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Abstract
Ultrasound growth measurements are monitored to evaluate if a fetus is
growing normally compared with a defined standard chart at a specified
gestational age. Using data from the Fetal Growth Longitudinal Study of the
INTERGROWTH-21st Project, we have modelled the longitudinal dependence of
fetal head circumference, biparietal diameter, occipito-frontal diameter, abdominal
circumference, and femur length using a two-stage approach. The first stage
involved finding a suitable transformation of the raw fetal measurements (as
the marginal distributions of ultrasound measurements were non-normal) to
standardized deviations (Z-scores). In the second stage, a correlation model for
a Gaussian process is fitted, yielding a correlation for any pair of observations
made between 14 and 40 weeks. The correlation structure of the fetal Z-
score can be used to assess whether the growth e.g., between successive
measurements is satisfactory. The paper is accompanied by a Shiny application,
see https://lxiao5.shinyapps.io/shinycalculator/.
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1 Introduction

During pregnancy, fetal anthropometric measures consisting of head circumference
(HC), biparietal diameter (BPD), occipito-frontal diameter (OFD), abdominal
circumference (AC), and femur length (FL) are measured using ultrasound to monitor
attained fetal size at a given gestational age (GA). By comparing measurements to a
reference or standard chart1,2, fetuses with measurements at the tails of the distribution
(for example below the 3rd, 5th, or 10th centiles or above the 90th, 95th, or 97th centiles)
are identified as being at increased risk of a growth disorder, such as intra-uterine
growth restriction (IUGR) that may require further investigation. Growth charts, which
conventionally record only cross-sectional (attained size) information, can be extended
to monitor growth rate over time (velocity)3. An assessment of the current size of the
fetus in relation to the size in the past (the previous visit) enables the evaluation of
an individual’s growth between any two time points (rate of growth). These changes
observed between two time points may be used to identify those requiring closer
monitoring .Fetal growth is rapid in the first and second trimester and slows towards
term. The correlation of measurements from the same fetus is important for evaluating
fetal growth velocity. The correlation coefficient is not constant as it is dependent
on the interval between measurements. An estimate of the correlation coefficient is
straightforward for fixed time intervals, but it is clinically useless as, in normal practice,
fetuses are seen and measured at irregularly spaced time points - a model that allows
for such irregularity is required. Correlation models have previously been derived for
child data4–8 but not for fetal biometry data.

We model the correlation of fetal biometry (i.e., HC, BPD, OFD, AC, and FL) and
derive formulae and a Shiny application that can be used to obtain the correlation for
each fetal measure between measurements made at any two time points between 14
and 40 weeks of GA. We model the correlations using fetal ultrasound data from the
INTERGROWTH-21st Project Fetal Growth Longitudinal Study (FGLS) on which the
international standards for fetal growth are based9,10. A separate analysis of the cohort
demonstrated that the FGLS cohort remained healthy with adequate growth and motor
development up to 2 years of age11.

2 Data

The INTERGROWTH-21st Project was a population-based longitudinal study that
measured serial fetal growth scans every 5±1 weeks from recruitment at 9+0 –
13+6 weeks of gestation until, but not beyond, 42+0 weeks of gestation. The FGLS
component of the INTERGROWTH-21st Project is the largest prospective study to
collect data on fetal ultrasound measurements from optimally healthy pregnant women
to date, collecting data in eight geographically diverse populations and using many
quality control measures. The FGLS involved measuring serial fetal growth scans every
5±1 weeks after the initial dating scan, so that the possible ranges after the dating scan
were 14− 18, 19− 23, 24− 28, 29− 33, 34− 38, and 39− 42 weeks of gestation.
To ensure that all sites collected high-quality data that were comparable within and
between the study sites, all sonographers and anthropometrists were trained, and all
ultrasound measurements were performed in a standardized manner following strict
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protocols12. All sites adopted uniform methods, used identical ultrasound equipment
in all of the study sites, adopted standardized methodology to take fetal measurements,
and employed locally accredited ultra-sonographers who underwent standardisation
training and monitoring.

The FGLS screened 13,108 pregnant women attending the study clinics < 14+0

weeks of gestation within the project’s defined geographical areas; of these, 4,607
(35%) who met the eligibility criteria gave informed consent and enrolled. The
most common reasons for ineligibility were low maternal height (13%), BMI ≥ 30
(12%), and maternal age < 18 or > 35 years (11%). Thirty-six women (0.8%) who
developed severe conditions during pregnancy or took up smoking or used drugs,
and 71 (1.5%) who were lost to follow-up or withdrew consent, were excluded. A
total of 4,422 women delivered a live singleton, of which 4,321 women (20,313
ultrasound scans) who had pregnancies without major complications and delivered live
singletons without congenital malformations that contributed data for the construction
of the INTERGROWTH-21st international fetal growth standards9, international
gestation-specific newborn standards13, gestational weight gain standards14, and
preterm postnatal growth standards15 were used for the present analysis. This
cohort experienced very low maternal and perinatal mortality and morbidity rates9,13,
confirming that the participants were at low risk of adverse outcome and therefore
contributed to the construction of the international fetal growth standards. The baseline
characteristics of the study cohort across the eight sites were very similar, which was
expected because women were selected from the underlying low-risk populations using
the same clinical and demographic criteria9,16. The median number of ultrasound scans
(excluding the dating scan) was 5.0 (mean = 4.9, SD = 0.8, range from 4 to 7) and
97% of women had 4 scans. Eighty-five percent of the 20,313 ultrasound scans were
performed within the expected gestational age window of the protocol as shown in
Figure 19.

The INTERGROWTH-21st Project was approved by the Oxfordshire Research
Ethics Committee “C” (reference: 08/H0606/139), the research ethics committees
of the individual participating institutions, and the corresponding regional health
authorities where the project was implemented. Participants provided written consent
to be involved in the study.

3 Statistical methodology
Consider the longitudinal data {(Tij , Yij), 1 ≤ j ≤ mi, 1 ≤ i ≤ n}, where Tij is the
gestational age in weeks for subject i at the jth visit, Yij is one of the five ultrasound
growth measurements in millimeters at Tij ,mi is the number of visits for subject i, and
n is the number of subjects. The total number of visits per woman are shown in Table
1.

We estimate a correlation matrix of the ultrasound measurement at different
gestational ages. A single model is fitted for both sexes as some mothers do not
want to know the sex of the child they expect. Because the marginal distributions
of ultrasound growth measurements may be non-normal, e.g., skewed, a suitable
transformation of the raw growth measurements is first identified and applied to the
data to construct a working marginal reference chart. The raw fetal measurements are
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Figure 1. Distribution of Gestational Age at which measurements were recorded (with
expected periodicity of 5 weeks).

Table 1. Summary of the number of women at each visit and the total number of follow-up
visits.

No. of follow up visits (X) No. who visited only X times (%) No. who visited at least X times (%)

1 39 (0.9) 4233 (100.0)
2 55 (1.3) 4194 (99.1)
3 203(4.8) 4139 (97.8)
4 810 (19.1) 3936 (93.0)
5 2724 (64.4) 3126 (73.8)
6 402 (9.5) 402 (9.5)
Total 4233 (100.0) 20 030 (100.0)

then transformed accordingly to provide standardized deviations (Z-scores). Next the
Z-scores are modeled by a Gaussian process with zero mean and unit variance so that
the temporal correlation of the process can be estimated.

3.1 Working models for marginal reference distribution

We consider the LMS transformation17 which could transform non-normal data to
make the assumption of normality acceptable. Let Y be a positive random variable
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and its LMS transformation is given by

Z =


1
σν

{(
Y
µ

)ν
− 1
}

if ν 6= 0,

1
σ log

(
Y
µ

)
if ν = 0.

(1)

Here µ, σ ∈ R+ and ν ∈ R are location, scale and skewness parameters, respectively. If
Z has a standard normal distribution, then Y is said to follow the three-parameter Box-
Cox Cole-Green distribution17 denoted by BCCG(µ, σ, ν). A fourth parameter can be
added to further model kurtosis: if Z has a t distribution with degrees of freedom τ ∈
R+, then Y is said to follow the Box-Cox t distribution18 denoted by BCT(µ, σ, ν, τ); if
Z has a standard power exponential distribution with parameter τ ∈ R+, then Y is said
to follow the Box-Cox power exponential distribution19 denoted by BCPE(µ, σ, ν, τ).
Note that BCT(µ, σ, ν, τ = +∞) and BCPE(µ, σ, ν, τ = 2) reduce to BCCG(µ, σ, ν).

We model the parameters in (1), µ(t), ν(t) and σ(t) as a smooth function of
gestational age in conjunction with BCCG. The additional parameters in BCT and
BCPE are defined similarly. The GAMLSS method20 can be used to estimate such
functions. Under the LMS framework, suppose that {µ̂(t), σ̂(t), ν̂(t)} are the obtained
estimates, then the transformed measurements Zij can be computed as

Zij =


1

σ̂(Tij)ν̂(Tij)

{(
Yij

µ̂(Tij)

)ν̂(Tij)

− 1

}
if ν̂(Tij) 6= 0,

1
σ̂(Tij)

log
(

Yij

µ̂(Tij)

)
if ν̂(Tij) = 0.

(2)

Under the BCCG model, marginally Zij has approximately a standard normal
distribution. Under the BCT or the BCPE models, additional transforms of Zij are
needed to make Zij normal. For simplicity, we assume all proper transformations have
been applied. The Gaussian process is fully identified by its correlation matrix, which
we estimate with zero mean and unit variance.

3.2 Correlation models
In this section, we estimate a correlation matrix for the Z-scores. We compare several
parametric and nonparametric models. The parametric models considered here have
been applied to child growth. The exponential model21 (denoted by P1) is

cor(Zij , Zik) = exp {−b|Tij − Tik|a} ,

where a, b ∈ R+ are two unknown parameters that can be interpreted as the order and
the rate of the change in the correlation. This model is commonly used due to its simple
form and stationarity, i.e., the correlation depends only on the distance between two
gestational ages. The second model (denoted by P2), proposed by4 for child growth,
takes the form

cor(Zij , Zik) = exp

{
−b
∣∣∣∣log Tij + τ

Tik + τ

∣∣∣∣} ,
where τ, b ∈ R+ are two unknown parameters. The model is non-stationary, but
possesses the Markovian property. Indeed, via the transformation Sij = log(Tij + τ)
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and Sik = log(Tik + τ), the correlation becomes cor(Zij , Zik) = ρ|Sij−Sik|, where
ρ = exp(−b). Because growth measurements might have non-ignorable measurement
errors, a nugget effect term is usually added to the above correlation models. The
exponential correlation with a nugget effect model (denoted by P1+) takes the form

cor(Zij , Zik) =
1

1 + σ2

[
exp {−b|Tij − Tik|a}+ σ2

1{Tij=Tik}
]
,

where σ2 is the variance of the measurement error in the Z-scores and 1{} is the
indicator function which is 1 if the statement inside the bracket is true and 0 otherwise.
Similarly, the P2+ correlation model has the form

cor(Zij , Zik) =
1

1 + σ2

[
exp

{
−b
∣∣∣∣log Tij + τ

Tik + τ

∣∣∣∣}+ σ2
1{Tij=Tik}

]
.

Note that with the nugget term, neither the stationary property nor the Markovian
property holds.

Parametric models are simple and easy to interpret, but they can be subject to model
misspecification. Thus, in addition to the above parametric correlation models, we also
considered two nonparametric correlation models. The first one is based on functional
data analysis22, which models the Z-score of a subject as the sum of a smooth random
function of the gestational age and a random measurement error term. Specifically, the
functional data model is

Zij = bi(Tij) + εij , (3)

where bi(·) is a smooth random function modeled by a zero-mean Gaussian
process with a smooth covariance function C(Tij , Tik) = Cov{bi(Tij), bi(Tik)},
{εi1, . . . , εimi

} are independent measurement errors with variance σ2
ε , and bi(·) is

independent from the measurement errors. Such a covariance function involves no
parametric assumptions. Since Var(Zij) = 1, the correlation of the Z-scores at two
distinct time points Tij and Tik with j 6= k is C(Tij , Tik). Estimation of this correlation
matrix is described in Section 3.3.

The correlation function from the functional data method is in general nonstationary.
We also consider a stationary but nonparametric correlation function by assuming that
the correlation function C satisfies C(Tij , Tik) = g(|Tij − Tik|), where g is a smooth
decreasing but unspecified univariate function. Due to the presence of measurement
error in the functional data model, the overall correlation between the Z-scores is still
nonstationary. The estimation of g is addressed in Section 3.3. The various correlation
models are summarized in Table 2.

3.3 Estimation of the correlation models
The parametric correlation models are fitted by maximizing likelihood of the Z-scores
under normality. We now focus on the estimation of the two nonparametric models.
Estimation methods for the functional data model are well developed in the statistics
literature and here we use the fast covariance estimation method for longitudinal data,
developed in23. We briefly describe the method here, which will also be useful for
explaining our estimation method for NP2. First, empirical estimates of the correlation
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Table 2. Correlation models.

Model Abbreviation Correlation form

Exponential P1 exp {−b|Tij − Tik|a}
Exponential with nugget effect P1+ 1

1+σ2

[
exp {−b|Tij − Tik|a}+ σ2

1{Tij=Tik}
]

Markovian P2 exp
{
−b
∣∣∣log Tij+τ

Tik+τ

∣∣∣}
Markovian with nugget effect P2+ 1

1+σ2

[
exp

{
−b
∣∣∣log Tij+τ

Tik+τ

∣∣∣}+ σ2
1{Tij=Tik}

]
1st nonparametric NP1 C(Tij , Tik): fully unspecified and smooth
2nd nonparametric NP2 C(Tij , Tik) = g(|Tij − Tik|): g unspecified and smooth
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Figure 2. Estimated location, scale and skewness parameters as functions of gestational
age for the five fetal growth measurements.

function are constructed. Specifically, let rijk = ZijZik for 1 ≤ j, k ≤ mi, 1 ≤ i ≤
n. Then E(rijk) = C(Tij , Tik) + 1{Tij=Tik}σ

2
ε . Thus, rijk is an unbiased estimate

of C(Tij , Tik) whenever j 6= k. We will conduct a bivariate smoothing of the data
{(Tij , Tik, rijk), 1 ≤ j 6= k ≤ mi, 1 ≤ i ≤ n} to estimate the correlation function C.
We use bivariate P-splines24, which approximate the bivariate correlation function with
tensor-product B-splines and employ a penalty to avoid overfit. The penalty ensures
the smoothness of the fitted correlation function, a desirable feature for fetal growth
correlations. Moreover, constraints on spline coefficients are imposed to ensure that C is
symmetric; see23 for further details. Denote the corresponding estimate by Ĉ(s, t), then
we estimate the error variance σ2

ε using the identity E(rijj) = C(Tij , Tij) + σ2
ε for 1 ≤

j ≤ mi, 1 ≤ i ≤ n. For the second nonparametric model, by assumption, E(rijk) =
g(|Tij − Tik|) + 1{Tij=Tik}σ

2
ε . Thus, we smooth the data {(|Tij − Tik|, rijk), 1 ≤
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Figure 3. Estimated kurtosis parameters as functions of gestational age for the five fetal
growth measurements using BCPE and BCT.

j 6= k ≤ mi, 1 ≤ i ≤ n} to estimate the function g. Specifically, we use univariate P-
splines25, which approximate g using B-spline bases and also control overfit using
a smoothness penalty. Then the error variance σ2

ε can be estimated by the equality
E(rijj) = g(0) + σ2

ε for 1 ≤ j ≤ mi, 1 ≤ i ≤ n. Kernel smoothing26 could also be
used as an alternative to fitting splines.

4 Results

4.1 Marginal standard charts
The estimated location, scale and skewness parameters show that a BCCG
transformation model fits the data well; see Figure 2. Our empirical results also
indicate that it suffices to use BCCG rather than the more complicated BCPE or
BCT, as Figure 3 suggests that the estimated parameter of kurtosis is close to 2 for
BCPE model and very large for BCT model. Figure 4 plots the smoothed first to
fourth moments of the Z-scores against the gestational age. Specifically, nonparametric
smooth functions are fitted to the data {Zkij , 1 ≤ j ≤ mi, 1 ≤ i ≤ n} for k = 1, 2, 3, 4.
If the Z-scores are indeed marginally normal, then the estimated curves should be close
to the respective constant lines y = 0, 1, 0, and 3, respectively. Figure 4 suggests that
the BCCG-transformed Z-scores are marginally normally distributed. A closer look at
the smoothed fourth moments under different models in Figure 5 confirms that BCPE
and BCT are not necessary.
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Figure 4. Smooth estimates of the first to fourth moments of the constructed Z-scores for
AC, FL, HC, BPD and OFD.

Consequently, the BCCG model will be applied to construct marginal standard
charts.

4.2 Correlation models

We use the BCCG model to fit the marginal distributions of the raw ultrasound
measurements and then convert the transformed measurements into Z-scores. Then
different parametric and nonparametric correlation models are compared via model
selection criteria: AIC and BIC. Both criteria require the degrees of freedom of the
model. For parametric correlation models, it is the number of free parameters. For
nonparametric correlation models, the effective degrees of freedom, which evaluates
the model complexity of nonparametric smoothers27, will be calculated.

Model comparison results for AC, FL, HC, BPD, and OFD are summarized in
Table 3. Table 3 shows that the P1+ model is overall the best model across the three
fetal growth measurements. It fits the data best among all parametric models and;
has a simpler form than all the nonparametric models, and yields the smallest BIC.
To quantify the differences among different correlation models, we use P1+ as the
reference correlation and evaluate how the other models differ from P1+. Denote ρP1+

jk

the correlation coefficient at times (j, k) in P1+ correlation matrix, the mean squared
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Figure 5. Further comparison of BCCG (solid), BCPE (dashed) and BCT (dotted) on the
fourth moments of Z-scores.

Table 4. MSE(·, P1+) comparison.

Model AC FL HC BPD OFD

NP1 3.93× 10−4 4.46× 10−4 6.33× 10−4 9.66× 10−4 1.02× 10−3

NP2 2.25× 10−4 6.46× 10−5 3.75× 10−4 1.30× 10−4 2.53× 10−4

P1 2.87× 10−3 1.94× 10−3 1.98× 10−3 1.42× 10−3 3.42× 10−3

P2+ 9.19× 10−4 3.73× 10−4 1.08× 10−3 1.33× 10−3 1.00× 10−3

P2 1.40× 10−2 1.36× 10−2 2.82× 10−3 4.52× 10−4 9.41× 10−3

error (MSE) of NP1, for example, to P1+ is defined as

MSE(NP1, P1+) =
1

(L− 1)(L− 2)

∑
1≤j<k≤L

(
ρNP1
jk − ρP1+

jk

)2
,

where L=183 is the range of gestational age in days in this study.
Table 4 demonstrates an ignorable difference between P1+ and NP2, as expected

because of the stationarity nature of both models. The difference between P1+ and
NP1 is small, suggesting that an exponential correlation model with nugget effect is
sufficient for fetal growth measurements. Indeed, the average absolute difference in
correlation is only 0.020 for AC, 0.021 for FL, 0.025 for HC, 0.031 for BPD, and
0.032 for OFD. The correlations from the other parametric models are relatively more
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Table 5. Estimated parameters for P1+ correlation models.

Measurement a b σ2

AC 1.56 0.0060 0.29
FL 1.45 0.0065 0.24
HC 1.54 0.0080 0.17
BPD 1.32 0.0155 0.16
OFD 1.58 0.0075 0.29
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Figure 6. Temporal correlations of standardized AC with different correlation models.

divergent from those of P1+ compared to the nonparametric models NP1 and NP2,
indicating that P1+ is superior to other parametric models.

The estimated parameters for a P1+ model are summarized in Table 5. For
illustration, we plot the fitted correlation surface on a grid of gestational age by weeks
for AC in Figure 6. Correlation plots for FL, HC, BPD, and OFD are given in Figures
8,9,10, and 11 as supplemental material.

5 Case study: dynamic growth velocity
We study the growth velocity of a randomly selected fetus using the fitted parametric
correlation model, whose AC, FL, HC, BPD, and OFD are measured on six occasions
between week 15 and week 38. The observed growth trajectories are shown as linked
triangles in Figure 7. Based on each observed measurement at Tj , we also dynamically
predict the measurement Tj+1 shown as dots, each with a 95% prediction interval.
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Figure 7. Observed growth trajectory (linked triangles) and predicted measurements (dots)
given previous observations of a randomly selected fetus. Dashed line is the population
mean.

Specifically, each observed measurement at Tj is transformed to Z-score using (2).
Then, a conditional Z-score Z〈Tj+1|Tj ,··· ,T1〉 at time Tj+1 is obtained assuming joint
normality with the P1+ correlation model. This conditional Z-score is then transformed
back to the original measurement given marginal references. Clinicians might use
this approach to compare the observed fetal growth measurements versus its expected
measurements at a certain age to assess whether a fetus is growing normally. They can
also calculate and compare velocity increments. We will use the correlations studied
in this paper for the subsequent clinical paper on conditional fetal velocity for use by
clinicians.

For this fetus, selected as random, the growth is regular for FL and HC and can be
predicted accurately. For AC, its measurements are higher (still normal) than predicted
during the third visit, but much lower than expected during the fourth visit. This
suggests that closer monitoring might be needed. The following visits indicate that
the AC of the sampled fetus falls consistently below the population mean.

To facilitate the usage of the results in practice, a Shiny application is built along
with this paper, where functionalities such as visualization, calculating correlation,
prediction and cSDS are integrated for all the five fetal growth measurements
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(https://lxiao5.shinyapps.io/shinycalculator/). Correlation tables for fetal growth
measurements are provided as supplemental material.

6 Discussion
We have modelled the correlation function of the fetal growth for transformed HC,
BPD, OFD, AC, and FL. Its values are the correlations of two measurements of
these five variables made at any time points between 14 and 40 weeks. The FGLS
cohort remained healthy with adequate growth and motor development up to 2 years
of age, hence making the characterisation of the expected correlation of fetal size
measurements ideal9,11,12,15,28.

The fit of the model for the correlations is adequate. The correlations are for weekly
intervals, so the results are presented in the form of five 27× 27 correlation matrices
displayed in Tables 6,7,8, 9,and 10.

Regression models such as in29 may also be used but in general are more difficult
to deal with when the data are highly non-normal, as is the case for fetal metrics. The
proposed two-stage approach is conceptually simpler, yields easy-to-interpret results,
and achieves several aims. First, it gives a marginal standard chart that well handles
non-normality of the measurements. Second, the correlation model combined with the
marginal standard chart provides a parsimonious approach to prediction and inference
at a future visit. Indeed, not only could we predict a future growth given the previous
visits (one visit, two visits and etc) along with a confidence interval, but also we could
assess if the current growth is within normal bounds given the previous records.

Although velocity charts could be an important complement to attained size charts9,
they are not often used clinically. For example, a clinician may be interested to know
whether fetal HC at 20 weeks is a good predictor of that same fetuses HC at 30 weeks.
From the correlation between 20 and 30 weeks we can predict the value of fetal HC at
30 weeks based on its value at 20 weeks. Such prediction can identify fetuses that lag
behind in growth.

A limitation of the study is paucity of data and small sample sizes for some pairs of
gestational ages especially in early gestation (first trimester) and at term (40 weeks).

In summary, we provide formulae for correlation coefficients for fetal biometry using
prospectively collected data in eight countries and diverse settings.They were collected
using unified protocols, measurement procedures and standardisation. A rigorous data
quality process was in place throughout the study. INTERGROWTH-21st Project is
the largest prospective study of fetal growth involving multiple measurements per
fetus. The correlation coefficients for any pair of data between 14 and 40 weeks
and consequently the calculation of a velocity Z-score provide a tool for monitoring
fetal growth and development over time. To facilitate this, a web application (Shiny
application for now) that calculates the expected correlation between any two time
points in the interval 14 to 40 weeks for HC, AC, FL, BPD, and OFD will be made
freely available on the INTERGROWTH-21st website where other applications for
fetal, preterm, and newborn size are already available (https://intergrowth21.tghn.org/).

Our proposed two-stage approach can be able to accommodate simultaneous
modelling of multiple fetal metrics by adapting our two=stage approach. The marginal
standard charts can be estimated the same way as the first stage. Then we treat the
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Figure 8. Temporal correlations of standardized FL with different correlation models.

transformed Z-scores as multiple measurements that are longitudinally observed and
model the correlations across measurements and between different times. One option
is a nonparametric multivariate functional data analysis30.
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Figure 9. Temporal correlations of standardized HC with different correlation models.
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Figure 10. Temporal correlations of standardized BPD with different correlation models.
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Figure 11. Temporal correlations of standardized OFD with different correlation models.

Table 6. Correlation matrix for AC.
Week 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

14 1.00
15 0.77 1.00
16 0.76 0.77 1.00
17 0.75 0.76 0.77 1.00
18 0.74 0.75 0.76 0.77 1.00
19 0.72 0.74 0.75 0.76 0.77 1.00
20 0.70 0.72 0.74 0.75 0.76 0.77 1.00
21 0.69 0.70 0.72 0.74 0.75 0.76 0.77 1.00
22 0.67 0.69 0.70 0.72 0.74 0.75 0.76 0.77 1.00
23 0.65 0.67 0.69 0.70 0.72 0.74 0.75 0.76 0.77 1.00
24 0.63 0.65 0.67 0.69 0.70 0.72 0.74 0.75 0.76 0.77 1.00
25 0.60 0.63 0.65 0.67 0.69 0.70 0.72 0.74 0.75 0.76 0.77 1.00
26 0.58 0.60 0.63 0.65 0.67 0.69 0.70 0.72 0.74 0.75 0.76 0.77 1.00
27 0.56 0.58 0.60 0.63 0.65 0.67 0.69 0.70 0.72 0.74 0.75 0.76 0.77 1.00
28 0.54 0.56 0.58 0.60 0.63 0.65 0.67 0.69 0.70 0.72 0.74 0.75 0.76 0.77 1.00
29 0.52 0.54 0.56 0.58 0.60 0.63 0.65 0.67 0.69 0.70 0.72 0.74 0.75 0.76 0.77 1.00
30 0.50 0.52 0.54 0.56 0.58 0.60 0.63 0.65 0.67 0.69 0.70 0.72 0.74 0.75 0.76 0.77 1.00
31 0.47 0.50 0.52 0.54 0.56 0.58 0.60 0.63 0.65 0.67 0.69 0.70 0.72 0.74 0.75 0.76 0.77 1.00
32 0.45 0.47 0.50 0.52 0.54 0.56 0.58 0.60 0.63 0.65 0.67 0.69 0.70 0.72 0.74 0.75 0.76 0.77 1.00
33 0.43 0.45 0.47 0.50 0.52 0.54 0.56 0.58 0.60 0.63 0.65 0.67 0.69 0.70 0.72 0.74 0.75 0.76 0.77 1.00
34 0.41 0.43 0.45 0.47 0.50 0.52 0.54 0.56 0.58 0.60 0.63 0.65 0.67 0.69 0.70 0.72 0.74 0.75 0.76 0.77 1.00
35 0.39 0.41 0.43 0.45 0.47 0.50 0.52 0.54 0.56 0.58 0.60 0.63 0.65 0.67 0.69 0.70 0.72 0.74 0.75 0.76 0.77 1.00
36 0.37 0.39 0.41 0.43 0.45 0.47 0.50 0.52 0.54 0.56 0.58 0.60 0.63 0.65 0.67 0.69 0.70 0.72 0.74 0.75 0.76 0.77 1.00
37 0.35 0.37 0.39 0.41 0.43 0.45 0.47 0.50 0.52 0.54 0.56 0.58 0.60 0.63 0.65 0.67 0.69 0.70 0.72 0.74 0.75 0.76 0.77 1.00
38 0.33 0.35 0.37 0.39 0.41 0.43 0.45 0.47 0.50 0.52 0.54 0.56 0.58 0.60 0.63 0.65 0.67 0.69 0.70 0.72 0.74 0.75 0.76 0.77 1.00
39 0.32 0.33 0.35 0.37 0.39 0.41 0.43 0.45 0.47 0.50 0.52 0.54 0.56 0.58 0.60 0.63 0.65 0.67 0.69 0.70 0.72 0.74 0.75 0.76 0.77 1.00
40 0.30 0.32 0.33 0.35 0.37 0.39 0.41 0.43 0.45 0.47 0.50 0.52 0.54 0.56 0.58 0.60 0.63 0.65 0.67 0.69 0.70 0.72 0.74 0.75 0.76 0.77 1.00
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Table 7. Correlation matrix for FL.
Week 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

14 1.00
15 0.80 1.00
16 0.79 0.80 1.00
17 0.78 0.79 0.80 1.00
18 0.77 0.78 0.79 0.80 1.00
19 0.76 0.77 0.78 0.79 0.80 1.00
20 0.74 0.76 0.77 0.78 0.79 0.80 1.00
21 0.72 0.74 0.76 0.77 0.78 0.79 0.80 1.00
22 0.71 0.72 0.74 0.76 0.77 0.78 0.79 0.80 1.00
23 0.69 0.71 0.72 0.74 0.76 0.77 0.78 0.79 0.80 1.00
24 0.67 0.69 0.71 0.72 0.74 0.76 0.77 0.78 0.79 0.80 1.00
25 0.66 0.67 0.69 0.71 0.72 0.74 0.76 0.77 0.78 0.79 0.80 1.00
26 0.64 0.66 0.67 0.69 0.71 0.72 0.74 0.76 0.77 0.78 0.79 0.80 1.00
27 0.62 0.64 0.66 0.67 0.69 0.71 0.72 0.74 0.76 0.77 0.78 0.79 0.80 1.00
28 0.60 0.62 0.64 0.66 0.67 0.69 0.71 0.72 0.74 0.76 0.77 0.78 0.79 0.80 1.00
29 0.58 0.60 0.62 0.64 0.66 0.67 0.69 0.71 0.72 0.74 0.76 0.77 0.78 0.79 0.80 1.00
30 0.56 0.58 0.60 0.62 0.64 0.66 0.67 0.69 0.71 0.72 0.74 0.76 0.77 0.78 0.79 0.80 1.00
31 0.55 0.56 0.58 0.60 0.62 0.64 0.66 0.67 0.69 0.71 0.72 0.74 0.76 0.77 0.78 0.79 0.80 1.00
32 0.53 0.55 0.56 0.58 0.60 0.62 0.64 0.66 0.67 0.69 0.71 0.72 0.74 0.76 0.77 0.78 0.79 0.80 1.00
33 0.51 0.53 0.55 0.56 0.58 0.60 0.62 0.64 0.66 0.67 0.69 0.71 0.72 0.74 0.76 0.77 0.78 0.79 0.80 1.00
34 0.49 0.51 0.53 0.55 0.56 0.58 0.60 0.62 0.64 0.66 0.67 0.69 0.71 0.72 0.74 0.76 0.77 0.78 0.79 0.80 1.00
35 0.47 0.49 0.51 0.53 0.55 0.56 0.58 0.60 0.62 0.64 0.66 0.67 0.69 0.71 0.72 0.74 0.76 0.77 0.78 0.79 0.80 1.00
36 0.46 0.47 0.49 0.51 0.53 0.55 0.56 0.58 0.60 0.62 0.64 0.66 0.67 0.69 0.71 0.72 0.74 0.76 0.77 0.78 0.79 0.80 1.00
37 0.44 0.46 0.47 0.49 0.51 0.53 0.55 0.56 0.58 0.60 0.62 0.64 0.66 0.67 0.69 0.71 0.72 0.74 0.76 0.77 0.78 0.79 0.80 1.00
38 0.42 0.44 0.46 0.47 0.49 0.51 0.53 0.55 0.56 0.58 0.60 0.62 0.64 0.66 0.67 0.69 0.71 0.72 0.74 0.76 0.77 0.78 0.79 0.80 1.00
39 0.41 0.42 0.44 0.46 0.47 0.49 0.51 0.53 0.55 0.56 0.58 0.60 0.62 0.64 0.66 0.67 0.69 0.71 0.72 0.74 0.76 0.77 0.78 0.79 0.80 1.00
40 0.39 0.41 0.42 0.44 0.46 0.47 0.49 0.51 0.53 0.55 0.56 0.58 0.60 0.62 0.64 0.66 0.67 0.69 0.71 0.72 0.74 0.76 0.77 0.78 0.79 0.80 1.00

Table 8. Correlation matrix for HC.
Week 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

14 1.00
15 0.85 1.00
16 0.84 0.85 1.00
17 0.82 0.84 0.85 1.00
18 0.80 0.82 0.84 0.85 1.00
19 0.78 0.80 0.82 0.84 0.85 1.00
20 0.76 0.78 0.80 0.82 0.84 0.85 1.00
21 0.73 0.76 0.78 0.80 0.82 0.84 0.85 1.00
22 0.70 0.73 0.76 0.78 0.80 0.82 0.84 0.85 1.00
23 0.68 0.70 0.73 0.76 0.78 0.80 0.82 0.84 0.85 1.00
24 0.65 0.68 0.70 0.73 0.76 0.78 0.80 0.82 0.84 0.85 1.00
25 0.62 0.65 0.68 0.70 0.73 0.76 0.78 0.80 0.82 0.84 0.85 1.00
26 0.60 0.62 0.65 0.68 0.70 0.73 0.76 0.78 0.80 0.82 0.84 0.85 1.00
27 0.57 0.60 0.62 0.65 0.68 0.70 0.73 0.76 0.78 0.80 0.82 0.84 0.85 1.00
28 0.54 0.57 0.60 0.62 0.65 0.68 0.70 0.73 0.76 0.78 0.80 0.82 0.84 0.85 1.00
29 0.51 0.54 0.57 0.60 0.62 0.65 0.68 0.70 0.73 0.76 0.78 0.80 0.82 0.84 0.85 1.00
30 0.49 0.51 0.54 0.57 0.60 0.62 0.65 0.68 0.70 0.73 0.76 0.78 0.80 0.82 0.84 0.85 1.00
31 0.46 0.49 0.51 0.54 0.57 0.60 0.62 0.65 0.68 0.70 0.73 0.76 0.78 0.80 0.82 0.84 0.85 1.00
32 0.44 0.46 0.49 0.51 0.54 0.57 0.60 0.62 0.65 0.68 0.70 0.73 0.76 0.78 0.80 0.82 0.84 0.85 1.00
33 0.41 0.44 0.46 0.49 0.51 0.54 0.57 0.60 0.62 0.65 0.68 0.70 0.73 0.76 0.78 0.80 0.82 0.84 0.85 1.00
34 0.39 0.41 0.44 0.46 0.49 0.51 0.54 0.57 0.60 0.62 0.65 0.68 0.70 0.73 0.76 0.78 0.80 0.82 0.84 0.85 1.00
35 0.36 0.39 0.41 0.44 0.46 0.49 0.51 0.54 0.57 0.60 0.62 0.65 0.68 0.70 0.73 0.76 0.78 0.80 0.82 0.84 0.85 1.00
36 0.34 0.36 0.39 0.41 0.44 0.46 0.49 0.51 0.54 0.57 0.60 0.62 0.65 0.68 0.70 0.73 0.76 0.78 0.80 0.82 0.84 0.85 1.00
37 0.32 0.34 0.36 0.39 0.41 0.44 0.46 0.49 0.51 0.54 0.57 0.60 0.62 0.65 0.68 0.70 0.73 0.76 0.78 0.80 0.82 0.84 0.85 1.00
38 0.30 0.32 0.34 0.36 0.39 0.41 0.44 0.46 0.49 0.51 0.54 0.57 0.60 0.62 0.65 0.68 0.70 0.73 0.76 0.78 0.80 0.82 0.84 0.85 1.00
39 0.28 0.30 0.32 0.34 0.36 0.39 0.41 0.44 0.46 0.49 0.51 0.54 0.57 0.60 0.62 0.65 0.68 0.70 0.73 0.76 0.78 0.80 0.82 0.84 0.85 1.00
40 0.26 0.28 0.30 0.32 0.34 0.36 0.39 0.41 0.44 0.46 0.49 0.51 0.54 0.57 0.60 0.62 0.65 0.68 0.70 0.73 0.76 0.78 0.80 0.82 0.84 0.85 1.00

Table 9. Correlation matrix for BPD.
Week 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

14 1.00
15 0.82 1.00
16 0.80 0.81 1.00
17 0.77 0.79 0.80 1.00
18 0.73 0.76 0.78 0.79 1.00
19 0.69 0.72 0.75 0.77 0.78 1.00
20 0.65 0.69 0.72 0.75 0.76 0.77 1.00
21 0.61 0.66 0.69 0.72 0.75 0.76 0.77 1.00
22 0.58 0.63 0.67 0.71 0.73 0.75 0.77 0.78 1.00
23 0.56 0.61 0.65 0.69 0.72 0.74 0.76 0.77 0.79 1.00
24 0.54 0.59 0.64 0.67 0.71 0.73 0.75 0.77 0.79 0.81 1.00
25 0.52 0.57 0.62 0.66 0.69 0.72 0.74 0.76 0.78 0.81 0.82 1.00
26 0.51 0.56 0.60 0.64 0.67 0.70 0.72 0.75 0.77 0.80 0.82 0.83 1.00
27 0.49 0.54 0.59 0.63 0.66 0.68 0.70 0.73 0.76 0.78 0.80 0.82 0.82 1.00
28 0.47 0.52 0.57 0.61 0.64 0.66 0.68 0.71 0.73 0.76 0.79 0.80 0.81 0.81 1.00
29 0.45 0.50 0.55 0.59 0.62 0.64 0.66 0.68 0.71 0.74 0.76 0.78 0.80 0.80 0.80 1.00
30 0.43 0.48 0.53 0.56 0.59 0.61 0.63 0.66 0.68 0.71 0.74 0.76 0.78 0.79 0.79 0.80 1.00
31 0.41 0.46 0.50 0.54 0.57 0.59 0.61 0.63 0.65 0.68 0.71 0.73 0.75 0.77 0.78 0.79 0.80 1.00
32 0.39 0.43 0.48 0.51 0.54 0.56 0.58 0.60 0.63 0.65 0.68 0.71 0.73 0.75 0.76 0.78 0.79 0.80 1.00
33 0.36 0.41 0.45 0.48 0.51 0.53 0.55 0.57 0.60 0.62 0.65 0.68 0.70 0.73 0.75 0.77 0.78 0.80 0.81 1.00
34 0.34 0.38 0.42 0.46 0.48 0.50 0.52 0.54 0.57 0.59 0.62 0.65 0.68 0.70 0.73 0.75 0.77 0.79 0.81 0.82 1.00
35 0.32 0.36 0.40 0.43 0.45 0.47 0.49 0.51 0.54 0.56 0.59 0.62 0.65 0.67 0.70 0.73 0.76 0.78 0.80 0.82 0.83 1.00
36 0.29 0.33 0.37 0.40 0.42 0.44 0.46 0.48 0.50 0.53 0.56 0.59 0.62 0.64 0.67 0.71 0.74 0.76 0.79 0.81 0.82 0.83 1.00
37 0.27 0.31 0.34 0.37 0.39 0.41 0.43 0.45 0.47 0.49 0.52 0.55 0.58 0.61 0.64 0.68 0.71 0.74 0.77 0.79 0.81 0.82 0.83 1.00
38 0.24 0.28 0.31 0.34 0.36 0.38 0.40 0.41 0.44 0.46 0.48 0.51 0.54 0.57 0.61 0.64 0.68 0.71 0.74 0.77 0.79 0.81 0.82 0.82 1.00
39 0.22 0.25 0.28 0.31 0.33 0.35 0.36 0.38 0.40 0.42 0.44 0.47 0.50 0.53 0.57 0.60 0.64 0.68 0.72 0.75 0.77 0.79 0.80 0.81 0.81 1.00
40 0.20 0.22 0.25 0.28 0.30 0.31 0.33 0.35 0.36 0.38 0.40 0.43 0.46 0.49 0.53 0.57 0.61 0.65 0.68 0.72 0.74 0.77 0.78 0.79 0.80 0.80 1.00

6. Wright C, Matthews J, Waterston A et al. What is a normal rate of weight gain in infancy?
Acta Paediatrica 1994; 83(4): 351–356.
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Table 10. Correlation matrix for OFD.
Week 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

14 1.00
15 0.75 1.00
16 0.74 0.75 1.00
17 0.73 0.75 0.76 1.00
18 0.72 0.74 0.76 0.77 1.00
19 0.71 0.73 0.75 0.76 0.77 1.00
20 0.69 0.72 0.74 0.76 0.76 0.77 1.00
21 0.67 0.70 0.73 0.75 0.76 0.76 0.76 1.00
22 0.65 0.69 0.72 0.74 0.75 0.76 0.76 0.76 1.00
23 0.63 0.67 0.70 0.73 0.74 0.75 0.76 0.76 0.77 1.00
24 0.61 0.65 0.69 0.71 0.73 0.74 0.75 0.76 0.76 0.77 1.00
25 0.59 0.63 0.66 0.69 0.71 0.73 0.74 0.74 0.76 0.76 0.77 1.00
26 0.56 0.60 0.64 0.67 0.69 0.70 0.72 0.73 0.74 0.75 0.76 0.77 1.00
27 0.53 0.57 0.61 0.64 0.66 0.68 0.69 0.70 0.72 0.73 0.75 0.75 0.76 1.00
28 0.50 0.54 0.58 0.61 0.63 0.65 0.66 0.68 0.69 0.71 0.73 0.74 0.74 0.75 1.00
29 0.47 0.51 0.54 0.57 0.59 0.61 0.62 0.64 0.66 0.68 0.70 0.71 0.72 0.73 0.73 1.00
30 0.44 0.47 0.50 0.53 0.55 0.57 0.59 0.60 0.63 0.65 0.67 0.69 0.70 0.71 0.72 0.73 1.00
31 0.40 0.44 0.46 0.49 0.51 0.53 0.55 0.57 0.59 0.61 0.63 0.66 0.67 0.69 0.70 0.72 0.73 1.00
32 0.37 0.40 0.43 0.45 0.47 0.49 0.51 0.53 0.55 0.58 0.60 0.62 0.65 0.67 0.68 0.70 0.72 0.73 1.00
33 0.35 0.37 0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.55 0.57 0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.73 1.00
34 0.32 0.35 0.37 0.39 0.41 0.43 0.45 0.47 0.50 0.52 0.54 0.57 0.59 0.62 0.64 0.66 0.68 0.71 0.72 0.74 1.00
35 0.30 0.32 0.34 0.37 0.39 0.41 0.43 0.45 0.47 0.50 0.52 0.54 0.57 0.59 0.61 0.64 0.66 0.69 0.71 0.73 0.74 1.00
36 0.27 0.30 0.32 0.34 0.37 0.39 0.41 0.43 0.45 0.47 0.50 0.52 0.54 0.57 0.59 0.61 0.64 0.66 0.68 0.71 0.73 0.75 1.00
37 0.25 0.27 0.30 0.32 0.34 0.37 0.39 0.41 0.43 0.45 0.48 0.50 0.52 0.54 0.56 0.59 0.61 0.63 0.66 0.68 0.71 0.73 0.75 1.00
38 0.22 0.25 0.27 0.30 0.32 0.35 0.37 0.39 0.41 0.43 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.65 0.68 0.71 0.73 0.74 1.00
39 0.19 0.22 0.25 0.28 0.30 0.32 0.35 0.37 0.39 0.41 0.44 0.46 0.47 0.49 0.51 0.53 0.55 0.57 0.59 0.62 0.65 0.68 0.70 0.72 0.73 1.00
40 0.17 0.20 0.22 0.25 0.28 0.30 0.32 0.35 0.37 0.39 0.41 0.43 0.45 0.47 0.48 0.50 0.51 0.53 0.55 0.58 0.61 0.64 0.67 0.70 0.72 0.74 1.00

7. Cole T. Presenting information on growth distance and conditional velocity in one chart:
practical issues of chart design. Statistics in medicine 1998; 17(23): 2697–2707.

8. Cole T. Growth charts for both cross-sectional and longitudinal data. Statistics in medicine
1994; 13(23-24): 2477–2492.

9. Papageorghiou AT, Ohuma EO, Altman DG et al. International standards for fetal
growth based on serial ultrasound measurements: the fetal growth longitudinal study of the
intergrowth-21st project. The Lancet 2014; 384(9946): 869–879.

10. Ohuma EO, Altman DG, Fetal I et al. Statistical methodology for constructing gestational
age-related charts using cross-sectional and longitudinal data: The intergrowth-21st project
as a case study. Statistics in medicine 2018; .

11. Villar J, Ismail LC, Urias ES et al. The satisfactory growth and development at 2 years
of age of the intergrowth-21st fetal growth standards cohort support its appropriateness for
constructing international standards. American journal of obstetrics and gynecology 2018;
218(2): S841–S854.

12. Sarris I, Ioannou C, Ohuma E et al. Standardisation and quality control of ultrasound
measurements taken in the intergrowth-21st project. BJOG: An International Journal of
Obstetrics & Gynaecology 2013; 120: 33–37.

13. Villar J, Ismail LC, Victora CG et al. International standards for newborn weight, length,
and head circumference by gestational age and sex: the newborn cross-sectional study of the
intergrowth-21st project. The Lancet 2014; 384(9946): 857–868.

14. Ismail LC, Bishop DC, Pang R et al. Gestational weight gain standards based on women
enrolled in the fetal growth longitudinal study of the intergrowth-21st project: a prospective
longitudinal cohort study. bmj 2016; 352: i555.

15. Villar J, Giuliani F, Bhutta ZA et al. Postnatal growth standards for preterm infants: the
preterm postnatal follow-up study of the intergrowth-21st project. The Lancet Global Health
2015; 3(11): e681–e691.

16. Villar J, Papageorghiou AT, Pang R et al. The likeness of fetal growth and newborn size
across non-isolated populations in the intergrowth-21st project: the fetal growth longitudinal
study and newborn cross-sectional study. The lancet Diabetes & endocrinology 2014; 2(10):
781–792.

Prepared using sagej.cls



20 Journal Title XX(X)

17. Cole TJ and Green PJ. Smoothing reference centile curves: the lms method and penalized
likelihood. Statistics in medicine 1992; 11(10): 1305–1319.

18. Rigby RA and Stasinopoulos DM. Using the box-cox t distribution in gamlss to model
skewness and kurtosis. Statistical Modelling 2006; 6(3): 209–229.

19. Rigby RA and Stasinopoulos DM. Smooth centile curves for skew and kurtotic data
modelled using the box–cox power exponential distribution. Statistics in medicine 2004;
23(19): 3053–3076.

20. Stasinopoulos DM, Rigby RA et al. Generalized additive models for location scale and
shape (gamlss) in r. Journal of Statistical Software 2007; 23(7): 1–46.

21. Diggle PJ. An approach to the analysis of repeated measurements. Biometrics 1988; :
959–971.

22. Yao F, Müller HG and Wang JL. Functional data analysis for sparse longitudinal data.
Journal of the American Statistical Association 2005; 100(470): 577–590.

23. Xiao L, Li C, Checkley W et al. Fast covariance estimation for sparse functional data.
Statistics and computing 2018; 28(3): 511–522.

24. Eilers PH and Marx BD. Multivariate calibration with temperature interaction using two-
dimensional penalized signal regression. Chemometrics and intelligent laboratory systems
2003; 66(2): 159–174.

25. Eilers PH and Marx BD. Flexible smoothing with b-splines and penalties. Statistical science
1996; : 89–102.

26. Hastie T, Tibshirani R and Friedman J. Kernel Smoothing Methods. New York, NY: Springer
New York, 2009. pp. 191–218.

27. Ruppert D, Wand MP and Carroll RJ. Semiparametric regression. cambridge series
in statistical and probabilistic mathematics 12. Cambridge: Cambridge Univ Press
Mathematical Reviews (MathSciNet): MR1998720 2003; .

28. Villar J, Altman D, Purwar M et al. The objectives, design and implementation of the
intergrowth-21st project. BJOG: An International Journal of Obstetrics & Gynaecology
2013; 120: 9–26.

29. Ivanescu AE, Crainiceanu CM and Checkley W. Dynamic child growth prediction:
A comparative methods approach. Statistical Modelling 2017; 17(6): 468–493.

30. Li C, Xiao L and Luo S. Fast covariance estimation for multivariate sparse functional data,
2018. 1812.00538.

Prepared using sagej.cls

1812.00538

	1 Introduction
	2 Data
	3 Statistical methodology
	3.1 Working models for marginal reference distribution
	3.2 Correlation models
	3.3 Estimation of the correlation models

	4 Results
	4.1 Marginal standard charts
	4.2 Correlation models

	5 Case study: dynamic growth velocity
	6 Discussion

