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Abstract

Diagnosis is often based on the exceedance or not of continuous health indicators of
a predefined cut-off value, so as to classify patients into positives and negatives for the
disease under investigation. In this paper, we investigate the effects of dichotomization of
spatially-referenced continuous outcome variables on geostatistical inference. Although
this issue has been extensively studied in other fields, dichotomization is still a com-
mon practice in epidemiological studies. Furthermore, the effects of this practice in the
context of prevalence mapping have not been fully understood. Here, we demonstrate
how spatial correlation affects the loss of information due to dichotomization, how linear
geostatistical models can be used to map disease prevalence and thus avoid dichotomiza-
tion, and finally, how dichotomization affects our predictive inference on prevalence. To
pursue these objectives, we develop a metric, based on the composite likelihood, which
can be used to quantify the potential loss of information after dichotomization without
requiring the fitting of Binomial geostatistical models. Through a simulation study and
two applications on disease mapping in Africa, we show that, as thresholds used for
dichotomization move further away from the mean of the underlying process, the per-
formance of binomial geostatistical models deteriorates substantially. We also find that
dichotomization can lead to the loss of fine scale features of disease prevalence and in-
creased uncertainty in the parameter estimates, especially in the presence of a large noise
to signal ratio. These findings strongly support the conclusions from previous studies
that dichotomization should be always avoided whenever feasible.

Keywords: binary data; dichotomization; disease mapping; linear geostatistical model;
model-based geostatistics; prevalence.

1 Introduction

Continuous measurements of disease indicators - e.g. concentration of antibodies in a blood
sample - are used in many branches of health research to aid diagnosis and treatment of
patients, as well as monitoring and surveillance of diseases in populations. Diagnosis is often
based on the exceedance or not of a cut-off value by the continuous indicator, to identify
positives and negatives for the disease of interest [1]. In some cases, for instance in anaemia
epidemiology, multiple cut-offs are also used to further categorize patients into groups, such
as mild, moderate and severe [2]. The rationale for such groupings is to aid and simplify both
interpretation and presentation of the results [3–5], while in clinical settings the groupings
are used for targeted treatment. As a result, statistical analysis is often carried out on the
categorical outcome obtained through the discretization of the continuous measurement.
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The disadvantages and loss of information yielded by this practice have been investigated
in several studies. Fedorov et al. [6] showed that dichotomization of continuous outcome
variables can lead to a loss of 36% in terms of the Fisher’s information for the population
average. As a result of this, the statistical power required to estimate regression relationships
between a health outcome and risk factors is also diminished [7]. Furthermore, in cases where
the relationship is non-linear or non-monotonic, dichotomization or categorization into few
classes may make that undetectable [4, 5]. All these issues are further exacerbated when the
choice of specific cut-offs is inconsistent or, in some cases, even arbitrary [8–10]. For example,
cut-offs may vary within and across studies due to differences in the sample populations from
which they are derived or due to changes in how they are defined according to clinical practice
and operational policy.

In this paper, we investigate the effects of dichotomization of spatially-referenced contin-
uous outcome variables on geostatistical inference. Model-based geostatistics (MBG) [11] is
a likelihood-based paradigm that allows to carry out spatially continuous predictive inference
on an outcome of interest using a spatially discrete set of data. Over the last two decades,
MBG has been increasingly used to map the prevalence of infectious diseases [12], especially
in low-resource settings where disease registries are non-existent or geographically incomplete.
In this context, there have been global efforts to increase the use of rapid diagnostic tests for
diseases such as malaria and HIV [13–16], which are typically recorded as binary by labelling
the tested individuals as either positive or negative. In other cases, instead, dichotomization
is first carried out on a continuous disease indicator variable and a geostatistical model is
then developed on the binary outcome. For example, in Zimmerman et al. [17], a continu-
ous score quantifying the deviation from normal growth in children is dichotomized in order
map stunting prevalence; following a similar approach, Magalhaes et al. [18] fit a binomial
geostatistical model to dichotomized continuous haemoglobin densities so as to map anaemia
prevalence in West Africa.

The effects of dichotomization on geostatistical inference have not been fully understood
and, to the best of our knowledge, this is the first study that attempts to pursue this objective
in the context of prevalence mapping. More specifically, in this paper, we provide answers
to the following questions: 1) How does spatial correlation affect the loss of information
and the estimation of regression relationships? 2) Can dichotomization lead to substantially
different and more uncertain spatial predictions in disease prevalence? 3) How can we use
linear geostatistical models to map disease prevalence and thus avoid the drawbacks of di-
chotomization?

The structure of the paper is as follows. In section 2 we describe the geostatistical
modelling framework for disease prevalence mapping, and outline the differences and links
between geostatistical models based on binary and continuous outcomes. In section 3, we first
explore the information loss due to dichotomization in terms of the Fisher’s information for
two observations. We then develop a metric which can be used to assess the loss of information
for the estimation of the regression coefficients of any geostatistical model. We also carry out
a simulation study to extend our investigation to the estimation of the covariance parameters
and spatial predictions for prevalence. In section 4 we illustrate two applications on the
mapping of anaemia and stunting prevalence in Africa. Section 5 is a concluding discussion.

In what follows, fitting of geostatistical models and geostatistical prediction have been
carried out using the Monte Carlo maximum likelihood method implemented in the PrevMap
package [19] available from the Comprehensive R Network archive (cran.r-project.org).
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2 The link between geostatistical models for continuous and
binary outcomes

Consider data from a cross-sectional survey where information on a continuous health out-
come, Yij , is collected through examination of ni individuals residing at location xi for
j = 1, . . . , ni and i = 1, . . . ,m. We then assume that conditionally on a spatial Gaussian
process S = {S(x) : x ∈ R2}, the Yij are random Gaussian variables with mean µij + S(xi)
and variance τ2. From the linear properties of Gaussian distributions, we can write the model
in the following compact form

Yij = µij + S(xi) + Zij , (1)

where Zij are i.i.d. Gaussian variables with mean zero and variance τ2, representing unex-
plained individual-level variation and the mean component µij is modeled as a linear regres-
sion taking the form

µij = α+ β>d(xi) + γ>eij

where we distinguish between covariates, d(xi), that express properties of the locations and
covariates, eij , for individual traits e.g. age and gender.

We model S(x) as a stationary and isotropic Gaussian process with mean zero, variance σ2

and correlation function Cor {S(x), S(x′)} = ρ (u) where u = ||x−x′|| denotes the Euclidean
distance between x and x′. In the remainder of this paper, we shall define ρ (·) to be an
exponentially decaying function with scale parameter φ, i.e. ρ(u) = exp{−u/φ}.

Based on a predefined threshold c, whose exceedance or not defines the disease status of
an individual, we define the binary outcome Ỹij as

Ỹij =

{
1 if Yij < c

0 if Yij ≥ c
, (2)

with Ỹij = 1 indicating a positive case for the disease under investigation and Ỹij = 0 for a
negative case.

From the model of the continuous outcome in (1), it follows that the model for Ỹij is
given by

P
(
Ỹij = 1

∣∣∣S(xi)
)

= P (Yij < c|S(xi))

= P

(
Yij − µij − S(xi)

τ
<
c− µij − S(xi)

τ

∣∣∣∣S(xi)

)
= Φ

(
c− µij − S(xi)

τ

)
= pij , (3)

where Φ(·) is the cumulative density function of a standard Gaussian variable. Hence, the
resulting model for Ỹij is a Binomial geostatistical model with probit link function and linear
predictor

ηij = Φ−1(pij) = µ̃ij + S̃(xi) (4)

where µ̃ij = −µij/τ and S̃(xi) = −S(xi)/τ .
The functional relationships that link the parameters of the geostatistical model for Ỹij

with those of the model for Yij are the following
α̃ = (c− α)/τ

β̃ = −β/τ
γ̃ = −γ/τ
σ̃2 = σ2/τ2

. (5)
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The above equations can thus be used to obtain the parameter estimates for a geostatis-
tical model for Ỹij by transforming the parameter estimates from the geostatistical model for
Yij . Note that it is not possible, instead, to map the estimates from the model for Ỹij into
those for Yij because the parameter τ2 cannot be estimated from binary data. The unstruc-
tured component Zij is in fact integrated out in (4) and, as shown in (5), all the parameters
on the left hand-side are expressed as a ratio between τ and all other parameters in the model
for Yij . Finally, φ is not included in (5), since the scale of the spatial correlation of S̃(x) is
the same as that of S(x).

3 Quantifying the effects of dichotomization

In Section 3.1, we first study the loss of information due to dichotomization for the estima-
tion of the mean of the process using an intercept-only model, when all other parameters are
known. In Section 3.2, we carry out a simulation study to the more common case when all
parameters are unknown. Here we study the effect on dichotomization on parameter estima-
tion. In both sections, we shall restrict our attention to the scenario of a single observation
per location, hence we set ni = 1 for all i and drop the j subscript.

3.1 Unknown regression coefficients and known covariance parameters

3.1.1 Special case of m=2 for an intercept-only model

The objective in this section is to quantify the loss of information in terms of the expected
Fisher information (EFI) with respect to α̃, the parameter which regulates the mean level of
disease prevalence. Here, we restrict our attention to the simpler case of two observations at
two locations, hence m = 2 and n1 = n2 = 1, for an intercept-only model. As it will be shown
in the applications of Section 4, this simpler scenario provides useful insights on the effects
of dichotmozation which are consistently observed in the case of more than two observations.
A more general scenario, however, shall also be considered in the next section.

We re-express the linear geostatistical model for a continuous outcome Yi as

Yi = α+ S(xi) + Zi, for i = 1, . . . ,m (6)

where S(xi) is a stationary and isotropic Gaussian process with the same properties as defined
in equation (1).

Let ΣY = Σ + τ2I be the covariance matrix of the vector Y = (Y1, . . . , Ym), with Σ and I
denoting the spatial covariance matrix with (i, j)-th entry σ2 exp{−‖xi − xj‖/φ} and an m
by m identity matrix, respectively.

In order to quantify the loss of information that arises from the dichotomization of the
Yi, we first re-parametrize the linear model in (6) with respect to the prevalence parameters
as defined in (5); note that α = c−τα̃. We then obtain the EFI for α̃ under the linear model,
given by

IY (α̃) = τ21TΣ−1Y 1, (7)

where 1 is a vector with all entries equal to 1.
In the case of the dichotomized outcome Ỹi, the computation of the EFI is further com-

plicated by the fact that the log-likelihood function is not available in closed form. More
specifically, this is given by the marginal distribution of the outcome Ỹ = (Ỹ1, . . . , Ỹm), i.e.

logL(α̃) = log

(∫
Rm

f(s̃)f(ỹ|s̃; α̃) ds̃

)
, (8)
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where f(s̃) is the density of a multivariate Gaussian distribution with mean zero and covari-
ance matrix Σ̃ = Σ/τ2, whilst

f(ỹ|s̃; α̃) =

m∏
i=1

f(ỹi|s̃i; α̃)

= exp

{
m∑
i=1

[
ỹi log

(
pi

1− pi

)
+ (1− ỹi) log{1− pi}

]}
= exp{g(ỹ|s̃; α̃)} (9)

where Φ−1(pi) = α̃ + S̃(xi). To obtain the EFI for α̃, we first take the second derivative of
(8) with respect to α̃ to give

d2 logL(α̃)

d2α̃
= L−1(α̃)

∫
Rm

f(s̃)f(ỹ|s̃; α̃)

[(
dg(ỹ|s̃; α̃)

dα̃

)2

+

d2g(ỹ|s̃; α̃)

d2α̃

]
ds̃+

(
d logL(α̃)

dα̃

)2

, (10)

where
d logL(α̃)

dα̃
= L−1(α̃)

∫
Rm

f(s̃)f(ỹ|s̃; α̃)
dg(ỹ|s̃; α̃)

dα̃
ds̃.

Finally, we average over the distribution of Ỹ

IỸ (α̃) = EỸ

[
−d

2 logL(α̃)

d2α̃

]
.

Since the above quantity is not available in closed form we compute IỸ (α̃) using Monte Carlo
methods.

To quantify the loss of information, we then use the following metric R(α̃) = 1 −
IỸ (α̃)/IY (α̃). In the special case of S(x) = 0 for all x, R(α̃) reduces to

R(α̃) = 1−

[
[Φ

′′
(α̃)][1− Φ(α̃)]− [Φ

′
(α̃)]2

1− Φ(α̃)
− [Φ

′′
(α̃)][Φ(α̃)]− [Φ′(α̃)]2

Φ(α̃)

]
(11)

where Φ
′
(·) and Φ

′′
(·) are the first and second derivative of Φ(·), respectively. Fedorov et al.

[6] have shown that IỸ (α̃) ≤ IY (α), and that the lower limit of (11) is about 36%. Also, note
that (11) is not dependent on m.

To compute the integrals which define −d2 logL(α̃)/d2α̃, we use a quadrature apporoach
based on Quasi Monte Carlo methods. Finally, for the computation of the expectation in
IỸ (α̃), we use 10,000 samples and vary the spatial correlation between the two observations
over ρ ∈ {i/10; i = 1, . . . , 7}. Figure 1 shows different curves of R(α̃), as a percentage, by
setting σ2 = 1 and letting τ2 vary over the set {0.5, 1, 2}. Notice that these curves are
symmetric with respect to 0, although they are shown only for positive values of α̃. Across
all three panels of Figure 1, we observe that increasing values of ρ lead to a reduction in
the loss of information, although such reduction becomes smaller when the data are more
noisy, i.e. when τ2 also increases. Most notably, the largest loss of information is observed
for values of prevalence close to 100% and 0% corresponding to large positive and negative
values for α̃, respectively. The variance τ2 of the unstructured residuals Zi also plays a very
important role as shown by the dramatic increase in R(α̃) for τ2 = 2, with all curves placed
above R(α̃) = 0.65.
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Figure 1: Curves for R(α̃), shown as a percentage, by fixing σ2 = 1 and varying τ2 ∈ {0.5, 1, 2}
and the spatial correlation between two observations ρ ∈ {i/10; i = 1, . . . , 7}.

3.1.2 General case m > 2

For the general case of more than two locations (i.e. m > 2), the effects of dichotomiza-
tion will also be dependent on the spatial arrangement of the sampled locations. In this
section, we develop a metric that allows to quantify the potential loss of information due to
dichotomization of continuous outcomes with respect the estimation of the regression coeffi-
cients θ = (α̃, β̃, γ̃) of any geostatistical model as defined by (1).

In order to lower the computational burden, we first approximate the likelihood function
of both the continuous and dichotomized data using a composite likelihood approach [20].
More specifically, we consider all possible pairs of Ỹij and treat each of these as independent
bivariate distributions. Let Ỹh and Ỹk denote the vectors of binary outcomes associated
with locations xh and xk and which are obtained through dichotomization of Yh and Yk,
respectively. We then write

L(θ) ≈ LCL(θ) =
m−1∏
h=1

m∏
k=h+1

f
(
ỹh, ỹk; θ̃

)
. (12)

In the above equation the bivariate probability functions f(ỹh, ỹk; θ̃) are expressed by the
following integral in two dimensions

f(ỹh, ỹk; θ̃) =

∫
R2

f(s̃)f
(
ỹh, ỹk|s̃; θ̃

)
ds̃

where f
(
ỹh, ỹk|s̃; θ̃

)
consists of a product of nh + nk probability functions for the binary

observations in yh and yk.
Let θ̂LM denote the maximum likelihood estimates of θ obtained from the linear model

using the system of equations in (5). In order to understand how more or less dispersed the
composite likelihood becomes after dichotmization, we proceed as follows. We first compute
the second derivative of the composite log-likelihood at θ̂LM , i.e.

HỸ (θ̂LM ) =

[
∂2 logLCL
∂θi∂θj

]
θ=θ̂LM

.
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For a continuous outcome Y , we have

HY (θ) = −τ2
m−1∑
h=1

m∑
k=h+1

D>h Σ−1hkDk

where Σhk is covariance matrix between Yh and Yk, and Dh and Dk are the design matrices
associated with locations xh and xk, respectively. To quantify the change in the dispersion
of the composite likelihood around θ̂LM , we finally compute

CLD(θ̂LM ) = log{det[−H−1
Ỹ

(θ̂LM )]} − log{det[−H−1Y (θ̂LM )]}

= log{det[−HY (θ̂LM )]} − log{det[−HỸ (θ̂LM )]}

where det(A) denotes the determinant of a square matrix A. Large values of CLD(θ̂LM )
indicate a more dispersed composite likelihood around θ̂LM for the binary data Ỹ , which we
interpret as evidence of loss of information due to dichotmization. Also, note that computa-
tion of CLD can be carried out without fitting any Binomial geostatatistical model.

In the applications of Sections 4.1 and 4.2, we compute the CLD metric, using by plugging-
in the maximum likelihood estimates for the covariance parameters from the linear geosta-
tistical models.

3.2 Simulation study

The objective of this simulation is to quantify the effects of dichotomization on parameter
estimation and spatial predictions of prevalence. To this end we consider the linear model
for Yi as specified in (6) and its dichotomization using a threshold c to give Ỹi = 1 if Yi < c
and 0 otherwise.

In the simulation, we set α = 0 and σ2 = 1. We consider several scenarios obtained
through all possible combinations of values for the model parameters defined in Table 1. For
a given scenario, we simulate 1,000 data-sets of both continuous and dichotomized outcomes
and fit their corresponding geostatistical models. We use a regular grid covering the unit
square with spacing of 1/14 to give a sample size of m = 225. For each of the fitted models,
we extract the estimates for α̃, σ̃2 and φ, and predict prevalence pi = Φ

(
α̃+ S̃(xi)

)
at each

of the grid points. We summarise the results using the bias and mean square error (MSE)
and, for the prevalence predictions, average these two indices over the grid locations.

Tables 2 and 3 report the results for the model parameters and spatial predictions for
prevalence, respectively. Overall, bias and MSE for α̃ and φ are consistently smaller in the
model fitted to the continuous data (C) than for that fitted to the binary data (B). In the case
of σ̃2, instead, the performance of both models is strongly affected by the scale of the spatial
correlation φ: for φ = 0.1 the model B outperforms model C in terms of bias and MSE,
whilst the opposite is observed for φ = 0.2. A possible explanation for this may be due to the
fact that in the linear geostatistical model, higher spatial correlation helps to better separate
the individual contributions of the signal component S(xi) and the noise component Zi to
the total variation in the outcome Yi, thus improving the estimation of σ̃2 = σ2/τ2. In the
case of the binary data, instead, S̃(xi) is the only source of over-dispersion and, as a result of
this, a higher spatial correlation leads to a larger number of concordant binary outcomes and,
therefore, to a poorer estimate of the variance of S̃(xi). Also, we notice that the estimation
of σ̃2 and φ does not appear to be affected by the threshold c, unlike α̃. Finally, the results
for the spatial predictions of prevalence show that the performance of model C is unaffected
by changes in c and τ2, while for φ = 0.2 the predictions have slightly lower MSE than for
φ = 0.1. Model B, instead, delivers predictions with higher bias for increasing c which can
be partly explained by the positive increase in the bias in the estimates of α̃ for increasing c.
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We have also conducted further simulations under the same scenarios defined in Table 1
but for a larger sample size m = 450, by placing additional points on a regular grid adjacent
to the unit square so as to cover the rectangle [0, 2] × [0, 1]. The results, reported in the
Appendix (Tables A2 and A2), lead to the same conclusions drawn for m = 225.

Table 1: True values for τ2, φ and c used in the simulation study.

Symbol Variations
Variance of the nugget effect τ2 0.5, 1, 2
True scale of spatial correlation φ 0.1, 0.2
Cut-off c 0, 0.2, 0.4

Table 2: Bias and mean square error (in brackets) for α̃, σ̃2 and the estimate φ̂ obtained from the
geostatistical models fitted the binary (B) and continuous (C) outcomes.

c=0 c=0.2 c=0.4
Parameter τ2 φ B C B C B C

α̃ 0.5 0.1 0.009 (0.168) 0.005 (0.113) 0.063 (0.312) 0.017 (0.115) 0.157 (0.263) 0.042 (0.139)
1 0.1 -0.009 (0.126) -0.008 (0.068) 0.060 (0.409) 0.004 (0.064) 0.153 (0.119) 0.041 (0.080)
2 0.1 -0.006 (0.079) -0.003 (0.036) 0.077 (0.493) 0.022 (0.040) 0.148 (0.169) 0.050 (0.054)
0.5 0.2 -0.025 (0.624) -0.013 (0.296) 0.156 (0.648) 0.048 (0.282) 0.238 (0.722) 0.028 (0.303)
1 0.2 -0.018 (0.332) -0.007 (0.150) 0.093 (0.585) 0.008 (0.137) 0.215 (0.323) 0.025 (0.145)
2 0.2 -0.007 (0.185) -0.004 (0.080) 0.106 (0.566) 0.023 (0.080) 0.164 (0.272) 0.022 (0.088)

σ̃2 0.5 0.1 -0.011 (1.296) 0.788 (5.843) -0.033 (1.324) 0.604 (5.170) 0.022 (1.594) 0.734 (5.741)
1 0.1 0.234 (0.787) 0.822 (5.953) 0.190 (0.688) 0.750 (5.255) 0.224 (0.701) 0.741 (5.942)
2 0.1 0.211 (0.326) 0.672 (5.047) 0.217 (0.364) 0.600 (4.961) 0.204 (0.324) 0.653 (4.833)
0.5 0.2 1.641 (8.894) 0.527 (3.091) 1.784 (12.672) 0.574 (3.268) 1.566 (8.464) 0.515 (3.401)
1 0.2 1.162 (3.755) 0.399 (1.712) 1.064 (3.243) 0.372 (1.619) 1.048 (2.949) 0.365 (1.671)
2 0.2 0.548 (0.871) 0.254 (1.104) 0.575 (1.074) 0.304 (1.829) 0.534 (0.910) 0.341 (1.707)

φ̂ 0.5 0.1 0.088 (0.016) 0.007 (0.002) 0.084 (0.015) 0.009 (0.002) 0.085 (0.015) 0.007 (0.002)
1 0.1 0.071 (0.014) 0.004 (0.003) 0.072 (0.014) 0.006 (0.004) 0.074 (0.015) 0.006 (0.003)
2 0.1 0.060 (0.017) 0.010 (0.007) 0.063 (0.022) 0.009 (0.007) 0.056 (0.014) 0.010 (0.006)
0.5 0.2 0.076 (0.029) -0.017 (0.011) 0.083 (0.034) -0.020 (0.008) 0.076 (0.030) -0.021 (0.009)
1 0.2 0.068 (0.030) -0.014 (0.016) 0.058 (0.027) -0.028 (0.010) 0.061 (0.034) -0.023 (0.013)
2 0.2 0.032 (0.025) -0.024 (0.019) 0.037 (0.031) -0.024 (0.016) 0.028 (0.019) -0.032 (0.015)

Table 3: Bias and mean square error (in brackets), averaged over a 1/14 by 14 regular grid
covering the unit square (hence, m = 225), for the spatial predictions of prevalence obtained from

the geostatistical models fitted to the binary (B) and continuous (C) outcomes.

c=0 c=0.2 c=0.4
τ2 φ B C B C B C
0.5 0.1 0.001 (0.060) 0.001 (0.039) 0.018 (0.059) 0.001 (0.038) 0.034 (0.058) 0.001 (0.036)
1 0.1 -0.001 (0.051) 0.001 (0.038) 0.018 (0.051) 0.001 (0.038) 0.038 (0.050) 0.001 (0.036)
2 0.1 -0.001 (0.040) 0.001 (0.033) 0.020 (0.040) -0.001 (0.033) 0.038 (0.040) -0.002 (0.032)
0.5 0.2 -0.001 (0.042) 0.001 (0.030) 0.013 (0.042) -0.001 (0.030) 0.025 (0.041) -0.001 (0.029)
1 0.2 0.001 (0.037) 0.001 (0.028) 0.014 (0.037) -0.001 (0.028) 0.030 (0.036) -0.001 (0.027)
2 0.2 -0.001 (0.031) 0.001 (0.024) 0.019 (0.031) -0.001 (0.024) 0.034 (0.031) -0.002 (0.024)

4 Applications

4.1 Mapping anaemia prevalence in Ethiopia

In this section, we analyse data collected from the Beyond Garki project 1. This project
consisted of cross-sectional surveys which were conducted in selected study sites in Ethiopia

1www.malariaconsortium.org/beyondgarki
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and Uganda to monitor changes in malaria risk in the context of interventions that had been
implemented. The study sites were defined as a ‘health centre and the catchment population
in selected villages around it’. Here we subset the data for the Hembecho site, in Ethiopia,
collected during the 2012 survey, where a random sample of households were selected from
a list of enumerated households from all villages within a radius of 2 to 6 kilometers of the
health facility. Among the data obtained in this survey were continuous measurements of
haemoglobin density (g/dL), taken from blood samples of individuals living in the households.
These measurements were then used to determine the anaemia status of individuals. Further
details of the study design and data collection can be found in Abeku et al. [21].

In this analysis, the objective is to identify areas where the anaemia prevalence is highly
likely to exceed a 20% threshold for 20 year old women. Hence, we map and compare ex-
ceedance probabilities from the geostatistical models for the continuous and binary outcomes.
The chosen threshold for anaemia prevalence has clinical, operational and public health sig-
nificance for policy decisions, with the World Health Organisation (WHO) classifying 20%
anaemia prevalence as ‘moderate public health significance’[2]. Finally, the rationale for car-
rying out predictions for 20 years old women is that one of the key WHO Global Nutrition
Targets for 2025 is a 50% reduction of anaemia in women of reproductive age [2, 22], which
is defined as 15-49 years [23].

The data-set contains information on 1712 individuals distributed over 457 households,
with an average of 3.7 individual in each household. The continuous outcome variable, Yij ,
is the log-transformed haemoglobin density for the j-th individual at the i-th household. To
account for the non-linear relationship between the log-transformed anaemia density and age,
as shown in Figure 2, we use a linear spline with knots at 15 and 30 years. Our proposed
linear model for Yij is thus expressed as

Yij = α+
3∑

h=1

βhbh(aij) + β4dij + S(xi) + Zij , (13)

where: aij is the age, in years, of an individual; dij is a binary indicator of the sex of an
individual, with “female” as reference category; bh(·) are the base functions of the linear spline
defined as b1(a) = a, b2(a) = max{0, a− 15} and b3(a) = max{0, a− 30}.

Figure 2: (a) locations of the households in the survey; (b) scatter plot of the log-transformed
haemoglobin density against age, in years. The dashed red line in the in panel (b) is a least square

fit of the linear spline defined in the main text of Section 4.1.

Dichotomization of Yij results in the binary outcome variable Y ∗ij indicating anaemia
status, where Y ∗ij = 1 denoting a positive case and Y ∗ij = 0 a negative case for severe anaemia.
In order to classify an individual as positives or negatives, thresholds for severe anaemia have
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been applied using individual-level information on age, sex and pregnancy status as defined
in Table 4. As result of this, we then modify equation (3) as

pij = Φ

(
cij − µij − S(xi)

τ

)
where cij is the logarithm of the threshold values which must now be incorporated as an
additional covariate into the linear predictor, i.e.

Φ−1(pij) = α̃+
3∑

h=1

β̃hbh(aij) + β̃4dij + β̃5cij + S̃(xi)

where β̃5 = 1/τ .

Table 4: Thresholds of haemoglobin densities (g/dL) for anaemia diagnosis [2].

Anaemia
Age or Sex group Mild Moderate Severe
Children (Age 6-59 months) 10.0-10.9 7.0-9.9 < 7.0
Children (Age 5-11 yrs) 11.0-11.4 8.0-10.9 < 8.0
Children (Age 12-15yrs) 11.0-11.9 8.0-10.9 < 8.0
Pregnant women (Age > 15yrs) 10.0-10.9 7.0-9.9 < 7.0
Non-pregnant women (Age > 15 yrs) 11.0-11.9 8.0-10.9 < 8.0
Men (Age > 15 yrs) 11.0-12.9 8.0-10.9 < 8.0

Table 5 reports the maximum likelihood estimates and 95% confidence intervals of the
model parameters for the binary and continuous outcomes. The linear geostatistical model
gives an estimate for τ2, the variance of Zij , of about 1.133 × 10−2 (95% CI: 1.050 × 10−2,
1.222×10−2) and for σ2 of about 1.558×10−3 (95% CI: 0.954×10−3, 2.422×10−3), yielding an
estimated noise to signal ratio τ2/σ2 of about 7.3. The CLD metric (Section 3.1.2 ) is 771.235
which indicates a larger dispersion of the composite likelihood for the binary data than for
the continuous data. We observe that the estimates of the parameters are all comparable
except for σ̃2 (= σ2/τ2), as indicated by the non-overlapping confidence intervals from the
two models. More importantly, we observe that the confidence intervals for the regressions
coefficients are narrower for the linear model.

Figure 3 shows the resulting anaemia prevalence predictions for 20 year old women from
the two models. While the overall pattern of predicted prevalence is similar between the
models (see Figures 3(a) and 3(b)), there are non-negligible differences ranging from -8.23%
to 7.85% prevalence (Figure 3(c)). Similarly, the maps of the exceedance probability qualita-
tively show similar spatial patterns (figures 3(d) and 3(e)). However, we identify small areas
where the differences range from -38.6% to 31.20% (Figure 3(f)).

Table 5: Maximum likelihood estimates with associated 95% confidence intervals (CI) for the
geostatistical models fitted to the anaemia data.

Binomial model Linear model
Term Estimate 95% CI Estimate 95% CI
β̃1 0.079 (-0.220, 0.378) -0.278 (-0.377, -0.179)
β̃2 -0.066 (-0.124, -0.008) -0.115 (-0.131, -0.100)
β̃3 0.052 (-0.025, 0.129) 0.097 (0.072, 0.122)
β̃4 0.071 (0.021, 0.121) 0.050 (0.031, 0.069)
σ̃2 0.527 (0.395,0.705) 0.138 (0.082, 0.218)
φ 0.325 (0.201,0.396) 0.250 (0.093, 0.549)
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Figure 3: Predicted anaemia prevalence for a 20 year old woman. Upper panels: prevalence
surfaces from the binomial model (a) and the continuous models (b), and the difference between the

first and the second (c). Lower panels: exceedance probabilities for a 20% prevalence threshold
obtained from the binary (d) and the continuous models (e), and their difference (f).

4.2 Mapping stunting prevalence in Ghana

The data analysed in this section are from the 2014 Demographic and Health Survey2 (DHS)
conducted in Ghana. DHS are nationally representative household surveys conducted about
every 5 years, and provide data on health and population indicators for monitoring and
impact evaluation across Africa. The DHS surveys follow a stratified two-stage cluster design
where in the first stage, enumeration areas are selected from previous population census files,
followed by a second stage where, for each selected enumeration area, samples of households
are sampled from updated lists of households to generate the so called sampling clusters. The
GPS locations of a sampling cluster is then assigned to each of the individuals falling within
that cluster.

Among the health indicators collected in this survey are anthropometric measurements,
which are used to calculate the height-for-age Z-score (HAZ). HAZ are standardized scores
which indicate the standard deviation from the mean of children’s heights based on the WHO
growth standards [24, 25] and are comparable across ages and sex. HAZ values below −2 are
taken as an indication of stunted growth.

One of the key WHO Global Nutrition Targets for 2025 is a 40% reduction in the number
of children under-5 who are stunted [22, 26]. Additionally, a stunting prevalence above 40% is
considered a high public health significance [27]. Accordingly, we aim to map the exceedance
probability of 40% stunting prevalence for a 2 year old who falls in the lowest wealth index
category and whose mother has poor education.

The data include information on children under 5 years old, with a total of 2671 sampled
children and 410 clusters, giving an average of 6.5 children per cluster. The continuous

2dhsprogram.com

11



outcome variable, Yij , is the HAZ for child j in cluster i. Figure 4 (a) shows the empirical
relationship between HAZ and age in years. Using a similar approach of the previous analysis,
we capture the non-linear relationship with a linear spline having knots at 1 and 2 years.
Hence, the resulting linear geostatistical model is

Yij = α+

3∑
h=1

βhbh(aij) + β4dij + β5eij + S(xi) + Zij , (14)

where: aij is the age of a child; the basis functions of the linear splines are b1(a) = a,
b2(a) = max{0, a−1} and b2(a) = max{0, a−2}; dij is a score of maternal education, taking
integer values from 1="Poorly educated" to 3="Highly educated"; eij is a wealth index of
the household, taking integer values from 1="Poor" to 3="Rich".

Figure 4: Figure (a) shows the spatial distribution of households included in the analysis, while
(b) shows the relationship between HAZ and age. The red dashed line in panel (b) corresponds to a

least square fit of the linear spline defined in (14).

The maximum likelihood estimates and associated 95% confidence intervals are shown in
Table 6. We also report that the estimates for σ2 and τ2 from the linear geostatistical model
are 0.071 (95% CI: 0.037, 0.126) and 1.396 (95% CI: 1.318, 1.477), respectively. Hence, the
estimated ratio τ2/σ2 is about 20, indicating that the data are substantially more noisy than
those analysed in the previous section. This is also reflected in the CLD metric yielding a
value of 9667.012 which is substantially larger than that reported for the anaemia analysis.
Following from the results of Section 3, this suggests that the effects of dichotomization on
geostatistical inference will also be stronger. We observe that the estimates of the regression
coefficients are concordant in sign but the size of the effects of the covariates are different as
indicated by the non-overlapping confidence intervals; as in the previous section, we observe
that the confidence intervals for the regression coefficients from the linear model are all nar-
rower. The estimated σ̃2 and φ are also substantially different, with the linear geostatistical
model providing lower estimates and narrower confidence intervals for both parameters.

The differences in the parameter estimates are also reflected in Figure 5 which shows
the predicted surfaces of stunting prevalence and the exceedance probabilities from the two
models. These predictions are for a for a 2 year old who falls in the lowest wealth index
category, and whose mother has poor education. Qualitatively, both models identify high
and low levels of prevalence in the same areas. However, the differences in the predicted
prevalence between the binomial model (Figure 5(a)) and the continuous model (Figure 5(b)),
range from -9.38% to 19.98% prevalence (Figure 5(c)). Most notably, the binomial model
presents much smoother maps than those from the linear model. For example, the binomial
model identifies a single large hot-pot in the eastern part of Ghana, as being highly likely to
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exceed 40%. The linear model, instead, shows three neighbouring hot-spots in the same area.
The differences in exceedance probabilities between the two models range from -51.50% to
64.90% (Figure 5(f))

Table 6: Maximum likelihood estimates with associated 95% confidence intervals (CI) for the
geostatistical models fitted to the data on childhood malnutrition.

Binomial model Linear model
Term Estimate 95% CI Estimate 95% CI
β̃1 0.772 (-0.002, 1.545) 0.554 (0.338, 0.771)
β̃2 0.774 (-0.331, 1.879) 0.168 (-0.168, 0.502)
β̃3 -1.942 (-2.463, -1.421) -0.830 (-1.024, -0.639)
β̃4 -0.721 (-1.174, -0.269) -0.139 (-0.239, -0.039)
β̃5 -0.444 (-0.666, -0.221) -0.259 (-0.332, -0.186)
σ̃2 0.256 (0.102, 0.528) 0.051 (0.026, 0.091)
φ 157.301 (59.706, 341.451) 51.899 (14.657, 136.232)
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Figure 5: Predicted stunting prevalence for a 2 year old who falls in the lowest wealth index
category and whose mother has poor education. Upper panels: prevalence surfaces from the

binomial model (a) and the continuous models (b), and the difference between the first and the
second (c). Lower panels: exceedance probabilities for a 40% prevalence threshold obtained from

the binary (d) and the continuous models (e), and their difference (f).

5 Discussion

Understanding of the effects of dichotomization of continuous outcomes is especially impor-
tant in medical research where cut-offs are used for diagnosis. These can be derived using
different approaches: empirical approaches, where thresholds are obtained through summary

13



statistics of measurements taken from healthy individuals; clinical approaches, which uti-
lize a specified threshold above which symptoms and complications become more frequent;
prognostic approaches, where a threshold is defined based on clinical results which may be
symptom-less but carry an adverse prognosis; or, finally, operational approaches, where a
threshold may be based on management and/or operational guidelines [1]. In this study, we
have investigated the effects of dichotomization in the context of geostatistical modelling of
disease prevalence data through a simulation study and two applications, and have proposed
a likelihood-based metric to quantify the potential loss informaiton arising from this practice.
All of these provided evidence that dichotomization of the data can lead to substantial loss
of information for both parameter estimation and spatial prediction. We found that spa-
tial correlation may alleviate the effects of dichotomization for parameter estimation but the
increase in uncertainty and bias still remained substantially larger than those of the linear
model. In particular, one of the key factors that more strongly affects the loss of accuracy
and precision is the distance of the threshold from the mean of the underlying process. As
such distance increases, both the bias and the MSE in the estimation of the mean component
and in the spatial predictions of prevalence also increase. Another important factor is the
magnitude of the noise variance τ2 relative to the signal variance σ2. This was especially
evident in the application of Section 4.1, where a τ2 about 20 times larger than σ2 led to the
loss of the fine scale features in the spatial pattern of disease prevalence.

As shown in the application of Section 4.1, when thresholds vary across individuals, these
should be accounted for in the model for binary data, an aspect that has been ignored in
previous studies of anaemia mapping. Also, this could be especially problematic if some of
the covariates on which the the cut-offs are based are missing (e.g. the pregnancy status of a
woman). An additional problem that arises in the context of anaemia epidemiology, is that
the cut-offs described in Table 4 are based on guidelines from 1992 and 2001 [2] which may
be subject to amendment as scientific research or clinical practices evolve.

We have only considered the case of a Gaussian distribution for the unstructured com-
ponent Zi. Assuming a symmetric distribution for Zi implies that, on average, misclassifica-
tions of individuals as false positives and false negatives balance out after dichotomization.
However, if Zi followed a skewed distribution, this could introduce additional bias in the
geostatistical model for binary data as more individuals could be misclassified as either false
positives or false negatives. Hence, we expect that under these scenarios the negative effects
of dichotomization on geostatistical inference would be even stronger than those shown in
this study.

It is important to note that in our study we compared the performance of binary and
linear geostatistical models for cut-offs that are dependent on the scale of the continuous
measurement. In other cases, the Yi may follow a mixture distribution with a probability
mass in zero. For example, malaria parasite density may exhibit this feature if a large
proportion of the general population has not been infected and is thus clear of parasites.
In this case dichotomization of the continuous outcome as Y ∗i = 1 if Yi > 0 and Y ∗i = 0
otherwise Yi = 0, would not lead to any loss of information.

A final remark relates to the computational burden of binary and linear geostatistical
models. The likelihood function of the latter can be, most of the times, expressed in closed
form, while the former requires numerical procedures based on analytical or Monte Carlo
approximations of the likelihood function in order to be fitted. Hence, the increase in the
computational burden is a further reason to avoid dichotomization of the data.

6 Conclusion

In the context of geostatistical inference, dichotomization of continuous outcomes can lead
to a substantial loss of efficiency for both parameter estimation and spatial prediction. Such
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loss is further compounded as cut-offs used for dichotomization are further away from the
mean. In addition, dichotomization can also result in the loss of fine scale features of disease
prevalence, especially in the presence of a large noise to signal ratio. The findings in this
study strongly support the conclusions drawn from previous studies that, whenever feasible,
dichotomization should be avoided by developing models for the continuous measurements
which can then be used to estimate prevalence.
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A Simulation study results for sample size m=450

Table A1: Bias and mean square error (in brackets) for α̃, σ̃2 and the estimate φ̂ obtained from
the geostatistical models fitted the binary (B) and continuous (C) outcomes. The following are

results when the number of observations, n = 450

c=0 c=0.2 c=0.4
Parameter τ2 φ B C B C B C

α̃ 0.5 0.1 -0.013 (0.090) -0.014 (0.056) 0.089 (0.216) 0.017 (0.068) 0.173 (0.180) 0.045 (0.085)
1 0.1 -0.007 (0.06) 0.001 (0.032) 0.081 (0.325) 0.019 (0.039) 0.159 (0.054) 0.034 (0.040)
2 0.1 -0.009 (0.031) -0.004 (0.017) 0.073 (0.448) 0.021 (0.019) 0.120 (0.128) 0.027 (0.022)
0.5 0.2 -0.030 (0.292) -0.029 (0.151) 0.100 (0.382) 0.013 (0.151) 0.228 (0.417) 0.023 (0.162)
1 0.2 -0.014 (0.169) -0.012 (0.077) 0.093 (0.401) 0.008 (0.071) 0.175 (0.167) 0.009 (0.079)
2 0.2 -0.006 (0.093) -0.001 (0.040) 0.079 (0.497) 0.011 (0.041) 0.156 (0.169) 0.015 (0.040)

σ̃2 0.5 0.1 0.603 (0.554) 0.735 (4.688) 0.624 (0.579) 0.747 (4.983) 0.570 (0.508) 0.780 (4.932)
1 0.1 0.289 (0.137) 0.543 (3.119) 0.297 (0.136) 0.679 (3.828) 0.274 (0.122) 0.508 (3.276)
2 0.1 0.125 (0.029) 0.417 (2.781) 0.112 (0.027) 0.462 (2.806) 0.107 (0.026) 0.446 (2.966)
0.5 0.2 1.096 (2.059) 0.289 (1.197) 1.120 (2.086) 0.387 (1.408) 1.078 (2.015) 0.230 (1.055)
1 0.2 0.566 (0.548) 0.131 (0.334) 0.565 (0.559) 0.133 (0.267) 0.533 (0.498) 0.105 (0.218)
2 0.2 0.252 (0.126) 0.100 (0.519) 0.243 (0.119) 0.116 (0.471) 0.228 (0.114) 0.075 (0.157)

φ 0.5 0.1 0.031 (0.002) 0.001 (0.001) 0.033 (0.002) 0.002 (0.001) 0.031 (0.002) 0.001 (0.001)
1 0.1 0.031 (0.002) 0.001 (0.002) 0.032 (0.002) -0.002 (0.001) 0.03 (0.002) 0.001 (0.002)
2 0.1 0.028 (0.002) 0.002 (0.002) 0.026 (0.002) 0.001 (0.002) 0.024 (0.002) 0.001 (0.003)
0.5 0.2 0.088 (0.018) -0.017 (0.004) 0.087 (0.017) -0.017 (0.005) 0.088 (0.018) -0.011 (0.005)
1 0.2 0.095 (0.021) -0.012 (0.007) 0.093 (0.019) -0.014 (0.006) 0.090 (0.018) -0.014 (0.006)
2 0.2 0.088 (0.020) -0.011 (0.010) 0.083 (0.018) -0.015 (0.009) 0.078 (0.017) -0.016 (0.009)

Table A2: Bias and mean square error (in brackets), averaged over a 1/14 by 1/14 regular grid in
[0, 2]× [0, 1] (hence, m = 450), for the spatial predictions of prevalence obtained from the

geostatistical models fitted to the binary (B) and continuous (C) outcomes.

c=0 c=0.2 c=0.4
τ2 φ B C B C B C
0.5 0.1 0.001 (0.053) 0.001 (0.038) 0.013 (0.053) 0.001 (0.037) 0.029 (0.051) 0.001 (0.036)
1 0.1 -0.001 (0.047) 0.001 (0.037) 0.019 (0.047) -0.001 (0.037) 0.034 (0.046) -0.001 (0.035)
2 0.1 -0.002 (0.037) -0.001 (0.032) 0.020 (0.037) 0.001 (0.032) 0.037 (0.036) -0.001 (0.031)
0.5 0.2 -0.001 (0.041) 0.001 (0.029) 0.012 (0.041) 0.001 (0.029) 0.026 (0.039) -0.001 (0.027)
1 0.2 0.001 (0.036) 0.001 (0.027) 0.017 (0.036) -0.001 (0.027) 0.032 (0.035) -0.001 (0.025)
2 0.200 -0.001 (0.029) 0.001 (0.022) 0.020 (0.029) -0.001 (0.022) 0.037 (0.029) -0.001 (0.021)
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