AIDSImpact SPECIAL ISSUE

1 The impact of common mental disorders among caregivers living with HIV 2 on child cognitive development in Zimbabwe 3 Helen Mebrahtu¹ (helen.mebrahtu.15@ucl.ac.uk); Prof. Lorraine Sherr¹ (l.sherr@ucl.ac.uk); 4 Dr Victoria Simms² (Victoria.Simms@LSHTM.ac.uk); Prof. Helen A. Weiss² 5 (Helen.Weiss@lshtm.ac.uk); Rudo Chingono³ (rudo@ceshhar.co.zw); Dr Andrea M. 6 Rehman² (Andrea.Rehman@lshtm.ac.uk); Patience Ndlovu⁴ (pndlovu@zw.worlded.org); 7 Prof. Frances M. Cowan^{4, 5}(Frances.Cowan@lstmed.ac.uk): 8 9 10 11 ¹ Institute of Global Health, University College London, UK. ²MRC Tropical Epidemiology 12 Group, London School of Hygiene and Tropical Medicine, UK. ³Centre for Sexual Health 13 HIV/AIDS Research (CeSHHAR) Zimbabwe. ⁴World Education Inc./Bantwana (WEI/B), 14 Zimbabwe. ⁵ Department of International Public Health, Liverpool School of Tropical 15 Medicine, UK. 16 17 18

- Corresponding author: H. Mebrahtu 19
- Correspondence details: University College London, Department of Global Health, Royal 20
- Free Hospital Campus, Rowland Hill St, London, NW3 2PF. 21

ABSTRACT

23

- 24 Common mental disorders (CMD) among caregivers living with HIV may affect their young
- 25 children. The aim of this paper is to analyse the impact of maternal CMD among caregivers
- 26 living with HIV on the cognitive functioning of their child.
- 27 Data were collected at baseline and 12 months follow-up from mother-child dyads recruited
- as part of an ongoing trial among participants on the HIV-exposed infant register from 2 rural
- 29 districts in Zimbabwe. Symptoms of CMD were assessed using the Shona Symptom
- Questionnaire (SSQ-8), with a cut-off point of \geq 6. Mixed-effects linear regression was used to
- 31 assess child cognitive scores at follow-up (assessed using the Mullen Scales of Early
- Learning) in relation to caregiver CMD prevalence over 12 months.
- Of the 574 caregivers enrolled in the trial, 514 (90.1%) were followed-up at 12 months. At
- baseline, caregivers reporting CMD (n=230; 40.1%) were less likely to have completed
- 35 higher education (46.9% vs. 56.9%; p=0.02), more likely to be unmarried (27.8% vs. 16.0%;
- p<0.01), and experience food insecurity (50.0% vs. 29.4%; p<0.01) compared to the group
- 37 without CMD (n=344).
- There were 4 CMD patterns over time: i) Emerging CMD (n=101; 19.7% of caregivers)
- defined as those who were below the cut-off at baseline, and above it at 12 months; ii)
- 40 Improving CMD (n=76; 14.8%) defined as those who reported CMD at baseline, and were
- below the cut-off by follow-up; iii) No CMD (n=206; 40.1%) defined as those who did not
- report CMD symptoms at either time point; and iv) Chronic CMD (n=131; 25.5%) defined as
- 43 those who reported CMD above the cut-off at both time points. There was no evidence of a
- 44 difference in the overall cognitive score of the children by caregiver CMD categories.
- 45 However, children of caregivers with chronic CMD (n=131, 25.5%) had lower receptive
- language scores (aMD:-2.81, 95%CI -5.1 to -0.6; p=0.05) compared to the reference group
- 47 with no CMD (n=206, 40.1%).
- 48 Exposure to caregiver CMD over a prolonged period may affect child receptive vocabulary
- 49 skills. This highlights the importance of the maternal mental health inclusion in HIV
- 50 management as well as in child intervention programmes especially in environments
- 51 compounded with adversities.

52

53

Word count: 351

- **Keywords:** Common mental disorders; Maternal depression; Child cognitive development;
- 55 HIV positive; Sub-Saharan Africa

58	Introduction
59	Maternal mental health is an important factor in healthy child development (Bennett, Schott,
60	Krutikova, & Behrman, 2016; Hadley, Tegegn, Tessema, Asefa, & Galea, 2008). There is
61	substantial evidence that maternal mental health can affect children in many domains,
62	including cognitive and socio-emotional development as well as their nutritional status
63	(Bennett et al., 2016; Stein et al., 2014; Surkan, Kennedy, Hurley, & Black, 2011).
64	Common mental disorder (CMD) is a term widely used to describe disorders such as
65	depression, anxiety, and somatic symptoms (Goldberg, 1992). Evidence from low-and
66	middle-income countries (LMIC) show that the children of mothers with CMD tend to have
67	worse growth, cognitive and language development, even when taking social adversity into
68	account (Cooper et al., 2009; Harpham, Huttly, De Silva, & Abramsky, 2005; Mekonnen et
69	al., 2018). The relationship between maternal anxiety-mood disorders and poor childhood
70	development is often exacerbated by low socioeconomic status (Bradley & Corwyn, 2002;
71	Hadley et al., 2008). A systematic review examining the link between poverty and CMD in
72	adults in LMIC reported that CMD is strongly associated with lower levels of education and
73	socio-economic status, rapid social change, violence and insecurity, particularly among
74	women in low resource settings (Lund et al., 2010). However, most studies in the review
75	were cross-sectional, thus making it difficult to draw clear conclusions regarding the
76	direction of the poverty-CMD relationship (Lund et al., 2010). This was supported by other
77	studies from Africa which highlight the association of CMD with caregiver income and level
78	of education (Chhagan et al., 2014) as well as child development (Hadley et al., 2008). The
79	likely mechanism is that poverty and food insecurity influence maternal anxiety and
80	depression and that these factors can be thought of as indirect contributors to children's
81	development, with the effect mediated by maternal mental health status (Hadley et al., 2008).
82	Persistence of maternal CMD over time seems to be particularly important in relation to child
83	cognitive development, especially in terms of language development (Quevedo et al., 2012).
84	A study in Brazil found that children of mothers who experienced chronic depression (post-
85	partum and 12 months later) had on average poorer language skills than the children who
86	were exposed to depression only at one time-point or not at all (Quevedo et al., 2012). Other
87	studies report the impact of maternal CMD on child development is influenced by the amount
88	of time the child is exposed to the adult with the disorder, the severity of maternal symptoms
89	and the time of exposure (Brennan et al., 2000; Sohr-Preston & Scaramella, 2006). Mothers
90	with chronic depression may compromise the level of care and quality of stimulation given to

91	their child, particularly in verbal interactions (Brennan et al., 2000). However, some studies
92	report no evidence of an association between infant developmental outcomes and the
93	presence of high levels of maternal CMD symptoms at more than one time-point (i.e.
94	chronic) even after adjusting for confounding variables such as infant undernutrition, birth
95	weight, prolonged labour and illness episodes (Servili et al., 2010).
96	Cross-sectional studies in LMIC show that maternal CMD such as depression are associated
97	with child language development in HIV-affected populations (Mebrahtu et al., 2018; Tse,
98	Rich-Edwards, Rifas-Shiman, Gillman, & Oken, 2010). There is also good evidence that HIV
99	is associated with an elevated mental health burden (Bernatsky, Souza, & Jong, 2007; Brandt,
100	2009; Egbe et al., 2017). However scant attention is paid to the mental health burden of the
101	mother living with HIV and the impact of prolonged exposure on child developmental
102	domains, especially during the early stages of development. There is also a need for more
103	evidence from LMIC settings investigating the impact of maternal CMD using locally
104	developed and validated assessment tools for such population. The association of maternal
105	CMD and child cognitive scores will be investigated in this longitudinal study.
106	Methods
107	Study sample
108	Data for this study were collected as part of a cluster-randomized controlled trial (The Child
109	Health Initiative for Developmental Outcomes-CHIDO [PACTR201701001387209]). Details
110	of the trial methods and outcome have been published previously (Chingono et al., 2018;
111	Mebrahtu et al., 2019).
112	In brief, mother-child dyads were recruited from catchment areas surrounding 30 clinics in 2
113	rural districts in Zimbabwe. All mothers with confirmed HIV positive status during
114	pregnancy who lived locally and had singleton births aged 0-24 months with no other chronic
115	illness were invited to enrol in the trial. All participants were provided with full information
116	and gave consent to participate in the study as well as consent for child participation.
117	Trial participants were assessed at baseline upon enrolment and followed up for 12 months
118	for re-assessment. This analysis includes all primary caregivers (i.e. biological mothers and
119	other caregivers) that completed mental health assessments at both time points as well as their
120	
	children. Given that the intervention of the trial had no significant effect on child cognitive

122 Measures

123	I)	Maternal measures
124	Socio-den	nographic information were collected on participant characteristics (age, marital
125	status), an	d socioeconomic factors (educational level, employment status, asset index score,
126	and numb	er of adults living in the household). A subset of questions from the Household
127	Food Inse	curity Access Scale (Coates, Swindale, & Bilinsky, 2007) was used to assess
128	household	food insecurity in the study. These were used to categorize households as: food
129	secure, mo	oderately insecure or severely insecure.
130	II)	Mental health measures
131	Common	mental disorder (CMD) symptoms were assessed using the locally developed and
132	validated 3	Shona Symptom Questionnaire (SSQ)-8 (Patel, Simunyu E Fau - Gwanzura,
133	Gwanzura	F Fau - Lewis, Lewis G Fau - Mann, & Mann, 1997). The short form is derived
134	from the le	onger SSQ-14 version. Scores range from 0-8, and scores 6 and above were used a
135	cut-off poi	int for identifying those diagnosed as suffering from CMD symptoms (Patel et al.,
136	1997). The	e longitudinal data was used to generate four groupings: i) caregivers with Emerging
137	CMD defi	ned as those who were below the cut-off at baseline, and above it at 12 months; ii)
138	Improving	g CMD defined as those who reported CMD at baseline, and were below the cut-off
139	by follow-	-up; iii) No CMD defined as those who did not report CMD at either time point; and
140	iv) Chroni	ic CMD defined as those who reported CMD above the cut-off at both time points.
141	The EPDS	S, a postpartum depression-screening questionnaire (with scores ranging from 0-30),
142	which has	also been validated in Zimbabwe (Chibanda et al., 2010) was administered to
143	participati	ng mothers (Chibanda et al., 2010; Cox, Holden, & Sagovsky, 1987). A cut-off
144	point (<u>≥</u> 12	2) was used for identifying participants with high depressive symptoms. The
145	Parental S	tress Index-Short Form (PSI-SF), a self-completed screening tool was used for
146	identifying	g different types of stress associated with parenting (Abidin, 1995). This index
147	comprises	3 subscales which combine to give a Total Stress Score ranging from 40-149.
148	III)	Child assessment measures
149	Child cog	nitive development was assessed using the Mullen Scales of Early Learning (M. J.
150	Boivin, Na	akasujja, Sikorskii, Opoka, & Giordani, 2016; Mullen, 1995). The Mullen scale
151	assesses c	hild abilities in different developmental domains including gross motor skills,
152	visual rece	eption, fine motor skills, receptive language, and expressive language (Mullen,

153	1995). The Mullen scales were administered to all children in the standardized format at
154	enrolment and 12 months later. The test scores obtained by the children for each Mullen scale
155	were transformed into an age-standardized T-score, using a US reference population as there
156	was no local Zimbabwean reference population on this index. The Mullen scales have been
157	used in several settings in Africa (Bass et al., 2016; Michael J. Boivin et al., 2013a, 2013b;
158	Bornman et al., 2018; Brahmbhatt et al., 2017; Mireku et al., 2016; Ruiseñor-Escudero et al.,
159	2016). The standardized T-scores of four components - the fine motor, expressive language,
160	receptive language, and visual perception scales are combined to produce the Early Learning
161	Composite (ELC) score. Composite scores were used in this analysis to measure general
162	cognitive functioning. Gross motor scale was not included in the ELC score and was used
163	separately as an indicator concentrating on their motor skills (Akshoomoff, 2006; Mullen,
164	1995).
165	Statistical analysis
166	Student's t-test, and Pearson's chi square were used to compare characteristics of participants
167	by CMD symptoms. Characteristics of the sample were described using means, standard
168	deviations (SD), frequencies and percentages.
169	Mixed-effects linear regression was used to compare child cognitive outcomes by caregiver
170	CMD over 12 months. Data were pooled for this analysis as there was no evidence of
171	differences in child cognitive outcomes by trial arm. Adjusted mean differences were
172	reported comparing the mean children's cognitive scores at follow-up by caregiver's CMD
173	categories. Models were adjusted for baseline Mullen scores and tested confounding variables
174	(household food insecurity and the code for the person conducting Mullen assessments).
175	Clustering within study sites was accounted for by incorporating a random effect for cluster
176	in all models. All analysis was conducted using STATA v.15.1 (StataCorp LP, College
177	Station, Texas, USA).
178	Ethical approval
179	The study was approved by the Medical Research Council of Zimbabwe (MRCZ/A/1943),
180	University College London (6789/002) and the London School of Hygiene and Tropical
181	Medicine (9912). All participants were provided with full information and gave consent to
101	Medicine (9912). An participants were provided with full information and gave consent to

184	Results
185	Sample characteristics at baseline
186	At baseline, all 574 caregivers enrolled in the trial completed the assessments, with 230
187	(40.1%) caregivers scoring above the cut-off for CMD on the SSQ-8 scale (Table 1).
188	The mean age of the mothers (n=562) was 31.9 years (SD=6.9), 52.9% had completed
189	secondary level of education and above, over three quarters were married (79.3%), and
190	36.6% reported being formally or informally employed. The mean household size was 5.2
191	(SD=1.8), and 37.6% reported moderate to severe hunger in the household. Over half the
192	women (53.0%) were diagnosed with HIV before their pregnancy and were aware of their
193	status prior to conception with the remainder diagnosed during antenatal care.
194	There was no evidence of differences by trial arm allocation in baseline prevalence of CMD
195	among the caregivers (48.7% reported CMD in the intervention arm vs. 51.3% control arm;
196	p=0.92). However, CMD symptoms were associated with caregivers' education level, marital
197	status, food insecurity, child cognitive scores, and parental stress and depression symptoms
198	(Table 1). Caregivers with CMD were less likely to have completed higher education (46.9%
199	vs. 56.9%; p=0.02), more likely to be unmarried (27.8% vs. 16.0%; p<0.01), and more likely
200	to live in households with moderate to severe hunger (50.0% vs. 29.4%; p<0.01) compared to
201	the group with no CMD. Caregivers with CMD also experienced elevated parental stress
202	(PSI-SF mean- 93.1 vs. 79.4; p<0.01) and post-natal depression symptoms (EPDS mean- 16.2
203	vs. 8.3; p<0.01).
204	Insert Table 1 here
205	Caregiver CMD symptoms change over 12 months
206	Of the 574 caregivers who completed the baseline assessments, 90.1% (n= 514) completed a
207	follow-up survey after 12 months. Of the 514 caregivers, the largest proportion (n=206;
208	40.1%) did not report CMD at baseline or 12 months follow-up. However, 131 (25.5%)
209	caregivers reported chronic CMD. There were 101 (19.7%) caregivers reporting emerging
210	CMD and 76 (14.8%) reporting improvement in CMD symptoms (Figure 1).
211	Insert Figure 1 here
212	Caregiver CMD symptoms and child outcome

The mean Mullen scores of the children by caregiver CMD categories are shown in Figure 2.

Children of the chronic group tend to have lower scores across the developmental sub-scales.

Results of the multivariable regression models show no evidence of a difference in the overall cognitive score of the children by caregiver CMD categories (Tables 2 and 3). However, there was evidence of a difference in receptive language comparing children of caregivers with chronic CMD (adjusted mean difference (aMD) -2.81, 95%CI: -5.1 to -0.6; p=0.05) to the children of caregivers without CMD at either time point.

Insert Figure 2 here

220

221

Insert Tables 2 and 3 here

Discussion 222 223 The prevalence of CMD symptoms at baseline was high (40%) in the study sample, and was associated with lower education level, marital status, and food insecurity. CMD scores above 224 the cut-off were also negatively associated with child receptive vocabulary. The findings of 225 this study are consistent with previous studies that show caregivers who report mental 226 disorders were more likely to have no source of income (from informal employment or social 227 services) and have less formal education than other caregivers (Chhagan et al., 2014; 228 229 Tomlinson, Grimsrud At Fau - Stein, Stein Dj Fau - Williams, Williams Dr Fau - Myer, & Myer, 2009; Williams et al., 2008), leading to household food insecurity. It is unclear 230 231 whether these harsh living conditions drive poor mental health, or whether those with poor mental health gravitate towards social deprivation such as unemployment, school dropout and 232 233 food insecurity. For all these mothers HIV was an additional factor which may contribute to the complex cycle of poor mental health and social deprivation. It is well established that 234 235 there is a profound mental health burden of HIV (Myer et al., 2008; Tomlinson et al., 2009). Those with mental health problems are more likely to become infected in the first place, and 236 237 the demands of living with a life threatening health condition, often stigma bound, may negatively affect mental health (Sherr, Cluver, et al., 2014; Whetten, Reif, Whetten, & 238 Murphy-McMillan, 2008). Poor maternal mental health such as chronic or recurrent maternal 239 depression may affect child development and especially when it occurs in the context of 240 adversity such as poverty and dealing with HIV illness as experienced by this study 241 population (Grace, Evindar, & Stewart, 2003); this was evident in the results of this study. 242 There is further evidence in the literature on the effect of chronic maternal depression on 243 child development (McLearn, Minkovitz, Strobino, Marks, & Hou, 2006). Mothers suffering 244

245 from chronic CMDs might be engaging less in early child stimulation practices and verbally interacting less with their children compared to the reference group (Brennan et al., 2000). 246 This could explain the low language scores reported by the children of the chronic CMD 247 group. However, contrary to the findings here, a cross-sectional study examining maternal 248 CMD in rural Ethiopia reported that maternal symptoms of CMD were associated with both 249 child global development and most developmental sub-scales except for language domain 250 (Hadley et al., 2008). Another study reported mothers with chronic depressive symptoms 251 were more likely to engage in parenting behaviours associated with child health and 252 253 development than mothers with depressive symptoms at only 1 time or not at all (McLennan & Kotelchuck, 2000). 254 Of importance, it is difficult to disentangle anxiety and depression symptoms in patients 255 256 experiencing CMDs. A study in Ethiopia reported that when symptoms of mental disorders 257 were separated into high symptoms of depression and anxiety, depression was responsible for 258 the association observed between overall child developmental scores and maternal symptoms of CMD (Hadley et al., 2008). There is usually an overlap between the two categories (i.e. 259 depression and anxiety symptoms), with symptoms reported by patients in each category 260 being highly related. Nonetheless, this is important to help tailor mental health care for HIV 261 positive mothers and ensure their children reach their potential. Of note, the SSQ-8 tool used 262 in this study measures the risk of CMD and is not diagnostic. Additionally, when being used 263 in HIV positive individuals, the items in the SSQ-14 (Patel et al., 1997) (longer version of 264 SSQ-8) identify many somatic symptoms which can be associated with HIV infection rather 265 than CMD- although it has also been validated in HIV positives. 266 267 Strengths of the study include the large sample size which was representative of the study population and the high follow-up rate over 12 months. The majority of studies of maternal 268 269 mental health and child development use cross-sectional data, are based in high-income countries and focus specifically on maternal depressive symptoms. The use of locally 270 271 validated CMD assessment tool and longitudinal data allowed for an in-depth examination of CMD over time for this group of women living with HIV. This study highlights the effect of 272 prolonged maternal CMD (over 12 months) exposure on a child's language acquisition skills. 273 The findings here also provide valuable information on the characteristics of HIV positive 274 275 mothers at risk of common mental disorders in rural settings.

Limitations include that the data for this analysis were collected as part of a trial. Although
the trial did not show differences in cognitive development over time which allowed us to
pool the data, there may have been some intervention exposure considerations that were
missed. It was not possible to differentiate depression symptoms and anxiety when assessing
caregiver's mental health using the SSQ-8 scale. Additionally, it was difficult to separate the
reciprocal impact of maternal mental disorders and child development and establish a direct
causal pathway. It is well documented that both HIV infected, and HIV exposed uninfected
children may experience cognitive delay (Blanchette, Smith, Fernandes-Penney, King, &
Read, 2001; Gay et al., 1995; Hutchings & Potterton, 2013; Sherr, Croome, Parra Castaneda,
Bradshaw, & Herrero Romero, 2014; Van Rie, Mupuala, & Dow, 2008). Although HIV
status was controlled for in the analysis, the direction of the CMD cannot be categorically
ascertained. It may well be that observing a child with developmental challenges affects the
mood of a mother - herself diagnosed with HIV either before conception or during
pregnancy. Future studies would benefit from a longer follow-up period to assess child
development over time.
In settings of high HIV prevalence and poverty, the concurrent common mental health burden
needs urgent recognition and prioritization, given what is known about the impact of maternal
depression on child language development. When considering public health policy and
interventions in other LMIC with similar resource constraints the social or contextual factors
contributing to caregiver mental health should be of high relevance (Chhagan et al., 2014).
Interventions should be tailored to address such mental health challenges. This study aimed to
examine the impact of duration, and severity of CMDs on child cognition. The consistent
association between chronic CMD and child development observed here serves to strengthen
the case for the inclusion of maternal mental health on the agenda of child intervention
programmes and centre of postnatal care, especially in environments compounded with
adversities.

Word count: 3,000

304	Acknowledgements
305	We would like to thank our various partners USAID-PEPFAR, the PEPFAR OVC Technical
306	Working Group, CeSHHAR, and World Education Zimbabwe (project implementing
307	partner). We would also like to thank the families and children who participated in the trial.
308	Funding details
309	The funding partners for the study are USAID-PEPFAR, funded under the Orphans and
310	Vulnerable Children Special Initiative.
311	Declaration of interest statement
312	The authors declare that they have no competing interests.
313	

References

- Abidin, R. R. (1995). Parenting Stress Index, Third Edition: Professional Manual. In. Odessa, FL:

 Psychological Assessment Resources, Inc.
- Akshoomoff, N. (2006). Use of the Mullen Scales of Early Learning for the assessment of young children with Autism Spectrum Disorders. *Child Neuropsychol, 12*(4-5), 269-277. doi:10.1080/09297040500473714
 - Bass, J. K., Nakasujja, N., Familiar-Lopez, I., Sikorskii, A., Murray, S. M., Opoka, R., . . . Boivin, M. J. (2016). Association of caregiver quality of care with neurocognitive outcomes in HIV-affected children aged 2-5 years in Uganda. *AIDS Care, 28 Suppl 1*, 76-83. doi:10.1080/09540121.2016.1146215
 - Bennett, I. M., Schott, W., Krutikova, S., & Behrman, J. R. (2016). Maternal mental health, and child growth and development, in four low-income and middle-income countries. *Journal of Epidemiology and Community Health*, 70(2), 168. doi:10.1136/jech-2014-205311
 - Bernatsky, S., Souza, R., & Jong, K. d. (2007). Mental health in HIV-positive pregnant women: results from Angola. *AIDS Care*, 19(5), 674-676.
 - Blanchette, N., Smith, M., Fernandes-Penney, A., King, S., & Read, S. (2001). *Cognitive and Motor Development in Children with Vertically Transmitted HIV Infection*.
 - Boivin, M. J., Bangirana, P., Nakasujja, N., Page, C. F., Shohet, C., Givon, D., . . . Klein, P. S. (2013a). A Year-Long Caregiver Training Program Improves Cognition in Preschool Ugandan Children with Human Immunodeficiency Virus. *J Pediatr*, *163*(5), 1409-1416.e1405. doi:https://doi.org/10.1016/j.jpeds.2013.06.055
 - Boivin, M. J., Bangirana, P., Nakasujja, N., Page, C. F., Shohet, C., Givon, D., . . . Klein, P. S. (2013b). A year-long caregiver training program to improve neurocognition in preschool Ugandan HIV-exposed children. *Journal of developmental and behavioral pediatrics : JDBP, 34*(4), 269-278. doi:10.1097/DBP.0b013e318285fba9
 - Boivin, M. J., Nakasujja, N., Sikorskii, A., Opoka, R. O., & Giordani, B. (2016). A Randomized Controlled Trial to Evaluate if Computerized Cognitive Rehabilitation Improves Neurocognition in Ugandan Children with HIV. *Aids Research and Human Retroviruses, 32*(8), 743-755. doi:10.1089/aid.2016.0026
 - Bornman, J., Romski M Fau Tonsing, K., Tonsing K Fau Sevcik, R., Sevcik R Fau White, R., White R Fau Barton-Hulsey, A., Barton-Hulsey A Fau Morwane, R., & Morwane, R. (2018). Adapting and translating the Mullen Scales of Early Learning for the South African context. *S Afr J Commun Disord.*, *65*(1), e1-e9.
 - Bradley, R. H., & Corwyn, R. F. (2002). Socioeconomic status and child development. *Annu Rev Psychol.*, *53*, 371-399.
 - Brahmbhatt, H., Boivin, M., Ssempijja, V., Kagaayi, J., Kigozi, G., Serwadda, D., . . . Gray, R. H. (2017). Impact of HIV and Atiretroviral Therapy on Neurocognitive Outcomes Among School-Aged Children. *Jaids-Journal of Acquired Immune Deficiency Syndromes, 75*(1), 1-8. Retrieved from <Go to ISI>://000399376500008
 - Brandt, R. (2009). The mental health of people living with HIV/AIDS in Africa: a systematic review. African Journal of AIDS Research, 8(2), 123-133. doi:10.2989/ajar.2009.8.2.1.853
 - Brennan, P. A., Hammen C Fau Andersen, M. J., Andersen Mj Fau Bor, W., Bor W Fau Najman, J. M., Najman Jm Fau Williams, G. M., & Williams, G. M. (2000). Chronicity, severity, and timing of maternal depressive symptoms: relationships with child outcomes at age 5. *Dev Psychol.*, 36(6), 759-766.
 - Chhagan, M. K., Mellins, C. A., Kauchali, S., Craib, M. H., Taylor, M., Kvalsvig, J. D., & Davidson, L. L. (2014). Mental health disorders among caregivers of preschool children in the Asenze study in KwaZulu-Natal, South Africa. *Matern Child Health J*, 18(1), 191-199. doi:10.1007/s10995-013-1254-5
- Chibanda, D., Mangezi, W., Tshimanga, M., Woelk, G., Rusakaniko, P., Stranix-Chibanda, L., . . .

 Shetty, A. K. (2010). Validation of the Edinburgh Postnatal Depression Scale among women

- in a high HIV prevalence area in urban Zimbabwe. *Arch Womens Ment Health, 13*(3), 201-206. doi:10.1007/s00737-009-0073-6
- Chingono, R., Mebrahtu, H. A.-O. h. o. o., Mupambireyi, Z., Simms, V., Weiss, H. A., Ndlovu, P., . . .

 Sherr, L. (2018). Evaluating the effectiveness of a multi-component intervention on early childhood development in paediatric HIV care and treatment programmes: a randomised controlled trial. *BMC Pediatr.*, 18(1), 222.
 - Coates, J., Swindale, A., & Bilinsky, P. (2007). Household Food Insecurity Access Scale (HFIAS) for Measurement of Food Access: Indicator Guide (v3). In. Washington, DC: FHI 360/FANTA-2.
 - Cooper, P. J., Tomlinson, M., Swartz, L., Landman, M., Molteno, C., Stein, A., . . . Murray, L. (2009). Improving quality of mother-infant relationship and infant attachment in socioeconomically deprived community in South Africa: randomised controlled trial. *BMJ (Clinical research ed.)*, 338, b974. doi:10.1136/bmj.b974. (Accession No. 19366752)
 - Cox, J. L., Holden, J. M., & Sagovsky, R. (1987). Detection of postnatal depression. Development of the 10-item Edinburgh Postnatal Depression Scale. *The British Journal of Psychiatry, 150*, 782-786.
 - Egbe, C. O., Dakum, P. S., Ekong, E., Kohrt, B. A., Minto, J. G., & Ticao, C. J. (2017). Depression, suicidality, and alcohol use disorder among people living with HIV/AIDS in Nigeria. *BMC Public Health*, *17*(1), 542. doi:10.1186/s12889-017-4467-5
 - Gay, C., Armstrong, D., Cohen, D., Lai, S., Hardy, M., Swales, T., . . . Scott, G. (1995). The Effects of HIV on Cognitive and Motor Development in Children Born to HIV-Seropositive Women With No Reported Drug Use: Birth to 24 Months. *Pediatrics*, *96* (6).
 - Goldberg, D. (1992). Common mental disorders: a biosocial model.

- Grace, S. L., Evindar, A., & Stewart, D. E. (2003). The effect of postpartum depression on child cognitive development and behavior: A review and critical analysis of the literature. *Archives of Women's Mental Health*, *6*(4), 263-274. doi:10.1007/s00737-003-0024-6
- Hadley, C., Tegegn, A., Tessema, F., Asefa, M., & Galea, S. (2008). Parental symptoms of common mental disorders and children's social, motor, and language development in sub-Saharan Africa. *Annals of Human Biology*, 35(3), 259-275. doi:10.1080/03014460802043624
- Harpham, T., Huttly, S., De Silva, M. J., & Abramsky, T. (2005). Maternal mental health and child nutritional status in four developing countries. *Journal of Epidemiology and Community Health*, *59*(12), 1060-1064. doi:10.1136/jech.2005.039180
- Hutchings, J., & Potterton, J. (2013). Developmental delay in HIV-exposed infants in Harare, Zimbabwe. *Vulnerable Children and Youth Studies*, *9*(1), 43-55. doi:10.1080/17450128.2013.778440
- Lund, C., Breen, A., Flisher, A. J., Kakuma, R., Corrigall, J., Joska, J. A., . . . Patel, V. (2010). Poverty and common mental disorders in low and middle income countries: A systematic review. *Social Science & Medicine*, 71(3), 517-528. doi:https://doi.org/10.1016/j.socscimed.2010.04.027
- McLearn, K. T., Minkovitz, C. S., Strobino, D. M., Marks, E., & Hou, W. (2006). The Timing of Maternal Depressive Symptoms and Mothers' Parenting Practices With Young Children: Implications for Pediatric Practice. *Pediatrics*, 118(1), e174. doi:10.1542/peds.2005-1551
- McLennan, J. D., & Kotelchuck, M. (2000). Parental prevention practices for young children in the context of maternal depression. *Pediatrics.*, 105(5), 1090-1095.
- Mebrahtu, H., Simms, V., Chingono, R., Mupambireyi, Z., Weiss, H., Ndlovu, P., . . . Sherr, L. (2018). Postpartum maternal mental health is associated with cognitive development of HIV-exposed infants in Zimbabwe: a cross-sectional study. *AIDS Care, 30*(sup2), 74-82. doi:10.1080/09540121.2018.1468015
- Mebrahtu, H., Simms, V., Mupambireyi, Z., Rehman, A., Chingono, R., Matsikire, E., . . . Sherr, L.
 (2019). Supporting caregivers through parenting classes and economic strengthening to
 improve the cognition of HIV-exposed infants in rural Zimbabwe: the CHIDO pragmatic
 cluster randomised controlled trial. BMJ Global Health

- Mekonnen, H., Medhin, G., Tomlinson, M., Alem, A., Prince, M., & Hanlon, C. (2018). Impact of maternal common mental disorders on child educational outcomes at 7 and 9 years: a population-based cohort study in Ethiopia. *BMJ open, 8*(1), e018916. doi:10.1136/bmjopen-2017-018916. (Accession No. 29358435)
- Mireku, M. O., Davidson, L. L., Boivin, M. J., Zoumenou, R., Massougbodji, A., Cot, M., & Bodeau Livinec, F. (2016). Prenatal Iron Deficiency, Neonatal Ferritin, and Infant Cognitive Function.
 Pediatrics, 138(6), e20161319. doi:10.1542/peds.2016-1319
- 422 Mullen, E. M. (1995). *Mullen scales of early learning*: AGS Circle Pines, MN.

- Myer, L., Smit J Fau Roux, L. L., Roux Ll Fau Parker, S., Parker S Fau Stein, D. J., Stein Dj Fau Seedat, S., & Seedat, S. (2008). Common mental disorders among HIV-infected individuals in
 South Africa: prevalence, predictors, and validation of brief psychiatric rating scales. AIDS
 Patient Care STDS., 22(2), 147-158.
 - Patel, V., Simunyu E Fau Gwanzura, F., Gwanzura F Fau Lewis, G., Lewis G Fau Mann, A., & Mann, A. (1997). The Shona Symptom Questionnaire: the development of an indigenous measure of common mental disorders in Harare. *Acta Psychiatr Scand.*, *95*(6), 469-475.
 - Quevedo, L. A., Silva, R. A., Godoy, R., Jansen, K., Matos, M. B., Tavares Pinheiro, K. A., & Pinheiro, R. T. (2012). The impact of maternal post-partum depression on the language development of children at 12 months. *Child: Care, Health and Development, 38*(3), 420-424. doi:10.1111/j.1365-2214.2011.01251.x
 - Ruiseñor-Escudero, H., Familiar-Lopez, I., Sikorskii, A., Jambulingam, N., Nakasujja, N., Opoka, R., . . . Boivin, M. (2016). Nutritional and Immunological Correlates of Memory and Neurocognitive Development Among HIV-Infected Children Living in Kayunga, Uganda. *Journal of acquired immune deficiency syndromes (1999), 71*(5), 522-529. doi:10.1097/qai.000000000000000005
 - Servili, C., Medhin, G., Hanlon, C., Tomlinson, M., Worku, B., Baheretibeb, Y., . . . Prince, M. (2010). Maternal common mental disorders and infant development in Ethiopia: the P-MaMiE Birth Cohort. *BMC Public Health*, *10*(1), 693. doi:10.1186/1471-2458-10-693
 - Sherr, L., Cluver, L., Betancourt, T., Kellerman, S., Richter, L., & Desmond, C. (2014). Evidence of impact: Health, psychological and social effects of adult HIV on children. *AIDS*, *28*(SUPPL. 3), S251-S259. doi:10.1097/qad.0000000000000327
 - Sherr, L., Croome, N., Parra Castaneda, K., Bradshaw, K., & Herrero Romero, R. (2014).

 Developmental challenges in HIV infected children—An updated systematic review. *Children and Youth Services Review, 45*, 74-89.

 doi:http://dx.doi.org/10.1016/j.childyouth.2014.03.040
 - Siegfried, N., Muller, M., Deeks, J. J., & Volmink, J. (2009). Male circumcision for prevention of heterosexual acquisition of HIV in men. *Cochrane Database Syst Rev,* 15(2).
 - Siegfried, N., van der Merwe, L., Brocklehurst, P., & Sint, T. T. (2011). Antiretrovirals for reducing the risk of mother-to-child transmission of HIV infection. *Cochrane Database Syst Rev, 6*(7).
 - Sohr-Preston, S. L., & Scaramella, L. V. (2006). Implications of timing of maternal depressive symptoms for early cognitive and language development. *Clin Child Fam Psychol Rev.*, *9*(1), 65-83.
 - Stein, A., Pearson, R. M., Goodman, S. H., Rapa, E., Rahman, A., McCallum, M., . . . Pariante, C. M. (2014). Effects of perinatal mental disorders on the fetus and child. *The Lancet, 384*(9956), 1800-1819. doi:https://doi.org/10.1016/S0140-6736(14)61277-0
 - Surkan, P. J., Kennedy, C. E., Hurley, K. M., & Black, M. M. (2011). Maternal depression and early childhood growth in developing countries: systematic review and meta-analysis. *Bull World Health Organ*, 89(8), 608-615. doi:10.2471/BLT.11.088187
 - Tomlinson, M., Grimsrud At Fau Stein, D. J., Stein Dj Fau Williams, D. R., Williams Dr Fau Myer, L., & Myer, L. (2009). The epidemiology of major depression in South Africa: results from the South African stress and health study. (0256-9574 (Print)).

464 Tse, A. C., Rich-Edwards, J. W., Rifas-Shiman, S. L., Gillman, M. W., & Oken, E. (2010). Association of 465 maternal prenatal depressive symptoms with child cognition at age 3 years. Paediatric and 466 Perinatal Epidemiology, 24(3), 232-240. doi:10.1111/j.1365-3016.2010.01113.x 467 Van Rie, A., Mupuala, A., & Dow, A. (2008). Impact of the HIV/AIDS Epidemic on the 468 Neurodevelopment of Preschool-Aged Children in Kinshasa, Democratic Republic of the 469 Congo. Pediatrics, 122(1), e123-e128. doi:10.1542/peds.2007-2558 470 Volmink, J., Siegfried, N. L., van der Merwe, L., & Brocklehurst, P. (2007). Antiretrovirals for reducing 471 the risk of mother-to-child transmission of HIV infection. Cochrane Database Syst Rev, 24(1). 472 Whetten, K., Reif, S., Whetten, R., & Murphy-McMillan, L. (2008). Trauma, mental health, distrust, 473 and stigma among HIV-positive persons: implications for effective care. Psychosom Med., 474 70(5), 531-538. 475 Williams, D. R., Herman, A., Stein, D. J., Heeringa, S. G., Jackson, P. B., Moomal, H., & Kessler, R. C. 476 (2008). Twelve-month mental disorders in South Africa: prevalence, service use and 477 demographic correlates in the population-based South African Stress and Health Study. 478 Psychological medicine, 38(2), 211-220. doi:10.1017/S0033291707001420 479

180	List of tables
181	Table 1: Caregiver demographic, socioeconomic, reproductive, mental health characteristics
182	and child cognitive development by CMD symptoms at baseline
183	Table 2: Mullen T-scores of children at 12 months follow-up by caregiver CMD categories
184	Table 3: Association of caregiver CMD over time with child Mullen scores at 12 months
185	
186	List of figures
187 188	Figure 1: Categories of change in CMD symptoms reported using the SSQ-8 from enrolment to 12 months
189	Figure 2: Child Mullen scores at 12 months by caregiver common mental disorder categories

	T	T	T =	
Little to no hunger	243 (70.6)	115 (50.0)	358 (62.4)	
Moderate to severe	101 (29.4)	115 (50.0)	216 (37.6)	
hunger				
Asset Index score (terciles), n				0.08
(%)				
Low	108 (31.4)	84 (36.5)	192 (33.5)	
Middle	109 (31.7)	82 (35.7)	191 (33.3)	
High	127 (36.9)	64 (27.8)	191 (33.3)	
Tested for HIV, n (%)				0.36
Before pregnancy	186 (54.6)	116 (50.7)	302 (53.0)	
During or following	155 (45.5)	113 (49.3)	268 (47.0)	
pregnancy				
Child cognitive development				
at baseline (Mullen scales),				
mean (SD)				
Expressive Language	53.8 (11.0)	51.2 (10.4)	52.8 (10.8)	<0.01
Fine Motor	52.0 (11.2)	48.6 (11.7)	50.7 (11.5)	<0.01
Gross Motor	51.0 (10.6)	49.6 (11.3)	50.5 (10.9)	0.13
Receptive Language	48.8 (11.3)	45.7 (11.8)	47.6 (11.6)	<0.01
Visual reception	55.0 (12.4)	50.2 (12.8)	53.1 (12.7)	<0.01
Early Learning	104.9 (17.2)	98.3 (18.6)	102.3 (18.0)	<0.01
Composite Score				
Parental Stress Index at				
baseline, mean (SD)				
Parental distress	29.2 (6.5)	36.2 (7.1)	32.0 (7.6)	<0.01
Difficult child	26.6 (5.8)	30.8 (6.8)	28.2 (6.6)	<0.01
Parent-child	23.6 (5.5)	26.0 (6.6)	24.6 (6.0)	<0.01
dysfunction				
Total Stress score	79.4 (13.8)	93.1 (16.2)	84.9 (16.2)	<0.01
	<u> </u>			

EPDS at baseline , mean (SD)	8.3 (5.4)	16.2 (5.0)	11.5 (6.5)	< 0.01

EPDS: The Edinburgh postnatal depression scale| SSQ-8: Shona Symptom Questionnaire| CMD: 492 493

common mental health disorder

^ Relationship status variable was recoded to married/not married during analysis

SSQ-8 cut-off points (No CMD=scores 0-5/ CMD = 6-8 scores)

495 496

Figure 1: Categories of change in CMD symptoms reported using the SSQ-8 from enrolment to 12 months

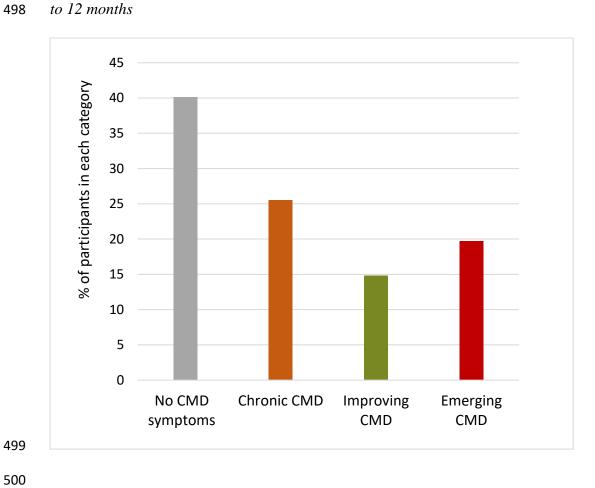


Table 2: Mullen T-scores of children at 12 months follow-up by caregiver CMD categories

Mullen Scales	No	Chronic CMD	Improving CMD	Emerging CMD
(T-scores)	CMD	(n=131)	(n=76)	(n=101)
	symptoms			
	(n=206)			
		Me	ean (SD)	
Expressive language	45.8 (9.1)	44.4 (10.5)	43.6 (8.8)	45.8 (8.9)
Receptive language	47.2 (10.1)	43.8 (11.1)	45.9 (9.2)	43.9 (9.4)
Fine Motor	42.4 (11.3)	39.6 (9.8)	40.9 (11.5)	42.1 (10.9)
Gross Motor ^	50.4 (11.0)	47.7 (13.2)	47.1 (11.5)	50.0 (9.2)
Visual reception	43.4 (10.8)	40.5 (10.7)	42.2 (12.3)	41.7 (10.7)
Early learning	90.0 (15.4)	85.2 (16.0)	87.1 (15.0)	87.5 (14.6)
composite score				

[^]Only measured in children aged <36 months at follow-up (n=397)

502

Page 23 of 24

Table 3: Association of caregiver CMD over time with child Mullen scores at 12 months

Mullen	No	Chronic CMD	Improving CMD	Emerging CMD	P
Scales	CMD	(n=131)	(n=76)	(n=101)	value
(T-scores)	symptoms				*
	(n=206)				
		Adjus	ted mean difference (95	5% CI)	
Expressive Language	Ref	-0.48 (-2.99 to 1.28)	-0.71 (-3.32 to 1.90)	1.60 (-0.72 to 3.92)	0.33
Receptive Language	Ref	-2.81 (-5.07 to -0.56)	0.24 (-2.45 to 2.92)	-1.66 (-4.05 to 0.74)	0.05
Fine Motor	Ref	-0.87 (-3.40 to 1.67)	1.40 (-1.58 to 4.38)	1.82 (-0.83 to 4.48)	0.24
Gross Motor^	Ref	-0.77 (-3.83 to 2.30)	-1.40 (-4.86 to 2.08)	0.30 (-2.98 to 3.58)	0.81
Visual reception	Ref	-0.96 (-3.49 to 1.57)	1.85 (-1.05 to 4.75)	-0.06 (-2.55 to 2.67)	0.35
Early Learning Composite Score	Ref	-2.86 (-6.34 to 0.62)	1.13 (-2.87 to 5.12)	0.09 (-3.46 to 3.63)	0.23

^{*}Model adjusted for baseline Mullen scores, household food insecurity, clustering of trial sites and

⁵⁰⁹ examiner

[^]Only measured in children aged <36 months at follow-up (n=397)