- **Title:** Covid-19 Testing, Hospital Admission, and Intensive Care Among 2,026,227 United States
- 2 Veterans Aged 54-75 Years

4	Authors: Christopher T. Rentsch, Ph.D. ^{1,2} , Farah Kidwai-Khan, MS ^{1,3*} , Janet P. Tate, Sc.D. ^{1,3*} ,
5	Lesley S. Park, Ph.D. ^{4*} , Joseph T. King, Jr., M.D. ^{1,5*} , Melissa Skanderson, MSW ^{1*} , Ronald G.
6	Hauser, M.D. ^{1,6} , Anna Schultze, Ph.D. ² , Christopher I. Jarvis, Ph.D. ² , Mark Holodniy, M.D. ^{7,8} ,
7	Vincent Lo Re III, M.D. ⁹ , Kathleen M. Akgün, M.D. ^{1,3} , Kristina Crothers, M.D. ¹⁰ , Tamar H. Taddei,
8	M.D. ^{1,3} , Matthew S. Freiberg, M.D. ^{11,12} , and Amy C. Justice, M.D. ^{1,3,13}
9	
10	1. VA Connecticut Healthcare System, US Department of Veterans Affairs, West Haven, CT,
11	
12	2. Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical
13	Medicine, London, UK, WC1E /HI
14	3. Department of Internal Medicine, Yale School of Medicine, New Haven, C1, US, 06520
15 16	4. Stanford Center for Population Health Sciences, Stanford University School of Medicine, Stanford, CA, US, 94305
17	5. Department of Neurosurgery, Yale School of Medicine, New Haven, CT, US, 06520
18	6. Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, US,
19	06520
20	7. VA Palo Alto Healthcare System, US Department of Veterans Affairs, Palo Alto, CA, US,
21	94304
22	8. Division of Infectious Diseases and Geographic Medicine, Stanford University School of
23	Medicine, Stanford, CA, US, 94305
24	9. Division of Infectious Diseases, Department of Medicine and Center for Clinical
25	Epidemiology and Biostatistics, Department of Biostatistics, Epidemiology, and
26	Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,
27	US, 19104
28	10. VA Puget Sound Health Care System and Department of Medicine, University of
29	Washington School of Medicine, Seattle, WA, US, 98104
30	11. Geriatric Research Education and Clinical Center (GRECC), US Department of Veterans
31	Affairs, Tennessee Valley Health Care System, Nashville, TN, US 37212
32	12. Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, US, 37232
33	13. Center for Interdisciplinary Research on AIDS, Yale School of Public Health, New Haven,
34	CT, US, 06511
35	
36	*These authors contributed equally
37	
38	Corresponding author:
39	Amy C. Justice, M.D., Ph.D.
40	Yale School of Medicine
41	VA Connecticut Healthcare System
42	950 Campbell Ave
43	Bldg 35A, Rm 2-209 (11-ACSLG)
44	West Haven, CT 06516

- **Sources of support:** This work was supported by National Institute on Alcohol Abuse and
- 46 Alcoholism [U01-AA026224, U24-AA020794, U01-AA020790, U10-AA013566].
- **Conflicts of interest:** The authors declare no conflicts of interest.
- 50 Article type: Original Investigation
- 52 Words: 2739
- **Tables/Figures:** 4/1

54 Key Points

55 **Question:** What are the demographic and clinical characteristics associated with testing

56 positive for coronavirus 2019 (Covid-19+), and among Covid-19+ subsequent hospitalization

57 and intensive care among Veterans in the United States?

58 **Findings:** In this retrospective cohort study of 2,026,227 Veterans aged 54-75 years and active

in care, 585/3,789 (15.4%) tested Covid-19+. Black race was strongly associated with Covid-19+,

60 but not with hospitalization or intensive care. Among Covid-19+, laboratory abnormalities and a

61 summary measure of physiologic injury were strongly associated with hospitalization and

62 intensive care.

63 **Meaning:** Racial differences in testing positive for Covid-19 may be an underestimate of the

64 general population as racial health disparities in the Veterans Affairs Healthcare System tend to

65 be smaller than in the private sector. Risk of hospitalization and intensive care may be better

66 characterized by laboratory measures and vital signs than by comorbid conditions or prior

67 medication exposure.

68 A	bstract
-------------	---------

69 **Importance:** Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes

70 coronavirus disease 2019 (Covid-19), an evolving pandemic. Limited data are available

71 characterizing SARS-Cov-2 infection in the United States.

72 **Objective:** To determine associations between demographic and clinical factors and testing

positive for coronavirus 2019 (Covid-19+), and among Covid-19+ subsequent hospitalization

74 and intensive care.

75 **Design:** Retrospective cohort study including all patients tested for Covid-19 between February

76 8 and March 30, 2020, inclusive.

77 Setting: We extracted electronic health record data from the national Veterans Affairs

78 Healthcare System, the largest integrated healthcare system in the United States.

79 Participants: Veterans Birth Cohort comprising 2,026,227 patients born between 1945 and

80 1965 and active in care.

81 **Exposures:** Demographic data, comorbidities, medication history, substance use, vital signs, and

82 laboratory measures. Laboratory tests were analyzed first individually and then grouped into a

83 validated summary measure of physiologic injury (VACS Index).

84 Main Outcomes and Measures: We evaluated which factors were associated with Covid-19+

85 among all who tested. Among Covid-19+ we identified factors associated with hospitalization or

86 intensive care. We identified independent associations using multivariable and conditional

87 multivariable logistic regression with multiple imputation of missing values.

88 Results: Among Veterans aged 54-75 years, 585/3,789 (15.4%) tested Covid-19+. In adjusted

analysis (C-statistic=0.806) black race was associated with Covid-19+ (OR 4.68, 95% CI 3.79-

90 5.78) and the association remained in analyses conditional on site (OR 2.56, 95% CI 1.89-3.46). 91 In adjusted models, laboratory abnormalities (especially fibrosis-4 score [FIB-4] >3.25 OR 8.73, 92 95% CI 4.11-18.56), and VACS Index (per 5-point increase OR 1.62, 95% CI 1.43-1.84) were 93 strongly associated with hospitalization. Associations were similar for intensive care. Although 94 significant in unadjusted analyses, associations with comorbid conditions and medications were 95 substantially reduced and, in most cases, no longer significant after adjustment. 96 **Conclusions and Relevance:** Black race was strongly associated with Covid-19+, but not with 97 hospitalization or intensive care. Among Covid-19+, risk of hospitalization and intensive care 98 may be better characterized by laboratory measures and vital signs than by comorbid 99 conditions or prior medication exposure.

100 Introduction

101 Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes coronavirus 102 disease 2019 (Covid-19) and is an evolving pandemic. Limited data are available characterizing 103 SARS-Cov-2 infection in the United States. Unadjusted analyses restricted to Covid-19 cases in China,¹⁻⁵ Italy,⁶ and the United States^{7,8} suggest that older age, diabetes, chronic obstructive 104 105 lung disease (COPD), hypertension, vascular disease, renal disease, and liver disease are 106 associated with more severe disease. Further, while some have speculated that use of 107 angiotensin converting enzyme inhibitor (ACE), angiotensin II receptor blockers (ARB), and nonsteroidal anti-inflammatory drugs (NSAID) may exacerbate disease,^{9,10} no analysis of this 108 question has been published. 109

110

The Department of Veterans Affairs (VA) is the largest integrated healthcare system in the
United States. All care is recorded in a national electronic health record with daily uploads into
a central data repository. As a result, it is possible to extract data on patients tested for Covid19, including outpatient and inpatient records, laboratory values, and pharmacy fill/refill data.
When a well-characterized longitudinal cohort is supplemented with Covid-19 testing data, it is
possible to answer important questions rapidly using validated methods.

117

The VA Birth Cohort includes all Veterans born between 1945 and 1965, over 2 million living
 individuals aged 54-75 years,^{11,12} a demographic at particularly high risk of adverse outcomes
 from Covid-19.¹⁻⁴ Using unadjusted and adjusted analyses, we consider a wide range of factors

121 either associated with testing positive for Covid-19 and subsequent hospitalization and

intensive care in the national VA system as of March 30, 2020.

123

124 Methods

- 125 Data Source
- 126 Using data from the VA national Corporate Data Warehouse on members of the VA Birth
- 127 Cohort, we identified patients tested for Covid-19 from date of first recorded VA test on
- 128 February 8, 2020 through March 30, 2020. Available data included demographics, outpatient
- and inpatient encounters, diagnoses, laboratory results, vital signs, health factors (e.g., smoking

and alcohol health behaviors), and pharmacy dispensing records.

131

- 132 VA Birth Cohort was approved by the Institutional Review Boards of VA Connecticut Healthcare
- 133 System and Yale University. It has been granted a waiver of informed consent and is Health
- 134 Insurance Portability and Accountability Act compliant.

135

136 Data Collection

137 We selected previously validated cohort characteristics and those that have been evaluated in

prior Covid-19 reports.^{1,13} Baseline was defined as the date of specimen collection for the

- 139 Covid-19 test unless testing occurred during hospitalization, in which case it was date of
- admission. Demographics included age at baseline, sex, race/ethnicity, and rural/urban
- 141 residence. Residence was defined using geographic information system coding based upon
- 142 established criteria.¹⁴

144	Main Study Outcomes
145	We examined three outcomes: 1) testing positive for SARS-CoV-2 (Covid-19+), 2)
146	hospitalization, and 3) admission to an intensive care unit (ICU). We used VA inpatient bed
147	section codes 12 (medical) and 13 (cardiac) to identify ICU admission.
148	
149	Covid-19 tests
150	We identified Covid-19 tests conducted in the VA using text searching of laboratory results
151	containing terms consistent with SARS-CoV-2 or Covid-19. If a patient had more than one test
152	and all were negative we selected first negative, otherwise we used date of first positive.
153	Patients for whom results were pending (n=93) or inconclusive (n=33) were excluded. Nearly all
154	tests utilized nasopharyngeal swabs, 1% were from other sources. Testing was performed in VA,
155	state public health and commercial reference laboratories using emergency use authorization
156	approved SARS-CoV-2 assays.
157	
158	Comorbidity
159	We extracted diagnostic codes for asthma, cancer, COPD, chronic kidney disease, diabetes
160	mellitus, hypertension, liver disease, vascular disease, and alcohol use disorder (definitions
161	provided in eTable 1). We used a validated algorithm to capture smoking status derived from
162	health factors. ¹⁵
163	

164 Pharmacy Data

We collected pharmacy fills for ACE/ARBs, chemotherapy and immunosuppressive drugs, and prescription NSAIDs and determined which medications were active in the year prior to testing. Exposure windows for NSAIDS ended 14 days prior to baseline to minimize the potential of protopathic bias. Exposure windows for other medications not used to treat Covid-19 symptoms ended three days prior to baseline.

170

171 Vital Signs, Clinical Laboratory Data, and a Summary Measure of Physiologic Injury 172 Vital signs measured within two days of baseline included body mass index (BMI), oxygen 173 saturation, pulse, systolic blood pressure, and temperature. We chose laboratory findings 174 closest to baseline within a year prior or up to one week after baseline. Measures included 175 alanine aminotransferase, albumin, aspartate aminotransferase, creatinine, estimated 176 glomerular filtration rate,¹⁶ fibrosis-4 score (FIB-4),¹⁷ hemoglobin, platelet count, total white 177 blood cell count, and lymphocyte count. We calculated a validated composite measure of 178 physiologic injury (VACS Index) which includes age, BMI, and all previously mentioned laboratory measures save lymphocyte count^{18,19} (details in **eMethods**). 179 180

181 Statistical Analysis

We evaluated characteristics of patients undergoing Covid-19 testing, and among Covid-19+, factors associated with hospital admission and intensive care, using chi-square, Fisher's exact, and Wilcoxon rank-sum tests, as appropriate. For bivariate comparisons, statistical significance reflects complete case analysis. When modeling Covid-19+, we restricted analyses to factors available when initially evaluating a patient (i.e., demographic data, comorbid conditions,

187 medication history, health behaviors, and vital signs). Because age, black race, ACE/ARB use, 188 and NSAID use are of special interest, we included them in all multivariable models. Otherwise, 189 variables significant at p<0.05 in unadjusted analyses were included in the multivariable 190 models. When modeling hospital admission and intensive care, we compared C-statistics for 191 models including individual laboratory values to a model including VACS Index. In post hoc 192 analyses we explored the association between black race and Covid-19+ with a multivariable 193 model conditioned on site, among sites having at least five positive tests. 194 195 We report missing data for each variable. We used multiple imputation to impute missing 196 laboratory measures, vital signs, and smoking status. The imputation model included outcomes 197 and all covariates. Estimates from regressions performed on 10 imputed data sets were 198 combined using Rubin's rules.²⁰ Analyses were performed using SAS version 9.4 (SAS Institute 199 Inc., Cary, NC, USA) and Stata version 14.2 (StataCorp, LLC., College Station, TX). We used R 200 version 3.6.3 to map Covid-19 cases in the VA system overall and those captured in the VA Birth 201 Cohort. 202 Results 203 204 In the year prior to the Covid-19 outbreak, the VA Birth Cohort included 2,026,277 living 205 individuals: 1,866,256 (92.1%) men and 159,971 (7.9%) women. The cohort includes 1,369,454

- 206 (67.6%) white, 402,295 (19.9%) black, 106,639 (5.3%) Latinx, and 147,839 (7.3%) other or
- 207 unknown race/ethnicity. More than a third of the subjects (745,284 or 36.8%) were 70-75 years
- 208 of age, 23.3% (n=472,732) were 65-69 years old, 20.1% (n=407,900) were 60-64 years old, and

209	19.8% (n=400,311) were 54-59 years old. Of these, 3,789 individuals have been tested for
210	Covid-19 (18.7 per 10,000 persons) since February 8, 2020 through March 30, 2020.
211	
212	Testing per 10,000 persons varied by race, sex, age, and residence (p<0.001 for all). Black
213	Veterans were more likely to be tested than white Veterans (28.0 versus 15.6). Women were
214	more likely to be tested than men (23.3 versus 18.3). Testing generally decreased with age (age
215	54-59: 21.5; age 60-64: 22.2; age 65-69: 18.6; and age 70-75: 15.4). Veterans living in urban
216	settings were more likely to be tested than those in rural settings (39.2 vs. 5.8).
217	
218	Among those tested, median age was 65.7 years (Table 1), 90.2% were male, 29.7% were black,
219	and 81.1% lived in urban settings. Common comorbid conditions were hypertension (65.0%),
220	diabetes mellitus (37.8%), vascular disease (28.9%), COPD (26.2%), and alcohol use disorder
221	(13.9%). Receipt of ACE/ARBs (40.5%) or NSAIDs (30.5%) was common. Among those tested,
222	42.3% were current smokers, 40.8% were obese (BMI >30 kg/m ²), 7.7% were febrile (≥100.4°F),
223	13.1% were hypoxic (oxygen saturation \leq 93%), and 35.4% were tachycardic (pulse \geq 90 beats
224	per minute).
225	

226 Testing Positive vs. Negative for Covid-19

Of the 3,789 patients tested in the VA Birth Cohort, 585 (15.4%, 95% CI 14.3-16.6) were Covid-

228 19+, representing approximately half (585/1244, 47%) of all Covid-19+ patients in the VA as of

229 March 30, 2020 (Figure 1a and eFigure 1). In unadjusted analyses, factors associated with

230 Covid-19+ (**Table 1**) included male sex, black race, urban residence, chronic kidney disease,

diabetes, and hypertension (all p<0.003). Smoking, COPD, and alcohol use disorder were
associated with a lower probability of a positive test (all p<0.001). No medication exposure was
associated with a positive test. Vital signs associated with Covid-19+ included higher BMI,
tachycardia, and higher temperature (all p<0.001). All laboratory values were associated with
Covid-19+ (all p<0.001). Composite variables, eGFR and FIB-4, were also strongly associated
(both p<0.001).

237

238	In multivariable analyses (Table 2 , <i>C</i> -statistic=0.806), black race (OR 4.68,8 95% CI 3.79-5.78),
239	male sex (OR 3.17, 95% CI 2.03-4.94), urban residence (OR 1.60, 95% CI 1.17-2.20), higher
240	temperature (OR 1.70, 95% CI 1.58-1.84 per 1°F), lower systolic blood pressure (OR 1.44, 95% CI
241	1.16-1.78), and prior use of NSAIDS (OR 1.27, 95% CI 1.02-1.58) were associated with increased
242	likelihood of Covid-19+. Current smoking (OR 0.45, 95% CI 0.35-0.57), alcohol use disorder (OR
243	0.58, 95% CI 0.41- 0.83), and COPD (OR 0.67, 95%CI 0.50-0.88) were associated with decreased
244	likelihood of Covid-19+. Results were similar in complete case analysis (eTable 2).
245	
246	
240	In <i>post hoc</i> analyses, we observed that black Veterans were more likely to be tested at sites
240	In <i>post hoc</i> analyses, we observed that black Veterans were more likely to be tested at sites with higher Covid-19 prevalence (Figure 1b). A model conditional on site (Table 2) reduced the
240 247 248	In <i>post hoc</i> analyses, we observed that black Veterans were more likely to be tested at sites with higher Covid-19 prevalence (Figure 1b). A model conditional on site (Table 2) reduced the association with black race (OR 2.56, 95% CI 1.89-3.46) and increased the association with male
240 247 248 249	In <i>post hoc</i> analyses, we observed that black Veterans were more likely to be tested at sites with higher Covid-19 prevalence (Figure 1b). A model conditional on site (Table 2) reduced the association with black race (OR 2.56, 95% CI 1.89-3.46) and increased the association with male sex (OR 3.85, 95% CI 2.20-6.74). Associations with other factors were consistent with
247 248 249 250	In <i>post hoc</i> analyses, we observed that black Veterans were more likely to be tested at sites with higher Covid-19 prevalence (Figure 1b). A model conditional on site (Table 2) reduced the association with black race (OR 2.56, 95% CI 1.89-3.46) and increased the association with male sex (OR 3.85, 95% CI 2.20-6.74). Associations with other factors were consistent with unconditional estimates.

252 Risk Factors for Hospitalization and Intensive Care

253	Among 585 Covid-19+ patients, 297 (50.8%, 95% CI 46.6-54.9%) were hospitalized and 122
254	(20.9%, 95% CI 17.6-24.4%) received intensive care. In bivariate analyses, age, chronic kidney
255	disease, COPD, diabetes, hypertension, vascular disease, ACE/ARB exposure, and decreased
256	oxygen saturation, and elevated temperature were associated with hospitalization and
257	intensive care (all p<0.05, Table 3a and Table 3b). All laboratory abnormalities investigated
258	were associated with hospitalization and intensive care (all p<0.05). Median VACS Index scores
259	varied substantially between those hospitalized versus not hospitalized (78.7 vs. 66.2, p<0.001)
260	and between those receiving and not receiving intensive care (82.0 vs. 69.4, p<0.001).
261	
262	Parallel models, first adjusted for all significant factors identified in bivariate analyses and then
263	substituting VACS Index for all laboratory tests, demonstrated good discrimination for
264	hospitalization (Table 4, C-statistics: 0.859, 0.834) and intensive care (C-statistics: 0.876, 0.835).
265	White blood cell count, lymphocyte count, eGFR, albumin and FIB-4 were all independently
266	associated with hospitalization and intensive care (Table 4). The most pronounced association
267	was for patients with FIB-4>3.25 – adjusted OR 8.73 (95% CI 4.11-18.56) for hospitalization and
268	8.40 (95% CI 2.90-24.28) for intensive care – compared to those with FIB-4<1.45. Of note,
269	associations were stronger for FIB-4 and eGFR than for components of these measures (data
270	not otherwise shown).
271	
272	While COPD, diabetes, hypertension, kidney disease, vascular disease and exposure to ACE/ARB

273 exposure were associated with hospitalization and intensive care in unadjusted analyses, they

- 274 were not significantly associated after adjusting for laboratory abnormalities and vital signs
- 275 (**Table 4**). Results were similar in complete case analysis (**eTable 3**).
- 276

277 Discussion

278 Our analysis represents over 2 million veterans, aged 54-75 years, receiving care in the largest 279 integrated healthcare system in the United States. The study was conducted within an 280 established cohort and based on well annotated national electronic health record data, 281 enabling a rapid and reliable analysis of Covid-19 testing and initial outcomes. As a result, we 282 were able to validate and extend previous findings, to include a careful consideration of who is 283 Covid-19+ and, given a positive test, what factors were independently associated with 284 hospitalization and intensive care. We found that black Veterans were twice as likely to be 285 tested and 2.5 times as likely to test positive than non-black Veterans, even after adjusting for 286 urban residence and conditioning on geographic location. While we saw modest evidence of an 287 association between exposure to NSAIDs and risk of Covid-19+, vital signs and laboratory 288 measures better characterized risk of hospitalization and intensive care than did comorbid 289 diagnoses or prior medication exposures.

290

In unadjusted analyses, black Veterans were over four times as likely to test positive compared
to non-black Veterans; adjusting for urban versus rural residence did not change this
association. While black Veterans were much more likely to be tested at high prevalence
facilities, conditioning our analysis by site did not eliminate the association; black race retained
over a two-fold increased risk for testing Covid-19+. Of note, black Veterans were also more

likely to be tested, which could dilute the proportion positive. Further, black Veterans did not
experience higher rates of hospitalization or intensive care. Based on prior experience with
1918 Spanish Flu and 2009 H1N1 epidemic, public health experts have warned that minority
populations may be at higher risk of infection due to reduced capacity to implement physical
distancing.^{21,22} Our findings may be an underestimate of the US population as racial health
disparities in VA tend to be smaller than in the private sector.²³

302

Women were more likely to be tested for Covid-19 than men, and men were twice as likely to
test positive. This association strengthened after adjustment and in conditional analyses (Table
but should be considered preliminary given limited numbers of women in this analysis.

306

307 As reported previously²⁴ elevated temperature was independently associated with testing 308 positive, hospital admission and intensive care, underscoring the value of including fever in the 309 current testing algorithms. Findings from the multivariable regression suggest that other factors 310 might also be used to indicate a test, including black race, male sex, and lack of an alternative 311 explanation for cough symptoms. To wit, we found that current smoking, COPD, and alcohol 312 use disorder, factors that generally increase risk of pneumonia, were associated with decreased 313 probability of testing positive. While they were not associated with hospitalization or intensive 314 care, it is too early to tell if these factors are associated with subsequent outcomes such as respiratory failure or mortality. 315

316

317 Presence of particular comorbid diagnoses may be less prognostic than overall acute on chronic 318 injury reflected in laboratory abnormalities largely encompassed in the VACS Index. In 319 unadjusted analyses, several comorbid conditions were associated with hospitalization and 320 intensive care but were not independently associated after adjusting for vital signs and 321 laboratory data. Further, while elevated white blood cell counts and decreased lymphocyte 322 counts were associated with hospitalization and intensive care, the pronounced independent 323 association with FIB-4 (a composite of platelets and transaminases) and albumin suggest that virally induced hepatic inflammation may be a harbinger of the cytokine storm.²⁵⁻²⁷ 324 325 326 VACS Index, which includes FIB-4, albumin, and white blood cell count, is predictive of mortality in many clinical settings.¹⁸ A five-point difference in score corresponds to a 30% difference in 327 328 mortality. The 12.5-point difference in medians between the Veterans who were and were not 329 admitted, and the 12.6-point difference between those who received and did not receive 330 intensive care underscores the wide range of prognoses seen with Covid-19. Future work will 331 need to determine whether VACS Index might be used in medical triage of Covid-19+ patients. 332 333 Our analysis is one of the first to address concerns regarding exposure to NSAIDS and ACE/ARBs and Covid-19.^{9,10} We found NSAID exposure was modestly associated with Covid-19+ in 334 335 unadjusted and adjusted analyses, but not with hospitalization or intensive care. Among those testing positive, ACE/ARB exposure was associated with hospitalization and intensive care in 336

337 unadjusted analyses, but associations lost statistical significance with hospitalization and

diminished with intensive care after adjusting for clinical measures, including hypertension and

blood pressure. However, confidence intervals were wide, include clinically important
differences, and conclusions may change as the epidemic evolves. We will continue to update
these analyses as more data become available.

342

343 While this analysis adds information to the evolving pandemic, its limitations must be kept in 344 mind. First, a small proportion of Veterans have been tested and rates of testing vary widely by 345 site. Second, women represented a small number of Veterans in the sample (184 tested, 13 346 positive). Third, our analysis of outcomes is preliminary as many Covid-19+ patients are still in 347 care. Fourth, while a strength of this analysis is our ability to determine active VA medications, 348 we could only detect NSAID exposure based upon VA pharmacy fill/refill data, individuals are 349 also likely to purchase NSAIDS over the counter. As real-world data become available, more 350 sophisticated and focused pharmacoepidemiological analyses will be required to address 351 concerns regarding potential risk of medications associated with Covid-19. 352 353 Conclusion 354 Black race was strongly associated with Covid-19+, but not with hospitalization or intensive 355 care. Unadjusted associations between medication exposure, comorbid disease, and 356 hospitalization and intensive care are diminished after adjustment. Risk of hospitalization and 357 intensive care associated with Covid-19 may be better characterized by vital signs and measures of physiologic injury than by comorbid conditions or medication history. 358

359 Acknowledgements

- 360 The views and opinions expressed in this manuscript are those of the authors and do not
- 361 necessarily represent those of the Department of Veterans Affairs or the United States
- 362 Government. The authors wish to recognize Dr. Kendall Bryant as the NIAAA Scientific
- 363 Collaborator for the Veterans Birth Cohort. The authors thank Dr. Jennifer Thompson for her
- 364 feedback regarding helpful data presentation and important characteristics to include to enable
- 365 statistical modeling of the Covid-19 pandemic.
- 366

367 Role of the Funder/Sponsor

- 368 The funder had no role in the design and conduct of the study; collection, management,
- 369 analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and
- 370 decision to submit the manuscript for publication.

371	Refer	ences
372	1.	Guan WJ, Ni ZY, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China.
373		The New England journal of medicine. 2020.
374	2.	Weiss P, Murdoch DR. Clinical course and mortality risk of severe COVID-19. Lancet.
375		2020.
376	3.	Yang J, Zheng Y, Gou X, et al. Prevalence of comorbidities in the novel Wuhan
377		coronavirus (COVID-19) infection: a systematic review and meta-analysis. Int J Infect Dis.
378		2020.
379	4.	Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients
380		with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020.
381	5.	Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus
382		Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases From
383		the Chinese Center for Disease Control and Prevention. JAMA. 2020.
384	6.	Grasselli G, Zangrillo A, Zanella A, et al. Baseline Characteristics and Outcomes of 1591
385		Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy.
386		JAMA. 2020.
387	7.	Preliminary Estimates of the Prevalence of Selected Underlying Health Conditions
388		Among Patients with Coronavirus Disease 2019 — United States, February 12–March 28,
389		2020. MMWR Morb Mortal Wkly Rep.
390		doi: <u>http://dx.doi.org/10.15585/mmwr.mm6913e2</u> . Published 31 March 2020. Accessed
391		31 March 2020.

- Bhatraju PK, Ghassemieh BJ, Nichols M, et al. Covid-19 in Critically III Patients in the
 Seattle Region Case Series. *The New England journal of medicine*. 2020.
- 394 9. Day M. Covid-19: ibuprofen should not be used for managing symptoms, say doctors
 395 and scientists. *BMJ.* 2020;368:m1086.
- Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at
 increased risk for COVID-19 infection? *Lancet Respir Med.* 2020.
- 398 11. Njei B, Esserman D, Krishnan S, et al. Regional and Rural-Urban Differences in the Use of
- 399 Direct-acting Antiviral Agents for Hepatitis C Virus: The Veteran Birth Cohort. *Med Care*.
- 400 2019;57(4):279-285.
- 401 12. Sarkar S, Esserman DA, Skanderson M, Levin FL, Justice AC, Lim JK. Disparities in
- 402 hepatitis C testing in U.S. veterans born 1945-1965. *J Hepatol.* 2016;65(2):259-265.
- 403 13. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients
- 404 with COVID-19 in Wuhan, China: a retrospective cohort study. *Lancet*.
- 405 2020;395(10229):1054-1062.
- 406 14. Abrams TE, Vaughan-Sarrazin M, Kaboli PJ. Mortality and revascularization following
- 407 admission for acute myocardial infarction: implication for rural veterans. *J Rural Health*.
- 408 2010;26(4):310-317.
- 409 15. McGinnis KA, Brandt CA, Skanderson M, et al. Validating smoking data from the
- 410 Veteran's Affairs Health Factors dataset, an electronic data source. *Nicotine Tob Res.*
- 411 2011;13(12):1233-1239.
- 412 16. Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration
 413 rate. *Ann Intern Med.* 2009;150(9):604-612.

414	17.	Sterling RK, Lissen E, Clumeck N, et al. Development of a simple noninvasive index to
415		predict significant fibrosis in patients with HIV/HCV coinfection. <i>Hepatology</i> .
416		2006;43(6):1317-1325.
417	18.	Justice AC, Tate JP. Strengths and Limitations of the Veterans Aging Cohort Study Index
418		as a Measure of Physiologic Frailty. AIDS Res Hum Retroviruses. 2019;35(11-12):1023-
419		1033.
420	19.	Tate JP, Sterne JAC, Justice AC, Veterans Aging Cohort S, the Antiretroviral Therapy
421		Cohort C. Albumin, white blood cell count, and body mass index improve discrimination
422		of mortality in HIV-positive individuals. AIDS. 2019;33(5):903-912.
423	20.	Rubin DB. Multiple Imputation for nonresponse in surveys. Vol 81: John Wiley & Sons;
424		2004.
425	21.	Centers for Disease Control and Prevention. Flu-Related Hospitalizations and Deaths in
426		the United States from April 2009 – January 30, 2010.
427		https://www.cdc.gov/H1N1flu/hosp_deaths_ahdra.htm. Published 2010. Accessed April
428		2, 2020.
429	22.	Hutchins SS, Fiscella K, Levine RS, Ompad DC, McDonald M. Protection of racial/ethnic
430		minority populations during an influenza pandemic. Am J Public Health. 2009;99 Suppl
431		2:S261-270.
432	23.	Peterson K, Anderson J, Boundy E, Ferguson L, McCleery E, Waldrip K. Mortality
433		Disparities in Racial/Ethnic Minority Groups in the Veterans Health Administration: An
434		Evidence Review and Map. Am J Public Health. 2018;108(3):e1-e11.

435	24.	Sohrabi C, Alsafi Z, O'Neill N, et al. World Health Organization declares global
436		emergency: A review of the 2019 novel coronavirus (COVID-19). Int J Surg. 2020;76:71-
437		76.
438	25.	Heymann F, Tacke F. Immunology in the liverfrom homeostasis to disease. Nat Rev
439		Gastroenterol Hepatol. 2016;13(2):88-110.
440	26.	Racanelli V, Rehermann B. The liver as an immunological organ. Hepatology. 2006;43(2
441		Suppl 1):S54-62.
442	27.	Ramadori G, Armbrust T. Cytokines in the liver. Eur J Gastroenterol Hepatol.
443		2001;13(7):777-784.
444		
445		

- 446 Figure legends
- 447 **Figure 1.** Distribution of Covid-19 cases in the Veterans Birth Cohort as of March 30, 2020
- 448 **Caption:** (a) Shown is the distribution of 585/1244 (47%) Covid-19 cases in the Veterans Health
- Administration captured in the Veterans Birth Cohort as of March 30, 2020 and included in the
- 450 current study. (b) Shown is the proportion of Covid-19 test results that are positive by the
- 451 proportion of Covid-19 cases of black race by site of care.

Table 1. Characteristics of patients tested for Covid-19 among all p	ients aged 54-75 years in the Veterans Health Administration as of March 30, 2020
--	---

						Covid			
	No tested	(%)	missing	Positivo	(%)	Negative	(%)	n-value ^a	% Covid-19+ (95% CI)
Sample size n	3789	(100.0)	missing	585	(100.0)	3204	(100.0)	p-value	15 4 (14 3-16 6)
Demographics		(()		()		
Age, years									
Median (IQR)	65.7 (60.	5-70.7)	0	66.1 (60	.4-71.0)	65.6 (60.	5-70.7)	0.24	
54-59	861	(22.7)		135	(23.1)	726	(22.7)	0.21	15.7 (13.3-18.3)
60-64	906	(23.9)		135	(23.1)	771	(24.1)		14.9 (12.6-17.4)
65-69 70-75	8//	(23.1)		120	(20.5)	/5/ 950	(23.6)		13.7 (11.5-16.1)
Sex	1145	(30.2)		155	(55.5)	550	(23.7)		17.0 (14.5-15.5)
Female	372	(9.8)	0	27	(4.6)	345	(10.8)	<0.001	7.3 (4.8-10.4)
Male	3417	(90.2)		558	(95.4)	2859	(89.2)		16.3 (15.1-17.6)
Race/ethnicity		()	_		()				
White	2135	(56.3)	0	161	(27.5)	1974	(61.6)	<0.001	7.5 (6.5-8.7)
Black	204	(29.7)		350	(59.8)	246	(24.2)		31.1 (28.4-33.9) 16 3 (12 3-21 1)
Other/unknown	234	(6.2)		26	(4.4)	240	(6.5)		11.1 (7.4-15.9)
Residence type		(- <i>1</i>			()		()		(
Rural	718	(18.9)	0	56	(9.6)	662	(20.7)	<0.001	7.8 (6.0-10.0)
Urban	3071	(81.1)		529	(90.4)	2542	(79.3)		17.2 (15.9-18.6)
Baseline comorbidity									
Asthma	2506	(02.5)	0	E 40	(02.2)	2066	(02.6)	0.90	15 4 (14 2 16 6)
NO Ves	283	(92.5)	0	45	(92.5)	2900	(92.0)	0.80	15.4 (14.2-16.6)
Cancer	205	(7.5)		45	(7.7)	250	(7.4)		13.5 (11.6 20.7)
No	3218	(84.9)	0	502	(85.8)	2716	(84.8)	0.57	15.6 (14.4-16.9)
Yes	571	(15.1)		83	(14.2)	488	(15.2)		14.5 (11.8-17.7)
Chronic kidney disease		()	_		<i>(</i> - , -)		<i></i>		
No	3228	(85.2)	0	474	(81.0)	2754	(86.0)	0.003	14.7 (13.5-16.0)
Yes Chronic obstructivo nulmonany disease	561	(14.8)		111	(19.0)	450	(14.0)		19.8 (16.6-23.3)
No	2796	(73.8)	0	495	(84.6)	2301	(71.8)	<0.001	17.7 (16.3-19.2)
Yes	993	(26.2)	•	90	(15.4)	903	(28.2)	.0.001	9.1 (7.4-11.0)
Diabetes mellitus									
No	2358	(62.2)	0	325	(55.6)	2033	(63.5)	<0.001	13.8 (12.4-15.2)
Yes	1431	(37.8)		260	(44.4)	1171	(36.5)		18.2 (16.2-20.3)
Hypertension	1226	(25.0)	0	160	(77.7)	1164	(26.2)	<0.001	12 2 /10 E 14 1)
NO Ves	2463	(35.0)	U	423	(27.7)	2040	(30.3)	<0.001	12.2 (10.5-14.1)
Liver disease	2405	(05.0)		425	(72.3)	2040	(03.7)		17.2 (15.7 10.7)
No	3323	(87.7)	0	525	(89.7)	2798	(87.3)	0.12	15.8 (14.6-17.1)
Yes	466	(12.3)		60	(10.3)	406	(12.7)		12.9 (10-16.3)
Vascular disease			_		<i>(</i>)		<i>(</i>)		
No	2694	(71.1)	0	422	(72.1)	2272	(70.9)	0.59	15.7 (14.3-17.1)
res Substance use	1095	(20.9)		105	(27.9)	952	(29.1)		14.9 (12.0-17.1)
Alcohol use disorder									
No	3261	(86.1)	0	537	(91.8)	2724	(85.0)	<0.001	16.5 (15.2-17.8)
Yes	528	(13.9)		48	(8.2)	480	(15.0)		9.1 (6.8-11.9)
Smoking									
Never	1042	(27.5)	261	216	(36.9)	826	(25.8)	<0.001	20.7 (18.3-23.3)
Former	883	(23.3)		179	(30.6)	704 1777	(22.0)		20.3 (17.7-23.1)
Medication history in year prior to test date	1005	(42.3)		155	(27.2)	1444	(43.1)		5.5 (0.5-11.5)
Any angiotensin converting enzyme inhibitor or									
angiotensin II receptor blocker									
No	2257	(59.6)	0	330	(56.4)	1927	(60.1)	0.10	14.6 (13.2-16.2)
Yes	1532	(40.4)		255	(43.6)	1277	(39.9)		16.6 (14.8-18.6)
Angiotensin converting enzyme inhibitor	2770	(72.2)	0	410	(71.1)	2262	(72 7)	0.20	15 0 (12 7 16 4)
NO	2778	(73.3)	0	416	(71.1)	2302	(73.7)	0.20	15.0 (13.7-10.4)
Angiotensin II receptor blocker	1011	(20.7)		105	(20.5)	042	(20.5)		10.7 (14.5 15.2)
No	3226	(85.1)	0	491	(83.9)	2735	(85.4)	0.38	15.2 (14.0-16.5)
Yes	563	(14.9)		94	(16.1)	469	(14.6)		16.7 (13.7-20.0)
Chemotherapy or immunsuppresive drug									
No	3568	(94.2)	0	556	(95.0)	3012	(94.0)	0.39	15.6 (14.4-16.8)
res Nonsteroidal anti-inflammatory drug (-365 -14	221	(5.8)		29	(5.0)	192	(6.0)		13.1 (9.0-18.3)
days)									
No	2634	(69.5)	0	392	(67.0)	2242	(70.0)	0.16	14.9 (13.5-16.3)
Yes	1155	(30.5)		193	(33.0)	962	(30.0)		16.7 (14.6-19.0)
Vital signs at test date									
Body mass index, kg/m ²		1			/ · ·	<u>.</u>	(a- · ·		
<25.0 25.0.20.0	779	(20.6)	393	73	(12.5)	706	(22.0)	<0.001	9.4 (7.4-11.6)
23.0-23.9 >30	1070 1547	(28.2) (40.8)		166 201	(28.4) (49.7)	904 1256	(28.2) (39.2)		13.3 (13.4-17.8) 18 8 (16 9-20 9)
Hypoxia (oxygen saturation ≤93%)	1347	()0.01		231	()	1100	(20.2)		2010 20101

No	2433	(64.2)	860	443	(75.7)	1990	(62.1)	0.20	18.2 (16.7-19.8)
Yes	496	(13.1)		78	(13.3)	418	(13.0)		15.7 (12.6-19.2)
Pulse >90 heats per minute		. ,			. ,		. ,		, ,
No	2022	(52.7)	416	205	(50.4)	1720	(54.2)	<0.001	14 5 (12 0 16 1)
No	2033	(35.7)	410	255	(30.4)	1/30	(34.2)	<0.001	14.3 (13.0-10.1)
res	1340	(35.4)		257	(43.9)	1083	(33.8)		19.2 (17.1-21.4)
Systolic blood pressure, mm Hg									
<90	355	(9.4)	448	63	(10.8)	292	(9.1)	0.11	17.8 (13.9-22.1)
90-140	1565	(41.3)		274	(46.8)	1291	(40.3)		17.5 (15.7-19.5)
≥140	1421	(37.5)		211	(36.1)	1210	(37.8)		14.9 (13.0-16.8)
Temperature °F		. ,			. ,		. ,		. ,
	21/12	(56 5)	405	204	(24.0)	1029	(60.5)	<0.001	0 5 /9 2 10 0)
258.0	2142	(30.3)	405	204	(34.5)	1936	(00.3)	<0.001	3.3 (8.3-10.3)
98.7-100.3	953	(25.2)		227	(38.8)	726	(22.7)		23.8 (21.2-26.7)
≥100.4	289	(7.6)		120	(20.5)	169	(5.3)		41.5 (35.8-47.4)
Laboratory findings at test date									
Alanine aminotransferase 11/1									
Median (IOR)	23.0/16.0	-34 0)	400	28 0 (19	0-41.0)	22.0 (16	0-33 0)	<0.001	
	23.0 (10.0	(74.7)	400	20.0 (1)	.0-41.0)	22.0 (10.	(75.0)	<0.001	144/121157)
<u>\$40</u>	2829	(74.7)		406	(69.4)	2423	(75.6)	<0.001	14.4 (13.1-15.7)
>40	560	(14.8)		138	(23.6)	422	(13.2)		24.6 (21.1-28.4)
Albumin, g/dL									
Median (IQR)	3.9 (3.5	-4.2)	383	3.8 (3.	5-4.2)	3.9 (3.5	5-4.2)	0.78	
>35	2596	(68.5)		415	(70.9)	2181	(68.1)	1 00	16.0 (14.6-17.5)
-2 E	2000	(21.4)		120	(22.1)	691	(21.2)	2.00	15 0 (12 5 19 6)
<3.5	810	(21.4)		129	(22.1)	001	(21.5)		13.9 (13.3-18.0)
Aspartate aminotransferase, U/L									
Median (IQR)	23.0 (18.0)-32.0)	356	29.0 (21	.5-43.0)	22.0 (17.	0-30.0)	<0.001	
≤40	2902	(76.6)		391	(66.8)	2511	(78.4)	< 0.001	13.5 (12.3-14.8)
>40	531	(14.0)		157	(26.8)	374	(11.7)		29.6 (25.7-33.7)
Creatinine mg/dl		· · · /			()		· /		,
Median (IOP)	11/00	1 2)	196	1 1 / 1	0 1 5)	10/00	1 2)	<0.001	
	1.1 (0.9	-1.3)	100	1.1 (1.	(74.4)	1.0 (0.3	(04.4)	<0.001	442 (424 45 6)
\$1.5	3033	(80.0)		435	(74.4)	2598	(81.1)	<0.001	14.3 (13.1-15.6)
>1.5	570	(15.0)		130	(22.2)	440	(13.7)		22.8 (19.4-26.5)
eGFR, mL/min									
Median (IQR)	75.0 (59.0)-91.0)	168	71.5 (53	.0-87.0)	76.0 (60.	0-92.0)	< 0.001	
>15	3492	(92 2)		541	(92 5)	2951	(92 1)	0.11	15 5 (14 3-16 7)
<15	120	(3 4)		27	(4.6)	102	(3.2)		20 9 (1/1 3-29 0)
	125	(3.4)		27	(4.0)	102	(3.2)		20.3 (14.3-23.0)
FIB-4					()				/
<1.45	1499	(39.6)	628	139	(23.8)	1360	(42.4)	<0.001	9.3 (7.9-10.9)
1.45-3.25	1266	(33.4)		263	(45.0)	1003	(31.3)		20.8 (18.6-23.1)
>3.25	396	(10.5)		114	(19.5)	282	(8.8)		28.8 (24.4-33.5)
Hemoglobin g/dl		. ,			. ,		. ,		. ,
Modian (IOP)	12 0 / 12 2	15.0	445	12 0 /12	6 14 0)	12 0 /12	2 15 0)	0.00	
	13.8 (12.2	(0,1 =)	445	13.9 (12	.0-14.9)	13.6 (12.	2-13.0)	0.09	
≥10	3097	(81.7)		523	(89.4)	2574	(80.3)	<0.001	16.9 (15.6-18.3)
<10	247	(6.5)		17	(2.9)	230	(7.2)		6.9 (4.1-10.8)
Platelet count, K/µL									
Median (IQR)	218 (173	- 267)	423	193 (15	4-230)	223 (17	8- 275)	< 0.001	
>150	2875	(75.9)		416	(71.1)	2459	(76.7)	<0.001	14 5 (13 2-15 8)
<150	401	(12.0)		121	(20.7)	2435	(11 E)	10.001	24.6 (20.0.29.7)
	491	(15.0)		121	(20.7)	570	(11.5)		24.0 (20.9-26.7)
White blood cell count, K/µL									
Median (IQR)	7.5 (5.7-	10.0)	288	5.9 (4.	7-7.5)	7.8 (6.0	-10.4)	<0.001	
<4	191	(5.0)		72	(12.3)	119	(3.7)	< 0.001	37.7 (30.8-45.0)
4-9.9	2448	(64.6)		432	(73.8)	2016	(62.9)		17.7 (16.2-19.2)
>10	862	(22.8)		10	(8.4)	813	(25.4)		57(42-75)
	002	(22.0)		45	(0.4)	015	(23.4)		5.7 (4.2-7.5)
Lymphocyte count, K/µL									
Median (IQR)	1.4 (1.0	-2.0)	628	1.1 (0.	8-1.6)	1.5 (1.0)-2.1)	<0.001	
≥0.8	2626	(69.3)		363	(62.1)	2263	(70.6)	<0.001	13.8 (12.5-15.2)
<0.8	535	(14.1)		130	(22.2)	405	(12.6)		24.3 (20.7-28.2)
Clinical outcomes									
Chinical outcomes									
nospitalized		100			((69.3)		
No	2277	(60.1)	0	288	(49.2)	1989	(62.1)	<0.001	12.7 (11.3-14.1)
Yes	1512	(39.9)		297	(50.8)	1215	(37.9)		19.6 (17.7-21.7)
Intensive care unit admission									
No	3381	(89.2)	0	463	(79.1)	2918	(91 1)	<0.001	13.7 (12 6-14 9)
Vec	100	(10 0)	č	100	(20 0)	2010	(8 0)	-0.001	20 0 (25 5 24 6)
Death during hearing!	408	(10.0)		122	(20.9)	200	(0.3)		23.3 (23.3-34.0)
Death during hospitalization									
		(00.0)	0	FC0	(07.1)	2170	(00.1)	<0.001	15 2 / 14 0 16 4
No	3744	(98.8)	0	508	(97.1)	31/6	(99.1)	<0.001	15.2 (14.0-10.4)
No Yes	3744 45	(98.8)	0	508 17	(97.1) (2.9)	28	(0.9)	<0.001	37.8 (23.8-53.5)

	Positive Covid-19 test (n=585/3789)					
	Univariable OR (95% Cl)	Multivariable OR (95% CI)	Conditional OR ^a (95% CI)			
Model details						
C-statistic	-	0.806	n/a			
Demographics						
Age, per 5-year increase	1.04 (0.97-1.12)	1.05 (0.96-1.15)	1.02 (0.91-1.15)			
Sex, male vs. female	2.49 (1.67-3.73)	3.17 (2.03-4.94)	3.85 (2.20-6.74)			
Race/ethnicity, black vs. other	4.66 (3.88-5.60)	4.68 (3.79-5.78)	2.56 (1.89-3.46)			
Residence type, urban vs. rural	2.46 (1.84-3.28)	1.60 (1.17-2.20)	1.04 (0.64-1.68)			
Baseline comorbidity						
Chronic kidney disease, yes vs. no	1.43 (1.14-1.80)	1.00 (0.76-1.33)	0.92 (0.64-1.31)			
Chronic obstructive pulmonary disease, yes vs. no	0.46 (0.37-0.59)	0.67 (0.50-0.88)	0.77 (0.54-1.09)			
Diabetes mellitus, yes vs. no	1.39 (1.16-1.66)	1.01 (0.80-1.26)	0.89 (0.67-1.19)			
Hypertension, yes vs.no	1.49 (1.23-1.81)	1.23 (0.95-1.60)	1.40 (1.00-1.96)			
Substance use						
Alcohol use disorder, yes vs. no	0.51 (0.37-0.69)	0.58 (0.41-0.83)	0.52 (0.34-0.82)			
Current smoking, yes vs. no	0.43 (0.35-0.52)	0.45 (0.35-0.57)	0.45 (0.34-0.61)			
Medication history in year prior to test date						
Angiotensin converting enzyme inhibitor or angiotensin II receptor blocker, ves vs. no	1.17 (0.98-1.39)	0.98 (0.78-1.23)	0.93 (0.69-1.24)			
Nonsteroidal anti-inflammatory drug, yes vs. no	1.15 (0.95-1.39)	1.27 (1.02-1.58)	1.16 (0.87-1.54)			
Vital signs						
Systolic blood pressure, <140 vs. ≥140 mm Hg	1.25 (1.03-1.51)	1.44 (1.16-1.78)	1.29 (0.99-1.69)			
Body mass index, per 5 kg/m ² increase	1.15 (1.08-1.23)	1.09 (1.00-1.18)	1.10 (0.99-1.22)			
Oxygen saturation, ≤93% vs >93%	0.88 (0.68-1.15)	1.04 (0.76-1.42)	1.04 (0.67-1.61)			
Pulse, per 5-beats per minute increase	0.99 (0.99-1.00)	0.99 (0.99-1.00)	1.00 (0.99-1.00)			
Temperature, per 1°F increase	1.74 (1.62-1.87)	1.70 (1.58-1.84)	1.69 (1.53-1.88)			

Table 2. Crude and adjusted associations with testing positive for Covid-19 as of March 30, 2020

Abbreviations: Covid-19, coronavirus disease 2019; OR, odds ratio; CI, confidence interval ^aModeling stations with five or more Covid-19 cases and conditioning on station

Table 3a. Associations with hospita	lization among Covid-19 cases ag	ed 54-75 years in the Veterans	Health Administration as of March 30, 202
-------------------------------------	----------------------------------	--------------------------------	---

				Hospitalization		zation			
	N	(0/)		¥	(0/)	Na	(0/)	دمينامير م	% hospitalized
	No. cases	(%)	missing	Yes	(%)	200	(%)	p-value [®]	(95% CI)
li Demosrankia	585	(100)		297	(100.0)	288	(100.0)		50.8 (46.6-54.9)
Median (IOR)	66 1 (60 4	4-71 0)	0	67.6	(61 7-71 6)	64 5	(59 7-70 5)	0.001	
54-59	135	(23.1)	0	58	(19.5)	77	(26.7)	0.02	43.0 (34.5-51.8)
60-64	135	(23.1)		62	(20.9)	73	(25.3)		45.9 (37.3-54.7)
65-69	120	(20.5)		62	(20.9)	58	(20.1)		51.7 (42.4-60.9)
70-75	195	(33.3)		115	(38.7)	80	(27.8)		59.0 (51.7-66.0)
Sex									
Female	27	(4.6)	0	8	(2.7)	19	(6.6)	0.03	29.6 (13.8-50.2)
Male	558	(95.4)		289	(97.3)	269	(93.4)		51.8 (47.6-56.0)
Race/ethnicity		(07.5)		70	(0.5.5)		(00.5)		
White	161	(27.5)	0	/9	(26.6)	82	(28.5)	0.32	49.1 (41.1-57.1)
Black	350	(59.8)		187	(63.0)	201	(0.02)		53.4 (48.1-58.8) 41 7 (27 6 56 9)
Other/unknown	48	(0.2)		11	(0.7)	15	(5.7)		41.7 (27.0-50.8)
Residence type	20	(4.4)		11	(3.7)	15	(3.2)		42.5 (25.4-05.1)
Rural	56	(9.6)	0	27	(9.1)	29	(10.1)	0.78	48.2 (34.7-62.0)
Urban	529	(90.4)		270	(90.9)	259	(89.9)		51.0 (46.7-55.4)
Baseline comorbidity		()			()		()		
Asthma									
No	540	(92.3)	0	273	(91.9)	267	(92.7)	0.76	50.6 (46.3-54.9)
Yes	45	(7.7)		24	(8.1)	21	(7.3)		53.3 (37.9-68.3)
Cancer									
No	502	(85.8)	0	252	(84.8)	250	(86.8)	0.55	50.2 (45.7-54.7)
Yes	83	(14.2)		45	(15.2)	38	(13.2)		54.2 (42.9-65.2)
Chronic kidney disease	474	(01.0)	0	222	(747)	252	(07.5)	-0.001	46 0 (42 2 51 4)
NO	474	(81.0)	U	222	(74.7)	252	(87.5) (12.5)	<0.001	40.8 (42.3-51.4)
tes Chronic obstructive pulmonary disease	111	(19.0)		75	(25.5)	50	(12.5)		07.0 (58.0-70.2)
No	495	(84.6)	0	236	(79.5)	259	(89.9)	<0.001	47 7 (43 2-52 2)
Yes	90	(15.4)	0	61	(20.5)	29	(10.1)	.0.001	67.8 (57.1-77.3)
Diabetes mellitus		(-)			(/		(-)		
No	325	(55.6)	0	141	(47.5)	184	(63.9)	<0.001	43.4 (37.9-49.0)
Yes	260	(44.4)		156	(52.5)	104	(36.1)		60.0 (53.8-66.0)
Hypertension									
No	162	(27.7)	0	59	(19.9)	103	(35.8)	<0.001	36.4 (29.0-44.3)
Yes	423	(72.3)		238	(80.1)	185	(64.2)		56.3 (51.4-61.1)
Liver disease	525	(90.7)	0	260	(97 5)	265	(02.0)	0.08	40 E (4E 2 E2 0)
Ves	525	(10.3)	0	200	(12.5)	203	(92.0)	0.08	49.3 (43.2-33.9) 61 7 (48 2-73 9)
Vascular disease	00	(10.5)		57	(12.5)	23	(0.0)		01.7 (40.2 75.5)
No	422	(72.1)	0	184	(62.0)	238	(82.6)	<0.001	43.6 (38.8-48.5)
Yes	163	(27.9)		113	(38.0)	50	(17.4)		69.3 (61.6-76.3)
Substance use									
Alcohol use disorder									
No	537	(91.8)	0	269	(90.6)	268	(93.1)	0.29	50.1 (45.8-54.4)
Yes	48	(8.2)		28	(9.4)	20	(6.9)		58.3 (43.2-72.4)
Smoking									
Never	216	(36.9)	31	106	(35.7)	110	(38.2)	0.30	49.1 (42.2-55.9)
Former	179	(30.6)		89	(30.0)	90	(31.3)		49.7 (42.2-57.3)
	159	(27.2)		90	(30.3)	69	(24.0)		50.0 (48.5-04.4)
Any angiotonsis converting any una inhibitor or									
angiotensin II recentor blocker									
No	330	(56.4)	0	150	(50.5)	180	(62.5)	0.004	45 5 (40 0-51 0)
Yes	255	(43.6)	0	147	(49.5)	108	(37.5)	0.001	57.7 (51.3-63.8)
Angiotensin converting enzyme inhibitor	200	(1010)			(1515)	100	(07.0)		5717 (5215 6516)
No	416	(71.1)	0	194	(65.3)	222	(77.1)	0.002	46.6 (41.8-51.6)
Yes	169	(28.9)		103	(34.7)	66	(22.9)		61.0 (53.2-68.4)
Angiotensin II receptor blocker									
No	491	(83.9)	0	248	(83.5)	243	(84.4)	0.82	50.5 (46.0-55.0)
Yes	94	(16.1)		49	(16.5)	45	(15.6)		52.1 (41.6-62.5)
Chemotherapy or immunsuppresive drug		()	_				·		
No	556	(95.0)	0	279	(93.9)	277	(96.2)	0.25	50.2 (45.9-54.4)
Yes Nonstaraidal anti inflammatany drug (265 - 14 days)	29	(5.0)		18	(6.1)	11	(3.8)		62.1 (42.3-79.3)
Nonsteroidal anti-inflammatory drug, (-365, -14 days)	202	(67.0)	0	207	(60.7)	105	(61.2)	0.10	
Ves	193	(33.0)	0	207	(30.3)	103	(35.8)	0.19	46 6 (39 4-53 9)
Vital signs at test date	155	(33.0)		50	(30.3)	100	(33.0)		(33.4 33.3)
Body mass index kg/m ²									
<25.0	73	(12.5)	55	45	(15.2)	28	(9.7)	0.25	61.6 (49.5-72.8)
25.0-29.9	166	(28.4)		85	(28.6)	81	(28.1)		51.2 (43.3-59.0)
≥30	291	(49.7)		149	(50.2)	142	(49.3)		51.2 (45.3-57.1)
Hypoxia (oxygen saturation ≤93%)		-					•		
No	443	(75.7)	64	226	(76.1)	217	(75.3)	< 0.001	51.0 (46.3-55.8)

Yes	78	(13.3)		58	(19.5)	20	(6.9)		74.4 (63.2-83.6)
Pulse ≥90 beats per minute									
No	295	(50.4)	33	150	(50.5)	145	(50.3)	0.20	50.9 (45.0-56.7)
Yes	257	(43.9)		145	(48.8)	112	(38.9)		56.4 (50.1-62.6)
Systolic blood pressure, mm Hg									
<90	63	(10.8)	37	43	(14.5)	20	(6.9)	0.04	68.3 (55.3-79.4)
90-140	274	(46.8)		145	(48.8)	129	(44.8)		52.9 (46.8-59.0)
≥140	211	(36.1)		106	(35.7)	105	(36.5)		50.2 (43.3-57.2)
Temperature, °F									
≤98.6	204	(34.9)	34	88	(29.6)	116	(40.3)	0.002	43.1 (36.2-50.2)
98.7-100.3	227	(38.8)		134	(45.1)	93	(32.3)		59.0 (52.3-65.5)
≥100.4	120	(20.5)		70	(23.6)	50	(17.4)		58.3 (49.0-67.3)
Laboratory findings at test date									
Alanine aminotransferase, U/L									
Median (IQR)	28.0 (19.0)-41.0)	41	30.0 ((20.0-42.0)	26.0	(18.0-37.0)	0.01	
≤40	406	(69.4)		205	(69.0)	201	(69.8)	0.01	50.5 (45.5-55.5)
>40	138	(23.6)		87	(29.3)	51	(17.7)		63.0 (54.4-71.1)
Albumin, g/dL									
Median (IQR)	3.8 (3.5	-4.2)	41	3.7	(3.3-4.0)	4.1	(3.7-4.3)	<0.001	
≥3.5	415	(70.9)		191	(64.3)	224	(77.8)	<0.001	46.0 (41.2-51.0)
<3.5	129	(22.1)		103	(34.7)	26	(9.0)		79.8 (71.9-86.4)
Aspartate aminotransferase, U/L									
Median (IQR)	29.0 (21.5	5-43.0)	37	35.5 ((25.0-54.0)	25.0	(20.0-33.0)	< 0.001	
≤40 - 10	391	(66.8)		1/3	(58.2)	218	(75.7)	<0.001	44.3 (39.3-49.3)
>40 Creatining mg/dl	157	(26.8)		121	(40.7)	36	(12.5)		//.1 (69.7-83.4)
Median (IOR)	11/10	1 5)	20	1 2	(1010)	1 1	(0 0 1 2)	<0.001	
	1.1 (1.0	-1.5)	20	200	(1.0-1.6)	225	(0.9-1.5)	<0.001	46 0 (41 2 50 8)
S1.5	435	(74.4)		200	(07.3)	233	(01.0)	<0.001	74 6 (66 2 91 9)
ocer ml/min	150	(22.2)		57	(32.7)	55	(11.5)		74.0 (00.2-81.8)
Median (IOR)	71 5 (53 ()-87 ())	17	63.01	(42 0-82 0)	75.0	64 0-93 0)	<0.001	
>15	541	(92.5)	17	277	(93 3)	264	(91 7)	0.03	51 2 (46 9-55 5)
<15	27	(4.6)		20	(67)	7	(2 4)	0.05	74 1 (53 7-88 9)
FIB-4	27	(1.0)		20	(017)		(=)		, (551, 5515)
<1.45	139	(23.8)	69	36	(12.1)	103	(35.8)	<0.001	25.9 (18.9-34.0)
1.45-3.25	263	(45.0)		153	(51.5)	110	(38.2)		58.2 (52.0-64.2)
>3.25	114	(19.5)		94	(31.6)	20	(6.9)		82.5 (74.2-88.9)
Hemoglobin, g/dL		. ,					. ,		. ,
Median (IQR)	13.9 (12.6	5-14.9)	45	13.6	(12.0-14.7)	14.2	(13.2-15.1)	< 0.001	
≥10	523	(89.4)		273	(91.9)	250	(86.8)	0.02	52.2 (47.8-56.6)
<10	17	(2.9)		14	(4.7)	3	(1.0)		82.4 (56.6-96.2)
Platelet count, K/µL									
Median (IQR)	193 (154	- 230)	48	175 (143-216)	208 (173- 252)	<0.001	
≥150	416	(71.1)		200	(67.3)	216	(75.0)	<0.001	48.1 (43.2-53.0)
<150	121	(20.7)		88	(29.6)	33	(11.5)		72.7 (63.9-80.4)
White blood cell count, K/µL									
Median (IQR)	5.9 (4.7	-7.5)	32	5.9	(4.6-7.7)	5.9	(4.7-7.3)	0.54	
<4	72	(12.3)		42	(14.1)	30	(10.4)	0.005	58.3 (46.1-69.9)
4-9.9	432	(73.8)		217	(73.1)	215	(74.7)		50.2 (45.4-55.1)
≥10	49	(8.4)		36	(12.1)	13	(4.5)		73.5 (58.9-85.1)
Lymphocyte count, K/µL									
Median (IQR)	1.1 (0.8	-1.6)	92	0.9	(0.6-1.3)	1.4	(1.0-1.9)	< 0.001	10.0//
≥0.8	363	(62.1)		179	(60.3)	184	(63.9)	<0.001	49.3 (44.1-54.6)
<u.8< td=""><td>130</td><td>(22.2)</td><td>54</td><td>105</td><td>(35.4)</td><td>25</td><td>(8.7)</td><td>.0.004</td><td>80.8 (72.9-87.2)</td></u.8<>	130	(22.2)	54	105	(35.4)	25	(8.7)	.0.004	80.8 (72.9-87.2)
VACS INDEX SCORE [®] , median (IQR)	/2.4 (63.6	o-82.5)	51	/8.7 ((/1.1-8/.3)	66.2	60.0-73.2)	<0.001	

 VACS Index score®, median (IQR)
 /2.4 (b3.6-82.5)
 51
 /8.7 (/1.1-87.3)
 b6.2 (b0.0-73.2)
 <0.001</td>

 Abbreviations: Covid-19, coronavirus disease 2019; IQR, interquartile range; eGFR, estimated glomerular filtration rate, FIB-4, fibrosis 4 score; VACS, Veterans Aging Cohort Study

^aP-values calculated on non-missing data ^bThe VACS Index score is a validated measure of physiologic injury and combining age, aspartate and alanine transaminase, albumin, creatinine, hemoglobin, platelets, white blood cell count, hepatitis C status, and body mass index

							Intensive	care	
	No cocos	(9/)	missing	Vac	(0/)	No	(0/)	n voluoi	% admitted
	NO. Cases	(%)	missing	122	(100.0)	162	(100.0)	p-value ²	20 0 (17 6 24 4)
II Domographics	363	(100)		122	(100.0)	405	(100.0)		20.9 (17.0-24.4)
Median (IOR)	66.1 (60.4	4-71.0)	0	69.9	(64.4-71.7)	64.7	(59.8-70.8)	< 0.001	
54-59	135	(23.1)	0	11	(9.0)	124	(26.8)	< 0.001	8.2 (4.1-14.1)
60-64	135	(23.1)		24	(19.7)	111	(24.0)		17.8 (11.7-25.3)
65-69	120	(20.5)		28	(23.0)	92	(19.9)		23.3 (16.1-31.9)
70-75	195	(33.3)		59	(48.4)	136	(29.4)		30.3 (23.9-37.2)
Sex									
Female	27	(4.6)	0	3	(2.5)	24	(5.2)	0.33	11.1 (2.4-29.2)
Male	558	(95.4)		119	(97.5)	439	(94.8)		21.3 (18.0-25.0)
Race/ethnicity	101	(27.5)	0	27	(20.2)	124	(20.0)	0.00	22 0 /16 7 20 2)
White Black	250	(27.5)	0	3/	(30.3)	270	(20.8)	0.89	23.0 (16.7-30.3)
	18	(33.8)		۲۱ ۵	(38.2)	2/3	(00.3)		18 8 (9 0-32 6)
Other/unknown	26	(4.4)		5	(4.1)	21	(4.5)		19.2 (6.6-39.4)
Residence type	20	(,		5	()		(1.5)		1512 (010 0511)
Rural	56	(9.6)	0	9	(7.4)	47	(10.2)	0.49	16.1 (7.6-28.3)
Urban	529	(90.4)		113	(92.6)	416	(89.8)		21.4 (17.9-25.1)
Baseline comorbidity									
Asthma									
No	540	(92.3)	0	111	(91.0)	429	(92.7)	0.57	20.6 (17.2-24.2)
Yes	45	(7.7)		11	(9.0)	34	(7.3)		24.4 (12.9-39.5)
Cancer									
No	502	(85.8)	0	104	(85.2)	398	(86.0)	0.88	20.7 (17.3-24.5)
Yes Channia hida au dianana	83	(14.2)		18	(14.8)	65	(14.0)		21.7 (13.4-32.1)
No	171	(91.0)	0	00	(72 0)	201	(92.0)	0.02	100/156228)
Ves	4/4	(01.0)	0	30	(75.8)	79	(02.5)	0.03	28.8 (20.6-38.2)
Chronic obstructive pulmonary disease		(15.0)		52	(20.2)	,,,	(17.1)		20.0 (20.0 30.2)
No	495	(84.6)	0	94	(77.0)	401	(86.6)	0.02	19.0 (15.6-22.7)
Yes	90	(15.4)		28	(23.0)	62	(13.4)		31.1 (21.8-41.7)
Diabetes mellitus									
No	325	(55.6)	0	49	(40.2)	276	(59.6)	<0.001	15.1 (11.4-19.4)
Yes	260	(44.4)		73	(59.8)	187	(40.4)		28.1 (22.7-34.0)
Hypertension		<i>(</i>)	_				<i>i</i>		
No	162	(27.7)	0	17	(13.9)	145	(31.3)	<0.001	10.5 (6.2-16.3)
Yes	423	(72.3)		105	(86.1)	318	(68.7)		24.8 (20.8-29.2)
No	525	(89.7)	0	107	(87.7)	/18	(90.3)	0.40	20 4 (17 0-24 1)
Yes	60	(10.3)	0	107	(12 3)	410	(97)	0.40	25.0 (14.7-37.9)
Vascular disease		(10.0)		10	(12:0)		(517)		2510 (2117 5715)
No	422	(72.1)	0	74	(60.7)	348	(75.2)	0.002	17.5 (14.0-21.5)
Yes	163	(27.9)		48	(39.3)	115	(24.8)		29.5 (22.6-37.1)
Substance use									
Alcohol use disorder									
No	537	(91.8)	0	115	(94.3)	422	(91.1)	0.35	21.4 (18.0-25.1)
Yes	48	(8.2)		7	(5.7)	41	(8.9)		14.6 (6.1-27.8)
Smoking		<i>(</i>)			<i></i>		· ··		
Never	216	(36.9)	31	43	(35.2)	173	(37.4)	0.60	19.9 (14.8-25.9)
Former	1/9	(30.6)		30	(29.5)	143	(30.9)		20.1 (14.5-26.7)
Medication history in year prior to test data	159	(27.2)		20	(25.9)	121	(20.1)		25.9 (17.5-51.5)
Any angiotensin converting enzyme inhibitor or									
angiotensin II recentor blocker									
No	330	(56.4)	0	53	(43.4)	277	(59.8)	0.001	16.1 (12.3-20.5)
Yes	255	(43.6)		69	(56.6)	186	(40.2)		27.1 (21.7-33.0)
Angiotensin converting enzyme inhibitor		. ,			. ,		. ,		. ,
No	416	(71.1)	0	72	(59.0)	344	(74.3)	0.002	17.3 (13.8-21.3)
Yes	169	(28.9)		50	(41.0)	119	(25.7)		29.6 (22.8-37.1)
Angiotensin II receptor blocker									
No	491	(83.9)	0	99	(81.1)	392	(84.7)	0.34	20.2 (16.7-24.0)
Yes	94	(16.1)		23	(18.9)	71	(15.3)		24.5 (16.2-34.4)
Chemotherapy or immunsuppresive drug	550	(05.0)	0	115	(04.2)	441	(05.2)	0.64	20 7 /17 4 24 2)
NU	200	(95.0)	0	115	(94.3)	441	(95.2)	0.64	20.7 (17.4-24.3)
Nonsteroidal anti-inflammatory drug (-365 -14 days)	25	(5.0)		/	(5.7)	22	(4.0)		24.1 (10.5-45.5)
No	392	(67.0)	0	90	(73.8)	302	(65.2)	0.08	23.0 (18.9-27.5)
Yes	193	(33.0)	-	32	(26.2)	161	(34.8)		16.6 (11.6-22.6)
Vital signs at test date									. ,
Body mass index, kg/m ²									
<25.0	73	(12.5)	55	19	(15.6)	54	(11.7)	0.18	26.0 (16.5-37.6)
25.0-29.9	166	(28.4)		28	(23.0)	138	(29.8)		16.9 (11.5-23.5)
≥30	291	(49.7)		67	(23.0)	224	(48.4)		23.0 (18.3-28.3)
Hypoxia (oxygen saturation ≤93%)		<i>i</i>	_						
NO	443	(75.7)	64	87	(71.3)	356	(76.9)	<0.001	19.6 (16.0-23.7)

Yes	78	(13.3)		30	(24.6)	48	(10.4)		38.5 (27.7-50.2)
Pulse ≥90 beats per minute									
No	295	(50.4)	33	53	(43.4)	242	(52.3)	0.02	18.0 (13.8-22.8)
Yes	257	(43.9)		68	(55.7)	189	(40.8)		26.5 (21.2-32.3)
Systolic blood pressure, mm Hg									
<90	63	(10.8)	37	17	(13.9)	46	(9.9)	0.57	27.0 (16.6-39.7)
90-140	274	(46.8)		60	(49.2)	214	(46.2)		21.9 (17.2-27.3)
≥140	211	(36.1)		44	(36.1)	167	(36.1)		20.9 (15.6-27.0)
Temperature, °F									
≤98.6	204	(34.9)	34	28	(23.0)	176	(38.0)	0.002	13.7 (9.3-19.2)
98.7-100.3	227	(38.8)		56	(45.9)	171	(36.9)		24.7 (19.2-30.8)
≥100.4	120	(20.5)		34	(27.9)	86	(18.6)		28.3 (20.5-37.3)
Laboratory findings at test date									
Alanine aminotransferase, U/L									
Median (IQR)	28.0 (19.0	0-41.0)	41	32.0 (21.0-47.0)	27.0	(19.0-38.0)	0.02	
≤40	406	(69.4)		78	(63.9)	328	(70.8)	0.004	19.2 (15.5-23.4)
>40	138	(23.6)		43	(35.2)	95	(20.5)		31.2 (23.6-39.6)
Albumin, g/dL									
Median (IQR)	3.8 (3.5	-4.2)	41	3.6	(3.2-3.9)	3.9	(3.6-4.2)	<0.001	
≥3.5	415	(70.9)		68	(55.7)	347	(74.9)	<0.001	16.4 (13.0-20.3)
<3.5	129	(22.1)		54	(44.3)	75	(16.2)		41.9 (33.2-50.9)
Aspartate aminotransferase, U/L									
Median (IQR)	29.0 (21.5	5-43.0)	37	42.0 (27.0-68.0)	27.0	(21.0-39.0)	<0.001	
≤40	391	(66.8)		59	(48.4)	332	(71.7)	<0.001	15.1 (11.7-19.0)
>40	157	(26.8)		63	(51.6)	94	(20.3)		40.1 (32.4-48.2)
Creatinine, mg/dL									
Median (IQR)	1.1 (1.0	-1.5)	20	1.4	(1.1-2.0)	1.1	(0.9-1.4)	<0.001	
≤1.5	435	(74.4)		72	(59.0)	363	(78.4)	<0.001	16.6 (13.2-20.4)
>1.5	130	(22.2)		50	(41.0)	80	(17.3)		38.5 (30.1-47.4)
eGFR, mL/min									
Median (IQR)	71.5 (53.0	0-87.0)	17	55.5 (37.0-76.0)	74.0	(58.0-90.0)	<0.001	
≥15	541	(92.5)		110	(90.2)	431	(93.1)	0.006	20.3 (17.0-24.0)
<15	27	(4.6)		12	(9.8)	15	(3.2)		44.4 (25.5-64.7)
FIB-4				_					
<1.45	139	(23.8)	69	6	(4.9)	133	(28.7)	<0.001	4.3 (1.6-9.2)
1.45-3.25	263	(45.0)		66	(54.1)	197	(42.5)		25.1 (20.0-30.8)
>3.25	114	(19.5)		44	(36.1)	70	(15.1)		38.6 (29.6-48.2)
Hemoglobin, g/dL				10.01					
Median (IQR)	13.9 (12.6	5-14.9)	45	13.6 (11.9-14.7)	14.0	(12.8-15.0)	0.02	20.0 (47.4.24.6)
210	523	(89.4)		109	(89.3)	414	(89.4)	0.02	20.8 (17.4-24.6)
<10 Distribution of K()	17	(2.9)		8	(6.6)	9	(1.9)		47.1 (23.0-72.2)
Platelet count, K/µL	102 / 15/	1 2201	40	175 (144 220)	105 /	157 221)	0.05	
Median (IQR)	193 (154	(71.1)	48	1/5((10.7)	195 (157-231)	0.05	107/100220
2150	410	(71.1)		82	(19.7)	334	(72.1)	0.03	19.7 (10.0-23.9)
<130 White blood call count K/ul	121	(20.7)		55	(20.9)	00	(10.0)		28.9 (21.1-57.9)
Modian (IOR)	50/17	75)	22	6.2	(5 2 8 0)	57	(4672)	<0.001	
	3.5 (4.7	(122)	32	12	(16.7)	5.7	(4.0-7.2)	0.001	16 7 (9 0 27 2)
400	/2	(12.3)		20	(20.6)	2/2	(13.0)	0.002	20.6 (16.0.24.7)
4-5.5	432	(73.8)		21	(20.0)	343	(74.1)		20.0 (10.3-24.7)
Lymphocyte count K/ul	49	(0.4)		21	(+2.3)	20	(0.0)		-2.3 (20.0-37.0)
Median (IOR)	11/09	-1 6)	92	0.8.0	(0 6-1 1)	1 7	(0.8-1.8)	<0.001	
>0.8	363	(62.1)	52	71	(19.6)	292	(63.1)	<0.001	19.6 (15.6-24.0)
<0.8	130	(22.2)		48	(36.9)	82	(17.7)	.0.001	36.9 (28 6-45 8)
VACS Index score ^b , median (IOR)	72.4 (63 6	5-82.5)	51	82.0 (74.0-91.1)	69.4	(61.1-79.1)	< 0.001	56.5 (25.6 45.6)
	, 2 (55.		51	52.0 (00.4	(-=	.0.001	

 VACS Index score®, median (IQR)
 72.4 (b3.6-82.5)
 51
 82.0 (74.0-91.1)
 b9.4 (b1.1-79.1)
 <0.001</td>

 Abbreviations: Covid-19, coronavirus disease 2019; IQR, interquartile range; eGFR, estimated glomerular filtration rate, FIB-4, fibrosis 4 score; VACS, Veterans Aging Cohort Study

^aP-values calculated on non-missing data ^bThe VACS Index score is a validated measure of physiologic injury and combining age, aspartate and alanine transaminase, albumin, creatinine, hemoglobin, platelets, white blood cell count, hepatitis C status, and body mass index

· · · · ·	Но	ospitalization (n=297/	Ir	Intensive care (n=122/585)			
	Univariable OR	Multivariable OR	Multivariable OR	Univariable OR	Multivariable OR	Multivariable OR	
	(95% CI)	(95% CI)	(95% CI)	(95% CI)	(95% CI)	(95% CI)	
Model details							
C-statistic	-	0.859	0.834	-	0.876	0.835	
Demographics							
Age, per 5-year increase	1.26 (1.10-1.44)	0.87 (0.71-1.05)	0.64 (0.51-0.80)	1.55 (1.30-1.86)	1.31 (1.03-1.66)	0.98 (0.76-1.26)	
Race/ethnicity, black vs. other	1.30 (0.94-1.82)	0.96 (0.61-1.53)	1.14 (0.74-1.74)	0.92 (0.61-1.38)	0.94 (0.55-1.63)	0.98 (0.60-1.61)	
Baseline comorbidity							
Chronic kidney disease, yes vs. no	2.36 (1.53-3.66)	0.80 (0.41-1.56)	0.84 (0.47-1.49)	1.73 (1.08-2.77)	0.50 (0.24-1.06)	0.65 (0.35-1.21)	
Chronic obstructive pulmonary disease, yes vs. no	2.31 (1.43-3.72)	1.77 (0.92-3.41)	1.15 (0.62-2.12)	1.93 (1.17-3.18)	1.81 (0.92-3.58)	1.47 (0.79-2.73)	
Diabetes mellitus, yes vs. no	1.96 (1.41-2.73)	1.59 (1.00-2.53)	1.36 (0.89-2.09)	2.20 (1.46-3.30)	1.69 (0.96-2.98)	1.41 (0.85-2.35)	
Hypertension, yes vs.no	2.25 (1.55-3.26)	1.39 (0.78-2.46)	1.50 (0.88-2.54)	2.81 (1.63-4.88)	1.51 (0.70-3.28)	1.89 (0.93-3.87)	
Vascular disease, yes vs. no	2.92 (1.99-4.29)	1.58 (0.93-2.69)	1.58 (0.96-2.60)	1.96 (1.29-2.99)	0.73 (0.40-1.33)	0.77 (0.44-1.34)	
Medication history in year prior to test date							
Angiotensin converting enzyme inhibitor or	1 (2) (1 17 2 27)	1 1 5 (0 71 1 07)	1 24 (0 70 1 05)	1 04 (1 20 2 00)	1 (((0 0 4 2 0 2)	1 (0 (1 01 2 04)	
angiotensin II receptor blocker, yes vs. no	1.63 (1.17-2.27)	1.15 (0.71-1.87)	1.24 (0.79-1.95)	1.94 (1.30-2.90)	1.66 (0.94-2.93)	1.69 (1.01-2.84)	
Nonsteroidal anti-inflammatory drug, yes vs. no	0.78 (0.55-1.10)	1.18 (0.74-1.89)	1.09 (0.71-1.67)	0.67 (0.43-1.04)	1.16 (0.65-2.06)	0.98 (0.57-1.67)	
Vital signs							
Systolic blood pressure, per 5 mm Hg decrease	1.10 (1.03-1.17)	1.08 (1.00-1.18)	1.09 (1.00-1.17)	1.05 (0.98-1.13)	1.00 (0.92-1.10)	1.00 (0.91-1.09)	
Oxygen saturation, per 1% decrease	1.14 (1.06-1.23)	1.04 (0.95-1.14)	1.12 (1.02-1.22)	1.16 (1.09-1.24)	1.05 (0.97-1.14)	1.13 (1.05-1.21)	
Pulse, per 5-beats per minute increase	0.97 (0.95-0.99)	0.97 (0.95-099)	0.97 (0.95-0.99)	0.99 (0.97-1.00)	1.00 (0.97-1.02)	0.99 (0.97-1.01)	
Temperature, per 1°F increase	1.20 (1.07-1.36)	1.15 (0.98-1.34)	1.24 (1.08-1.44)	1.28 (1.12-1.47)	1.32 (1.10-1.58)	1.37 (1.16-1.61)	
Laboratory findings							
Albumin, per 1 g/dL decrease	10.43 (5.70-19.08)	3.75 (1.91-7.35)	-	6.17 (3.62-10.52)	3.34 (1.70-6.54)	-	
eGFR, per 10 mL/min decrease	1.29 (1.19-1.40)	1.18 (1.05-1.32)	-	1.31 (1.21-1.43)	1.29 (1.15-1.46)	-	
FIB-4							
<1.45	ref	ref	-	ref	ref	-	
1.45-3.25	3.92 (2.53-6.08)	2.96 (1.69-5.17)	-	6.31 (2.74-14.50)	4.59 (1.72-12.22)	-	
>3.25	12.37 (6.73-22.72)	8.73 (4.11-18.56)	-	12.43 (5.24-29.50)	8.40 (2.90-24.28)	-	
Hemoglobin, per 1 g/dL decrease	1.55 (1.32-1.83)	1.16 (0.93-1.43)	-	1.33 (1.14, 1.54)	1.00 (0.81-1.23)	-	
White blood cell count, per 1 K/µL increase	1.05 (0.96-1.15)	1.24 (1.08-1.43)	-	1.22 (1.10-1.36)	1.49 (1.27-1.73)	-	
Lymphocyte count, per 1 K/µL decrease	2.68 (2.00-3.60)	2.38 (1.68-3.39)	-	2.76 (1.87-4.09)	2.65 (1.68-4.18)	-	
VACS Index score ^a , per 5-point increase	1.48 (1.36-1.61)	-	1.62 (1.43-1.84)	1.45 (1.33-1.58)	-	1.47 (1.31-1.65)	

 Table 4. Crude and adjusted associations with hospitalization and intensive care among Covid-19 cases as of March 30, 2020

Abbreviations: Covid-19, coronavirus disease 2019; OR, odds ratio; CI, confidence interval; eGFR, estimated glomerular filtration rate, FIB-4, fibrosis 4 score; VACS, Veterans Aging Cohort Study

^aThe VACS Index score is a validated measure of physiologic injury combining age, aspartate and alanine transaminase, albumin, creatinine, hemoglobin, platelets, white blood cell count, hepatitis C status, and body mass index

Figure 1. Distribution of Covid-19 cases in the Veterans Birth Cohort as of March 30, 2020

(a) Shown is the distribution of 585/1244 (47%) Covid-19 cases in the Veterans Health Administration captured in the Veterans Birth Cohort as of March 30, 2020 and included in the current study. (b) Shown is the proportion of Covid-19 test results that are positive by the proportion of Covid-19 cases of black race by site of care.

Online-Only Supplements

Table of Contents

eMethods (page 2) Functional forms of continuous variables and calculating VACS Index

eFigure 1 (page 3) Distribution of all 1244 Covid-19 cases in the VA as of March 30, 2020

eTable 1 (page 4) Code lists for baseline conditions

eTable 2 (page 5) Complete-case analysis of testing positive for Covid-19

eTable 3 (page 6) Complete-cases analysis of hospitalization and intensive care among Covid-19+

eReferences (page 7)

eMethods

Functional forms of vital signs and laboratory results

After assessing the distribution and crude shapes of associations, each vital sign and laboratory measure used in multivariable analyses were processed for analysis using the following steps. Body mass index (BMI) was treated as a linear variable and assessed per 5 kg/m² increase, which broadly aligns with widely used categories. Pulse rate was treated as a linear variable and assessed per 5-beats per minute increase. Temperature was treated as a linear variable and assessed per 1°F increase.

We transformed systolic blood pressure, oxygen saturation, and all labs used in multivariable analyses to benefit clinical interpretation. Systolic blood pressure values above 140 mm Hg were truncated, and we assessed linear associations per 5 mm Hg decrease. Oxygen saturation values above 98% were truncated, and we assessed linear associations per 1% decrease. Albumin values above 4 g/dL were truncated, and we assessed linear associations per 1 g/dL decrease. eGFR values above 90 mL/min were truncated, and we assessed linear associations per 10 mL/min decrease. Hemoglobin values above 14 g/dL were truncated, and we assessed linear associations per 1 g/dL decrease. White blood cell counts below 4 K/ μ L and above 10 K/ μ L were truncated, and we assessed linear associations per 1 g/dL decrease. White blood cell counts below 4 K/ μ L and above 10 K/ μ L were truncated, and we assessed linear associations per 1 K/ μ L increase. Lymphocyte counts above 5 K/ μ L were truncated, and we assessed linear associations per 1 K/ μ L decrease. VACS Index score was treated as a linear variable and assessed per 5-point increase.

Calculating VACS Index

Full details on constructing the VACS Index in a Veteran population have been published previously.¹ In brief, the VACS Index is a summary measure combining age, aspartate and alanine transaminase, albumin, creatinine, hemoglobin, platelets, white blood cell count, hepatitis C status, and body mass index. (Among people with HIV, we also consider HIV-1 viral load and CD4 count. These components were not used in this analysis.) Composite markers of liver and renal injury were calculated. FIB-4 is a validated indicator of liver fibrosis.² Estimated glomerular filtration rate (eGFR) is a validated indicator of impaired renal function.³ Hepatitis C status was based on presence of ICD-10-CM codes (eTable 1).

Because clinicians tend to order laboratory tests that they are concerned to be abnormal, we assumed laboratory values as normal if it was the only missing value for calculating the VACS Index. We used continuous functional forms for each variable including quadratic, cubic, and natural log terms to account for U-shaped associations. Splines were used for eGFR. Using regression coefficients from the original validation work, we applied regression equations to each patient using their lab values and the model coefficients to create linear predictors for each patient, which were then scaled to create scores of approximately 0 to 100.

eFigure 1. Distribution of all 1244 Covid-19 cases in the Veterans Health Administration as of March 30, 2020

eTable 1. Conditions based on International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM) Diagnosis Codes

	ICD-10-CM codes
Comorbid conditions	
Asthma	J45.X
Cancer	
Cancer	C00.X-C43.X, C45.X-C76.X, C80.X-C96.X, C7A.X
Metastatic cancer	C77.X-C79.X
Chronic obstructive pulmonary disease	J41.X, J42.X, J43.X, J44.X
Chronic kidney disease	12.0X, 113.1X, N03.2X-N03.7X, N18.X, N19.X, N05.2X-N05.7X, N25.0X,
	Z49.0X - Z49.2X, Z94.0X, Z99.2X
Diabetes mellitus	E08.X, E10.X, E11.X, E13.X
Hypertension	I10.X-I13.X, I15.X, I16.X
Liver disease	
Hepatitis B virus	B16.X, B18.0X, B18.1X, B19.1X, Z22.51
Hepatitis C virus	B17.10, B17.11, B18.2, B19.20, B19.21, Z22.52
Hepatic decompensation	I85.01, K65.2, K70.31, K72.1X, K72.9X, K76.7, R18.8
Other mild liver disease	B18.8X, B18.9X, K70.0X-K70.2X, K70.30, K70.9X, K71.3X-K71.5X, K71.7X,
	K73.X, K74.X, K76.0X, K76.2X-K76.4X, K76.8X, K76.9X, Z94.4
Other severe liver disease	K76.6, I85.00, I85.9X, I86.4, I98.2X, K70.4X, K71.1X, K76.5X
Vascular disease	
Acute myocardial infarction	I21.X (not including I21.AX), I22.X
Cardiomyopathy	142.X, 143.X
Coronary heart disease	120.X, 124.X, 125.10, 125.110, 125.2, 125.3, 125.41, 125.42, 125.5, 125.700,
	125.710, 125.720, 125.730, 125.750, 125.760, 125.790, 125.8X, 125.9
Heart failure	109.9, 111.0, 125.5, 113.0, 113.2, 150.X, P29.0
Cerebrovascular accident	I60.X-I69.X, G45.X, G46.X, H34.0
Peripheral vascular disease	I70.X, I71.X, I73.1-I73.9, I77.1, I79.0, I79.2, K55.1X, K55.8X, K55.9X,
	Z95.8X, Z95.9
Substance use	
Alcohol use disorder	F10.1X, F10.2X

Positive Covid-19 test (n=585/3789)
March 30, 2020
eTable 2. Complete-case analysis estimating crude and adjusted associations with testing positive for Covid-19 as of

	Positive Covid-19 test (n=585/3789)					
	Univariable	Multivariable	Conditional			
	OR (95% CI)	OR (95% CI)	OR ^a (95% CI)			
Model details						
Number complete cases	-	2458	1366			
<i>C</i> -statistic	-	0.820	n/a			
Demographics						
Age, per 5-year increase	1.04 (0.97-1.12)	1.04 (0.93-1.15)	1.04 (0.91-1.19)			
Sex, male vs. female	2.49 (1.67-3.73)	3.51 (2.06-5.95)	4.59 (2.37-8.89)			
Race/ethnicity, black vs. other	4.66 (3.88-5.60)	5.68 (4.43-7.28)	2.71 (1.91-3.86)			
Residence type, urban vs. rural	2.46 (1.84-3.28)	1.65 (1.12-2.44)	1.00 (0.56-1.78)			
Baseline comorbidity						
Chronic kidney disease, yes vs. no	1.43 (1.14-1.80)	1.02 (0.74-1.40)	1.01 (0.68-1.50)			
Chronic obstructive pulmonary disease, yes vs. no	0.46 (0.37-0.59)	0.69 (0.51-0.93)	0.81 (0.55-1.19)			
Diabetes mellitus, yes vs. no	1.39 (1.16-1.66)	0.96 (0.74-1.25)	0.78 (0.56-1.08)			
Hypertension, yes vs.no	1.49 (1.23-1.81)	1.27 (0.93-1.75)	1.41 (0.95-2.11)			
Substance use						
Alcohol use disorder, yes vs. no	0.51 (0.37-0.69)	0.52 (0.35-0.78)	0.48 (0.29-0.78)			
Current smoking, yes vs. no	0.43 (0.35-0.52)	0.41 (0.31-0.53)	0.41 (0.30-0.58)			
Medication history in year prior to test date						
Angiotensin converting enzyme inhibitor or angiotensin	1 17 (0 00 1 20)		0.00 (0.70.1.20)			
II receptor blocker, yes vs. no	1.17 (0.98-1.39)	1.05 (0.81-1.37)	0.98 (0.70-1.36)			
Nonsteroidal anti-inflammatory drug, yes vs. no	1.15 (0.95-1.39)	1.31 (1.01-1.69)	1.18 (0.85-1.64)			
Vital signs						
Systolic blood pressure, <140 vs. ≥140 mm Hg	1.22 (1.01-1.47)	1.46 (1.14-1.86)	1.47 (1.08-2.00)			
Body mass index, per 5-unit increase	1.15 (1.08-1.23)	1.09 (0.99-1.19)	1.12 (1.00-1.25)			
Oxygen saturation, ≤93% vs >93%	0.84 (0.64-1.09)	0.98 (0.71-1.37)	0.96 (0.60-1.54)			
Pulse, per 5-beats per minute increase	1.05 (1.02-1.08)	1.03 (1.00-1.07)	1.05 (1.00-1.10)			
Temperature, per 1°F increase	1.73 (1.61-1.85)	1.62 (1.48-1.78)	1.55 (1.38-1.74)			

Abbreviations: Covid-19, coronavirus disease 2019; OR, odds ratio; CI, confidence interval ^aModeling stations with five or more Covid-19 cases and conditioning on station

	Hospitalization (n=297/585)			Intensive care (n=122/585)				
	Univariable	Multivariable	Multivariable	Univariable	Multivariable	Multivariable		
	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)		
Model details								
Number complete cases	-	404	484	-	404	484		
C-statistic	-	0.822	0.812	-	0.864	0.828		
Demographics								
Age, per 5-year increase	1.26 (1.10-1.44)	0.97 (0.78-1.21)	0.67 (0.53-0.85)	1.55 (1.30-1.86)	1.33 (1.01-1.74)	1.03 (0.79-1.35)		
Race/ethnicity, black vs. other	1.30 (0.94-1.82)	1.04 (0.60-1.78)	1.08 (0.68-1.71)	0.92 (0.61-1.38)	0.94 (0.50-1.75)	1.01 (0.59-1.71)		
Baseline comorbidity								
Chronic kidney disease, yes vs. no	2.36 (1.53-3.66)	0.97 (0.45-2.09)	0.93 (0.50-1.74)	1.73 (1.08-2.77)	0.58 (0.25-1.33)	0.80 (0.42-1.52)		
Chronic obstructive pulmonary disease, yes vs. no	2.31 (1.43-3.71)	1.34 (0.64-2.85)	0.98 (0.51-1.87)	1.93 (1.17-3.18)	1.21 (0.56-2.58)	1.21 (0.63-2.35)		
Diabetes mellitus, yes vs. no	1.96 (1.41-2.73)	1.62 (0.95-2.77)	1.36 (0.86-2.15)	2.20 (1.46-3.30)	1.79 (0.94-3.39)	1.45 (0.85-2.48)		
Hypertension, yes vs.no	2.25 (1.55-3.26)	1.23 (0.64-2.37)	1.62 (0.92-2.85)	2.82 (1.63-4.88)	1.65 (0.68-4.01)	1.89 (0.88-4.05)		
Vascular disease, yes vs. no	2.92 (1.99-4.29)	1.36 (0.75-2.46)	1.51 (0.88-2.57)	1.96 (1.29-2.99)	0.75 (0.39-1.43)	0.80 (0.45-1.42)		
Medication history in year prior to test date								
Angiotensin converting enzyme inhibitor or angiotensin	4 62 (4 47 2 27)	4 4 5 (0 6 6 4 00)	4 45 (0 74 4 06)	4 04 (4 20 2 00)	4 44 (0 70 2 60)	4 57 (0 02 2 70)		
Il receptor blocker, yes vs. no	1.63 (1.17-2.27)	1.15 (0.66-1.99)	1.15 (0.71-1.86)	1.94 (1.30-2.90)	1.44 (0.78-2.68)	1.57 (0.92-2.70)		
Nonsteroidal anti-inflammatory drug, yes vs. no	0.78 (0.55-1.10)	1.06 (0.62-1.80)	1.01 (0.64-1.59)	0.67 (0.43-1.04)	0.97 (0.50-1.85)	0.85 (0.48-1.50)		
Vital signs								
Systolic blood pressure, per 5 mm Hg decrease	1.11 (1.04-1.18)	1.12 (1.01-1.23)	1.09 (1.00-1.18)	1.05 (0.98-1.13)	1.01 (0.91-1.11)	1.00 (0.92-1.10)		
Oxygen saturation, per 1% decrease	1.15 (1.07-1.24)	1.07 (0.95-1.19)	1.14 (1.03-1.25)	1.16 (1.09-1.24)	1.05 (0.96-1.15)	1.11 (1.03-1.19)		
Pulse, per 5-beats per minute increase	1.06 (1.01-1.12)	1.03 (0.95-1.11)	1.02 (0.95-1.10)	1.13 (1.06-1.20)	1.13 (1.04-1.23)	1.12 (1.03-1.21)		
Temperature, per 1°F increase	1.20 (1.07-1.36)	1.14 (0.96-1.36)	1.24 (1.06-1.45)	1.28 (1.12-1.47)	1.33 (1.08-1.63)	1.36 (1.14-1.61)		
Laboratory findings								
Albumin, per 1 g/dL decrease	10.92 (5.88-20.25)	2.70 (1.27-5.73)	-	5.91 (3.45-10.12)	3.99 (1.81-8.80)	-		
eGFR, per 10 mL/min decrease	1.29 (1.19-1.39)	1.15 (1.00-1.31)	-	1.31 (1.20-1.42)	1.29 (1.12-1.48)	-		
FIB-4								
<1.45	ref	ref	-	ref	ref	-		
1.45-3.25	3.98 (2.53-6.25)	2.11 (1.11-4.02)	-	7.42 (3.13-17.62)	4.59 (1.39-15.13)	-		
>3.25	13.45 (7.28-24.84)	5.52 (2.39-12.75)	-	13.93 (5.66-34.29)	6.88 (1.94-24.39)	-		
Hemoglobin, per 1 g/L decrease	1.51 (1.29-1.78)	1.09 (0.85-1.40)	-	1.28 (1.10-1.48)	0.96 (0.75-1.21)	-		
White blood cell count, per 1 K/µL increase	1.06 (0.97-1.16)	1.23 (1.05-1.44)	-	1.23 (1.11-1.37)	1.41 (1.18-1.68)	-		
Lymphocyte count, per 1 K/µL decrease	2.62 (1.95-3.52)	2.30 (1.52-3.46)	-	2.52 (1.70-3.74)	2.42 (1.44-4.07)	-		
VACS Index score ^a , per 5-point increase	1.47 (1.35-1.60)	-	1.55 (1.36-1.77)	1.45 (1.33-1.58)	-	1.44 (1.27-1.64)		

eTable 3. Complete-case analysis estimating crude and adjusted associations with hospitalization and intensive care among Covid-19 cases as of March 30, 2020

Abbreviations: Covid-19, coronavirus disease 2019; OR, odds ratio; CI, confidence interval; eGFR, estimated glomerular filtration rate, FIB-4, fibrosis 4 score; VACS, Veterans Aging Cohort Study ^aThe VACS Index score is a validated measure of physiologic injury combining age, aspartate and alanine transaminase, albumin, creatinine, hemoglobin, platelets, white blood cell count, hepatitis C status, and body mass index

eReferences

- 1. Tate JP, Sterne JAC, Justice AC, Veterans Aging Cohort S, the Antiretroviral Therapy Cohort C. Albumin, white blood cell count, and body mass index improve discrimination of mortality in HIV-positive individuals. *AIDS*. 2019;33(5):903-912.
- Sterling RK, Lissen E, Clumeck N, et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. *Hepatology*. 2006;43(6):1317-1325.
- 3. Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate. *Ann Intern Med.* 2009;150(9):604-612.