Table 5.2 gives the lung cancer regression results. From this table it is apparent that occupational exposure to asbestos plays only a limited role in the production of lung cancer at the three dockyards, with cigarette smoking appearing to be the predominant casual factor. Other significant factors appear to be symptoms from

TABLE 5.1:

Goodness-of-fit	statistics	obtained	in	Mesothelioma	logistic	
regression.					U U	

Devong	ort	Ch	atham	Ports	nouth
Mode1	≜dev df	Model	Adev df	Model	∆dev df
og co ph br ch sm sa sd ex sd ex ae	5.6* 1 0.1 1 0.2 1 0.4 1 0.5 1 0.4 1 0.5 1 30.1** 1 0.5 1 0.2 1	og co br ch sm sa sa ex ls ae	3.6 1 0.4 1 6.1* 1 0.0 1 0.6 1 3.7 1 0.4 1 7.2** 1 - 2.8 1	og ph br sm sa sd ex ls ae	0.6 1 2.4 1 0.2 1 0.2 1 1.4 1 0.2 1 0.2 1 0.2 1 0.8 1 9.1** 1 1.8 1
ae+og	31.1** 2	ae+og ae+pn	7.3* 1 9.7** 1		
ae+ae*og	31.5** 3				

TABLE 5.2

Goodness-of-fit statistics obtained in Lung Cancer logistic regression.

<u>Devanport</u>		<u>C</u> hath	am	Portsmou	ith
Model	∆dev df	Mode 1	∆dev df	Mode 1	≜dev df
og co ph br ch sm sa sd ex sa sa sm+sa sm+sa sm+ch sm+br sm+br sm+br sm+br sm+br sm+br sm+br	0.1 1 15.8** 1 16.4** 1 11.3** 1 0.6 1 51.5** 1 15.7** 1 38.9** 1 6.5* 1 0.6 1 40.1** 2 40.2** 2 57.9** 2 56.7** 2 56.7** 2 56.7** 2 56.7** 2 56.7** 2 56.7** 2 56.7** 3	og co ph br ch sm sa sd ex ls ae sm+sd sm+co sm+ph sm+br sm+co+br sm+co+ph	0.1 1 14.4** 1 4.7* 1 4.7* 1 0.3 1 26.7** 1 0.8 1 19.4** 1 0.7 1 0.7 1 0.3 1 0.0 1 19.4** 2 33.5** 2 29.1** 2 34.0** 3 33.5** 3	00 ph br ch sa sa sd ex ls ae sm+ph sm+sd sm+br sm+ex sm+br sm+ex sm+br	3.4 1 28.3** 1 44.3** 1 8.8** 1 1.3 1 19.0** 1 31.0** 1 0.0 1 0.4 1 87.4** 2 75.5** 2 74.4** 2 73.5** 2 88.4** 3
sm+br+ph sm+br+sm [#] br	63,8** 3 63,7** 4	sm+co+sd sm+co+sm*co	24.9** 3 21.4** 4	sm+ph+ex sm+ph+sm [#] ph	91.4** 3 87.1** 4

Adev = change in model deviance df = degrees of freedom

P<0.05</p>
P<0.01</p>

Grouped variable definitions:

og	occupational group	
B X	exposure rating	

- Is length of service as asbestos exposure period

- co cough ph phlegm br breathlessness ch chest-1llness

- sm smoking habit sa smoking amount sd duration of smoking

the workers personal medical history; with, for example, breathlessness having a significant effect at Devonport, cough at Chatham, and phlegm production at Portsmouth. Asbestos exposure rating is seen to be significant in the regression models at Devonport and Portsmouth, however, less significantly so than medical history.

When modelling only with the term relating to smoking habit the following highly elevated lung cancer odd ratios were produced: 2.55 (95%CI: 1.89-3.44) at Devonport, 2.85 (95%CI: 1.71-4.75) at Chatham, and 3.04 (95%CI: 1.83-5.04) at Portsmouth. Demonstrating an excess lung cancer risk.

Simply, this nested case-control analysis supports the results of chapter 4, showing for lung cancer that cigarette smoking is the dominant factor and not dockyard asbestos exposure (or its near surrogate). The opposite is seen for mesothelioma, no smoking effect, and elevated odds ratios for asbestos exposure rating.

5.3 Mesothelioma modelling.

In contrast to lung cancer, which has been commonly described by a linear doseresponse relationship with asbestos exposure^[2], mesothelioma is best described by an absolute risk model in which the incidence of both pleural and peritoneal mesothelioma is independent of the age at first exposure (and cigarette smoking) and increases according to a power function of time since first exposure. This model was first suggested and used by Newhouse and Berry in 1976 to predict mesothelioma mortality in a group of asbestos factory workers.^[3] They suggested the following model:

$$I_{M} = b(t - w)^{k},$$

where I_M is the incidence of mesothelioma at time t from first exposure, w is a delay in the expression of the risk, and b and k are empirically derived constants.

The incidence of asbestos induced mesothelioma in rats has also been seen to follow this time course.^[4] From the work of Newhouse and Berry it was suggested that k lies between 1.4 and 2 and w between 9 and 11 years, i.e. a quadratic model was suggested with a time delay of approximately 10 years. Peto et al in 1982 further showed that the absolute incidence of mesothelioma was independent of age at first exposure and suggested the model:

$I_{H} = bt^{k}$,

with 3. 20 as his best estimate of k.^[1] This model was based on the data from the study of North American insulation workers undertaken by Selikoff et al in 1979^[5], and modelled 236 mesothelioma deaths. The model was seen to fit the data well between 20 and 45 years from first asbestos exposure. However, observed incidence rates for earlier times were less than those projected, and Peto suggested a return to the model of Newhouse and Berry, that is, the use of a quadratic time-dependence with a lag of 10 years. This quadratic expression fitted the data better up to 45 years from first exposure. The analysis of Peto et al excluded workers first employed before 1922 and after 1946, and over the age of 80; the fit to the mortality of the entire group suggested a value of k of about 5.

The model suggested by Peto has been used by Sullivan et al to model the mesothelioma incidence in the Royal Naval Dockyards (see appendix 5: supporting evidence).^[6] In this work the mortality experience of workers at Devonport, Chatham and Portsmouth was followed for 10 years, and 56 mesothelioma deaths were accumulated. The best estimate of the power parameter (k) was found to be in close agreement to Peto's value; with k=3.14. However, the constant of proportionality (b), a measure of relative mesothelioma incidence, was seen to be nearly an order of magnitude less than that suggested by Peto. Suggesting that the risk of dying from mesothelioma for dockyard workers is much less than that seen for North American insulation workers.

noloved					Ye	ars since i	first emplo	yment				
(yrs)		0-4	5-9	10-14	15-19	20-24	25-29	30-34	35-39	40-44	45-49	50+
15-24	Person-years Observed Expected	5505 0 0.63	18466 0	28060 1 1,94	34264 0 1.30	31053 2 3.27	26274 4 7.66	25845 8 8.13	26705 14 10, 32	23590 20 19.68	18821 23 22.97	14022 20 20.19
25-34	Person-years Observed Expected	1137 0 0.13	3424 0	4805 0 0.33	6147 1 0.23	661B 1 0.70	8087 7 2.36	8389 3 2.64	8030 0 3.10	4870 3 4.06	2470 3 3.01	563 1 0.81
35-44	Person-years Observed Expected	750 1 0.09	2720 0	4444 0 0.31	6214 0 0.24	6542 1 0.69	5576 1 1.62	3587 1 1.13	1477 0 0,57	305 1 0.25	10 0 0.01	
45-54	Person-years Observed Expected	920 0 0.10	3287 0	4822 2 0.33	5011 1 0.19	2994 1 0.31	1218 0 0.35	314 0 0.10	13 0 0.00			
55+	Person-years Observed Expected	471 0 0.05	1398 0	1356 0 0.09	1015 0 0.04	273 0 0.03	11 0 0.00	5 0 0.00				
Total	Person-years Observed	8783 1	29296 0	43488 3	52651 2	47479 5	41166 32	38140 12	36225 14	28766 24	21300 26	14586 21
	Annual death rat	te (per 100	. <u>000)</u> :									
	This study Peto (1982)	11.39 0	0	6.90 0	3.80	10.53 32.31	29.15 154.17	31.46 289.25	38.65 525.35	83.43 569.35	122.06	143.98 664.45

TABLE 5.3: Distribution by time since first employment and age at first employment of 120 mesothelioma deaths.

TABLE 5.4: Devonport Dockvard.

Distribution by time since first employment and age at first employment of 70 mesothelioma deaths.

Age first employed					Ye	ars since f	irst employ	ment				
(yrs)		0-4	5-9	10-14	15-19	20-24	25-29	30-34	35-39	40-44	45-49	50+
15-24 -	Person-years Observed Expected	3213 0	10615 0	15853 0 1.30	19006 0 1.30	16842 1 2.58	13684 3 5.11	13269 6 6,16	12988 6 4.53	10891 7 8.30	8483 16 15.86	5912 10 10.55
25-34	Person-years Observed Expected	584 0	1896 0	2705 0 0.22	3541 1 0.24	3882 1 0.60	4200 5 1.57	4187 2 1.94	3585 0 1.25	2117 2 1.61	1135 2 2.12	250 1 0.45
35-44	Person-years Observed Expected	418 0	1517 0	2505 0 0.21	3474 0 0.24	3606 1 0.55	2875 0 1.07	1773 1 0.82	632 0 0.22	110 1 0.08	9 0 0.02	
45-54	Person-years Observed Expected	476 0	1800 0	2667 2 0.22	2751 1 0.19	1654 1 0.25	642 0 0.24	159 0 0.07	7 0 0.00			
55+	Person-years Observed Expected	223 0	635 0	593 0 0.05	440 0 0.03	112 0 0.02	2 0 0.00	5 0 0.00		number of rate (per	person-years: 100,000):	187,918 37.25
Total	Person-years Observed	4913 0	16463 0	24322 2	2921 3 2	26095 4	21404 8	19388 9	17211 6	13119 10	9626 18	6161 11
	Annual death ra	te (per 100	<u>.000)</u> :									
	Devonport All yards	0 11,39	0	8.22	6.85 3.80	15.33 10.53	37.88	46.42	34.86 38.65	76.23 83.43	186.98	178.54

202

age first					Ye	ars since f	irst employ	ment				
(yrs)		0-4	5-9	10-14	15-19	20-24	25-29	30-34	35-39	40-44	45-49	50+
15-24	Person-years Observed Expected	870 0 0.61	3517 0	5282 1 0,66	6627 0	5745 0	4653 0	4516 0 0.70	4960 4 2.87	4766 8 7.25	3911 4 4, 32	3119 2 1.92
25-34	Person-years Observed Expected	185 0 0.13	576 0	775 0 0.10	922 0	850 0	1179 0	1334 1 0.21	1692 0 0.98	1110 1 1.69	614 1 0.68	135 0 0.08
35-44	Person-years Observed Expected	111 1 0.08	478 0	681 0 0.08	827 0	812 0	697 0	522 0 0.08	254 0 0,15	42 0 0.06		
45-54	Person-years Observed Expected	162 0 0.11	624 0	829 0 0.10	843 0	445 0	159 0	41 0 0.01	2 0 0.00			
55+	Person-years Observed Expected	101 0 0.07	382 0	411 0 0.05	313 0	101 0	9 0	5 0 0.00		number of pe rate (per 10		66,191 34.75
Total	Person-years Observed	1430 1	5577 0	7977 1	9533 0	7953 0	6698 0	6417 1	6908 4	5919 9	4525 5	3254 2
	Annual death ra	te (per 100.	.000):									
	Chatham All yards	69.91 11.39	0	12.54	0 3.80	0 10, 53	0 29.15	15.58 31.46	57.90 38.65	152.06	110.50	61.46 143.98

TABLE 5.5: Chatham Dockyard. Distribution by time since first employment and age at first employment of 23 mesothelioma deaths.

TABLE 5.6: Portsmouth Dockyard.

Distribution by time since first employment and age at first employment of 27 mesothelioma deaths.

ge first amployed					Ye	ars since f	irst employ	ment				
(yrs)		0-4	5-9	10-14	15-19	20-24	25-29	30-34	35-39	40-44	45-49	50+
15-24	Person-years Observed Expected	1 422 0	4334 0	6925 0	8632 0	8467 1 0.63	7936 1 2.43	8060 2 1.31	8757 4 2.89	7932 5 4.08	6427 3 2.70	4991 8 7,72
25-34	Person-years Observed Expected	368 0	951 0	1325 0	1683 0	1886 0 0.14	2708 2 0.83	2869 0 0.46	2753 0 0.91	1643 0 0.84	722 0 0.30	179 0 0.28
35-44	Person-years Observed Expected	221 0	726 0	1258 0	1912 0	2124 0 0.16	2003 1 0.61	1291 0 0.21	591 0 0.19	153 0 0.08	1 0 0.00	
45-54	Person-years Observed Expected	282 0	863 0	1326 0	1417 0	895 0 0.07	416 0 0.13	114 0 0.02	4 0 0.00			
55+	Person-years Observed Expected	146 0	381 0	353 0	261 0	60 0 0,00				umber of pi ate (per 10	erson-years: D0,00):	107,771 25.05
Total	Person-years Observed	2439 0	7255 0	11188 0	13905 0	13431 1	13063 4	12335 2	12106	9728 5	7140 3	5170 8
	<u>Annual death ra</u>	te (per 100,	.000):									
	Portsmouth All yards	0 11.39	0	0 6,90	0 3,80	7.45	30.62 29.15	16.21 31.46	33.04 38.65	51.40 83.43	41.96	154.73 143.98

This analysis excluded 'outstation' workers and was performed on 20,426 male inyard workers followed from the early 1970s for 10 years. Their mortality experience was considered up to 49 years from first possible asbestos exposure. In all 193,560 person-years of observation were obtained and used in this model. Figure 5.1 shows the cumulative risk of dying from mesothelioma produced in this work. It has an identical form to figure 1 from Peto et al.^[1] Signifying a similar pattern of risk between dockyard workers and insulation workers, though the risk is much smaller in the dockyard workers, i.e. the lifelong risk is 3% in dockyard workers compared to approximately 15% in insulation workers first employed at age 20 (where a lifetime risk of 3% means that 3 mesotheliomas will occur by age 80 in a cohort of 100 men followed to extinction).

TABLE 5.7 :	Estimates	of	the	power	parameter	(k)	and	the	constant	of
	proportion	ality	(b).							

	Dévonport	Chatham	Portsmouth
	For all time s	ince first employm	ent_periods:
Power parameter (k)	3.31	2.04	6.00
Constant (b)	3.96×10 ⁻⁹	3.41×10 ⁻¹⁰	6.75×10 ⁻¹⁴
	For all 3 dockyards	combined, k = 3.0	ю, в = 8.18×10 ⁻⁹
	Omitt	ing the first 3 pe	riods:
Power parameter (k)	3.33	1.24	6.00
Constant (b)	3.66×10 ⁻⁹	7.64×10 ⁻⁶	6.75×10 ⁻¹⁴
	For all 3 dockyards		

Over the 17 years of follow-up considered in this work 361,880 person-years of observation have accrued, with 120 deaths accumulated over the 3 dockyards from pleural and peritoneal mesothelioma. Table 5.3 shows the distribution of these deaths by time since first employment and age at first employment. The expected values from this table have been calculated on the assumption that mesothelioma

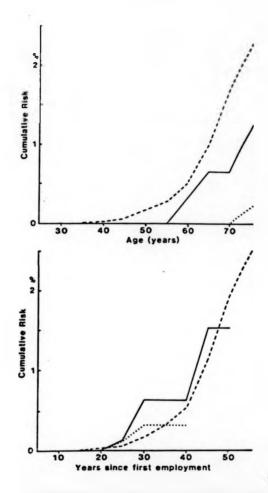


FIGURE 5.1*:

Cumulative risk of dying of mesothelioma for workers first employed in the dockyards at age 15-24 (----), 25-34 (----), or 35 and over (....) against age (upper graph) and years since first employment (lower graph).

Taken from: Sullivan KR, Lam TH, Rossiter CE (1988) "Mesothelioma and Time Since First Employment" Ann occup Hyg 32:491-496.

mortality is independent of age, i.e. the expected numbers are calculated internally by multiplying the overall death rate in each quinquennium since first employment by the number of person-years in each cell in the corresponding column of table 5.3. The fit is very close between the observed and expected deaths (e.g. X^2 goodness of fit=5.95, df=9, P>0.5, for those aged 15-24 at first employment) and the annual death rate is seen to rise analogously to the rate reported by Peto. Tables 5.4 to 5.6 show the distribution of mesothelioma deaths for each dockyard.

A model of the form outlined by Peto was then fitted to the data in table 5.3 to gain the best estimates of the parameters b and k for the 120 mesothelioma deaths. This was undertaken in GLIM using a method of minimisation of fitted deviance, i.e. by minimizing the likelihood-ratio statistic. Table 5.7 shows the estimates produced for each dockyard. The following illustrates the GLIM macro used:

\$ MACRO MIN \$ CAL px = x**%a \$ \$ YVAR Y \$ \$ FIT \$ \$ FIT + px -%GM \$ \$ DISP R E \$ \$ ENDMAC

From this table it can be seen that a combined dockyard estimate of the power parameter over all time since first employment periods is given by: k=3.06 with an accompanying constant, $b=8.18 \times 10^{-9}$; this model excludes only those workers over the age of 85. The model was fitted to observed mesothelioma deaths beyond 50 years since first employment using 52.5 as an approximate mid-period value in the modelling. By inspection of tables 5.3 to 5.6 it is apparent that 4 mesothelioma deaths have occurred at very early follow-up periods. At Chatham dockyard a single mesothelioma death occurred with less than 5 years possible dockyard exposure. No previous occupational history was available for these 4 workers. If we assume a minimum latency period of at least 15 years from first exposure, then these 4 deaths should be excluded from a dockyard mesothelioma mortality model. Accordingly, the model parameters were recalculated omitting the first 15 years since first employment. This resulted in revised estimates of: k=3.08 and $b=7.57 \times 10^{-9}$. It also dramatically increased the constant of proportionality, the measure of mesothelioma incidence, at Chatham.

These parameter estimates are very close, and are also close to the estimate given at 10 years of follow-up. A reasonable estimate of the parameters for dockyard mortality could, therefore, be given by: k=3.1 with $b=7.01 \times 10^{-9}$. This also avoids the spurious precision implied by a second decimal place in the estimates of the power parameter. Table 5.8 shows the effect of the various estimates in the calculation of an annual mesothelioma death rate 30 years after first employment (i.e. t=30, in each calculation).

TABLE 5.8: E	Estimates of	an annual	mesothelioma	death rate.
---------------------	--------------	-----------	--------------	-------------

	Power (k)	Relative incidence (b) ×10	Calculated death rate per 10,000
This study:			
Total follow-up	3.06	8.18	2.71
Minus first 15 years	3.08	7.57	2.68
Sullivan (1988):	3.20*	5.64	3.01
Peto (1982):	3.20	43.7	23.29
Dockyard estimate:	3.1	7.01	2.66

 Peto's value of 3.20 was used in place of the estimated value 3.14 in this publication, in the calculation of b.

From table 5.8 it is clear that the relative mesothelioma incidence, and indeed mesothelioma risk, in any particular cohort could be summarised by the constant *b*. From this table the insulation workers clearly show a higher risk than the dockyard workers (generated from the larger constant value). It is also clear that the dockyard models have produced compatible estimates of annual death rates, and that a model fitted with an exponential time-dependence appears to be appropriate for dockyard mesothelioma incidence (the fit of observed and expected

deaths were not significantly different at each dockyard). The model is also very robust and allows for the effect of mesothelioma latency, i.e. the removal or inclusion of the first 15 years of follow-up has minimal effect on the model parameters. An obvious limitation of this exponential model of mesothelioma incidence is, however, its lack of any measure of actual asbestos exposure. A model postulated by the World Health Organization modifies the exponential model and suggests a breakdown of the constant parameter (*b*) into two terms; one for level of asbestos (in fibres per millilitre) and one a constant term characteristic of asbestos type and distribution of fibre dimension.^[7] Due to the lack of actual fibre levels in this study it was not possible to implement the WHO model.

The result of this mesothelioma modelling strongly supports the conclusion of Peto in 1982, that mesothelioma mortality is related to time since first employment, and first possible asbestos exposure, and is independent of age. However, the 'relative risk' parameter b is much lower than that observed by Peto for insulation workers and four other occupational groups (namely, asbestos factory workers, chrysotile factory workers, crocidolite miners and amosite factory workers). These cohorts will be considered in the following chapter. This can be linked with the results of chapter 4, and particularly that of no overall excess or deficiency of lung cancer deaths, and suggests that the dockyard workers may well have been exposed to significantly less asbestos than the other occupational groups considered by Peto.

6.1 Discussion.

A common objective of occupational mortality studies is to assess whether mortality in a particular industry, or workforce, is higher than expected because of adverse exposures in the workplace. In this study a screening process was undertaken in which 50 broad disease groups were inspected. This was followed by an analysis of 12 specific disease groupings that were scrutinised for any possible trends in mortality related to dockyard asbestos exposure. Throughout, however, special emphasis has been given to the two main asbestos-related diseases, i.e. lung cancer and mesothelioma (and specifically pleural mesothelioma). The striking result found has been one of no overall excess in lung cancer mortality, together with excessively high mortality rates for both pleural and peritoneal mesothelioma. Asbestosis has shown high SMRs, but was based on too few observed deaths to allow sensible analysis. These results apply equally to all three dockyards, Devonport, Chatham and Portsmouth.

The only clear lung cancer dose-response found in this study, is its already welldocumented relationship with cigarette smoking.^[1,2] Additionally, an increasing lung cancer risk (with significant trend) was clearly observed across smoking habit for the workers in occupational group 4. This was the group created by Sheers and Templeton to represent potentially the lowest level of asbestos exposure, but as mentioned in section 3.1.4 these groups may in fact give ambiguous measures of asbestos exposure (with much worker interchange between groups).^[3]

No obvious lung cancer relationship was seen with potential asbestos indicators (asbestos exposure rating, occupational group, etc.), or with most employment history factors. However, an indication of excess lung cancer mortality was observed, occurring at long intervals from first possible dockyard exposure (i.e.

for those workers with less than 20 years employment who had been first employed over 30 years ago). This agrees to some extent with the initial results reported on by McDonald for Quebec chrysotile miners and millers.^[4] Here workers with 20 or more years employment (considered at least 20 years after start of employment) were seen to have clear excesses; these were the group of workers exposed to the heaviest asbestos dust concentrations. However, little overall excess lung cancer was observed in McDonald's study. Excess lung cancer risk was also observed for those workers with x-ray evidence of pulmonary fibrosis, giving some support to the suggestion of Browne that asbestosis is a precursor of lung cancer.^[5] For those workers who assessed their own period of asbestos exposure (i.e. 3359 workers over all yards), a significant excess was seen only at Devonport dockyard. This was observed in workers with potentially 10 to 20 years of asbestos exposure. For the small subgroup of workers (i.e. 429 workers over all yards) who further assessed their period of continuous exposure to asbestos, significantly raised lung cancer risks were observed for those workers with more than 10 years continuous asbestos exposure; however, this was based on a very small number of deaths. These results are, however, suggestive that a subgroup of the dockyard workforce may have been exposed to high levels of asbestos dust some 20 to 30 years ago, producing the lung cancer excesses observed in this study.

Overall, these results do not give much support (except for a small subgroup, who may have been the heaviest exposed) to the hypothesis that dockyard asbestos exposure is linked aetiologically with lung cancer. In the majority of the analyses lung cancer risk was not raised significantly above that expected in the general population.

Conversely, pleural mesothelioma is seen to have no relationship at all with smoking habit, another well-documented fact^[6], but is seen in this work to be related to possible asbestos exposure (specifically with asbestos exposure rating). This was a highly significant association, and could be taken as indicating that the

exposure codes used are relevant surrogate measures of exposure. Mesothelioma incidence is also seen to be related to time since first dockyard employment (and first possible dockyard asbestos exposure). Large excess mesothelioma risks were observed to be clustered among those workers with long follow-up and long duration of service (i.e predominantly for workers first employed before World War II). However, significant mortality trends were not observed in these groups. Dockyard mesothelioma incidence also appeared to be well related to a mortality model fitted with an exponential time-dependence. The overall picture is then one of a limited lung cancer risk, with smoking its predominant casual factor, and a high mesothelioma risk related to past asbestos exposure.

The results therefore confirm and strengthen the conclusions drawn from earlier studies undertaken at Devonport Dockyard.^[7,0] The conclusions were that there is very little evidence of an overall excess mortality from lung cancer, despite a considerable number of mesothelioma deaths. This result is clearly not in complete accord with the other published studies of asbestos workers that either show excess mortality from both causes, or little excess from either. For example, the work of Hobbs in Australia for crocidolite miners and millers (excess in both), and McDonald in Quebec (little excess) for chrysotile miners and millers.^[4,9] The asbestos studies of McDonald were extensively reviewed in chapter two.

From the literature review section of this dissertation (section 2.5), it can be seen that the results from this dockyard cohort are very striking, and at odds with the majority of published asbestos studies. Studies that have suggested that increasing lung cancer risks are clearly observed in cohorts exposed to amphibole asbestos, or mixtures of this with chrysotile asbestos; in the naval dockyards, however, all forms of asbestos (as itemised in chapter one) have been used over the years. Recent studies in and around dockyards have however produced further supporting evidence of a limited lung cancer risk, but high mesothelioma risk.^[10,11] In the first of these studies Sanden et al undertook a cohort investigation of 3,893

Swedish shipyard workers.^[10] Here the workers were exposed mainly to chrysotile asbestos, and were seen to have no increased risk of lung cancer (SMR of 108, 95%CI:54-109, for workers defined as heavily exposed to asbestos). For pleural mesothelioma the risk was highly elevated (SMR of 1429, 95%CI:620-2810, also for heavily exposed workers). Their results are very similar to the findings of this dockyard study. The conclusion from this Swedish study was that asbestos may have different carcinogenic mechanisms in causing lung cancer and mesothelioma. They felt that asbestos acts as a promoter of lung cancer, but as a complete carcinogen in developing mesothelioma. In the next study mortality from mesothelioma and asbestosis around Plymouth docks was analysed by the Small Area Health Statistics Unit (SAHSU) using a computerised national health monitoring facility.^[11] In this work elevated risks were seen within 3 km of the docks. For mesothelioma a high SMR of 841 (95%CI:550-1230) was obtained based on 26 observed deaths, for asbestosis an SMR of 1364 (95%CI:500-2970) based on 6 deaths. This again supports the findings of this thesis.

Table 6.1 illustrates further studies, across varying asbestos industries, where no clear excess lung cancer risk has been observed. By inspection of this table the lowered dockyard risks for lung cancer generally correspond to a raised proportional mortality for mesothelioma. Suggesting that even without an excess lung cancer risk a very real asbestos-related disease problem exists in these workplaces. It should be noted, however, that for the studies cited in table 6.1 longer periods of follow-up may eventually show higher SMRs for lung cancer.

Could it be concluded that it is not asbestos but rather asbestosis that prepares the basis for subsequent malignancy? This was the first controversy considered in chapter two. Would this hypothesis fit the pattern seen in this study of neither an overall excess nor a deficiency of lung cancer deaths, linked with low numbers of asbestosis deaths, but with an excess risk of mesothelioma? We also have an excess of lung cancer deaths in workers with x-ray evidence of previous

Industry		Number of lung cancer deaths	SMR	Proportional mortality mesothelioma
Dockyard				
UK (Naval)	[7]	84	84	3.0%
UK (Civilian)	[12]	35	104	4.0%
USA	[13]	27	64	0.2%
Sweden	[10]	11	108	6.6%
Asbestos Cemen	t			
Austria	[14]	49	104	0.7%
Belgium	[15]	21	94	0.5%
Sweden	[16]	11	123	-
UK	[17]	28	85	0.6%
UK	[18]	34	89	0.3%
UK	[19]	33	95	2.4%
Mining and Manufacture				
Italy	[20]	22	110	0.5%
USA	[21]	4	93	-

 TABLE 6.1: Asbestos cohort studies showing no increase in lung cancer risk.

pulmonary fibrosis. For asbestosis to develop, high levels of asbestos exposure are needed, probably above 25 f/ml.^[22] The results of this study would only support this hypothesis if it could be proved that dockyard asbestos exposures were less then this asbestosis threshold (i.e. if the exposures were only low enough to allow mesothelioma to develop and not asbestosis and then lung cancer). The problem is that this would be an attempt to prove a negative. A further problem occurs concerning the assumption that exposures should have been less than 25 f/ml. Reported dockyard exposure values from the 1970s considerably exceed this limit. Table 2.3 presented a summary of the available dockyard exposure data, and clearly the processes monitored have a wide variation of possible exposures (ranging from 0.05 to 3815 f/cc). However, in a further report it was stated that "even though all processes involving work with asbestos insulating materials in Naval Dockyards give rise to asbestos dust concentrations of at least 2 f/cc, most processes have dust concentrations of 50 f/cc or more".^[23] It is likely therefore that exposures before the 1970s would have been at least as high as this and probably higher. This, however, cannot be completely substantiated because exposure assessments prior to the work of Harries in the early 1970s were both rarely taken and often not consistently recorded. In fact the studies undertaken by Harries were performed in an attempt to give some idea of the potential past dust concentrations in the dockyard.^[23] It consequently appears unlikely that dockyard exposures would be below the threshold value for asbestosis. However, it is possible that the intermittent nature of ship repair may play a role in this pattern of mortality. If it could be hypothesised that the workers were exposed to high peaks of exposure during rip-out operations, followed by low background levels the majority of the time, then their average exposures may possibly fall under this threshold limit. At the moment, however, the lung cancer - asbestosis question remains undecided for this dockyard cohort. The related question of whether there is a threshold dose of asbestos exposure below which asbestos is effectively noncarcinogenic to humans must also, for the same reasons, remain undecided. A recommendation of this work will be the creation of a detailed dockyard asbestos job-exposure matrix; once this is available more conclusive results should be possible.

It should be noted that McDonald and McDonald in a review of asbestos-related lung cancer also felt that despite the pathologic, experimental, radiologic and epidemiologic arguments put forward by Browne^[5] (concerning the asbestosis - lung cancer controversy) the basic question, as considered in section 2.5.6 of this thesis, remains unanswered.^[24] They stated that there appears to be no certain evidence that fibrogenesis and carcinogenesis in the lung are linked except to the extent that they sometimes share the same aetiologic agents.

A method of overcoming the lack of definitive asbestos fibre measurements presents itself in this study, i.e. the use of the mesothelioma modelling introduced in chapter five. In these models the parameter b, a constant of proportionality, supplies a measure of relative mesothelioma incidence. This in turn could be taken

as a simple measure of (or a guide to) asbestos exposure. The constant of proportionality could therefore be compared across studies to assess likely levels of incidence (and or asbestos exposure).

Reference	Data used		Power parameter k	Constagt b x10
This thesis	Naval dockyard workers		3.1	7
Peto [25]	London textile workers	[26]	3.2	49
	American amosite factory American insulation workers	[27]		49 44
	Australian crocidolite miners	[20]		51
	Rochdale textile workers	[29]		29
Hughes [30]	American insulation workers	[28]	3.2	3
& Heill	Rochdale textile workers	[29]		1
	Ontario coment manufacturers	[31]		22
Ontario [22]	American insulation workers	[28]	4.0	0.13
Royal	Rochdale textile workers	[29]		0.07
Commission	Ontario cement manufacturers	[31]		0.21

TABLE 6.2: Estimates of relative mesothelioma incidence.

Table 6.2 presents estimates of relative mesothelioma incidence across many asbestos cohorts (asbestos textile workers, crocidolite miners, asbestos cement workers, etc.). These cohorts have all been cited previously in this thesis. The different fibre types involved in the studies in table 6.2, the relative proportions of each, their dimensions, and the industrial process involved all possibly alter the carcinogenic effects of asbestos. Fibre dimensions and industrial processes are however undoubtedly related. When considering this information the modelling undertaken in table 6.2 appears too simplistic, producing a single value that can be compared across cohorts. However, Peto et al has shown that the most appropriate way of making comparisons statistically between studies is by describing incidence rates after adjustment for time from first exposure (i.e. this comparison technique).^[25] When taking the Peto model from table 6.2 as standard it is clear that in absolute terms the dockyard workers mesothelioma risk is much less than that in the other cohorts. This implies that dockyard workers

may have been exposed to significantly less asbestos than the other occupational groups. When considering the modified model of Hughes and Weill (a model which has a fixed power parameter and included duration of exposure information) the results are not so clear, with the risks in insulation and textile workers being of the same order of magnitude as dockyard workers, but the risks among asbestos cement workers being much more. The model of the Ontario Royal Commission has been included for reference only, its use of the slightly larger power term, prohibits direct comparison. A conclusion of this comparison could therefore be that the risk in dockyard workers is either of the same order of magnitude, or indeed much less, than these found in the other cohorts. This is not a very useful result. However, when considering the results of this thesis, i.e. no clear lung cancer risk and a very clear mesothelioma risk, it is probable that the risk for dockyard workers (and their exposure) is much less than that observed in the other cohorts.

A major limiting factor in this study has been both the lack of detailed exposure data as presented earlier, and the use of a non-standard x-ray screening classification. As previously described in section 3.1.6 it is likely that this screening classification will have a sensitivity of approximately 70% when compared to the ILO U/C 1971 classification. Resulting in a possible underestimation of the prevalence rates of asbestos-related abnormalities presented in table 3.12. Recently the ILO classification itself has been criticised for underestimating asbestosis.^[32] This study suggests that the sensitivity of the ILO method is between 80% and 90%; it would appear therefore that each method has its limitations. The advantage of the ILO classification however still holds. It is an internationally agreed method of detecting asbestosis and other forms of pneumoconiosis.

Controversy three (section 2.5.6) concerns the amphibole hypothesis or more correctly the question: is chrysotile asbestos less carcinogenic than the amphiboles? This question cannot be directly addressed in this study since the

217

workforce has potentially been exposed to both chrysotile and amphibole asbestos in many mixed forms (prior to 1968, as described in chapter one); with only very limited availability of asbestos fibre concentration in air measurements. The further use of a job-exposure matrix applied to this cohort, with details concerning type as well as amount of asbestos exposure, may address this issue. Numerous epidemiological studies (reviewed in section 2.5) have demonstrated increased lung cancer risk among past asbestos exposed workers; the evidence from these studies indicates that, except in the textile industry, where other exposures may play a role, the risk from chrysotile exposure is likely to be lower than that from amphiboles. There is no reason to suspect at present that this would be different in Naval Dockyards. Indeed an assumption could be that the lack of an overall lung cancer risk more likely reflects past chrysotile exposure than exposure to either crocidolite or amosite. The finding of Sanden et al of a deficiency of lung cancer cases in a cohort of chrysotile shipyard workers supports this assumption.^[10] 6.2 Conclusion and Recommendations.

6.2.1 Conclusion.

The essential feature in preventing any asbestos related disease is, and has been, the control of the amount of asbestos to which individuals are exposed. It can be inferred that through control of dust levels in industry, medical surveillance of workers at risk, reduced use of asbestos and decreased cigarette smoking among exposed workers that asbestosis and related cancers will become increasingly rare. Opinion is that the risk of asbestosis is essentially nil at today's industry standards.^[33] No such forecast has been made for mesothelioma, except conceivably for countries where the use of amphibole asbestos is heavily proscribed. For mesothelioma there appears to be no level of exposure to amphibole fibres that is acceptable. For these reasons nations worldwide have imposed standards that effectively prevent the current and future use of crocidolite and amosite.

Unfortunately, as this work has highlighted, in shipbuilding the damage has already taken place with the initial use and subsequent uncontrolled removal of material containing virtually every form of asbestos (but predominantly crocidolite and amosite). At the moment the incidence of asbestos related disease is still increasing worldwide, due to past conditions, and projections made in the 1970s have indicated that the incidence of asbestos-related industrial cancers will only start to decline around the year 2000.^[34] However, more recent work has indicated that a further epidemic of asbestos-related disease concentrated around construction workers and present day operations, involving the removal of asbestos from buildings, will continue this increased incidence over the next 20 to 40 years.^[35, 36]

Recently the concept of a linear dose-response between asbestos exposure and lung cancer has been challenged, with support growing for the idea that a threshold

exists for asbestos related lung cancer.^[24, 37, 38] This concept was considered in detail in section 2.5.6 of this thesis. It was noted that the dose-response may only have been observed in a mid-range of cumulative exposures and from this extrapolation has been made down to the low ambient environmental levels observed today. This has resulted in the 'one fibre can kill' theory and much public and media concern.^[39] Information is clearly needed at both the low and high ends of the exposure scale to finally confirm the form of the lung cancer dose-response relationship. When considering lung cancer thresholds, the related question of whether lung cancer is simply a complication of asbestosis, or not, is frequently considered.^[5,40] High asbestos dust levels are required for the development of asbestosis, so if asbestosis is a pre-requisite for an increased lung cancer risk, this would imply high past dust exposures.

In this study there is no overall significantly increased (or decreased) lung cancer risk, only a very few recorded asbestosis deaths, and an excess risk for both forms of mesothelioma (pleura and peritoneal). However, a radiographical prevalence of pulmonary fibrosis of 0.9% (i.e. 220 cases over the 3 dockyards) was observed. This would only support the hypothesis of lung cancer being a complication of asbestosis (and potentially also the asbestos lung cancer threshold hypothesis) if it could be assumed that past dockyard asbestos exposures were quite low; low enough generally only to produce mesothelioma. A problem occurs with this assumption, i.e. the fact that recorded dockyard exposures reached approximately 20,000 times the current UK limit for amosite and crocidolite, and also the observation that past dockyard working conditions were very dusty with men described as emerging from the compartments covered from head to foot in dust.^[41,42] The intermittent nature of these exposures may help to explain these results, with sharp peaks of exposure followed by periods of possibly only limited background exposure, resulting in lower average exposures. Consequently the lung cancer - asbestosis question, and the related threshold question, remain unresolved; due simply to the lack of consistent and well recorded past asbestos fibre data. However, clearly a threshold below which lung cancer is effectively non-carcinogenic would explain the observation seen here of an excess of mesothelioma, caused by potentially intermittent exposure, without an accompanying lung cancer excess. In consequence for dockyard workers, the idea of a lung cancer threshold is consistent but not proven conclusively.

It should also be noted that in mortality studies the frequency of asbestosis is likely to be underestimated, due to the difficulties involved in its diagnosis. Diagnosis is made on a history of asbestos exposure together with the clinical, physiological and radiographic features of this condition; each of which may be uncertain. More simply put, the absence of asbestos bodies in the sputum or on bronchopulmonary lavage are against a diagnosis of asbestosis. Accordingly, diagnosis can be made with a high degree of accuracy in advanced cases of the disease, but is uncertain and difficult in the early stages. If the frequency of asbestosis is underestimated this would obviously produce errors in any risk estimation, in particular at lower levels of exposure. In this work asbestosis has been seen to be in significant excess, however based on only 10 reported deaths over the three dockyards. It is possible that some misclassification has taken place with pulmonary fibrosis, resulting in lowered asbestosis SMRs. This would further obscure any relationship between lung cancer and asbestosis.

It should be noted that the establishment of dose-response relationships for asbestos exposure is beset with many problems. Among these should be included the long latent interval between initial exposure and evidence of an adverse effect, the features of which may be difficult to define: the unreliability of diagnosis leading to inexact death certification; the confounding effects of tobacco smoking; exposure to more than one type of asbestos each of which may have a different potential for producing an adverse effect; the inadequacy or even absence of data on past exposure; and until recently the crude methods in use for dust sampling and fibre identification and counting. Precision has, however, increased in epidemiological studies with the development and use of standardised questionnaires on respiratory symptoms and the use of international classifications for chest radiographs. Exposure assessment, that is, dust sampling methods have been greatly improved; the early practice of recording total particle counts has given way to fibre counting and this has become more precise with improvements in microscopy: the use of the eye piece graticule; phase contrast illumination; membrane filters; and the introduction of transmission and scanning electron microscopy for fibre identification. The use of these new techniques for future dockyard surveillance programmes of all forms of mineral fibre must form one of the recommendations of this dissertation.

To conclude, this study has shown that lung cancer is generally neither significantly in excess, or in deficit, in this dockyard cohort. This implies that the overall lung cancer risk is no different for dockyard workers than for the general population. A subgroup of the cohort, some 429 workers (i.e. 1.5% of the cohort), did however assess their own period of continuous asbestos exposure. From this group elevated lung cancer risks were seen with more than 10 years continuous exposure; however, these were based upon only 14 deaths in total. A relationship was observed between lung cancer risk and smoking, with significant trends showing particularly for the occupational group consisting of 'all other dockyard workers'. Interestingly, this would have been the group with the least asbestos exposure according to the definition of Sheers and Templeton.^[3] For mesothelioma, the opposite appears to be true, that is, no apparent relationship seen with smoking, but a significant relationship observed with the surrogate asbestos exposure variable (i.e. with asbestos exposure rating). It is concluded, therefore, that there is no overall excess risk of lung cancer among Naval Dockyard workers, however, there is a very high excess mesothelioma risk.

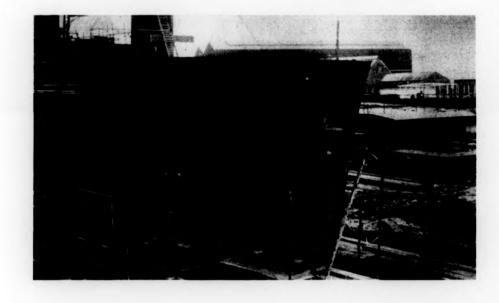


FIGURE 6.1: An active dockyard (circa 1989).

6.2.2 Recommendations.

The findings of this work, notably no clear excess or deficiency of lung cancer coupled with a very clear excess of mesothelioma needs to be confirmed or refuted. To this end further work is needed. The mortality experience of the dockyard workers continues to be recorded, and further follow-ups will be reported. However, these would still have the same limitations as this work: no definite asbestos exposure data (i.e. fibre counts in air); and the use of a non-standard radiographical classification. Ideally past asbestos exposures should be obtained and the x-rays re-read to the full ILO U/C classification. Clearly this would be almost impossible. The exposures were rarely recorded before the 1970s (and would have been static samples measuring particles, not personal samples measuring fibres)^[23], and the radiographs are no longer available. A solution would be to investigate the current dockyard workforce. However, the work processes have changed dramatically over the last few decades with more mechanisation and the reduction in the number of workers (and the closure of the dockyards^{*}), also asbestos has been removed from the yards and its use restricted.

A recommendation of this work, therefore, is for the future follow-up mortality studies to be supplemented, as far as possible, with all available work and exposure information. For this, current asbestos exposure information (mid 1970s - to date) should be collected, along with qualitative information (i.e. information derived from interviews with former dockyard workers, current workers employed some 20 years ago, etc.), for as many occupational codes (the codes listed in table 3.6) as is possible. This extra information is essential and should be used to supplement the asbestos exposure codes used in this thesis. From all of this a detailed job-exposure matrix should be created to replace the asbestos exposure rating used here.

With the closure of the naval dockyards, the scenes depicted in figures 6.1 and 6.2 of dockyard activity become simply a part of industrial history.

Enough deaths are now beginning to accrue in the cohort for autopsy studies to be performed. A further recommendation would therefore be for these studies to be undertaken with the view to assessing asbestos lung burden, and characterising the fibre types and dimensions. As for example, in the work of Sebastien et al undertaken for two North American asbestos cohorts, where autopsy data was used to question the amphibole hypothesis considered in section 2.5 of this dissertation.¹⁴³¹ Similar work has in fact previously been undertaken at Devonport Dockyard, a necropsy studies to be undertaken covering workers from all the Naval Dockyards. These studies would again be used to supplement further cohort analyses, with fibre information. It should be emphasised that these autopsy studies would only provide estimates of possible dose and not exposure.

It has been argued by McDonald et al that the risk of lung cancer in relation to asbestos exposure cannot be examined adequately by the subject-years method.^[45] The authors stressed that it is becoming increasingly apparent that the linear relationships that have been found between SMRs and cumulative exposure are an oversimplification. They cite the work of Vacek and McDonald, in which a form of conditional logistic regression was used to create an exposure intensity model for assessing lung cancer risk among vermiculite miners⁽⁴⁶⁾. This model assumed that exposure variables (such as exposure intensity, average duration of exposure, and average time since last exposure) had multiplicative effects on lung cancer risk and that the relative risk increased exponentially with exposure duration at a specified intensity.^[47] The authors concluded that in order to access exposure response relationships from epidemiological data accurately, exposure intensity as well as duration must be taken into account. Without definite asbestos exposure counts this is not directly possible. However, the model created by Vacek and McDonald could still be applied, in a limited form, to the dockyard cohort. This would be a further recommendation.

One of the recommendations from this work would have been the controlled removal of asbestos from the dockyard environment. However, this process has been underway since the early 1970s, with asbestos being rapidly replaced by man-made mineral fibres (MMMFs). Mineral fibres that in their own right have been shown to be carcinogenic in laboratory animals.^[48] Essentially it could be argued that the biological effects of MMMFs are the same as those produced by asbestos fibres, varying only in potency rather than in nature. In epidemiological studies conducted to date, there has been an excess of lung cancer observed in rockwool and slagwool production workers, but no significant excesses observed in glasswool or continuous filament production.^[49,50,51] The excesses seen in the rockwool and slagwool industries were for workers heavily exposed in the earlier years of production when exposure levels were less well controlled. There have been no reports of mesothelioma in occupational groups without co-exposures to asbestos. William Bunn, a vice president of the famous American asbestos company, the Manville Corporation (formerly the Johns-Manville Corporation), has questioned the potential toxic consequences involved in the manufacture and use of man-made mineral fibres and has cautioned that they "invoke the sense that we have been here before"!^[52] If this is actually the case, it leads to a broad recommendation, that of, the highly controlled dockyard use of all mineral fibres, and strict adherence to codes of work practice already in place for asbestos.

Finally, the legacy of asbestos exposure continues even after the closure of the dockyards. Chatham and Portsmouth both closed in the early 1980s. The two remaining dockyards, Devonport and Rosyth, ceased to be operated by the Ministry of Defence in April 1987 when commercial management was introduced; at present Rosyth is threatened with closure. However, this work has shown that mesothelioma risk is currently in excess for the workers of these closed and closing dockyards. The closure of these Dockyards does not close the questions.

BIBLIOGRAPHY

Chapter 1.

- 1. Harries PG (1968) "Asbestos Hazards in Naval Dockyards" Ann Occup Hyg 11:135-145.
- Harries PG (1971) "Asbestos Dust Concentrations in Ship Repairing: A Practical Approach to Improving Asbestos Hygiene in Naval Dockyards" Ann Occup Hyg 14:241-254.
- 3. Drinker P (1942) "Report to the Maritime Commission" U.S. National Archives, Record Group 178, Washington DC.
- 4. Roche JM (1942) "Report to the Maritime Commission" U.S. National Archives, Record Group 178, Washington DC.
- 5. Drinker P (1943) "The Health and Safety Program of the United States Navy" J A M A 121:822-823.
- Corn JK, Starr J (1987) "Historical Perspective on Asbestos: Policies and Protective Measures in World War II Shipbuilding" Amer J industr Med 11:359-373.
- 7. Sheers G, Templeton AR (1968) "Effects of Asbestos in Dockyard Workers" Brit Med J 3:574-579.
- 8. Sheers G, Coles RM (1980) "Mesothelioma Risks in a Naval Dockyard" Arch Environ Health 35:276-282.
- Rossiter CE, Coles RM (1980) "HM Dockyard Devonport: 1947 Mortality Study" In: Wagner JC, Davis W (eds.) "Biological Effects of Mineral Fibres" IARC Scientific Publication No. 30, Lyon. pp713-721.
- 10. Elmes PC, Simpson MJC (1971) "Insulation Workers in Belfast. 3. Mortality 1940-66" Brit J industr Med 28:226-236.
- Selikoff JJ, Hammond EC, Seidman H (1973) "Cancer Risk of Insulation Workers in the United States" In: Bogovski P, Gilson JC, Timbrell V, Wagner JC (eds.) "Biological Effects of Asbestos" IARC Scientific Publication No. 8, Lyon. pp209-216.
- 12. Harries PG (1971) "The Effects and Control of Diseases Associated with Exposure to Asbestos in Devonport Dockyard" Institute of Naval Medicine, CRWP Report No. 1/71, Gosport.
- Blot WJ, Fraumeni JF (1981) "Cancer Among Shipyard Workers" In: Peto R, Schneiderman H (eds.) "Quantification of Occupational Cancer, Banbury Report No. 9" Cold Spring Harbor Laboratory. pp37-46.

Chapter 2.

- 1. Gilson JC (1966) "Health Hazards of Asbestos Recent Studies on its Biological Effects" Trans Soc Occup Med 16:62-68.
- Wagner JC, Skidmore JW (1965) "Asbestos Dust Deposition and Retention in Rats" Ann N Y Acad Sci 132:77-80.
- Ontario Royal Commission (1984) "Report of the Royal Commission on Matters of Health and Safety Arising from the Use of Asbestos in Ontario" Ontario Ministry of the Attorney General, Toronto.
- Churg A, Wright J, Wiggs B, Depaoli L (1990) "Mineralogic Parameters Related to Amosite Asbestos-Induced Fibrosis in Humans" Amer Rev Resp Dis 142:1331-1336.
- 5. Wagner JC (1965) "The Sequelae of Exposure to Asbestos Dust" Ann N Y Acad Sci 132:691-695.
- 6. Annual Report of the Chief Inspector of Factories and Workshops for 1898 (1899) HMSO, London.
- Departmental Committee on Compensation for Industrial Diseases (1907) "Minutes of Evidence (given in 1906), Appendices and Index" Wyman & Sons, London.
- Cooke WE (1924) "Fibrosis of the Lungs Due to the Inhalation of Asbestos Dust" Brit Med J 2:147.
- 9. Cooke WE (1927) "Pulmonary Asbestos" Brit Med J 2:1024-1025.
- Seiler HE (1928) "A Case of Pneumoconiosis: Result of the Inhalation of Asbestos Dust" Brit Med J 3:982-983.
- 11. Merewether ERA, Price CW (1930) "Report on Effects of Asbestos Dust on the Lungs and Dust Suppression in the Asbestos Industry" HMSO, London.
- 12. Asbestos Industry Regulations (1931) "Statutory Rules and Orders, 1931, No. 1140" HMSO, London.
- 13. Merewether ERA (1930) "The Occurrence of Pulmonary Fibrosis and Other Pulmonary Affections in Asbestos Workers" J industr Hyg 12:198-222,239-257.
- 14. Gloyne SR (1933) "The Morbid Anatomy and Histology of Asbestosis" Tubercle 14:445-451,493-497,550-558.

- 15. Merewether ERA (1933-1934) "Memorandum on Asbestosis" Tubercle 15:69-81,109-118,152-159.
- Wood WB, Gloyne SR (1934) "Pulmonary Asbestosis: A Review of 100 Cases" Lancet 2:1383-1385.
- 17. Lanza AJ, McConnell WJ, Fehnel JW (1935) "Effects of the Inhalation of Asbestos Dust on the Lungs of Asbestos Workers" Publ Health Rep 50:1-12.
- 18. Lynch KM, Smith WA (1935) "Pulmonary Asbestosis III: Carcinoma of Lung in Asbesto-Silicosis" Amer J Cancer 24:56-64.
- Gloyne SR, Merewether ERA (1938) "Asbestos" In: "Supplement to Occupation and Health. Encyclopedia of Hygiene, Pathology and Social Welfare" ILO, Geneva.
- Dreessen WC, Dallavalle JM, Edwards TI, Miller JW, Sayers RR (1938) "A Study of Asbestosis in the Asbestos Textile Industry" Public Health Bull No. 241, U.S. Public Health Service, Washington, DC.
- 21. Sayers RR, Dreessen WC (1939) "Asbestosis" Amer J Publ Health 29: 205-214.
- 22. Fourth Schedule of Extension of Compensation for Industrial Accidents and Diseases (1943) Reichsgesetzblatt, Part 1, No. 14.
- 23. Wyers H (1946) "That Legislative Measures have proved generally effective in the Control of Asbestosis" Doctor of Medicine thesis, Glasgow University.
- 24. Wegelius C (1947) "Changes in the Lungs in 126 Cases of Asbestosis Observed in Finland" Acta Radiolog 28:139-152.
- 25. Smith LW (1949) "Pneumoconiosis and Lung Cancer" Compensation Med 2:3-10.
- 26. Annual Report of the Chief Inspector of Factories for 1947 (1949) HMSO, London.
- 27. Annual Report of the Chief Inspector of Factories for 1955 (1956) HMSO, London.
- Doll R (1955) "Mortality from Lung Cancer in Asbestos Workers" Brit J industr Med 12:81-86.
- Leathart GL (1960) "Clinical, Bronchographic, Radiological and Physiological Observations in 10 Cases of Asbestosis" Brit J industr Med 17:213-225.

- Wagner JC, Sleggs CA, Marchand P (1960) "Diffuse Pleural Mesothelioma and Asbestos Exposure in the North Western Cape Province" Brit J industr Med 17:260-271.
- 31. Hurwitz M (1961) "Roentgenolic Aspects of Asbestosis" Amer J Roentg 85:256-259.
- 32. Leathart GL, Sanderson JT (1963) "Some Observations on Asbestosis" Ann Occup Hyg 6:65-74.
- 33. Leathart GL (1965) "The Effect of Asbestosis on Pulmonary Function" Newcastle Med J 29:30.
- 34. Leathart GL (1968) "Pulmonary Function Tests in Asbestos Workers" Trans Soc Occup Med 18:49-55.
- 35. Selikoff IJ, Hammond EC, Churg J (1964) "Asbestosis and Neoplasia" J A M A 188:22-26.
- Selikoff IJ, Churg J, Hammond EC (1965) "The Occurrence of Asbestosis among Insulation Workers in the United States" Ann N Y Acad Sci 132:139-155.
- 37. Selikoff IJ, Hammond EC, Churg J (1965) "Report and Recommendations of the Working Group on Asbestos and Cancer" Ann N Y Acad Sci 132:706-721.
- 38. Enterline PE, Kendrick MA (1967) "Asbestos Dust Exposures at Various Levels and Mortality" Arch Environ Health 15:181-186.
- 39. Memorandum of the Senior Medical Inspector's Advisory Panel (1967) "Problems arising from the use of Asbestos" HMSO, London.
- 40. Knox JF, Holmes S, Doll R, Hill ID (1968) "Mortality from Lung Cancer and Other Causes among Workers in an Asbestos Textile Factory" Brit J industr Med 25:293-303.
- 41. Newhouse ML (1969) "A Study of the Mortality of Workers in an Asbestos Factory" Brit J industr Med 26:294-301.
- 42. Selikoff IJ, Hammond EC, Churg J (1968) "Asbestos Exposure, Smoking, and Neoplasia" J A M A 204:104-110.
- 43. Weiss W (1971) "Cigarette Smoking, Asbestos and Pulmonary Fibrosis" Amer Rev Resp Dis 104:223-227.
- British Occupational Hygiene Society Sub-committee on Asbestos (1968) "Hygiene Standards for Chrysotile Asbestos Dust" Ann Occup Hyg 11:47-69.

- 45. McDonald JC, McDonald AD, Gibbs GW, Siemiatycki J, Rossiter CE (1971) "Mortality in the Chrysotile Asbestos Mines and Mills of Quebec" Arch Environ Health 22:677-686.
- McDonald JC, Becklake MR, Fournier-Massey G, Rossiter CE (1972) "Respiratory Symptoms in Chrysotile Asbestos Mine and Mill Workers of Quebec" Arch Environ Health 24:358-363.
- Rossiter CE, Bristol LJ, Cartier PH, Gilson JC, Grainger TR, Sluis-Cremer GK, McDonald JC (1972) "Radiographic Changes in Chrysotile Asbestos Mine and Mill Workers of Quebec" Arch Environ Health 24:388-400.
- Becklake MR, Fournier-Massey G, Rossiter CE, McDonald JC (1972) "Lung Function in Chrysotile Asbestos Mine and Mill Workers of Quebec" Arch Environ Health 24:401-409.
- 49. Selikoff IJ, Hammond EC, Churg J (1972) "Carcinogenicity of Amosite Asbestos" Arch Environ Health 25:183-186.
- Weill H, Waggenspack C, Bailey W, Ziskind M, Rossiter CE (1973) "Radiographic and Physiologic Patterns Among Workers Engaged in Manufacture of Asbestos Cement Products" J Occup Med 15:248-252.
- Jones JSP, Sheers G (1973) "Pleural Plaques" In: Bogovski P, Gilson JC, Timbrell V, Wagner JC (eds.) "Biological Effects of Asbestos" IARC Scientific Publications No. 8, Lyon. pp243-248.
- Webster I (1973) "Malignancy in Relation to Crocidolite and Amosite" In: Bogovski P, Gilson JC, Timbrell V, Wagner JC (eds.) "Biological Effects of Asbestos" IARC Scientific Publications No. 8, Lyon. pp195-198.
- 53. Newhouse ML, Berry G (1976) "Predictions of Mortality from Mesothelial Tumours in Asbestos Factory Workers" Brit J industr Med 33:147-151.
- 54. Peto J, Henderson BE, Pike MC (1981) "Trends in Mesothelioma Incidence in the United States and the Forecast Epidemic Due to Asbestos Exposure During World War II" In: Peto R, Schneiderman H (eds.) "Quantification of Occupational Cancer, Banbury Report No. 9" Cold Spring Harbor Laboratory. pp37-46.
- Peto J, Seidman H, Selikoff IJ (1982) "Mesothelioma Mortality in Asbestos Workers: Implications for Models of Carcinogenesis and Risk Assessment" Brit J Cancer 45:124-135.
- 56. Peto J (1983) "Dose and Time Relationships for Asbestos-related Cancers, and Risk Assessment in the General Population" Vesein Deutsche Ingenieure Berichte 475:309-311.

- 57. Irwig LM, du Toit RSJ, Sluis-Cremer GK, Solomon A, Thomas GR, Hamel PPH, Webster I, Hastie T (1979) "Risk of Asbestosis in Crocidolite and Amosite Mines in South Africa" Ann N Y Acad Sci 330:35-52.
- 58. Hammond EC, Selikoff JJ, Seidman H (1979) "Asbestos Exposure, Cigarette Smoking and Death Rates" Ann N Y Acad Sci 330:473-490.
- 59. Berry G, Gilson JC, Holmes S, Lewinsohn HC, Roach SA (1979) "Asbestosis: A Study of Dose-Response Relationships in an Asbestos Textile Factory" Brit J industr Med 36:98-112.
- 60. Letter to the Fleet Surgeon from Gilbert Kirker, Surgeon, 17 June 1891. Reprinted in: J Soc Occup Med **30**:139 (1980).
- 61. Lane F (1951) "Ships for Victory" The Johns Hopkins Press, Baltimore.
- 62. Bureau of Labor Statistics (1945) "Wartime Employment, Production and Conditions of Work in Shipyards" Bulletin No. 824, US Department of Labor, Washington, DC.
- 63. Kuhn A (1940) "Erkrankungen der Werftarbeiter der Kriegsmarinewerft Wilhelmshaven unter besonderer Berucksichtigung der Betriebsunfalle und Berufskrankheiten" Arch Gewerbepath Gewerbehyg 10:133-150. Abstract printed in Bull Hyg 17:818-821 (1942).
- 64. Dreessen WC, Fleischer WE (1944) "Report on Investigation of Asbestosis from Amosite Pipe Covering at Bath Iron Works, Bath, Maine" U.S. National Archives, Record Group 52, Washington, DC.
- 65. Letter from AW Garrett, HM Chief Inspector of Factories (August 1945) "To: The Shipbuilding and Shiprepairing Industry. Subject: Asbestos Insulation aboard Ships" Letter reprinted in: Institute of Naval Medicine, CRWP Report 1/71, Gosport. pp268-269.
- 66. Fleischer WE, Viles FJ, Gade RL, Drinker P (1946) "A Health Survey of Pipe Covering Operations in Constructing Naval Vessels" J industr Hyg Toxical 28:9-16.
- 67. Drinker P (1947) "Health and Safety in Contract Shipyards during the War" Occup Med 3:335-343.
- 68. Stoll R, Bass R, Angrist AA (1951) "Asbestos Associated with Bronchogenic Carcinoma" Arch Internal Med 88:831-834.
- 69. Minimum Requirements for Safety and Industrial Health in Contract Shipyards (1943) Industr Med Surg 12:259-263.
- 70. Walters JD (1959) "Asbestos: A Potential Hazard to Health in the Shipbuilding and Shiprepairing Industries" Diploma in Public Health thesis, London School of Hygiene and Tropical Medicine.

- 71. Morgan WKC (1964) "Rheumatoid Pneumoconiosis in Association with Asbestosis" Thorax 19:433-435.
- 72. Marr WT (1964) "Asbestos Exposure During Naval Vessel Overhaul" Amer industr Hyg Assoc J 25:264-268.
- 73. Murphy RLH, Ferris BG (1966) "Respiratory Disease in Workers Exposed to Low Concentrations of Asbestos Fibres" Proceedings of the 15th International Congress on Occupational Health, Vienna. pp229-232.
- 74. Ferris BG (1971) "Prevalence of Chronic Respiratory Disease Asbestosis in Ship Repair Workers" Arch Environ Health 23:220-225.
- 75. Murphy RLH, Ferris BG, Burgess WA, Worcester J, Gaensler EA (1971) "Effects of Low Concentrations of Asbestos. Clinical, Environmental, Radiologic and Epidemiologic Observations in Shipyard Pipe Coverers and Controls" New Eng J Med 285:1271-1278.
- 76. Murphy RLH, Gaensler EA, Redding RA, Belleau R, Keelan PJ, Smith AA, Goff AM, Ferris BG (1972) "Low Exposure to Asbestos" Arch Environ Health 25:253-264.
- 77. Anton HC (1967) "Multiple Pleural Plaques" Brit J Radiolog 40:685-689.
- 78. Ashcroft T (1968) "Asbestos Bodies in Routine Necropsies on Tyneside: A Pathological and Social Study" Brit Med J 1:614-618.
- 79. Sheers G, Templeton AR (1968) "Effects of Asbestos in Dockyard Workers" Brit Med J 3:574-579.
- 80. James SAH (1971) "Asbestosis" Radiography 37:81-85.
- 81. Horn A (1969) "Protective Measures for Working with Asbestos-Containing Materials in Shipbuilding" Arbeitsschutz 4:81-84.
- 82. Stumphius J (1970) "Effects on Health of Exposure to Asbestos" De veiligheid 46:49-53.
- Stumphius J (1971) "Epidemiology of Mesothelioma on Walcheren Island" Brit J industr Med 28:59-66.
- Fletcher DE (1971) "Asbestos-Related Chest Disease in Joiners" Pro Royal Soc Med 64:837-838.
- 85. Ahlman K, Siltanen E (1971) "Exposure of Insulation Workers to Asbestos Dust" Work Environment Health 8:1-5
- 86. Whitwell F, Rawcliffe RM (1971) "Diffuse Malignant Pleural Mesothelioma and Asbestos Exposure" Thorax 26:6-22.

- 87. Elmes PC, Simpson MJC (1971) "Insulation Workers in Belfast, 3. Mortality 1940-66" Brit J industr Med 28:226-236.
- Wallace WFM, Langlands JHM (1971) "Insulation Workers in Belfast. 1. Comparison of a Random Sample with a Control Population" Brit J industr Med 28:211-216.
- Langlands JHM, Wallace WFM, Simpson MJC (1971) "Insulation Workers in Belfast. 2. Morbidity in men still at work" Brit J industr Med 28:217-225.
- Cross AA (1972) "Practical Methods for Protection of Men Working with Asbestos Materials in Shipyards" In: "Safety and Health in Shipbuilding and Ship Repairing" ILO, Geneva.
- 91. Harries PG (1968) "Asbestos Hazards in Naval Dockyards" Ann Occup Hyg 11:135-145.
- 92. Nicholson WJ, Holaday DA, Heimann H (1972) "Direct and Indirect Occupational Exposure to Insulation Dusts in United States Shipyards" In: "Safety and Health in Shipbuilding and Ship Repairing" ILO, Geneva.
- Stumphius J (1976) "Cancer Resulting from Shipyard Work on Walcheren Island" World Conference on Health and Safety in the Metal Industry, Oslo, Norway, August 1976.
- Blot WJ, Harrington JM, Toledo A, Hoover R, Heath CW, Fraumeni JF (1978) "Lung Cancer after Employment in Shipyards during World War II" New Eng J Med 299:620-624.
- 95. Renke W, Graczyk M (1978) "Spirometric and Radiologic Estimation of Changes in the Respiratory System of Shipyard Workers Exposed to the Effect of Asbestos Dust during 4 Years of Observation" Bulletin of the Institute of Maritime and Tropical Medicine (Poland) 29:43-48.
- Murphy RLH, Gaensler EA, Ferris BG, Fitzgerald M, Solliday N, Morrisey W (1978) "Asbestosis: Observations from a Longitudinal Survey of Shipyard Pipe Coverers" Amer J Med 65:488-498.
- Blot WJ, Stone BJ, Fraumeni JF, Morris LE (1979) "Cancer Mortality in U.S. Counties with Shipyard Industries during World War II" Environ Res 18:281-290.
- 98. Blot WJ, Fraumeni JF (1979) "Lung Cancer Mortality in the United States: Shipyard Correlations" Ann N Y Acad Sci 330:313-315.
- 99. Blot WJ, Morris LE, Stroube R, Tagnon E, Fraumemi JF (1980) "Lung and Laryngeal Cancers in Relation to Shipyard Employment in Coastal Virginia" J Nat Cancer Inst 65:571-575.

- Tagnon E, Blot WJ, Stroube RB, Day NE, Morris LE, Peace B, Fraumeni JF (1980) "Mesothelioma Associated with the Shipbuilding Industry in Coastal Virginia" Cancer Res 40:3875-3879.
- Blot WJ, Fraumeni JF (1981) "Cancer among Shipyard Workers" In: Peto R, Schneiderman H (eds.) "Quantification of Occupational Cancer, Banbury Report No. 9" Cold Spring Harbor Laboratory. pp37-46.
- 102. Edge JR (1979) "Incidence of Bronchial Carcinoma in Shipyard Workers with Pleural Plaques" Ann N Y Acad Sci 330:289-294.
- Selikoff IJ, Nicholson WJ, Lilis R (1980) "Radiological Evidence of Asbestos Disease among Ship Repair Workers" Amer J industr Med 1:9-22.
- 104. Boylen CT, Kilburn KH, Warshaw R, Johnson S (1983) "Asbestosis in Women who Worked in Shipyards" Paper given at the annual meeting of the American Thoracic Society. Abstract published in: Amer Rev Resp Dis (supplement) 127:184.
- 105. Kilburn KH, Warshaw R, Thornton JC (1985) "Signs of Asbestosis and Impaired Pulmonary Function in Women who Worked in Shipyards" Amer J industr Med 8:545-552.
- 106. Kilburn KH, Lilis R, Anderson HA, Boylen CT, Einstein HE, Johnson S, Warshaw R (1985) "Asbestos Disease in Family Contacts of Shipyard Workers" Amer J Pub Health 75:615-617.
- 107. Kilburn KH, Warshaw R, Thornton JC (1986) "Asbestos Diseases and Pulmonary Symptoms and Signs in Shipyard Workers and their Families in Los Angeles" Arch Intern Med 146:2213-2220.
- 108. Harries PG (1971) "A Comparison of Mass and Fibre Concentrations of Asbestos Dust in Shipyard Insulation Processes" Ann Occup Hyg 14:235-240.
- 109. Harries PG (1971) "Asbestos Dust Concentrations in Ship Repairing: A Practical Approach to Improving Asbestos Hygiene in Naval Dockyards" Ann Occup Hyg 14:241-254.
- 110. Harries PG (1971) "The Effects and Control of Diseases Associated with Exposure to Asbestos in Devonport Dockyard" Institute of Naval Medicine, CRWP Report 1/71, Gosport.
- 111. Harries PG (1973) "Experience with Asbestos Disease and Control in Great Britain's Naval Dockyards" Medical Research Unit, HM Dockyard (Devonport), Paper No. 19. Paper presented at the International Shipyard Health Conference, Los Angeles, December, 1973. Published in: Environ Res 11:261-267 (1976).

- 112. Lumley KPS, Harries PG, O'Kelly FJ (1971) "Buildings Insulated with Sprayed Asbestos: A Potential Hazard" Ann Occup Hyg 4:255-257.
- 113. Ministry of Defence (NAVY) (1970) "Working with Asbestos" Ministry of Defence Labour Division (Naval).
- Harries PG, MacKenzie FAF, Sheers G, Kemp JH, Oliver TP, Wright DS (1972) "Radiological Survey of Men Exposed to Asbestos in Naval Dockyards" Brit J industr Med 29:274-279.
- 115. Harries PG, Rossiter CE, Coles RM (1976) "Royal Naval Dockyards Asbestosis Research Project, Report No. 1, December 1975" Institute of Naval Medicine, CRWP Report 1/76, Gosport.
- 116. Lumley KPS (1976) "A Proportional Study of Cancer Registrations of Dockyard Workers" Brit J industr Med 33:108-114.
- 117. Harries PG, Lumley KPS (1977) "Royal Naval Dockyards Asbestosis Research Project - Survey of Registered Asbestos Workers" J Royal Naval Med Serv 63:133-148.
- Rossiter CE, Harries PG (1979) "UK Naval Dockyards Asbestosis Study: Survey of the Sample Population aged 50-59 years" Brit J industr Med 36:281-291.
- 119. Sheers G (1979) "Asbestos-Associated Disease in Employees of Devonport Dockyard" Ann N Y Acad Sci 330:281-287.
- 120. Sheers G, Cole RM (1980) "Mesothelioma Risks in a Naval Dockyard" Arch Environ Health 35:276-282.
- 121. Rossiter CE, Heath JR, Harries PG (1980) "Royal Naval Dockyards Asbestosis Research Project: Nine-year Follow-up Study of Men Exposed to Asbestos in Devonport Dockyard" J Royal Soc Med 73:337-344.
- 122. Rossiter CE, Coles RM (1980) "HM Dockyard Devonport: 1947 Mortality Study" In: Wagner JC, Davis W (eds.) "Biological Effects of Mineral Fibres" IARC Scientific Publication No. 30, Lyon. pp713-721.
- 123. McMillan GHG, Sheers G, Pethybridge RJ (1980) "Attack Rates of Pulmonary and Pleural Lesions Related to Exposure to Asbestos in Two Naval Dockyards" Institute of Naval Medicine, CRWP Report 23/80, Gosport.
- 124. McMillan GHG, Sheers G, Pethybridge RJ (1980) "Effect of Smoking on Attack Rates of Pulmonary and Pleural Lesions Related to Exposure to Asbestos Dust" Brit J industr Med 37:268-272.
- 125. McMillan GHG, Rossiter CE (1982) "Development of Radiological and

Clinical Evidence of Parenchymal Fibrosis in Men with Non-malignant Asbestos-Related Pleural Lesions" Brit J industr Med 39:54-59.

- 126. McMillan GHG, Heath J (1979) "The Health of Welders in Naval Dockyards: Acute Changes in Respiratory Function during Standardized Welding" Ann Occup Hyg 22:19-32.
- 127. McMillan GHG, Molyneux MK (1981) "The Health of Welders in Naval Dockyards: The Work Situation and Sickness Absence Patterns" J Soc Occup Med 31:43-60.
- 128. McMillan GHG (1981) "The Health of Welders in Naval Dockyards: Welding, Tobacco Smoking and Absence Attributed to Respiratory Diseases" J Soc Occup Med 31:112-118.
- 129. McMillan GHG (1983) "The Health of Welders in Naval Dockyards: Final Summary Report" J Royal Naval Med Serv 69:125-131.
- McMillan GHG, Pethybridge RJ (1983) "The Health of Welders in Naval Dockyards: Proportional Mortality Study of Welders and Two Control Groups" J Soc Occup Med 33:75-84.
- McMillan GHG (1983) "The Health of Welders in Naval Dockyards: The Risk of Asbestos-Related Diseases Occurring in Welders" J Soc Occup Med 33:727-730.
- 132. McMillan GHG, Pethybridge RJ (1984) "A Clinical, Radiological and Pulmonary Function Case-Control Study of 135 Dockyard Welders Aged 45 and Over" J Soc Occup Med 34:3-23.
- 133. Wagner JC, Moncrieff CB, Coles RM, Griffiths DM, Munday DE (1986) "Correlation Between Fibre Content of the Lungs and Disease in Naval Dockyard Workers" Brit J industr Med 43:391-395.
- 134. Browne K (1986) "Is Asbestos or Asbestosis the Cause of the Increased Risk of Lung Cancer in Asbestos Workers" Brit J industr Med 43:145-149.
- McDonald JC (1991) "Current Controversies in Occupational Lung Disease" British Occupational Hygiene Society, Annual Conference, Swansea, April 1991.
- Mossman BT (1993) "Mechanisms of Asbestos Carcinogenesis and Toxicity: The Amphibole Hypothesis Revisited" Brit J industr Med 50:673-676.
- 137. Huncharek M (1994) "Asbestos and Cancer: Epidemiological and Public Health Controversies" Cancer Invest 12:214-222.
- 138. Mossman BT, Bignon J, Corn M, Seaton A, Gee JBL (1990) "Asbestos:

Scientific Developments and Implications for Public Policy" Science 247:294-301.

- 139. Acheson ED, Gardner MJ (1979) "The III Effects of Asbestos on Health" In: Health and Safety Commission "Asbestos: Final Report of the Advisory Committee (volume 2)" HMSO, London. pp7-83.
- 140. Browne K (1991) "Asbestos Related Malignancy and the Cairns Hypothesis" Brit J industr Med 40:73-76.
- Peto J (1979) "Dose Response Relationships for Asbestos-Related Disease: Implications for Hygiene Standards: Part II, Mortality" Ann N Y Acad Sci 330:195-203.
- 142. National Academy of Sciences (1984) "Asbestiform Fibers: Nonoccupational Health Risks" National Academy Press, Washington, DC.
- 143. United States Consumer Product Safety Commission (1983) "Report to the U.S. Consumer Product Safety Commission by the Chronic Hazard Advisory Panel on Asbestos" Directorate for Health Sciences, Washington, DC.
- 144. Doll R, Peto J (1985) "Effects on Health of Exposure to Asbestos. A Report to the Health and Safety Commission" HMSO, London.
- 145. Nicholson WJ (1986) "Airborne Asbestos Health Assessment Update" Office of Health and Environmental Assessment, U.S. Environmental Protection Agency (Report No. EPA/600/8-84/003F), Research Triangle Park, NC.
- 146. McDonald AD, McDonald JC (1987) "Epidemiology of Malignant Mesothelioma" In: Antman K, Aisnar J (eds.) "Asbestos-Related Malignancy" Grune and Stratton, London. pp31-55.
- 147. McDonald JC, McDonald AD (1987) "Epidemiology of Asbestos-Related Lung Cancer" In: Antman K, Aisnar J (eds.) "Asbestos-Related Malignancy" Grune and Stratton, London. pp57-79.
- 148. Health Effects Institute-Asbestos Research (1991) "Report of Literature Review Panel" Asbestos Control Report, Cambridge, MA.
- 149. McDonald JC (1990) "Cancer Risks due to Asbestos and Man-Made Fibres" Recent Results in Cancer Research 120:122-131.
- 150. McDonald JC, Liddell FDK (1979) "Mortality in Canadian Miners and Millers Exposed to Chrysotile" Ann N Y Acad Sci 330:1-9.
- 151. Amandus HE, Wheeler R (1987) "The Morbidity and Mortality of Vermiculite Miners and Millers exposed to Tremolite-Actinolite. Part II Mortality" Amer J industr Med 11:15-26.

- 152. McDonald JC, McDonald AD, Armstrong B, Sebastien P (1986) "Cohort Study of Mortality of Vermiculite Miners Exposed to Tremolite" Brit J industr Med **43**:436-444.
- 153. Dement JM, Harris RL, Symons MJ, Shy CM (1982) "Estimates of Doseresponse for Respiratory Cancer among Chrysotile Asbestos Textile Workers" In: Inhaled Particles V: Proceedings of an International Symposium, September 1980, Cardiff, Wales. Ann occup Hyg 26:869-887.
- 154. McDonald AD, Fry JS, Woolley AJ, McDonald JC (1983) "Dust Exposure and Mortality in an American Chrysotile Textile Plant" Brit J industr Med 40:361-367.
- 155. McDonald AD, Fry JS, Woolley AJ, McDonald JC (1983) "Dust Exposure and Mortality in an American Factory using Chrysotile, Amosite and Crocidolite in mainly Textile Manufacture" Brit J industr Med **40**:368-374.
- 156. Peto J, Doll R, Hermon C, Binns W, Clayton R, Goffe T (1985) "Relationship of Mortality to Measures of Environmental Asbestos Pollution in an Asbestos Textile Factory" Ann occup Hyg **29**:305-355.
- 157. Henderson VL, Enterline PE (1979) "Asbestos Exposure: Factors Associated with Excess Cancer and Respiratory Disease Mortality" Ann N Y Acad Sci **330**:117-126.
- 158. Hughes JM, Weill H (1980) "Lung Cancer Risk Associated with Manufacture of Asbestos-Cement Products" In: Wagner JC, Davis W (eds.) "Biological Effects of Mineral Fibres" IARC Scientific Publication No. 30, Lyon. pp627-635.
- 159. Finkelstein MM (1984) "Mortality Among Employees of an Ontario Asbestos-Cement Factory" Amer Rev Resp Dis 129:754-761.
- 160. Albin M, Jakobsson K, Englander V, Ranstan J, Welinder H, Westrup C, Moller T (1984) "Mortality and Cancer Morbidity in a Cohort of Asbestos Cement Workers" In: VIth International Pneumoconiosis Conference (Volume 2), September 1983, Bochum, West Germany. pp825-829.
- 161. Berry G, Newhouse ML (1983) "Mortality of Workers Manufacturing Friction Materials using Asbestos" Brit J industr Med 40:1-7.
- McDonald AD, Fry JS, Woolley AJ, McDonald JC (1984) "Dust Exposure and Mortality in an American Chrysotile Asbestos Friction Products Plant" Brit J industr Med 41:151-157.
- Liddell FDK, McDonald JC, Thomas DC (1977) "Methods of Cohort Analysis: Appraisal by Application to Asbestos Mining" J Royal Stat Society (series A) 140:469-491.

- McDonald JC, McDonald AD, Armstrong B, Sebastien P (1986) "Cohort Study of Mortality of Vermiculite Miners Exposed to Tremolite" Brit J industr Med 43:436-444.
- 153. Dement JM, Harris RL, Symons MJ, Shy CM (1982) "Estimates of Doseresponse for Respiratory Cancer among Chrysotile Asbestos Textile Workers" In: Inhaled Particles V: Proceedings of an International Symposium, September 1980, Cardiff, Wales. Ann occup Hyg 26:869-887.
- 154. McDonald AD, Fry JS, Woolley AJ, McDonald JC (1983) "Dust Exposure and Mortality in an American Chrysotile Textile Plant" Brit J industr Med 40:361-367.
- 155. McDonald AD, Fry JS, Woolley AJ, McDonald JC (1983) "Dust Exposure and Mortality in an American Factory using Chrysotile, Amosite and Crocidolite in mainly Textile Manufacture" Brit J industr Med **40**:368-374.
- 156. Peto J, Doll R, Hermon C, Binns W, Clayton R, Goffe T (1985) "Relationship of Mortality to Measures of Environmental Asbestos Pollution in an Asbestos Textile Factory" Ann occup Hyg 29:305-355.
- 157. Henderson VL, Enterline PE (1979) "Asbestos Exposure: Factors Associated with Excess Cancer and Respiratory Disease Mortality" Ann N Y Acad Sci 330:117-126.
- 158. Hughes JM, Weill H (1980) "Lung Cancer Risk Associated with Manufacture of Asbestos-Cement Products" In: Wagner JC, Davis W (eds.) "Biological Effects of Mineral Fibres" IARC Scientific Publication No. 30, Lyon. pp627-635.
- 159. Finkelstein MM (1984) "Mortality Among Employees of an Ontario Asbestos-Cement Factory" Amer Rev Resp Dis 129:754-761.
- 160. Albin M, Jakobsson K, Englander V, Ranstan J, Welinder H, Westrup C, Moller T (1984) "Mortality and Cancer Morbidity in a Cohort of Asbestos Cement Workers" In: VIth International Pneumoconiosis Conference (Volume 2), September 1983, Bochum, West Germany. pp825-829.
- 161. Berry G, Newhouse ML (1983) "Mortality of Workers Manufacturing Friction Materials using Asbestos" Brit J industr Med 40:1-7.
- McDonald AD, Fry JS, Woolley AJ, McDonald JC (1984) "Dust Exposure and Mortality in an American Chrysotile Asbestos Friction Products Plant" Brit J industr Med 41:151-157.
- Liddell FDK, McDonald JC, Thomas DC (1977) "Methods of Cohort Analysis: Appraisal by Application to Asbestos Mining" J Royal Stat Society (series A) 140:469-491.

- 164. Gaensler EA (1992) "Asbestos Exposure in Buildings" Clin Chest Med 13:231-242.
- Newhouse ML, Sullivan KR (1989) "A Mortality Study of Workers Manufacturing Friction Materials: 1941-86" Brit J industr Med 46:176-179.
- Dement JM (1991) "Carcinogenicity of Chrysotile Asbestos: A Case Control Study of Textile Workers" Cell Biology and Toxicology 7:59-65.
- 167. Sebastien P, McDonald JC, McDonald AD, Case B, Harley B (1989) "Respiratory Cancer in Chrysotile Textile and Mining Industries: Exposure Inferences from Lung Analysis" Brit J industr Med 46:180-187.
- 168. McDonald AD, McDonald JC (1978) "Mesothelioma after Crocidolite Exposure during Gasmask Manufacture" Environ Research 17:340-346.
- 169. Jones JSP, Smith PG, Pooley FD, Berry G, Sawle GW, Aggarwal A, Wignall BK, Madeley RJ (1980) "The Consequences of Exposure to Asbestos Dust in Wartime Gasmask Factory" In: Wagner JC, Davis W (eds.) "Biological Effects of Mineral Fibres" IARC Scientific Publication No. 30, Lyon. pp637-653.
- 170. Acheson E, Gardner MJ, Pipard EC, Grime LP (1982) "Mortality of Two Groups of Women who Manufactured Gasmasks from Chrysotile and Crocidolite Asbestos: A 40 year follow-up" Brit J industr Med **39**:344-348.
- 171. Churg A (1988) "Chrysotile, Tremolite and Malignant Mesothelioma in Man" Chest 93:621-628.
- 172. Wagner JC, Pooley FD, Berry G, Seal RME, Munday DE, Morgan J, Clark NJ (1982) "A Pathological and Mineralogical Study of Asbestos-Related Deaths in the United Kingdom" Ann occup Hyg 26:417-422.
- 173. McDonald JC (1980) "Asbestos Related Disease: An Epidemiological Review" In: Wagner JC, Davis W (eds.) "Biological Effects of Mineral Fibres" IARC Scientific Publication No. 30, Lyon. pp587-601.
- 174. Berry G, Newhouse ML, Antonis P (1985) "Combined Effects of Asbestos and Smoking on Mortality from Lung Cancer and Mesothelioma in Factory Workers" Brit J industr Med **42**:12-18.
- 175. Frank AL (1979) "Public Health Significance of Smoking-Asbestos Interaction" Ann N Y Acad Sci 330:791-794.
- 176. Antman KH (1993) "Natural History and Epidemiology of Malignant Mesothelioma" Chest 103(supplement):373S-376S.
- 177. Baris I, Simonato L, Artvinli M, Pooley F, Saracci R, Skidmore J, Wagner C (1987) "Epidemiological and Environmental Evidence of the Health

Effects of Exposure to Erionite Fibers: A Four-Year Study in the Cappadocian Region of Turkey" Inter J Cancer 39:10-17.

- 178. Pelnar PV (1988) "Further Evidence of Nonasbestos-Related Mesothelioma. A Review of the Literature" Scand J Work Environ Health 14:141-144.
- 179. McDonald JC (1985) "Health Implications of Environmental Exposure to Asbestos" Environ Health Perspect 62:319-324.
- 180. Pooley FD, Clark NJ (1980) "A Comparison of Fibre Dimension in Chrysotile, Crocidolite, and Amosite Particles from Samples of Airborne Dust and from Post-Mortem Lung Tissue Specimens" In: Wagner JC, Davis W (eds.) "Biological Effects of Mineral Fibre" IARC Scientific Publication No. 30, Lyon. pp79-86.
- 181. Berman W, Chatfield EJ (1989) "Interim Superfund Method for the Determination of Asbestos in Ambient Air. Part II: Technical Background Document" United States Environmental Protection Agency, Office of Health and Environmental Assessment, Washington, DC.
- 182. HSE Occupational Medicine and Hygiene Laboratories (1984) "Asbestos Fibres in Air: Determination of Personal Exposure by the European Reference Version of the Membrane Filter Method" Methods for the Determination of Hazardous Substances, MDHS 39.
- 183. HSE Occupational Medicine and Hygiene Laboratories (1988) "Asbestos Fibres in Air: Light Microscope Methods for use with the Control of Asbestos at Work Regulations" Methods for the Determination of Hazardous Substances, MDHS 39/2.
- 184. HSE Occupational Medicine and Hygiene Laboratories (1990) "Asbestos Fibres in Air: Light Microscope Methods for use with the Control of Asbestos at Work Regulations" Methods for the Determination of Hazardous Substances, MDHS 39/3.
- Lippmann M (1988) "Review: Asbestos Exposure Indices" Environ Res 46:86-106.
- 186. Lippmann M (1992) "Asbestos and other Mineral Fibres" In: Lippmann M (ed.) "Environmental Toxicants. Human Exposures and their Health Effects" Van Nostrand Reinhold Co., New York. pp30-75.
- 187. McDonald JC, Armstrong B, Case B, Doell D, McCaughey WTE, McDonald AD, Sebastien P (1989) "Mesothelioma and Asbestos Fiber Type. Evidence from Lung Tissue Analyses" Cancer 63:1544-1547.
- 188. Timbrell V (1973) "Physical Factors as Etiological Mechanisms" In: Bogovski P, Gilson JG, Timbrell V, Wagner JC (eds.) "Biological Effects of Asbestos" IARC Scientific Publication No. 8, Lyon. pp295-303.

- Walton WH (1982) "The Nature, Hazards and Assessment of Occupational Exposure to Airborne Asbestos Dust: A Review" Ann occup Hyg 25:117-247.
- 190. Davis JMG, Addison J, Bolton RE, Donaldson K, Jones AD (1986) "Inhalation and Injection Studies in Rats using Dust Samples from Chrysotile Asbestos Prepared by a Wet Dispersion Process" Brit J Exp Pathol 67:113-129.
- 191. Burdett GJ, Jaffrey SAMT, Rood AP (1989) "Airborne Asbestos Fibre Levels in Buildings: A Summary of UK Measurements" In: Bignon J, Peto J, Saracci R (eds.) "Non-Occupational Exposure to Mineral Fibres" IARC Scientific Publication No. 90, Lyon. pp277-290.
- 192. Peto J (1994) "An Epidemic of Mesothelioma Deaths" Talk given at the London School of Hygiene and Tropical Medicine, 29th April 1994.
- 193. Levy BS, Seplow A (1992) "Asbestos-Related Hazards in Developing Countries" Environ Res 59:167-174.
- 194. Mukherjee AK, Rajmohan HR, Dave SK, Rajan BK, Raghavendra RS (1992) "An Environmental Survey in Chrysotile Asbestos Milling Processes in India" Amer J industr Med 22:543-551.
- 195. Peto J (1989) "Fibre Carcinogenesis and Environmental Hazards" In: Bignon J, Peto J, Saracci R (eds.) "Non-Occupational Exposure to Mineral Fibres" IARC Scientific Publication No. 90, Lyon. pp457-470.
- Britton M (1990) "Geographic Variation in Mortality, 1979-83" In: Britton M (ed.) "Mortality and Geography: A Review in the mid-1980s. England and Wales" HMSO, London. pp18-26.
- Wagner JC, Berry G, Timbrell V (1973) "Mesothelioma in Rats after Inoculation with Asbestos and Other Materials" Brit J Cancer 28:173-185.
- 198. Wagner JC, Berry G, Skidmore JW, Timbrell V (1974) "The Effects of Inhalation of Asbestos in Rats" Brit J Cancer 29:252-261.
- Davis JMG, Beckett ST, Bolton RE, Collings PF, Middleton AP (1978) "Mass and Number of Fibres in the Pathogenesis of Asbestos-Related Lung Disease in Rats" Brit J Cancer 37:673-688.
- 200. Price-Jones MJ, Gubbings G, Chamberlain (1980) "The Genetic Effects of Crocidolite Asbestos: Comparison of Chromosome Abnormalities and Sister Chromatid Exchanges" Mutat Res 79:331-342.
- Light WG, Wei ET (1980) "Surface Charge and a Molecular Basis for Asbestos Toxicity" In: Brown RC, Gormley IP, Chamberlain M, Davis R (eds.) "The In Vitro Effects of Mineral Dusts" Academic Press, London. pp244-251.

- 202. Miller EC, Miller JA (1981) "Mechanisms of Chemical Carcinogenesis" Cancer 47:1055-1064.
- 203. Boyland E (1985) "Turnour Initiators, Promoters and Complete Carcinogens" Brit J industr Med 42:716-720.
- Liddell FDK, McDonald JC (1980) "Radiologic Findings as Predictors of Mortality in Quebec Asbestos Workers" Brit J industr Med 37:257-263.
- 205. Hughes JM, Weill H (1991) "Asbestosis as a Precursor of Asbestos-Related Lung Cancer: Results of a Prospective Mortality Study" Brit J industr Med 48:229-233.
- 206. Jacob G, Anspach M (1965) "Pulmonary Neoplasia Among Dresden Asbestos Workers" Ann N Y Acad Sci 132:536-548.
- 207. Kannersteing M, Churg J (1972) "The Pathology of Carcinoma of the Lung Associated with Asbestos Exposure" Cancer 30:14-21.
- 208. Whitwell F, Newhouse ML, Bennett DR (1974) "A Study of the Histological Cell Types of Lung Cancer in Workers Suffering from Asbestosis" Brit J industr Med 31:298-303.
- 209. Warnock ML, Churg A (1975) "Association of Asbestos and Bronchogenic Carcinoma in a Population with Low Asbestos Exposure" Cancer 35:1236-1242.
- 210. Sluis-Cremer GK (1980) "The Relationship Between Asbestosis and Bronchial Cancer" Chest 78:380-381.
- 211. Newhouse ML, Berry G, Wagner JC (1985) "Mortality of Factory Workers in East London, 1933-80" Brit J industr Med 42:4-11.
- 212. Turner-Warwick M (1978) "Immunology of the Lung" Edward Arnold, London.
- 213. Becklake MR (1980) "Asbestos-Related Diseases of the Lungs and Pleura" Amer Rev Respir Dis 126:187-194.
- 214. Schmachl DFK (1983) "Carcinogenic Aspects of Asbestos" In: "Proceedings of the World Symposium on Asbestos" Canadian Asbestos Information Centre, Montreal.
- 215. Mossman BT, Craighead JE, MacPherson BV (1980) "Asbestos Induced Epithelial Changes in Organ Cultures of Rat Trachea: Inhibition of Retinyl Methyl Ether" Science 207:311-316.
- 216. Mossman BT, Craighead JE (1981) "Mechanisms of Asbestos Carcinogenesis" Environ Res 25:269-274.

- 217. Mossman BT, Eastman A, Landesman JM, Bresnick E (1983) "Effects of Crocidolite and Chrysotile Asbestos on Cellular Uptake and Metabolism of Benzo(a)pyrene in Hamster Tracheal Epithelial Cells" Environ Health Perspect 51:331-340.
- 218. Roggli VL, Pratt PC, Brody AR (1986) "Asbestos Content of Lung Tissue in Asbestos Associated Disease: A Study of 110 Cases" Brit J industr Med 43:18-29.
- 219. Seidman H, Selikoff IJ, Hammond EC (1979) "Short-Term Asbestos Work Exposure and Long-Term Observation" Ann N Y Acad Sci 330:61-89.
- 220. Ives JC, Buffler PA, Greenberg SD (1983) "Environmental Associations and Histopathologic Patterns of Carcinoma of the Lung: The Challenge and Dilemma in Epidemiologic Studies" Amer Rev Respir Dis 128:187-195.
- 221. Browne K (1986) "A Threshold for Asbestos Related Lung Cancer" Brit J industr Med 43:556-558.
- 222. Thomas HF, Benjamin IT, Elwood PC, Sweetnam PM (1982) "Further Follow-up Study of Workers from an Asbestos Cement Factory" Brit J industr Med 39:273-276.
- Farebrother MJB, Heller RF, O'Brien I, Azzoparde A, Telfa TP, Young M (1983) "Occupation and Lung Cancer in a Naval Dockyard" Thorax 38:225.
- 224. Newhouse ML, Oakes D, Woolley AJ (1985) "Mortality of Welders and Other Craftsmen at a Shipyard in NE England" Brit J industr Med 42:406-410.
- 225. Hodgson JT, Jones RD (1986) "Mortality of Asbestos Workers in England and Wales 1971-81" Brit J industr Med 43:158-165.
- 226. Pampalon R, Siemiatycki J, Blanchet M (1982) "Environmental Asbestos Pollution and Public Health in Quebec" Union Med Can 111:475-480.
- 227. Churg A (1986) "Lung Asbestos Content in Long-Term Residents of a Chrysotile Mining Town" Amer Rev Respir Dis 134:125-132.
- 228. Armstrong B (1990) "Effects of Measurement Errors on Estimates of Exposure-Response Relationships" Recent Results in Cancer Research 120:50-63.
- 229. Dement JM, Harns RL, Symons MJ, Shy CM (1983) "Exposures and Mortality Among Chrysotile Asbestos Workers. Part II: Mortality" Amer J industr Med 4:421-433.
- 230. Cookson WOCM, de Klerk NH, Musk AW, Armstrong BK, Glancy JJ, Hobbs MST (1986) "Prevalence of Radiographic Asbestosis in Crocidolite

Miners and Millers at Wittenborn, Western Australia" Brit J industr Med 43:450-457.

- 231. Lamm SH, Levine MS, Starr JA, Tirey SL (1988) "Analysis of Excess Lung Cancer Risk in Short Term Employees" Amer J Epidem 127:1202-1209.
- 232. Sluis-Cremer GK, Hnizdo E, du Toit RSJ (1990) "Evidence for an Amphibole Asbestos Threshold Exposure for Asbestosis Assessed by Autopsy in South African Asbestos Miners" Ann occup Hyg 34:443-451.
- 233. Ilgren EB, Browne K (1991) "Asbestos-Related Mesothelioma: Evidence for a Threshold in Humans and Animals" Reg Toxicol Pharm 13:116-132.
- 234. Browne K (1986) "Asbestos-Related Disease and the 'One Fibre' Theory" Occup Health Rev, Oct/Nov:11-13.
- 235. NIOSH (1990) "NIOSH Testimony on Abestos by R Lemen, April 26, 1990".
- 236. Weiss W (1977) "Mortality of a Cohort Exposed to Chrysotile Asbestos" J occup Med 19:737-740.
- 237. Ohlson CG, Hogstedt C (1985) "Lung Cancer Among Asbestos Cement Workers. A Swedish Cohort Study and a Review" Brit J industr Med 42:397-402.
- 238. Rowlands N, Gibbs GW, McDonald AD (1982) "Asbestos Fibres In The Lungs Of Chrysotile Miners And Millers - A Preliminary Report" Ann Occup Hyg 26:411-415.
- 239. Berry G (1986) "Chrysotile and Mesothelioma" In: Wagner JC (ed.) "Accomplishments in Oncology, Vol 1, No. 2, The Biological Effects of Chrysotile" JB Lippincott Co., Philadelphia. pp123-132.
- 240. NIOSH (1980) "Workplace Exposure to Asbestos. Review and Recommendations" US Department of Health and Human Services.
- 241. Dunnigan J (1988) "Linking Chrysotile Asbestos with Mesothelioma" Amer J industr Med 14:205-209.
- 242. Rossiter CE (1994) A personal communication.
- 243. WHO (1992) "Validity of Methods for Assessing the Carcinogenicity of Man-Made Fibres. Executive Summary of a WHO Consultation, 19-20 May 1992, Copenhagen" World Health Organization Regional Office for Europe, Copenhagen.
- 244. Ramazzini B (1713) "De Morbis Artificum Diatriba" Translated by: Wright WC (1940) University of Chicago Press, Chicago.

Chapter 3.

- Harries PG, Rossiter CE, Coles RM (1976) "Royal Naval Dockyards Asbestosis Research Project, Report No. 1, December 1975" Institute of Naval Medicine, CRWP Report 1/76, Gosport.
- 2. Sheers G, Templeton AR (1968) "Effects of Asbestos in Dockyard Workers" Brit Med J 3:574-579.
- Rossiter CE, Coles RM, Jackaman I (1984) "HM Naval Base, Devonport: Lung Cancer and Mesothelioma Case Control Studies" In: Proceedings of the VIth International Pneumoconiosis Conference, Bochum, 1983. Bochum, Bergbau-Berufgenossenschaft, p830-836.
- 4. Rossiter CE (1993) A personal communication.
- 5. Harries PG (1994) A personal communication.
- Harries PG, MacKenzie FAF, Sheers G, Kemp JH, Oliver TP, Wright DS (1972) "Radiological Survey of Men Exposed to Asbestos in Naval Dockyards" Brit J industr Med 29:274-279.
- 7. International Labour Office (1972) "The ILO U/C International Classification of Radiographs of the Pneumoconioses, 1971" ILO Occupational Safety and Health Series No. 22, Geneva.
- Anonymous (1975) "Radiological Methods in the Surveillance of Workers Exposed to Asbestos" Institute of Naval Medicine, CRWP Repot No. 4/75, Gosport.
- Sheers G, Rossiter CE, Gilson JC, MacKenzie FAF (1978) "UK Naval Dockyards Asbestosis Study: Radiological Methods in the Surveillance of Workers Exposed to Asbestos" Brit J industr Med 35:195-203.
- Berkson J, Gage RP (1950) "Calculation of Survival Rates for Cancer" Proceedings of the Staff of the Mayo Clinic 25:270-286.
- 11. Mauser JS, Bahn AK (1974) "Epidemiology: An Introductory Text" W B Saunders, Philadelphia.
- 12. Hill ID (1972) "Computing Man Years at Risk" Brit J Prev Soc Med 26:132-134.
- 13. Elandt-Johnson RC, Johnson NL (1980) "Survival Models and Data Analysis" John Wiley & Sons, New York.
- 14. Doll R (1955) "Mortality from Lung Cancer in Asbestos Workers" Brit J industr Med 12:81-86.

- 15. Liddell FDK (1960) "The Measurement of Occupational Mortality" Brit J industr Med 17:228-233.
- 16. Berry G (1983) "The Analysis of Mortality by the Subject-Years Method" Biometrics 39:173-184.
- 17. Gilbert ES (1983) "An Evaluation of Several Methods for Assessing the Effects of Occupational Exposure to Radiation" Biometrics 39:161-171.
- 18. McMicheal AJ (1976) "Standardised Mortality Ratios and the Healthy Worker Effect" J Occup Med 18:165-168.
- 19. Armitage P, Berry G (1987) "Statistical Methods in Medical Research" Blackwell Scientific Publications, Oxford.
- Breslow NE, Day NE (1987) "Statistical Methods in Cancer Research. Volume II - The Design and Analysis of Cohort Studies" IARC Scientific Publications No. 82, Lyon.
- 21. Clayton, DG (1982) "Fitting a General Family of Failure-Time Distributions using GLIM" Applied Stat 32:107-109.
- 22. Breslow NE, Lubin JH, Marek P, Langholz B (1983) "Multiplicative Models and Cohort Analysis" J Amer Stat Assoc 78:1-12.
- Cox DR (1972) "Regression Models and Life Tables" J Royal Stat Soc (B) 34:187-220.
- 24. Holford TR (1980) "The Analysis of Rates and Survivorship using Loglinear Models" Biometrics 36:299-306.
- 25. Bishop YMM, Fienberg SE, Holland PW (1975) "Discrete Multivariate Analysis: Theory and Practice" MIT Press, Cambridge, MA.
- 26. Baker RJ, Nelder JA (1978) "The GLIM System Release 3. Generalised Linear Interactive Modelling" NAG, Oxford.
- 27. Miettinen OS (1976) "Estimability and Estimation in Case-Referent Studies" Amer J Epidemiol 103:226-235.
- Rothman KJ (1986) "Modern Epidemiology" Little Brown & Co, Boston, MA.
- 29. Ogle W (1885) "Letter to the Registrar-General on the Mortality in the Registration Districts of England and Wales during the ten years 1871-80" In: "Supplement to the 45th Annual Report of the Registrar General of Births, Deaths, and Marriages, in England, 1885" p. xxiii.
- 30. Fox AJ, Collier FF (1976) "Low Mortality Rates in Industrial Cohort

Studies due to Selection for Work and Survival in the Industry" Brit J Prev Soc Med; 30:225-230.

- 31. Gilbert ES (1982) "Some Confounding Factors in the Study of Mortality and Occupational Exposures" Amer J Epidemiol 116:177-188.
- 32. Fox AJ, Goldblatt PO (1982) "Healthy Worker Effect" In: "OPCS Longitudinal Study. Socio-demographic differentials" Series LS No. 1, HMSO, London.
- 33. Vinni K, Hakrama M (1980) "Healthy Worker Effect in the Total Finnish Population" Brit J Indust Med 37:180-184.
- 34. Olsen J, Sabroe S (1979) "Health Selection among Members of a Danish Trade Union" Inter J Epidemiol 8:155-159.
- 35. Wen CP, Tsai SP (1982) "Anatomy of the Healthy Worker Effect A Critique of Summary Statistics Employed in Occupational Epidemiology" Scand J Work Environ Health; 8(Suppl 1):48-52.
- 36. Hernberg S (1980) "Evaluation of Epidemiologic Studies in Assessing the Long-Term Effects of Occupational Noxious Agents" Scand J Work Environ Health 6:163-169.
- 37. Rothman KJ, Greenland S, Walker AM (1980) "Concepts of Interaction" Amer J Epidemiol 112:467-470.
- Office of Population Censuses and Surveys (1983) "Mortality Statistics: Comparison of 8th and 9th Revisions of the International Classification of Diseases" Series DH1 No.10, HMSO, London.
- 39. Office of Population Censuses and Surveys (1990) "Mortality and Geography: A Review in the Mid-1980s, England and Wales" (Microfiche Supplement) Series DS No.9, HMSO, London.
- 40. Office of Population Censuses and Surveys (1991) "1989. Mortality Statistics. Area. Microfiche" Series DH5 No.16, HMSO, London.

Chapter 4.

- 1. Harries PG (1971) "The Effects and Control of Disease Associated with Exposure to Asbestos in Devonport Dockyard" Institute of Naval Medicine, CRWP Report No. 1/71, Gosport.
- Rossiter CE, Coles RM (1980) "HM Dockyard Devonport: 1947 Mortality Study" In: Wagner JC, Davis W (eds.) "Biological Effects of Mineral Fibres" IARC Scientific Publication No. 30, Lyon. pp713-721.
- 3. Enterline PE, Kendrick MA (1967) "Asbestos Dust Exposures at Various Levels and Mortality" Arch Environ Health 15:181-186.

Chapter 5.

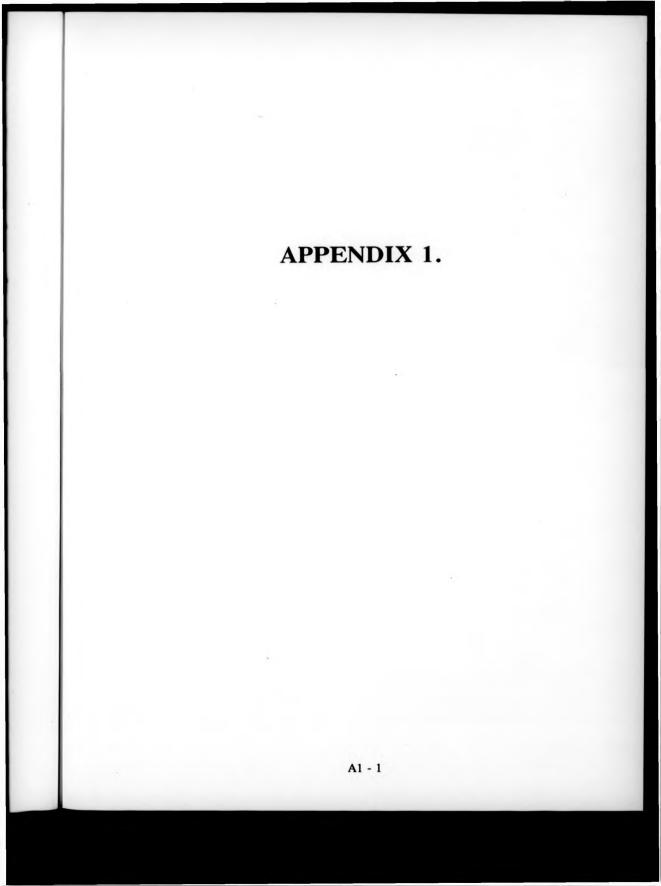
- Peto J, Seidman H, Selikoff IJ (1982) "Mesothelioma Mortality in Asbestos Workers: Implications for Models of Carcinogenesis and Risk Assessment" Brit J Cancer 45:124-135.
- Liddell FDK, McDonald JC, Thomas DC (1977) "Methods of Cohort Analysis: Appraisal by Application to Asbestos Mining" J Royal Stat Soc (Series A) 140:469-491.
- 3. Newhouse ML, Berry G (1976) "Predictions of Mortality from Mesothelial Turnours in Asbestos Factory Workers" Brit J industr Med 33:147-151.
- 4. Berry G, Wagner JC (1969) "The Application of a Mathematical Model Describing the Times of Occurrence of Mesotheliomas in Rats Following Inoculation with Asbestos" Brit J Cancer 23:582-586.
- 5. Selikoff IJ, Hammond EC, Seidman H (1979) "Mortality Experience of Insulation Workers in the United States and Canada, 1943-1976" Ann N Y Acad Sci 330:91-116.
- Sullivan KR, Lam TH, Rossiter CE (1988) "HM Naval Bases: Mesothelioma and Time Since First Employment" Ann Occup Hyg 32:491-496.
- 7. WHO (1986) "Asbestos and other Natural Mineral Fibres" World Health Organization, Environmental Health Criteria 53, Geneva.

Chapter 6.

- 1. Doll R, Hill AB (1952) "A Study of the Aetiology of Carcinoma of the Lung" Brit Med J 2:1271-1286.
- 2. Doll R, Peto R (1978) "Cigarette Smoking and Bronchial Carcinoma: Dose and Time Relationships among Regular Smokers and Lifelong Nonsmokers" J Epidemiol Community Health 32:303-313.
- 3. Sheers G, Templeton AR (1968) "Effects of Asbestos in Dockyard Workers" Brit J Med 3:574-579.
- McDonald JC, Liddel FDK, Gibbs GW, Eyssen GE, McDonald AD (1980) "Dust Exposure and Mortality in Chrysotile Mining, 1910-75" Brit J industr Med 37:11-24.
- 5. Browne K (1986) "Is Asbestos or Asbestosis the Cause of the Increased Risk of Lung Cancer in Asbestos Workers" Brit J industr Med 43:145-149.
- 6. Hammond EC, Selikoff IJ, Seidman H- (1979) "Asbestos Exposure, Cigarette Smoking and Death Rates" Ann N Y Acad Sci 330:473-482.
- Rossiter CE, Coles RM (1980) "HM Dockyard Devonport: 1947 Mortality Study" In: Wagner JC, Davis W (eds.) "Biological Effects of Mineral Fibres" IARC Scientific Publication No. 30, Lyon. pp713-721.
- Rossiter CE, Coles RM, Jackaman I (1984) "HM Naval Base, Devonport: Lung Cancer and Mesothelioma Case Control Studies" In: Proceedings of the VIth International Pneumoconiosis Conference, Bochum, 1983. Bochum, Bergbau-Berufgenossenschaft, p830-836.
- Hobbs MST, Woodward SD, Murphy B, Musk AW, Elder JE (1980) "The Incidence of Pneumoconiosis, Mesothelioma and other Respiratory Cancer in Men Engaged in Mining and Milling Crocidolite in Western Australia" In: Wagner JC, Davis W (eds.) "Biological Effects of Mineral Fibres" IARC Scientific Publication No. 30, Lyon. pp615-625.
- Sanden A, Javholm B, Larsson S, Thringer G (1992) "The Risk of Lung Cancer and Mesothelioma after Cessation of Asbestos Exposure: A Prospective Cohort Study of Shipyard Workers" Eur Respir J 5:281-285.
- 11. Elliot P, Westlake AJ, Hills M, Kleinschmidt I, Rodrigues L, McGale P, Marshall K, Rose G (1992) "The Small Area Statistics Unit: A National Facility for Investigating Health around point sources of Environmental Pollution in the United Kingdom" J Epidem Comm Health 46:345-349.
- 12. Newhouse ML, Oakes D, Woolley AJ (1985) "Mortality of Welders and

Other Craftsmen at a Shipyard in NE England" Brit J industr Med 42:406-410.

- Kolonel LN, Yoshizawa CN, Hirohata Y, Myers BC (1985) "Cancer Occurrence in Shipyard Workers Exposed to Asbestos in Hawaii" Cancer Res 45:3924-3928.
- 14. Neuberger M, Kundi M (1990) "Individual Asbestos Exposure, Smoking and Mortality. A Cohort Study in the Asbestos Cement Industry" Brit J industr Med 47:615-620.
- Laquet LM, Van der Linden L, Lepoutre J (1980) "Roentgenographic Lung Changes, Asbestosis and Mortality in a Belgian Asbestos Cement Factory" In: Wagner JC, Davis W (eds.) "Biological Effects of Mineral Fibres" IARC Scientific Publication No. 30, Lyon. pp713-721.
- Ohlson CG, Hogstedt C (1985) "Lung Cancer Among Asbestos Cement Workers. A Swedish Cohort Study and Review" Brit J industr Med 42:397-402.
- 17. Thomas HF, Benjamin IT, Elwood PC, Sweetham Pm (1982) "Further Follow-up Study of Workers from an Asbestos Cement Factory" Brit J industr Med **40**:1-7.
- Gardner MJ, Winter PD, Pannett B, Powell CA (1986) "Follow-up Study of Workers Manufacturing Asbestos Cement Products" Brit J industr Med 43:726-732.
- 19. Hodgson JT, Jones RD (1986) "Mortality of Asbestos Workers in England and Wales, 1971-1981" Brit J industr Med 43:158-165.
- Piolatto G, Negri E, La Vecchia C, Pira E, Decarli A, Peto J (1990) "An Update of Cancer Mortality Among Chrysotile Asbestos Miners in Balangero" Brit J industr Med 47:810-814.
- 21. Weiss W (1977) "Mortality of a Cohort Exposed to Chrysotile Asbestos" J Occup Med 19:737-740.
- 22. Ontario Royal Commission (1984) "Report of the Royal Commission on Matters of Health and Safety Arising from the Use of Asbestos in Ontario" Ontario Ministry of the Attorney General, Toronto.
- Harries PG (1971) "Asbestos Dust Concentrations in Ship Repairing: A Practical Approach to Improving Asbestos Hygiene in Naval Dockyards" Ann Occup Hyg 14:241-254.
- 24. McDonald JC, McDonald AD (1987) "Epidemiology of Asbestos-Related Lung Cancer" In: Antman K, Aisnar J (eds.) "Asbestos-Related Malignancy" Grune and Stratton, London. pp57-79.


- 25. Peto J, Seidman H, Selikoff IJ (1982) "Mesothelioma Mortality in Asbestos Workers: Implications for Models of Carcinogenesis" Brit J Cancer 45:124-135.
- Newhouse ML, Berry G (19760 "Predications of Mortality from Mesothelial Tumours in Asbestos Factory Workers" Brit J industr Med 33:147-152.
- 27. Seidman H, Selikoff IJ, Hammond EC (1979) "Short-Term Asbestos Work Exposure and Long-Term Observation" Ann N Y Acad Sci **330**:61-76.
- Selikoff IJ, Hammond EC, Seidman H (1979) "Mortality Experience of Insulation Workers in the United States and Canada. 1943-1976" Ann N Y Acad Sci 330:91-116.
- 29. Peto J, Doll R, Hermon C, Binns W, Clayton R, Goffe T (1985) "Relationship Of Mortality To Measures Of Environmental Asbestos Pollution In An Asbestos Textile Factory" Ann Occup Hyg 29:305-355.
- 30. Hughes JM, Weill H (1986) "Asbestos Exposure Quantitative Assessment of Risk" Amer Rev Respir Dis 133:5-13.
- 31. Finkelstein MM (1984) "Mortality Among Employees of an Ontario Asbestos-Cement Factory" Amer Rev Respir Dis 129:754-761.
- 32. Rockoff SD, Schwartz A (1988) "Roentgenographic Underestimation of Early Asbestosis by International Labor Organization Classification. Analysis of Data and Probabilities" Chest **93**:1088-1091.
- Rossiter CE, Ellison JMcK (1986) "The Current Asbestos Standards" Occupational Health Review, June/July 1986, pp25-29.
- 34. Newhouse ML, Berry G (1976) "Predictions of Mortality from Mesothelial Tumours in Asbestos Factory Workers" Brit J Industr Med 33:147-151.
- 35. Peto J (1994) "An Epidemic of Mesothelioma Deaths" Talk given at the London School of Hygiene and Tropical Medicine, 29th April 1994.
- Peto J (1989) "Fibre Carcinogenesis and Environmental Hazards" In: Bignon J, Peto J, Saracci R (eds.) "Non-Occupational Exposure to Mineral Fibres" IARC Scientific Publication No. 90, Lyon. pp457-470.
- 37. Browne K (1991) "A Threshold for Asbestos-Related Lung Cancer" In: Sluyser M (ed.) "Asbestos Related Cancer" Chichester: Ellis Horwood.
- 38. Health Effects Institute-Asbestos Research (1991) "Report of Literature Review Panel" Asbestos Control Report, Cambridge, MA.
- Gaensler EA (1992) "Asbestos Exposure in Buildings" Clin Chest Med 13:231-242.

- 40. McDonald JC (1991) "Current Controversies in Occupational Lung Disease" British Occupational Hygiene Society, Annual Conference, Swansea, April 1991.
- 41. Harries PG (1968) "Asbestos Hazards in Naval Dockyards" Ann Occup Hyg 11:135-145.
- 42. Harries PG (1971) "The Effects and Control of Diseases Associated with Exposure to Asbestos in Devonport Dockyard" Institute of Naval Medicine, CRWP Report 1/71, Gosport.
- 43. Sebastien P, McDonald JC, McDonald AD, Case B, Harley B (1989) "Respiratory Cancer in Chrysotile Textile and Mining Industries: Exposure Inferences from Lung Analysis" Brit J industr Med 46:180-187.
- 44. Wagner JC, Moncrieff CB, Coles RM, Griffiths DM, Munday DE (1986) "Correlation Between Fibre Content of the Lungs and Disease in Naval Dockyard Workers" Brit J industr Med **43**391-395.
- 45. McDonald JC, Liddell FDK, Dufresne A, McDonald AD (1993) "The 1891-1920 Birth Cohort of Quebec Chrysotile Miners and Millers: Mortality 1976-88" Brit J industr Med 50:1073-1081.
- 46. Vacek PM, McDonald JC (1991) "Risk Assessment Using Exposure Intensity: An Application to Vermiculite Mining" Brit J industr Med 48:543-547.
- 47. Vacek PM (1990) A personal communication.
- Stanton MF, Layard M, Tegeris A, Miller E, May M, Kent E (1977) "Carcinogenicity of Fibrous Glass: Pleural Response in the Rat in Relation to Fiber Dimension" J Natl Cancer Inst 58:587-603.
- 49. Enterline PE, Marsh GM, Henderson V, Callahan C (1987) "Mortality Update of a Cohort of U.S. Man-Made Mineral Fibre Workers" Ann Occup Hyg 31:625-656.
- Shannon HS, Jamieson E, Julian JA, Muir DCF, Walsh C (1987) "Mortality Experience of Ontario Glass Fiber Workers - Extended Followup" Ann Occup Hyg 31:657-662.
- 51. Simonato L, Fletcher AC, Cherrie J, Anderson A, Bertazzi P, Charnay N, Claude J, Dodgeson J, Esteve R, Frentzel-Beyne R, Gardner MJ, Jensen O, Olsen J, Teppo L, Winkelmann R, Westerholm P, Winter PD, Zocchetti C, Saracci R (1987) "The International Agency for Research on Cancer Historical Cohort Study of MMMF Production Workers in Seven European Countries: Extension of the Follow-up" Ann Occup Hyg 31:603-624.

52. Bunn WB, Bender JR (1991) "Fiber Toxicology and Occupational Health: The Integration of Research and Health Programs" Occupational Problems in Medical Practice (from Pfizer Laboratories) 6:1-7.

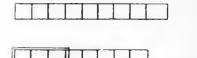
Index to Appendices

APPENDIX 1 A1-1
Table A1.1 Coding schedule of dockyard datasets A1-2
Self administered questionnaire A1-3
Controlled questionnaire A1-7
APPENDIX 2 A2-1
Table A2.1 Causes of death, and International Classification of A2-2 Disease (ICD) groupings
Death rates for England and Wales A2-3
Table A2.2 Regional adjustment factors for the South West (SW) A2-21and South East (SE) Standard Regions, for the years1979-83 and 1989
APPENDIX 3 A3-1
Main results appendix
APPENDIX 4 A4-1
Supplementary results
APPENDIX 5
Supporting evidence A5-2 to A5-7

TABLE A1.1: Coding Schedule of Dockyard Datasets.

/ariable Name	Position (length)	Description
ID	1-12 (12)	Unique identifer, formed from the national insurance number and first 3 characters of surname.
DOB	13-18 (6)	Date of Birth.
SEX	19 (1)	0 = male, 1 = female.
DOCKYARD	20 (1)	1 = Devonport, 2 = Chatham, 3 = Portsmouth, 4 = Rosyth.
PAYNO	21-25 (5)	Dockyard payroll number.
STATUS	26 (1)	 traced and alive, traced and dead, traced and emigrated, untraced.
000	27-32 (6)	Date of death.
ICD	33-37 (5)	International Classification of Disease
XRAY	38 (1)	l = x-ray taken, 2 = no x-ray, 3 = large x-ray taken.
QUES	39 (1)	<pre>1 = questionnaire obtained, 2 = no questionnaire, 3 = controlled questionnaire obtained.</pre>
Small K-ray		
SR1	40 (1)	Reader one code.
SS1 SR2	41-42 (2) 43 (1)	Reader one score. Reader two code.
SS2	44-45 (2)	Reader two score.
Large x-ray		
LR1	46 (1) 47-48 (2) 49 (1)	Reader one code.
LS1	47-48 (2)	Reader one score. Reader two code.
LR2 LS2	49 (1) 50-51 (2)	Reader two code. Reader two score.
The variables in this secti questionnaires (see pages A <u>Self Administered Questionn</u> Personal Medical History Smoking History Employment History		ons, are given in the accompanying 0 = yes, 1 = no. 0 = yes, 1 = no. 20 × Job code (2), Start year (2), Stop year (2).
Controlled Questionnaire		
Medical History	202-217 (16)	0 = ves. 1 = no.
Smoking History Medical History (cont.)	218-234 (17) 235-243 (9) 245-254 (10)	0 = yes, 1 = no. 0 = yes, 1 = no. 0 = yes, 1 = no.
Medical History (cont.)	235-243 (9)	0 = yes, 1 = no.
Asbestos Exposure Employment History	245-254 (10) 255-314 (60)	$10 \times Job code$ (2),
Emproymente macory		Start year (2).

SELF ADMINISTERED QUESTIONNAIRE.


MEDICAL-IN-CONFIDENCE (when completed)

Naval Dockyard Asbestos Survey

Please answer all questions carefully to the best of your ability either by writing in the boxes provided, or by placing a tick in the appropriate box in some cases.

General Particulars

- Write in the boxes provided your National Insurance Number (this is shown on your certificate of pay and tax deducted, Form P60).
- 2. Print in the boxes provided your Surname. If there are not enough spaces continue beyond the boxes.

Write on the line below your Forename(s)

3. Write in the space provided your home address:-

4. Write in the space provided your Dockyard or payroll number.

- 5. Write in the box provided your National Health Service number (which is shown on your Medical Card.
- Write in the boxes provided your date of birth.
- 7. Write in the boxes provided your height to the best of your knowledge.

8.	Wri	te	in the	9 8]	pace	provided	your	weight
	to	the	bes t	of	your	knowled,	ge.	

____at___lbs

Day	Month	Year	
	1		

Ft	ins

A1 - 3

SELF ADMINISTERED QUESTIONNAIRE (continued).

Per	sonal Medical History						
9.	Have you ever bad:-	P	lace a approp	Tick i riate			
	An injury or operation to your chest?	YES		NO			
	Pleurisy?	YES	-	NO	-		
	Pulmonary tuberculosis?	YES		NO			
	Bronchitis?	TES		NO			
	Any other serious chest illness?	YES		NO			
10.	Have you had a chest X-ray in the last 12 months?	YES		NO			
	If "Yes", please give details required below:-						
	When?						
	Where?						
11.	Do you usually cough during the day or night at work?	YES		NO			
12.	Do you usually bring up any phlegm from your chest first thing in the morning in winter? (NB Answer "Yes" if this is with your first smoke).	TES		NO			
13.	In the past) years how many periods of		NIL	1	2	3	4 or more
.ر،	increased cough and phlegm lasting for 3 weeks or more have you had? Tick appropriate box.						
14.	Do you get short of breath when walking with people of your own age on level ground?	Tes		NO			
15.	During the past } years have you had any chest illness which has kept you from your usual activities for as much as a week?	YES		NO			
16.	Did you bring up more phlegm than usual in any of these illnesses?	TES		NO			
17.	How many illnesses like this have you had in the past 3 years? Tick appropriate box		лтг.		2 or more		

SELF ADMINISTERED QUESTIONNAIRE (continued).

Smok	ing History		Tick in the ate Box or
18.	Have you ever smoked regularly? (This means as much as one cigarette or one small cigar a day or one large cigar a week, or one ounce of tobacco a month for as long as a year).		NO
	If your answer is 'NO' go direct to question No 27.		
19.	Do you smoke at present?	YES	NO
20.	If you have given up smoking		
	a. was this more then one month ago?	YES	NO
	b. how old were you when you last gave up?		
21.	How old were you when you started smoking regularly?		
	The next questions are about how much you now smo or used to smoke if you have now given up.	ke,	
22.	How many manufactured Oigarettes per day?		
23.	How many ounces of hand rolled cigarette tobacco per week?		
24.	How many ounces of pipe tobacco per week?		
25.	How many small cigars per day?		
26.	How many large cigars per week?		

re

SELF ADMINISTERED QUESTIONNAIRE (continued).

Employment History

27. Please think back over all the different types of work you have done or supervised since you left school both inside and outside the Dockyard. We have listed below various jobs in which we are interested. Please write down in the order in which you did or supervised mach job, the code number for that job, the year in which you started the job and the year in which you finished the job. If any of your particular jobs are not included then please use Code 20 for all "other Dockyard jobs, and code 60 for all "other jobs" not listed for employment outside the Dockyard.

O1Labourer or Skilled Labourer Afloat30Royal Navy Engine or BoilerO2Lagger AfloatRoom BranchO3Lagger Ashore or in Mattress Shop31Royal Navy - other than CodO4Asbestos Storeman32Civilian ShipyardO5Asbestos Sprayer or Stripper40Lagger or insulation workerO6Sailmaker Lagger(with asbestos)O7Mason Afloat41Any other job using asbestoO8Jelder Afloat42Coal Minor - undergroundO9Boilermaker Afloat43Coal Winer - surface worker10Engine Fitter Afloat45Foundry work11Electrical Fitter Afloat46Steelworks13Coppersmith Afloat47Quarrying14Plumber Afloat48Pottery	
O3Lagger Ashore or in Mattress Shop31Royal Navy - other than CodO4Asbestos Storeman32Civilian ShipyardO5Asbestos Sprayer or Stripper40Lagger or insulation workerO6Sailmaker Lagger(with asbestos)O7Wason Afloat41O8Jeller Afloat42O9Boilermaker Afloat43Coal Minor - underground9D9Engine Fitter Afloat44Any other mine11Electrical Fitter Afloat4512Painter Afloat4613Coppersmith Afloat4714Plumber Afloat4814Pottery	
O4Asbestos Storeman32Civilian ShipyardO5Asbestos Sprayer or Stripper40Lagger or insulation workerO6Sallmaker Lagger(with asbestos)O7Wason Afloat41Any other job using asbestoO8Jelder Afloat42Coal Miner - undergroundO9Boilermaker Afloat43Coal Winer - surface worker10Engine Fitter Afloat44Any other mine11Electrical Fitter Afloat45Foundry work12Painter Afloat46Steelworkes13Coppersmith Afloat47Quarrying14Plumber Afloat48Pottery	
05Asbestos Sprayer or Stripper40Lagger or insulation worker06Sailmaker Lagger(with asbestos)07Mason Afloat41Any other job using asbesto08Jelder Afloat42Coal Minor - underground09Boilermaker Afloat43Coal Minor - underground10Engine Fitter Afloat44Any other mine11Electrical Fitter Afloat45Foundry work12Painter Afloat46Steelworkes13Coppersmith Afloat47Quarrying14Plumber Afloat48Pottery	30
O6Sailmaker Lagger(with abbestos)O7Mason Afloat41Any other job using asbestoO8Jelder Afloat42Coal Minor - undergroundO9Bollermaker Afloat43Coal Minor - underground10Engine Fitter Afloat44Any other mine11Electrical Fitter Afloat45Foundry work12Painter Afloat (all grades)46Steelworkes13Coppersmith Afloat47Quarrying14Plumber Afloat48Pottery	
O7Mason Afloat41Any other job using asbestoO8Jelder Afloat42Coal Minor - undergroundO9Boilermaker Afloat43Coal Minor - surface worker10Engine Fitter Afloat44Any other mine11Electrical Fitter Afloat45Foundry work12Painter Afloat (all grades)46Steelworks13Coppersmith Afloat47Quarrying14Plumber Afloat48Pottery	
OSJelder Afloat42Coal Minor - undergroundO9Boilermaker Afloat43Coal Winer - surface worker10Engine Fitter Afloat44Any other mine11Electrical Fitter Afloat45Foundry work12Painter Afloat (all grades)46Steelworkes13Coppersmith Afloat47Quarrying14Plumber Afloat48Pottery	
O9Boilermaker Afloat43Coal Liner - surface worker10Engine Fitter Afloat44Any other mine11Electrical Fitter Afloat45Foundry work12Painter Afloat (all grades)46Steelworkes13Coppersmith Afloat47Quarrying14Plumber Afloat48Pottery	1
10Engine Fitter Afloat44Any other mine11Electrical Fitter Afloat45Foundry work12Painter Afloat (all grades)46Steelworks13Coppersmith Afloat47Quarrying14Plumber Afloat48Pottery	
11 Electrical Fitter Afloat 45 Foundry work 12 Painter Afloat (all grades) 46 Steelworks 13 Coppersmith Afloat 47 Quarrying 14 Plumber Afloat 48 Pottery	
12Painter Afloat (all grades)46Steelworks13Coppersmith Afloat47Quarrying14Plumber Afloat48Pottery	
13Coppersmith Afloat47Quarrying14Plumber Afloat48Pottery	
14 Plumber Afloat 48 Pottery	
15 Joiner Afloat 49 Cotton, Flax, Hemp Lill	
16 Burner, Riveter, Caulker, Driller 50 Refractory Brick Works	
17 Foundry Worker 51 Masons Yard	
18 Shipfitter Afloat -52 Any other dusty job	
19 Shipwright Afloat 53 Any job exposed to irritant	
20 All other Dockyard jobs not gas or chemical fumes	
listed above 60 All other jobs not listed a	ovo
61 Unemployed	
Job Description Job Code Year Year	
No Started Finish	ed
	٦
1st 19 19	_
2nd 19 19	4
3rd 19 19	-
4th 19 19	
	1
5th 19 19	-
6th 19 19	-
7th 19 19	
	1
8th 19 19	4
	1
10th 19 19	

If there is insufficient space for all your jobs please continue on a separate sheet of paper and place a tick in this box.

CONTROLLED QUESTIONNAIRE.

auo auo do

30

ro.

		PACK NO		
		RU ASBESTOG SORVEY ONFIDENCE (when compleged)	H 0 5	Col 1-3
Input C				,
Nation	1 Ins	ur nce No.		8-16
Sumane				17-19
Forenam	es.		DINIX	
Date of	inte	rview		20- 2
NOME Ad	kines:			
Dor Kyrar	d He	••••		
Nationa) Hea	1 th Service No		26-0
	. neu	Day Month Year		
Date of	Birt	h		
		Town Country		
Pince o	f Eir	th		
Genera)	Prac	titioner's Name		
		Adarers		
Present	Job	•••••		
Intervi	evier •	s Nagar	Qride	167
Stancin	g Eel	rt t		
Weight			Kgs	46-4
When in	doub	a) wording of each question. Put X in appropriate square after each question. t record NO.		
FREAMBL		I am going to ask you some simple questions about your Chest, Please try to answer the questions wherever possible as YEC or EO, *		
PAST 11	LNESS	E.		
1.	Rove	you ever had	ALL TIN	
	а.	An injury or operation affecting your chest?		49
	ь.	Pleasing?		50
	с.	Pulmonery Tuberculomis?		51
				52
	d.			53
	e.	Freurosia?		-
COUCH	ſ.	Any other serious chest lliness?		~
2.	a.	Do you usually cough during the day (or at night when on night-work)?		- 55
	b.	if MC, go to)。 To you cough like this on most days for as much as 5 months each year?		56
PHLEXTH				57
3.	а.	Bo you usually bring up any phlegm from your chest first thing in the morning in th	e winter?	57
		If NO. go to 3a		58
	b. c.	Do you bring up phlegs like this on most days for as much as three months each year more you ever coughed up any blood?		59
	4	If NO, go to 4. When wes U. C? Record each year of occurrence		
	-	when was G. Sr webord with year of occurrence	*******	

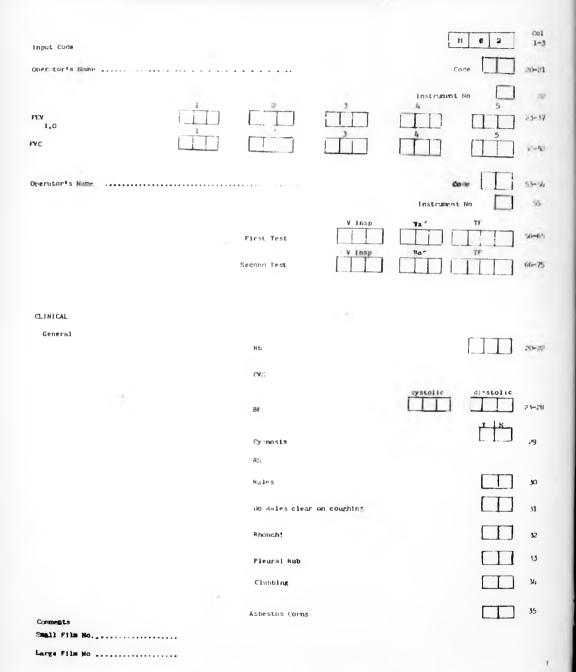
CONTROLLED QUESTIONNAIRE (continued).

	-	SNESS Do you get short of breath maiking with people of your own ag	e on the lovel?	T IN COL
-4.0		If NO, go to 5		
		Do you get short of breath walking at your own passe on the le if NO, go to 5	vel?	61
	c.	Do you get short of breath on washing or dressing?		62
	Duri acti	INDESSES ing the past 3 years have you hod any chest illness which has wities for as much as a week? 10, go to 8	kent you from your usual	63
6.	Did	you bring up more phlegma then usual in this/any of these illn	esses.	64
7.	How	many illnesses like this have you had in the past 3 years?		
		kecori number	••••••	
TOB	ACCO	SHOKING		
8.	۵.	Bave you ever macked?		65
		(This means as much as one cigorette or one small cigar a da or one ounce of tobacco a month for as long as a year). If	y, or one large cigar a week NO, go to l0.	
	ь.	Do you smoke at present?		66
	c.	Eave you given up smoking in the last month?		67
	م ه	Bow old were you when you started moking regularly?	•	Age 68-09
	۹.	Bow many manufactured cigarettes do/did you usually smoke per the week-wands?	r dag including	Number 70-71
	t.	Born much to bacco do /did you usually smoke per day including in band-rolled cigarettes? (One per I 4, = goas p day)	the week-ends	ms 72-73
	£.	Bow much pipe tobacco do/did you usually smoke per day inclus (Ogs p was I 4 = mus p day)	ding the week-ends?	gms 74-75
	h.	Bow monty small cigars do/did you usually smoke per day inclu-	ding the week-ends?	Number 76-77
	1.	Now many large cigars do/did you usually spoke per week?		Number 78-79
EX :	SHOKE	rs only		
9.		old were you when you last gave up smoking?		Age 20-21
CHE	ST PA	IN		T N
10.	а.	Have you ever had any pain or disconfort in your chest?		22
	b.	Do you get it when you walk uphill or hurry?		23
	c.	Do you get it when you walk at ordinary pace on the level?		24
	ط	if YES to either 10b or c, then What do you do if you get it while you are walking?	Stop or slow down	25
		Record stop or slow down if subject carries on after taking Nitroglycerine (Trinitrin)	הכ עדדו בב	26
	e.,	If you stand still what happens to it?	Relieved	27
			Not relieved	26
	ſ.	If relieved - How soon?	10 minutes or less	29
			Nore than 10 minutes	01

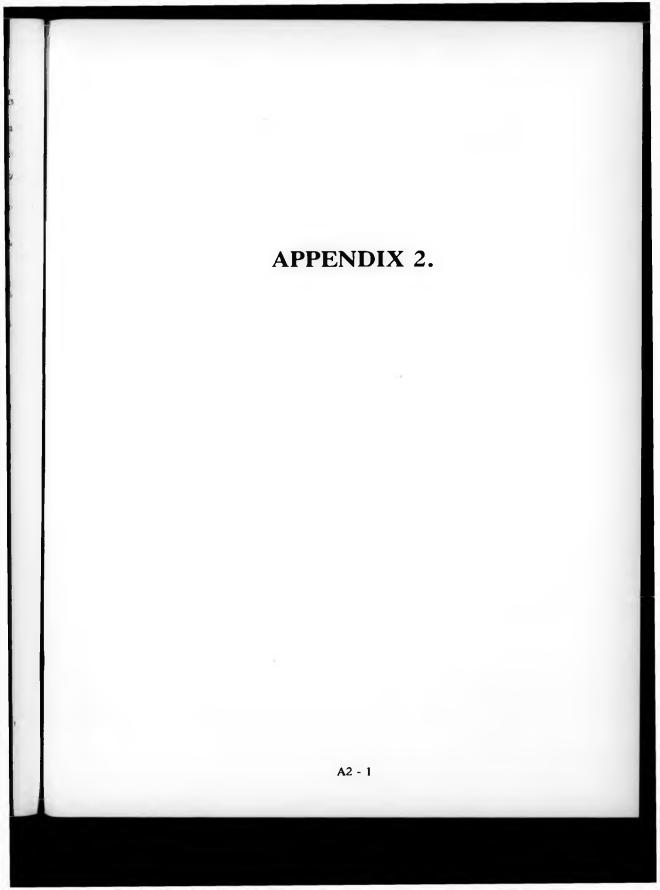
A1 - 8

CONTROLLED QUESTIONNAIRE (continued).

ASBESTOS					· · · · · · · · · · · · · · · · · · ·
Tear o		of last exposure		Period of exposure ()	
Type	of Exposure Q	ontinuous (Yrs)		Intermittent (1	hrs) 57-
COMMENTS	:				
GOOUPATI	ONAL HISTORY				
Code No	Dockyard Employment		Ode No	Other imployment	ar Boiler Room Branch
01	Labourer or Skilled Labourer A	float	30 JI	Royal Navy Engine (
02 03	Lagger Aflant Lagger A hore or in Mattress S	-	22	Civilian Shipyard	
ο <u>μ</u>	Asbestos Storeman		40	Lagger or insulation	on worker (with
05	Asbestos Sprayer or Stripper			asbestos)	
06	Sailmaker Lagger		42	Any other job usin	
07	Mason Aflont		42	Opal Miner - under	
06	Welder Aflont		45	Coal Miner - surfa	ce worker
09	Boilermaker Afloat		dada .	Any other mine	
10	Engine Fitter Afloat		45	Foundary work	
n	Electrical Fitter Afloat		46	Steelworks	
12	Painter Aflont (all grades)		47	Quarry ing	
13	Coppersmith Afloat		43	Pottery Cotton, Flaz, Hemp	H111
14	Flumber Afloat		49	Refractory Brick W	
15 16	Joiner Aflost Burner, Riveter, Caulker, Dril	ller	51	Masons Tard	
17	Foundry Worker	1	52	Any other disty jo	b
18	Shipfitter Afloat		53		intitant gas or chemical
19	Shipwright Afloat		22	fune s	
20	All other Dockyard jobs not 1:	isted above	60	All other jobs not	listed above
22	Any other dusty job		61	Unemployed	
ACE	EXPLOTEES NAME		JOB	det	Start Finish
				Onde	Year Year
					20-25
					1 18-43
				<u>i l</u>	
					14-10
					50-55
					62-67
					68-73
1					74-79


CONTROLLED QUESTIONNAIRE (continued).

Input Code					1 18 2	Col 1-3
Oper-tor's Name						20-21
Christen a train assessment						10 21
	1	2		instrument 4	No 5	22
FEV 1.0						25-57
FVC	ШD					> -6 ² 3
Operator's Name	•••••			~		55misla
				Instrument	No	55
		First Test	V Insp		TF	30-6 4
		Second Test	Vinsp		TF	66-75
CLINI CAL						
General						
		Hb				50-55
		CVC				
		в		systolic	distolic	29+28
					r + ing	
		Cynosis				29
		RS			(7-7	
		Hales				yo
		abo Hales clear	on coughing			51
		Rhonch!				92
		Pleural Rub				13
		Clubbing				У.
		Asbestos coms				35
Comments		aspestos coms			L	
Small Film No.	• • • • • • • •					


Large Film No

CONTROLLED QUESTIONNAIRE (continued)

TABLE A2.1:

Causes of Death, and International Classification of Disease (ICD) groupings.

		ICD's	where different
*1.	All Causes	000-999	
2.	Infectious and Parasitic Diseases	001-139	001-136
3.	Tuberculosis	010-018	010-019
*4.	All Neoplasms	140-239	
5.	Ca. Lip, Oral Cavity and Pharynx	140-149	
6.	Ca. Digestive Organs and Peritoneum	150-159	
7. *8.	Ca. Desophagus	150 151	
*q.	Ca. Stomach Ca. Peritoneum (mesothelioma)	158	
10.	Ca. Respiratory System	160-163	
*11.	Ca. Lung	162	
*12.	Ca. Pleura (mesothelioma)	163	
13.	Ca. Bone, Tissue, Skin and Breast	170-175	170-174
14.	Ca. Genito-uninary Organs	179-189	180-189
15.	Ca. Prostate	185	
16.	Ca. Other and Unspecified Sites	190-199	
17.	Ca. Lymphatic and Haematopoietic Tissue	200-208	200-209
18.	Benign Neoplasms	210-229	210-228
19.	Unspecified Neoplasms	230-239	
20.	Endocrine and Nutritional Diseases	240-279	
21.	Diseases of Blood and Blood-forming Organs .	280-289	
22.	Diseases of the Nervous System	320-389	
* 23.	Diseases of the Circulatory System	390-459	390-458
24.	Hypertensive Disease	401-405	400-404
25.	Ischaemic Heart Disease	410-414	
=*26 .	Diseases of Pulmonary Circulation	415-417	426,450
27.	Cerebrovascular Disease	430-438	
* 28.	Diseases of the Respiratory System	460-519	
29.	Acute Respiratory Infections	460-466	
30.	Other Disease of Upper Respiratory Tract	470-478	500-508
31.	Pneumonia and Influenza	480-487	470-474,480-486
*32.	Bronchitis, Emphysema and Asthma	490-493	
=33.	Chronic Obstructive Pulmonary Disease	490-496	490-493, 518
= 34.	Pneumoconiosis	500-508 500	515-516
35. *36.	Coalworkers Pneumoconiosis Asbestosis	501	515.1 515.2
37.	Stitcosis	502	515.0,515.9
38.	Other Diseases of the Respiratory System	510-519	510-514, 517, 519
*39.	Pulmonary Fibrosis	515	517
40.	Diseases of the Digestive System	520-579	520-577
41.	Diseases of Oesophagus and Stomach	\$30-537	
42.	Diseases of the Genito-urinary System	580-629	
43.	Diseases of the Skin and Subcutaneous Tissue	680-709	
44.	Diseases of the Musculosketelal System	710-739	710-738
45.	Symptoms, Signs and Ill-defined Conditions	780-799	780-796
46.	Accidents, Poisonings and Violence	800-999	
47.	Transport Accidents	800-848	800-845
48.	Accidental Poisoning	850-869 880-888	850-877 880-887
49. 50.	Accidental Falls Suicide and Self-inflicted Injury	950-959	000-00/

Signifies a new code/disease grouping in the 9th revision. An estimate of this grouping is produced for the 8th revision (i.e. for before 1979). Signifies a specific cause of interest in this study. =

.

Death Rates for England and Wales.

The following pages (A2-4 to A2-20) give male death rates for England and Wales $(\times 10^{-8})$. For each of the 50 categories, the entries are arranged as follows:

									Year								
	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1 98 2	1983	1984	1985	1986	1987	1988
Age																	
10- 15-																	
20-																	
25- 30-																	
35- 40-																	
45- 50-																	
55- 60-																	
65- 70-										3							
75- 80-																	
80-																	

For calendar years 1989 and 1990 the death rates for 1988 are taken as the best estimate.

6732B2 10149179 10002362 9993546 9555921 14783019 14729549 14644643 14601504 15032373 13970357 14205591 14384128 13970791 13769704 13781500 13508621 12989488 13568764 12997852 12296697 12954437 24291117 23850655 23697256 23542056 24322987 22657785 22765381 23204380 22244866 22615873 22303077 22071590 21130562 22313287 21481654 19159856 20984932 INFECTIOUS & PARASITIC DISEASES (1-139) TUBERCULOSIS (10-18) 108

ALL CAUSES (0-999)

ALL NEOPLASMS (140-239)

7271 7795 11371 15367 19359 33378 66360 132946 246037 453311 762914 1146784 1601781 1971925 2187332 2371152	7139 8214 11409 14971 21315 31285 64720 130832 240493 470320 735566 1142483 1591381 1987955 2240948 2381659	5421 8710 11435 14580 19814 30609 62641 130251 251108 457909 734219 11461884 2019284 2321875 2400515	6320 8308 10109 14869 20619 30761 55080 128728 245232 427998 727348 1126910 1581183 2056553 2367979 2429057	5214 7707 10241 14899 19053 34638 63594 122347 254694 436233 747526 1137612 1599299 2107573 2343681 2441275	5136 7515 10348 13820 20902 33019 56376 123640 246233 419120 736884 1119508 1572343 2078331 2421099 2448793	6215 8435 9888 14415 20416 33946 55093 116509 252943 433687 723950 1127533 1575966 2108841 2407742 2516817	5713 8232 9118 13493 31743 56289 113224 239235 444290 729856 1108522 1558719 2104579 2535669 2619627	4401 6695 10293 11669 17882 30066 55544 114616 234955 431795 717114 1098167 1569387 2081800 2504260 2682464	5059 7993 7857 12646 26839 59450 109708 227579 433298 697098 1098186 1552937 2080751 2563629 2764286	6064 6607 9218 9226 16724 28913 56573 107023 219577 424810 682683 1086761 1574350 2052704 2565550 2775385	4868 7726 8157 12605 29667 52745 106423 216129 421161 705979 1091633 1613478 2093360 2593793 2825923	5074 7222 8740 12416 17033 29735 54790 111175 217427 412869 725873 1111882 1593963 2132938 2801577 3146608	5111 6642 7907 10227 16386 29553 53409 102677 210365 410806 715550 1082895 1590814 2176784 2822004 3274126	3995 6136 7886 11401 14379 27820 52347 104935 198501 395064 709635 1066449 1592956 2167758 2702976 3164777	4259 6841 7209 10261 17034 28563 50269 103515 201978 386172 697859 1055863 1580437 2153010 2730673 3173678	4455 6539 7667 10629 15933 28645 52008 103709 203614 397347 707681 1068402 1588069 2165850 2754551 3204193
CA LIP, OR	AL CAVITY	& PHARYN	X (140-1	49)												
52 58 0 391 824 1850 4318 6896 8759 15210 22740 34975 41330 65963 CA DIGESTI	51 57 54 0 277 763 2282 4326 7591 7940 14447 18657 29952 43362 63755	49 0 172 53 261 412 1056 2387 4057 6648 8482 12567 18753 27416 33036 53173 5 AND PERI	0 55 0 105 781 2411 4412 6633 9608 14307 19632 30072 40248 71368 TONEUM (48 213 58 158 623 1429 2088 4610 7428 10894 14527 19340 28399 37251 55369	0 104 0 56 1356 2457 3562 8145 10999 11336 18367 21382 40976 58285	48 101 170 172 437 410 706 2483 3344 6847 10562 13595 19428 23575 36559 46760	97 147 167 116 323 663 1536 2655 3353 7216 10767 15065 15895 29584 43056 48662	0 96 320 176 320 1599 2315 4772 8255 12605 12370 19021 20040 30832 45024	100 47 105 353 321 747 1128 2920 5381 9332 11819 15386 17087 19302 33449 43651	51 47 207 118 170 462 2774 5933 8608 10486 13129 18115 21427 30590 36923	53 188 201 174 117 723 1038 3251 5191 7631 12497 15839 20471 24604 32069 45968	55 48 49 113 601 1412 2499 6145 9722 13302 16435 19828 19743 31537 40846	0 246 142 55 238 487 1896 2982 6264 13248 18845 13248 18835 20988 19602 33566	0 50 188 53 119 648 1444 3945 5172 7525 12006 15026 15026 15026 15026 15026 23320 37358	0 153 234 258 352 626 2259 3293 5544 9021 11805 14724 16110 20013 24847 27043	0 149 188 122 236 587 1866 3406 5660 8529 11885 14332 17072 21069 22589 32655
104 520 938 1341 3464 8555 20403 36738 73399 133171 223611 357961 498356 667380 828841 929639	101 57 738 2208 4210 8532 20394 40209 70760 136253 215131 346456 495204 654464 809566 915284	0 281 690 1224 3389 7755 20341 40235 71656 132078 210388 352317 498606 651719 796875 880789	0 273 988 1793 4900 8066 16469 38983 71688 350349 490554 661355 824414 914189	48 372 289 1895 4043 9283 18221 34936 77170 126495 216264 341786 490995 673623 792461 898490	95 104 343 1277 3908 9295 17198 36439 70822 121535 214291 327417 470553 649671 848736 863447	0 202 7355 1030 3548 8606 16104 37531 73981 129339 207310 331462 476966 644990 767312 890894	145 147 334 1564 2905 8416 16621 36880 76168 132936 210661 324604 482790 632561 821866 933496	0 335 486 938 3309 7549 17518 35818 72288 127743 207597 323537 465053 635088 782961 906793	100 331 580 1235 3050 6663 18900 33139 67585 128667 202866 330487 454992 621569 773549 938889	51 187 621 705 2551 15288 31245 65258 120506 195399 313900 457324 595127 798616 856154	53 47 604 813 3155 34896 68363 120845 204221 312603 468518 632120 791724 938206	55 48 583 1077 2721 8144 16403 35202 66627 122235 209427 327991 467614 627674 819645 958425	115 492 521 1100 2979 30675 66145 125177 200330 315020 457099 623830 846032 985315	0 249 516 1598 2258 6536 15441 30770 63118 120571 309286 454191 634926 786131 925284	64 153 468 1598 3289 7112 14073 31785 64654 121522 204549 305640 448101 609991 796258 932692	59 298 501 1432 2842 7147 15067 31076 64639 122416 203863 309982 453130 622915 809473 947763

CA DESOPHAGUS (150-150)

0 0 55 112 136 631 1649 4229 6679 11852 20886 30786 45830 53295 62893 90589	0 0 54 334 555 1734 3491 7296 14346 21948 28081 41387 51488 74654 74236	0 0 53 196 549 2252 4569 7116 14017 20791 31462 43508 59480 66964 72041	0 0 58 105 382 752 1562 4546 7136 13266 20671 32147 41980 60817 69438 76466	0 0 105 306 1429 4663 9020 14558 22325 32224 38680 58520 58520 58520	0 0 0 550 1855 3651 8904 16005 23502 32777 39934 62089 73235 64946	0 0 0 114 55 478 1625 3760 9613 14310 25484 34208 46301 60904 65806 78753	0 49 56 0 269 928 1955 2798 8492 24181 33021 44597 55587 69228 78670
CA STOMACH	(151-151)					
0 0 166 168 883 2594 5496 9911 22128 47191 86465 136797 182466 238401 285714 273527	0 284 646 1069 2150 6798 24404 45948 79476 132402 132402 225083 266428 270742	0 0 115 912 2471 6334 12480 23532 41890 79336 134938 179662 222119 248214 253859	0 55 349 316 2119 4401 11227 24329 41342 74236 125673 179158 219479 281734 266780	0 0 58 421 796 2217 5288 9952 23385 39664 73878 125022 177445 224828 224867 260906	0 0 57 333 2705 4210 9900 21164 35724 72565 112830 165304 221217 273758 232306	0 0 57 114 1981 4732 10429 20759 39849 68321 115867 170195 201768 256774 274815	48 0 232 484 2121 3422 10117 21107 21107 21107 2107 208404 208404 246518 264396
CA PERITONE	UM (Meso)	(158-1	58)				
0 115 0 112 204 70 667 463 1214 1293 1872 2932 3151 3093 1348 1759	0 57 114 377 200 416 208 470 904 1366 1348 2619 3416 2598 894 2620	0 0 53 130 343 422 546 811 1602 1651 1961 1961 3950 6250 858	0 55 116 255 273 71 482 973 1234 1132 1325 1729 1571 2211 2549	0 159 58 105 69 572 348 735 817 1074 1057 2418 2367 3104 839	0 0 57 566 283 208 214 632 548 1143 1266 2285 2014 3906 1308 1665	0 51 113 114 109 273 212 780 766 1438 1593 1667 3025 2358 3441 4922	48 49 0 58 0 66 210 574 918 662 706 2190 1830 942 1266 0

0 48 0 117 107 1529 3907 12107 12007 12007 12008 24448 37372 41981 59574 78702 71880	0 0 2355 214 6855 1551 3942 9040 16896 26736 37887 40652 68532 68973 75397	0 47 52 118 283 809 1832 3212 8971 16492 25980 40856 48122 79752 70769	0 0 1011 116 222 834 2007 5057 9505 16436 25369 36731 49906 66397 79655 92690	0 0 49 113 237 820 1681 4427 8291 16179 27543 43181 50782 56469 70959 79504	0 0 47 165 477 650 1896 4971 9396 20925 31789 43639 53009 67485 91053 90909	0 0 141 107 238 1080 2009 4160 8771 17910 30322 38264 58738 63429 88371 95397	0 0 52 411 1252 2143 4582 10264 18601 33527 42386 57422 73432 92371 92548	0 62 108 375 994 2016 4571 19212 31879 41430 56416 68115 90598 92951
0 54 117 320 9334 17235 38247 61755 107466 160158 206595 221907 255134	0 95 158 59 321 1121 4937 7810 17004 37752 58930 106990 154791 19835 221838 252381	0 47 104 118 510 1270 3593 8030 17508 32043 52352 93922 93922 147699 189302 235615 255385	0 0 101 116 526 1613 4222 7731 16890 31991 55156 200202 251724 251724	0 97 57 3055 2022 3092 7783 15916 32136 57616 91058 91058 149152 235545 235545 263311	0 49 47 0 596 1407 3007 6817 14989 30491 51807 88934 131182 193756 234587 275923	0 0 47 373 286 1242 2950 6814 13568 30025 54410 88754 135310 187410 233200 233200	0 0 47 309 764 1536 2780 7588 12886 28808 51000 79243 127043 127043 127043 127943 223619 254207	0 16 47 252 1395 2912 7073 13814 29774 52405 85643 131178 187034 230468 260432
0 143 108 117 53 194 348 507 570 1169 931 2455 1688 729 1623 1580	0 47 105 118 161 125 353 438 574 990 652 889 1675 1948 3845 2381	0 0 104 0 115 282 219 362 723 1096 826 2223 1382 1382 13846	0 0 1011 588 117 3346 144 1097 11011 898 1360 1992 1180 1724 754	0 48 49 57 0 273 269 500 592 816 1012 1021 1021 1052 2303 657 1459	57 0 95 55 119 217 781 298 822 750 1169 2864 1453 2529 2098	0 100 141 53 0 108 215 675 677 1770 840 1256 1598 3068 1334	0 51 47 103 0 57 0 215 899 531 1259 892 1956 1261 1754 2404	19 50 94 70 39 127 171 403 624 676 1259 967 2015 1437 2450 1945

CA RESPIRATORY SYSTEM (160-163)

÷. A2 - 7

	104 231 552 1006 2513 6171 19372 55306 109897 213619 374083 534451	51 57 568 1131 3074 6867 17897 51151 106011 223167 356554 534898	49 169 230 905 3063 5559 17948 50259 111604 219944 357877 527718	0 407 949 2100 5674 16256 48970 110289 198072 347341 515764	48 159 463 1000 2144 6304 17149 46628 108238 204709 353740 514967	48 104 286 722 1869 6035 14415 444724 110959 188340 342486 518190	0 101 283 744 1747 6898 14268 39447 106583 196303 336407 506885	145 49 56 405 1829 5832 13269 37957 99322 199073 339952 496365	99 96 108 645 1281 4194 13695 38712 90592 189585 327299 492236	50 47 105 1176 1391 4421 13893 35766 89611 186921 317493 468428	51 94 155 176 1531 5078 13668 36210 83201 178807 298067 470162	0 47 50 290 1227 4116 12459 31862 79330 181745 313702 474784	0 97 397 1360 4209 12303 32060 74771 167285 311285 462229	0 98 95 385 953 4493 11702 31740 73005 169345 306568 448178	0 100 141 426 832 4645 11926 31774 65367 155918 296368 436771	64 51 94 103 1057 3869 10540 28420 63755 140626 287817 425843	21 83 110 304 947 4336 11389 30644 67375 155296 296917 436930
	700822 707828 568733 452067	705689 756731 628073 439301	706285 766264 693304 508576	682430 788600 711632 497876	691285 801635 704656 517617	686100 817229 762860 531224	682527 823772 797849 580804	661750 838138 837062 618005	673945 809619 850710 666667	648984 816540 847366 646032	650811 776568 834304 700000	671019 787159 858966 698568	638907 773445 880092 743982	620994 787698 874486 793007	617811 759386 820804 789860	615650 745982 840398 736178	618151 764355 845229 773015
CA	LUNG (162-162)															
	0 173 497 950 2174 5960 18204 52399 106928 207298 365474 521715 663084 539982 422164 PLEURA	51 57 511 1023 2806 6382 16648 48130 102008 215956 34719 520632 681119 730967 600358 404367	0 56 745 2803 5284 16962 47941 107484 212495 347144 513369 682970 739080 655357 483705	0 0 116 738 1655 5400 15049 47180 105424 190204 336100 500927 659835 765260 689960 6497290	0 106 405 842 2022 5542 43705 103494 195796 343767 499472 672066 772506 669623 488255	0 0 172 555 1699 5411 13345 42407 106507 181909 3319657 504657 504657 504580	0 170 515 1583 6079 12926 37247 101846 187949 326934 491711 663564 491711 563564 797839 763011 563811	0 49 0 5368 12361 36234 94381 190798 329891 481738 644483 811004 806669 588808	99 48 54 469 1228 4005 12444 36469 85535 180918 316471 478375 655374 478375 655374 821501 640600	50 0 53 8822 1391 3736 33359 86024 178791 304777 453042 627541 793593 816993 618254	0 0 155 176 1361 4617 12400 34239 79222 170416 287116 455196 632252 751339 809541 667692	0 47 0 993 3726 11213 29550 74212 17273 300681 458070 652318 765420 829310 675961	0 97 3400 1301 3662 29632 70995 186602 297188 448550 619740 753044 884941 716265	0 0 47 330 953 4222 10329 29894 67338 160227 292922 433762 596431 764127 642871 764336	0 50 94 320 772 4322 28260 61319 147490 281976 281976 281976 281975 594739 734622 755837	64 51 99 3528 999 3528 26272 57537 131150 273576 407371 593556 810582 695313	21 33 78 234 908 4024 10231 28142 62064 1462823 419746 594908 740679 814524 738495
	52 58 0 566 204 0 69 859 859 1348 1741 2740 1190 3594 2639	0 0 108 200 208 277 806 968 1822 2247 2167 2234 2834 1783 1747	0 56 0 53 0 137 211 955 999 1282 2177 1693 2914 2556 2232 2914 2556 2232 23431	0 0 232 53 191 68 568 344 1362 1928 2565 3003 4075 3142 2211 1699	48 0 58 53 61 277 214 1322 1269 2525 2455 3170 2297 2582 1774 839	0 52 57 167 57 347 428 562 1438 1715 2849 3076 4147 3906 3923 833	0 51 57 172 55 205 494 922 1463 1986 2431 4035 2908 4519 4731 3281	0 0 0 54 265 279 718 988 1655 2295 3066 3202 4711 2533 0	0 0 0 129 487 1013 1852 2614 2199 3597 3714 3644 2434 1580	0 0 59 0 62 776 511 933 2545 3424 3646 3686 2833 3076 1587	0 0 0 57 554 554 511 868 2170 3052 3030 4001 2985 2185 2308	0 0 0 222 554 1228 2120 3375 3817 4761 4869 2696 6552 3014	0 0 0 273 269 1071 1333 3266 4771 4900 5508 4278 5585 4558 5585	0 0 0 217 588 1136 1864 3811 5098 4189 6388 3875 5375 5375	0 0 0 599 108 502 1363 1874 3988 4925 5226 7133 6870 7057 2668	0 0 52 59 228 811 787 2547 3942 5194 5979 6559 5358 7015 2404	0 0 17 39 184 633 1095 2095 3913 5072 5131 6693 5663 5663 5663 4021

CA BONE,	TISSUE, SK	IN & BREA	ST (170-	175)	
72	7 1063	1084	965	813	713
115		1798	1366	850	1399
138		1494	1510	1041	800
128		958	1318	1369	1277
129		1304	1400	1532	1699
133		1990	1846		
309		2182		1801 3573	1526
317		3205	2272 3375	35/3	2997
		4244			4283
445			4801	6214	4521
581		7849	5553	7279	7859
920		7206	8525	10203	9338
1209		12834	12982	10829	12039
1739		18880	16298	16681	17538
2379		24396	22666	24312	19737
3549		34375	35383	36364	34874
4925	2 52402	39451	45030	48658	54954
CA GENIT	D-URINARY C	IRGANS (1	79-189)		
26	0 203	99	289	191	95
57		955	711	531	829
171		2011	1336	2083	2058
273		2767	2953	2738	2442
319		2607	2736	2879	3229
357		2539	3555	4087	3885
467		4364	3336	5216	4639
872		8320	8747	7864	8706
1551		17415	14143	17906	16918
3246		30116	31238	31197	34224
6430		63499	65636	68508	67184
11856		119964	120198	130569	125220
21657		213761	224349	221927	212940
36664		361989	368492	372849	370888
51707 67898		537946 692110	537373 641461	551220	522232
0/030	0 093430	092110	041401	668624	698585
CA PROST	ATE (185-1	85)			
	0 0	0	0	0	0
	0 0	0	0	53	0
4	0 0	57	0	0	0
5	60	0	0	0	0
1	0 0	0	0	0	57
7	0 69	137	0	0	0
6	9 208	422	71	143	143
79	3 738	818	689	696	632
276	5 3034	2871	2984	2673	2945
926	6 9792	7769	8099	10027	9431
2365	6 22472	22442	25198	27465	26668
5479		52139	54844	62599	59930
11616		114673	120879	119183	116009
22579		223745	222846	218373	222039
34231					
	8 346446	370982	359575	363193	343941
45998		370982 485420	359575	353193 447987	343941 458784

669 1364 1187 915 1801 2049 1866 4399 6409 7258 11652 16841 16403 22200 33118 47580	872 1862 1946 1390 1667 2319 3073 4520 4377 6951 9973 10423 15323 18466 33770 50284	742 1052 1896 997 1655 2645 3476 3039 6339 9896 10527 15986 2639 16396 22312 39494	801 2034 1107 1412 1766 2491 3173 4161 5524 6292 7744 12807 17869 20365 31142 38095	1182 1500 1450 940 1928 2655 3523 3358 4847 6438 9703 12119 15226 19008 30226 49231	582 1696 1259 1278 1579 2836 2492 4768 4899 6824 8157 13701 15160 25110 31379 47476	496 1637 1651 1701 1597 2624 3092 4356 6219 9036 14394 20599 21882 32852 48140	804 1132 1136 1430 3031 3138 4473 5891 8801 9072 13637 17623 32860 56643	666 1497 1596 1652 1723 3452 3443 6297 7299 10620 11293 15716 23167 28230 50700	572 1225 1170 980 2731 2896 4080 5094 8339 10074 13296 18412 24582 29524 54087	680 1284 1300 1354 1677 2929 3162 3998 5760 7479 9922 12742 17250 23450 23450 23450 30211 53810
96 960 1526 2746 2402 2937 4238 6314 16858 33002 63207 124989 217776 379961 517849 672683	145 490 1223 2374 2096 2916 3352 7606 16024 34293 64160 127879 211778 363859 211778 363859 547488	49 622 1625 2968 3337 7598 16523 34739 64292 121677 218571 3654503 720379	100 615 844 1529 1177 2055 4090 7226 15932 34217 62439 130736 217445 357537 727778	103 328 725 1175 1814 2020 3311 7373 15917 35443 64872 124495 225383 36651 539694 741538	106 471 755 2207 1519 1947 3738 7080 16963 36123 6723 37195 566207 718915	110 144 923 1474 1656 2186 2186 2186 8711 17841 34956 66807 136076 237938 383021 660644 913202	0 49 994 1490 1732 3595 6888 15735 34377 73474 137054 256526 631363 927273	121 200 939 1279 1070 1675 3013 7244 17391 37023 75189 139711 258582 413485 639153 848566	0 357 562 1997 2447 3301 7731 16182 31916 70360 135374 256732 425622 638118 892428	40 202 831 1186 1519 1951 3303 7287 16436 34436 34436 73007 137379 257280 413541 889422
0 51 0 0 283 780 3135 9175 26322 57363 121801 235167 335914 443806	0 0 58 0 0 502 3812 8937 26917 60787 117210 226870 356268 459854	0 0 0 0 209 1158 3134 11626 26647 60356 123917 225178 346450 483412	50 0 0 62 141 730 3659 10675 24209 62878 124525 221356 363706 492063	0 0 0 282 803 2894 10199 26371 61605 126695 232417 352877 486923	0 50 0 0 138 506 3144 11079 27165 69381 137103 231378 376552 477016	0 0 59 643 4146 11058 28483 73397 137475 243008 435611 630926	0 47 0 261 710 28940 72570 154422 259929 422700 656643	0 0 47 0 126 717 4648 11739 33400 76435 153032 271769 437251 617745	0 0 0 57 232 1289 2847 11371 31639 73443 15535 282225 450161 630409	0 0 31 0 19 206 905 3567 11440 31326 74149 154268 271307 436704 634932

CA OTHER & UNSPECIFIED SITES (190-199)

1870 924 1822 2515 3260 4838 8106 12026 18350 30384 39677 49386 65479 72329 83109 75638	2127 913 1703 2693 3675 4093 7492 12016 18077 31501 41273 52731 60307 72744 84041 82096	1232 1461 1494 2554 3542 8094 12480 21035 32119 44509 57398 62017 99107 94340	1351 1148 1685 2162 3182 4648 7667 12880 18944 31855 44361 55021 65312 84829 86245 98556	1052 1329 1620 2369 2573 5404 8789 13293 20178 29563 47181 60838 78206 101549 104213 112416	1427 1140 1658 2442 3455 4786 6565 14042 29151 47005 67926 80934 102796 102796 103313 114072	1721 1263 1469 3203 3494 5328 7840 13196 24800 31017 52058 67801 77943 93713 111828 119770	1017 1029 1279 1911 3711 4838 8799 10691 21530 35816 50481 71910 89194 104579 127058 127058
CA LYMPHAT		TOPOIETIC	TISSUE	(200-208)	1		
3583 3811 4416 5664 5026 6662 8518 12555 17001 26433 36982 50944 50944 69178 87081 9838 92348 BENIGN NEOI	2886 3879 4541 4631 5680 5341 9295 10338 16528 26340 39022 51648 68848 68848 68848 102369 115284	2563 3259 4827 5906 5149 5971 7672 10775 18164 24509 36103 54011 70705 96190 112054 120069	3136 4318 3892 5167 5346 6084 7951 10813 18295 24990 39155 50870 73713 89767 118974 133390	2631 3827 4166 4843 4779 6166 8003 11413 16837 24289 3556 55115 69745 93158 103326 119128	2615 3265 4631 4718 5721 6659 7564 11093 26293 39962 51933 76431 84067 92415 109908	3346 3687 4068 5034 6059 7035 8829 12003 18042 26498 36969 58767 73174 107859 126459 143560	2760 3871 3558 4922 5917 5765 8101 10763 15460 23833 37066 52203 70555 103071 107218 134631
415 289 221 224 272 912 412 1189 1147 1868 2396 3482 4384 4384 5472 7188 18470	304 57 341 162 67 555 763 873 1033 1518 2397 2257 3679 4724 6705 11354	246 506 172 0 326 543 1159 1061 1842 2702 2702 3832 3294 3020 8036 6861	338 328 116 158 318 137 1102 1492 2160 2112 3533 4075 5162 7961 13594	144 266 405 316 623 643 1336 2525 1764 3170 4352 6024 7539 10067	95 363 286 333 340 277 856 702 1438 1786 2137 2548 4147 4317 9154 8326	143 303 283 400 545 568 1393 1232 2599 2894 4188 5697 7742 7383	0 98 56 290 161 265 279 574 635 927 2030 2365 2287 2261 2111 2433

1335 1483 1950 1876 2829 4904 8133 12446 23859 36390 50842 72550 89589 120969 133874 142180	1352 1277 1055 1941 4173 4483 8322 14453 24394 37610 54777 75240 108220 132460 161092 215873	1285 797 1450 1528 3005 3924 8102 13214 23730 42387 59081 87679 11316 87679 11316 149300 149350 1493551 230769	899 1036 1410 2730 3681 4950 6853 12427 22446 37714 56050 77445 111652 134311 164828 183120	1158 1637 1408 2381 3430 5302 8067 14780 25614 40151 63182 86668 117537 166338 217148 242888	1321 1082 1231 1649 3992 5142 7845 13136 24758 40356 66127 86012 118075 26367 266434	908 948 1173 1918 2555 4916 8097 15493 22114 35894 61875 86421 122611 122711 229211 229211 2296191	1081 1072 1358 1598 2526 4950 9266 12385 24573 40255 65717 90487 122900 180429 235604 298077	1103 1034 1254 1721 3024 5002 8402 13671 23815 38835 64573 87640 120858 174973 230394 283567
2027 2582 3684 4046 5551 12156 6535 12156 18090 23801 38575 56321 75183 98743 126166 138231	2154 3453 3744 4353 4494 5231 8604 10439 14564 24956 53984 - 75162 94563 134179 132540	2724 3327 4039 3585 4876 5944 8032 11024 17002 25244 36388 51506 78684 103508 115805 132308	2593 3957 3575 4647 5493 6174 16743 25974 38240 54805 77349 104314 129655 177091	2758 3322 3593 4762 5145 5630 9076 11782 16805 25976 44603 58289 78101 115169 130420 163384	2470 3149 3314 4767 6279 8032 21897 41610 60004 86023 118825 155232 176224	1998 3043 2910 4049 5110 5078 7909 10831 16417 26262 41712 57676 94851 116313 146364 186791	2225 3573 2996 4073 4816 5316 7066 14031 19404 30248 41791 90104 120233 147033 186899	2231 3255 3073 4027 4897 5891 7781 12027 17284 26135 41704 590326 118457 149543 183304
0 143 163 235 214 323 278 507 427 1169 1438 2369 3151 3279 5680 5529	100 47 158 176 0 374 282 0 717 1485 978 2312 2457 3542 4614 2381	51 0 259 176 170 404 423 365 651 868 783 1744 2334 2334 2419 2913 3846	212 94 0 588 117 167 415 433 585 1247 1197 2429 2102 2528 4828 2261	55 48 97 227 59 273 269 500 1110 520 2024 2348 2974 2632 4928 4376	57 49 95 298 217 327 568 373 747 1799 2533 3525 3229 6639 8392	61 0 141 53 324 502 502 600 1656 1231 2706 3901 3195 3375 2668	0 51 0 155 470 171 290 358 599 1213 1495 3570 2877 4255 3508 5409	39 33 78 124 295 237 373 476 524 1205 1508 2936 3434 3559 4507 5489

UNSPECIFIED	NEOPLASM	IS (230-2	39)				
156	354	99	241	239	48	191	533
231	342	281	109	159	207	455	392
331	114	345	174	116	286	170	389
224	108	213	264	211	555	172	463
272	267	261	445	123	340	382	484
	555	412	410	346	69	273	729
641			852	572	785	706	1117
962	347	422	1446	1044	1194	709	1507
1388	2148	1432	1168	2205	1233	1533	1624
1956	1937	1873			1786	2191	2979
2658	2960	2803	3008 3923	2748 3376	3482	3186	4501
3893	3895	3453			2900	4298	7270
4673	5147	5526	3886	5811		7562	9034
6849	5650	6462	4815	6769	5332		11871
6424	7322	6273	5610	6024	8224	7073	
7188	5811	7143	5750	6652	6539	9032	16041
8795	8734	5146	13594	10906	9992	7383	19465
ENDOCRINE &	NUTRITIC	MAL DISE	SES (240	-279)			
1143	1367	1133	1254	1435	999	1530	1114
693	1307	899	1312	1222	1451	1313	1470
662	1135	1207	1394	1041	1086	904	1390
1173	916	1064	1265	1263	1998	1316	1100
1630	1270	1760	2227	1225	1643	1638	1452
2875	3122	2677	2529	2771	2220	2391	2121
3091	4162	4293	4117	4430	3854	4097	3632
4625	5639	6069	4959	5568	4985	5392	4592
8770	7941	8239	7007	8018	9452	8220	6706
12786	13360	13136	13344	13221	11646	12530	11387
19239	21723	20791	19842	23705	22632	18442	19681
34451	37472	37522	35945	33281	35325	35260	32495
54521	57417	58540	57661	54756	54390	55375	54545
96122	84554	81320	8729B	83477	82237	80550	81590
	130085	141964	115436	122395	115519	117849	106796
130728				166107	151540	133716	132198
158311	144105	143225	168224	100107	121240	133710	132190
DISEASES OF	BL000 &	BLOOD-FO	RMING ORG	NS (280-	-289)		
156	456	345	96	335	285	287	242
289	171	337	547	159	518	354	245
55	341	460	523	579	515	678	500
168	269	213	316	421	333	114	521
340	67	0	382	245	397	164	269
280	208	480	547	277	416	137	265
412	486	211	568	429	357	494	349
661	738	887	551	626	702	780	574
1147	1227	874	1492	1336	1301	627	1059
1508	1974	1842	1080	1931	1786	2054	1986
4492	2397	2702	2565	3376	2374	2263	3795
6780	6862	6684	6182	5987	5360	5526	6920
	12351	12164	13705	11241	10191	8609	10863
11781	24799	24861	20422	22806	19120	17878	23554
27123	47385	49107	38479	37251	30950	37849	35458
47170 102023	4/365	102916	90909	68087	65779	68089	68938
102023	107424	102310	30303	00007	03773	00003	

148 287 379 235 427 323 834 1881 1994 4061 6316 8441 11660 14604 18167	301 142 158 353 642 374 917 1533 2439 3535 6032 8182 10721 14875 19992 18254	462 234 259 705 624 1270 2325 1460 2966 6148 7512 11935 13003 18490 21850 24615	317 141 302 290 612 623 1011 1316 2641 1316 2641 1316 2641 1348 14318	331 289 243 170 473 601 403 1285 1851 3340 4337 7350 10245 22705 23982 30635	287 344 284 440 238 325 654 852 2088 2690 4348 6819 11455 25993 28770 26573	121 50 188 320 535 810 502 932 2024 2784 3232 6626 9140 21569 25775 37358	254 204 281 155 411 1228 347 1074 1723 2426 3620 6604 8861 21116 22508 39063	220 199 251 305 194 454 501 952 1945 2633 3733 6683 9818 22892 25684 34331	
1236 1339 1192 997 1388 2710 3198 5137 7407 12933 17934 27283 56275 85079 118458 134281	1152 1040 1107 1059 1124 2179 3385 5328 6027 12230 16710 33529 46795 83407 114187 158730	1285 750 1087 1175 1587 1616 2607 4234 7597 11284 16198 29838 50011 82426 115805 150769	1270 1413 1510 1220 993 1613 2353 6286 7677 11466 16164 29735 49131 79373 113103 147702	1324 722 1554 1306 1804 3227 4855 8217 12840 21470 33483 63450 109905 184297 258206	1551 1378 1089 1814 1788 2111 3792 6817 8203 13302 21517 40912 73797 127704 202656 337762	1090 1497 1220 2557 2674 3025 4770 6455 8471 15953 25781 42930 80361 133887 217858 313542	1144 817 1545 1702 4470 5462 4807 7016 10788 8118 825106 41317 72727 125433 196726 266827	1261 1230 1284 2024 2877 3532 4456 6762 9154 15791 24134 41719 7528 129008 205746 306043	
643 383 217 176 107 387 695 1013 1567 2476 3468 6141 11818 20404 37728 74250	301 473 475 235 107 623 494 876 1435 1697 4076 6492 10610 20365 39216 62698	257 281 414 235 340 289 493 657 1085 2025 3913 6519 10224 22119 32411 58462	106 141 403 290 292 415 795 1170 1541 3143 7482 10623 35172 50490	276 241 243 397 355 328 672 428 1407 1484 4337 7248 13770 29121 50591 117433	287 344 379 330 536 487 523 882 1044 2541 4348 6526 15310 31159 59437 123077	363 499 282 266 324 565 430 900 2483 4156 7839 13486 28599 60448 135424	127 204 421 567 235 171 290 859 2426 4722 7139 13464 29467 49693 105168	259 349 360 387 336 327 459 713 947 2483 4408 7168 1408 29741 56526 121223	

DISEASES OF THE CIRCULATORY SYSTEM (390-459) 6833910 6756373 7820433 7740133 13759894 13310917 13116638 12882753 12503356 11827644 11931091 11960260 11186414 11144444 10764615 10601356 10380744 10665035 10203469 9170072 10012858 HYPERTENSIVE DISEASE (401-405) n

DISEASES OF THE NERVOUS SYSTEM (320-389)

TOCHACHIC	LAKT DIG	CHOL (III	,													
52 231 497 2459 10800 36673 94868 213559 364838 575420 894370 1410024 2059315 2847728 3708446 5379947	0 57 738 2962 10825 34892 92952 209438 359416 573326 880539 1380767 2014847 2801842 3725525 5468122	49 281 460 2395 10363 33491 96213 202332 369265 571406 879231 1374332 2033452 2739545 3782143 5422813	48 109 871 1951 10882 30487 91574 200703 375178 556730 881026 1364303 2012224 2818896 3832817 5327103	0 319 926 2316 8822 32698 85173 187974 352442 575578 885846 1351118 2018736 2823580 3869180 5323826	0 104 629 1943 31285 87990 187109 354521 563661 869431 1355448 1955853 2818051 3679163 55314738	48 51 509 2460 8079 35585 87795 189216 365657 579391 918518 1370231 2026640 2858153 3819785 5419196	0 196 612 2722 9790 30219 80522 188563 360440 582853 920680 1326881 1977702 2764650 3630224 4882401	49 191 867 2815 8701 29357 80222 175470 345346 576598 87461 1306606 1916939 2719439 3603651 4808057	100 47 738 2765 9845 28831 76375 330105 551573 330105 551573 452056 1935336 2641403 3571319 4969841	0 187 673 2174 8957 24700 71720 157103 314933 53552 826199 1268729 1900311 2684638 3587036 4834615	53 94 403 8239 25195 66180 163500 303283 531000 836713 1316879 1890450 2636333 3537566 4920121	55 193 8255 2551 7866 22083 62807 150650 287015 521746 829538 1280421 1852831 2609576 3587057 4927790	0 98 379 1814 6256 63869 145560 286801 499066 841505 1252776 1909682 2696095 3758141 5223077	61 50 329 1598 7130 24363 59377 141597 280135 483483 799369 1205693 1828021 2666241 3508131 5037358	0 102 281 1392 7930 21394 58609 131076 259365 477219 766567 1193646 1780783 2530728 3378837 4579327	20 83 329 1601 7105 22848 60618 139741 275433 486589 902480 1217371 1839495 2631688 3548369 4946587
DISEASES O	F PULMONA	RY CIRCUL	ATION (4	15-417)												
0 0 391 272 280 1305 1652 4048 6321 11978 19791 33973 39971 63792 69481	0 57 170 108 134 902 1110 1947 3874 6073 11311 20587 35606 45111 66507 71616	49 112 172 0 196 343 985 1296 3308 7769 13135 19519 31804 45074 54036 94340	0 164 116 211 255 410 852 1722 3763 5939 11015 21461 31230 47576 64131 81563	0 58 105 184 277 500 1670 3608 7576 13042 19194 30340 48838 69180 98993	0 52 172 111 113 416 928 1194 4178 5716 11395 19332 32468 45641 67568 90758	0 51 57 164 137 989 1277 3344 5546 11485 18332 29781 44990 67527 107465	97 98 56 116 215 596 489 2798 4659 9599 18092 30744 47684 74242 111017 123277	49 143 163 176 267 581 1529 1954 3846 9218 15735 26230 48959 67408 105477 132701	0 142 211 294 161 685 776 1679 3731 9756 15487 26770 52044 64105 101499 132540	51 141 362 118 57 775 2336 3617 8318 16355 27819 42009 69293 104151 127692	106 236 101 349 351 278 623 1951 4387 7191 14667 25459 41717 70104 96897 113791	110 48 194 113 219 538 571 1407 3191 6578 10106 18616 36690 46649 73669	57 148 142 220 0 217 392 568 1790 3886 6598 9838 19055 34872 53114 64336	0 100 141 646 1199 3161 6234 9426 18725 33072 52777 70714	0 153 47 206 235 284 521 501 1124 2729 5431 8299 18067 32619 47647 61298	19 133 110 195 78 239 388 571 1371 3258 6087 9187 18615 33521 51179 65449
CEREBROVAS	CULAR DIS	EASE (43	0-438)													
831 1270 1601 3353 4891 6672 14083 30924 53768 101853 201827 413231 794795 1371163 2348158 4052770	861 856 1419 2100 4544 8532 15400 29670 54426 103234 192659 397381 754829 1336687 2281627 3851528	739 843 2069 2395 4236 8373 14217 28369 51807 102203 183367 385205 731247 1298327 2159375 363979	338 1148 1685 2689 3246 6357 14552 26517 50149 91786 187778 363155 707742 1247756 2089341 3532710	478 850 1389 2158 2941 7135 12504 48239 86236 173456 359658 667714 1192986 2034146	713 726 1544 2331 3059 6174 13630 27733 48425 86882 168394 341388 644152 1156867 1837838 3139883	191 859 1639 2460 3930 7718 12361 24122 46395 82027 169168 341110 644835 1138310 1852903 3157506	436 931 1445 2432 3496 7687 12571 26118 48496 86594 165828 325129 644597 1166196 1831575 3180049	593 1052 1517 2932 3470 6388 11470 22504 45367 84130 150157 302658 593585 1102204 1801217 80217	551 1088 896 2294 3103 6289 11707 22190 42474 78402 137757 294468 578736 1038073 1716647 2907937	257 422 1864 2468 3742 6637 10286 20295 40515 74286 133369 280114 554012 1015206 1667152 2819231	476 1225 1460 2382 3214 6452 9760 22975 36558 73960 134850 271597 535244 957364 1613103 2696307	110 674 1117 2041 3253 6286 10353 18493 36941 68577 140678 283075 554968 1006252 1700394 2921225	517 640 1089 2474 2920 6279 10394 19740 36913 64868 130379 258134 536623 1039070 1752134 2997902	242 998 986 2131 4219 5996 8850 19796 32609 67650 132292 248903 525524 989775 1726296 2854570	318 970 1030 1134 2937 5576 9730 16393 33338 61860 121124 232108 495052 941223 1616486 2536058	359 869 1035 1913 3358 5950 9658 18643 34286 64792 127931 246381 519066 190022 1698305 2796176

A2 - 12

Death Rates for England and Wales (continued).

ISCHAEMIC HEART DISEASE (410-414) 0

Death
Rates for
for
England :
an
d Wales
(continued)

948276 5560246 5623581 5705183 6895134 ACUTE RESPIRATORY INFECTIONS (460-466) Ō OTHER DISEASES OF UPPER RESPIRATORY TRACT (470-478) Ô Ô Ó 945 442 Û C

DISEASES OF THE RESPIRATORY SYSTEM (460-519)

		•														
1402 3002 2515 3600 6942 9892 14140 26243 48484 93352 210189 457808 917678 1759209 3782752	1215 2567 3292 2639 3074 4509 8116 15976 26600 49719 91011 195756 436079 948040 1856951	1577 3653 2931 2714 3324 4049 7531 12752 23594 42851 76785 172282 407501 860595 1788839 4027444	1013 2186 2614 2636 4582 3896 6034 14670 21993 42499 77480 175130 421040 895197 1871296 4022940	2153 3348 4901 4849 7646 12736 27794 46795 96663 209808 498006 1075301 2340133 512919	951 1969 2287 2387 2096 4509 5638 10812 21849 36582 80161 167047 407631 99054 1900174	908 2424 2260 2288 3221 3347 5933 12274 18321 38138 76369 164284 398325 907466 1904516	1114 1911 2502 1448 2636 3115 6425 9543 20613 34559 76692 167645 394511 883738 1977628	1483 2056 1788 2170 2455 3097 5283 9117 16879 34945 70891 149750 361058 852432 1878296 4445498	851 1419 1476 1823 1766 2864 3949 7956 15569 32167 66107 137051 344427 827519 1842753	719 1312 1295 1410 2381 3693 5002 10147 14904 28861 63150 148090 354968 808018 1894028 4692308	582 1036 1410 2033 1870 2670 6936 11260 29276 60316 141386 325329 788675 1847931 1847931	221 241 825 794 1005 984 2218 3642 6145 11801 21904 49918 109495 278052 708607 278052 708607 2344274	230 689 663 715 2436 2484 3479 6861 11060 24067 49192 115762 297546 804932 2643357	545 649 657 639 1664 1513 4304 5847 11137 23549 44330 114690 293338 742559 2483655	254 562 421 980 1116 910 2954 4152 4270 11144 19440 39443 97238 238418 608594 1991587	343 633 580 778 1304 1619 2670 3978 5659 11113 22352 44321 109230 276434 718695 2372866
BRONCHITIS					4470700	4520755										
935 1039 1325 1620 1630 3015 6045 17444 41625 93808 193742 369342 641507 962170 1151842 1507476	962 1198 1135 1077 1804 2636 5757 15976 38350 89191 170262 319639 572986 892537 1109075 1420087	739 787 862 958 1369 2951 5419 13298 33082 78574 159949 304367 55651 819470 1095536 1408233	724 1149 988 1265 1400 2393 5040 13362 33346 70497 151264 287733 528554 835278 1093764 1386576	765 1063 868 1053 1225 2286 4216 11413 31202 62913 142079 270470 494963 817771 1102882 1421141	856 518 915 833 906 1734 4995 9057 25274 53658 127008 234974 434649 737664 1025719 1304746	574 707 565 1087 1419 2459 3885 9720 25566 54776 127001 229278 428106 760118 1022365 1382281	678 784 834 1274 1130 1657 4539 8682 21954 52565 113494 217921 409377 700584 1038835 1282238	742 1148 813 1173 1334 1807 3059 8249 21010 46640 96016 179753 352167 608125 939959 1224329	952 1324 1529 1765 1284 2117 3526 7007 17004 42418 82410 159374 311146 541881 846213 1155556	1285 1265 1191 1880 1417 1154 3100 6935 14172 41374 74497 158924 285619 531363 806628 1128462	952 1084 1359 1278 1636 1390 2630 7008 13307 36686 76106 147216 250858 442872 712759 1019593	1103 1396 1359 1361 1124 1421 3092 5784 12215 30800 61736 61736 61736 5397664 659658 927790	402 1132 994 1320 1668 1516 2811 6178 13423 30192 68376 118644 225355 383113 619665 933566	605 898 1549 1279 1485 1675 3013 4877 10945 24983 57103 104526 190927 318262 525928 834556	699 1276 1685 1547 1292 1707 2085 4725 9739 21454 48009 83705 161105 248503 405729 586538	568 1102 1409 1382 1481 1632 2636 5260 11369 25543 57829 102291 192462 316626 517107 784886
CHRONIC OB	STRUCTIVE	PULMONAR	Y DISEASE	(490-49	6)											
935 1155 1435 1676 2377 7144 18766 43176 95891 197335 374382 651096 976445 1171608 1535620	962 1255 1249 1508 1871 3191 6786 33641 91089 174232 325598 581527 907889 1130979 1441048	788 955 919 1011 1695 3294 6264 14594 34517 81698 163702 310873 566016 835270 1116071 1431389	724 1203 1046 1265 3144 5537 14051 34060 73120 73120 73120 536239 850539 1110571 1413764	765 1063 1099 1211 1593 2771 4573 12875 32939 65364 146298 274872 503928 832616 1118847 1441275	856 518 914 1246 2289 5281 9759 26849 55373 130648 239895 440692 750000 1041848 1328893	574 758 735 1258 3210 4450 10500 26681 57104 130019 234278 434272 772102 1042581 1402789	678 882 945 13900 1183 2121 5168 25907 62032 132380 253569 469868 802337 1173491 1437956	742 1243 1029 1231 1548 2258 3893 10420 25283 57990 122325 228880 430276 736564 1132252 1433649	1002 1372 1529 1941 1498 2553 4443 8613 21022 56133 110694 215226 407639 714185 1095732 1426190	1285 1406 1295 1939 1531 1443 4227 9198 23441 60976 231546 231546 752030 1109250 1518462	952 1084 1611 1336 1753 1613 3807 9681 19668 53929 118387 233602 339459 703573 1102759 1478523	1103 1444 1457 1417 1360 1804 3899 8140 19544 51136 11834 227746 413858 716025 1156702 1619256	402 1181 1042 1375 1668 1840 3792 8876 19985 55078 129555 240503 447847 775105 1232690 1773427	605 898 1549 1438 1723 2215 4017 7101 18591 49063 114514 221185 436023 737178 1187174 1772515	763 1276 1732 21547 1292 2219 2954 7660 16032 43818 104360 200518 409781 655846 1023385 1463341	590 1118 1441 1453 1561 3587 7879 18202 49319 116143 220735 431217 722709 1147749 1669761

PNEUMONIA & INFLUENZA (480-487)

A2 - 14

PNEUMOCONIOSES (500-508)

0 0 0 0 69 463 742 2083 4342 11178 17397 20462 10332 12313 COALHORKERS	0 0 0 0 69 201 775 2581 5019 10023 15110 17005 16987 12227	0 0 57 0 0 0 0 205 624 2082 2927 9358 12671 13243 16071 12007	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 143 209 802 1931 3682 7396 16923 17427 15965 15101	0 0 0 139 711 411 1215 3719 6854 10783 18092 21796 14988	0 0 0 0 141 142 488 959 3437 6491 9772 18075 16344 17227	0 96 56 0 0 70 70 144 635 1258 2295 6482 11435 20916 20262 21087
	FILLOHOUD	110353 (300-300)				
0 0 0 0 132 202 1293 2620 7422 11507 13562 6289 11434	0 0 0 0 0 0 0 0 0 0 0 67 516 1670 3446 6953 10905 12045 14752 11354	0 0 0 0 375 961 1876 5526 8363 9526 12946 6003	0 0 0 0 0 195 848 3093 4769 7779 15934 12826 13594	0 0 0 0 0 0 0 0 0 0 134 891 1918 4490 12692 12694 11530 12584	0 0 0 0 140 137 286 2137 3339 6043 13569 16129 12490	0 0 0 0 0 70 70 70 70 70 70 70 70 70 70	0 0 0 0 0 0 0 0 0 0 0 0 212 397 706 3241 6975 13755 16041 13788
ASBESTOSIS	(501~501)					
0 0 0 0 132 270 359 75 183 548 238 238 0 0	0 0 0 69 67 65 228 375 90 394 472 0 0	0 0 0 0 0 0 0 0 320 225 446 380 0 446 858	0 0 0 0 0 0 69 260 309 528 530 494 898 885 0	0 0 0 0 0 0 0 0 0 0 0 0 67 297 307 264 484 0 443 0	0 0 0 69 71 70 68 286 396 703 829 0 0 0	0 0 0 141 139 342 335 789 465 196 0 0	0 0 0 0 0 0 71 199 530 526 343 377 844 811

49 0 54 0 0 72 499 963 2792 5878 11367 15850 15850 15010 22117	0 47 53 59 54 125 141 73 430 1273 3016 4536 11168 18063 11301 34127	0 0 0 1700 58 0 219 217 1374 2895 5325 10780 16935 18208 17692	0 94 151 0 0 346 144 73 1394 2245 4276 10402 18874 22759 25622	0 49 0 0 134 296 1336 2313 4390 10355 16617 23325 31364	115 49 0 55 0 54 65 71 224 448 2024 5065 10133 15660 24344 33566	0 0 0 108 126 72 750 1129 2617 4013 9028 17255 26388 38692	0 0 0 284 116 143 225 758 1338 3391 7595 15128 25431 25431	38 16 0 148 102 95 399 778 1993 4156 8918 16014 25387 33901
0 0 0 0 142 138 1269 3070 5853 8745 8519 11848	0 0 0 0 0 0 0 0 0 0 0 0 141 897 2490 6701 10802 10381 22222	0 0 0 0 0 0 0 0 0 0 0 506 1174 3030 5779 9850 9852 9823	0 0 0 0 0 0 0 0 0 0 0 514 898 2624 5311 12302 15862 9043	0 0 0 0 0 0 223 940 2042 5288 9707 12155 16776	0 0 0 0 0 0 0 0 0 0 0 224 1125 18587 10010 14859 17483	0 0 0 0 0 0 0 0 0 0 0 150 151 1000 2147 5461 10066 18411 26017	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 72 285 275 423 263 1013 182 0 0	0 0 0 0 73 143 283 489 534 534 553 531 0 0	0 0 0 0 219 217 287 391 459 889 1382 0 0	0 0 0 0 0 72 73 440 389 996 843 0 2251	0 0 0 0 0 0 71 222 371 578 306 661 987 0 0	0 0 0 0 0 0 149 877 661 1453 948 699	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 52 693 747 1115 799 614 0	0 0 0 0 58 0 58 0 58 0 379 315 625 1036 877 1202	0 0 0 19 0 149 277 411 749 937 1118 813 633

SILICOSIS	(502-502)						
0 0 0 0 0 0 0 524 1008 2055 2617 3145 0	0 0 0 0 67 0 304 449 1064 1839 1653 1341 873	0 0 0 0 0 0 0 0 0 0 0 240 1240 1240 634 1162 446 2573	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 77 302 971 1235 1346 865 1699	0 0 0 0 0 0 0 0 0 0 67 0 384 1057 1209 1291 1774 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 70 0 66 177 701 1144 2261 1266 1622
OTHER DISE	ASES OF TH	E RESPIRA	TORY SYST	'EM (510-	-519)		
0 289 110 112 68 210 550 925 1349 3591 5989 10354 21096 33547 49865 124890	101 171 57 54 134 277 416 1141 1485 2201 4195 8397 24570 35664 60349 126638	0 169 115 106 196 412 704 1023 1810 2883 6230 10695 28637 38336 66964 129503	145 109 523 158 127 273 710 964 1752 3008 6035 11304 31856 49820 68554 157179	144 53 58 105 245 208 786 1253 2539 5668 24476 43515 70353 104656 183725	48 104 286 222 227 347 642 1615 3425 7073 15114 26626 49413 76275 127289 191507	48 101 113 172 218 342 2057 5225 9038 2057 5225 9038 63518 92927 128602 201805	145 196 278 232 323 464 698 1866 3106 3840 7060 12350 18411 40701 53609 100568
PULMONARY I	FIBROSIS	(515-515)					
0 58 55 0 136 351 412 463 675 2873 3518 4948 9178 9041 10782 14952	0 0 0 277 208 537 646 2429 3596 7133 7489 12518 12070 4367	0 0 160 275 493 546 874 2002 3678 8578 8578 8516 14870 17857 9434	0 55 58 53 127 68 142 482 1039 1851 3848 6270 10495 12118 11942 11045	48 0 0 2777 429 487 3913 2897 3913 5899 8824 13769 15521 15940	48 0 56 0 214 1123 959 1500 3482 4306 11376 11924 10898 13322	48 0 57 0 218 68 212 497 836 2533 3605 6315 10819 10609 15484 4922	48 0 0 54 66 70 359 988 1324 1765 3241 4574 6972 10131 13788

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 217 367 778 1210 728 1538	0 0 0 0 0 0 147 150 194 553 1348 1379 1507	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 75 0 385 93 780 1598 614 1334	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 25 0 179 317 630 1068 1234 1544
0 191 108 293 267 387 973 1520 2849 4196 7698 12984 141973 50710 91627	150 236 369 235 535 0 282 1387 1385 5232 7010 22560 40907 65744 125397	103 281 259 176 227 462 705 1533 1736 5931 1795 25450 41645 66278 127692	53 141 151 290 409 334 761 1156 1609 4989 8606 13993 19918 40276 76552 128109	55 96 340 170 414 547 336 1459 1703 3711 8675 53142 89356 182349	172 148 331 165 595 523 1207 2610 5381 9972 16170 26545 58767 96744 207692	61 50 141 320 357 648 690 1363 2699 5569 10159 15026 29536 29536 54801 91439 182789	191 204 94 294 228 579 1074 2397 4094 7949 18026 29344 59800 92078 171274	141 134 188 282 356 490 597 1214 2568 5014 93607 28475 57816 93420 187251
0 48 0 53 65 209 217 712 825 2369 3158 5290 10567 8925 9479	50 0 53 59 0 0 141 219 287 566 2038 2757 5919 8854 9996 7937	0 52 0 115 700 365 2035 2035 3489 4890 6739 11653 14615	0 0 1011 58 0 0 138 217 146 3790 4537 8763 3790 4537 8753 11379	0 48 0 59 55 67 357 444 891 2096 3369 6169 11188 15769 22611	0 47 55 60 54 0 142 373 1420 2249 4091 6393 16756 16783	0 0 53 0 0 314 72 525 1505 2386 3640 7468 3640 7468 314728 18012	0 0 103 0 232 0 300 758 944 5087 7365 13552 13552 16369 21034	0 15 70 20 18 182 71 399 1227 1859 4272 7257 12709 15951 12009

DISEASES OF THE DIGESTIVE SYSTEM (520-579)

				,			
935	861	887	579	765	618	765	581
982	1312	899	1039	744	777	556	686
1656	1646	919	2091	1620	1315	1074	1612
2235	2747	2607	2425	1895	1998	1945	1795
3396	3742	4302	2864	3431	3512	2948	3389
6591	6382	5696	5947	4849	6104	5737	6163
9274	11307	10698	10435	10218	7778	7769	10126
14669	17856	16571	16186	17538	16921	14544	16144
24219	24663	27277	25821	25924	26644	24730	25625
37997	40914	40368	35789	38847	36510	35262	40185
54200	58277	54192	58091	54929	53652	51471	58247
88144	89391	90196	86108	86811	81986	74116	89516
153288	154382	148632	137795	144808	133428	119707	134134
217702	217525	227928	214991	218589	225123	200786	230639
351303	335717	353571	324193	348115	296425	324731	346138
478452	488210	507719	553951	522651	462115	454471	566910
DISEASES OF	OESOPHA	GUS & STOP	MACH (530	0-537)			
156	51	49	48	0	48	96	48
58	456	56	219	105	155	101	98
331	284	57	232	463	172	170	222
559	108	479	369	158	500	229	347
747	1336	652	573	674	680	437	699
1402	1595	1373	1094	554	1179	683	1127
2610	2636	2745	3265				
				2644	2070	1483	2235
5352	4699	4774	4270	4872	4634	3902	3659
8365	7425	9051	7720	8352	7603	6409	5153
13791	14954	13536	13806	11810	11503	10339	13439
22384	24345	20866	23086	19946	21287	18610	17562
40224	38284	39750	37446	35658	32513	28506	31006
70411	69242	68044	64082	63459	54390	50372	53288
93980	95418	101533	97621	96816	96834	90766	93461
142408	151989	155357	134896	157428	117698	140215	142676
193492	205240	234991	235344	219799	186511	200984	209246
DISEASES OF			W CUCTEM	(580-629			
DISCASES OF		LIQ-OKINA	(T STSTEM	(300-023	,		
571	304	542	531	335	190	574	145
866	1141	562	711	957	363	556	441
1546	1022	1322	1162	810	743	735	667
1900	1400	1330	1265	1158	1277	801	984
2649	2806	1955	1845	2205	1190	1528	1237
2875	3468	2402	2187	1940	2705	1912	1325
4809	3607	5419	3620	3144	3925	3673	1606
6740	4967	6342	6199	5568	4915	4895	3588
11401	8587	10112	9277	7684	5479	6966	4447
14797	13815	15138	13421	12107	13075		10195
26501	23371					12872	
		24844	23161	24012	22711	23975	19328
47828	41986	44296	41243	42349	41652	36313	33021
84658	78702	85403	77170	85217	75246	76664	77301
161075	164384	160316	151481	155120	155016	150098	150367
311770	296379	319643	284830	291353	281604	292903	289574
645558	572052	590909	578590	661074	566195	605414	613950

396 622 1409 1407 2829 6388 10080 15991 21651 40036 56763 89131 133258 223356 223356 520537	701 520 1055 1471 3371 5106 9027 14161 25685 35914 58771 76841 132790 218346 218346 218346 568254	308 843 777 1587 3061 5021 10075 13944 20764 36094 57360 79692 131918 200968 374727 542308	159 424 604 1859 3097 4505 9414 19668 32284 5186 76960 117074 199528 328276 560663	276 770 923 1701 2957 5466 9345 14566 20654 31320 54218 77276 126570 205166 348883 601021	287 836 758 1704 2741 14273 24310 35722 55930 35722 55930 35722 35723 130521 222312 366108 665035	0 499 845 1012 3268 59952 13771 21439 33185 56411 83528 125279 212334 364222 646431	381 510 796 1547 3994 5519 8919 15964 18130 33204 53282 81385 125086 204853 347559 557692	222 615 799 1421 3334 5660 9228 21293 34037 55207 81368 126962 213166 359296 623052
0 239 325 352 839 1946 3111 4843 10387 19457 30704 53686 93460 146856 201422	50 47 211 176 214 872 1551 3358 5453 10251 16710 28637 48247 89782 234127	51 187 155 353 510 404 1832 2555 4269 10488 18077 29286 51789 85537 156237 213077	0 141 201 230 351 834 1523 2240 5922 8658 17212 25459 42935 79879 125172 204974	55 193 49 283 296 711 1748 2785 3702 8461 16771 28583 44834 80454 136662 208607	0 197 142 440 596 1028 1504 2059 4623 10687 17019 26885 26885 49234 88634 148277 234965	0 100 235 160 178 486 753 2510 4573 7751 15930 29211 46478 86595 135011 246833	127 102 140 258 705 683 985 2362 3521 8112 14796 24897 41657 72644 129787 191106	42 133 172 286 493 732 1080 2310 4239 8850 15915 26997 45789 82624 137691 224968
198 191 325 528 534 968 2364 2967 4843 9218 17765 32810 65954 148114 268560 584518	100 426 316 588 749 1059 2774 4592 8592 4592 14346 34240 64440 148752 281430 584921	206 281 155 680 1270 1902 1971 3256 9403 16355 32134 65155 32134 651526 141524 292061 602308	53 330 523 643 1335 1454 2890 3363 7557 14892 29540 60197 135322 270000 574228	110 433 291 355 601 874 1785 3405 5937 12217 27562 52965 125864 257884 658643	57 148 199 330 358 650 1242 2059 3729 5082 11096 21625 56394 136422 275055 644755	121 200 566 713 378 1004 1291 3523 5493 12006 24732 5045 24732 5045 129094 274624 615744	254 102 187 258 587 626 869 1432 2422 4624 10467 19543 52129 120076 250804 519832	144 150 313 391 552 551 1038 1594 3241 5066 11189 21966 52856 52856 128530 266827 593443

DISEASES OF THE SKIN & SUBCUTANEOUS TISSUE (680-709)

	0	0	49	0	0	48	0	0
	Ó	114	0	0	53	104	0	49
	0	0	57	0	0	57	0	0
	0	54	0	0	105	0	57	0
	68	0	0	0	123	0	55	0
	140	69	69	0	139	69	137	133
	275	277	422	71	143	143	212	210
	264	67	68	207	70	140	284	144
	202	194	187	130	200	0	139	353
	718	304	400	540	297	214	616	265
	749	824	826	1056	614	475	838	971
	1466	1354	1337	1325	1233	264	965	876
	2055	1971	3041	1605	2659	2488	2327	2287
	2855	5905	4182	5386	4518	2878	3929	4711
	8985	4917	6696	8403	6652	5231	6452	9287
	14952	16594	23156	14444	13423	7494	16407	17843
	ISEASES OF	THE MICO			(710 7	201		
U	ISEASES OF	THE MUSU	ULUSKETEL	AL STSTEP	1 (/10-/.	39)		
	104	0	99	96	144	48	96	48
	115	342	225	109	106	155	152	392
	497	284	172	116	116	343	283	111
	168	215	266	105	263	167	229	58
	272	267	326	64	123	397	109	108
	491	486	549	752	416	624	273	199
	687	902	704	568	643	500	777	698
	1057	1544	1364	1446	1183	1404	1419	861
	1687	2195	1748	2336	2539	1644	1811	1271
	3376	3568	3124	3625	3045	2644	3560	2516
	5764	5169	5329	5206	5447	5539	5449	5383
	10995	8939	8467	8302	7836	7996	9648	7533
	16027	13664	15585	15064	12813	13746	12913	13265
	19986	25272	23699	21993	24312	24260	25540	22989
	45822	31739	38839	42459	35033	37925	41290	52343
	99384	77729	87479	92608	93960	91590	101723	109489
s	YMPTOMS, S	IGNS & TI	L-DEETNET		NS (780-	799)		
	-							
	0	0	49	241	96	48	96	97
	115	285	225	55	0	104	202	294
	386	341	115	465	579	286	226	111
	168	700	372	369	263	444	229	463
	475	134	521	382	735	113	328	377
	140	416	206	205	416	347	888	663
	343	277	422	923	500	571	777	768
	793	873	477	620	835	421	568	574
	1214	516	811	908	668	822	1463	918
	718	1139	1121	1388	1188	429	1575	1589
	1123	1348	1201	1584	1304	1187	1090	1324
	2566	1986	1961	2561	1761	2548	2544	2365
	8630	8015	6842	6297	5923	6280	5584	2173
	22127	19839	15799	17504	16351	15419	13556	6783
	86253	77783	62500	61035	52328	57977	46022	23639
	416887	401747	343053	304163	262584	253122	216571	150041

0 0 54 0 0 0 0 285 69 677 1053 2589 5101 6491 18957	0 47 53 59 0 125 141 73 3 646 283 897 1245 1452 4781 8458 27778	0 0 0 77 365 145 217 1194 1445 3974 8740 26154	0 0 0 1111 1389 217 146 147 599 583 2877 4877 411724 22607	0 0 0 55 134 148 223 723 1021 1322 5265 8870 43034	0 49 0 55 0 0 65 213 373 299 675 1364 2974 7588 10433 30769	0 0 0 0 126 0 300 452 539 1120 2341 7829 14115 32688	0 0 52 0 114 116 72 75 944 1696 2301 5358 9052 28245	0 16 0 35 0 38 102 95 249 402 719 1393 2538 6925 11203 30567
198 143 163 293 374 129 348 1085 2493 2614 4399 7895 14406 24048 40162 94787	150 95 211 176 107 560 846 1533 1435 2757 567 5757 5757 52856 25856 54979 124603	51 187 52 294 57 115 493 949 1375 2821 5791 10007 15559 24883 44064 110769	159 188 50 0 58 111 1554 722 1462 1834 4864 9620 13279 25110 47586 127355	110 48 291 397 177 273 807 286 1703 3043 6434 12862 21701 36525 77201 179431	57 246 189 220 388 325 784 781 1641 3288 1345 19606 36487 84097 206993	121 150 94 53 238 540 251 932 1874 3236 6695 11366 21734 34990 81927 220147	191 153 94 155 0 114 579 573 1349 3260 5824 9281 19793 38134 70740 177284	123 183 125 142 198 326 538 762 1621 3261 6022 11337 20377 36537 78921 201474
148 239 217 410 374 839 834 724 783 825 1269 1842 1238 7105 20284 138231	50 0 527 235 161 187 423 876 933 1767 1875 1156 2457 1875 8146 18839 115667	0 94 207 411 454 289 1127 730 1230 1374 1487 2295 2890 5221 17480 122308	0 94 352 465 278 761 1156 1316 1614 2095 1360 2766 4719 20690 119819	0 144 340 454 411 1499 1036 891 1446 2654 1322 6910 18397 99927	115 197 663 605 654 1420 1164 2324 2533 2203 7427 21162 127273	303 150 469 639 942 1291 1874 1656 2540 2800 2675 8468 26082 158773	64 102 421 464 940 797 1158 1432 1274 1668 1968 2142 30985 30985 179087	160 149 517 569 452 752 918 1381 1422 1656 2277 2491 2738 8660 26083 155044

ACCIDENTS, POISONINGS & VIOLENCE (800-999)

15425	13519	12813	14858	11815	11793	12477	13121
57856	56471	58949	58267	61228	60482	63491	58506
61824	68570	59591	63499	64167	60256	68539	61211
45876	49599	42782	43763	44643	49895	48736	52004
40144	42563	42365	40919	40985	38292	40777	43785
42073	41690	39531	39647	41289	39748	44054	42545
41217	46476	39766	43728	41372	39892	40119	47769
44535	47929	48213	45044	47324	45426	49947	44342
48641	46937	49061	49241	51046	49658	47997	47438
58325	60270	58791	49132	53257	52301	52037	56273
62434	61124	63649	61335	59992	54206	60441	60454
67620	66095	68093	60231	59518	58699	66310	62451
99452	92760	93386	83838	88360	81052	88646	80389
135617	152102	132435	132855	131885	116776	133006	132655
248428	221278	251339	208757	212417	203575	213763	210215
430959	454148	403945	437553	428691	385512	387203	396594
-30333	404140	403343	407000	42003	303370	301200	330334
TRANCOORT	ACCEDENTS	1000 040					
TRANSPORT	ACCIDENTS	(800-846	3)				
							2000
8881	7291	6653	7670	6266	6182	7936	7359
42554	41412	43664	41323	45549	46178	48944	43806
35604	41324	33674	35671	35873	35102	42152	35804
23748	24019	19741	19719	19742	21257	20764	21716
17932	18976	16359	14764	15622	13368	15394	14523
16058	15954	14755	12509	13440	12833	13319	13320
14770	17134	11684	13488	12576	11703	13137	13548
13414	16379	12821	13637	10926	11865	13693	11552
15449	16463	13794	13883	15100	13219	14211	14471
19825	22393	18742	14886	14930	15647	16912	16948
23132	20899	21917	17503	19716	18042	20371	18092
23090	21129	22549	19253	16904	17047	20086	16642
32740	32716	31931	23213	24175	23699	27338	21727
46871	44639	43913	41068	37220	28166	38703	29960
75472	51408	70982	51305	51885	48387	54624	43900
68602	71616	66895	64571	65436	74105	57424	41363
ACCIDENTAL	POISONING	(850-86	591				
ACCIDENTAL	, FOIGONING	(000.00					
260	101	246	531	191	95	191	242
	799		1257	1276	1347	1212	1372
1674		1236					
1766	2384	2931	3137	2719	2973	2543	2835
1397	1777	1756	2056	1948	2609	2345	2664
1494	1403	1173	2100	2328	1699	1583	1990
1823	1457	1990	2256	2009	2012	2322	2054
1923	2150	2182	2414	2287	2284	1836	1886
2048	2551	3478	2824	2088	2949	2483	1866
						2577	1412
1956	2389	2185	1557	2138	3151		
2729	1746	2163	2160	1857	1858	2054	2383
2695	1573	2102	1735	1381	1504	1090	1059
2107	2528	2317	1590	1937	1494	1403	1839
2466	2496	2408	2716	2538	2133	2210	1830
2379	2362	1626	2693	3657	2262	1965	3392
				3991	3923	2151	3377
4043	4917	3125	2654				6488
5277	5240	6861	2549	5872	1665	5742	0488

A2 - 19

 12182 45680 57313 45192 45295 40905 43815 45746 43815 45746 45160 51640 51640 51640 51640 51640 176017 303247	7944 30344 29427 18101 13507 10618 10907 10747 10747 11217 11672 13187 18867 1887 188634 35304 35271	155 1067 2069 1956 2428 2214 2104 1999 1571 1606 1540 1213 1461 1703 1922 3045
 11634 46506 58284 45839 46696 40683 41235 44312 42403 48291 48717 53632 95178 164864 265625	7883 30834 28744 18769 13451 10982 9787 10380 9589 12433 10153 12672 16686 22849 37708 34856	0 1072 2481 1702 2526 2048 1969 11453 1592 1810 1071 1611 1611 1611 1611 2046 3606
 9867 46994 57125 46137 45276 39650 44125 47482 45952 45752 53948 54130 74008 107685 179503 317545	6417 30581 29994 18380 14557 9669 9415 11620 11019 1008 13468 13252 22403 27001 34060 36691	121 948 1455 2078 2317 2323 2448 2582 1799 1957 1462 1400 1672 1917 2455 1334
 15047 43540 56531 43600 43913 42382 46087 45445 45047 45047 45047 4507 55328 72595 112367 183686 326573	9534 29617 29544 17154 12513 11204 10852 10722 11633 11210 11396 13637 17513 34145 34266	345 1181 2273 2089 2443 2273 1896 2272 1491 1270 1350 1169 1101 1776 1265 4196
 12850 48337 55739 47228 43116 42416 42416 43630 47554 44936 46905 47929 55227 71271 107601 184297 315828	7390 33219 31268 19560 13130 12298 10555 12139 11179 9945 11133 13965 17405 27147 39093 39387	662 1926 1894 1701 2839 2241 2487 1499 1555 1336 1807 1531 991 1974 2957 729
12434 51250 55687 47514 44992 40656 44923 45661 46423 45661 46423 50737 58984 69935 103809 189655 339864	7619 34816 31016 18994 14199 11290 11490 10765 11845 12400 11674 13215 19697 24267 37241 32404	265 1837 2316 3079 3155 1557 1730 1734 1682 1541 1197 1360 775 2022 3793 4521
 12282 54639 59137 48716 44370 41724 43821 47598 47598 55913 51021 55913 51021 59310 9310 9310 182811 315385	6629 38425 33194 19040 14400 14400 12119 11272 11024 11793 14250 12755 12578 19671 29376 36781 45385	308 1593 2537 3173 2891 2712 2184 2555 2096 1953 1643 1469 1663 1469 1667 2419 4370 2308
 13323 58125 57055 48409 41520 41472 44076 46423 48142 51608 55836 55836 55836 55836 122366 197232 369048	5910 32208 24731 13411 10326 8520 8674 8832 8538 10604 11738 10939 15635 25146 38447 30952	250 1561 2953 3706 2889 1806 1834 2482 2439 1414 2201 1690 1675 3719 2691 6349
10978 58680 57533 48610 41849 41809 46437 44645 48928 55995 61585 61585 60707 80135 116415 197566 362559	6033 43807 19233 12651 11291 12930 11143 14600 14583 19203 15703 24086 27874 49763	148 1387 2275 3342 2295 1936 2850 2098 1994 2339 1354 2251 2840 3160

Death Rates for England and Wales (continued).

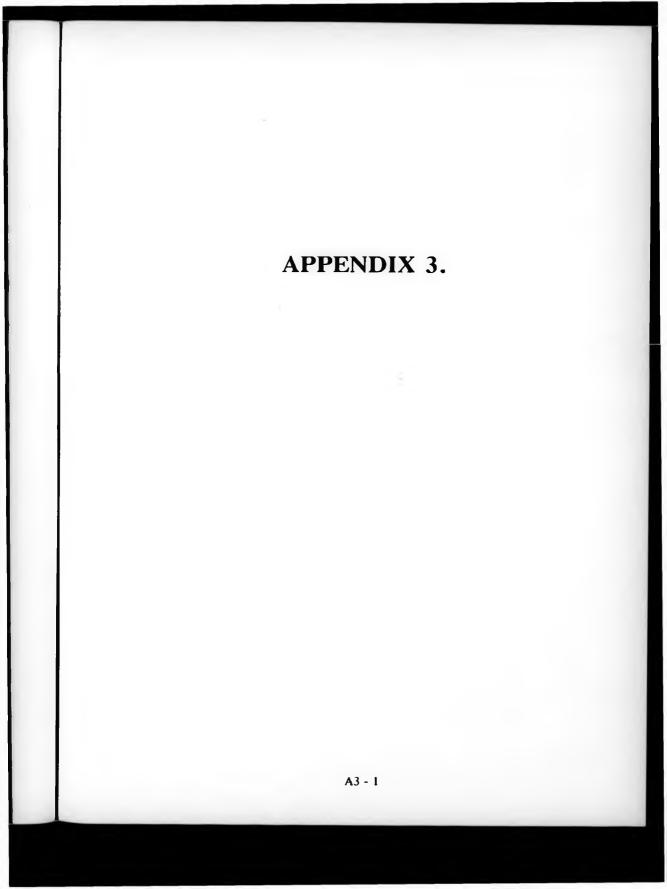
ACCIDENTAL	FALLS (880-888)					
987	810	1133	917	1005	571	478	533
1444	1597	1630	1366	1754	985	1010	882
2594	2214	2126	1917	2083	1944	1526	1557
2570	2154	1596	1635	1685	2331	1716	1853
2038	2806	2542	1845	1960	2946	2347	2528
2524	2358	2471	1777	2148	2844	2595	1789
3366	2983	2956	2627	2715	2070	2825	4400
3899	4162	4705	3375	3619	3440	3902	4018
5599	4713	5430	5644	5078	4795	4180	3883
6034	8046	6087	5939	5125	5644	6436	6157
8759	7491	8331	9280	6751	6964	8970	9620
11545	11377	12656	11393	10829	8699	12192	12000
25616	22730	22301	21978	21999	19315	21638	18525
48061	57156	46933	46230	46256	44819	45383	45789
114106	108628	125446	107032	101552	95466	98065	91600
292876	310044	262436	286321	271812	235637	240361	240065
SUICIDE &	SELF-INFL	ICTED INJ	JRY (950-	-959)			
SUICIDE &	SELF-INFL	ICTED INJ	JRY (950- 96	-959) 144	48	287	291
				ŕ	48 3213	287 3637	291 4116
260	152 2339 9025	49 2641 8964	96	144			
260 3060	152 2339	49 2641	96 3389 9470 10334	144 3189	3213	3637	4116
260 3060 9329 9499 9510	152 2339 9025 10286 8954	49 2641 8964 9365 11862	96 3389 9470 10334 10309	144 3189 8968 10792 10353	3213 9662 12599 11102	3637 10623 12127 11081	4116 9395 12740 13340
260 3060 9329 9499 9510 10869	152 2339 9025 10286 8954 11931	49 2641 8964 9365 11862 11461	96 3389 9470 10334 10309 10800	144 3189 8968 10792 10353 11777	3213 9662 12599 11102 11654	3637 10623 12127 11081 12499	4116 9395 12740 13340 13386
260 3060 9329 9499 9510 10869 12159	152 2339 9025 10286 8954 11931 13319	49 2641 8964 9365 11862 11461 11191	96 3389 9470 10334 10309 10800 11713	144 3189 8968 10792 10353 11777 11718	3213 9662 12599 11102 11654 13273	3637 10623 12127 11081 12499 13491	4116 9395 12740 13340 13386 15294
260 3060 9329 9499 9510 10869 12159 14008	152 2339 9025 10286 8954 11931 13319 13895	49 2641 8964 9365 11862 11461 11191 15753	96 3389 9470 10334 10309 10800 11713 13500	144 3189 8968 10792 10353 11777 11718 16424	3213 9662 12599 11102 11654 13273 15446	3637 10623 12127 11081 12499 13491 16531	4116 9395 12740 13340 13386 15294 15355
260 3060 9329 9499 9510 10869 12159 14008 13965	152 2339 9025 10286 8954 11931 13319 13895 13300	49 2641 8964 9365 11862 11461 11191 15753 15168	96 3389 9470 10334 10309 10800 11713 13500 14078	144 3189 8968 10792 10353 11777 11718 16424 13764	3213 9662 12599 11102 11654 13273 15446 16301	3637 10623 12127 11081 12499 13491 16531 14559	4116 9396 12740 13340 13386 15294 15355 15389
260 3060 9329 9499 9510 10869 12159 14008 13965 15371	152 2339 9025 10286 8954 11931 13319 13895 13300 15637	49 2641 8964 9365 11862 11461 11191 15753 15168 15058	96 3389 9470 10334 10309 10800 11713 13500 14078 13112	144 3189 8968 10792 10353 11777 11718 16424 13764 16193	3213 9662 12599 11102 11654 13273 15446 16301 15719	3637 10623 12127 11081 12499 13491 16531 14559 14242	4116 9395 12740 13340 13386 15294 15355 15389 16816
260 3060 9329 9499 9510 10869 12159 14008 13965 15371 15496	152 2339 9025 10286 8954 11931 13319 13895 13300 15637 16779	49 2641 8964 9365 11862 11461 11191 15753 15168 15058 16588	96 3389 9470 10334 10309 10800 11713 13500 14078 13112 17503	144 3189 8968 10792 10353 11777 11718 16424 13764 16193 18105	3213 9662 12599 11102 11654 13273 15446 16301 15719 12978	3637 10623 12127 11081 12499 13491 16531 14559 14242 16347	4116 9396 12740 13340 13386 15294 15355 15389 16816 16503
260 3060 9329 9499 9510 10869 12159 14008 13965 15371 15496 18692	152 2339 9025 10286 8954 11931 13319 13895 13300 15637 16779 18962	49 2641 8964 9365 11862 11461 11191 15753 15168 15058 16588 17647	96 3389 9470 10334 10309 10800 11713 13500 14078 13112 17503 14131	144 3189 8968 10792 10353 11777 11718 16424 13764 16193 18105 16200	3213 9662 12599 11102 11654 13273 15446 16301 15719 12978 17135	3637 10623 12127 11081 12499 13491 16531 14559 14242 16347 16665	4116 9396 12740 13340 13386 15294 15355 15389 16816 16503 15591
260 3060 9329 9499 12159 14008 13965 15371 15496 18692 19589	152 2339 9025 10286 8954 11931 13319 13895 13300 15637 16779 18962 18263	49 2641 8964 9365 11862 11461 11753 15168 15058 16588 16588 16588	96 3389 9470 10334 10309 10800 11713 13500 14078 13112 17503 14131 19756	144 3189 8968 10792 10353 11777 11718 16424 13764 16193 18105 16200 18977	3213 9662 12599 11102 11654 13273 15446 16301 15719 12978 17135 17656	3637 10623 12127 11081 12499 13491 16531 14559 14242 16347 16665 20940	4116 9396 12740 13340 13386 15294 15355 15389 16816 16503 15591 16810
260 3060 9329 9499 9510 10869 12159 14008 13965 15371 15496 18692 19589 18558	152 2339 9025 10286 8954 11931 13319 13895 13300 15637 16779 18962 18263 20784	49 2641 8964 9365 11862 11461 11191 15753 15168 15058 16588 16588 16588 16588 20400 18820	96 3389 9470 10334 10309 10800 11713 13500 14078 13112 17503 14131 19756 17504	144 3189 8968 10792 10353 11777 11718 16424 13764 16193 18105 16200 18977 20869	3213 9662 12599 11102 11654 13273 15446 16301 15719 12978 17135 17656 18914	3637 10623 12127 11081 12499 13491 16531 14559 14242 16347 16665 20940 19450	4116 9396 12740 13340 15356 15359 16816 16503 15591 16810 24308
260 3060 9329 9499 9510 10869 12159 14008 13965 15371 15496 18692 19589 18558 22462	152 2339 9025 10286 8954 11931 13319 13895 13300 15637 16779 18962 18263 20784 25928	49 26641 8964 9365 11862 11461 11191 15753 15168 15058 16588 17647 20400 18820 21429	96 3389 9470 10334 10309 10800 11713 13500 14078 13112 17503 14131 19756 17504 17691	144 3189 8968 10792 10353 11777 11718 16424 13764 13764 13764 16193 18105 16200 18977 20869 22616	3213 9662 12599 11102 11654 13273 15446 16301 15719 12978 17135 17656 18914 21360	3637 10623 12127 11081 12499 13491 16531 14559 14242 16347 16665 20940 19450 20215	4116 9396 12740 13340 13386 15294 15355 15389 16816 16503 15591 16810 24308 26171
260 3060 9329 9499 9510 10869 12159 14008 13965 15371 15496 18692 19589 18558	152 2339 9025 10286 8954 11931 13319 13895 13300 15637 16779 18962 18263 20784	49 2641 8964 9365 11862 11461 11191 15753 15168 15058 16588 16588 16588 16588 20400 18820	96 3389 9470 10334 10309 10800 11713 13500 14078 13112 17503 14131 19756 17504	144 3189 8968 10792 10353 11777 11718 16424 13764 16193 18105 16200 18977 20869	3213 9662 12599 11102 11654 13273 15446 16301 15719 12978 17135 17656 18914	3637 10623 12127 11081 12499 13491 16531 14559 14242 16347 16665 20940 19450	4116 9396 12740 13340 15356 15359 16816 16503 15591 16810 24308

C (000 000)

A2 - 20

890 1483 1246 1994 2402 2258 2920 3256 3703 5710 7783 10001 17558 38076 86410 231438	1102 3642 3533 2412 2762 2366 3032 3869 4879 5797 6358 9249 16194 36657 84199 225397	668 1265 1864 1469 1871 2078 3170 3139 3979 4774 6965 9916 15675 37843 79388 174615	635 1178 1712 1558 2104 2392 2759 4118 4021 5430 7409 10689 15160 30839 80690 220799	938 1155 1505 1701 1952 2186 2891 3213 2897 4527 6506 10208 15202 31589 78187 191831	459 886 1755 2026 2869 2343 4176 3587 7197 9059 15200 31644 76510 199301	545 948 1502 1438 1248 1783 2887 4017 3898 4214 6388 7839 13375 29877 70881 186791	636 868 1358 1392 1762 1764 2606 3078 4270 4928 5903 9281 13809 27734 61093 150240	546 900 1537 1328 1678 2138 2920 3146 4114 4243 6496 8726 14128 29751 59494 178777
99 4017 8993 12138 13505 14840 15850 15051 15051 15051 17197 18611 18423 17558 22226 19473 20537	200 4162 9808 14705 14018 14883 15726 16496 18422 17933 18522 17933 16009 17199 21427 23068 23016	206 3655 9528 14697 14588 15147 18981 17942 19458 15807 17077 17057 20563 23307 29231	106 3957 9617 12953 15017 15628 16751 16328 18279 18050 18185 18171 16820 21739 25172 19593	55 4333 10633 13777 14254 15305 18017 18708 17619 18400 15253 15619 18506 21882 24967 19694	115 4280 11979 15065 15492 15426 17389 17965 16257 17487 18668 16962 21472 24976 20280	121 4240 12955 13639 15746 14153 16006 16210 16942 15953 16546 17732 17732 17732 19971 29150 22015	254 5258 13014 13458 15800 14851 14421 15320 14609 17436 18180 15795 15880 18122 22216 22837	163 4592 12649 14054 15679 14810 15938 16938 16958 16958 16793 16780 19855 25447 21710

Death Rates for England and Wales (continued).


TABLE A2.2:

Regional Adjustment Factors for the South West (SW) and South East (SE) Standard Regions, for the years 1979-83 and 1989.

		T	1979	9 - 83		1989		
1	Causes of Death						-	
		<u>15-64</u>	65+	SI 15-64	65+	SW All a	SE	
1.	All Causes	0.89	0.91	0.91	0.95	0.91	0.92	
2. 3.	Infectious and Parasitic Diseases Tuberculosis	0.68 0.63	0.82 0.70	1.05	0.99 1.02	0.83	1.09	
4. 5. 6. 7. 8.	All Neoplasms Ca. Lip, Oral Cavity and Pharynx Ca. Digestive Organs and Peritoneum Ca. Oesophagus Ca. Stomach	0.87 0.90 0.97 0.80	0.91 0.88 0.90 0.87	0.92 0.84 0.88 0.88	1.01 0.84 0.95 0.91	0.91 0.77 0.94 1.06 0.88	0.94 0.86 0.90 0.88 0.87	
=9. =10. 11. =12. =13.	Ca. Peritoneum (mesothelioma) Ca. Respiratory System Ca. Lung Ca. Pleura (mesothelioma) Ca. Bone, Tissue, Skin and Breast	0.78	0.83	0.89	1.04	0.79	0.93	
14. 15. =16.	Ca. Genito-urinary Organs Ca. Prostate Ca. Other and Unspecified Sites	0.94	1.11	1.03	1.05	1.06	1.00	
17. 18. =19.	Ca. Lymphatic and Haematopoietic Tissue Benign Neoplasms Unspecified Neoplasms	0.75	0.68	0.85	0.96	0.96 0.83	0.99 1,01	
20.	Endocrine and Nutritional Diseases	1.03	1.00	0.92	0.98	0.99	1.02	
21.	Diseases of Blood and Blood-forming Organs	1.04	0.85	1.03	0.95	1.21	0.94	
22.	Diseases of the Nervous System	0.96	0.94	0.96	0. 97	0.92	1.00	
23. 24. 25. 26. 27.	Diseases of the Circulatory System Hypertensive Disease Ischaemic Heart Disease Diseases of Pulmonary Circulation Cerebrovascular Disease	0.89 0.87 0.90	0.95 0.97 0.94 0.96	0.87 0.92 0.87 0.81	0.92 1.04 0.93 0.86	0.94 0.93 0.92 0.98 0.98	0.88 1.08 0.85 1.04 0.86	
28. =29. =30.	Diseases of the Respiratory System Acute Respiratory Infections Other Disease of Upper Respiratory Tract	0.77	0.80	0.89	0.95	0.78	0.93	
=31. 32. 33.	Pneumonia and Influenza Bronchitis, Emphysema and Asthma Chronic Obstructive Pulmonary Disease	0.70	0.70	0.85	0.92	0.77	0.91	
34. «35. «36. =37. =38. =39.	Pneumoconiosis Coalworkers Pneumoconiosis Asbestosis Silicosis Other Diseases of the Respiratory System Pulmonary Fibrosis	0.50	0.59	0.67	0.31			
40. =41.	Diseases of the Digestive System Diseases of Oesophagus and Stomach	0.86	0.92	0.93	0.95	0.91	0.98	
42.	Diseases of the Genito-uninary System	0.82	0.92	0.98	0.99	0.98	0.98	
43.	Diseases of the Skin and Subcutaneous Tissue	1.43	0.93	0.96	1.03	0.76	1.10	
44.	Diseases of the Musculosketelal System	0.88	0.95	0,84	1.01	1.01	0.88	
45.	Symptoms, Signs and Ill-defined Conditions	0.59	1.06	1.48	0.95	1.18	1.05	
46, *47. =48. =49. =50.	Accidents, Poisonings and Violence Transport Accidents Accidental Poisoning Accidental Falls Suicide and Self-inflicted Injury	1.02	0.80	0.99	0.89	0.98	0.96	

Taken from the OPCS 1981 decennial supplement microfiche. Taken from the OPCS 1989 area mortality statistics microfiche. No adjustment factor possible. 7

A2 - 21

TABLE A3.1:

Devonport Dockyard, non-responders. Cause specific mortality for 50 disease groups, with and without regional adjustment.

<u>Causes of Death</u>	With Obs	out regi Exp	onala SMR	djustment 95% Cl	With ro SMR	egional adj. 95% CI
All Causes	294	209.1	141	125-157	156	138-173
Infectious and Parasitic Diseases Tuberculosis	3	0.9	333 242	69-974 6-1350	394 363	81-1151 9-2022
All Neoplasms	75	58.3	129	100-158	143	111-176
Ca. Lip, Oral Cavity and Pharynx Ca. Digestive Organs and Peritoneum	2 21	0.8	262 123	32-945 76-188	295 131	36-1064 81-200
Ca. Oesophagus	1	1.9	53	1-297	58	1-322
Ca. Stomach	ż	5.4	129	52-266	152	61-313
Ca. Peritoneum (mesothelioma)	l i	0.1	1076	27-5993	152	01 010
Ca. Respiratory System	33	24.2	136	90-183		
Ca. Lung	27	23.4	116	76-168	142	94-207
Ca. Pleura (mesothelioma)	6	0.2	2917	1070-6349		
Ca. Bone, Tissue, Skin and Breast	2	0.8	250	30-902		
Ca. Genito-uninary Organs	8	7.4	109	47-214	102	44-202
Ca. Prostate Ca. Other and Unspecified Sites	3	3.8	79	16-230	72	15-211
Ca. Lymphatic and Haematopoietic Tissue	2	4.2	141 60	52-308 7-218	63	8-227
Benign Neoplasms	ó	0.2	00	0-2445	63	0-2982
Unspecified Neoplasms	1	0.4	251	6-1399	-	0-2982
Endocrine and Nutritional Diseases	3	2.2	135	28-394	134	28-391
Diseases of Blood and Blood-forming Organs	1	0.4	230	6-1283	258	6-1437
Diseases of the Nervous System	4	2.7	150	41-385	159	43-407
Diseases of the Circulatory System	163	104.8	156	132-179	167	141-192
Hypertensive Disease	101	2.1	49	1-271	52	1-289
Ischaemic Heart Disease	113	70.8	160	130-189	172	140-204
Diseases of Pulmonary Circulation	5	1.1	472	153-1100	481	156-1123
Carebrovascular Disease	23	18.4	125	79-187	134	85-200
Diseases of the Respiratory System	32	23.7	135	88-182	170	111-229
Acute Respiratory Infections	2	0.2	840	102-3032		
Other Disease of Upper Respiratory Tract	0	0.0	-	0-14688		
Pneumonta and Influenza	10	8.1	124	59-228		
Bronchitis, Emphysema and Asthma	8	10.0	80	35-158	115	50-226
Chronic Obstructive Pulmonary Disease	14	13.9	100	55-169	134	73-225
Pneumoconiosis Coalworkers Pneumoconiosis	0	0.3	-	0-1105 0-1987	-	0-1934
Asbestosis	ő	0.0	-	0-12936		
Stilicosts	ŏ	0.0	-	0-12908		
Other Diseases of the Respiratory System	ĩ	1.0	104	3-580		
Pulmonary Fibrosis	1	0.3	404	10-2248		
Diseases of the Digestive System Diseases of Oesophagus and Stomach	6 2	5.0 1.8	119 111	44-260 13-402	133	49-289
Diseases of the Genito-urinary System	3	2.3	133	27-390	149	31-435
Diseases of the Skin and Subcutaneous Tissue	0	0.1	-	0-4345	-	0-4163
Diseases of the Musculosketelal System	1	0.6	168	4-937	160	5-1005
Symptoms, Signs and Ill-defined Conditions	٥	0.2	-	0-2105	-	0-2430
Accidents, Poisonings and Violence	2	6.4	31	4-113	33	4-119
Transport Accidents	ĩ	2.0	50	1-277		
Accidental Poisoning	Ó	0.2	-	0-1567		
Accidental Falls	Ō	0.8	-	0-466		
Suicide and Self-inflicted Injury	0	1.8		0-210		

TABLE A3.2:

ø

<u>Chatham Dockyard. non-responders</u>. Cause specific mortality for 50 disease groups, with and without regional adjustment.

Causes of Death	With Obs	out regi Exp	onala SMR	djustment 95% CI	With ro SMR	egional adj. 95% Cl
All Causes	320	253.4	126	112-140	135	120-149
Infectious and Parasitic Diseases Tuberculosis	2	1.1 0.5	187 417	23-674 50-1505	184 407	22-663 49-1469
All Neoplasms	91	71.1	128	102-154	130	104-157
Ca. Lip, Oral Cavity and Pharynx	Ó	0.9	-	0-396	-	0-471
Ca. Digestive Organs and Peritoneum	27	20.7	130	86-189	145	95-210
Ca, Oesophagus	2	2.3	86	10-311	93	11-336
Ca. Stomach	12	6.5	183	95-320	204	105-356
Ca. Peritoneum (mesothelioma)	0	0.1	-	0-3363		
Ca. Respiratory System	38	29.5	129	88-170		
Ca. Lung	34	28.5	119	79-160	121	78-161
Ca. Pleura (mesothelioma)	4	0.3	1558	425-3989		
Ca. Bone, Tissue, Skin and Breast	0	1.0	-	0-382		
Ca. Genito-urinary Organs	8	9.0	88	38-174	88	38-174
Ca. Prostate	5	4.7	106	34-247	101	33-236
Ca. Other and Unspecified Sites	10	5.2	191	91-352		
Ca. Lymphatic and Haematopoietic Tissue	8	4.0	199	86-392	201	87-396
Benign Neoplasms	0	0.2	-	0-2036	-	0-2238
Unspecified Neoplasms	0	0.5	-	0-759		
Endocrine and Nutritional Diseases	3	2.7	110	23-322	114	24-334
Diseases of Blood and Blood-forming Organs	0	0.5	-	0-693	-	0-716
Diseases of the Nervous System	6	3.3	184	68-401	191	70-415
Diseases of the Circulatory System	163	127.1	128	109-148	142	120-163
Hypertensive Disease	2	2.4	82	10-296	82	10-296
Ischaemic Heart Disease	107	86.1	124	101-438	136	111-162
Diseases of Pulmonary Circulation	1 1	1.3	79	2-438	76	192-422
Cerebrovascular Disease	29	22.2	130	87-187	154	103-221
Diseases of the Respiratory System	39	28.4	138	94-181	147	101-193
Acute Respiratory Infections	1	0.3	356	9-1981		
Other Disease of Upper Respiratory Tract	0	0.0	-	0-7344		
Pneumonia and Influenza	12	9.5	126	65-221		
Bronchitis, Emphysema and Asthma	13	11.8	111	59-189	123	65-210
Chronic Obstructive Pulmonary Disease	16	16.9	95	54-154	103	59-167
Pneumoconiosis	0	0.4	-	0-923	-	0-2383
Coalworkers Pneumoconiosis	0	0.2	-	0-1672		
Asbestosis	0	0.0	-	0-10385	1	
Stitcosts	0	0.0	-	0-10994		
Other Diseases of the Respiratory System	1 1	1.2	84	2-470		
Pulmonary Fibrosis	1	0.3	333	8-1856		
Diseases of the Digestive System	6	6.1	99	36-214	104	38-227
Diseases of Desophagus and Stomach	1	2.2	46	1-257		
Diseases of the Genito-urinary System	4	2.7	149	40-380	150	41-385
Diseases of the Skin and Subcutaneous Tissue	0	0.1	-	0~3581	-	0-3533
Diseases of the Musculosketelal System	0	0.7	-	0-501	-	0-517
Symptoms, Signs and Ill-defined Conditions	0	0.2	-	0-1722	-	0-1487
Accidents, Poisonings and Violence	3	7.5	40	8-116	42	9-122
Transport Accidents	ő	2.4	-	0-156		
Accidental Poisoning	l ő	0.3	-	0-1347		
Accidental Falls	Ő	0.9	-	0-391		
	l ī	2.1				

TABLE A3.3:

Portsmouth Dockyard, non-responders. Cause specific mortality for 50 disease groups, with and without regional adjustment.

<u>Causes of Death</u>	With Obs	out regio Exp	onal a SMR	djustment 95% CI	With re SMR	egional ad 95% CI
All Causes	532	498.0	107	98-116	114	104-124
Infectious and Parasitic Diseases Tuberculosis	2 1	2.1 0.9	95 112	11-343 3-625	93 109	11-337 3-609
All Neoplasms	173	141.4	122	104-141	125	106-144
Ca. Lip, Oral Cavity and Pharynx	2	1.9	105	13-379	125	15-452
Ca. Digestive Organs and Peritoneum	45	41.2	109	77-141	121	86-157
Ca, Oesophagus	6	4.7	127	46-276	137	50-298
Ca. Stomach	17	12.7	134	78-214	149	86-238
Ca. Peritoneum (mesothelioma)	1	0.2	457	12-2544		00 200
Ca. Respiratory System	86	58.0	148	117-179		
Ca. Lung	77	56.0	138	107-168	139	106-169
Ca. Lung Ca. Pleura (mesothelioma)	5	0.6	907	294-2117		
Ca. Bone, Tissue, Skin and Breast	4	2.0	203	55-521		
Ca. Genito-uninary Organs	11	18.0	61	31-110	61	31-110
Ca. Prostate	4	9.4	43	12-109	41	11-104
Ca. Other and Unspecified Sites	17	10.8	158	92-252		
Ca. Lymphatic and Haematopoietic Tissue	7	8.1	86	35-177	87	35-179
Benign Neoplasms	0	0.4	-	0-1025		0-1129
Unspecified Neoplasms	1	1.0	101	3-560		
Endocrine and Nutritional Diseases	4	5.5	73	20-186	75	21-193
Diseases of Blood and Blood-forming Organs	2	1.1	188	23-677	194	23-699
Diseases of the Nervous System	13	6.6	196	104-336	203	108-347
Diseases of the Circulatory System	240	249.9	96	84-108	106	93-120
Hypertensive Disease	4	4.6	87	24-222	87	24-223
Ischaemic Heart Disease	170	171.2	99	84-114	109	93-126
Diseases of Pulmonary Circulation	1	2.4	41	2-230	40	1-221
Cerebrovascular Disease	26	42.9	61	40-89	71	47-105
Diseases of the Respiratory System	63	53.2	118	89-148	127	95-158
Acute Respiratory Infections	0	0.5	-	0-706		
Other Disease of Upper Respiratory Tract	0	0.0	-	0-7494		
Pneumonia and Influenza	8	16.9	47	20-100		
Bronchitis, Emphysema and Asthma	19	21.5	88	53-138	98	59-153
Chronic Obstructive Pulmonary Disease	36	32.5	111	75-147	120	81-160
Pneumocontosts	0	0.8	-	0-488	-	0-124
Coalworkers Pneumoconiosis	0	0.4	-	0-904		
Asbestosis	0	0.1	-	0-5003		
Silicosis	0	0.1	-	0-6009		
Other Diseases of the Respiratory System Pulmonary Fibrosis	6 1	2.3	257 172	94-559 4-956		
Diseases of the Digestive System	13	12.2	107	57-182	113	60-194
Diseases of Desophagus and Stomach	3	4.2	71	15-208		
Diseases of the Genito-urinary System	6	5.1	117	43-255	119	43-258
Diseases of the Skin and Subcutaneous Tissue	0	0.2	-	0-1798	-	0-177
Diseases of the Musculosketelal System	0	1.5	-	0-250	-	0-258
Symptoms, Signs and Ill-defined Conditions	1	0.4	236	6-1316	200	5-111
Accidents, Poisonings and Violence	10	14.9	67	32-124	70	34-129
Transport Accidents	1	4.4	23	1-126		
Accidental Poisoning	1	0.5	187	5-1041	1	
Accidental Falls	2	1.9	108	13-389	1	
Suicide and Self-inflicted Injury	2	4.2	48	6-172		

TABLE A3.4:

<u>Devonport Dockyard</u>. Cause specific mortality for 12 disease groups by calendar year period, for study responders and non-responders.

	A11	Causes					A11	Neop1a	sms			
				Nee		4						
Year	Obs	SMR	95 % CI	Obs	respon SMR	95% CI	Obs	SMR	95% CI	Non- Obs	SMR	95% CI
1972	50	73	53- 93	29	420	281-603	13	71	38-121	11	582	290-1041
1973	70	79	61- 98	15	173	97-285	20	84	51-130	3	126	26-367
1974 1975	93 122	98 122	78-118	10	108 178	52-198 103-284	33	127	84-171 113-208	4	155	42-396 41-384
1976	104	96	78-114	15	151	85-250	37	122	83-162	4	144	39-368
1977	125	111	92-131	20	198	121-306	34	107	71-143	7	247	99-508
1978	134	109	91-128 64- 94	11	101	51-181	40	117	80-153	0		0-123
1980	142	104	87-121	16 14	122	81-229 66-204	33	90 113	59-121 80-146	3	97 156	20-285 51-364
1981	142	100	84-117	20	177	108-273	47	115	82-148	2	63	8-228
1982	142	95	79-110	13	111	59-190	52	121	88-154	3	93	19-273
1983	137	86	72-101	26	213	139-312	59	128	96-161	5	148	48-346
1984	139	84 96	70- 98 81-110	36 13	300 104	202-397 55-178	46	93 124	66-120 93-154	6	175	64-382 32-296
1986	183	99	85-114	16	128	73-208	63	117	88-146	7	202	81-416
1987	195	104	89-119	10	80	39-148	66	118	90-147	2	57	7-208
1988	203	99 100	85-113 66-134	10	72	35-133 27-385	82	140	110-170	4	109	30-278
					132		12		64-218	1	167	4-932
Total	2289	97	93-101	294	156	138-173	789	117	109-125	75	143	111-176
	Ca.	Stomac	h				Ca.	Perito	neum			
1				Non	respon	ders				Non	respon	ders
Year	Obs	SMR	95% CI	Obs	SMR	95% CI	Obs	SMR	95% CI	Obs	SMR	95% CI
1972	1 1	59	1-329	o	-	0-1949	0	-	0-5185	0	-	0-58373
1973	3	133	27-390	1	418	11-2327	i	1205	30-6710		14485	366-80684
1974 1975	3	123	25-361 135-618	1	382 379	10-2126 10-2114	0	1288	0-4280 33-7174	0	-	0-54056
1976	5	182	59-425	1	379	9-2067	;	1579	40-8793	0	-	0-65498 0-83970
1977	1 1	36	1-201	ò	-	0-1411	i	1176	30-6551	ŏ	-	0-55194
1978	2	65	8-236	0	-	0-1306	0	-	0-3810	0	-	0-52199
1979 1980	5	157 149	51-368 48-349	0	344	0-1297 9-1917	0	1095	0-4944 28-6101	0	_	0-67254 0-59993
1981	9	258	118-489	ò	-	0-1302	l d	1093	0-5503	ŏ	-	0-82675
1982	4	118	32-302	0	-	0-1383	0	-	0-5616	0	-	0-79844
1983 1984	3	78 152	16-228 56-330	0	-	0-1267	0	1267	0-4240 32-7055	0	-	0-70300
1985	5	128	42-300	0	-	0-1296 0-1364	l á	1267	0-4032	0	-	0-76809 0-70336
1986	8	193	83-380	Ō	-	0-1349	Ō	-	0-4819	0	-	0-90135
1987	3	73	15-215	0		0-1408	3	3992	824-11670	0	-	0-97163
1988 1989	7	157 410	63-324 84-1197	2	698	84-2521 0-7929	1	1200	30-6686 0-27366	0	-	0-82656 0-509200
Total	81	145	113-176	7	461	61-313	10	731	351-1344	-	1076	27-5993
								_				
	<u>Ca.</u>	Lung					Ca.	Pleura				
Year	Obs	SMR	95% CI	Non-1 Obs	respon SMR	95% CI	Obs	SMR	95% CI	Non- Obs	respon	ders 95% CI
1972	4	56	15-143	5	647	210-1511	!	1508	38-8399		37734	4566-136219
1973 1974	7	76 128	30-156 68-218	0 2	192	0-381 23-693	1	1013 4416	26~5640 1203-11305	0	14043	0-45523 355-78221
1975	10	94	45-173	1	94	2-526	3	2434	502-7116	ó	-	0-36460
1976	15	129	72-213	1	91	2-509	2	1399	169-5050	1	9208	233-51287
1977 1978	14 13	114	62-191 53-171	3	268	55-783 0-320	3	2137 3831	441-6248 1405-8339	1	9413	238-52432 0-32640
1979	6	43	16- 94	2	171	21-617	2	1520	184-5489	ŏ	-	0-39020
1980	14	96	52-161	2	165	20-595	3	1719	355-5026	1	8558	217-47668
1981 1982	11 21	74 136	37-132 84-207	1	86 87	2-480	3	1652 5351	341-4828 2450-10155	0	_	0-31705 0-34540
1983	16	96	55-156	3	249	51-727	5	2002	649-4673	ŏ	_	0-26185
1984	9	53	24-100	2	172	21-620	5	1869	606-4362	0	-	0-24799
1985 1986	20 19	113 106	69-175 64-166	1	86 266	2-482 55-777	2	687 3028	83-2480 1453-5569	0	1	0-24017 0-20390
1986	20	111	68-171	0	200	0-336	5	1483	480-3461	0	_	0-21562
1988	25	130	84-192	0	-	0-317	2	615	74-2220	0	-	0-22243
1989	4	127	35-326	0	-	0-1965	0	-	0-7024	0	-	0-138567
Total	241	99	87-112	27	142	94-207	66	1983	1505-2461	6	2917	1070-6349

TABLE A3.4 (cont.):

Devonport Dockyard. Cause specific mortality for 12 disease groups by calendar year period, for study responders and non-responders.

	Circ	ulator	y System				Pulm	onary (Circulation			
Year	Obs	SMR	95 % CI	Non- Obs	respon SMR	ders 95% CI	Obs	SMR	95% CI	Non- Obs	respon SMR	ders 95% Cl
1972	29	87	59-126	15	437	245-721	1	321	8-1788	1	3021	76-16827
1973	41	96	66-125	10	230	110-422	1	247	6-1376	0	-	0-8720
1974	50	107	77-136	5	106	34-246	3	644	133-1883	1	2094	53-11662
1975 1976	60	119 106	89-150 78-133	9	182 119	83-346 43-258	1	208 547	5-1161 113-1600	0	-	0-7390
1976	57	124	95-153	10	189	43-258	32	362	44-1307	1	1912	0-7230 48-10648
1978	72	114	87-140	10	174	84-321	3	523	108-1528	ò	1912	0-6931
1979	54	79	58-100	10	168	80-308	4	394	107-1008	ŏ	-	0-4024
1980	78	110	86-135	4	66	18-169	3	295	61-861	0	-	0-4004
1981	74	101	78-123	13	218	116-373	2	179	22-646	1	1038	26-5781
1982	72	94 80	72-115 61-100	3	49 284	10-144 168-449	3	265 172	55-775	0	-	0-4074
1983	66 62	72	54-90	18 26	415	271-608	0	1/2	21-621 0-655	1	1065	0-8126 27-5933
1985	83	91	71-111	8	124	53-244	ő	-	0-600	à	-	0-7908
1986	91	97	77-117	6	94	34-204	Ō	-	0-589	ō	-	0-8078
1987	88	92	73-111	5	78	25-183	0	-	0-580	0	-	0-8032
1988	92	87	70-105	4	56	15-144	0	-	0-511	0	-	0-7042
1989	12	69	36-120	1	85	2-476	0	-	0-3066	0	-	0-42608
Total	1152	95	90-101	163	167	141-192	28	232	154-335	5	481	156-1123
	Resp	irator	y System				Bron	chitis	Emphysema	and Ast	hma	
ł				Ale -		4				Nee		4
Year	Obs	SMR	95% CI	Obs	SMR	95% CI	Obs	SMR	95% CI	Obs	SMR	95% CI
1972	7	119	48-246	2	293	35-1057	2	65	8-234	1	272	7-1514
1973	7	94	38-194	2	237	29-856	2 2	53	6-190	0	-	0-848
1974	10	131	63-241	0	-	0-424	2	51	6-183	0	-	0-812
1975	16	194	111-314	3	328	68-959	1	24	1-134	1	216	5-1204
1976 1977	13	73 142	29-150 76-243	4	396 309	108-1013 64-904	1 0	23	1-130 0-89	0 1	231	0-816 6-1287
1978	19	182	110-284	1	91	2-506	4	86	24-221	i	211	5-1173
1979	6	53	19-115	i	85	2-473	2	41	5-149	i	206	5-1145
1980	12	102	53-178	3	256	53-749	1	22	1-121	1	224	6-1247
1981	10	82	40-152	3	263	54-770	5	112	36-262	0	-	0-915
1982	2	50	20-103	4	307	83-785	2	43	5-156	0	-	0-901
1983	7	47	19-96	1	73	2-404	1 5	22	1-120	0	276	0-937 7-1539
1984 1985	12	96 68	50-168 32-124	1	84	2-529 2-469	5	112 103	36-261 33-241	ó	2/0	0-995
1986	14	91	50-153	i	85	2-471	5	113	37-263	ĭ	311	8-1733
1987	20	133	81-205	i	87	2-487	5	129	42-301	Ó	-	0-1356
1988	12	67	34-116	1	71	2-396	2	39	5-142	0	-	0-1001
1989	3	99	20-289	0	-	0-1564	0	-	0-435	0	-	0-6042
Total	192	95	82-109	32	170	111-230	45	60	43- 78	8	115	49-226
	Asbe	stosis					Pulma	onary (Fibrosis			
				Non-	rescon	lers				Non-	respon	ders
Year	Obs	SMR	95% C1	Obs	SMR	95% CI	Obs	SMR	95% CI	Obs	SMR	95% CI
1972	0	-	0-34323	0	-	0-522308	0	-	0-3620	0	-	0-36482
1973	0	-	0-32413	0	-	0-395299	0	-	0-2941	0	-	0-26693
1974	0	-	0-38685	0	-	0-361651	0	~	0-2693	0	-	0-27241
1975 1976	0	-	0-17974 0-30429	0	1	0-210879 0-379734	0	2	0-2431 0-1975	0	-	0-23598 0-22300
1976		_	0-17531	0	_	0-198398	0	-	0-2379	0	_	0-25635
1978	ŏ	_	0-15896	ŏ	-	0-205032	ŏ	_	0-1804	ŏ	-	0-19347
1979	0	-	0-20148	õ	-	0-279759	0	-	0-3120	0	-	0-37204
1980	Ó	-	0-16493	0	-	0-198595	1	787	20-4382	0	-	0-33422
1981	1	4219	107-23498	0	-	0-230643	0	-	0-3065	0	-	0-34085
1982	0	6947	0-13175	0	-	0-181210	0	-	0-2636 0-2636	0	8962	0-34179 227-49919
1983 1984	2	10290	841-25080 2123-30081	0	-	0-182846 0-200623	1	539	13-2932	ċ	0302	0-25085
1985	ő		0-13373	ŏ	-	0-186207	ó	-	0-1604	ŏ	-	0-21378
1986	ŏ	-	0-8982	ŏ	-	0-162488	0	-	0-1476	õ	-	0-21011
1987	1	2746	69-15293	0	-	0-175534	0	-	0-1419	0	-	0-19766
1988	0	-	0-9864	0	-	0-173902	0	-	0-1318	0	-	0-18882
1989	0	-	0-60669	0	-	0-999999	0	-	0-7380	0	-	0-115531
Total	7	1718	690-3539	0	-	0-12936	2	68	8-245	1	404	10-2248

TABLE A3.5:

<u>Chatham Dockvard</u>. Cause specific mortality for 12 disease groups by calendar year period, for study responders and non-responders.

	1						1					
	<u>A11</u>	Causes					<u>A11</u>	Neopla	sms			
Year	0bs	SMR	95% C1	Non- Obs	respon SMR	ders 95% CI	Obs	SMR	95% CI	Non- Obs	respon SMR	iers 95% Cl
1972	2	15	2- 56	10	303	145-557	0	-	0-102	4	427	116-1093
1973	22	53	33-80	13	124	66-212	j 7	59	24-123	3	100	21-291
1974	33	73	48- 97	6	53	19-116	14	107	59-180	0	-	0-112
1975	50	103	75-132	15	127	71-210	22	158	99-239	4	117	32-299
1976	47	90	64-115	23	185	117-278	16	104	60-170	7	191	77-394
1977 1978	67 61	124	94-153 78-130	15 23	119 170	67-197 108-255	27 20	168 116	110-244 71-179	5	133 178	43-312 71-366
1979	67	104	81-132	24	174	112-259	25	135	88-200	10	251	120-461
1980	68	104	80-129	13	94	50-161	22	113	71-171	5	122	39-285
1981	66	98	74-122	12	84	43-146	22	108	68-164	3	70	14-205
1982	64	90	68-113	24	162	103-240	21	99	61-151	6	137	50-299
1983	63	84	64-105	27	174	115-253	19	84	50-131	5	109	35-255
1984	64	82	62-102	32	210	137-282	26	107	70-157	12	258	133-451
1985	71 99	85 117	65-105 94-140	17	108	63-173 83-206	24	95 109	61-141 72-157	7	150	60-310
1986 1987	82	96	76-117	21 22	142	89-215	28 23	87	55-131	4	173 86	74-340 23-221
1988	75	82	63-100	15	91	51-149	25	95	62-139	õ		0-79
1989	44	67	48- 87	8	71	31-140	23	120	76-180	1	32	1-176
Total	1045	91	B6- 97	320	135	120-149	365	107	96-118	91	130	104-157
	6.	Stomaci					6-	Perito				
	<u></u>	aconaci	-				<u>ua.</u>	100	(RECEIN			
Year	Obs	SMR	95% CI	Non- Obs	respon SMR	ders 95% CI	Obs	SMR	95% CI	Non- Obs	respon SMR	ders 95% CI
1972	0	-	0-1045	0	-	0-3862	0	-	0-29237	0	_	0-128012
1973	} î	87	2-484	Ō	-	0-1224	0	-	0-10013	0	-	0-45574
1974	1	79	2-442	0	-	0-1125	0	-	0-9960	0	-	0-44684
1975	7	529	212-1090	0	-	0-1109	0	-	0-10692	0	-	0-54461
1976	1	71	2-394	0		0-1064	0	-	0-13457	0	-	0-67211
1977 1978	2	141 65	17-507 2-362	2	594	72-2146	0	-	0-9629	0	-	0-45964
1979	4	251	68-642	0	278	7-1549 0-1044	Ö	-	0-8732 0-11031	ő		0-43180 0-56375
1980	3	181	37-529	ŏ	_	0-1034	ŏ		0-9217	ŏ	-	0-49311
1981	l 0	-	0-214	ŏ	-	0-1002	Ĭŏ	-	0-12871	ŏ	-	0-69246
1982	2	121	15-435	3	860	177-2514	0	-	0-12835	0	Ξ	0-66820
1983	1	54	1-300	0	-	0-974	0	-	0-9957	0	-	0-58470
1984	2	105	13-379	4	1081	294-2766	2	6007	727-21685	0	-	0-64969
1985	0	165	0-198	2	574	69-2074	o o	-	0-9328	0	-	0-57903
1986 1987	3	155 53	32-454 1-297	0	-	0-1053 0-1104	0	_	0-11819 0-12059	0	_	0-74910 0-77482
1988	3	149	31-435	ŏ	_	0-1060	ŏ	_	0-10762	ŏ	-	0-70428
1989	2	142	17-511	ŏ	_	0-1572	ŏ	-	0-15807	ŏ	-	0-106081
Total	34	122	81-162	12	204	105-356	2	338	41-1222	0	-	0-3363
	6					-	6					
	<u>Ca. (</u>	Lund					<u>ua.</u>	Pleura				
Year	Obs	SMR	95% CI	Non- Obs	SMR	95% CI	Obs	SMR	95% CI	Non- Obs	respon SMR	ders 95% CI
1972	0	-	0-237	1	240	6-1335	0	-	0-31267		39232	993-218519
1973	2	40	5-143	2	150	18-540	0	-	0-8232	0	-	0-37732
1974	8	142	61-279	0		0-252	1	2434	62-13560	0	-	0-42352
1975	8	134	58-264	3	199	41-583	1	1773	45-9877	0	_	0-29624 0-27892
1976 1977	11	123 159	53-241 79-284	1	250 61	68-640 1-338	U O	-	0-5783 0-5818	ő	-	0-28192
1978	6	82	30-179	4	236	64-604	3	4283	884-12522	ŏ	-	0-26542
1979	6	77	28-168	3	176	36-516	3	5119	1056-14966	ī	8739	221-48676
1980	4	49	13-126	1	57	1-320	1	1337	34-7445	1	7169	181-39933
1981	7	85	34-174	2	114	14-410	3	3821	788-11169	0	-	0-25292
1982	2	82	33-168	3	169	35-493	3	4138	854-12096	0	-	0-27857
1983 1984	7	77 85	31-158 37-168	2	108	13-391 14-404		955 889	24-5320 22-4950	0	-	0-21005 0-19805
1984	9	94	43-178	2	114	14-404	3	2491	514-7281	ő	-	0-19513
1986	6	63	23-137	2	117	14-424	3	2190	452-6402	1	4574	116-25476
1987	4	42	11-107	ī	60	2-335	Ō	-	0-2717	0	-	0-17883
1988	6	60	22-130	Ó	-	0-220	1	764	19-4258	0	-	0-19052
1989	9	130	59-246	1	89	2-496	0	-	0-2437	0	-	0-28815
Total	116	85	70-101	34	121	80-161	24	1638	1050-2437	4	1558	425-3989

TABLE A3.5 (cont.):

<u>Chatham Dockvard</u>. Cause specific mortality for 12 disease groups by calendar year period, for study responders and non-responders.

Circulatory System Point-responders: SMB Puintmary Circulation Vear Ops SMB 955 CI 955 CI Des SMB 955 CI 955 CI Des SMB 955 CI 955 CI Des SMB 955 CI 955 CI 1972 2 33 4-121 4 257 70-657 0 - 0-5978 0 - 0-5978 1973 12 26 30-144 8 406 0-767 0 - 0-1575 0 - 0-5520 1973 312 132 66-137 13 316 16-522 0 - 0-1325 0 - 0-5302 0 - 0-5302 0 - 0-3325 0 - 0-3325 0 - 0-3325 0 - 0-3325 0 - 0-3325 0 - 0-3325 0 - 0-3325 0 - 0-3325 0 - 0-3325 0 - 0-1225 0 -													
Vear One SHR 95X C1 One		Circ	ulatory	y System				Pulm	onary (Circulation			
	Year	Obs	SMR	95% CI	Non- Obs		ders 95% CI	Obs	SMR	95% CI			95% CI
	1972	2	33	4-121	4	257	70-657	0	-	0-5979	0		0-22685
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					•							-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			61		4	74	20-189		-	0-1562	0	-	0-6099
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									-			-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		21							362		-	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									-				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
	1980				7				-				
1983 28 77 51-112 17 226 13-362 1 177 4-985 0 - 0-303 1984 27 71 47-104 134 65-247 1 332 8-1851 0 - 0-6332 1986 33 75 49-101 10 126 61-232 0 - 0-1598 0 - 0-6392 1988 33 75 49-101 10 126 61-232 0 - 0-1598 0 - 0-6805 Total 487 89 81-97 163 142 120-163 4 66 18-170 1 76 2-422 Vear Dss SMR 95X CI Dss <th></th> <th>34</th> <th>103</th> <th>69-138</th> <th></th> <th>128</th> <th>58-242</th> <th>1</th> <th>180</th> <th>5-1002</th> <th></th> <th>-</th> <th>0-2982</th>		34	103	69-138		128	58-242	1	180	5-1002		-	0-2982
1984 27 71 47-104 10 134 65-247 0 - 0			82	54-118			106-326		-				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									177		-		
1986 1987 1988 48 33 35 37 5 152 49-101 10 126 5 126 64-232 93-215 0 0 - 0 0 - 0 1225 0 0 - 0 - 0 0 - 0 1721 44-3544 44-3544 4-3544 1988 33 37 5 49-101 487 10 89 11 35 13 5 142 33-215 10 0 - 0 0 - 0 1721 0 44-3544 - 0 0 - 0 - 0 0 - 0 0 - 0 1721 0 - 0 0 - 0 0 - 0 0 - 0<		27				70			332				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									332			_	
1988 33 75 49-101 10 126 61-232 0 - 0-1098 0 - 0-8584 1999 11 35 18-6 5 93 30-216 0 - 0-1527 0 - 0-8584 1999 487 89 81-97 163 142 120-163 4 66 18-170 1 76 2-422 Mon-responders 0bs SMR 95X CI Obs				66-127		176			-	0-1221		1721	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						126			-				
Respiratory System Non-responders Obs SMR 95X CI Obs SMR 95X CI Non-responders 1972 0 - 0-285 1 270 7-1502 0 - 0-507 1 471 12-2622 1973 1 25 1-137 3 262 54-767 1 45 1-251 0 - 0-580 1975 5 106 34-248 2 158 19-570 2 76 9-283 0 - 0-580 1975 6 103 39-223 7 458 194-943 3 106 22-311 0 - 0-580 1979 3 46 10-135 4 273 9-265 0 - 0-581 1980 3 45 9-131 0 - 0-238 2 71 9-255 0 - 0-585 1981 9 109 49-204 2<	1989							-	-		•		0-8505
Year Dps SHR 95% C I Non-responders Dps Obs SHR 95% C I Obs <ths< th=""><th>Total</th><th>487</th><th>89</th><th>81- 97</th><th>163</th><th>142</th><th>120-163</th><th>4</th><th>66</th><th>18-170</th><th>1</th><th>76</th><th>2-422</th></ths<>	Total	487	89	81- 97	163	142	120-163	4	66	18-170	1	76	2-422
Year Obs SHR 95% CI Obs <th< th=""><th></th><th>Resp</th><th>iratory</th><th>System</th><th></th><th></th><th></th><th>Bron</th><th>chitis,</th><th>Émphysema</th><th>and Ast</th><th>hma</th><th></th></th<>		Resp	iratory	System				Bron	chitis,	Émphysema	and Ast	hma	
Year Obs SHR 95% CI Obs <th< th=""><th></th><th></th><th></th><th></th><th>Non-</th><th>- es onor</th><th>lars</th><th></th><th></th><th></th><th>Non-</th><th>rasoon</th><th>lars</th></th<>					Non-	- es onor	lars				Non-	rasoon	lars
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Year	Obs	SMR	95% CI		SMR	95% CI	Obs	SMR	95% CI			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0	_		1	270	7-1502	· 0	-			471	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		· ·											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							20-605					-	0-550
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						-							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1978	6	103	38-223	7		184-943	3	106	22-311	0		0-508
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						-	0-238						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						162							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									108				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		4											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		12		73-248								_	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
VearObsSMR95% CIObsSMR95% CIObsSMR95% CI19720-0-1994080-0-9999990-0-194320-0-7642119730-0-690980-0-3118020-0-62230-0-2296719740-0-784560-0-2990690-0-57300-0-2296119750-0-653510-0-2964320-0-50860-0-2160719770-0-346760-0-1658750-0-2266320-0-42420-0-1820619770-0-346290-0-1657700-0-50860-0-2160719780-0-346290-0-1657700-0-67610-0-289519790-0-355270-0-1779230-0-62410-0-2895519810-0-355220-0-1509440-0-573117431188-4138919830-0-291110-0-1502660-0-280000-0-2636419850-0-213790-0-1502440-0-33210-0-2076619840-											13		
VearObsSMR95% CIObsSMR95% CIObsSMR95% CI19720-0-1994080-0-9999990-0-194320-0-7642119730-0-690980-0-3118020-0-62230-0-2296719740-0-784560-0-2990690-0-57300-0-2296119750-0-653510-0-2964320-0-50860-0-2160719770-0-346760-0-1658750-0-2266320-0-42420-0-1820619770-0-346290-0-1657700-0-50860-0-2160719780-0-346290-0-1657700-0-67610-0-289519790-0-355270-0-1779230-0-62410-0-2895519810-0-355220-0-1509440-0-573117431188-4138919830-0-291110-0-1502660-0-280000-0-2636419850-0-213790-0-1502440-0-33210-0-2076619840-													
YearObsSMR95% CIObsSMR95% CIObsSMR95% CIObsSMR95% CI19720-0-1994080-0-9999990-0-194320-0-7642119730-0-690980-0-3118020-0-62230-0-7286119740-0-784560-0-2990690-0-57300-0-2289119750-0-384760-0-2964320-0-50410-0-1984419760-0-346290-0-1658750-0-50860-0-2160719780-0-346290-0-1657700-0-67610-0-1634419800-0-355220-0-1779230-0-67410-0-2899519810-0-355220-0-1509440-0-573117431188-4138919830-0-291110-0-1520660-0-58000-0-2676819850-0-213790-0-150740195124-52990-0-1773219860-0-239640-0-150740195124-52990-0-177321986 <td< th=""><th></th><th>Asbes</th><th>stosis</th><th></th><th></th><th></th><th></th><th>Pulm</th><th>onary h</th><th>1bros1s</th><th>N</th><th></th><th></th></td<>		Asbes	stosis					Pulm	onary h	1bros1s	N		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Year	Obs	SMR	95% CI				Obs	SMR	95% CI			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			-						-			-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			-										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			-									-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											-	-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													0-21607
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							0-167570					-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					-							-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												-	0-28395
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												7431	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			-	0-29111							0	-	0-26584
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1984			0-30018			0-167493		-				
1987 0 - 0-23884 0 - 0-141161 0 - 0-3168 0 - 0-16429 1988 0 - 0-23598 0 - 0-147876 0 - 0-3028 0 - 0-16534 1989 0 - 0-34524 0 - 0-223842 0 - 0-4252 0 - 0-24291						-			951				
1988 0 - 0-23598 0 - 0-147876 0 - 0-3028 0 - 0-16534 1989 0 - 0-34524 0 - 0-223842 0 - 0-4252 0 - 0-24291				0-21379		-	0-130024		-				0-1/4/8
1989 0 - 0-34524 0 - 0-223842 0 - 0-4252 0 - 0-24291			-		-								
Total 0 - 0-1992 0 - 0-10385 1 72 2-399 1 333 8-1856			-									-	
	Total	0	-	0-1992	0	-	0-10385	1	72	2-399	۱	333	8-1856

TABLE A3.6:

<u>Portsmouth Dockvard</u>. Cause specific mortality for 12 disease groups by calendar year period, for study responders and non-responders.

	All Causes					<u>A11</u>	Neopla	sms			
Year	Obs SMR	95% CI	Non-re Obs	s pana SMR	95% CI	Obs	SMR	95% CI	Non- Obs	respond SMR	95% CI
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985	19 36 48 69 71 94 66 80 79 92 98 105 104 104 95 90 87 79 110 95 103 84 93 72 115 82	21- 55 49- 88 72-116 61- 99 72-12 84-126 84-123 72-109 63- 96 77-112 68-100 57- 86 67- 97	18 21 22 25 21 30 19 26 34 38	253 94 104 102 115 87 115 71 95 121 127 148 89	171-334 56-149 64-159 64-155 74-169 54-133 77-164 43-111 62-139 80-161 86-167 105-191 59-128	4 20 20 22 30 26 29 43 47 41 28 44	27 100 93 91 86 109 87 91 128 133 108 68 102	7- 68 61-154 56-143 57-138 54-130 73-155 57-128 61-131 90-166 95-171 75-141 45- 98 72-132	20 7 8 9 3 8 6 7 8 10 13 17 3	477 126 136 142 46 112 79 88 97 118 144 178 31	291-737 50-259 59-268 65-269 9-134 48-221 29-171 35-181 42-191 57-217 77-246 104-285 6- 90
1986 1987 1988 1989 1990	150 104 145 99 128 80 148 88 33 110	87-120 83-115 66- 94 74-102 72-143	38 33	138 120 93 124 62	97-178 82-158 62-125 88-160 17-159	48 46 45 50 10	107 100 92 99 112	77-137 71-128 65-119 71-126 54-206	15 12 7 20 0	153 123 68 191	85-252 64-215 27-140 116-294 0-204
Tota1	1692 88	83- 92	532	114	104-124	575	98	90-106	173	125	106-143
	Ca. Stomach	!				<u>Ca</u> .	Perito	neum			
Year	Obs SMR	95% CI	Non-re Obs	spond SMR	lers 95% Cl	Obs	SMR	95% CI	Non- Obs	respond SMR	ders 95% CI
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1980 1990 Total	0 - 2 105 2 99 0 - 1 44 1 44 1 2 79 3 112 7 248 7 256 5 161 1 31 1 32 3 90 2 61 3 84 4 107 1 152 45 95	0-253 13-380 12-354 0-167 1-248 1-227 10-264 23-327 99-510 103-526 52-376 52-376 1-174 1-176 18-262 7-220 17-245 29-275 4-847 68-123	1 1 0 0 1 2 0 1 0 0 2 2 0 1 0	201 55 57 155 298 142 134 270 286 128 - 149	389-2803 5-1015 4-983 0-620 0-634 4-863 36-1074 0-534 4-789 0-551 3-746 0-487 0-509 33-974 35-1032 0-483 3-714 0-2749 86-238	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- - - - - - - - - - - - - - - - - - -	0-7523 0-5725 0-6425 0-7901 0-5860 0-5174 0-5613 0-5607 0-7606 0-7548 0-5684 0-5684 0-5684 0-5614 0-5614 0-5613 0-6604 0-5957 0-34211 2-551	000000000000000000000000000000000000000	- - - - - - - - - - - - - - - - - - -	0-30675 0-24265 0-35516 0-24410 0-22759 0-28128 0-24179 0-34388 0-32094 187-41108 0-33062 0-26612 0-33633 0-335394 0-31520 0-31271 0-183403 12-2544
	Ca. Lung					<u>Ca.</u>	Pleura				
Year	Obs SMR	95% CI	Non-re Obs	ispond SMR	95% Cl	Obs	SMR	95% CI	Non- Obs	respon SMR	ders 95% CI
1973 1974 1975 1976 1977 1979 1980 1981 1982 1983 1984 1985 1986 1985 1986 1989 1989	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 0 & 87 \\ 40 & -183 \\ 24 & -182 \\ 47 & -179 \\ 44 & -168 \\ 66 & -202 \\ 61 & -188 \\ 41 & -148 \\ 67 & -190 \\ 59 & -173 \\ 50 & -152 \\ 34 & -123 \\ 93 & -216 \\ 78 & -192 \\ 41 & -131 \\ 30 & -109 \\ 53 & -146 \\ 7 & -221 \end{array}$	1 4 2 3 4 2 1 4 9 7 1 1 2 7 4 3	382 41 156 73 105 131 61 30 118 261 191 299 54 193 113 80 160	153-786 1-227 42-399 9-262 22-306 36-334 7-222 1-165 32-303 119-495 77-394 149-535 7-196 77-397 31-290 17-235 59-349 0-577	0 1 2 2 1 0 0 0 6 4 3 3 0 2 1 1 1 1	1454 2171 1848 946 - - 3138 1577 1470 400 415 414 2397	0-6016 37-8097 263-7837 224-6671 24-5267 0-3107 0-2825 1595-9471 825-8034 325-8611 303-4296 0-1679 98-2915 10-2226 10-2310 10-2308 61-13353	1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0	6705 6219 	170-37344 157-34637 0-16464 102-22365 0-15167 0-13467 0-16136 0-12866 0-12326 0-13251 0-9649 62-13762 0-8760 0-8760 0-5569 55-12020 0-0265 0-8401 0-49489
Total	218 94	81-106	77	139	108-170	28	1042	693-1506	5	907	294-2117
· · · · · · · · · · · · · · · · · · ·				_							

TABLE A3.6 (cont.):

<u>Portsmouth Dockyard</u>. Cause specific mortality for 12 disease groups by calendar year period, for study responders and non-responders.

					_					_		
	Circ	ulator	y System				Pulm	onary C	Irculation			
Year	Obs	SMR	95% CI	Non- Obs	respond SMR	95 % CI	Obs	SMR	95% CI	Non- Obs	respond SMR	95% CI
1973 1974 1975 1976	11 21 35 29	44 64 97 74	22- 79 39- 97 65-129 50-106	10 9 7 7	145 98 72 68	69-266 45-186 29-148 27-140	000	-	0-1467 0-1022 0-994	000		0-5142 0-3631 0-3515
1977 1978 1979 1980	46 55 59 49	111 121 120 95	79-143 89-153 89-151 69-122	18 12 13 10	169 101 101 76	100-268 52-176 54-172 37-140	0 0 0 1		0-845 0-844 0-818 0-459 3-695	000000	-	0-3219 0-3258 0-3076 0-1712 0-1728
1981 1982 1983 1984	34 40 45 42	63 71 75 67	42- 85 49- 93 53- 97 47- 87	12 19 17 22	89 139 117 146	46-156 84-217 68-187 91-220	0 0 1	- 109 226	0-414 0-406 3-606 6-1256	1 0 0	429 - - -	11-2388 0-1661 0-1593 0-3196
1985 1986 1987 1988 1989	57 70 72 62 80	85 101 103 81 99	63-107 78-125 79-127 61-101 77-120	12 22 15 16 19	76 141 99 94 107	39-133 88-213 55-163 54-153 64-167	1 0 0 0	202	5-1125 0-731 0-723 0-640 0-597	0 0 0 0		0-3034 0-3094 0-3163 0-2759 0-2591
1990	13 820	90 88	48-154 82- 94	240	-	0-120	0	- 40	0-3326	0 1	- 40	0-14843
Total	820		82- 94	240	106	93-120	4	40	11-104		40	1-221
	Resp	irator	<u>y System</u>				Bron	chitis,	Emphysema	and Ast	hma	
Year	Obs	SMR	95% CI	Non- Obs	respond SMR	ers 95% CI	Obs	SMR	95% CI	Non- Obs	respond SMR	95% CI
1973 1974 1975	3 7 14	60 113 202	12-177 45-233 110-339	7 1 6	465 52 291	186-957 1-291 107-633	0 0 3	- 80	0-137 0-108 16-234	4 0 2	481 177	131-1231 0-343 21-638
1976 1977 1978 1979	14 10 12 7	171 128 138 73	93-287 61-235 71-241 29-150	4 0 2	171 185 69	47-438 50-475 0-145 8-251	3 4 0 4	76 104 89	16-222 28-266 0- 87 24-228	0 2 0 1	187 75	0-324 23-674 0-301 2-420
1980 1981 1982 1983 1984	5 4 13 8 7	49 38 106 62 64	16-115 10- 97 57-182 27-122 26-131	0 3 5 4 3	102 1 54 113 101	0-127 21-299 50-359 31-288 21-296	2 1 3 2 2	46 23 67 45 46	6-166 1-131 14-197 5-163 6-167	0 0 1 1 1	- 86 86 88	0-301 0-318 2-481 2-479 2-491
1985 1986 1987 1988 1988	10 16 9 10 8	75 116 67 63 46	36-138 66-188 31-127 30-115 20- 91	7 6 4 3 2	206 177 128 78 47	83-424 65-386 35-328 16-227 6-169	2 5 4 3 0	42 114 105 60	5-151 37-267 29-269 12-176 0- 69	2 2 1 0	169 193 234 87	20-608 23-697 28-846 2-482 0-298
1990 Total	3 160	95 86	20-278 73- 99	2 63	266 127	32-960 95-158	1 39	104 54	3-580 37-71	0 19	- 98	0-1706 59-153
	Acho	stosis					Bulm		ibrosis			
Year	Obs	SMR	95% CI	Non-i Obs	respond SMR	ers 95 % CI	Obs	SMR	95% CI	Non- Obs	respond SMR	lers 95 % CI
1973 1974	0	-	0-50171	0	-	0-202636	0	-	0-4989	0		0-16980 0-13484
1975 1976 1977 1978	0 0 0	-	0-23483 0-39009 0-23420 0-20736	000	-	0-94893 0-162672 0-91531 0-84808	000	-	0-3306 0-2634 0-3209 0-2452	000000000000000000000000000000000000000	-	0-11765 0-10334 0-12983 0-9172
1979 1980 1981 1982	0 0 0 1	- - 4811	0-24919 0-22150 0-20218 122-26800	0000		0-109651 0-89669 0-90156 0-76255	0 0 1	- - 936	0-4173 0-3877 0-4093 24-5215	0 0 0	-	0-16433 0-15140 0-15202 0-14311
1983 1984 1985 1986	1 1 0 0	4559 4636 -	115-25394 117-25822 0-17296 0-11632	0000		0-73276 0-78261 0-73255 0-58809	0 0 0	-	0-3585 0-2671 0-2127 0-1958	0 0 0 1	- - 2282	0-14155 0-10379 0-8683 58-12711
1987 1988 1989 1990	0 0 0		0-13293 0-12798 0-12610 0-72623	0000		0-65202 0-64637 0-66503 0-392440	0000	-	0-1861 0-1737 0-1637 0-9192	0 0 0		0-8044 0-7656 0-7376 0-42521
Total	3	905	187-2646	0	-	0-5003	1	43	1-237	1	172	4-956
											_	

TABLE A3.7:

Cause specific mortality by age at death for the 3 dockyards.

Causes of Death	Age at death		Devonp	ort		Chat	ham		Portsm	outh
	(yrs)	Obs	SMR	95% CI	Obs	SMR	95% CI	Obs	SMR	95% CI
All Causes	<35 35- 45- 55- 65- 75+	55 85 265 785 867 232	145 120 110 104 86 92	107-184 95-146 97-123 97-111 80- 91 80-104	23 30 85 305 466 136	131 110 89 95 87 86	83-197 74-158 70-108 84-106 79-95 71-100	26 51 157 554 725 179	117 120 96 93 82 78	76-171 87-153 81-111 86-101 76- 88 67- 90
All Neoplasms	<35 35- 45- 55- 65- 75+	15 25 82 280 308 79	251 159 127 122 103 126	141-414 103-235 99-154 108-136 92-115 98-154	4 13 31 110 162 45	141 206 130 109 97 109	38-362 110-353 84-175 89-130 82-112 77-140	4 14 48 199 262 48	111 143 105 106 94 79	30-285 78-240 75-135 91-121 83-105 56-101
Ca. Stomach	<35 35- 45- 55- 65- 75+	1 0 8 30 34 8	714 163 160 130 153	18-3979 0-373 70-321 109-230 86-174 66-301	0 4 12 16 2	212 140 116 61	0-5271 0-922 58-542 72-245 66-188 7-222	0 1 15 25 3	159 28 96 111 63	0-4100 4-884 1-155 54-159 72-164 13-185
Ca. Peritoneum	<35 35- 45- 55- 65- 75+	1 0 2 6 1 0	2500 800 1200 244	63-13925 0-3690 97-2888 440-2612 6-1359 0-9225	1 0 0 1 0	5000 - - 500	126-27850 0-9225 0-4100 0-1757 13-2785 0-12300	0 0 1 0	263	0-18450 0-7380 0-2171 7-1466 0-1085 0-9225
Ca. Lung	<35 35- 45- 55- 65- 75+	3 5 22 90 97 24	857 177 104 102 88 123	177-2506 57-412 65-158 81-123 70-105 79-183	1 6 38 58 12	588 85 71 90 83 83	15-3276 2-472 26-155 61-119 62-105 43-145	2 14 80 104 17	909 53 88 102 90 80	110-3282 1-296 48-147 80-125 73-107 46-128
Ca. Pleura	<35 35- 45- 55- 65- 75+	0 2 11 29 20 4	1538 2245 2164 1709 2500	0-18450 186-5554 1120-4016 1449-3108 1044-2640 681-6400	0 1 3 10 8 2	- 1667 1765 1818 1379 2000	0-73800 42-9283 364-5159 873-3344 595-2717 242-7220	0 2 4 11 10 1	2500 1176 1028 971 667	0-18450 303-9025 321-3012 513-1839 466-1785 17-3713

TABLE A3.7 (cont.):

Cause specific mortality by age at death for the 3 dockyards.

Causes of Death	Age at death		Devonp	ort		<u>Chat</u>	ham		Portsm	outh
	(yrs)	Obs	SMR	95% CI	Obs	SMR	95% CI	Obs	SMR	95% CI
Circulatory System	<35	17	363	212 502		245	120 310	10	205	105 303
Circulatory System	35-	17	129	212-582 85-172	7	345 95	138-710 43-180	10	385 139	185-707 86-213
	45-	151	123	103-142	41	95	68-128	78	98	76-120
	55-	409	107	96-117	150	96	81-112	258	89	78-100
	65-	432	80	73-88	221	84	73- 95	352	81	72- 89
	75+	109	82	67- 98	59	77	57- 96	101	91	73-109
Pulmonary Circulation	<35	٥	-	0-6150	٥	-	0-9225	1	2500	63-1392
	35-	0	-	0-1604	0	-	0-4613	0	-	0-2636
	45-	4	412	112-1056	0	-	0-1025	0	-	0-551
	55-	17	425	248-681	1	57	1-315	0	-	0-113
	65- 75+	7	124	50-256	3	98	20-288	3	63	13-184
	/5+	0	-	0-2171	0	-	0-499	0	-	0-365
Respiratory System	<35	12	764	395-1335	5	625	203-1459	4	396	108-1014
	35-	13	469	250-803	1	86	2-480	6	333	122-726
	45-	16	136	78-220	6	127	47-277	17	193	112~308
	55-	61	110	82-138	31	115	74-156	58	120	89-151
	65-	65	65	49-81	45	74	53-96	62	64	48-80
	75+	25	84	54-124	19	89	53-139	13	44	23- 75
Bronchitis, Emphysema	<35	1	250	6-1393	0	-	0-1757	0	-	0-1367
and Asthma	35-	1	120	3-671	0	-	0-997	0	-	0-647
	45-	5	102	33-238	2	97	12-351	4	105	29-269
	55-	15	59	33- 98	13	101	54-172	16	71	40-115
	65-	19	53	32-83	16	67	38-108	16	43	25- 70
	75+	4	52	14-133	4	66	18-169	3	36	7-106
Asbestosis	<35		13889	351-77361	0	-	0-369000		21277	538-1185
	35-	0	-	0-123000	0	-	0-184500	1	25000	632-1392
	45-	0		0-9225	0	-	0-36900	0	-	0-2838
	55-	2	1250	151-4512	0	-	0-5271	0		0-1230
	65-	3	1765 3333	364-5158	0	-	0-4613	1	667	17-3713
	75+	1	1333	84-18567	0	-	0-18450	0	-	0-1230
Pulmonary Fibrosis	<35	0	-	0-36900	0	-	0-73800	0	-	0-5680
	35-	0	-	0-6150	0	-	0-18450	0	-	0-1230
	45-	0		0~1677	0	-	0-5271	0	-	0-2460
	55-	1	103	3-574	0	-	0-900	1	139	4-774
	65-	1	78	2-435	,		0-568	0	-	0-345
	75+	0	-	0-946	1	435	11-2422	0	-	0-1054

TABLE A3.8:

Non-responder cause specific mortality by age at death for the 3 dockyards.

Causes of Death	Age at death		Devonp	ort		Chat	nam		Portsm	buth
	(yrs)	Obs	SMR	95% C1	Obs	SMR	95% CI	Obs	SMR	95% CI
All Causes	<35	18	726	430-1147	13	425	226-726	9	192	88-365
	35-	11	365	182-654	15	534	299-880	18	240	142-381
	45-	30	312 188	211-446	15	145	81-239	42	163	113-212
	55- 65-	78	124	146-229	74 153	137	106-168	153	139	117-161 87-113
	75+	39	105	72-138	50	109	79-139	80	90	70-110
All Neoplasms	< 35	5	1282	415-2992	0	-	0-785	2	263	32-950
	35-	2	289	36-1078	4	625	170-1600	5	291	94-678
	45-	7	272	109-561	4	139	38-356	15	207	116-342
	55-	22	176	110-266	22	131	82-198	53	153	112-194
	65-	29	107	71-154	45	121	86-157	74	104	80-128
	75+	10	110	53-202	16	136	78-220	24	103	66-153
Ca. Stomach	<35	0	-	0-36900	0	-	0-73800	0	-	0-3690
	35-	0	-	0-9225	0	-	0-7380	0	-	0-335
	45-	1	500	13-2785	0	-	0-1604	0	-	0-647
	55-	2	189	23-681	0	-	0-251	6	204	75-444
	65-	3	119	24-347	8	249	107-491	7	117	47-241
	75+	1	132	3-733	4	430	117-1101	4	220	60-562
Ca. Peritoneum	< 35	0	-	0-141923	- 0	-	0-73800	0	-	0-922
	35-	0	-	0-55074	0	-	0-46125	1	10000	253-557
	45-	0	-	0-36900	0	-	0-36900	0	-	0-123
	55-	1	3333	84-18567	0	-	0-12300	0	-	0-527
	65-	0	-	0-9225	0	-	0-7380	0	-	0-410
	75+	0	-	0-36900	0	-	0-36900	٥	-	0-369
Ca. Lung	<35	1	1000	253-55700	0	-	0-12300	0	-	0-922
	35-	1	833	21-4642	2	1667	201-6017	2	606	73-218
	45-	2	233	28-839	1	96	2-536	8	316	136-623
	55-	9	182	84-346	10	140	67-258	24	166	106-247
	65-	9	68	40-166	14	89	48-149	37	124	84-164
	75+	5	178	58-415	7	170	68-351	6	74	27-162
Ca. Pleura	<35	0	-	0-205000	0	-	0-52714	0	-	0-922
	35-	0		0-76875	0	-	0-41000	0	-	0-3690
	45-	1	5000	0-27850	0		0-18450	0		0-7380
	55-	2	2857	346-10314	2	2500	303-9025	4	2222	606-5689
	65-	3	3333	688-9744	2	1818	220-6564	0		0-153
	75+	0	-	0-18450	0	-	0-18450	1	1667	42-928

TABLE A3.8 (cont.):

Non-responder cause specific mortality by age at death for the 3 dockyards.

Causes of Death	Age at death		Devonp	ort		Chat	nam		Portsmo	outh
	(yrs)	Obs	SMR	95% CI	Obs	SMR	95% C1	Obs	SMR	95% CI
Circulatory System	<35	8	2759	1190-5434	5	1515	491-3536	3	566	117-1655
	35-	7	506	202-1037	7	722	290-1487	9	345	158-654
	45-	19	386	232-603	5	98	32-230	18	142	84-225
	55-	40	189	131-248	40	152	105-199	68	127	97-157
	65-	70	138	105-170	78	130	101-158	108	95	77-113
	75+	19	98	58-152	28	126	84-182	34	79	52-105
Pulmonary Circulation	<35	0	-	0-94615	0	-	0-41000	0	-	0-92250
	35-	0	-	0~36900	0	-	0~36900	0	-	0-18450
	45-	1	2500	63-13925	0	-	0-9225	0	-	0-3355
	55-	3	1304	269-3813	0	-	0-1230	0	-	0-605
	65-	1	169	4-944	0		0-505	1	74	2-410
	75+	0	-	0-2050	1	435	11-2422	0	-	0-900
Respiratory System	<35	2	2222	269-8022	3	2308	476-6746	4	1818	495-4655
	35-	1	909	23-5064	2	1667	202-6017	0		0-1153
	45-	2	408	49-1473	4	690	188-1765	4	284	77-726
	55-	9	278	127-527	8	170	73-335	19	206	124-321
	65-	16	156	89-253	18	124	73-196 17-158	27	101	67-147
	75+	2	44	5-158	4	62	17-158	9	75	34-143
Bronchitis, Emphysema	<35	1	5000	127-27850	. 0	-	0-9225	0	-	0-6150
and Asthma	35-	0	-	0-12300	1	2500	63-13925	0	-	0-3690
	45-	0	-	0-1845	1	385	10-2142	2	328	40-1184
	55-	2	128	15-463	3	128	26-375	8	180	78-355
	65-	5	126	41-294	7	115	46-238	7	65	26-134
	75+	0	-	0-313	1	54	138-303	2	59	7-214
Asbestosis	<35	0	-	0-263571	0	-	0-82000	0	-	0~108529
	35-	0	-	0-105429	0	-	0-49200	0	-	0-80217
	45-	0	-	0-61500	0	-	0-4146	0	-	0-73800
	55-	0	-	0-58571	0	-	0-36900	0	-	0-18450
	65-	0		0-18450	0	-	0-18450	0	-	0-9225
	75+	0	-	0-36900	٥	-	0-52714	0	-	0-36900
Pulmonary Fibrosis	<35	0	-	0-57656	0	-	0-147600	0	-	0-82000
	35-	0	-	0-92250	0	-	0-82000	0	-	0-73800
	45-	0		0-36900	0		0-36900	0	-	0-12300
	55-	1	1667	42-9283	1	1429	36-7957	0		0-2636
	65-	0	-	0-2838	0	-	0-2460	1	357	9-1989
	75+	0	-	0-6150	U U	-	0-6150	0	-	0-2838

TABLE A3.9:

Cause specific mortality by dockyard for questionnaire type (Free or Controlled).

Causes of Death	Ques. type		Devonp	ort		Chat	ham		Portsmo	<u>wth</u>
		0bs	SMR	95% CI	Obs	SMR	95% CI	Obs	SMR	95% CI
All Causes	Free*	1634	94	89- 98	663	89	82- 96	941	79	74- 64
	Both Neither	496 159	101 119	92-137 100-137	180 202	92 100	79-106 86-113	459 292	100	91-109 89-113
All Neoplasms	Free Both	540 188	109 132	100-118 113-151	241 69	109 116	95-122 88-143	319 171	89 121	79- 99 103-139
	Neither	61	161	121-201	55	92	68-116	85	98	77-119
Ca. Stomach	Free Both Neither	62 16 3	152 133 96	114-189 76-217 20-282	21 9 4	116 183 82	72-177 84-347 22-209	23 17 5	80 148 72	51-120 86-237 23-168
Ca. Peritoneum	Free Both	5	489 1506	158-1140 410-3855	2	511	62-1844 0-3854	0	:	0-586 11-2491
	Naither	1	1267	32-7055	ŏ	-	0-3562	Ó	-	0-2351
Ca. Lung	Free Both Neither	154 69 18	87 132 134	72-101 101-163 79-211	80 16 20	91 66 84	71-111 38-107 52-131	121 67 30	86 117 88	70-101 89-145 60-126
Ca. Pleura	Free Both	37 25	1495 3722	1013-1976 2435-5553	14	1 447 2835	791-2428 1138-5840	12 14	719 2298	371-1256 1255-3855
	Neither	4	2122	578-5432	3	1194	246-3491	2	490	59-1770
Circulatory System	Free Both Neither	850 231 71	96 91 105	89-102 79-102 81-129	309 95 96	86 86 99	77- 96 67-195 80-119	458 216 146	80 96 106	73-88 84-109 89-123
Pulmonary Circulation	Free Both	19 8	216 310	130-337 134-611	4	102	28-262 0-346	1	17 41	0-92 1-231
	Neither Free	1 132	149 90	4-829	0 63	- 84	0-350	2 88	137	17-496 61- 94
Respiratory System	Both Neither	43 17	100 151	74-105 70-130 88-242	17 27	85 131	63-105 50-137 86-190	43 29	95 106	67-123 71-153
Bronchitis, Emphysema and Asthma	Free Both Neither	31 10 4	57 62 97	37- 77 30-114 26-247	20 7 8	68 88 99	41-105 35-181 43-194	24 11 4	54 62 38	35- 81 31-110 10- 97
Asbestosis	Free Both	4	1342 3457	366-3435 713-10107	0	-	0-3068 0-11560	1	495	13-2758 0-4581
	Neither	0	-	0-16295	0	-	0-11172	2	4091	495-14768
Pulmonary Fibrosis	Free Both Neither	020	315	0-172 38-1139 0-2239	1 0 0	111	3-616 0-1500 0-1494	0 0 1	290	0-258 0-638 7-1618

Free = The free questionnaire Both = Both the free and controlled questionnaires.

TABLE A3.10:

Cause specific mortality by dockyard for x-ray type (Small or Large).

Causes of Death	X-ray type		Devonp	port		Chat	ham		Portsm	outh
		Obs	SMR	95% CI	Obs	SMR	95% CI	Obs	SMR	95% CI
All Causes	Small*	1224				00	01 04			
All Causes	Both Neither	1334 622 323	89 107 120	84-93 99-115 107-133	667 276 102	88 102 94	81- 94 87-114 75-112	859 601 232	78 102 102	73- 83 93-110 84-108
All Neoplasms	Small Both Neither	445 230 114	103 137 152	93-112 119-154 124-179	228 97 40	101 117 123	88-114 94-141 85-162	280 218 77	84 120 107	74-94 104-136 83-131
Ca. Stomach	Small Both Neither	50 23 8	141 162 124	102-180 103-244 54-245	24 9 1	130 131 37	84-194 60-249 1-206	16 21 8	60 142 135	35- 98 88-218 58-266
Ca. Peritoneum	Small Both Neither	5 5 0	548 1590 -	178-1279 515-3710 0-2612	2 0 0	492 - -	60-1776 0-2782 0-7142	0 1 0	339	0-615 9-1886 0-3219
Ca. Lung	Small Both Neither	127 80 34	83 130 125	68- 97 101-158 83-167	70 32 14	79 95 107	60- 97 62-128 59-180	101 86 31	78 117 108	62- 93 92-142 70-146
Ca. Pleura	Small Both Neither	33 26 7	1487 3326 2142	979-1994 2172-4873 860-4412	16 7 1	1596 2069 804	913-2591 831-4262 20-4477	10 16 2	628 1997 684	301-1154 1142-3243 83-2468
Circulatory System	Small Both Neither	704 293 155	91 97 113	85- 98 86-108 95-130	313 126 48	86 95 91	76- 95 78-112 65-117	430 289 110	82 97 94	74-89 86-108 77-112
Pulmonary Circulation	Small Both Neither	17 7 4	224 229 280	131-359 92-473 76-717	0 1 3	68 503	0- 93 2-377 104-1472	2 2 0	36 65 -	4-131 8-234 0-286
Respiratory System	Small Both Neither	102 57 33	81 112 25	65-97 82-141 87-177	64 35 8	84 125 68	64-105 84-167 30-135	71 61 28	69 106 110	53-85 79-132 73-160
Bronchitis, Emphysema and Asthma	Small Both Neither	21 13 11	45 68 119	28- 69 36-116 59-213	18 15 2	61 134 43	36- 96 75-221 5-156	12 16 11	30 70 112	16- 53 40-114 56-200
Asbestos1s	Small Both Neither	2 4 1	762 3918 2326	92-27511 1068-10030 59-12953	0 0 0	-	0-3006 0-8112 0-21723	3 0 0	1588 - -	328-4642 0-3553 0-9554
Pulmonary Fibrosis	Small Both Neither	1 1 0	54 133	1-300 3-743 0-1071	0 1 0	291	0-403 0-1623 0-2696	1 0 0	76 - -	2-425 0-499 0-1225

Small = The small 100mm radiograph Both = Both the small and large radiographs.

TABLE A3.11:

Cause specific mortality by age at start of employment and dockyard.

Causes of Death	Age at start		Devonp	ort		<u>Chat</u>	ham	!	Portsm	outh
	(yrs)	Obs	SMR	95% CI	Obs	SMR	95% CI	Obs	SMR	95% CI
All Causes	<25	939	95	89-101	399	90	81- 99	611	82	75- 88
	25- 35- 45-	442 332 285	96 88 97	87-105 79-98 86-108	195	92 103	80-105 83-122 62- 99	299 237	92 88	81-102 77-99
	45- 55+ Unknown	85 47	104 141	82-126 100-181	73 47 23	81 68 98	62-99 49-88 62-148	145 39 69	88 79 80	74-103 54-103 61-99
All Neoplasms	<25	337	120	107-132	156	117	99-135	235	104	90-117
	25- 35- 45-	150 113 83	114 105 98	96-132 85-124 77-119	75 33 23	119 106 83	92-146 70-142 53-125	95 76 49	95 93 98	76-114 72-114 71-126
	55+ Unknown	33	146	96-196 65-219	14 9	73 129	40-123	14 21	95 80	52-159 50-123
Ca. Stomach	<25 25-	35	156	105-208 89-245	16 7	151 132	86-245 53-272	23	129 111	82-193 51-210
	35- 45-	13	141	75-242	3	115	24-336	4	59 73	16-152
	55+ Unknown	1	48 123	1-269 3-688	2	120 1 74	15-433 4-968	1 0	80	2-444 0-173
Ca. Peritoneum	<25 25-	9	1370	627-2601 0-1468	. 2	758 -	92-2735 0-3763	1	228	6-1271 0-2275
	35- 45- 55+	0000	-	0-1933 0-2678 0-10984	0	-	0-7367 0-9180 0-15834	0	-	0-3027 0-5234 0-19230
	Unknown	Ō	-	0-19853	0	-	0-31750	Ō	-	0-8939
Ca. Lung	<25 25- 35-	93 36 52	95 75 131	75-114 51-100 95-166	44 22 12	85 86 94	60-110 54-130 49-165	78 35 36	88 87 109	69-108 58-116 73-144
	45-	26	83	54-121 74-251	10	65	42-162	23	113	71-169
	Unknown	4	114	31-293	3	108	22-315	9	86	39-163
Ca. Pleura	<25 25- 35-	40 14 3	2527 2244 622	1744-3310 1226-3765 128-1818	17 3	2570 1243 778	1497-4115 256-3633 20-4333	23 2 1	1969 456 306	1248-2954 55-1645 8-1702
	45-	4	1193	325-3054 0-5161	0	-	0-3514 0-7515	0	- -	0-1972 0-7914
	Unknown	1	2280	58-12701	Ō	-	0-12895	Ō	-	0-3344

TABLE A3.11 (cont.):

Cause specific mortality by age at start of employment and dockyard.

Causes of Death	Age at start		Devonp	ort		<u>Chath</u>	ал		Portsm	buth
	(yrs)	0bs	SMR	95% CI	0bs	SMR	95% CI	Obs	SMR	95% CI
Circulatory System	<25	467	95	86 -104	181	86	74- 99	280	79	69- 88
	25-	230	97	84-109	86	83	66-101	147	92	77-107
	35-	163	83	70- 96	49	97	70-124	124	94	77-110
	45-	150	97	82-113	39	88	60-116	66	82	62-102
	55+	44	102	72-132	24	71	45-106	18	74	44-117
	Unknown	27	158	104-230	12	107	55-186	39	93	64-122
Pulmonary Circulation	<25	10	212	102-390	2	91	11-327	1	27	1-153
	25-	4	166	45-426	1	86	2-478	0	-	0-217
	35-	6	299	110-650	1	177	4-987	1	69	2-383
	45-	6	371	136-807 0-779	0	_	0-745	0	-	0-411
	Unknown	1	572	14-3184	ŏ	-	0-2938	0	-	0-1310 0-812
	Unknown	_	5/2	14-3184	U	•	0-2938	U	-	0-812
Respiratory System	<25	74	99	76-121	31	78	50-105	49	74	53- 95
	25-	37	91	62-121	21	92	57-141	31	96	62-130
	35-	29	84	56-121	14	130	71-218	26	91	60-134
	45-	27	95	63-138	8	84	36-165	16	91	52-147
	55+	5	56	18-131	5	53	17-124	6	103	38-224
	Unknown	3	103	21-300	1	41	1-229	З	34	7-100
Bronchitis, Emphysema	<25	19	68	41-106	10	63	30-116	14	55	30- 91
and Asthma	25-	6	40	15-87	8	88	38-173	5	40	13-93
	35-	7	55	22-113	5	116	38-271	9	81	37-154
	45-	8	75	33-149	3	79	16-231	4	58	16-149
	55+	1	31	1-170	1	29	1-160	3	133	27-387
	Unknown	0	-	0-332	0	-	0-383	a	-	0-108
Asbestos1s	<25	4	2303	628-5897	0	_	0-4896	٥	-	0-2809
	25-	1	1253	32-6982	0	-	0-11024	0	-	0-6512
	35-	1	1540	39-8576	0	-	0-21523	0	-	0-8150
	45-	1	2033	51-11326	0	-	0-24138	0	-	0-13528
	55+	0	-	0-31711	0	-	0-44173	1	13471	341-75035
	Unknown	0	-	0-65001	0		0-99987	0	-	0-25403
Pulmonary Fibrosis	<25	1	86	2-481	0	_	0-716	o	-	0-425
	25-	ò	-	0-632	ŏ	_	0-1374	ŏ	-	0-905
	35-	1	204	5-1139	õ	-	0-2846	Ō	-	0-1072
	45-	0	-	0-928	1	850	22-4737	Ō	-	0-1736
	55+	0	-	0-3238	0	-	0-4108	0	-	0-5580
	Unknown	0	-	0-8618	0	-	0-12872	0	-	0-3430

TABLE A3.12:

Cause specific mortality by year of start of employment and by dockyard.

Causes of Death	Year of start		Devonp	ort		<u>Chat</u>	ham		Portsm	outh
		Obs	SMR	95% CI	Obs	SMR	95% CI	Obs	SMR	95% CI
All Causes	Pre 1930	149	86	72- 99	74	91	70-111	97	86	69-103
	1930-	584	90	83- 97	337	98	88-109	392	81	73- 89
	1940-	434	102	92-111	146	80	67- 93	336	85	76-94
	1950-	433	89	B1- 98	108	89	72-105	247	82	72- 92
	1960+	483	103	94-112	155	82	69- 95	259	98	86-110
	Unknown	47	141	100-181	23	98	62-148	69	80	61- 99
All Neoplasms	Pre 1930	56	116	86-146	26	109	71-159	44	133	94-172
	1930-	213	113	97-128	129	123	102-144	148	99	83-115
	1940-	152	123	103-142	59	106	79-133	101	83	67- 99
	1950-	143	104	87-121	40	112	77-147	83	92	72-111
	1960+	152	117	99-136	47	87	62-112	93	119	95-143
	Unknown	12	125	65-219	9	129	59-245	21	80	50-123
Ca. Stomach	Pre 1930	6	136	50-296	6	288	106-627	2	71	9-255
	1930- 1940-	25	155	101-229	11	126	63-225	18	148	88-234
	1940-	21	209 98	129-320	7	155	62-320	11	113	56-202
	1950-	14	135	49-175 74-227	2	70	8-253 14-204	4	55 82	15-141
	Unknown	1	123	3-688	1	174	4-968	0	82	27-192 0-173
Ca. Peritoneum	Pre 1930	2	2789	338-10070	. 1	3206	81-17857	0		0-877
	1930-	1	310	8-1728	i o	3200	0-2331	i i	458	12-2549
	1940-	4	1518	414-3887	ō	-	0-3511	Ó	-	0-169
	1950-	2	646	78-2333	ŏ	-	0-4833	ŏ	-	0-210
	1960-	ō	-	0-1216	1	955	24-5319	ŏ	-	0-233
	Unknown	Ō	-	0-19853	Ó	-	0-31750	ŏ	-	0-893
Ca. Lung	Pre 1930	14	79	43-132	8	81	35-160	15	111	62-184
-	1930-	61	86	65-108	39	90	62-118	60	98	73-123
	1940-	43	96	68-125	19	85	51-133	32	66	43- 89
	1950-	45	93	66-121	14	104	57-174	31	89	57-120
	1960+	56	126	93-159	13	63	34-109	41	138	96-180
	Unknown	4	114	31-293	3	108	22-315	9	86	39-163
Ca, Pleura	Pre 1930	8	5118	2207-10082	1	1424	36-7933	5	5072	1643-118
	1930-	23	2791	1769-4187	14	3408	1862-5719	11	1821	909-325
	1940-	14	2006	1096-3367	4	1388	378-3554	4	642	175-1644
	1950- 1960+	11	1467	732-2625	1	549	14-3055	5	1091	353-254
	Unknown	1	2280	242-1747 58-12701	1	427	11-2378 0-12895	1	260	7-144
	Unknown		2200	38-12701	0	-	0~12095	U U	-	0-334

TABLE A3.12 (cont.):

Cause specific mortality by year of start of employment and by dockyard.

Causes of Death	Year of start		Devonp	ort		Chath	am	!	Portsmo	uth
	-	Obs	SMR	95% CI	Obs	SMR	95% CI	Obs	SMR	95 % C I
Circulatory System	Pre 1930	73	80	61- 98	37	92	62-122	44	79	56-103
	1930- 1940-	308 224	91 101	81-101 88-115	157	93 65	79-108 48- 82	186 169	79 87	67- 90 74-100
	1940-	222	90	78-102	58	88	64-112	123	87	70- 99
	1960+	227	101	88-114	76	88	68-108	113	93	76-110
	Unknown	27	158	104-230	12	107	55-186	39	93	64-122
Pulmonary Circulation	Pre 1930	3	299	62-875	2	417	50-1504	1	153	4-854
	1930-	6	173	63-376	1	53	1-296	0	-	0-144
	1940-	3	141	29-413	0	-	0-398	1	50	1-279
	1950-	8	335	145-660	1	166	4-923	0	-	0-246
	1960-	6	269	99-585	0	-	0-389	0	-	0-290
	Unknown	1	572	14-3184	0	-	0-2938	0	-	0-812
Respiratory System	Pre 1930	12	64	33-112	7	70	28-145	6	44	16- 95
	1930-	39	66	46-87	34	95	63-127	33	67	44- 91
	1940-	40	118	82-155	15	91	51-150	40	111	76-145
	1950- 1960-	32 49	82	53-110 95-169	7 16	62 85	25-127 49-139	21	75	47-115
	Unknown	3	132 103	21-300	1	41	1-229	28 3	34	79-172 7-100
Bronchitis, Emphysema	Pre 1930	4	59	16-150	. 3	76	16-222	o		0-70
and Asthma	1930-	8	36	16- 72	12	84	43-146	ğ	47	21-89
and Ascreta	1940-	11	87	44-156	4	61	17-156	11	78	39-139
	1950-		62	29-118	1	23	1-26	7	65	26-133
	1960+	ģ	66	30-125	7	97	39-200	8	88	38-173
	Unknown	õ	-	0-332	ó	-	0-383	ō	-	0-108
Asbestosis	Pre 1930	1	3928	99-21879	0	-	0-31689	0	-	0-228
	1930-	2	1737	210-6272	0	-	0-6344	0	-	0-4374
	1940-	1	1251	32-6968	0	-	0-11109	0	-	0~5055
	1950-	1	1191	30-6634	0	-	0-19338	0	-	0-7144
	1960+	2	2676	324-9661	0	-	0-13407	1	2335	59-1300
	Unknown	0	-	0-65001	0	-	0-99987	0	-	0-2540
Pulmonary Fibrosis	Pre 1930	0	-	0-1529	0	-	0-3393	0	-	0-2451
	1930-	0		0-430	0	-	0-835	0	-	0-594
	1940-	2	393	48-1417	0		0-1725	0	-	0-786
	1950-	0	-	0-632	1	723	18-4025	0	-	0-104
	1960+	0	-	0-673	0	-	0-1689	0	-	0-121
	Unknown	0	-	0-8618	0	-	0-12872	0	-	0-343

TABLE A3.13: Cause specific mortality by length of service and dockyard.

Causes of Death	Length of service (yrs)		Devon	port		Chat	<u>ham</u>		Portsm	outh
	(yrs)	0bs	SMR	95% CI	Obs	SMR	95% CI	Obs	SMR	95% CI
All Causes	< 5	128	98	81-115	56	77	57- 97	72	87	67-107
	5-	224	108	94-122	72	85	65-105	83	92	72-112
	10-	412	92	83-101	87	81	64- 98	233	92	80-104
	20-	431 888	98 91	89-107 85- 97	154 451	90 94	76-104 85-102	333 610	83 84	74- 92 77- 90
	Unknown	47	141	100-181	23	94	62-148	69	84	61-99
All Neoplasms	< 5	45	126	89-163	18	87	51-137	26	107	70-157
	5-	55	95	70-120	22	91	57-137	29	109	73-157
	10-	143	113	95-132	28	91	60-131	85	112	88-136
	20-	141	111	93-130	62	119	89-149	96	78	63- 94
	30+	332	118	105-130	171	117	99-134	233	104	91-117
	Unknown	12	125	65-219	9	129	59-245	21	80	50-123
Ca. Stomach	< 5	5	182	59-426	2	122	15-440	1	53	1-298
	5-	6	130	48-283	1	51	1-285	2	97	12-350
	10-	10	97	46-178	0		0-150	5	83	27-193
	20-	15	146	82-241	6	142	52-310	8	81	35-160
	Unknown	41	123	118-222 3-688	20 1	164 174	100-253 4-968	24 0	131	84-195 0-173
Ca. Peritoneum	< 5	0	-	0-4214	1	2501	63-13933	0	-	0-7499
	5-	ō	-	0-2732	ó	-	0-8085	ŏ	-	0-6790
	10-	1	355	9-1976	0	-	0-5396	0	-	0-2509
	20-	5	1798	583-4198	0	-	0-3749	1	294	0-1664
	30+	3	615	127-1798	1	448	11-2495	0	-	7-1640
	Unknown	0	-	0-19853	0		0-31750	0	-	0-8939
Ca. Lung	< 5	11	92	46-165	4	51	14-130	12	131	68-228
	5-	21	106	66-162	8	86	37-169	12	119	62-209
	10-	58	131	98-165	8	70	30-137	32	109	71-147
	20-	40	89	61-117	23	112	71-168	36	75	50-99
	JU+ Unknown	89	85 114	67-103 31-293	50 3	83 108	60-106 22-315	87 9	95 86	75-115 39-163
Ca. Pleura	< 5	2	1040	126-3753	1	1082	27-6024	0	_	0-3026
	5-	1	338	9-1882	l å	1082	0-3643	ŏ	-	0-2813
	10-	ģ	1366	625-2591	ŏ		0-2377	3	812	168-2374
	20-	10	1395	669-2565	4	1529	417-3914	4	652	178-1670
	30+	39	3167	2173-4161	16	2783	1591-4518	19	2037	1227-3182
	Unknown	1	2280	58-12701	0	-	0-12895	0	-	0-3344

TABLE A3.13 (cont.): Cause specific mortality by length of service and dockyard.

Causes of Death	Length of service (yrs)		Devonp	ort		<u>Chath</u>	am		Portsm	buth
	(3/3/	Obs	SMR	95% C1	Obs	SMR	95% CI	Obs	SMR	95% CI
Circulatory System	< 5	56	93	69-117	24	73	46-108	28	75	50-108
	5-	115	114	93-135	35	90	60-119	37	90	61~119
	10-	205	91	78-103	46	92	65-119	111	92	75-109
	20-	228	101	88-114	66	79	60- 98	172	88	75-101
	30+	450	88	80-96	208	88	76-100	287	80	71- 90
	Unknown	27	158	104-230	12	107	55~186	39	93	64-122
Pulmonary Circulation	< 5	0	-	0-627	0	-	0-1025	0	-	0-954
	5-	4	400	109-1025	0		0-849	0	-	0-858
	10-	5	316 231	127-651	1	190	5-1061	0	-	0-293
	30+	10	190	75~539 91~350	3	113	0-423 23-331	1	49 26	1-274
	Unknown	1	572	14-3184	0	-	0-2938	ó	-	0-812
Respiratory System	< 5	14	146	80-246	7	98	39-202	7	98	39-202
	5-	24	144	92-214	8	92	40-182	11	139	69-248
	10-	32	87	57-117	5	49	16-116	19	80	48-125
	20-	34 68	99 76	65-132 58- 94	14	89	48-149	40	107	74-140
	Unknown	3	103	21-300	45	89 41	63-115 1-229	3	69 34	50- 88 7-100
Bronchitis, Emphysema	< 5	0	_	0-104	3	111	23-324	3	109	22-317
and Asthma	5-	6	98	36-213	4	120	33-306	3	97	20-285
	10-	10	73	35-135	. 0	-	0- 95	5	55	18-127
	20-	10	78	38-144	4	64	17-163	12	82	43-144
	30+	15	45	25- 74	16	79	45-128	12	42	21- 72
	Unknown	0	-	0-332	0	-	0-383	0	-	0-108
Asbestosis	< 5	0	-	0-17809	0	-	0-34127	0	-	0-275
	5-	2	6037	730-21793	0	-	0-29992	1	6889	174-383
	10-	0		0-4999	0	-	0-23773	0	-	0-891
	20-	2	2427 1774	294-8761 366-5185	0	-	0-11995	0	-	0-506
	Unknown	0	-	0-65001	ŏ	-	0-4600 0-99987	ŏ	-	0-293 0-254
Pulmonary Fibrosis	< 5	0	-	0-2555	0	-	0-4457	0	_	0-399
-	5-	0	-	0-1509	0	-	0-3701	Ō	-	0-363
	10-	0	-	0-680	1	832	21-4634	0	-	0-123
	20-	1	189	5-1054	0	-	0-1803	0	-	0-766
	30+	1	78	2-435	0	-	0-601	0	-	0-400
	Unknown	0	-	0-8618	0	-	0-12872	0	-	0-343

TABLE A3.14:

Cause specific	mortality	by time	e since	start c	of employment a	nd by
dockyard.						

Obs SHR 95% CI Obs SHR 95% CI Obs SHR 95% CI A11 Causes 71 96 74-118 24 72 46-107 32 81 53-105 20- 399 91 82-100 113 90 73-106 256 93 82-101 30+ 1289 93 88-98 92 85-100 897 83 78-69 Unknown 47 141 100-181 23 98 62-148 69 80 61-95 A11 Neoplasms <10 19 101 61-188 8 88 38-174 10 93 45-172 20- 132 107 89-133 28 81 54-117 50 103 74-133 20- 132 107 89-128 229 118 102-133 324 98 87-106 20- 20 9 88 40-168 2 67 <th>Causes of Death</th> <th>Time since start of employ.</th> <th></th> <th>Devonp</th> <th>ort</th> <th></th> <th>Chat</th> <th>ham</th> <th></th> <th>Portsm</th> <th>outh</th>	Causes of Death	Time since start of employ.		Devonp	ort		Chat	ham		Portsm	outh
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Obs	SMR	95% C1	Obs	SMR	95% CI	Obs	SMR	95 % C 1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		c 10	71	96	74 119	24	72	46 107	22	01	63 300
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	All Causes										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
Unknown47141100-1812398 $62-148$ 6980 $61-99$ A11 Neoplasms< 10											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											61- 99
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	All Neoplasms										45-172
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
Unknown121212565-219912959-245218050-123Ca. Stomach < 10 1632-35011233-6860-0-402101217180-2902729-260410228-26520-98840-1682678-24357524-17430+55165121-2092415197-2243111776-15620-98840-16820-0-143680-0-172Ca. Peritoneum<10											
Ca. Stomach< 10163 $2-350$ 1123 $3-686$ 0-0-40220-98840-1662678-24357524-1730+55165121-2092415197-2243111776-15220-98840-1662678-24357524-1730+55165121-2092415197-2243111776-15220-0-0-54320-0-143680-0-17320-0-0-13080-0-2350-0-24530+81133488-223113298-183011965-10520-0-0-199530-0-317500-0-83520-30+81133488-223113298-183011965-10520-5011664-148117940-1423210065-13430+1339176-107719069-1111188973-10020-5011664-148117940-1423210065-13430+1339176-107719069-1111188973-1020-11684-148117940-1423210065-13430+1339176											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Unknown	12	125	65-219	9	129	59-245	21	80	50-123
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ca. Stomach	< 10	1	63	2-350	1	123	3-686	0	-	0-402
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				171		2	72	9-260	4	102	28-262
Unknown 1 123 3-688 1 174 4-968 0 - 0-173 Ca. Peritoneum < 10 0 - 0-5432 0 - 0-173 3-688 1 174 4-968 0 - 0-173 Ca. Peritoneum < 10 0 - 0-5432 0 - 0-14368 0 - 0-173 10- 1 467 12-2602 1 1472 37-8201 0 - 0-355 20- 0 - 0-1308 0 - 0-4750 0 - 0-225 30+ 8 1133 488-2231 1 329 8-1830 1 196 5-105 Ca. Lung < 10 6 89 33-194 3 81 17-238 4 95 26-243 20- 50 116 84-148 11 79 40-142 32 100 65-134 20-		20-	9	88	40-168	2	67	8-243	5	75	24-174
Ca. Peritoneum < 10 0 - 0-5432 0 - 0-14368 0 - 0-112 20- 0 - 0-5432 0 - 0-14368 0 - 0-112 20- 0 - 0-1308 0 - 0-4750 0 - 0-223 30+ 8 1133 488-2231 1 329 8-1830 1 196 5-100 30+ 8 1133 488-2231 1 329 8-1830 1 196 5-100 Ca. Lung 10 6 89 33-194 3 81 17-238 4 95 26-243 20- 50 116 84-148 11 79 40-142 32 100 65-139 20- 50 116 84-148 11 79 40-142 32 100 65-139 30+ 133 91 76-107 71 <t< td=""><td></td><td></td><td>55</td><td></td><td></td><td>24</td><td></td><td></td><td>31</td><td>117</td><td>76-158</td></t<>			55			24			31	117	76-158
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Unknown	1	123	3-688	1	174	4-968	0	-	0-173
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ca. Peritoneum						-			-	0-112
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				467			1472			-	
Unknown 0 - 0-19853 10 - 0-31750 0 - 0-893 Ca. Lung < 10 6 89 33-194 3 81 17-238 4 95 26-243 10- 30 99 67-142 8 60 26-119 25 132 85-193 20- 50 116 84-148 11 79 40-142 32 100 65-133 30+ 133 91 76-107 71 90 69-111 118 89 73-103 30+ 133 91 76-107 71 90 69-111 118 89 73-103 Unknown 4 114 31-293 3 108 22-315 9 86 39-163 Ca. Pleura < 10 0 - 0-2568 0 - 0-791 10- 4 965 263-2471 0 - <				-						-	
Ca. Lung < 10 6 89 33-194 3 81 17-238 4 95 26-243 Ca. Lung 10- 30 99 67-142 8 60 26-119 25 132 85-193 20- 50 116 84-148 11 79 40-142 32 100 65-133 30+ 133 91 76-107 71 90 69-111 118 89 73-103 Unknown 4 114 31-293 3 100 22-315 9 86 39-163 Ca. Pleura < 10										196	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Unknown	C	-	0-19853	0	-	0-31750	0	-	0-893
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ca. Lung										26-243
30+ 133 91 76-107 71 90 69-111 118 89 73-109 Unknown 4 114 31-293 3 108 22-315 9 86 39-163 Ca. Pleura < 10											85-195
Unknown 4 114 31-293 3 108 22-315 9 86 39-163 Ca. Pleura < 10 0 - 0-4385 1 2880 73-16043 0 - 0-791 10- 4 965 263-2471 0 - 0-2568 0 - 0-161 20- 11 1717 857-3071 0 - 0-2140 5 1284 416-299 30+ 46 2351 1672-3030 20 2396 1464-3700 21 1396 864-213											65-134
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											73-105
10- 4 965 263-2471 0 - 0-2568 0 - 0-16 20- 11 1717 857-3071 0 - 0-2140 5 1284 416-299 30+ 46 2351 1672-3030 20 2396 1464-3700 21 1396 864-213		Unknown	4	114	31-293	3	108	22-315	9	86	39-163
20- 11 1717 857-3071 0 - 0-2140 5 1284 416-295 30+ 46 2351 1672-3030 20 2396 1464-3700 21 1396 864-213	Ca. Pleura						2880				0-791
30+ 46 2351 1672-3030 20 2396 1464-3700 21 1396 864-213							-				
		30+ Unknown	46	2351 2280	1672-3030 58-12701	20	2396	1464-3700 0-12895	21	1396	864-213 0-334

TABLE A3.14 (cont.):

Cause specific mortality by time since start of employment and by dockyard.

Causes of Death	Time since start of		Devonp	ort		Chath	am		Portsmo	outh
	employ.	Obs	SMR	95% CI	Obs	SMR	95% CI	Obs	SMR	95% CI
Circulatory System	< 10	33	102	67-137	10	69	33-126	10	59	28-108
encuracory system	10-	165	110	93-127	48	87	62-112	70	92	71-114
	20-	206	93	80-105	58	97	72-123	123	93	77-110
	30+	650	90	83- 97	263	84	74-94	432	82	74- 90
	Unknown	27	158	104-230	12	107	55-186	39	93	64-122
Pulmonary Circulation	< 10	1	307	8-1708	٥	-	0-2241	0	-	0~1886
	10-	7	439	176-904	0	-	0-566	0	-	0-433
	20-	5	226	73-527	1	159	4-886	0	-	0-261
	30+	13	184	98-314	3	88	18-258	2	36	4-131
	Unknown	1	572	14-3184	0	-	0-2938	0	-	0-812
Respiratory System	< 10	15	273	153-450	5	157	51-366	9	272	125-517
	10-	29	118	79-169	8	68	29-131	11	75	37-134
	20-	27	76	50-110	8	67	29-131	31	122	79-165
	30+	101	83	67- 99	58	89	66-112	77	72	56-88
	Unknown	3	103	21-300	1	41	1-229	3	34	7-100
Bronchitis, Emphysema	< 10	0	-	0-144	2	127	15-457	2	126	15-455
and Asthma	10-	8	82	35-161	3	64	13-186	3	49	10-144
	20-	7	53	21-108	3	63	13-185	9	87	40-165
	30+	26	59	39- 87	19	75	45-117	21	52	32 - 79
	Unknown	0	-	0-332	. 0		0-383	0	-	0-108
Asbestosis	< 10	0	-	0-37676	٥	-	0-87174	0	-	0-6845
	10-	1	2064	52-11497	0	-	0-21004	1	3772	95-2101
	20-	1	1378	35-7678	0	-	0-19438	0	-	0-8257
	30+	5	2013	652-4698	0	-	0-3390	0	-	0-1927
	Unknown	0	-	0-65001	0	-	0-99987	0	-	0-2540
Pulmonary Fibrosis	< 10	0	-	0-3838	0	-	0-8424	0	-	0-7516
	10-	0	-	0-1018	0		0-2750	0	-	0-1963
	20-	0		0-693	1	659	17-3669	0	-	0-1125
	30+ Unknown	2	114	14-412 0-8618	0	-	0-466 0-12872	0	-	0-277 0-3430

TABLE A3.15:

Lung cancer mortality by length of service, time since first exposure, and dockyard.

		Time since	first exposure (em	ployment)	
Length of	0 - 9	10 - 19	20 - 29	30 - 39	40+
service (yrs)	0bs SMR (95% CI)	Obs SMR (957 CI)	Obs SMR (95% CI)	Obs SMR (95% CI)	Obs SMR (95%/CI)
			DEVONPORT		
<5	5 128 (42-300)	6 76 (28-166)	-	-	-
5 - 9	1 36 (1-198)	13 111 (59-189)	7 132 (52-273)	-	-
10 - 19	-	11 104 (52-186)	31 122 (79-164)	16 199 (114-324)	
20 - 29	-	-	12 98 (51-171)	21 77 (48-118)	7 126 (51-260)
30+	-	-	-	16 82 (47-133)	73 86 (66-105)
			CHATHAM		
<5	1 41 (1-226)	3 58 (12-170)	-	-	-
5 - 9	2 164 (20-591)	3 54 (11-157)	3 119 (25-348)	-	-
10 - 19	-	2 79 (10-284)	5 76 (25-178)	1 42 (1-234)	-
20 - 29	-	-	3 66 (14-194)	13 103 (55-177)	7 203 (81-418)
30+	-	-		10 103 (49-189)	40 79 (55-104)
			PORTSMOUTH		
<5	3 104 (21-303)	9 148 (68-280)	_	-	-
5 - 9	1 77 (2-426)	9 152 (69-288)	2 71 (9-257)	-	-
10 - 19	-	7 102 (41-210)	21 120 (74-183)	4 82 (22-209)	-
20 - 29	-	-	9 78 (36-147)	21 73 (45-111)	6 77 (28-168)
30+	-	-	-	12 90 (47-158)	75 96 (74-118

TABLE A3.16:

Pleural mesothelioma mortality by length of service, time since first exposure, and dockyard.

		Time since	first exposure (em	ployment)	
Length of service	0 - 9	10 - 19	20 - 29	30 - 39	40+
(yrs)	Obs SMR (95%/CI)	Obs SMR (95% CI)	Obs SMR (95% CI)	Obs SMR (95%7 CI)	0bs SMR (95% CI)
			DEVONPORT		
<5	-	2 1468 (178-5300)	-	-	-
5 - 9	-	1 621 (16-3462)	-	-	-
10 - 19	-	1 856 (22-4769)	7 1819 (730-3747)	1 637 (16-3547)	-
20 - 29	-	-	4 2700 (736-6913)	5 1105 (358-2578)	1 864 (22-4812)
30+	-	-	-	5 2354 (763-5495)	34 3337 (2215-4459)
			CHATHAM		
<5	1 4117 (104–22933)	-	0	-	-
5 - 9	-	-	-	-	-
10 - 19	-	-	-	-	-
20 - 29	-	-	-	4 2509 (684–6423)	-
30+	-	-	1	1 1137 (29-6333)	15 3080 (1725-5080)
			PORTSMOUTH		
<5	-	-	-	-	-
5 - 9	-	-	-	-	-
10 - 19	-	-	3 1335 (275-3902)	-	-
20 - 29	-	-	2 1698 (206-6131)	1 262 (7-1458)	1 885 (22-4931)
30+	-	-	-	5 3707 (1201-8653)	14 1756 (959-2946)

TABLE A3.17:

Lung cancer mortality by year of start of employment, time since first exposure, and dockyard.

		Time since	first exposure (em	ployment)	
Year of	0 - 9	10 - 19	20 - 29	30 - 39	40+
Start	Obs SMR (957 CI)	Obs SMR (957CI)	Obs SMR (95% CI)	Obs SMR (95%7 CI)	Obs SMR (95% CI
			DEVONPORT		
Pre 1930	-	-	-	-	14 79 (43-132)
1930-	-	-	-	10 78 (37-143)	51 88 (64-113)
1940-	-	-	8 156 (67-308)	20 82 (50-127)	15 98 (55-162)
1950-	-	1 21 (1-116)	21 81 (50-124)	23 131 (83-196)	-
196 0+	6 89 (33-194)	29 114 (76-164)	21 170 (105-259)	-	-
			CHATHAM		
Pre 1930	1930		-	-	8 81 (35-160
1930-	-	-	-	10 139 (67-256)	29 80 (54–115
1940-	-	-	-	9 75 (35-143)	10 127 (61-233
1950-	-	1 95 (2-531)	8 116 (50-229)	5 90 (29-210)	-
1960+	3 81 (17-238)	7 57 (23-118)	3 66 (14-192)	-	-
			PORTSMOUTH		
Pre 1930	-	-	-	-	15 111 (62-184
19 30 -	1930		-	11 145 (72-259)	49 91 (66-117
1940-	-	-	1 20 (1-112)	14 56 (31-94)	17 92 (53-147
1950-	-	2 74 (9-268)	17 95 (55-152)	12 83 (43-145)	-
1960+	4 94 (26-243)	23 142 (90-212)	14 151 (82-253)	-	

TABLE A3.18:

Pleural mesothelioma mortality by year of start of employment, time since first exposure, and dockyard.

		<u>Time since</u>	first exposure (em	ployment)	
Year of Start	0 - 9	10 - 19	20 - 29	30 - 39	40+
Start	Obs SMR (95% CI)	Obs SMR (957/CI)	Obs SMR (95%/CI)	Obs SMR (95% CI)	Obs SMR (957 CI)
			DEVONPORT		
Pra 1930	-	-	-	-	8 5118 (2207-10082
1930-	-	-	<u> </u>	1 772 (20-4299)	22 3167 (1985-4796)
1940-	-	-	1 1684 (43-9377)	8 2256 (973-4444)	5 1763 (571-4114)
1950-	-	-	9 2512 (1150-4767)	2 592 (72-2137)	-
1960+	÷	4 1108 (302-2837)	1 448 (11-2496)	-	
			CHATHAM		
Pre 1930	-	-	-	-	1 1424 (36-7933)
1930-	-	-	-	-	14 3995 (2183-6704)
1940-	-	-	-	4 2848 (776-7290)	
1950-	-	-	-	1 1120 (28-6239)	-
1960+	1 2680 (73-16043)	-	-	-	-
			PORTSMOUTH		
Pre 1930	-	-	-	-	5 5072 (1643-11838
1930-	-	-	-	2 2881 (349-10400)	9 1684 (771–3195)
1940-	-	-	-	3 1009 (208-2951)	1 361 (9-2008)
1950-	-	-	4 1953 (532-4999)	1 440 (11-2453)	-
1960+	-	-	1 733 (19-4083)	-	-

TABLE A3.19:

Lung cancer mortality by age at start of employment, time since first exposure, and dockyard.

		<u>Time since f</u>	irst exposure (em	ployment)	
Age at	0 - 9	10 - 19	20 - 29	30 - 39	40+
start (yrs)	Obs SMR (95% CI)	Obs SMR (95% CI)	Obs SMR (95% CI)	Obs SMR (95%7 CI)	Obs SMR (95% CI)
			DEVONPORT		
<25	-	3 445 (92-1301)	4 95 (26-244)	19 92 (56-144)	67 92 (70-114)
25-	-	2 153 (19-553)	6 74 (27-161)	15 71 (40-118)	13 75 (40-129)
35-	-	11 155 (77-277)	24 125 (80-186)	17 142 (83-227)	-
45-	2 61 (7-219)	9 56 (26-106)	13 118 (63-201)	2 194 (24-701)	-
55+	4 154 (42-393)	5 99 (32-232)	3 423 (87-1238)	-	-
			CHATHAM		
<25	-	-	1 75 (2-420)	8 94 (41-185)	35 83 (56-111)
25-	-	-	1 <u>38</u> (1-210)	11 100 (50-17 9)	10 86 (41-158)
35-	-	1 50 (1-281)	4 75 (20-191)	5 104 (34-244)	2 620 (75-2240
45-	1 76 (2-423)	5 83 (27-193)	4 109 (30-279)	-	-
55+	2 97 (12-351)	2 43 (5-154)	1 115 (3-640)	-	-
			PORTSMOUTH		
<25	-	1 303 (0-15119)	1 36 (8-1686)	9 57 (26-107)	67 97 (74-120)
25-	-	2 297 (36-1073)	6 105 (38-228)	15 81 (46-134)	12 79 (41-137)
35-	-	7 155 (62-320)	15 98 (55-162)	12 102 (53-178)	2 168 (20-607)
45-	1 54 (1-300)	11 113 (56-202)	10 127 (61-233)	1 109 (3-606)	-
55+	3 158 (33-461)	4 109 (30-278)	-	-	-

TABLE A3.20:

Pleural mesothelioma mortality by age at start of employment, time since first exposure, and dockyard.

		Time since 1	first <u>exposure (em</u>	ployment)	
Age at	0 - 9	10 - 19	20 - 29	30 - 39	40+
start (yrs)	Obs SMR (957/CI)	Obs SMR (95% CI)	Obs SMR (95% CI)	Obs SMR (957/CI)	Obs SMR (95% CI)
			DEVONPORT		
<25	-	-	3 1948 (402-5695)	8 1891 (815-3725)	29 3014 (2019-4329)
25-	-	1 2426 (61-13513)	6 4177 (1532-9092)	2 745 (90-2689)	5 3006 (974-7017)
35-	-	-	1 446 (11-2483)	1 823 (21-4585)	1 16129 (408-89838
45-	-	3 1700 (351-4970)	1 890 (23-4956)	-	-
55+	-	-	-		-
			CHATHAM		
<25	-	-	-	4 2717 (740-6956)	13 2868 (1527-4905)
25-	-	-	-	1 980 (25-5461)	2 2245 (272-8015)
35-	1 22170 (561-123485)	-	-	-	-
45-	-	-	-	-	-
55+	-	-	-	-	-
			PORTSMOUTH		
<25	-	-	2 2283 (276-8242)	6 2069 (759-4504)	15 1944 (1089-3206)
25-	-	-	2 2353 (285-8495)	-	-
35-	-	-	1 674 (17-3756)	-	-
45-	-	-	-	-	-
55+	-	-	-	-	-

TABLE A3.21: Cause specific mortality by medical symptom - cough.

Causes of Death	Cough		Devonp	ort		Chatl	nam		Portsm	outh
		Obs	SMR	95% CI	Obs	SMR	95% CI	Obs	SMR	957 CI
All Causes	Yes	590	121	111-130	210	119	103-135	464	127	115-139
	No	1540	88	83- 93	633	83	76-89	936	73	68-78
All Neoplasms	Yes	220	157	136-178	77	145	113-177	176	158	135-181
	No	508	102	93-111	233	102	89-115	314	81	72- 90
Ca. Stomach	Yes	18	154	91-243	8	183	79-360	12	133	69-232
	No	60	146	109-182	22	118	74-178	28	90	60-130
Ca. Peritoneum	Yes No	27	712 694	86-2572 279-1430	02	504	0-4081 61-1819	0 1	151	0-1948 4-839
Ca. Lung	Yes	93	183	146-220	36	168	113-223	85	190	150-231
	No	130	73	60- 850	60	66	49- 83	103	67	54- 80
Ca. Pleura	Yes	16	2338	1337-3796	5	2226	721-5194	4	802	219-2053
	No	46	1873	1332-2415	16	1617	924-2625	22	1236	775-2053
Circulatory System	Yes	266	106	93-119	80	94	73-114	192	109	93-124
	No	815	92	85- 98	311	85	75- 94	482	78	71- 85
Pulmonary Circulation	Yes No	10 17	397 192	191-730 112-307	0 4	99	0-392 27-255	1 1	52 15	1-292 0- 85
Respiratory System	Yes	68	162	124-201	- 39	219	150-288	62	175	131-218
	No	107	72	58- 86	41	53	37- 69	69	56	43- 69
Bronchitis, Emphysema	Yes	21	134	83-204	17	238	139-382	18	128	76-203
and Asthma	No	20	36	22- 56	10	33	16- 61	17	36	21- 57
Asbestosis	Yes No	3 4	3536 1313	729-10336 363-3413	0	-	0-12720 0-2968	0 1	455	0-5866 12-2536
Pulmonary Fibrosis	Yes No	1	163 46	4-907 1-257	0 1	107	0-1691 3-598	0 0	-	0-823 0-237

TABLE A3.22: Cause specific mortality by medical symptom - phlegm.

Causes of Death	Phlegm		Devonp	ort		Chat	ham		Portsm	outh
		Obs	SMR	95% CI	Obs	SMR	95% CI	Obs	SMR	95% CI
All Causes	Yes	678	113	105-122	226	112	98-127	473	122	111-133
	No	1452	89	84- 93	617	83	77- 90	927	74	69-79
All Neoplasms	Yes	235	137	119-154	74	122	94-149	179	151	129-173
	No	493	106	96-115	236	107	93-121	311	82	73- 91
Ca. Stomach	Yes	23	160	101-2 39	6	119	44-260	16	166	95-270
	No	55	143	105-181	24	133	85-198	24	78	50-117
Ca. Peritoneum	Yes No	27	597 734	72-2154 295-1512	02	519	0-3618 63-1874	0	152	0-1869 4-849
Ca. Lung	Yes	94	151	120-181	33	1 34	89-180	94	198	158-238
	No	129	77	64- 91	63	72	54- 90	94	62	50- 75
Ca. Pleura	Yes	15	1834	1027-3025	1	393	10-2189	2	383	46-1383
	No	47	2024	1445-2603	20	2084	1273-3219	24	1366	875-2033
Circulatory System	Yes	315	102	91-113	105	108	87-128	198	105	90-120
	No	766	92	86- 99	286	81	71- 90	476	79	72- 86
Pulmonary Circulation	Yes No	8 19	257 230	111-506 138-359	04	103	0-341 28-264	2 0	98	12-355 0-58
Respiratory System	Yes	79	151	118-184	29	142	95-203	63	165	124-206
	No	96	70	56-83	51	69	50- 87	68	56	43- 70
Bronchitis, Emphysema	Yes	27	138	91-201	11	134	67-240	14	93	51-156
and Asthma	No	14	27	15- 46	16	55	31- 89	21	45	28- 69
Asbestosis	Yes No	3	2906 1420	600-8494 387-3636	0	-	0-11119 0-3071	0 1	463	0-555 12-257
Pulmonary Fibrosis	Yes No	1	132 49	3-733	0	111	0-1476 3-619	0	2	0-769 0-242

TABLE A3.23:

Cause specific mortality by medical symptom - breathlessness.

<u>Causes of Death</u>	Breathless		Devonp	<u>ort</u>		Chat	ham		Portsmo	outh
		0bs	SMR	95% CI	Obs	SMR	95% CI	Obs	SMR	95% CI
All Causes	Yes	410	143	130-157	126	149	123-175	278	161	142-180
	No	1720	88	84- 92	717	84	78- 90	1122	76	72- 81
All Neoplasms	Yes	146	179	150-208	35	136	91-181	82	156	122-189
	No	582	105	96-113	275	108	95-120	408	91	82-100
Ca. Stomach	Yes	10	142	68-261	4	186	51-476	7	161	64-331
	No	68	148	11 3 -183	26	124	81-182	33	92	61-123
Ca. Peritoneum	Yes No	4 5	2665 439	726-6823 142-1025	1	2436 224	62-13570 6-1248	0 1	130	0-4424 3-723
Ca. Lung	Yes	53	176	129-223	16	152	87-246	41	191	132-249
	No	170	85	73- 98	80	79	61- 96	147	83	70- 96
Ca. Pleura	Yes	8	2234	963-4400	2	1972	239~7118	3	1389	287-4060
	No	54	1941	1423-2459	19	1707	1028-2666	23	1115	707-1673
Circulatory System	Yes	189	127	109-145	64	155	117-193	127	151	124-177
	No	892	90	84- 96	327	79	71- 88	547	77	71- 84
Pulmonary Circulation	Yes No	12 15	778 152	402-1360 85-251	0	89	0-791 24-228	1	107 13	3-595 0-74
Respiratory System	Yes	55	209	154-264	25	283	183-418	55	312	230-394
	No	120	73	60- 86	55	64	47- 81	76	54	42- 66
Bronchitis, Emphysema	Yes	22	221	138-335	13	362	192-617	20	283	173-437
and Asthma	No	19	31	19- 49	14	41	23- 69	15	27	15- 45
Asbestosis	Yes Na	1 6	2084 1 78 1	53-11608 653-3876	0	-	0-26479 0-2647	0 1	- 395	0-1261 10-2199
Pulmonary Fibrosis	Yes No	0	83	0-990 10-299	0	96	0-3423 2-534	0	-	0-1685 0-206

TABLE A3.24:

Cause specific mortality by medical symptom - chest-illness.

Causes of Death	Chest- illness		Devonp	bort		Chat	ham		Portsm	outh
		Obs	SMR	95% CI	Obs	SMR	957 CI	Obs	SMR	95% CI
All Causes	Yes	279	108	95-121	93	128	102-154	165	107	91-124
	No	1851	94	89- 98	750	86	B0- 93	1235	83	78- 87
All Neoplasms	Yes	95	129	103-154	22	101	63-152	49	105	76-135
	No	633	112	103-121	288	111	98-124	441	97	88-106
Ca. Stomach	Yes	11	176	88-315	2	110	13-397	1	26	67-147
	No	67	144	109-178	28	132	88-191	39	107	73-141
Ca. Peritoneum	Yes No	4 5	2862 435	780-7328 141-1015	0 2	444	0-9987 54-2604	0	129	0-4883 3-716
Ca. Lung	Yes	36	134	90-178	8	90	39-177	27	144	95-210
	No	187	92	79-106	88	85	67-103	161	90	76-103
Ca. Pleura	Yes	5	1467	475-3423	2	2214	268-7994	1	500	13-2783
	No	57	2036	1508-2565	19	1691	1018-2640	25	1203	778-1779
Circulatory System	Yes	119	89	73-105	46	131	93-169	75	101	78-123
	No	962	95	89-102	345	83	74-91	599	83	77- 90
Pulmonary Circulation	Yes No	7 20	514 199	206-1059 121-308	1 3	253 66	6-1409 14-192	02	26	0-456 3- 95
Respiratory System	Yes	47	204	145-262	18	243	144-384	32	208	136-280
	No	128	77	63- 90	62	71	53- 89	99	69	55- 83
Bronchitis, Emphysema	Yes	14	163	89-274	10	332	159-610	15	249	139-410
and Asthma	No	27	44	29- 63	17	49	29- 79	20	36	22- 55
Asbestosis	Yes No	3 4	6812 1174	1406-19915 320-3004	0	2	0-31107 0-2 6 09	0 1	- 390	0-141 10-217
Pulmonary Fibrosis	Yes No	0	81	0-1116	0	94	0-4112	0	- 2	0-192 0-203

TABLE A3.25:

Cause specific mortality by x-ray group and dockyard.

Causes of Death	X-ray group		Devonp	ort		Chat	ham		Ports	mouth
		Obs	SMR	95% CI	Obs	SMR	95% CI	Obs	SMR	95% CI
All Causes	1 2 3 4 5 6	1428 123 55 56 96 208	91 89 105 151 82 116	86-95 73-105 77-133 112-191 66-99 101-132	674 67 17 21 60 104	85 90 77 125 136 124	79-91 68-111 45-124 77-191 102-171 100-147	985 161 39 29 73 173	80 101 85 151 116 101	75- 85 85-117 58-119 101-218 90-143 86-117
All Neoplasms	1 2 3 4 5 6	491 50 27 21 32 54	109 125 179 198 95 105	99-119 90-159 118-261 122-302 62-127 77-133	241 20 8 7 11 38	102 88 120 137 83 151	89-115 54-136 52-237 55-283 41-148 103-199	328 63 12 14 22 59	88 128 85 240 115 114	78-97 96-160 44-149 131-402 72-174 85-143
Ca. Stomach	1 2 3 4 5 6	56 5 3 0 4 5	152 148 231 140 114	112-192 48-346 48-675 0-398 38-360 37-266	24 3 0 1 2 3	125 159 231 180 142	80-1861 34-464 0-667 6-1287 22-649 29-416	22 3 1 0 8	74 75 260 205 187	46-112 15-219 54-760 5-1143 0-235 81-369
Ca. Peritoneum	1 2 3 4 5 6	6 1 2 1 0	629 1355 7761 5303	231-1368 34-7550 939-28016 134-29539 0-5937 0-4020	000000000000000000000000000000000000000	470	57-1697 0-10155 0-37367 0-48582 0-17277 0-9555	0 0 1 0 0	- 48 - - -	0-544 0-4733 121-26680 0-42079 0-12401 0-4628
Ca. Lung	1 2 3 4 5 6	142 14 6 9 11 25	89 95 107 227 89 132	74-103 52-159 39-234 104-430 44-159 86-195	72 6 3 3 4 14	77 64 110 142 74 137	59-95 24-140 23-323 29-415 20-190 75-230	112 23 3 9 14 26	76 115 52 375 180 123	62-90 73-173 11-152 171-711 99-303 81-181
Ca. Pleura	1 2 3 4 5 6	40 8 5 2 3 1	1722 4277 7910 4456 1894 444	1188-2256 1844-8426 2563-18463 539-16085 391-5538 11-2473	16 2 0 0 3	1517 2137 7894 - 3138	868-2463 258-7693 955-28497 0-20063 0-6932 647-9172	13 8 1 1 2	719 3726 1760 4405 1264 941	383-1229 1607-7339 45-9805 111-24538 32-7041 114-3398

X-ray group: 1 = Normal 2 = Pleural thickening 3 = Pleural calcification 4 = Pulmonary fibrosis 5 = Pulmonary tuberculosis 6 = All other abnormalities.

TABLE A3.25 (cont.): Cause specific mortality by x-ray group and dockyard.

Causes of Death	X-ray group		Devonp	ort		Chath	am		Partsma	outh
		Obs	SMR	95 % CI	Obs	SMR	95% CI	Obs	SMR	95% CI
Circulatory System	1 2 3 4 5 6	743 55 20 21 45 113	93 77 73 108 74 121	86-100 56-100 45-113 67-166 52-96 99-144	316 33 11 8 29 44	83 90 74 109 134 107	74-93 59-121 32-146 50-207 90-193 75-139	486 72 23 9 34 86	82 92 102 96 111 103	75-90 71-114 65-154 44-182 73-148 81-125
Pulmonary Circulation	1 2 3 4 5 6	15 1 0 1 2 5	191 138 - 491 327 522	107-315 3-768 0-1304 12-2733 40-1182 169-1218	1 0 0 0 0	24	1-136 0-908 0-3037 0-3832 0-1526 0-795	2 0 1 0 1 0	32 407 297	4-117 0-440 10-2265 0-3494 8-1656 0-403
Respiratory System	1 2 3 4 5 6	- 93 9 6 12 16 23	72 74 123 346 155 140	57- 86 34-141 45-268 179-604 89-252 89-211	57 6 0 4 15 17	73 78 216 323 186	54 - 92 29-170 0-155 59-552 181-532 108-298	79 17 2 4 12 18	69 109 43 199 186 102	54- 84 63-174 5-153 54-510 96-325 61-162
Bronchitis, Emphysema and Asthma	1 2 3 4 5 6	19 1 0 4 2 8	40 22 300 52 131	24- 62 1-123 0-202 82-767 6-189 56-257	14 2 0 8 9	46 65 - 429 248	25- 77 8 233 0-394 0-489 185-845 114-471	13 3 0 1 6 5	29 49 124 237 73	16- 50 10-142 0-201 3-690 87-517 24-169
Asbestosis	1 2 3 4 5 6	3 1 2 0 0	1096 4060 32287	226-3205 107-22614 0-41451 3919-116917 0-17832 0-12103	000000		0-2861 0-29534 0-103305 0-139031 0-51140 0-27641	3 0 0 0 0	1403	290-4103 0-13012 0-46874 0-113961 0-34569 0-12772
Pulmonary Fibrosis	1 2 3 4 5 6	0 1 0 1 0	561 2049	0-192 14-3123 0-5311 52-11413 0-2448 0-1579	000100	4637	0-387 0-3927 0-13042 117-25829 0-6611 0-3437	1 0 0 0 0	68 - - - - -	2-379 0-1845 0-6298 0-14955 0-4641 0-1706

- X-ray group: 1 = Normal 2 = Pleural thickening 3 = Pleural calcification 4 = Pulmonary fibrosis 5 = Pulmonary tuberculosis 6 = All other abnormalities.

TABLE A3.26

Cause specific mortality by duration of smoking habit and dockyard.

Causes of Death	Duration of smoking		Devonp	ort		Chat	nam		Portsm	outh
	(yrs)	Obs	SMR	95% CI	Obs	SMR	95% CI	Obs	SMR	95% CI
All Causes	< 10 10- 20- 30- 40+ Unknown	67 137 306 666 665 289	98 86 96 100 107 72	75-122 72-100 85-106 92-108 99-115 64- 81	16 47 92 264 314 110	56 79 82 101 106 60	32- 91 56-101 66- 99 89-113 95-118 49- 71	30 76 165 477 472 180	63 64 75 100 100 59	42- 89 50- 79 64- 87 91-109 91-109 50- 67
All Neoplasms	< 10 10- 20- 30- 40+ Unknown	20 46 92 225 254 91	117 105 98 114 146 81	72-181 74-135 78-119 99-129 128-164 64- 98	4 15 34 105 115 37	53 87 99 130 132 69	14-135 49-143 66-132 105-154 108-156 46- 91	9 25 56 171 170 59	67 72 83 114 120 64	31-128 46-106 61-105 97-131 102-138 48- 80
Ca. Stomach	< 10 10- 20- 30- 40+ Unknown	4 3 28 26 12	348 90 69 172 165 131	95-891 19-263 22-160 114-249 108-242 68-229	1 2 8 14 3	189 152 74 121 186 69	5-1051 18-549 9-267 52-239 101-311 14-201	2 1 5 13 15 4	208 38 95 108 125 54	25-750 1-210 31-221 58-185 70-206 15-139
Ca. Peritoneum	< 10 10- 20- 30- 40+ Unknown	2 1 3 1 1	3393 756 1325 276 377 410	411-12248 19-4210 273-3874 7-1538 10-2099 10-2285	0000		0-17224 0-8151 0-5108 0-2830 0-3119 243-7248	0 0 1 0	412	0-11084 0-4372 0-2725 10-2293 0-1965 0-2176
Ca. Lung	< 10 10- 20- 30- 40+ Unknown	1 9 34 70 101 8	21 64 104 95 156 20	1~115 29-121 69-138 73-117 126-187 9- 40	0 7 36 49 4	53 108 136 19	0-149 0-60 21-108 73-144 98-174 5-49	3 4 16 69 88 8	65 32 61 113 151 22	13-189 9- 81 35-100 86-140 120-183 10- 44
Ca. Pleura	< 10 10- 20- 30- 40- Unknown	2 4 9 21 11 15	1866 1356 1485 2168 1867 2614	226-6737 370-3472 680-2819 1342-3314 932-3339 1464-4311	0 5 8 3 5	2485 2256 1109 2061	0-9041 0-3535 805-5799 973-4443 229-3243 668-4809	0 4 6 3 7	1909 1552 860 650 1557	0-5002 520-4887 569-3378 315-1871 134-1901 625-3208

TABLE A3.26 (cont.): Cause specific mortality by duration of smoking habit and dockyard.

Causes of Death	Duration of smoking		Devonp	port		Chat!	iam		Portsmo	uth
	(yrs)	Obs	SMR	95% CI	Obs	SMR	95% CI	Obs	SMR	95 % CI
Circulatory System	< 10 10- 20- 30- 40+ Unknown	30 68 179 334 321 149	112 89 109 96 98 75	76-160 68-110 93-125 86-107 87-109 63- 86	6 24 46 114 143 58	55 88 85 89 99 67	20-119 56-131 60-109 73-105 82-115 49- 84	10 40 77 224 225 98	50 73 72 96 97 67	24-93 50-96 56-88 83-108 84-110 54-80
Pulmonary Circulation	< 10 10- 20- 30- 40+ Unknown	0 1 4 11 8 3	146 270 319 225 152	0-1467 4-812 74-692 159-572 97-443 31-444	0 0 0 3 1	- - 174 106	0-3234 0-1382 0-688 0-266 36-510 3-591	0 0 0 1 1	- - 37 66	0-1854 0-703 0-353 0-150 1-208 2-366
Respiratory System	< 10 10- 20- 30- 40+ Unknown	6 12 21 58 56 22	150 113 96 105 86 66	55-326 58-198 59-146 78-132 63-108 41-100	1 2 5 27 37 8	47 42 55 106 105 44	1-262 5-150 18-129 70-155 71-139 19-86	3 6 13 48 55 6	83 64 71 108 101 21	17-241 23-139 38-122 77-138 74-127 8-46
Bronchitis, Emphysema and Asthma	< 10 10- 20- 30- 40+ Unknown	1 2 4 13 16 5	70 52 49 62 66 41	2-391 6-188 13-125 33-106 38-108 13- 96	0 0 3 7 14 3	- 84 69 100 42	0-463 0-202 17-245 28-142 54-167 9-124	0 2 4 11 16 2	56 57 62 75 18	0-271 7-203 15-145 31-112 43-122 2- 66
Asbestos 1s	< 10 10- 20- 30- 40+ Unknown	2 0 1 3 1 0	23296 1567 2354 1073	2819-84099 0-14444 40-8728 486-6881 27-5978 0-5566	000000	-	0-105607 0-40938 0-17076 0-7801 0-8579 0-12776	0 0 0 1 0	1383	0-52900 0-19316 0-8818 0-4113 35-7705 0-7015
Pulmonary Fibrosis	< 10 10- 20- 30- 40+ Unknown	0 0 1 1 0	- 117 117	0-6121 0-2195 0-1016 3-652 3-650 0-766	0 0 0 1 0	256	0-14093 0-5975 0-2928 0-1124 6-1428 0-1695	000000		0-7775 0-2945 0-1477 0-623 0-588 0-1018

TABLE A3.27; Cause specific mortality by occupational group and dockyard.

<u>Causes of Death</u>	Occup. group		Devonp	ort		<u>Chat</u>	ham		<u>Ports</u> m	outh
		Obs	SMR	95% CI	Obs	SMR	95% CI	Obs	SMR	95% CI
					[
All Causes	1	112	105	85-124	38	73	50-96	50	90	65-115
	23	188	98	84-112	77	114	88-139	132	96	80-113
	3	118	100	82-119	38	93	63-122	73	80	62-99
	4	1651	93	89- 98	665	88	81- 95	1077	85	79-89
	Unknown	61	124	93-156	25	104	67-153	68	79	60- 97
All Neoplasms	1	47	153	109-197	15	96	54-158	20	119	73-183
	23	69	126	97-156	36	177	119-235	61	145	109-182
	3	36	110	73-145	14	118	64-198	28	103	68-149
	4	555	110	101-119	237	105	91-118	361	93	84-103
	Unknown	21	149	92-227	87	110	48-217	20	76	46-117
Ca. Stomach	1	3	118	24-346	2	155	19-559	3	223	46-653
	2	6	136	50-296	5	307	99-715	5	150	48-351
	23	3	119	24-347	Ō	_	0-402	3	141	29-413
	Ā	61	144	108-181	23	124	78-185	29	93	62-133
	Unknown	5	421	136-982	Ō	0	0-613	Ō	-	0-172
Ca. Peritoneum	1	1	1587	40-8842	0	-	0-14697	0	-	0-12085
	2	2	1683	204-6074	Ó	-	0-9470	i i	1305	33-7269
	3	ō	-	0-4243	l ĭ	3628	92-20206	Ó		0-6577
	ă	6	604	222-1316	1 1	261	7-1451	ŏ	_	0-569
	Unknown	ŏ	-	0-13441	Ó	-	0-31238	ŏ	-	0-8886
Ca. Lung	1 1	12	109	56-190	6	79	26-185	7	106	42-218
	2	19	99	59-154	ī	88	35-181	26	157	102-230
	3	11	100	50-178	3	68	14-200	- ă	77	33-515
	ă I	176	96	82-111	78	86	67-105	139	90	75-105
	Unknown	5	97	32-227	3	102	21-299	8	76	33-149
	Unknown	5		36-221	3	102	21-299	°	/0	33-149
Ca. Pleura	1	6	3886	1425-8458	1	1590	40-8856	0	-	0-4571
	23	7	2438	979-5021	6	6318	2316-13751	6	2878	1055-6265
		8	3962	1708-7805	3	4657	961-13614	2	1368	168-5011
	4	40	1646	1136-2156	11	1143	571-2045	18	1038	615-1640
	Unknown	1	1509	38-8405	0	-	0-12375	0	-	0-3322

Occupational group: 1 = Registered asbestos workers. 2 = Electrical fitters, burners, welders, riveters, caulkers, drillers, shipfitters, plumbers and coppersmiths. 3 = Shipwrights, engine fitters. 4 = All dockyard trades not in groups 1, 2 and 3.

TABLE A3.27 (cont.):

Cause specific mortality by occupational group and dockyard.

Causes of Death	Occup. group		Devonp	ort		Chath	am	E	ortsmo	uth
		Obs	SMR	95% CI	Obs	SMR	95% CI	Obs	SMR	95% CI
Circulatory System	1	53	97	71-123	19	75 97	45-117	24 53	90 81	58-134 59-102
	2	91	94	75-114	31	76	63-131 41-127	33	77	59-102
	3	59	104	77-130	14		76-95	525	85	78-92
	4	848	93	87-100	312	85			93	/8- 92 63-122
	Unknown	30	119	80-170	15	128	72-211	39	93	63-122
Pulmonary Circulation	1	2	369	45-1331	0	-	0-1320	0	-	0-13255
	2	2	212	26-764	0	-	0-1075	0	-	0-544
	3	2	377	46-1362	0	-	0-1942	0	-	0-851
	4	20	219	134-339	4	99	27-255	2	30	4-110
	Unknown	1	392	10-2181	0	-	0-2820	0	-	0-807
Respiratory System	1	7	78	31-162	1	18	0-102	3	58	12-171
heap to accord of a comment	Ż	14	91	50-152	7	111	45-228	10	81	39-149
	3	11	133	66-238	5	147	48-343	5	64	21-149
		138	90	75-105	66	86	65-106	110	88	72-105
	Unknown	5	117	38-274	1	40	1-221	3	34	7-100
Bronchitis, Emphysema	1	3	90	19-263	0	_	0-173	1	50	1-278
and Asthma	2	3	53	11-154	ł ī	40	1-221	5	104	34-242
	3	ž	66	8-236	4	150	18-542	Ō	-	0-123
	4	33	58	38- 78	24	79	50-117	29	60	40-86
	Unknown	õ		0-229	0	-	0-369	0	-	0-108
Asbestosis	1	1	5339	135-29736	0	-	0-43716	0	-	0-38516
Asbestosis	Ż	ż	9004	1858-26322	Ιō	-	0-32838	0	-	0-14935
	3	õ	-	0-18557	ŏ	-	0-56689	Ō	-	0-23677
	a a	ž	985	203-2880	ŏ	-	0-2995	0	22	12-2555
	Unknown	ŏ	-	0-43554	ō	-	0-94531	0	-	0-25340
Pulmonary Fibrosis	1	o	_	0-2779	0	_	0-5617	0	-	0-5586
a monary i foroara	2	ŏ	_	0-1600	ŏ	_	0-4597	ō	-	0-2261
	3	ŏ	-	0-2873	ō	-	0-8414	0	-	0-3592
	4	Ž	90	11-324	1 ī	108	3-599	0	-	0-236
	Unknown	n n	-	0-5883	i i	-	0-12325	l õ	-	0-3409

Occupational group: 1 = Registered asbestos workers. 2 = Electrical fitters, burners, welders, rivetars, caulkers, drillers, shipfitters, plumbers and coppersmiths. 3 = Shipwrights, engine fitters. 4 = All dockyard trades not in groups 1, 2 and 3.

TABLE A3.28: Cause specific mortality by exposure rating and dockyard.

Causes of Death	Exposure rating		Devonp	ort		<u>Chat</u>	ham		Portsm	outh
		Obs	SMR	95% CI	Obs	SMR	95% CI	Obs	SMR	95 % C I
All Causes	< 100	1149	94	88- 99	472	87	79- 94	734	85	79- 91
	100-200-	316 224	91 88	61-101 77-100	108	83 97	67- 99	211	79	69-90
	300-	185	103	88-118	83	115	78-116 90-140	159 139	82 93	69- 95 78-109
	400+	125	120	99-141	43	81	57-105	78	105	81-128
	Unknown	131	106	88-125	40	100	69-132	79	83	65-101
All Neoplasms	< 100	367	106	95-116	167	103	88-119	233	89	78-101
	100-	104	104	84-124	43	110	77-143	75	93	72-114
	200- 300-	97	132	106-158	35	114	76-152	59	100	74-125
	400+	53	178	103-166 130-226	32	146	95-196 52-154	58 40	125	93-158
	Unknown	37	105	71-139	18	150	89-238	25	176 86	121-231 56-127
Ca. Stomach	< 100	42	146	102-191	15	114	64-187	14	67	36-112
	100-	10	122	59-225	5	158	51-369	8	123	53-243
	200-	?	115	46-237	4	159	43-408	7	147	59-302
	300- 400+	6	136	50-296	3	164	34-480	6	160	59-349
	Unknown	6 7	230 236	84-500 95-486	2	147 101	18-532 3-561	5	264	86-617 0-156
Ca. Peritoneum	< 100	2	280	34-1010	2	704	85-2543	0	-	0-807
	100-	0	-	0-1725	ō	-	0-5018	ŏ	-	0-257
	200-	2	1349	163-4869	0	-	0-6966	Ó	-	0-368
	300-	2	2141	259-7728	. 0	-	0-10797	1	1366	35-761
	400+ Unknown	3	6072	1253-17751 0-5310	0	- 2	0-16397 0-18322	0	-	0-112
Ca. Lung	< 100	112	90	74-107	60	94	70-117	100	97	78-116
our Eding	100-	36	102	68-135	10	65	31-120	24	75	48-112
	200-	32	120	79-162	10	81	39-149	16	68	39-110
	300-	19	98	59-154	6	67	24-145	21	112	69-170
	400+	14	126	69-212	5	76	24-176	18	193	114-305
	Unknown	10	78	38-144	5	104	34-242	9	77	35-146
Ca. Pleura	< 100 100-	13 12	761	405-1302	2	288	35-1041	6	498	183-108
	200-	14	3678	1176-3974 2010-6172	3	1604 3584	331-4688 1161-8364	3	783 2183	162-228
	300-	15	6284	3519-10364	7	3564	3175-16295	6	2920	800-475
	400+	7	5972	2397-12303	3	5410	1116-15816	5	5843	1893-136
	Unknown	i	593	15-3301	1	1994	50-11108	ő		0-295

TABLE A3.28 (cont.):

Cause specific mortality by exposure rating and dockyard.

Causes of Death	Exposure rating		Devonp	ort		<u>Chat</u>	am		Portsmo	uth
		Obs	SMR	95% CI	Obs	SMR	95% CI	Obs	SMR	95% CI
Circulatory System	< 100 100- 200- 300- 400+ Unknown	603 166 89 95 60 68	97 93 68 101 110 107	90-105 79-107 54- 82 81-122 82-138 82-133	221 50 45 34 22 19	85 80 92 96 84 98	74-96 58-102 65-119 64-129 53-128 59-153	357 104 76 67 26 44	86 81 80 92 71 95	77- 95 65- 96 62- 98 70-114 46-104 67-123
Pulmonary Circulation	< 100 100- 200- 300- 400- Unknown	16 5 1 2 1 2	259 287 77 210 173 313	148-420 93-671 2-430 25-756 4-966 38-1129	3 0 0 0 1	105 - - 464	22-306 0-555 0-695 0-944 0-1232 12-2582	1 0 0 0	23 74 - - -	1-127 2-412 0-371 0-474 0-898 0-735
Respiratory System	< 100 100- 200- 300- 400+ Unknown	93 22 25 14 7 14	90 77 118 87 69 130	71-108 48-117 76-174 48-147 28-143 71-219	46 10 5 12 6 1	83 80 51 161 101 24	59-108 39-148 17-120 83-281 37-219 1-136	83 14 13 9 4	100 55 69 55 113 42	79-122 30-93 37-119 24-109 52-214 11-107
Bronchitis, Emphysema and Asthma	< 100 100- 200- 300- 400+ Unknown	19 4 8 2 4 4	49 38 102 33 106 100	30- 77 10- 97 44-200 4-121 29-271 27-255	16 4 1 5 1 0	74 82 26 167 42	42-120 22-210 1-143 54-390 1-235 0-225	22 4 5 3 1 0	68 41 69 53 32	43-103 11-104 22-161 11-154 1-177 0- 99
Asbestosis	< 100 100- 200- 300- 400+ Unknown	1 2 1 2 0	481 1637 4358 3139 11738	12-2680 41-9118 527-15732 79-17487 1420-42374 0-17428	0 0 0 0 0		0-4245 0-16907 0-21073 0-30203 0-44247 0-56855	100000	680 - - - -	17-3787 0-8028 0-1086 0-1370 0-2990 0-2268
Pulmonary Fibrosis	< 100 100- 200- 300- 400+ Unknown	1 0 1 0	66 429	2-368 0-868 0-1173 11-2390 0-2631 0-2362	1 0 0 0 0	151 - - -	4-842 0-2389 0-3012 0-3997 0-5285 0-7484	000000		0-353 0-1152 0-1553 0-1974 0-3823 0-3105

TABLE A3.29:

Cause specific mortality by asbestos exposure period and dockyard.

Causes of Death	Asbestos exposure		Devonp	ort		Chat	ham		Portsm	outh
	(yrs)	Obs	SMR	95 % CI	Obs	SMR	95% CI	Obs	SMR	95% CI
									• •	
All Causes	< 10 10- 20- 30+ Unknown	87 84 118 114 1727	97 93 117 98 94	76-117 73-112 96-138 80-116 90- 99	32 20 38 48 705	80 65 105 113 89	52-108 40-100 71-138 81-144 83-96	64 76 92 114 1054	91 105 110 93 81	68-113 81-128 88-133 76-110 77- 86
All Neoplasms	< 10 10- 20- 30+ Unknown	25 35 48 45 575	96 133 162 133 110	62-142 89-178 116-207 94-172 101-119	17 7 10 23 253	141 75 90 176 107	82-226 30-154 43-165 111-263 94-121	25 31 34 46 354	115 139 132 121 90	75-170 90-188 88-176 86-156 81-100
Ca. Stomach	< 10 10- 20- 30+ Unknown	2 2 3 3 68	94 92 122 102 157	11-339 11-334 25-356 21-299 120-195	4 0 4 22	405 - 366 114	110-1037 0-482 0-402 100-936 71-173	5 1 3 6 25	289 56 144 192 79	94-675 1-310 30-420 70-418 51-117
Ca. Peritoneum	< 10 10- 20- 30+ Unknown	0 0 1 3 5	1756 5363 468	0-6989 0-6814 44-9780 1107-15677 152-1092	000000000000000000000000000000000000000	485	0-18000 0-23014 0-20013 0-18631 59-1750	00010	1800	0-9704 0-9671 0-8848 46-10026 0-543
Ca. Lung	< 10 10- 20- 30+ Unknown	7 21 15 12 168	75 222 136 95 90	30-155 137-339 76-225 49-166 76-104	4 1 2 6 83	83 27 44 111 89	23-212 1-148 5-158 41-241 70-108	10 9 13 17 139	116 101 124 108 90	56-213 46-191 66-213 63-174 75-105
Ca. Pleura	< 10 10- 20- 30+ Unknown	3 5 9 8 37	2316 3679 6072 5812 1429	478-6771 1192-8586 2780-11524 2506-11449 969-1890	0 1 2 4 14	2379 4077 7851 1371	0-7185 60-13253 493-14719 2140-20100 749-2301	1 3 1 9 12	962 2906 865 5915 665	24-5359 600-8494 22-4820 2708-11226 344-1162

TABLE A3.29 (cont.):

Cause specific mortality by asbestos exposure period and dockyard.

Causes of Death	Asbestos exposure		Devonp	ort		Chath	am	1	ortsmo	uth
		Obs	SMR	95% CI	0bs	SMR	95% CI	Obs	SMR	95% CI
Circulatory System	< 10 10- 20- 30+ Unknown	47 37 53 53 891	102 79 101 87 95	73-131 54-105 74-128 63-110 89-102	12 11 23 17 328	62 73 129 81 86	32-109 37-131 82-194 47-130 77- 96	28 34 43 50 519	82 96 105 83 83	55-119 64-129 74-137 60-106 76-90
Pulmonary Circulation	< 10 10- 20- 30+ Unknown	0 2 3 0 22	435 574 236	0-814 53-1569 118-1677 0-577 148-358	0 0 0 4	- - - 96	0-1732 0-2274 0-1893 0-1581 26-246	0 1 0 0 1	267	0-1040 7-1487 0-848 0-557 0- 84
Respiratory System	< 10 10- 20- 30+ Unknown	7 9 13 7 139	93 121 154 64 89	37-192 55-229 82-263 26-131 74-104	2 0 2 5 71	50 - 56 112 89	6-179 0-121 7-202 36-261 68-110	5 4 10 13 99	77 58 124 103 79	25-179 16-149 60-229 55-177 64- 95
Bronchitis, Emphysema and Asthma	< 10 10- 20- 30+ Unknown	3 2 2 1 33	108 71 62 24 57	22-315 9-258 8-224 1-135 38- 77	2 0 2 23	125 - 111 73	15-450 0-309 0-257 13-399 46-110	1 1 3 27	39 37 95 60 56	1-219 1-205 20-276 12-176 37- 81
Asbestosis	< 10 10- 20- 30+ Unknown	1 0 1 1 4	6276 5343 5009 1274	159-34958 0-22635 135-29762 127-27903 347-3262	0 0 0 0	-	0-55759 0-70118 0-57978 0-51393 0-2885	0 0 0 1	- - 453	0-29283 0-28684 0-24727 0-17193 11-2524
Pulmonary Fibrosis	< 10 10- 20- 30+ Unknown	0 0 1 1	- 637 44	0-3271 0-3292 0-2887 16-3549 1-245	0 0 0 1	104	0-7548 0-9784 0-8141 0-6667 3-579	000000		0-4328 0-4154 0-3543 0-2323 0-235

TABLE A3.30:Devonport Dockyard.All cause mortality by
smoking habit and 'asbestos' variables.

	Non-smakers	Ex-smokers	Smokers
	Obs SMR	Obs SMR	Obs SMR
	(95% C1)	(95% CI)	(95% CI)
		Occupational group	
1	29 88	49 142	17 87
	(59-127)	(102-182)	(51-140)
2	49 80	70 112	39 128
	(58-103)	(86-138)	(88-168)
3	29 85	46 118	23 106
	(57-122)	(84-153)	(67-159)
4	584 89	590 104	268 113
	(82-96)	(96-113)	(100-127)
		Exposure rating	
< 100	380 87	424 109	188 108
	(78-96)	(99-120)	(93-124)
1 00 -	103 79	114 106	59 118
	(64- 94)	(87-126)	(88-148)
200-	68 79	91 102	41 105
	(60-98)	(81-123)	(73-137)
300-	69 100	64 109	27 125
	(77-124)	(82-136)	(83-182)
400+	50 141	36 104	23 151
	(102-180)	(70-138)	(96-227)
	Asbe	stos exposure period	(yrs)
< 10	27 79	37 119	15 100
	(52-116)	(81-157)	(56-164)
10-	32 101	31 89	16 106
	(66-136)	(57-120)	(60-172)
20-	42 112	38 104	24 136
	(78-146)	(71-137)	(87-203)
30+	50 115	28 78	22 123
	(83-147)	(52-113)	(77-187)
	Contin	nuous asbestos exposu	re (yrs)
< 10	6 96	8 124	6 133
	(35-209)	(53-244)	(49-289)
10-	17 268	8 119	1 72
	(156-430)	(51-234)	(2-403)

TABLE A3.30 (cont.):Chatham Dockyard.
mortality by smoking
'asbestos' variables.All cause
habit and

	1		
	Non-smokers	Ex-smokers	Smokers
	Obs SMR	0bs SMR	Obs SMR
	(9577 CI)	(957 CI)	(9577 CI)
		Occupational group	
1	21 72	11 83	5 85
	(45-110)	(42-149)	(27-197)
2	39 151	17 83	14 131
	(104–198)	(43-147)	(72-220)
3	11 77	12 84	7 126
	(38-138)	(43-147)	(51-259)
4	278 91	216 104	395 94
	(80-101)	(91-118)	(74-114)
		Exposure rating	
< 100	188 84	152 105	67 101
	(72- 96)	(89-122)	(76-125)
100-	42 82	39 105	13 63
	(58-107)	(72-138)	(34-108)
200-	57 131	19 72	13 107
	(97-165)	(43-112)	(57-182)
300-	41 135	21 89	11 153
	(94-177)	(55-136)	(76-274)
400+	14 63	38 94	8 159
	(34-105)	(55-150)	(68-313)
	Asbes	stos exposure period	(yrs)
< 10	15 79	10 97	3 74
	(44-130)	(47-179)	(15-216)
10-	11 66	7 75	2 82
	(33-118)	(30-155)	(10-296)
20-	21 126	8 89	9 153
	(78-193)	(38-175)	(70-290)
30+	27 149	14 93	5 143
	(98-217)	(51-156)	(46-334)
	Conti	nuous asbestos exposu	re (yrs)
< 10	7 122	7 242	1 162
	(49-252)	(97-498)	(4-904)
10-	2 70 (9-254)		1 109 (3-607)

A3 - 46

TABLE A3.30 (cont.):Portsmouth Dockyard.
mortality by smoking habit and
'asbestos' variables.All cause
habit and

	Non-smakers	<u>Ex-smokers</u>	Smokers
	Obs SMR	Obs SMR	Obs SMR
	(95%7 CI)	(95%7 CI)	(957/CI)
		Occupational group	
١	21 114	12 76	12 96
	(71-175)	(39-133)	(49-167)
2	43 92	50 127	25 104
	(65-120)	(92-162)	(67-154)
3	26 82	20 74	11 91
	(53-120)	(45-115)	(45-163)
4	377 85	369 92	202 100
	(76-93)	(83-102)	(86-114)
		Exposure rating	
< 100	247 81	257 95	136 100
	(71-91)	(8,3-106)	(83-117)
100-	77 79	63 85	41 98
	(61-97)	(64-106)	(68-128)
200-	58 99	48 76	37 94
	(74-125)	(54-97)	(64-124)
300-	47 87	57 127	21 92
	(62-112)	(94-160)	(57-140)
400+	35 140	23 86	12 143
	(94-187)	(55-130)	(74-250)
	Asbes	stos exposure period	
< 10	26 97	14 59	17 146
	(63-142)	(32- 98)	(85–234)
10-	32 96	23 116	13 104
	(63-129)	(73-174)	(55-178)
20-	34 113	36 148	18 102
	(75-151)	(100-196)	(60-161)
30+	52 103	38 101	15 96
	(75-131)	(69-133)	(54-159)
		nuous asbestos exposu	
< 10	6 100	2 57	6 312
	(37–219)	(7-206)	(114-678)
10-		6 110 (40-240)	2 107 (13-385)

APPENDIX 4.

TABLE A4.1:

All cause mortality by x-ray group and by time since first exposure.

	Time since first exposure (employment)							
X-ray	0 - 9	10 - 19	20 - 29	30 - 39	40+			
group	Obs SMR	Obs SMR	Obs SMR	Obs SMR	Obs SMR			
	(95% CI)	(95% CI)	(95% CI)	(95%/CI)	(95%/CI)			
			DEVONPORT					
1	47 88	214 97	264 85	316 91	435 85			
	(63-113)	(84-110)	(75- 95)	(81-101)	(77-93)			
2	2 135	3 34	24 107	36 97	53 82			
	(16-489)	(7-98)	(69–159)	(66-129)	(60-104)			
3	1 358 (9-1993)	3 220 (45-643)	-	6 70 (26-153)	42 106 (74-139)			
4	1 119	7 204	5 71	16 163	27 170			
	(3-664)	(82-420)	(23-166)	(93-264)	(112-247)			
5	2 69	17 123	16 83	18 75	33 74			
	(8-249)	(71-196)	(48-135)	(44-118)	(49-100)			
6	6 114	28 127	39 122	39 98	74 108			
	(42-249)	(84-183)	(84-160)	(67-129)	(83-132			
			CHATHAM					
1	14 56	65 74	75 83	112 80	238 86			
	(31- 94)	(56–93)	(64-102)	(65- 95)	(75-97			
2	1 185	2 67	6 99	13 76	40 104			
	(5-1028)	(8-243)	(36-215)	(40-129)	(72-137			
3	-	1 71 (2-393)	-	4 111 (30-284)	11 74 (37-132			
4	-	-	2 147 (18-532)	2 72 (9-259)	13 168 (89-287			
5	1 89	8 184	8 115	15 190	13 120			
	(2-494)	(79-363)	(50-227)	(107-314)	(64-205			
6	4 210	6 80	11 137	14 99	45 3229			
	(57-537)	(29–174)	(69-246)	(54-166)	(99-180			
			PORTSMOUTH					
1	13 47	91 81	141 80	182 76	283 74			
	(25- 81)	(65-98)	(67- 94)	(65-87)	(65-82			
2	4 263	5 61	21 103	44 105	80 95			
	(72-672)	(20-142)	(64-158)	(74-136)	(75-116			
3	-	1 104 (3-581)	3 109 (23-319)	13 182 (97-311)	21 60 (97-311			
4	-	1 74 (2-413)	7 163 (65-336)	7 120 (48-247)	13 171 (91-292			
5	4 277	5 94	12 125	10 76	25 131			
	(76-710)	(31-220)	(65-218)	(36-139)	(85-194			
6	4 115	19 122	33 126	33 103	48 85			
	(31-293)	(73-190)	(83-1696)	(68-138)	(61-109			

TABLE A4.2:

Lung cancer mortality by x-ray group and by time since first exposure.

	Time since first exposure (employment)							
X-ray	0 - 9	10 - 19	20 - 29	30 - 39	40+			
group	Obs SMR (95% CI)	Obs SMR (95% CI)	Obs SMR (95% CI)	Obs SMR (95% CI)	Obs SMR (95%CI)			
			DEVONPORT					
1	4 86 (23-220)	17 80 (47-128)	35 116 (77-154)	31 86 (56-117)	38 69 (47-92			
2	-	-	3 127 (26-370)	3 76 (16-223)	8 115 (50-227			
3	-	1 646 (16-3596)	-	-	5 120 (39-280			
4	-	1 261 (7-1454)	-	4 382 (104-977)	4 238 (65-610			
5	-	3 201 (41-586)	1 51 (1-282)	3 117 (24-341)	3 64 (13-186			
6	1 172 (4-959)	2 84 (10-304)	7 210 (84-432)	4 95 (26-244)	9 123 (56-234			
			CHATHAM					
1	1 37 (1-207)	4 42 (12-109)	7 72 (29-149)	14 84 (46-141)	31 90 (58-122			
2	-	1 267 (7-1486)	-	1 46 (1-256)	3 63 (13-184			
3	-	1 581 (15-3248)	-	-	1 55 (1-305			
4	-	-	-	-	1 104 (3-581			
5	-	1 185 (5-1029)	-	2 215 (26-778)	-			
6	-	1 116 (3-648)	3 328 (68-957)	2 114 (14-410)	5 125 (41-293			
			PORTSMOUTH					
1	3 106 (22-309)	12 96 (50-168)	16 80 (46-130)	16 56 (32-91)	35 73 (49-97			
2	-	1 96 (2-534)	3 119 (24-347)	4 77 (21-196)	14 133 (73-223			
3	-	-	-	1 108 (3-603)	2 46 (6-166			
4	-	-	-	² 277 (34-1000)	7 737 (296-151			
5		3 436 (90-1276)	1 86 (2-478)	3 190 (39-555)	5 208 (68-487			
6	-	4 201 (55-516)	7 215 (86-444)	5 127 (41-297)	7 100 (40-206			

TABLE A4.3:

Pleural mesothelioma mortality by x-ray group and by time since first exposure.

	Time since first exposure (employment)							
X-ray	0 - 9	10 - 19	20 - 29	30 - 39	40+			
group	Obs SMR (95%7 CI)	Obs SMR (95% CI)	Obs SMR (9577 CI)	Obs SMR (95% CI)	Obs SMR (95%7 CI)			
			DEVONPORT					
1	-	3 973 (201-2845)	8 1680 (725-3310)	5 865 (280-2020)	19 2678 (1612-4182)			
2	-	-	2 6818 (825-24613)	1 1833 (46-10211)	5 5812 (1883-13564			
3	-	-	14	-	5 10799 (3499-25204			
4		-	.9	-	2 10431 (1262-37656			
5	-	-		3 8411 (1735-24588)	-			
6	-	-	-	-	1 1147 (29-6389)			
			CHATHAM					
١	-	-	-	5 2389 (774-5577)	9 2494 (1142-4734			
2	-	-	-	-	2 4121 (499-1487)			
3	-	-	-	-	2 11955 (1447-4315			
4	-	-	-	-	-			
5	-		-	-	-			
6	1 53305 (1349-296911)				1 2675 (68-1489			
			PORTSMOUTH					
1	-	-	4 1505 (410-3853)	3 765 (158-2237)	4 749 (204-1919			
2	-	-	1 3790 (96-21112)	1 1671 (42-9305)	6 5416 (1986-1178			
3	-	-	-	-	1 2374 (60-1322			
4	-	-	-	-	1 10660 (270-5937			
5	- :	-	-	-	1 3786 (96-2108)			
6	-	-	-	1 2323 (59-12941)	1 1416 (36-7887			

TABLE A4.4:

All cause mortality by medical history and by time since first exposure.

		Time since	first exposure (em	ployment)	
Medical history	0 - 9	10 - 19	20 ~ 29	30 - 39	40+
	Obs SMR	Obs SMR	Obs SMR	Obs SMR	0bs SMR
	(95% CI)	(95% CI)	(95% CI)	(95% CI)	(95% CI)
			DEVONPORT		
Cough	19 124	90 131	116 117	143 120	212 117
	(75-194)	(104-158)	(96-138)	(101-140)	(102-133)
Phlegm	25 140	103 123	127 105	160 116	249 108
	(90-206)	(100-147)	(87-123)	(98–134)	(95-121)
Breathless	14 162	62 154	79 136	103 155	150 137
	(89-272)	(116-192)	(106-166)	(125-185)	(115–159)
Chest-	10 128	41 119	51 106	60 102	114 107
111ness	(61-235)	(82-155)	(77-135)	(76-128)	(87-126)
			CHATHAM		
Cough	7 116	24 112	23 102	48 132	105 124
	(46-238)	(72-166)	(65-153)	(95-169)	(100-147)
Phlegm	5 83	31 128	31 115	46 103	105 110
	(27-194)	(83-173)	(74-155)	(73-133)	(89-1 31)
Breathless	6 195	13 126	16 144	32 192	52 131
	(72-425)	(67-215)	(83-234)	(125-258)	(95-166)
Chest-	1 56	16 239	9 97	13 78	50 138
illness	(1-310)	(137-388)	(44-183)	(41-133)	(100-176)
			PORTSMOUTH		
Cough	15 157	48 124	81 131	115 135	160 122
	(88-259)	(89-159)	(103-160)	(110-160)	(104–140)
Phlegm	13 140	52 129	89 134	103 116	193 118
	(74-239)	(94-164)	(106-164)	(94-139)	(101-135)
Breathless	5 118	32 187	52 176	72 181	101 140
	(38-274)	(122-251)	(128-224)	(139-223)	(113-168)
Chest-	3 81	14 76	44 161	35 97	59 95
111ness	(17-238)	(42–128)	(113-209)	(65-130)	(71-119)

TABLE A4.5:

Lung cancer mortality by medical history and by time since first exposure.

		Time since	first exposure (em	ployment)	
Medical	0 - 9	10 - 19	20 - 29	30 - 39	40+
history	Obs SMR	Obs SMR	Obs SMR	Obs SMR	Obs SMR
	(95% CI)	(95% CI)	(95% CI)	(957 CI)	(95% CI)
			DEVONPORT		
Cough	2 137	11 157	19 189	24 194	37 193
	(17-495)	(79-282)	(114-295)	(124-288)	(131–255)
Phlegm	4 228	12 139	17 140	25 174	36 147
	(62-583)	(72-242)	(81-224)	(113-257)	(99-195)
Breathless	1 107	5 116	13 217	17 243	17 147
	(3-595)	(37-270)	(116-371)	(142-390)	(86-236)
Chest-	1 126	5 140	10 206	7 114	13 115
1]]ness	(3-701)	(45-327)	(99-379)	(46-235)	(61-197)
			CHATHAM		
Cough	1 145	6 245	4 156	9 200	16 151
	(4-810)	(90-533)	(42-399)	(92-380)	(86-245)
Phlegm	2 292	6 214	1 32	11 198	13 110
	(35-1054)	(78-465)	(1-178)	(99-354)	(58-188)
Breathless	1 262	1 78	2 144	4 190	8 162
	(7-1458)	(2-436)	(17-519)	(52-486)	(70-319)
Chest- illness	-	1 128 (3-715)	-	2 98 (12-353)	5 110 (36-258)
			PORTSMOUTH		
Cough	2 194	16 350	10 135	17 163	36 195
	(24-701)	(200-569)	(65-249)	(95-260)	(131-259)
Phlegm	2 200	16 336	11 138	15 138	45 221
	(24-723)	(192-546)	(69-247)	(78-228)	(156-286)
Breathless	1 187	7 328	3 80	11 223	18 201
	(5-1044)	(132-676)	(17-234)	(111-399)	(119-317)
Chest-	-	4 179	7 213	5 115	11 143
illness		(49-458)	(86-439)	(37-268)	(71-256)

TABLE A4.6:

Pleural mesothelioma mortality by medical history and by time since first exposure.

		Time since :	first exposure (em	ployment)	
Medical history	0 - 9	10 - 19	20 - 29	30 - 39	40+
nistory	Obs SMR (9577 CI)	Obs SMR (9577 CI)	Obs SMR (9577 CI)	Obs SMR (95% CI)	Obs SMR (95% CI)
			DEVONPORT		
Cough	-	4 1250 (341-3201)	8 1613 (696-3177)	7 1087 (436-2238)	27 3018 (1988-4390)
Phlegm	-	-	2 1188 (144-4287)	3 1468 (303-4292)	9 2992 (1370-5678)
Breathless	-	-	-	1 1111 (28-6189)	7 5221 (2096-10755)
Chest- illness	-	· · ·	-	-	5 3704 (1200-8646)
			CHATHAM		
Cough	-	-	-	1 1984 (50-11053)	4 3962 (1080-10143)
Phlegm	-	-	- 14	1 1622 (41-9034)	-
Breathless	-	-	-	-	2 4489 (543-16207)
Chest- 111ness	-	-	-	1 4568 (116-25445)	1 2347 (59-13073)
			PORTSMOUTH		
Cough	-	-	1 1178 (30-6559)	1 801 (20-4464)	2 1050 (127-3789)
Phlegm	-	-	1 1095 (28-6101)	-	1 478 (12-2663)
Breathless	-	-	-	1 1963 (50-10935)	2 2302 (279-8311)
Chest- 111ness	-	-	-	-	1 1280 (32-7130)

TABLE A4.7:

All cause mortality by smoking habit and by time since first exposure.

		lime since	first exposure (en	<u>iployment)</u>	
Smoking habit	0 - 9	10 - 19	20 - 29	30 - 39	40+
	Obs SMR	Obs SMR	0bs SMR	Obs SMR	Obs SMR
	(95% CI)	(95% CI)	(95%7 CI)	(95% CI)	(957 CI
			DEVONPORT		
Non	7 57	43 94	44 65	49 57	101 75
	(23-118)	(66-122)	(46-84)	(41- 73)	(60- 90
Ex	11 65	50 67	85 77	115 85	163 71
	(32-116)	(49-86)	(60-93)	(70-101)	(60- 82
Current	(85-149)	223 122 (106-138)	265 105 (95-118)	331 113 (101-125)	511 108 (99-118
Unknown	2 183	8 152	5 63	8 63	11 55
	(22-660)	(66-300)	(20-147)	(27-125)	(28-99
			CHATHAM		
Non	1 14	15 52	18 74	15 50	43 65
	(0- 77)	(29-86)	(44-116)	(28-82)	(45-84
E×	6 89	10 43	21 83	37 72	90 73
	(33-194)	(21-79)	(51-127)	(49-95)	(58-88
Current	16 85	70 106	71 97	125 108	270 114
	(48-138)	(81-130)	(75-120)	(89-126)	(101-128
Unknown	1 240 (6-1334)	-	3 98 (20-287)	1 19 (0−108)	7 89 (35-181
			PORTSMOUTH		
Non	1 15	16 59	26 60	48 72	66 50
	(0-86)	(34-97)	(39-88)	(51-92)	(38-62
E×	5 57	21 51	66 86	76 65	138 66
	(18-132)	(32-79)	(65-107)	(50-80)	(55-77
Current	26 109	107 113	160 105	213 104	355 103
	(71-160)	(91-134)	(89-121)	(90-118)	(92-113
Unknown	-	2 98 (12-353)	4 158 (43-404)	-	1 43 (1-241

TABLE A4.8:

Lung cancer mortality by smoking habit and by time since first exposure.

		T THE D THESE	first exposure (em	programmer j	
Smoking habit	0 - 9	10 - 19	20 - 29	30 - 39	40+
	Obs SMR (95% CI)	Obs SMR (95%7 CI)	Obs SMR (95% CI)	Obs SMR (95%/CI)	Obs SMR (957/CI)
			DEVONPORT		
Non	-	2 53 (6-193)	2 33 (4-119)	1 11 (0-64)	1 7 (0-39)
E×	-	3 39 (8-115)	11 98 (49-175)	10 71 (34-130)	8 33 (14-65)
Current	6 148 (54-321)	25 137 (88-202)	36 143 (96-190)	42 138 (96-180)	71 141 (108-174)
Unknown	-	()) -	1 122 (3-682)	-	-
			CHATHAM		
Non	-	-	-	-	2 24 (3-88)
E×	1 124 (3-689)	-	1 35 (1-193)	3 47 (10-138)	9 59 (27-112)
Current	2 96 (12-346)	8 108 (47-213)	10 121 (58-223)	21 148 (91-225)	35 119 (79-158)
Unknown	-	-	-	-	1 105 (3-585)
			PORTSMOUTH		
Non	-	-	2 44 (5-157)	1 13 (0-71)	3 18 (4- 53)
Ex	-	2 41 (5-146)	3 32 (7-95)	6 42 (16-92)	13 50 (27-86)
Current	2 155 (42-397)	23 209 (133-314)	26 145 (95-212)	30 121 (82-173)	65 151 (114-187)
Unknown	-	-	1 327 (8-1823)	-	-

TABLE A4.9:

Pleural mesothelioma mortality by smoking habit and by time since first exposure.

		<u>Time since f</u>	irst exposure (emp	oloyment)	
Smoking	0 - 9	10 - 19	20 - 29	30 - 39	40+
habit	Obs SMR (957/CI)	Obs SMR (957/CI)	Obs SMR (95% CI)	Obs SMR (95%/CI)	Obs SMR (95% CI)
			DEVONPORT		
Non	-	2 3488 (422-12592)	3 2805 (579-8201)	-	8 43 32 (1868-8533
Ex	-	-	3 1907 (394-5576)	2 971 (117-5719)	9 3014 (1380-5719
Current	-	2	5 1363 (442-3182)	9 1995 (913-3787)	18 2856 (1693-4514
Unknown	5	-	-	-	-
			CHATHAM		
Non	-	-	-	2 4057 (491-14647)	3 3406 (703-995
E×	-	-	-	-	4 2625 (715-6720
Current	1 5025 (127-27988)	-	-	3 1819 (375-5318)	8 2702 (1165-532
Unknown	-	-	-	-	-
			PORTSMOUTH		
Non	-	-	-	2 1733 (210-6257)	5 2760 (894-644
E×	-	-	1 984 (25-5483)	3 1792 (370-5239)	4 1489 (406–381)
Current	ī	-	4 1849 (504–4735)	1 324 (8-1806)	6 1312 (481-285
Unknown		-	-	-	-

TABLE A4.10:

All cause mortality by smoking amount and by time since first exposure.

		Time since	first exposure (em	ployment)	
Smoking	0 - 9	10 ~ 19	20 - 29	30 - 39	40+
amount	Obs SMR	Obs SMR	Obs SMR	Obs SMR	Obs SMR
(gms/day)	(95% CI)	(95% CI)	(95% CI)	(95% CI)	(95% C1)
			DEVONPORT		
< 15	18 85	90 87	141 91	164 87	281 87
	(50-134)	(69-105)	(76-106)	(74-101)	(77-97)
15 - 24	31 118	1 32 129	133 95	190 114	274 101
	(76-159)	(107-151)	(79-112)	(98-130)	(89-113)
25+	13 100	51 97	76 112	92 126	119 113
	(53-171)	(71-124)	(87-137)	(101-152)	(93-133)
			CHATHAM		
< 15		41 93 (65-122)	38 76 (52-100)	71 81 (62-100)	186 102 (87-116)
15 - 24	7 79	28 97	32 96	62 109	127 101
	(32-163)	(64-140)	(63-130)	(82-136)	(83-118)
25+	2 36	11 63	22 144	29 123	49 94
	(4-129)	(32-113)	(90-218)	(82-177)	(67-120)
			PORTSMOUTH		
< 15	8 61	42 78	86 91	127 90	204 85
	(26-121)	(54-102)	(72-111)	(75-106)	(73-96)
15 - 24	11 84	54 103	92 109	105 89	188 88
	(42-150)	(75-130)	(87-132)	(72-106)	(75–101)
25+	12 185 (96-324)	33 113 (74-151)	48 94 (68-121)	57 90 (66-113)	100 100

TABLE A4.11:

Lung cancer mortality by smoking amount and by time since first exposure.

	<u>Time since first exposure (employment)</u>							
Smoking	0 - 9	10 - 19	20 - 29	30 - 39	40+			
amount (gms/day)	Obs SMR (957/CI)	Obs SMR (95% CI)	Obs SMR (95% CI)	Obs SMR (9572 CI)	Obs SMR (95% CI)			
			DEVONPORT					
< 15	-	10 95 (46-174)	13 83 (44-142)	10 51 (24- 94)	22 64 (40- 97)			
15 - 24	5 202 (65-471)	13 128 (68-219)	18 130 (77-205)	26 149 (97-219)	35 121 (81-161)			
25+	1 80 (2-445)	5 96 (31-223)	16 235 (134-382)	16 212 (121-344)	22 193 (121-292)			
			CHATHAM					
< 15	2 148 (18-534)		4 70 (19-180)	11 102 (51-183)				
15 - 24	1 103 (3-573)	2 63 (8-228)	5 132 (43-309)	8 115 (49-226)	15 96 (54-158)			
25+	-	3 160 (33-468)	2 118 (14-425)	5 172 (56-402)	8 122 (53-240)			
			PORTSMOUTH					
< 15	2 130 (16-471)	7 109 (44-224)	10 88 (42-162)	7 41 (17-85)	22 73 (46-111)			
15 - 24	1 71 (2-395)	9 146 (67-278)	11 110 (55-197)	23 160 (101-240)	34 128 (85-171)			
25+	1 151 (4-843)	9 269 (123-511)	8 135 (58-266)	6 78 (29–170)	22 176			

TABLE A4.12:

Pleural mesothelioma mortality by smoking amount and by time since first exposure.

		<u>Time since</u>	first exposure (emp	ployment)	
Smoking amount	0 - 9	10 - 19	20 - 29	30 - 39	40+
(gms/day)	Obs SMR (95% CI)	Obs SMR (95% CI)	0bs SMR (95% CI)	Obs SMR (95% CI)	Obs SMR (95% CI)
			DEVONPORT		
< 15	-	-	3 1406 (290-4109)	6 2181 (800-4748)	11 2661 (1328-4760)
15 - 24	-	1 710 (18-3956)	4 1920 (523-4916)	4 1513 (412-3873)	9 2467 (1129-4682)
25+	-	1 1392 (34-7404)	1 978 (25-5446)	1 850 (21-4732)	7 4631 (1859-9540)
			CHATHAM		
< 15	1 8055 (204-44866)	-	-	2 1683 (204-6077)	9 4017 (1839-7624)
15 - 24	-	-	-	1 1224 (31-6819)	1 631 (16-3516)
25+	-	÷.		-	2 2964 (361-10772)
			PORTSMOUTH		
< 15	-	-	4 3102 (845-7942)	2 975 (118-3521)	6 1916 (702-4170)
15 - 24	-	-	1 842 (21-4689)	1 567 (14-3156)	2 718 (87-2591)
25+	-	-	-	1 1050 (27-5849)	2 1483 (179-5352)

TABLE A4.13:

All cause mortality by duration of smoking habit and by time since first exposure.

	Time since first exposure (employment)							
Duration	0 - 9	10 - 19	20 - 29	30 - 39	40+			
of smoking	Obs SMR	Obs SMR	Obs SMR	Obs SMR	Obs SMR			
(yrs)	(95% CI)	(95% CI)	(95% CI)	(95% CI)	(95% CI)			
			DEVONPORT					
< 10	6 83	17 99	13 102	9 65	17 102			
	(30-180)	(58-159)	(54-174)	(30-124)	(59-163)			
10-	2 33	37 141	37 89	34 84	26 60			
	(4-118)	(96-187)	(60-117)	(56-112)	(39- 88)			
20-	8 82	38 87	64 95	103 109	91 90			
	(35-161)	(59-114)	(71-118)	(88-130)	(72-109)			
30-	23 113	86 98	126 102	166 108	256 94			
	(71–169)	(77-119)	(84-120)	(92-125)	(82-105)			
40+	23 136	95 115	110 94	134 107	283 106			
	(86-204)	(91-138)	(77-112)	(89-126)	(94-119)			
			CHATHAM					
< 10	2 82	5 80	1 25	3 70	5 44			
	(10-297)	(26-188)	(1-141)	(14-204)	(14-102)			
10-	2 90	7 83	16 138	9 64	13 58			
	(11-327)	(33-171)	(79-225)	(29-122)	(31-100)			
20-	2 75	5 45	10 61	35 109	39 84			
	(9-271)	(14-104)	(29-113)	(73-145)	(57-110)			
30-	10 111	28 96	28 99	54 92	137 105			
	(53-203)	(64-138)	(66-143)	(67-116)	(88-123)			
40+	6 65	35 102	36 94	61 104	166 111			
	(24-141)	(68-136)	(63-125)	(78-131)	(94-128)			
			PORTSMOUTH					
< 10	3 94	8 97	4 44	6 52	8 60			
	(19–275)	(42-191)	(12-113)	(19-114)	(26-118)			
10-	2 63	11 76	19 86	15 50	26 56			
	(8-228)	(38-136)	(52-134)	(28-82)	(37-82)			
20-	3 62	17 77	33 84	54 82	51 65			
	(13-181)	(45-124)	(55-112)	(60-104)	(47- 82)			
30-	12 113	43 93	85 112	107 94	211 100			
	(58–197)	(65-121)	(88-136)	(77-112)	(87-114)			
40+	11 102	49 110	85 103	106 105	197 96			
	(51-183)	(79-141)	(81-125)	(85-125)	(82-109)			

A4 - 14

TABLE A4.14:

Lung cancer mortality by duration of smoking habit and by time since first exposure.

	Time since first exposure (employment)							
Duration of smoking	0 - 9	10 - 19	20 - 29	30 - 39	40+			
(yrs)	Obs SMR (9577 CI)	0bs SMR (95%7 CI)	Obs SMR (95% CI)	Obs SMR (95% C1)	Obs SMR (9577 CI)			
			DEVONPORT					
< 10	-	-	1 121 (3-673)	-	-			
10-	-	3 164 (34-480)	2 64 (8-231)	2 52 (6-186)	2 43 (5-154)			
20-	-	5 113 (37-264)	6 92 (34-199)	12 124 (64-217)	11 100 (50-179)			
30-	1 44 (1-244)	11 111 (56-199)	19 139 (84-217)	14 84 (46-140)	24 80 (51-119)			
40+	5 247 (80-576)	9 98 (45-186)	19 156 (94-243)	24 186 (119-276)	42 156 (109-203)			
			CHATHAM					
« 10	-	-	-	-	-			
10-	-	-	-	-	-			
20-	-	1 76 (2-422)	1 56 (1-312)	2 54 (7-195)	3 51 (10-148)			
30-	1 87 (2-483)	6 162 (60-354)	2 55 (7-200)	10 133 (64-245)	17 103 (60-165)			
40+	2 164 (20-593)	1 24 (1-135)	8 173 (74-340)	12 163 (84-284)	24 133 (85-197)			
			PORTSMOUTH					
< 10	-	2 526 (64-1899)	-	-	-			
10-	-	-	-	-	3 52 (11-152)			
20-	-	4 154 (42-395)	4 90 (25-230)	3 39 (8-113)	5 51 (16-118)			
30-	1 76 (2-422)	9 150 (69-285)	9 92 (42-175)	14 98 (54-165)	33 123 (81-165)			
40+	3 205 (42-600)	10 174 (83-319)	16 155 (89-251)	19 154 (93-241)	37 149 (101-197)			

TABLE A4.15:

Pleural mesothelioma mortality by duration of smoking habit and by time since first exposure.

	Time since first exposure (employment)						
Duration of smoking	0 - 9	10 - 19	20 - 29	30 - 39	40+		
(yrs)	Obs SMR (957/CI)	Obs SMR (95% CI)	Obs SMR (957/CI)	Obs SMR (95% CI)	Obs SMR (9573 CI)		
			DEVONPORT				
< 10	-	-	-	1 3564 (90-19851)	1 3543 (90-19732)		
10-	-	-	1 1170 (30-6516)	1 1132 (29-6304)	2 3069 (371-11078)		
20-	-	-	3 2375 (490-6944)	3 1500 (310-4386)	3 1662 (343-4858)		
30-	-	1 791 (20- 4407)	2 1136 (137-4101)	6 2662 (976-5794)	12 2981 (1540-5207)		
40+	-	1 1233 (31-6870)	2 1812 (219-6541)	-	8 3170 (1367-6246)		
			CHATHAM				
< 10	-	-	-	-	-		
10-	-	-	-	-	-		
20-	-	-	-	2 3267 (395-11794)	3 3598 (742-10519		
30-	1 9387 (237-52287)	-	-	1 1246 (32-6939)	6 3398 (1246-7397)		
40+		-	-	-	3 2129 (439-6223)		
			PORTSMOUTH		-		
< 10	-	-	-	-	-		
10-	-	-	1 2183 (55-12158)	2 3208 (388-11581)	1 1469 (37-8182)		
20-	-	~	3 4496 (928-13143)	1 780 (20-4347)	2 1527 (185-5512)		
30-	-	-	-	1 595 (15-3314)	5 1651 (535-3854)		
40+	-	-	1 1266 (32-7049)	-	2 986 (119-3561)		

TABLE A4.16:

All cause mortality by occupational group and by time since first exposure.

	Time since first exposure (employment)						
Occupational	0 - 9	10 - 19	20 - 29	30 - 39	40+		
group	Obs SMR	Obs SMR	Obs SMR	Obs SMR	0bs SMR		
	(957/CI)	(95% CI)	(9577 CI)	(95% CI)	(95% CI)		
			DEVONPORT				
1	4 138	16 102	19 69	38 153	35 98		
	(38-353)	(58-166)	(41-107)	(105-202)	(66-130)		
2	3 75	19 135	19 79	43 92	103 100		
	(16-220)	(81-211)	(47-123)	(65-120)	(80-119)		
3	3 77	16 99	27 93	30 82	42 131		
	(16-226)	(56-160)	(61-136)	(56-118)	(92–171)		
4	61 98	270 104	329 93	388 94	599 88		
	(73-123)	(92-116)	(83-103)	(84-103)	(81- 95)		
Unknown	-	3 104 (22-305)	5 150 (49-351)	4 103 (28-263)	7 112 (45-231)		
			CHATHAM				
1	1 36	8 89	5 72	8 74	16 73		
	(1-201)	(38-175)	(23-169)	(32-145)	(42-119)		
2	1 71	2 58	11 162	19 118	44 110		
	(2-397)	(7-210)	(B1-290)	(71-184)	(78–143)		
3	1 100	4 116	6 105	11 108	16 79		
	(3-557)	(32-298)	(39-229)	(54-193)	(45-128)		
4	21 75	81 78	89 84	140 85	333 95		
	(46-114)	(61- 95)	(67-102)	(71- 99)	(84-105)		
Unknown	-	-	2 318 (39-1149)	-	1 178 (5-991)		
			PORTSMOUTH				
1	1 56	5 63	11 92	15 99	18 97		
	(1-310)	(20-147)	(46-165)	(55-163)	(58-154)		
2	-	7 111 (44-228)	16 107 (61-174)	39 117 (80-154)	69 85 (65-105)		
3	2 190	7 119	9 49	23 80	32 88		
	(23-685)	(48-245)	(22- 92)	(51-120)	(57-118)		
4	29 82	127 88	220 96	260 83	441 80		
	(55-118)	(73-103)	(83-109)	(73- 93)	(72- 87)		
Unknown	-	-	-	-	-		

TABLE A4.17:

Lung cancer mortality by occupational group and by time since first exposure.

	Time since first exposure (employment)						
Occupational	0 - 9	10 - 19	20 - 29	30 - 39	40+		
group	Obs SMR (95% CI)	Obs SMR (95% CI)	Obs SMR (95% CI)	Obs SMR (95% CI)	Obs SMR (957CI)		
			DEVONPORT				
1	-	4 262 (71-671)	2 70 (8-252)	2 78 (9-281)	4 104 (28-267)		
2	-	-	2 95 (11-342)	6 125 (46-272)	11 99 (49-177)		
3	-	3 253 (52-740)	1 40 (1-224)	2 55 (7-198)	5 143 (46-335)		
4	6 100 (37-219)	23 88 (56-132)	44 124 (87-161)	43 99 (70-129)	60 84 (63-105)		
Unknown	-	-	1 305 (8-1697)	-	-		
			CHATHAM				
1	-	2 186 (23-672)	1 122 (3-680)	-	2 75 (9-271)		
2	-	-	-	2 104 (13-374)	5 99 (32-231)		
3	-	-	1 213 (5-1184)	-	2 78 (9-283)		
4	3 93 (19-273)	6 51 (19-111)	9 76 (35-144)	22 109 (68-165)	38 87 (59-115)		
Unknown	-	-	-	-	-		
			PORTSMOUTH				
1	-	-	3 208 (43-609)	1 54 (1-299)	3 131 (27-383)		
2	-	1 172 (4-959)	1 64 (2-354)	5 126 (41-294)	18 174 (103-275)		
3	-	-	1 52 (1-289)	3 89 (18-262)	4 86 (24-221)		
4	4 102 (28-260)	24 141 (90-210)	27 100 (66-145)	28 74 (49-107)	56 82 (60-103)		
Unknown	-	-	-	-	-		

TABLE A4.18:

Pleural mesothelioma mortality by occupational group and by time since first exposure.

		Time since	first exposure (emp	loyment)	
Occupational	0 - 9	10 - 19	20 - 29	30 - 39	40+
group	Obs SMR (957 CI)	Obs SMR (95%7 CI)	Obs SMR (95% CI)	Obs SMR (95% CI)	Obs SMR (95% CI)
			DEVONPORT		
1	-	-	3 6992 (1443-20440)	3 8105 (1672-23695)	-
2	-	-	1 2491 (63-13875)	1 1247 (32-6944)	5 3484 (1129-8132)
3	-	-	-	1 1364 (35-7597)	7 12861 (5163-26493
4	-	4 1150 (313-2945)	7 1392 (559-2868)	6 960 (352-2089)	23 2612 (1656-3919)
Unknown	-	-	-	-	-
			CHATHAM		
1	-	-	-	-	1 4082 (103-22737
2	-	-	-	1 3960 (100-22057)	5 9066 (2937-21160
3	-	~	-	1 5133 (130-28591)	2 7094 (858-25611
4	1 3393 (86-18897)	-	-	3 1298 (268-3793)	7 1605 (644-3307)
Unknown	-	-	-	-	-
			PORTSMOUTH		
1		-	-	Ψ.	-
2	-	-	-	3 5258 (1085-15371)	3 2509 (518-7336)
3	-	-	-	-	2 3730 (451-13467
4	-	-	5 1577 (511-3680)	3 651 (134-1903)	10 1402 9673-2578)
Unknown	-	-	-	-	-

TABLE A4.19:

All cause mortality by exposure rating and by time since first exposure.

	Time since first exposure (employment)						
Exposure	0 - 9	10 - 19	20 - 29	30 - 39	40+		
rating	Obs SMR (957/CI)	Obs SMR (95% CI)	Obs SMR (95% CI)	Obs SMR (95% CI)	Obs SMR (95%7 CI)		
			DEVONPORT				
< 100	67 95 (72-118)	276 107 (94-119)	254 92 (81-104)	242 92 (80-103)	310 87 (77- 96)		
100-	1 155 (4-864)	30 97 (65-138)	83 89 (70-108)	93 102 (81-123)	109 82 (67- 98)		
200-	-	2 47 (6-168)	34 80 (53-108)	88 92 (73-111)	100 90 (72-107)		
300-	-	-	4 64 (17-164)	49 115 (82-147)	132 101 (84-119)		
400+	-	1 380 (962-211741)	20 160 (4-891)	170 156 (91-250)	251 115 (93-136)		
Unknown	3 112 (23-329)	15 103 (58-170)	23 110 (70-165)	14 65 (36-109)	29 94 (63-135)		
			CHATHAM				
< 100	23 72 (45-107)	87 79 (62- 95)	83 92 (73-112)	89 79 (63- 95)	190 95 (82-109)		
100-	-	4 70 (19-179)	14 67 (36-112)	29 89 (60-128)	61 87 (65-108)		
200-	-	2 254 (31-916)	11 99 (49-177)	32 98 (64-132)	52 94 (68-119)		
300-	-	-	2 190 (23-686)	17 109 (63-174)	64 116 (87-144)		
400+	-	-	-	9 155 (71-294)	34 72 (48-97)		
Unknown	1 113 (31632)	2 66 (8-239)	3 124 (26-361)	2 55 (7-197)	9 125 (57-237)		
			PORTSMOUTH				
< 100	30 78 (53-112)	131 90 (75-106)	186 103 (88-118)	160 79 (67- 91)	226 76 (66-86)		
100-	2 59 (41-1217)	15 94 (53-155)	44 73 (51-94)	62 86 (65-107)	88 75 (60-91)		
200-	-	-	19 74 (44-115)	61 86 (65-108)	79 83 (65-101)		
300-	- 💮	-	5 129 (42-300)	39 116 (80-153)	95 85 (68-102)		
400+	•	-	-	11 118 (59-212)	67 105 (80-131)		
Unknown	-	-	2 93 (11-334)	4 202 (55-516)	5 159 (51-370)		

TABLE A4.20:

Lung cancer mortality by exposure rating and by time since first exposure.

	Time since first exposure (employment)							
Exposure	0 - 9	10 - 19	20 - 29	30 - 39	40+			
rating	Obs SMR (95% CI)	Obs SMR (95% CI)	Obs SMR (95% CI)	Obs SMR (95% CI)	Obs SMR (95% CI)			
			DEVONPORT					
< 100	6 94 (34–204)	25 99 (64-146)	34 125 (83-167)	19 70 (42-109)	28 74 (49-107)			
100-	-	4 132 (36-338)	8 89 (38-175)	15 162 (91-267)	9 64 (29-121)			
200-	-	-	5 117 (38-273)	14 141 (77-236)	13 109 (58-186)			
300-		-	2 293 (35-1057)	3 64 (13-187)	14 101 (55–169)			
400+	-	1 695205 (17589->999999)	-	1 82 (2-457)	12 122 (63–214)			
Unknown	-	-	1 49 (1-272)	1 44 (1-247)	4 124 (34-317)			
			CHATHAM					
< 100	3 84 (17-247)	7 57 (23-118)	8 81 (35-160)	18 131 (78-207)	24 98 (63-145			
100-	-	1 163 (4-910)	1 46 (1~256)	2 54 (7-197)	6 68 (25–147			
200-	-	-	2 133 (18-541)	2 50 (6-180)	6 87 (32-188			
300-	-	-	-	1 50 (1-279)	5 73 (24-170			
400+	-	-	-	1 132 (3-735)	4 69 (19–177			
Unknown	-	-	-		2 231 (28-834			
			PORTSMOUTH					
< 100	4 98 (27-251)	23 138 (87-207)	25 119 (77-175)	19 78 (47-122)	28 76 (50-109			
100-	-	2 111 (13-399)	2 29 (3-103)	7 83 (34-172)	13 89 (48-153			
200-	-	-	4 130 (36-334)	4 47 (13-119)	8 68 (30-135			
300-	-	-	1 208 (5-1157)	4 94 (26-242)	16 113 (65-184			
400+	-	-	-	3 254 (52-743)	15 189 (106-311			
Unknown	-	-	-	1.0	1 247 (6-137			

TABLE A4.21:

Pleural mesothelioma mortality by exposure rating and by time since first exposure.

	Time since first exposure (employment)						
Exposure	0 - 9	10 - 19	20 - 29	30 - 39	40+		
rating	Obs SMR (957CI)	Obs SMR (95%2 C1)	Obs SMR (95% CI)	Obs SMR (9572 CI)	Obs SMR (95% CI)		
			DEVONPORT				
< 100	-	4 1131 (308-2894)	3 748 (154-2185)	3 758 (156–2216)	3 631 (130-1846)		
1 00 -	-	-	3 2068 (427-6044)	3 1829 (377-5347)	6 3321 (1218-7229)		
200-	-	-	4 7105 (1936-18188)	1 639 (16-3557)	9 5525 (2529-1048)		
300-	-	-	-	4 7111 (1938-18205)	11 6314 (3151-1129		
400+	-	-	1 129447 (3275-721018)	-	6 5817 (2140-1270		
Unknown	7	-	-	-	-		
		<u> </u>	CHATHAM				
< 1 0 0	-	-	-	1 627 (16-3494)	1 405 (10-2253		
100-	-	-	-	1 1937 (49-10789)	2 2076 (251-7496		
200-	-	-	-	2 4119 (498-14869)	3 3946 (814-1153		
300-	-	-	-	1 5385 (136-29996)	6 8756 (3210-1905		
400+	-	-	-	-	3 6169 (1273-1803		
Unknown	1 104842 (2653-583972)	-	-	-			
			PORTSMOUTH				
< 100	-	-	3 1167 (241-3412)	-	3 756 (156-2211		
100-	-	-	1 1140 (29-6347)	1 852 (22-4743)	1 636 (16-3543		
200-	-	-	1 2928 (74-16308)	3 2688 (555-7858)	2 1577 (191-5692		
300-	-	-	-	2 4331 (524-15635)	4 2597 (708-6649		
400+	-	-	(-	5 7029 (2277-1640		
Unknown	-	-	-	-	-		

TABLE A4.22:

All cause mortality by asbestos exposure period and by time since first exposure.

	Time since first exposure (employment)					
Asbestos exposure	0 - 9	10 - 19	20 - 29	30 - 39	40+	
(yrs)	Obs SMR (957CI)	Obs SMR (95% CI)	Obs SMR (95% CI)	Obs SMR (95% CI)	Obs SMR (95% CI	
			DEVONPORT			
< 10	7 158 (64-326)	21 123 (76-188)	15 86 (48-141)	13 72 (38-121)	31 94 (61-127	
10-	-	5 59 (19-137)	24 87 (56-129)	26 99 (64-145)	29 104 (70-149	
20-	-	5 121 (39-283)	15 117 (66-193)	35 107 (72-143)	63 124 (94-155	
30+	-	3 74 (15-217)	7 94 (38-194)	13 74 (39-126)	91 104 (83-126	
Unknown	64 94 (71-118)	290 106 (93-118)	338 91 (81-100)	416 97 (87-106)	572 87 (80-94	
			CHATHAM		-	
< 10	-	5 56 (18-131)	4 91 (25-232)	1 14 (0- 78)	22 129 (81-196	
10-	-	1 58 (1-325)	3 61 (13-177)	5 52 (17-122)	11 76 (38-137	
20-	-	1 173 (4-964)	1 36 (1-199)	16 122 (70-197)	20 102 (62-158	
30+	-	1 92 (2-512)	1 106 (3-589)	6 104 (38-226)	40 116 (80-152	
Unknown	24 80 (51-119)	87 81 (64-98)	104 92 (74-110)	150 90 (75-104)	317 91 (81-101	
	· · · · · · · · · · · · · · · · · · ·		PORTSMOUTH			
< 10	4 157 (43-402)	13 133 (71-228)	11 105 (53-188)	11 77 (39-138)	25 74 (48-110	
10-	1 182 (5~1013)	9 161 (74-306)	21 104 (65-159)	19 79 (47-123)	26 118 (77-172	
20-	-	-	11 86 (43-154)	42 126 (88-164)	39 112 (77-148	
30+	-	1 38 (1-212)	6 78 (28-169)	29 150 (100-215)	78 84 (65–102	
Unknown	27 75 (50-109)	123 85 (70-100)	207 93 (80-105)	236 79 (69-89)	392 78 (70- 85	

TABLE A4.23:

Lung cancer mortality by asbestos exposure period and by time since first exposure.

	Time since first exposure (employment)					
Asbestos	0 - 9	10 - 19	20 - 29	30 - 39	40+	
exposure (yrs)	Obs SMR (95% CI)	Obs SMR (95%/CI)	Obs SMR (95% CI)	Obs SMR (9577 CI)	Obs SMR (957/CI)	
			DEVONPORT			
< 10	-	2 117 (14-424)	1 57 (1-318)	-	4 115 (31-294)	
10-	-	2 89 (27-815)	7 248 (99-510)	6 222 (81-483)	6 199 (73-433)	
20-	-	2 433 (52-1563)	3 214 (44-625)	3 85 (17-248)	7 127 (51-262)	
30+	-	-	1 121 (3-675)	1 51 (1-281)	10 108 (52-198)	
Unknown	6 98 (36-213)	24 90 (58-134)	38 104 (71-137)	43 97 (68-126)	53 76 (56-97)	
			CHATHAM			
< 10	-	2 189 (23-682)	-	-	2 96 (12-346)	
10-	-	-	-	-	1 57 (1-316)	
20-	-	-	-	-	2 82 (10-296)	
30+	-	-	-	-	6 138 (50-300)	
Unknown	3 91 (19-265)	6 51 (19-111)	11 89 (45-160)	24 119 (76-177)	36 83 (56-110)	
			PORTSMOUTH			
< 10	-	3 264 (54-772)	1 79 (2-441)	1 56 (1-315)	5 119 (39-278)	
10-	-	-	3 121 (25-354)	1 34 (1-192)	5 180 (58–420)	
20-	-	-	2 121 (15-438)	5 120 (39-280)	6 138 (51-301)	
30+	-	-	-	3 121 (25-354)	14 119 (65-199)	
Unknown	4 104 (28-267)	22 133 (83-201)	26 101 (66-148)	27 76 (50-110)	51 81 (59-104)	

TABLE A4.24:

Pleural mesothelioma mortality by asbestos exposure period and by time since first exposure.

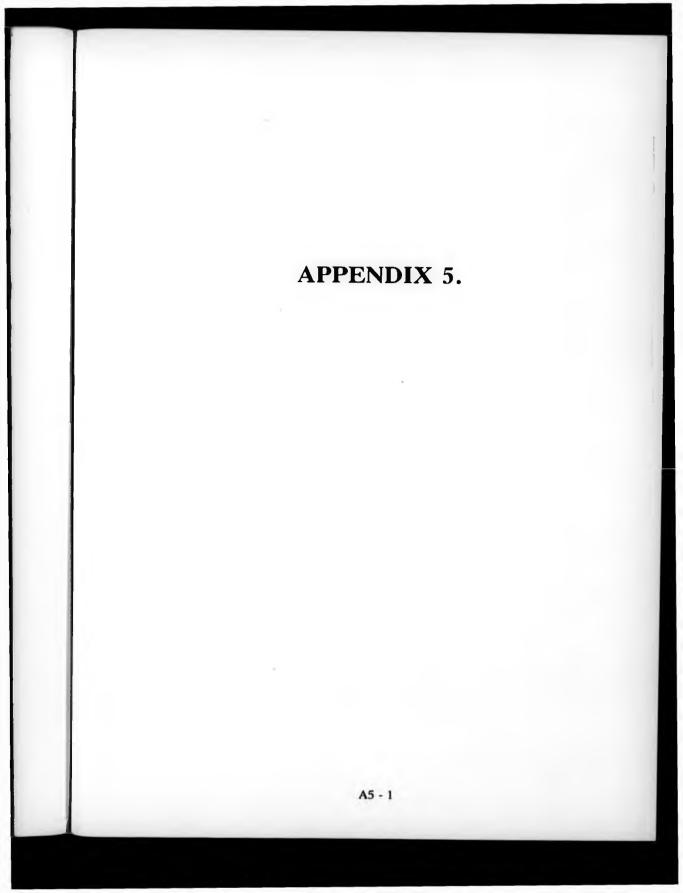
	Time since first exposure (employment)					
Asbestos	0 - 9	10 - 19	20 - 29	30 - 39	40+	
exposure (yrs)	Obs SMR (957/CI)	Obs SMR (95% CI)	Obs SMR (95% CI)	0bs SMR (95% CI)	Obs SMR (95% CI)	
			DEVONPORT			
< 10	-	1 3960 (100-22055)	-	-	2 4599 (557-16604)	
10-	-	-	1 2427 (61-13519)	1 2254 (57-12552)	3 7703 (1589-22518)	
20-	-	-	1 5773 (146-32155)	3 6230 (1285-18212)	5 6545 (2121-15276)	
30+	-	-		1 4822 (122-26860)	7 6842 (2747-14095)	
Unknown	1	3 815 (168-2384)	9 1648 (754-3127)	6 882 (323-1919)	18 2061 (1222-3257)	
			CHATHAM			
< 10	-	-	-	-	-	
10-	-	-	-	-	1 5527 (140-30873)	
20-	-	-	-	-	1 7472 (904-26973)	
30+	-	-	-	-	4 9581 (2611-24527)	
Unknown	1 3228 (82-17979)	-		5 2058 (667-4803)	8 1827 (788-3598)	
			PORTSMOUTH			
< 10	-	-	-	-	1 2207 (56-12294)	
10-	-	-	1 3635 (92-20248)	1 2760 (70-15373)	1 3145 (80–17518)	
20-	-	•	-	1 2124 (54-11833)	-	
30+	-	-	1 10838 (274-60370)	1 4318 (109-24051)	7 6035 (2423-12432)	
Unknown	-	-	3 937 (193-2738)	3 645 (133-1886)	6 898 (329-1955)	

TABLE A4.25:

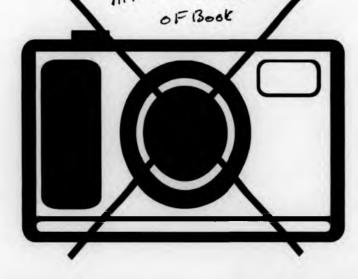
All cause mortality by period of continuous asbestos exposure and by time since first exposure.

	Time since first exposure (employment)						
Continuous asbestos	0 - 9	10 - 19	20 - 29	30 - 39	40+		
exposure (yrs)	Obs SMR (95% CI)	Obs SMR (95%7 CI)	Obs SMR (95% CI)	Obs SMR (9577 CI)	Obs SMR (957CI)		
			DEVONPORT				
< 10	3 276 (57-807)	6 125 (46-272)	4 97 (26-248)	4 139 (38-355)	6 90 (33-196)		
10+	-	1 96 (2-533)	3 89 (18-260)	7 130 (52-268)	16 262 (150-426)		
			CHATHAM				
< 10	-	5 135 (44-316)	2 123 (15-445)	2 95 (12-344)	7 274 (110-564)		
10+	-	-	-	2 104 (13-374)	3 158 (33-462)		
			PORTSMOUTH				
< 10	4 422 (115-1081)	3 99 (20-290)	1 51 (1-283)	3 166 (34-484)	4 83 (23-213)		
10+	-	-	4 135 (37-345)	5 94 (30-219)	9 216 (99-410)		

TABLE A4.26:


Lung cancer mortality by period of continuous asbestos exposure and by time since first exposure.

	Time since first exposure (employment)					
Continuous	0 - 9	10 - 19	20 - 29	30 - 39	40+	
exposure (yrs)	Obs SMR (95%7 CI)	Obs SMR (95% CI)	Obs SMR (9577 C1)	Obs SMR (95%7 CI)	Obs SMR (957CI)	
			DEVONPORT			
< 10	-	-	1 243 (6-1356)	-	-	
10+	-	1 925 (23-5152)	1 282 (7-1571)	1 182 (5-1014)	3 462 (95-1352)	
			CHATHAM			
< 10	-	2 473 (57-1707)	-	-	-	
10+	-	-	-	-	-	
			PORTSMOUTH			
< 10	-	-	-	-	-	
10+	-	-	-	2 301 (36-1086)	6 1116 (409-2430	


TABLE A4.27:

Pleural mesothelioma mortality by period of continuous asbestos exposure and by time since first exposure.

	Time since first exposure (employment)						
Continuous	0 - 9	10 - 19	20 - 29	30 - 39	40+		
asbestos exposure (yrs)	Obs SMR (95% CI)	Obs SMR (957 CI)	Obs SMR (95%CI)	Obs SMR (95%/CI)	Obs SMR (95% CI)		
			DEVONPORT				
< 10	-	-	-	-	-		
10+	-	-	1 22503 (569-125343)	-	1 11541 (292-64286		
-			CHATHAM				
< 10		-	-	-	1 28759 (728-16018		
10+	-	-	-	-	-		
			PORTSMOUTH				
< 10	-	-	1 26106 (660-145413)	-	1 16327 (413-90944		
10+	-	-	-	1 11706 (296-65200)	-		

PUBLISHED PAPERS NOT FILMED FOR COPYRIGHT REASONS

