

Kay, R; (1976) Regression Models and the Analysis of Censored Survival Data. PhD thesis, London School of Hygiene \& Tropical Medicine. DOI: https://doi.org/10.17037/PUBS. 04656148

Downloaded from: https://researchonline.lshtm.ac.uk/id/eprint/4656148/
DOI: https://doi.org/10.17037/PUBS. 04656148

Usage Guidelines:

Please refer to usage guidelines at https://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license. To note, 3rd party material is not necessarily covered under this license: http://creativecommons.org/licenses/by-nc-nd/3.0/

my
Micherd Kiny 目. Ite. M.Be.

Thati mukitead for the Ph.D. degreen of Lemoso Uaiveraizy.

1976

ABGAMAT

A proble which frequently wriaen in the malyein of cennored
 cosprivons valle sduutita for and oviuating the efrecta of any umeontrollad indepoodnnt variableo. hecont interent fin thin arem han demered mround the wat of mon-1inmar regrabion modele which
 Enleiplicative vay. \& non-parmatria eod etveral peremetric modala
 With axtension viek atratify ecoraing to the iolapendent veriablem

 Wanulta, in the mingle incependent reriable cone. concerning the meftekmey of Infermenced besed on tha non-pmeretric model when the
 enfundad to incorporme the vithin otrete madals and che enee or two fedepencint rarimblem. The offact of cenaorine on thene efticieney Feavite im menemend umige coppurter mimuletion. The importert guamtion
 evanple tith Amta mining from oclimient trial in uree co illurtrace the tectobiguek diacumaed to the atudy.
An =avinct 2
9allom 2
ACYyGMEDTEAETE 9
Chadear 1 Preluriangize 10
41. 1 . Sonotel 10
A Moalical Proble
Soptult toma
Eranfle I
 18
Formal Daptudliea
Cmbsorind Mectanion
Ce. arlins Patera
1\% Th tht tion or e nuvivar runclion 15
Int raduction
The Produce Linit entimee
Altstbul or" antime
Agerortmeine $2(e)$ ne a ne.p
furction
taenple
Chater 2 THT TMO-CNOUP PROMLT 21
A2. Fintrotuctsor 21
Bingle indicaeor Fariable
Hotetion
Coperiman of tente
52.2, A parametric model$2 h$
The Mefbuly eistribution
The Exponentisi dintribution
Asaumptions coneerning censoring mechanism
The F-test
Exnapis
Pmall ennple power of the Mi, LA sid Y teste
12.3. Contingency teblet 33
Model
Btetintienl snalyeis
Mentel's atetletic
A mpecinl enve
52.4. The Generalised wilcoxon tent 36
Gehan' $=$ tent
Modifientione
Eximple
Anymptotie Errieiency
53.5. Peto and Peto* 1 Logrank tent 40
The K group eseet Genersl sppronch
The two group enne : Logrank teat
The Modiried Tegrenk test
Exemple
Fuver considerstions
52.6. Dincusaion 47
in
4
17, Intranuction
■aypanafan MolalaToene ion
 30
Mnfel and Anolycie
Tise depecient erpomeatimi periaeter
Fatingion of coveriane matiz
13.3. Propoctiont Tinct Nuadela
Tea cor Madel
The Empoumbinl mau Woiluld Muielo
Imenumice of 犃rete
folintod mofele
The farm of axplé है
41.6 ninery 59

thene Iplroduction
Bu
Fled Dete
Iotetion
Ah. The Pot ithe of Ukelihond Panction 59
ModeI I
Hondel. IT and IIIMonvin IT, V and VT
54.3. Paraneter and function eatimation
Molel 1
Models 11 and III
Models IV, V and VI
34,4. Fvaluation of enverinnge matriene
Estimation using maximum 11 kelih i
Uncensored enee
Ansumptions concerning the censoring mechanian
64.5. Teste or sienificence ooneerning parametere
Btepwive proceduren
Model I - eunnection with Logrank teat
84.6. Mareinnl likel ihood sprroach
Introduction
Model I
Mosele II and III
Modele IV V and VI
Inferential proceduren
14.7. Fartial likelthood muproneh
Introduet ion
Modele I and IV
5h, 8. Payesinn sypronel 7561

Chapter 5 Pricicicicy oouparisoms

85.1. Introduction

Mesauring orficiency
Asymptotic coveriencentix or in perenetric model.

15 un the twon and arour ceane

Larice sample efflcimey
E-11 yneple powar
15. 3. ainele inderanagnt vayinble

The reaulte of kalleplaimech
Lerge mespla effiniency in uncemarad ene
Effacte of conmoring
Amall ungle coneiderations

Introduction
large semple effichency in unconeared cmea

15.5. Hithin gereta anert

Introduct lan
Single indeppendent meriable ewea
Two independant vearialitel

6.2. Introduction

Damerr)
Inftial invertiget lome
*2. Ameaneime motioner of If
Time dependert covariaten
Breslow". "tant for parm12elis.
The uee of revithel.
Fureher reaulti:
Chmer 1 Exanpur anp concluolino pmande 122
122
The suta
Chaice of inftiel model
melnetion of afgiricent efrices
pumesfenel form for I_{o} (e)
Model athectik unime romsuali

143
17.R. A Tritatall sing of atucy
Chatab in erantanmer atatenMokbod oz manyuin

4A, 3. The eए Numetion eme fte derivetion
AA.3. Nodel II abd model vumelefel
Ampandiz B The amppervie viriance of H_{11}
1月.1. Teylar mezian expandon

18. 3. \& fumction exprimend memerien ezpentione
of population montm
4..5. Eveinntion of tern la Taylor eeriol

```
Agpandlx C The anjlytotie varlame of 1%y 1
    4C.1. Feglar eerlme minmanion
    1C.2. A. W, and C fumctionm crelunt od at (11,|殳)={O,O)
```



```
    FC.4. Evaluetion of (mrma in 5nvier seriee
```


15. 1. Gemeral perulte
19.2. Model Ift roante
10.3. Model VI reavitI

ACHMEITHGBAMTS

 tory.
 Se publigh the dise contialna ha the final chapter mad fer holpful equmatil turtma fto malyota.

 क-cmureteny qyput tha chenst.

aeaner.

PREX,MMARIES

1.1- Benars.1

A Bncicel protaes

Pefinitione

$$
F(e)-p(x=e) . \quad \varepsilon \geqslant 0
$$

The diatuributing fuactian or tim theo

$$
\left.F(e)=2-F(t)=p^{(T} \in t\right), \quad t=0
$$

With aorremponaling cimat lecive mezerd function fiven by

$$
\Delta(e)=\int \Delta(u) d u .
$$

Eremply

Minly in the eapilar part of elfin werli. the followimg
 112urtrate acme of the techniquan dimeumed, A trial van

 of retendon, in trake, vera racorded and are eivan is eabla 1.1.

Madel.2.	Date rrom erfal conparing 6-10 and a Precebo on uniel are veak.
$6-2$	
Placema	$\begin{array}{cccccccccccccc} 1 & 1 & 2 & 2 & 3 & 4 & 4 & 5 & 5 & 0 & 8 & 0 & 8 & 12 \end{array} 12$

- Semot al a cemecred obmervelion.

M.En Trate of gengring

For 1 Detinition

Lot $\mathrm{T}_{\mathrm{z}} \mathrm{b}$ e randoa variable reprenenting aurvival time. if ehe ooly informetion reterdine $=0$ ok \#ervetion 0 on fin that

 in pletht-ceneoring, so that thio work fill he connemed mimiy eith

Abstract

 ecanored for conveslence. Any cevialion frem ebisa will be fediened vame eppropiara. right-remsorel ist $\ddagger 巳$. be molemmert. For aragia. in indugirial 12fertanting a difinilbing parformane, poiar to feilura.

Cennuriack Mecbaning

 If wi21 be camvaciect to mak mannaption mbout the underiying

 T1..... Tin are independent readom verimblem, with Ti reproeent ing the aurfival time for the $1^{\text {th }}$ individul having afaeributian function $F_{T_{1}}($.$) . Under tha Fandem cencorehtp model it ie genined shot there$

$$
\begin{aligned}
& Y_{i}=\operatorname{lol}\left(\Phi_{g}, Y_{i}\right) \\
& i= \begin{cases}0 & 1 \varphi \Psi_{i}=Y_{i} \\
1 & i f T_{i}=\Psi_{1}\end{cases}
\end{aligned}
$$

The diatributian fumetion or T_{i}, is tive by

$$
\mathrm{P}_{\mathrm{T}}(8) \quad 1-\left\{1-F_{\mathrm{m}}(\varepsilon)\right) \quad(1-\pi(\varepsilon)) \quad i \pm 1, \ldots, n
$$

Alternalively, Martel and Myors [1971] wegemt that for esel
 betwea antry Inta the atudy and taximintion of the trial for the

 the Ig'e however may mot alyays ba avallable. Thie wobl hil be

Cennories Potigytu

To coniva enio hee bets ictroduaed by Oeban (2965a), W11 be Almeureed.

ensered and fre are esact, Lat

$$
{ }^{2}(1)^{*}(2) * \ldots<t(E)
$$


```
to) 0 and t(k+1) m-4
```


${ }^{2}$ (0)
(1)
((1)

Wote thet $\sum_{i=0} d_{i}=a-c$ and $\sum_{i=0} i, \infty$

1723. Tantheticr of a nurvivo finction

Introduction

If the individuale prosemt in a etudy can remonably be aplit into - Piaita nubar of reletively homenteoul makata eccording to the Intependant nerintlea, a wherul viaun imaieation of reir erfect oo aumivill experimace may be bletined by ploteing ontimeted murnivar function vity in eech mutint.

Faplan and Molen (1958) hava gropoed ehe following mathod fer antimeting murvivor fumetion. Buppose thet indeporodect

$$
t_{(1)} k t_{(2)}+\ldots+t_{(k)} \quad * \operatorname{m}
$$

 Prolver Limie (ru) eat fate Y(e) or F(e) If berfaed by

$$
P(e)= \begin{cases}1 & e \in s(2) \\ \pi \\ t_{(i)}^{\pi t}\left(1-\frac{1}{2}\right) & e \in(1)\end{cases}
$$

 wemared) not late than (1)

 fractionl. Thes euthern proviac axgression for echoutina the variance

 The atepletion of tbe PL entimat fop internel-temected dete hoe been Aimeveed by Feta (1973).

Alenbuler' antimete

An -iterratite method of antimating memplvor function han
bean propoied by Altahuler (2.970) who euggemtethet a noturnl

$$
\begin{aligned}
& { }^{+}(5)^{4} \\
& \text { The reubleing entimetor of F(t) Ia thed } \\
& F(e)=\text { axp }\{-a(e)\} \text {. }
\end{aligned}
$$

Terime tbe neturel loentitha of Fit) it folloue enet
mo that for H_{n}. 1.

$$
\log P(t)=-\sum_{(i)^{i t}}^{a_{i} d_{1}}=\sim e(t)
$$

Sewaral athora (Kelbetedmeh end Preqtiee (1971), Brenlow (297h))
 cantert, wich wil be digeuned leter in id. 3. It la uneful however
 Ralbfleiach and Prantice begin by mppromimetina $\lambda(t)$ me eter funce ion

$$
a(t)=i_{1} \quad t \in\left[b_{i-2}, b_{i}\right\}=I_{1} 1=1, \ldots, r
$$

 aultable abdiviaion of the tive monle. The urviwor fumetion and p.d.f. of T aro then given reapectively by

$$
F(t)= \begin{cases}\arg \left(-d_{1} t\right) & \sum_{j=1} \\ \exp \left\{-1_{1}\left(t-b_{i-1}\right)-\sum_{1} 1_{j}\left(b_{j}-b_{j=1}\right)\right\} e \in I_{1}\end{cases}
$$

$$
1=2, \ldots \mathrm{E}
$$

If Fiar selaz.... dmate the obearvetfom on mwrvivel tiee in in of which D_{f} are vact and hy cepoored, the loz 11 kelifhood fanction

$$
\begin{aligned}
& \sum_{i=1}^{-1} x_{i}\left(b_{i}-b_{i-1}\right) \sum_{i=i \leqslant 1}^{T}\left(p_{i}+q_{a}\right)
\end{aligned}
$$

Prom Aich it followe thet, for 1 wl,2,... $\mathrm{F}_{\mathrm{i}}{ }^{2}$, the

 Altarnalively, Areslon ehoomes intervel.
and treate all cabioringe oceurrine in I_{1} an having occwryed at
t.f-iy Eotimetion or 2 yroewer an avava and

$$
i_{y}= \begin{cases}a_{i-1}\left(\pi_{1} h_{i L i}{ }^{-1} / i-1\right)^{i i^{-1}} & i=i_{0}, \ldots . . \\ i=k \in 1 .\end{cases}
$$

 conmoring timea and coneovinge necurring prior \&o the fiset denth Ere ignored. Thia deun of infornetion conld be amere if the eemple 10 heavily omnored, partiewarly it ifiquationa where meveral jare

Abstract

Examode The Kalbrlaiach and Prentica epproach, vith 1 atarvil wiath"a of 3 unite for the 6-10 frous nad 2 unite for the placebo croup. han been uned to grodure eetimeted survitor functiomitiofigure z.l for the anta of armple I. It la elear that 6 if is the mupertor treacment.

7ig 1.1.

6-VIP group
Placebo group

荋

Chaster ?

Bul. Poteatetle

Einele itaicetor var lable

Tha etetietieal proble maniderad in chis chapter to ome in
 variable mich afvicam the aemy dato two croupa. Individuale wiende ench group ere memumed heognneoum in thermit thet eroup mondersip If tho only rector thought vo apfect urrimal.
 Fill be cobelaered and procthartif for eatenaloe 20 yore then two
 used throughout the chapter to \{11uacrate how eno ecomiequel may be applind.

Motertion

Although this chepter alinly conofaere the two group coae it

 Fariable reprentheing aurvival time with diatribution fuaction

if ε_{31} fa ctacorling.
In adaizion, let $n=\sum_{j=1}^{\pi} D_{j}$ asd desote the dintinct ordered uncenmored

For $1=0,2, \ldots, k$ int
$a_{j i}=\left\{\begin{array}{l}0 \quad i=0 \\ \text { number of group } j \text { uncensored obe ervetione equni to } t(i)\end{array}\right.$

$$
i=1, \ldots, k .
$$

$L_{3 i}=$ number of group j censored observations in $\left[t(i) * t_{(i+1)}{ }^{t}\right.$
$m_{j i}=\sum_{p=1}^{k}\left(a_{j p}+a_{j p}\right) m_{i}=\sum_{j=1}^{K} m_{j i}=\sum_{j=1}^{k}\left(a_{j}+e_{j}\right)$

Comparian of teate

The relntive marit of the tentin of this chnpter will be soseased in two ways. Firstiy, in large mumples, the eriterion of smymptotic relntive efficiency (A.R,E) will be used (Kendsil sid Btunrt (2973), p.276). A.B.E. menwures the limiting ratio of nemple sizes reguired by two tests to produce the snme power for s sequence of parameter values which approseh the nult value being tested. Secondly, small semple rover will be inventigeted by the following Nonte Cerlo procedures proposed by Gehan and Thomes (1969) snd used subsequently by Lee, Desu and Gehan(2975). The eliniend trinal siturtion is simulsted by these suthors by smouming that indiv:"unln In each group enter the trisiat a constant rate in the interval $\left(0, T^{*}\right)$. (Note thet this corresponds to the random eenaorship model with

$$
\left.H_{Y_{1}}(y)=H_{Y_{2}}(y)=\frac{z}{T} * y \in(0, T *)\right) .
$$

For $i=1,2$, group i individunle fsil secording to the Weibull distritution (see 52.2) with p.d.f.

$$
r_{i}(t)=\lambda_{i} a t^{a-1} \exp \left(-\lambda_{i} t^{a}\right) . \quad t>0
$$

In the two group case, the null hypothesis of interent is $H_{2} \lambda_{1}=\lambda_{2}$ ageinst the one-sided alternative $H_{1}: \lambda_{2}>\lambda_{1}$.

Shagit: vi2 be generated mecordiag to the faliowing plam

a	61	${ }^{18}$	\%
1.25	0.92598	0.92175	2. 17283
		1.24916	1.90527
		2. 39136	2.819197
		1.64650	1.72807
		1. 90766	1.63490
		2.17620	1. 55695
1.00	2,00	2.00	2.00
		1.20	2.79341
		1. 60	1.64302
		2.60	1.92016
		1. ${ }^{0} 0$	1. ${ }^{\text {\% }} 371 \mathrm{lh}$
		2.00	2. 5319
0. 15	1.23982	1.13982	1.63007
		1.30684	2. 4800t
		1.1.6700	1.3T775
		1.62159	1.28807
		1.77129	2.21529
		2.91694	1.15300

 that \{ret eppendix A for detaily,

 are chow wn whe that the men time to failura is 1 for group 1

 $\frac{1}{2}\left(2-0^{-2}\right)$ so that is all reaninine seplen. To sa chamen to

$\frac{1}{7} *\left[\int_{0}^{T}\left(\arg \left(-\operatorname{m}_{1} y^{0}\right)+\operatorname{arp}\left(-k_{2} y^{m}\right)\right) d y\right]=1-e^{-2}$,
 In the evo eroupt

Q.2. A perevetric model

Tre Yeibull aiecribution
A matural ehoice for tho didtributico of Eurofval tine T if the Mabbull diatribution, which my be detioed theough ita hearard Ametlom ae tollme

$$
\lambda_{T}(t)=1 a t^{a-1}
$$

$$
\text { a. }+ \pm \theta_{+}+\geqslant 0 \text {. }
$$

The Aieftribution fumetion and p. A.f. of I are given by

$$
\begin{aligned}
& F_{T}(e)=1-\operatorname{sep}\left(-1 t^{0}\right) \\
& F_{5}(t)=2 t^{-1} \operatorname{axp}\left(-2 t^{m}\right) \quad 2=0 .
\end{aligned}
$$

The axponontial Eintribution in es important epecial emere viou e=1,
For $3 \mathrm{ml}, 2$, let $Y_{I_{j}}(t)=1-\exp \left(-x_{j} t^{a}\right) \quad 2.1$
where $\lambda_{1}=\lambda$ and $\lambda_{2}=4 \lambda$. Nlote that

$$
\left[1-F_{T}(t)\right]-\left[1-F_{T_{g}}(t)\right]
$$

 She "shape" parenetor ain Allowed to toke Alftereat Delian in the two groups this property no longer holds. Under theme maubptione, the low likelihood function is given by

The maximin likelihood ostimeten . A. af 0. 1. . are then the solution of the mquetior.

$$
\begin{aligned}
& \frac{1}{4} \sum_{i=1}^{0_{2}^{2}}-2 \sum_{i=1}^{2} t_{2 i}^{0}=
\end{aligned}
$$

$$
\begin{aligned}
& \frac{x^{2} E(1, A, a)}{x^{2}}=-\frac{1}{\theta_{i=1}^{2}} \sum_{i} \\
& \frac{3^{2}+1 \cdot d-1-1}{2 \phi^{22}}=-\sum_{5}^{2} t_{21}^{2}
\end{aligned}
$$

The expected velume of the eecond derivetivee cannot be rvelueted
 Sovover, the amyptotic covariabed metili of ($0,2,0$) my be estimated conidetantly by y - fig. ebe ixveree of the megetive of the meris
 ant jeten, and mympt.ot inally

$$
(\phi, i, a)^{\prime} \leftarrow \underline{1}\left((6, n, \infty)^{\prime}, \mp\right) \text {. }
$$

 alternativee an ther berformed uning the relation
 otatheric

$$
\mathrm{L} \cdot-2[\mathrm{e}(\mathrm{a}, \mathrm{i}, \mathrm{e})-\mathrm{B}(\mathrm{y}=1, \mathrm{i}, \mathrm{~A})] \text {, where }
$$

 and Lin teate ranpectively.

The Lerogentind Distribution

 atifinter. Thee aecond derivetiver ere fiven by

$$
\begin{aligned}
& \frac{\partial^{2} 2(9, \lambda)}{\partial \theta^{2}}=-\frac{1}{4^{2}} \sum_{i=1}^{n_{2}^{2}} \delta_{2 i} \\
& \frac{\partial^{2} 2(t, \lambda)}{\partial \phi \partial \lambda}=-\sum_{i=1}^{n_{2}} t_{2 i} \\
& \frac{\partial^{2} 2(9, \lambda)}{\partial \lambda^{2}}=-\frac{1}{\lambda^{2}} \sum_{j=1}^{2} \sum_{i=1}^{n 3} \delta_{3 i}
\end{aligned}
$$

Tantiof ofpothacen coscaraling the phrionetar can to parformed all

Alenough the ML and in veate are quivilant mymptoticelly, it In of iezeraez to compare their performane In 22 ample.

 ehin eectiea in the apecial cane of expmontial aurvivel iffen.

 the empected velued of the meaond partiel derivativeo eq the lag
 yremented in ebe exponeatial cene.

Firatiy, uncor the fimed oboervation tim mand if I_{j}

then

$$
\begin{aligned}
& E\left\{-\frac{\partial^{2} 1\left(\frac{\rho}{2} \lambda\right)}{\partial \theta^{2}}\right\}=\frac{2}{i 2} \sum_{i=1}^{p 2}\left(1-e^{-\lambda \phi Y_{2 i}}\right)=I_{11}(\phi, \lambda)
\end{aligned}
$$

$$
\begin{aligned}
& \equiv\left\{-\frac{\partial^{2} 2\left(\frac{1}{2}, \lambda\right)}{\partial \lambda^{2}}\right\}=\frac{1}{\lambda^{2}}\left\{\left(n_{1}+n_{2}\right)-\left(\sum_{1=1}^{E_{1}} e^{-\lambda Y_{11}}+\sum_{i=1}^{p_{2}} e^{-\lambda d Y_{21}}\right)\right\}
\end{aligned}
$$

The corrompending quatisfec in the Neibull cade may iniliarly he
 manx icelly.
 the canmorise Aistribution for eroup 9 memera

$$
\begin{aligned}
& I_{11}(\phi, \lambda)=\frac{\lambda n_{2}}{\phi} \int_{0}^{T} e^{-\lambda \phi t}\left\{1-H_{Y_{2}}(t)\right\} d t
\end{aligned}
$$

If the stove mituntion the eayototic coveriance metrix
 To the the urpeenione $2_{n} h_{1}$, knowleage of $Y_{1}($.$) ase w_{2}($.$) te$
 in certaly situaviong be Fomonenle.

The Fotent

 random variahlea, vith perameter i then $y=2 \pi \int_{1=2} T$ hae a x_{20}^{z} diatribution and it rollow that the ganimu likelimood eatimeor

 1s cromp 1 is obeerved util o rized auber fity or deevhe heve
 and in good apponimetion (Cor (1953)) If the tekel obervetion
 tart procedurn baed on the above, knowa men the Ftest, ls
 and of thil wection with that of the vi and th terte diacuneed earliar,

Table 2.1 shove the rwalte of fitting Weibull and Eyponential codinl to the datim of mitaple I.

$L_{1}=-2\left(E\left(0-1, \frac{1}{2}, \pi\right)-1(0,2,0)\right)-29.65 ?$

$2=\frac{\phi-1}{\sqrt{\text { ver }(t)}}+\frac{t+r y}{}$

Cemprition of modelv I and II yielda the test metatiotice

1) L_{1} is an oburvition on x_{1}^{2} eni in miamificent et 0,1 pt..
(i) 2 fan obecrvetion on $M(0.1)$ mieh in not vigxiffeent at 10% pt.

Comprimoe of modele I and TII yielda the fent efetiatic L_{1}
 sho 55 pt.

The above tenta have beer comidered in the comtaxt of two ided elterginf fren.

 If this ametion uling tive Nast Cario prociedura diacumeni in I2. I. Twe alatribution of euryival efotin each of the two githupe in

 rexereted aceording to the fallowitg plam

1	λ_{2}	λ_{2}	T
1	2	0.2	6.63051
		0.6	$1.764 h_{h}$
		0.6	2.79772
		0.0	2.303 hin

 Tatrien for mapiem of wise 90.100 mad 200 mre vemb culculated frotm 1000

 (50 or 200) where the purformace of tha 10 tent is very phot. The

 Ahont identical for all menple nieen.

8 cra	20			100			200			500			1000		
λ_{2}	18.	18	7	M.	14	1	12	L	?	M	14	7	12	Li	7
0.2	0.998	0.993	0.993	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1,000	1.000	1.000
0.6	0.85	0.73	0.73	0.979	0.950	0.950	1.000	0.999	1.000	1.000	1.000	1.000	1,000	1.000	1.000
0.6	0.46	0.2*?	0.285	0.653	-. 528	0.527	0. 868	0.79	0.797	0.99%	0.992	0.999	1.000	1.000	1.000
0.8	0.194	0.095	0.097	0.235	0.139	0.242	0.332	0.211	0.212	0.50	0.47 T	0.177	0.800	0.760	0.760
1.0	0.098	0.040	0.0.0	0.075	0.050	0.051	0.055	0.046	0.045	0.04 h	0.042	0.012	0.0\%0	0.050	0.050
1.2	0.029	0.059	0.062	0.020	0.102	0.103	0.066	0.163	0.16	0.240	0.394	0.354	0.910	0.600	0.620
3.4	0.000	0.122	0.117	0.058	0.230	0.232	0.231	0.123	0.42 l	0.726	0, 808	0.800	0.960	1.000	1.000
1.6	0.003	0.205	0.208	0.135	0.623	0.426	0.505	0.709	0.709	0.942	0.960	0.900	1.000	1.000	1.000
1.6	0.005	0.301	0.304	0.266	0.501	0.385	0.150	0.092	0.890	0.999	0.999	0.999	1.000	1.000	1.000
2.0	0.009	0. 602	$0 . \operatorname{Los}$	0.304	0.730	0.830	0.890	0.958	0.956	0.999	0.999	0.999	1.000	1.000	2.000
10. of atoul-		1000			2000			1000			500			100	

12.3. Cogifaeper zablen

Model

 bing tereed the iteh intermel. All cemored obrervations wich

 of aroup $\$$ uncenmored and cuntored obmemetione * $\mathrm{T}_{\mathrm{i}-1}$. The dnte may then be muearised by k, 2n2 tablea. whera the 1tb tesio In of Qbe Iorm

 trungform of gi in derimed by

$$
n_{2 x}=\log \left|\frac{P_{11}}{\left(-s_{i 1}\right.}\right|
$$

The model to tom eondifated 1a

$$
n_{21}=v+H_{i} \quad x_{21}=v * 1 \quad \nabla_{i} \quad \mid+1, \ldots . \quad 2.5 .
$$

and withowe loar of ceowrality it yy be adured that $\sum_{i \in 1}^{5}=0$.
 alturnative F_{1} : v_{1} to for at latit one 1.

Ualig * ntraightiorvari modificetion of the methode eivem log Ealen
 be baed on the diafriburtion of Ba coodiefonal on the oheoryad velum of B. 5_{1} and $\Xi_{2}=$ aiven by

and the nu tion in the denominelor in over the wet

Under $H_{0}, 2.6$. reduces to

The tail probabiliky sasocisted with s test of H_{0} sgsinat H_{1} is then

$$
P=\sum_{\underline{y} u} P_{0}\left(D_{2}=\underline{y} \mid E=\Sigma\right)
$$

 For large s_{i}, the diatribution of n_{21} conditionnl on $\mathrm{H}_{4} \mathrm{Fr}_{5}$ ie approximntely $H\left(u_{i}, \sigma_{i}{ }^{2}\right)$ where

$$
u_{i}=\frac{r_{i} n_{21}}{s_{i}} \text { and } \#_{0}^{2}=\frac{r_{i} s_{1 i} s_{2 i}\left(s_{1}-r_{i}\right)}{s_{1}^{2}\left(s_{1}-1\right)} \quad i=2 \ldots, k \text {. }
$$

Thus, under $H_{0}, \sum_{i=1}^{k}\left(R_{2 i}-\mu_{i}\right)^{2} / a_{i}^{2}$ is distributed snymptoticnily as $x^{2} k$. These results were given by Zelen (1973) for the esne of extrese censoring. He then modirled them to deel with the general eensoring situation using an spproximation due to Feldetein (2973).

Mantel's. atat.jat. ic
Mnntel (1966) alvo convidered the two-group problem and proposed the teat utstistic

$$
n=\left(\sum_{1=1}^{k} r_{2 i}-\sum_{i=1}^{k} w_{i}\right)^{2} / \sum_{1=1}^{k} \sigma_{i}{ }^{2}
$$

 would ta the mopropelate ceme ceazimele if the modm at z. 3 Ее**

$$
\lambda_{11}=u * \dot{H}_{1} \cdot \lambda_{21}=v * H_{1} *=
$$

 te 2. A. Rbac the difrereme between the two aurvival probabilitian
 tea obmervet long vienin mefi croup mro from an migonential
 of the comoection butwnen mubmegumen methode nod Montel* atekielie. ente elain Is affifoult so mpport.

Aumink late

 Le ma eviat srbitrary it vill be comvomient for congarimon purpoute latar to conmiter the rolioning perticular eltuntion. Uning the

		Acet ma	Tees 1
Geroup 2	$\mathrm{Ha}^{-4} 1$	41	${ }^{11}$
Orcoup !	max^{-4}	$4{ }^{\text {a }}$	${ }^{21}$
Totel	$\mathrm{m}_{\mathrm{i}}-\mathbf{c}_{1}$	${ }_{3}$	${ }^{1}$

In tbia cane the amyptotic eoer tretatic
$\sum_{i=2}^{\sum_{2}}\left(\mathrm{R}_{2 L^{-w_{1}}}\right)^{2 / 4} 4^{2}$ reducan ton $a_{a}=\int_{i a_{1}}\left\{\frac{a_{21}-v_{1}}{\sigma_{1}}\right\}^{*}$

 thet the firat table io ipmored i.e. concoringe prior to the firut denth contribute ad informelioa.
vith x_{i}, e_{1}^{2} al ntorea.

Por the dita of exanple I. $\mathrm{H}_{\mathrm{A}}=37.09, \mathrm{M}_{\mathrm{A}}=16.73$.
 ob the a. 21 yoint of ath $_{15}$

Baham'

Mileaman (2ghs) propoesed atiotintle for comparing twa proupn af abampatioat. An artolidion of the Milearon proceatra,

 an fewnomit

$$
\begin{aligned}
& u_{1,}=\left\{\begin{array}{llllll}
-1 & \text { if } & d_{11}=2 & \text { wien } & 2_{11}=t_{21} & \text { and }
\end{array} 6_{2 j}=1\right. \\
& \text { on } \quad 4_{11}: 2_{23} \text { ana } 6_{23}=0
\end{aligned}
$$

 This eeet diy be zeferted to es the x teet.

 cemaldering a Affarame meppemenegtion of bo Cehan metatatic, han mimplified em celculption of elve permutetion dietribution of M and ito vepianee under m_{n} "

Abstract

Modsctcation wiet intervel consorima.

Peelor (1970) poferte out thet Gohias' bla rmault o conceralog the monente of Harf applicable only under 2he rando canearibit model, wih common canmoring alatributione, Wich this mannpilon ia not valid. Elemlow dimeumen thena hee propoled mevarill miricethone of the shove proceduree whem

Empand:
。

$$
\pm-272, E(v)=0, \quad \operatorname{Fer}(u)=56+6.39
$$

Ohhen (1964e) hee compered the W tout oad tha F tent of 12.2
 1 and 2 ere than minued to be expoontial vith parteatera and

ii) Under the rento eememrming endel attb cumonlind ilutributiom $\mathrm{H}_{Y_{j}}(y), j=1,2$ defined by

$$
x_{1}(y)=x_{x_{2}}(y)=y f_{e} \quad y=10+x+1
$$

In teach of thear canea. Geman'a reaulte imalceta rbat the wert
 in efficiancy fincrean ab it lyormame

Whe K Tran enat: Gemorel epmoneti

Prto and Putc (1972) propoce a method of comparina K(32) crowpe of obestratione oùject en cemornhip and le will be ennemiont to formiare kiolt remulta in thin more meemel cotreat.
 anociat with the $j^{t h}$ group If of the farm

$$
\left\{2-F_{T_{j}}(\varepsilon)\right) \pm\{1-F(t)\}^{0} 3 \quad j+1 \ldots \ldots \pi
$$

(Leheanfeniy of eurvivor rumetiona), the hypothenin of fibencent

$$
\text { wich under } \quad \text { Ie redueen to }
$$

DStreseneleting 2.12. producet
and Malias the propertiee that 由ypopetically

$$
\mid+3 \ldots \ldots+1
$$

$$
\begin{aligned}
& E_{j}=-0_{i n} \log \left(2-P\left(\varepsilon_{\left.\left.j \frac{1}{}\right)\right]}\right.\right.
\end{aligned}
$$

$\mathbf{E}\left(0_{j}-\mathrm{E}_{\mathrm{j}}\right) \cdot 0$ and $\operatorname{var}\left(0_{j}-\mathrm{E}_{\mathrm{j}}\right)=E\left(0_{j}\right)$ a $\mathrm{I}\left\{\mathrm{t}_{j}\right)$
so that amstagtot fically

$$
\sum_{j=1}^{x}\left(0_{y}-x\right)^{1+}+y_{i}+x^{2}
$$

- at 2.13. my than to wed to provide an entimeta of I_{d} and rince $\sum_{j=1}^{K} a_{j} \sum_{j=1}^{K} \mathrm{~B}_{j}$

Tha salculation of E_{A} requirea knowledge of $\mathrm{F}(\mathrm{t})$. Kovever Peto and

 - $\{\&\}=$

The teat שeatiayde I荲 the日 of the form

$$
\sum_{j=1}^{K}\left(O_{3}-\sum_{j}\right)^{2} / \frac{K_{3}}{3}
$$

boving null dieeribution $x^{2} x-\Sigma^{\circ}$
 thw monion conmorahis mad. hut net alaumind equal centoring
 Mote thet
-a that when $K=2,2.1^{2}$ reduces to

The two Mroup case: Loarapl eest
In the two group ceee Peto (1972) dimcumem a towt whlch in a modificution of the move. Info cone, enlled the logrank teat. in bared on the perautation dintiribution of ng soorme from einist poganation of n_{1} * mitmecree, one for eech member of the semple, and my be formulated an follone- Ulehout lone of enonarnilty it my be eanumed thet $\boldsymbol{1}_{1}=1$. $\hat{C}_{2}=T$ eo that tho hypotheaia of intereat fa Ho: Tm enefont the general memrontive Histol. The loge likelibcod fre 2.12 in then

$$
\begin{aligned}
& +\sum_{i=1}^{2} \log \left(1-F\left(\varepsilon_{2 i}\right)\right) \cdot(108-) \sum_{i=1}^{n_{2}^{2}} d_{2 i}
\end{aligned}
$$

and it follow inat

$$
\left.\frac{12(y)}{k i}\right|_{\mathrm{vel}} \cdot \sum_{i=1}^{2} \log \left\{1-F\left(t_{21}\right)\right)+\sum_{i=1}^{2} g_{21}
$$

The logrank ntatiatic. t, 1t obtainod on raplacion lag $(1)-T(E))$
 function, that

$$
\begin{align*}
L & =\sum_{i=1}^{n_{2}}\left[-\sum_{t(i)^{e t}} a_{2 i} / m_{2}\right]+\sum_{i=1}^{n_{2}} s_{2 i} \\
& =\sum_{i=1}^{k}\left[a_{2 x}-\frac{a_{1} n_{21}}{n_{k}}\right) .
\end{align*}
$$

$$
1=1,2, d_{0}, \ldots .
$$

$$
=\sum_{i=2}^{E_{2}} \operatorname{lin}_{2 i}
$$

Pato \{1972) and Pate and Patc (1972) aurgent that an emactiant of
 ncorat randinily alected froen the flulte population of n_{1} * n_{2} meores. The ramiting parmintation tant, howevar, will only be valid umare the randion conancuhip model with con on canmoring diveributione In tha twa graupe.

Comatiluce of equet lon 2.15 and 2.10 mow thet the loprant

The batilial kurent tott
Th the Afecuevion of Peto and Poto (2972), Curuow (2972) bid
 aurnivor function in prafermece to the ML eatimete. Une of the PL
 terned che modfiad logrank atatietid. eiven by

 Af\#tritution ma Affer hetwrar mroupe he ehovn thet i ie

Tato pato (1972) indicata procedurise for the oartenaiob
 eerietion betwem imAlviduale is more mremaive.

Lasale

Peto (1972) claima that the logrand seat hes optimal pover loanly although Crouras (197h) afmputen thic clein and mumenta an eltarnetive jumtificatian or the Lagrank atativtle. For the epertel cene of entree cencorina the lochily mot powertul property han bean eatebliabed by Joluneot ana Mohrotre (1972).

 T_{3} and T_{2} are diatrimiod erponmeinily vith permetmra i and on

- indieat en coneored ovencrifion.
$I=10.2545 \quad L=9.7239$
$0_{1}=9,0_{2}-22, \boldsymbol{t}_{3}=19.2460$ and
$\left(0_{1}-E_{1}\right)^{2}\left[\frac{1}{Z_{1}}+\frac{1}{\left(0_{1}+0_{2}-I_{1}\right)}\right]=15.210_{1}$
(25.218) io aipoifiemat at ehe 0.28 polnt of x_{1}^{2})

$$
H_{1}(y)=1-e^{-y} \cdot y_{2}(y)-1-e^{-\infty} \quad y>0 \quad \geq 0
$$

Abstract

12, 6 Diseungion

Lee, Datiu and Geban (1975), uillige the Monte Cerlo procadura Aftewated in thin compare the mall enople power ereapet ond
 in finto enction memely

1) Tent

 th F turt an tho tremeformed obrervetiont.

1v) M test The aqmpenic form of the Comeralifed wileoze teat.
-1 I toet. An epproximeion to phe Logrent teet, treting It, under Ho: an narmaliy distributed vieb Earo mang mod permutation=1 variane

$$
x_{2} m_{2}^{m_{1}} \sum_{i x_{1}}^{m_{n}} L_{2} f\left(n_{2}-n_{2}\right)\left(s_{1} \omega_{n_{2}}-1\right)
$$

 se fevel

In wholing from the expooertial dimeribution, the Fi seat doan not apgly and of the reiving rive tanta, th f cant is mot porertul.

 tente the Fi tent de mote powarful followed by the ie tert. The M. t and \underline{U} enete then follow in order of decreening pormer, Thment
 4\%, Muriher memplee rere genereted fieh elffering mentie sieer
 of the temt coneidered it men found that power increated vith inereasing acmple site and decrentimg concorint rate. The ehowe muthore also genereted gemplem $\left(\mathrm{m}_{1}=\mathrm{n}_{2}-50\right)$ from the Hadbull dimtribution with difletrent ahape parametera (ael in group 1, awo. B5 in crour 2) and

 anatpefon that the aurvivor function is the 2 eroupa derive From a

 Erron (1967).

4z Ine gotuer ion

Rymenion modete

 Hentita fly

Mof ation
 extanion of thet latroducua ia 12.1.
 survival time for the itth individunl with dietribution function $\mathrm{F}_{\mathrm{T}_{1}}$ (t) and cormapoadisa imbepandant virimblen $y_{i}^{\prime}=\left(x_{i 1}, I_{i z}, \ldots, x_{i p}\right)$.

$$
A_{\&}= \begin{cases}1 & \text { ir } \varepsilon_{1} \text { in a doadb } \\ 0 & \text { if } \varepsilon_{i} \text { is a omenowinim }\end{cases}
$$

Additional notetion to be med vili the introducad at the tegonaind of the mproprimto section

13.2. Logiatic-Fmomentiel Modal

Hots and Ar-1ryiv
Por $1=1, \ldots, n$ eatum that 7 , is exponeatially aletributed with

 probmbility of imaifidual I urviving mit inearral ecadirional on
 by $R(\lambda)=\sum_{i=1}^{n}\left\{T_{i} \log Q_{i}+\delta_{i} \log \left[\frac{1-q_{i}}{q_{i}}\right]\right\}$.
Hyers et. Al. (2973) propose a model in which $\log \left[\frac{1-Q_{1}}{Q_{1}}\right]$ is Iinesr in the iküpentime verifmien, i.d.

It follown thet
$\log Q_{1}=-\log \left\{1+\exp \left(B_{0}+\sum_{j=1}^{p} \beta_{j} x_{31}\right)\right\}=-\lambda_{1}$.

Mers et. al. hovever noted that the derinition of what eonstitutes a time interval has a direot effect upon the realiting parameter entimater. To nchleve time acale invarinnce they postwated the existence of a perneter $\%$ and madiried their model much that

$$
\log \left[\frac{2-q_{i}^{W}}{a_{i}^{W}}\right]=s_{0}+\sum_{j=1}^{2} s_{3} x_{3 i}
$$

where $Q_{1} W=e^{-\lambda_{1}} i^{W}$ is the epnaitionel probebility of individund i surviving on intervel of length W. The resulting log likelihood $i\left(\theta_{0}, B, W\right)$ is as abowe with

$$
\begin{aligned}
& \log a_{i}=-\frac{1}{u} \log \left\{1+\operatorname{sip}\left(B_{a}+\frac{p}{2=1} \beta_{j} x_{j 1}\right)\right\} \text { and } \\
& \log \left[\frac{1-a_{1}}{Q_{1}}\right]=\log \left[\left\{1+\exp \left(B_{0}+\sum_{j=1}^{p} B_{j} x_{31}\right)\right\} X^{-1}\right]
\end{aligned}
$$

The above suthors encountered dirfieulties in untimating $\frac{\theta}{}$ and in this modified model due to a lack of dependence of the Pi t on W and suggented that $w=$ ght be prespecified to overcome this problem.

Time dependent exponential pareneter
Nontel and Hnnkey (2975) considered this nodel further and iuggonted an altermative generalisation or the model at 3.2. They questioned the validity of sesumine ${ }^{1}$; to be independent of time and ineluded in their model a continvous time function $g(t)$ wuch that

$$
x_{i}(t)=106\left[1+\exp \left\{0_{0}+\sum_{j=1}^{p} i_{j} x_{j i}+g(t)\right\}\right]
$$

This lesds te an sliernative speciriention of the nodel at 3.2 sa

$$
\log \left[\frac{2-q_{i k}}{Q_{i k}}\right]=s_{0}+\frac{p}{j=1} B_{j} \pi_{j i}+E(k) \text {. }
$$

where $Q_{i k}$ is the conditionnl probability of individunl i surviving the kth unit interval. Asauning that $g(k)$ may be approximated by $\sum_{i=1} r_{f} k^{2}$, a

$$
2\left(B_{0}, \underline{\theta}, \eta\right)=\sum_{i=1}^{n}\left\{\sum_{k=1}^{\tau_{i}} \quad \log \theta_{i k}+s_{i} \log \left[\frac{1-\theta_{i \tau_{i}}}{a_{i \tau_{i}}}\right]\right\}
$$

Mantel and benkey devilog procedured for entimeting the paretimin is

Thimeticn of convinge metix

 In the model et 3.1 (mad 3.2) evaluet the expectad vivas of ehe seond
 tism model. Bowever, thatal mad limkey quanelion the we of thin procedure

 ratio procedure.

Altermetivaly, the engected velu=, mey be wieluated by betiag that

$$
\begin{aligned}
& E\left(\delta_{1}\right)=\int_{0}^{\infty} \alpha_{1} e^{-2}\left\{2-x_{4}(E)\right\} d t
\end{aligned}
$$

 Two Introduetion of the functiong Enkea the we of enje teehmiqua for Che sodel it 3.1 comptintionnily conbleg.

The Oor mortel

$$
\left.\operatorname{sonex} \mathrm{I}, x_{i}(\mathrm{x})=x_{0}(\varepsilon) \text { (1) } x_{i}\right)
$$

$$
\left.x_{1}(\varepsilon)-\lambda_{j}(\varepsilon) \text { expen }\left(y_{i}-y_{j}\right)\right)
$$

no that the model is of tbe proportional helarde trpe. An merective

 $\lambda_{0}(t)$ enker a mpecirie forn will bo cominiderad.

Prentice (19T3) ham aomiderad two mola la wiak rbe nuecion
A (e) eanes mapocitic forn.

-0. 0_{0}

 nosi III and Meibill vodur model II.

> 10 the ewo grouy canm
noin II reducea so

Model IXI ven flyt conmidared by Glamar (196个) for a minela
Imdrytncont Varionia.
Mera ti. al. (2973) point out minteranting oonmetion betwem
 ead for anoll $\%$,

$$
\log \left[\frac{1-\theta_{i}^{W}}{\theta_{i} H}\right]=\log \left[e^{\lambda_{1} K}-1\right]=\log \left(\lambda_{1} H\right)
$$

Bo that

$$
x_{1}=\frac{1}{2} e^{0}+x\left(g^{\prime} z_{1}\right)
$$

Which io equivalent to the erpreseico for $A_{1}(\ell)$ in model IIt. Byer and

Gpalunion of atrate
 act mitipldectirtiy on the herert function wiy yot ba true. To Itcorporeti

 model 1 .
fuppore that the individuale may be orlit into obtrate mecording to the velves or the independent rariahle(a) violating the angegt koen of medel I for moe of itimery foeremy and for $i=1, \ldots, 1,1 \Rightarrow 1, \ldots$, || $1=1$ Fif be a candom veriable repreaenting murvivel \&ime of the ith individual In the jth itratin. The ebove anthor propomen a model In whith the bacerd Paction of ty is Eiveriby
NoDER If i $X_{j i}(t)=x_{0 j}(t) \exp \left(B^{\prime} \underline{Z}_{j i}\right)$.
Where $z_{A 1}$ is the vector of independent verinblee to be included in tha dancription of the godel for the ith menter of the Jet atratum. Bimilarly,

 MaveL VI : $z_{j 1}(\varepsilon)=x_{j}$ eng $\left(s X_{j}\right)$.
 for ach of tbe abov minle. Further posernlizy gy le obefmea ea
 effere metreen etreta.

 the peaceral within etrata modala givan abova fa thet int noductiog of new
 moln IVI. The romultiog mathodm of Inforebe will pot be comidered here and the reethr ie reforred es Holt and Franeleo for cetelle

Anditia modele
aleboum sodele I co vi yid provide the min inhjuct For etudy

 aanily be artended to the itratifled eltuation in an obvious my.

Firatiy, mocel proponed by Fiact and Zelon [2965], anauman tame the hereve froctiec fer Indidduel it io eiven by

$$
x_{1}(t)-\left(\theta+A^{t} x_{1}\right)^{-1}
$$

 althoupb analynin ramaina cuhermons.

Beconaly, Grembern et. A. (297h) propoce amodel in mif

$$
x_{1}(t)=t+t+y_{1}
$$

 Hiniler Afticulaia.

 of the above blould coly be ued it their approxitation to the true
 1 *o YI.

```
The form az exp '4" है
```


 1e obteined by ving, for $1=1, \ldots .$. .

$$
s_{13}-z_{13}-\bar{x}_{1}+\bar{z}_{3}-\sum_{m_{1}}^{E_{13}}
$$

In edaition Cox (2972) suberatial tbat the dependent independant

$$
\begin{aligned}
& \lambda_{i}(t)=\int \lambda_{0}(t) \quad \text { crout } 1 \text { menera }
\end{aligned}
$$

Suen rariablen nimilerly be ueas in mode II tc VI. Hota bouever
 (The commata of Kelbelelach and Prentice (2972a) on how ouch varimblea voula afrect modal I are bialeadingl. Discumatoc of the validiey of includiag

will be assumed that independent variables are prespecified and not functions of t ime.

53. 4. Sumpiny:

The remninder of this work will be primarily eoncerned with models I to VI. Chapter 4 investigntes the eatimntion of, and signiricance teats concerning, relevant paraneters in the models. The erficiency of these Inferentinl procedurvs will be discussed in chapter 5 and technlques for sasesming 'goodness of fit' to the nodels in chapter 6. Chapter 7 illustrates the use of those models in an example.

Chapter -

THE ALALYBTS OF PROPCRTYIOVAL HAZARD MODEIS

敛 Ih Introduction

gールロy

Abstract

 by the methods of malyin 2ikelithood（04．2 and ith，3）whough （14．T）and Zyanien（ 14.8 ）vill bw coaddered．It，inventi－ster gethode of anti＝ting cavariance merieen of televant paraeter their veluen．For the gereneric pdelif，fenulte wl2 usually he givec for codel．II and Y only．Correegondind expreanione ror nodele III and VI my be dedued at apeciel reeet．

Tied Det寊

It 111 be manned khroughout thet resdow varlablen repreement uurvival time mre contianoun．Frequently，bowrer，date yill be Fecorded $i=$ form involving $t 1 \mathrm{em}$ ．If themrera $=12$ in mumber． a rendom braking of the tien dil unvelly be edequate．Te eover
 logiatic model clanely raletad to model I ．Kelbriafech and Premefice （1973）axtend their mareinel ifkalihnod mppreneh ta incorgorate tied
 of thean methoile my boployed vithin etrata，under mocel IV．
 unatfected by the poetibllity of tiod ata．

Matat Lan

 depentent chawrwtione with ecrrempoadien lacieatera

$$
t i^{\circ}= \begin{cases}2 & \text { if } t_{i}^{*} \text { io a aeneh } \\ 0 & \text { ir } i_{i}^{*}\end{cases}
$$ tha orderad unemabred aywival ifmen.

When deeling with motin IV, \% and II the notation may be

Model I
Com (2972). Im comphtia tbe likelimood ruaction under model I,

 1a

The required lizelincod in tham obtalned en the protuct, over deatha, of mueh tearman and

4.2

 arrace, of terme

BeA Eha

$$
4-3 .
$$

 whare $\lambda^{\prime}=\left(\lambda_{1}, \ldots, \lambda_{1}\right)$ and $g^{\prime}=\left(\sigma_{2} \ldots \ldots \infty_{\ldots}\right)$ -

Model I

Froe h. 1. the los Litelihoad fuaction for A Sa civan by

Differmentating
ned

$$
=U_{\mathrm{kH}}(\mathrm{~g}) \quad \text {, k=1, } \ldots+5 \quad \text { 4. T. }
$$

 Likalimood may be tabulated diractiy to obtain parmerter eptimata.
 4.7 vill yield B. Corputatien of the eacond partíd exivativen at 4. 7. howevar, my prowe tedion mad ammel method uming
 sheecmotational sapecte of model tittio in chapter 7 . The proble of estimeting $A_{d}(t)$ hat been conaldered by aeverel nut hore. Kalbfiefech and Preat ice (2973) begin by approwimating

 and siven 8 the dbows euthore nhow that the maximu 1ikelifood

4.t.

 -atime of the unvivor faction $F(t)=\operatorname{enp}\left\{-\sin ^{\prime} z \int_{0}^{1} 4(x) d u\right\}$ for in fadividual witi deAopandent varlablea for thea
 - \& I_{1}

 bava that the grollbility of survivima interwel If condtifonel en matering It by bertimates by
and in corperponding ant lett of the murvivor fametion In

$$
f_{z}(k)=\left\{\begin{array}{lr}
1 & t \in I_{1} \\
\prod_{k=1}^{i-2}\left\{1-e^{\prime} z\left(\sum_{j=1}^{n} e^{\prime} \dot{b}^{\prime} z^{n} j\right)^{-1}\right\} t=I_{1} \quad\{=2 \ldots, k
\end{array}\right.
$$

Oaker (2972) and CoE (1972) have al ac conaidered the ertimetion of

 perforea acpamet maximulikelihood entimation procedure for
 aurviver fumction is a furthar genarelisation of the PL eatimate.
Hedeln II and III

Frou h. 2 ebe log 11tel fhood under model II fic

$$
\begin{aligned}
R(g, \lambda, a) & =(\log \lambda+\log a) \sum_{i=1}^{n} \delta_{i}+(a-1) \sum_{i=1}^{n} \delta_{i} \log t_{i} \\
& +\sum_{i=1}^{n} \delta_{i} B^{\prime} \underline{X}_{i}-\lambda \sum_{i=1}^{n} t_{i}^{a} \exp \left(\underline{e}^{\prime} \underline{x}_{i}\right)
\end{aligned}
$$

Differantiating.

$$
\begin{aligned}
& \frac{\partial R\left(g_{1} \lambda, a\right)}{\partial \beta_{j}}=\sum_{i=1}^{n} B_{i} x_{i j}-\lambda \sum_{i=1}^{n} x_{i j} t_{i}^{a} \exp \left(B^{\prime} x_{i}\right) \quad j=1, \ldots=p \\
& \frac{\partial R\left(B_{1} \lambda, a\right)}{\partial \lambda}=\frac{1}{\lambda} \sum_{i=1}^{n} \delta_{i}-\sum_{i=1}^{n} t_{i}{ }^{a} \exp \left(B^{\prime} x_{i}\right) \\
& \frac{\partial R\left(\theta_{1} \lambda, a\right)}{\partial a}=\frac{1}{a} \sum_{i=1}^{n} \delta_{i}+\sum_{i=1}^{n} \delta_{i} \log t_{i}-\lambda\left\{\sum_{i=1}^{n}\left(\log t_{i}\right) t_{i}^{a} \exp \left(g^{\prime} x_{i}\right)\right\} .
\end{aligned}
$$

$$
\begin{aligned}
& \frac{816 i+x}{a^{2}}=-\frac{1}{x^{2}} \sum_{1-1}^{0} 1
\end{aligned}
$$

 HEh madel I .

Modele IV, V snd VI
From 4. 3. the log 1ikelihood under model IV is

$$
x(B)=\sum_{j=1}^{n} \sum_{i=1}^{n_{j}} \pi_{j i} *\left[2^{\prime} x_{j i}-\log \left\{\sum_{k=i}^{n_{j}} \exp \left(E^{\prime} x^{*} k i\right)\right\}\right]
$$

and first and second derivatives of i(g) sre simply muns over strate of terms like 4.6 snd 4.7 . The runctions $\lambda_{\text {ol }}(),. \ldots, \lambda_{\text {ou }}($.$) may be$ entimated by performing Eeperate entimntion procedures, ne for model I,within ench etratum. Under model V, the $\log 1$ ikelihood $\mathrm{E}(\underline{\mathrm{E}}, \mathrm{I}, \mathrm{g})$ and ita derivetives my be computed directily fron 4.9 snd 4.20 .

34.4. Evaluntion of eovariance matricen

Eatimation using maxime 1ikelihood entimen

The covariance matrix of relevmat parnmeter entimators in each of the models may be entimnted as the fnverse of the negative of the matrix of second partini derivntives evnlunted nt the maximum likelihood estinates. The usunl large anmple distributionsl results for maximum Ilkelihood entimnten nre vnifd, although these propertlen for estimstora reaulting from models I and IV require further justification (see 54.7). Anymptotically in the within strate modeln is meant in the
 while the total somple size $n=\sum_{j=1}^{n} n_{j} \rightarrow \infty$.

Uncensored enate

Unless mssumptions concerning the censoring mechsnism sre made, expected values or second partisl derivativea in esch of the models cannot be evslunted. Relatively simple resulte hovever may be obtained In the uncensored case (all individunla observed to death). Under model II, it may be shown that (see Appendix A for deteils),
$E\left(T_{i}^{a}\right) \quad=\frac{e^{-\frac{B^{\prime}}{A} X_{i}}}{\lambda} L(1,0)$
$E\left\{\left(\log T_{i}\right) T_{i}{ }^{\alpha}\right\}=\frac{e^{-B^{\prime} X_{i}}}{\alpha^{\lambda}}\left\{L(1,1)-\left(\log \lambda+B^{\prime} X_{i}\right) L(1,0)\right\}$
$E\left(\left(\log T_{i}\right)^{2} T_{i}{ }^{\alpha}\right)=\frac{e^{-B^{\prime} X_{i}}}{a^{2} \lambda}\left(L(1,2)-2\left(\log \lambda+\beta^{\prime} X_{i}\right) L(1,2)\right.$
$\left.+\left(1 \log \lambda+B^{\prime} X_{i}\right)^{2} L(1,0)\right)$,
where $L(2,0)=1, \quad L(1,1)=1-u, \quad L(1,2)=(v-1)^{2}+\frac{\pi^{2}}{6}-1$,
and $\omega=0.5772$. . . . is Euler's constsnt.
The asymptotic covnrinnce matrix of the maximu likelinood entimntors $\hat{\mathbb{B}}, \dot{\hat{x}}$ and \dot{a} is then $I^{I I}(\mathbb{B}, \lambda, a)^{-1}$ where $I^{I I}(\mathbb{E}, \lambda, a)=\left[I_{i, j}^{I I}(B, \lambda, a)\right]$ is a symetric matrix with elements

$$
\begin{aligned}
& \sum_{p+2}^{I I} p+1|2-1+2|=\frac{1}{\lambda^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& -\left(\log \lambda+8^{\prime} x_{j}{ }^{3}{ }^{2}\right) \text {. }
\end{aligned}
$$

$$
\cdot\left(1 \propto x_{1} \cdot 8^{\prime} x_{j} 1^{\prime 2}\right)
$$

Under the fixed obeorvetion time mod in, ir. for imp..... in
I. rejtementa the mime observable tie for individmal i, then is
model II
voen of 1, wreluation of tho latt two ternem canoot be echieved malyticeliy. Bonever in the mipomontimi cmrw, thete terial ore not meeded and the reguired guantitian mer

Under the rando eaneorahip model

$$
E\left(\left(20 g T_{1}\right) F_{1}\right)-\int(20 \varepsilon) e_{0} c_{1}\left(2, g_{0} \lambda, m\right) \text { dt }
$$

and for $\mathrm{i}=2, \ldots, \mathrm{C}_{2} \mathrm{I}_{\mathrm{L}}$ fan rendom verimable rapronentina period
 sinilar panclt, are obtaived in an obviou my for male v end VI.

Etervilee procedurea

 -1folefcent errect upon mumimal. Tniamay be merfieved by a formard deevolie procesure afinilep ea that uard in mennara muleiplo Fegradelon, tho effect of each new indepandant varileble introducod
 retio tent procedure. A bechverd atepulae procedurp. fitting a malel vith all indepandent veriablee inciuded and ailminatine ach one in twr. in on eltercei ive mpronch uned in e releted contemet by oreanberg and fayerd (197 h). The farmer method will prove mor* unerul ror mpplication in shich the nueber or indepmodent verimblem

 ierge 4 mple teet mentionnd bbove.

Madel 1 - connection with lopraniz tart
In diecuening Eodel I, Cos (1972) Indicmten thet the clabel

 aleteimuted, uncar li, with zarc man vertor and coveriance Eatrix $\mathrm{U}(\mathrm{g})^{-1}$ where $\mathrm{U}(\mathrm{g})=\left[-\mathrm{H} \mathrm{H}^{\prime} \mathrm{L} \mathrm{L}\right]$. In the two group cmeat where

$$
\chi_{1}{ }^{\circ}=r_{i} * f_{i}^{0} \text { group } 1 \text { membera }
$$

thic atatietic reduce to

$$
\text { Comparifon with } 2.20 \text { chown that the abore tewt ia aquivileat to }
$$

Mental" tamt bumed on than utatlatic Md. The connectfoa with the

If.6. Murkingl 1ihelihood egranch

gntroduction

 and hy Kalbrleineth end Eyrote (19TO). fot the purtume of elinimatimg mulience parentertil.

Abstract

Moder Eaverel contributork ta the aimeunelna of Cox (1972) wer unhmpy about the formetion of the likelihnod function et $\mathbf{k}, 2$ ent MnikMeinch and Promtice (2973) hate jumifine ite form withim the framewark of earginal likelthood. Thmew euthorm ergue that in the uncuanored cene, therank vector illiufficiant for R'In the proportional to the Afetribution of the renk vector. In the cenaored cave, the foll panir vector in not obserwed end Kalbel=1eot and probinility that the rank vector in bane of thome poanible wader the obsorved maple. The renultime expression in Identicel to the form 4.1. It if importent to note thet thle arteonion to the cenmored cme cennct be fumtified formolly witifn the contert of marginal Hhelihood, In addition, the merginal likelihood appromeh enembea thet Ao(.) is not identically gero over an apen laterval of the poitive read line, and that independert reriablem ere not functiona of time. The maginel mufficiency mrgumente bresk dow if time depondent covariater are includer in the bodel.

Modela II and III

For modal II, in the unemaored came, $A=\left(\Lambda_{2}, \ldots, h_{0}\right)^{\prime}$,
 the marginal likelihood L(R. a) of E.0 ia proporeionsi ta the p.d.P.

Applying en andelvarinte traneformetion

$$
T_{1}=T_{1}, \quad T_{1}=A_{1} T_{1} \quad i=2, \ldots, n
$$

and fotegratiof T_{B} frem the reaultine expreowice ls follora that

- L(8. \quad)

 be Juatifled formbil). Without loan of genernilyy it may be mesumed ethet

$$
\begin{aligned}
& 4_{1}=b_{2}=\ldots=b_{r}=2 \\
& 8_{r+1}=t_{r+2}=\ldots=b_{n}=0
\end{aligned}
$$

and the evant of interant in

$$
\begin{align*}
& =(r-1): a_{i=1}^{r-1} \sum_{i}^{B_{i}(a-1)} e x p\left(\sum_{i=1}^{n} \delta_{1} E^{\prime} x_{1}\right)\left(\sum_{i=1}^{n} B_{i}^{a} e^{\prime} x_{i}\right)^{-r} \\
& \text { = L(2, a) }
\end{align*}
$$

Modele. IV, V and VI
 1fhelíhood of g arimea out of ino soive ofneritution af che ent
 each stratum, and the reaurina appreesion le laentiesl to b.3.
 Inforent isl pror esuren
 II and III have seen afecueped by Praceice (2973), he sumente
 model III te conducted by ecmparing the mull veluev to be tented vith

 modelo mituble entimeore of the paremetora era proviaod withe

$$
\begin{aligned}
& \frac{1}{i} \sum_{i=1}^{p} s_{i}+\sum_{i=1}^{P} \delta_{i} \log t_{i}-r \log \left(\sum_{i=1}^{p} t_{i}^{\hat{i}} \dot{B}^{+} \Delta i\right)=0
\end{aligned}
$$

 to thoge obtalofd uelme the weanderd merimu Ithelihood procedure.
 obtein $\begin{gathered}\text { by mavinu dikelihood. }\end{gathered}$

The large ample papertifa of maximul likalibood, hotrevar, heve
 Impliektione of Kulbrieiseh end Prentice (1993), that theme whuld

 abetion.

14. 7 Partind jikelihood epproact.

Enさialtiog and propartien

 gernitetar 2 , Then
$r^{r} X_{1}, x_{2}, \ldots, x_{3}, B_{1}, B_{2}, \ldots, S_{3}=\prod_{j=1}^{T} f_{j}, B_{3} / x_{1}, \ldots, X_{j-1}, B_{1}, \ldots, B_{j-1}$
$=\prod_{j=1}^{m} \sum_{x_{j}} / x_{1}, \ldots, x_{j-1}, B_{1}, \ldots, B_{j-1} \prod_{j=1}^{m} \mathrm{r}_{\mathrm{B}_{3} / x_{1}, \ldots, x_{3}, B_{1}, \ldots, B_{j-1}}$
and the aecond tero of ehia swateaijon In defined an the pertial

 ab). It a uitmble trmaformetion in avalloble auch thet the partisl L4Eelibood dependa oaly on the partacherm of Intarent then inferencen concerning theee paranetera by baied on thia iflelithood. Cok stechees eeveral profote amochated oith thr uaiquenem and fommeiou of gareiel likelihooda. In sddition he shomet thet the ntanderd

1) Eeymptotic normalicy of marametar entimetore.
2) ecpeifetemcy of the merix of 2nd partial derivativen,
evelunted me ither the paranatar netimet or the true permeeter velum, in the entimition of the caverience merin,

1ii) lerge emple x^{2} tent procedure bened on the likalihood racic, ere ell velid when dewimg vith partial lizeliboodi.
fatole 5 and II

 and let X_{j} repmramert the ereut that deatb occura at t_{j} "mand kn
 argues thet the remultina partiol likelinood for model I is 4. 1. frowley (197L) mken them point whenticelly axplicit for the two menle yroblem. A further point of inportance ia inat thte mpreech allowe the fmelumico of time dependent covarifter.

It followe directly thet the likelihood under model IV, eit.3.
 Acpendent covmrimea im moo pernitted in thio sodel.

14.B. Bavenian appromer

Mor-1a II and II

 uader madel 11 In chan
and uning the ronule

$$
\begin{aligned}
& \text { that tho marcinel poeterior Aenaley of a. } \frac{1}{2} \text { is } \\
& \left.-(\&, E)=\int+12,+\pi\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& \text { of zreport (endity). }
\end{aligned}
$$

halelorath11

$$
\text { In model } V \text { with pribor atraity }
$$

the maginal poaserior Aabaity ot de is evo product ovar etrate

Chapter 5
EFPICINACY COMPARISONS

15-1 Intexduntion

Thim ehepter io concolitied minly uith the raletive esticiency of

 meo conniflered.
 In Eivom rn Kendial and gevert (1972, s.29) for eatimeorm wich are
 efficient entimitor of the partiawler of component of fatorant and E, im another antimeor with
 reletive erficiency of B_{2} (eompared to β_{1}) is eiven by

$$
\mathrm{B}_{2,1}=\left(\frac{e_{1}}{n_{2}}\right)^{\frac{1}{n}} .
$$

 Im mil applicetioma to be eomaitered here, $=1$. heouta concerning the meynptotic erficiency of eentias proceduraw my bebtined by axploizime the combection betveen A.R.T. and antimifng fffelancy outhined by Kendeli and seumet (1992. p 28b/5).

Bintan Corlo methode. Efmilar to thoce of 12.1 will be weit to
 -w when. Erriciency comperisons in amnil samplea will almo be ehisved by symuletion.

The vienin aryate modela are inventipted in 15.5. The lario and

It in maveniont 解 thif etage to conlder emin ebo reaule
 parentric midela in the vectudurad ceae. Under model II. tho

- y^{2} ? merim man memen

 eaoveniently written all
where $M=\left(B^{-C} B^{-2} G^{\prime}\right)^{-2}$ and the erginal diatribution of E is

$$
E=\left[E_{1} ; E_{0} \text { where } E_{1}:+ \text { aro } p=\|\right. \text { metricem with blement. }
$$

$$
\begin{aligned}
& c_{\lambda_{k j}}=\frac{\lambda_{j}}{\lambda_{j=2}} \mathbf{x}_{\text {jik }} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& k=1 \ldots \ldots \text {. } \mathrm{b} \text {. } 1 \ldots . . \text {. }
\end{aligned}
$$

$$
\left[\begin{array}{l:c}
\mathrm{E}_{\mathrm{A}} & \mathrm{~B}_{\text {Ac }} \\
\hdashline \mathrm{B}_{20} & \mathrm{~B}_{a}
\end{array}\right]
$$

thare B_{x}. Aiac. $\left(n_{j} / x_{j}^{2}\right)$
 and

 Reault, for modele 1 II and YI sre obviona mpecial canea of the obove.

15.? The two and K grour emer

Targe nample efficiency

 croup can in Identicel to the logrank etatigtic wt 2.25. The resulte at the and of 12.5 indicece that the tent beand on thim atatiatic in anyaptotically fully erfielent under randian cenournity, when the eaneoring dintribut lons in the evo aroupa are equal and the true Aferibution of aurvivel tim in axpoeentifal. Purther ascoptotic reaulte have aleo bean alaeuened is that atection.

In the K-grous
 unieg the etetiatic eivan in fit. 9 and under tho

$$
\left[\frac{\partial R(Q)}{\partial Q}\right]^{1} \mathrm{Q}(Q)^{-1}\left[\frac{\partial L(\Omega)}{\partial g}\right]^{\text {saymp }} x_{K-1}^{2} \quad 5.2
$$

Crowlay (2973) hea extanded the mbove 2 spoup rimulea uadar dameteal
 efficient, Agein lonem in efficiency oecur for unequal cansorina dietribut fore

Sunnat satayle poyri
In the two grouy case, Lee, Damu and Gehen (1975) uniog tho Nome Carlo procedur of $\mathbf{1 2} \mathbf{1}$ have evisluated the bll seaple power or the

 favowrably with el the F-teat when the erue dietribution of murvival
 Yeibull. The ptall menple erficienay of maimum linelinood etimetion Bent on mosel I to that under model IIT. fir tbe 2 grow cene in

15.3 A aipcle inderendent variarle

The reeutte of Kmbrietimet
The relative efficiancy of the mathod of entibetion bered on model I congered to thet beeed on model III hew been cometered in the aiggle inderpetndent varieble unceanored ceev by tazbrleiacb(197ha).

Ueing the marginal likelihood L(B) of B in model III, he evalustes the information $\mathrm{I}^{\mathrm{III}}(\beta)$ shout β oontained in the statistie A, on Which this marginal likelihood is based as

$$
I^{I I I}(B)=E\left\{-\frac{\partial^{2}}{\partial \theta^{2}} \log L(\theta)\right\} .
$$

In model I, the information $I^{1}(B)$ contained in the rank vector in eveluated st $B=0$. The efriciency $c_{n}(0)$ of an entimetion procedure based on the diatribution of the rank vector (model I) compared to one besed on the distribution of A (marginal likelinood nppronch to model III) et $8 \mathbf{0} 0$ and in a snmple of sise n is then the ratio or the informations contsined in these statiaties and

$$
c_{n}(0)=I^{I}(0) / /_{1} 111(0) \quad 5.2
$$

$c_{n}(0)$ is tabulated for various values of n and

$$
c(0)=\frac{11}{n} c_{n}(0)=1
$$

For non-zero valuen of $B, I^{1}(B)$ onnnot be evnlunted nnalytienliy and Kalbrleisch obtaine on spproximntion to $\mathrm{I}^{\mathrm{I}}(\mathrm{B})$, velid in the neighbourbood of $\hat{\beta}=0$, by expending $\log I^{I}(B)$ as a Tnylor series nbout日*0. The resulting efficiency mensure $\varepsilon_{n}(B)$ is evnlunted for inrge n to yield an asymptotic measure $c(B)$.

The interpretation of these asymptotic resulte in terms of two particular estimators is unclear as the methode given by Kalbrleisech in model III sre besed on the concepts or marginal likelihood (see coments in $\$ 4.6$ on inferential procedures). These dirficulties sre overcome in this section by replacing the mnrginal likelihood L (B) by the standard 1 ikelinood $L(B, \lambda)$. The detniled derivntion given, runs parallel to that of Kalbrleisch.

Large anmle efficiency in uncensored cane

It will be convenient to tranaform the independent variable x by putting $z_{i}=x_{i}-\bar{x}$, for $i=1, \ldots, n$ where $\bar{x}=\sum_{i=1}^{p} x_{i} / n$.

The rwale of 15.1 with gmi Indiomta that the model III tratormetion metrix if given by
$\left.L^{1+2}(ब . \lambda)+\left\lvert\, \begin{array}{cc}n & 0 \\ 0 & v / 22\end{array}\right.\right]$
 of the rinite population $\left(\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots, \mathrm{EE}_{\mathrm{m}}\right)$. It them followe thet

Under Model I, the 2fkilhood function can the written

and uaing f.7., the 2nd derifetive of the log lilelinood in $\frac{a^{2} a(\beta)}{a B^{2}}=-\sum_{i=1}^{n}\left\{\left(\sum_{j=1}^{n} z_{j} n^{2} e^{B z_{j}}\right)\left(\sum_{j=1}^{n} e^{B z_{j} j^{n}}\right)-\left(\sum_{j=1}^{n} z_{j} n e^{\beta j^{n}}\right)^{2}\right\}\left(\sum_{j=1}^{B} e^{\beta z_{j} n}\right)^{-2}$

- $-a_{2}(8)$
where

$$
c_{1}(s)=-\frac{x}{x+2}
$$

 -12 F ! pomeible rent vectore 5 , it follow that meymptoticaly by

 -y to obtained, where

and E denoten erpectetion over the pernutetion aletribut lon of the

$$
\begin{aligned}
& E_{D}\left(\sum_{j=1}^{B} z_{j} * 2\right)=(n-i+1) \mu_{2} \text { and } \\
& E_{D}\left\{\left(\sum_{j=1}^{P} z_{j} *\right)^{2}\right\}=(n-1+1) \mu_{2}\left(1-\frac{n-1}{n+1}\right), \\
& I^{I}(0)=\frac{n \mu_{2}}{n-1} \sum_{i=1}^{n} \frac{n-1}{n-1+1}=\frac{n \mu_{2}}{n-1} n_{n}=n \mu_{2}+o(n)
\end{aligned}
$$

$$
B_{n}=\sum_{i=1}^{n} \frac{n-i}{n-i+1} \text { snd } f(n)=0(n) \notin \sum_{n+\infty}^{n} \frac{f(n)}{n}=0
$$

 efficimacy of i (comperad to ily) ia 1. Thum the mothod of atimation, II, uniag model I In maymotically fully afficiont rban toc and the comaction batwesn unimatiod efficiesacy mod A, H, R, mantioned marliar
 A. R.E. equal to 1 when compared to the mymptoticaly ofricient tent besed on the Ereinal Al crithution of $11 t^{4}$

the vilue $\begin{gathered}\text { ano }\end{gathered}$
$\log I^{I}(B)=\log I^{I}(0)+\frac{B}{I^{T}(0)} \frac{3 I^{I}(0)}{\partial B}$
$+\frac{B^{2}}{2\left\{I^{1}(0)\right\}^{2}}\left[I^{I}(0) \frac{\partial^{2} I^{I}(0)}{\partial B^{2}}-\left\{\frac{\partial I^{2}(0)}{38}\right\}^{2}\right]+$
Note that the log transformation ensures that $\mathrm{I}^{\mathrm{I}}(8)$ remnins positive for ell valuen of $\boldsymbol{c}_{\text {. }}$
Twalutian tern by tarn.

$$
\begin{aligned}
& I^{\Sigma}(0)=m+10(0) \\
& \pi^{t}(0)=E_{D}\left(E_{0}(0)-a_{2}(0) e_{1}(0)\right)-d(a)
\end{aligned}
$$

$$
\begin{aligned}
& =-2 \mathrm{BH}_{2}+0(\mathrm{~B}] .
\end{aligned}
$$

Por details of the caleulatione leading to theot realinimec Falbilelach fig7tel. Trom 5.3 it followe that, in tbe nelghtourhood
 II et $\frac{1}{\text { a }}$ efvan by

whar. 9 [3, vish
$B_{11}=\frac{n_{21}}{n_{2}} B_{12}-\frac{n}{n_{2}}(2-m-\log 2)-B_{21}$ and

$C P^{-1} \xi^{\prime}=C_{82} B_{11}\left(B_{11} B_{22}-B_{12}^{2} y^{-1}-m^{2} v^{2}\left(\frac{8}{2}_{6}^{2}+n^{2} \mu^{2}\right)^{-1}\right.$
-a Lhat asymitotically
 or $=0$
$R_{I, I I}(B)=*^{-3} \theta^{2}\left|1+\frac{6 \beta^{2} \mu^{2}}{\pi^{2}}\right|$
Worte that $N_{I, I I}(0)=1$ and that, Eince
$e^{p^{2} B^{2}} a 1+\frac{6 A^{2} H_{2}}{N^{2}} 31$,

Mote eleofrce tae above mnaymiln the
$\mathrm{r}_{I I, I I I}(\theta)=\left(1+\frac{6 B^{2}-4}{n^{2}}\right)^{-1}$.

Topere anymotic efficioncien have been evaluated in table 5.1.

 and - Qual number in ach croup thit eoprodyonda es pratia

 - coot epproximition whem the efintibution of the firito populetion 2. z2....s x in eymetric but discrapancien occur if qha dietribution
 cansorima on the arficiancy rebule. tbese ans other oinuletions are eiten here. 1000 ovaertetiens verp rendomily genarated (500 in each troup) for model III with a=1. Pmi anc $z_{i}=\left\{\begin{array}{ll}-1 & \text { group } \frac{1}{2} \\ +1 & \text { eroup vor values of } B=-0.5(0.1)\end{array}\right.$ 0.5. On each occsaion, entimates \bar{B}_{I} nad $\bar{B}_{11 I}$ or $\bar{\beta}$ vere obtained uning a Vivton-Repheon mathod. Thí procedure ven repeeted 20 then and roz teet value, onmole variencer or \vec{B}_{1} and $\hat{B}_{\text {III }}$ celculated. The renule are givan futable 5.2A). Two further aituation vere
 comeitured a zendom maple from a mtanderd noran dietribution and mecondiy fron unit exponential diatribution. In ench came the finite popoulation swe standmraimed

TS8*O	т98*0	$062{ }^{\circ} 0$	H9ES*O
$998 *$	$269 * 0$	$6 L 2 * 0$	$05 \cdot 0$
$068{ }^{\circ}$	$276{ }^{\circ}$	$\mathrm{LL}_{8}{ }^{\circ} \mathrm{O}$	$57^{\circ} 0$
526*O	SE6*0	258*0	$0 \square^{*} 0$
TE6*	TS6.0	$588{ }^{\circ} 0$	SE*O
$846{ }^{\circ}$	796*0	ע76*0	$x * 0$
$896 *$	526*0	$686 \cdot 0$	$52^{\circ} 0$
9.66	796*0	т96\%	¢ ${ }^{\circ} 0$
$2.96 \cdot 0$	т66.0	126*0	ST*0
\% $66{ }^{\circ}$	$966^{\circ} \mathrm{O}$	$066 \cdot 0$	Ot*O
$866 * 0$	$666^{\circ} \mathrm{O}$	$866{ }^{\circ} 0$	$50^{\circ} \mathrm{O}$
ז	t	τ	\bigcirc
$(8)^{\text {III* }} 1 \mathrm{II}_{4}$		(8) $\mathrm{IIT}^{4} \mathrm{I}_{4}$	\| 181

$$
\begin{aligned}
& \text { *5* } 0\left(50^{*} 0\right) 0=|8|
\end{aligned}
$$

$$
\begin{aligned}
& \text { * \%'ड उसणघ }
\end{aligned}
$$

 or I_{1} compared to i_{111} for $=-0.5(0.2) 0.5$
4) Tro group ange. (20 nifulationa)

-	$\left\lvert\, \begin{aligned} & R_{1}, 112 \\ & =18) \end{aligned}\right.$		$\left\{\begin{array}{l} B_{112} \\ \text { nexianco }\left(x 10^{2}\right) \end{array}\right.$	ω_{1} average	$\left\lvert\, \begin{aligned} & \text { I memple } \\ & \text { verince }\left(=10^{x}\right) \end{aligned}\right.$	
-0.5	0.779	$\bigcirc 0.6827$	0.1596	-0.4848	0.1758	0.906
-0.4	0.852	-0.3029	0.2594	-0.3848	0. 1694	0.941
-0. 3	0.914	-0.2829	0.1594	-0.2851	0.2591	2.001
-0.2	c. 961	-0.1829	0.1594	-0.2842	0.1580	1.004
-0.1	- 990	-0.0829	0.2596	$\bigcirc .0 .0836$	0.1603	0.996
0.0	1.000	0.0271	0.2594	0.0170	0.2611	0.989
0.1	0.990	0.2172	0.2594	0.2182	0.2590	1.002
0.2	0. 961	0.2171	0.1594	0.2196	0.2661	0.959
0.3	0.914	0.3171	0.159	0.3211	0.1557	0.907
0.12	0.852	0.6272	0.1596	0.4230	0.2807	0.882
0.5	0.779	0.5172	0.1596	0.5253	0.1897	0.840

-	$\left\lvert\, \begin{aligned} & \mathbb{R}_{\mathrm{Y}}, \mathrm{III}(\mathrm{~B}) \\ & \mathrm{wnlim} 5.5 . \end{aligned}\right.$	- 21 mvarage	IIr enple varlimene\{ 10^{2} \}		- rimee $\left(=20^{2}\right)$	$\begin{aligned} & \text { ene imated } \\ & R_{1} I I I^{(0)} \end{aligned}$
-0.5	0.779	-0.4967	D. 1127	-0.503h	0. 2012	0.560
-0.d	0.852	-0.3987	0. 1129	-0.601h	0.1800	0.696
-0. 3	0.986	-0.2987	-. 1129	-0.3011	0.1587	0.733
-0.2	0.962	-3.1987	0.1127	-0.2009	0.1313	a. 850
-0.2	0. 990	-0.0987	Q. 2129	-0.1001	0.3110	1.015
0.0	2.000	0.0013	0.2127	0.0015	0.1061	1.068
0.1	0. 990	0.2013	0.1127	0. 2020	0.1060	1.063
0.2	0.961	0.2013	0. 1299	- 90006	0.1073	1.000
0.3	3 0.924	0.3023	0.1127	0. 3046	0.1243	0.986
o. ${ }^{4}$	0.052	0.4013	0.13¢	0.4e69	0.1200	0.948
0.5	50.779	0.5013	0.1127	0. 5086	0.1265	0. 891

c) Indmpesdent mazimbled abeervilion from voit aspoaextial diatributico.

8		${ }^{6} 111$ avarege	$\begin{aligned} & { }^{8} \text { IIX } \\ & \text { virimene }\left\{10^{2}\right\} \end{aligned}$	${ }_{1}$ average	1 eenple variance $\left(-20^{2}\right)$	$\begin{aligned} & \text { ont inged } \\ & { }_{1}, 11 x^{(d)} \end{aligned}$
-0. 5	0.779	-0.9088	0.1422	-0.5096	0. 2300	0.618
$\rightarrow 0.6$	0.052	-0.403s	0.2422	-0.4093	0.2392	0.593
-0.3	0.92 b	\cdots - 30 里 ${ }^{\text {d }}$	0, 2420	$-0.32=0$	$0,206 n$	0.687
-0.2	0.961	$\bigcirc .2088$	0.1422	-0.2122	0.1502	0,899
-0,21	0.990	-0.1088	0.1422	-0.1206	0.2629	0.878
0.0	1.000	-0.0088	0.2422	-0.009?	0.162 c	C. 996
0.2	0. 990	0.0912	0.1422	0.0919	-. 1468	0.969
0.2	0.961	0.1912	0.2422	0.1937	0. 1515	0.939
0. 3	0.914	0.2912	0.1420	0.3954	0.1631	0.883
0.4	0.852	0.3912	0.1422	0. 3972	0. 1120	0.827
0.5	0.779	0.4919	0.1422	- 4.4978	0.1722	0.827

 almulation, although the ranulta arie cenerinly lana atable than thone

 mot eler.

Erfects of cangorips

To emana the affect of chamorima on the efticieney remunem of ene

for P-0.3 and 0.6 . Tables 9.3 and 5.6 preanent tha ramita for pmo. 3 ene $p=0.4$ rampect $4 v=15$ -

Table 5.3. Sample neans and variances or \vec{i}_{I} and $\dot{B}_{\text {III }}$ and eatimated A.R.E. of \hat{B}_{I} oonpared to \hat{B}_{111} for $B=-0.5(0.1) 0.5$ and 305 eennoring.
A) Tvo group csese (20 simulations)

B	$\$_{111}$ Evernge	$\begin{aligned} & { }^{511} \text { angle } \\ & \text { varinnce }\left(\times 10^{2}\right) \end{aligned}$	${ }^{8}$ I average	$\left[\begin{array}{l}B_{1} \text { sumple } \\ \text { varinance }\left(\times 10^{2}\right)\end{array}\right.$	$\begin{aligned} & \text { estimated } \\ & \mathrm{H}_{T, 111}(\mathrm{~B}) \end{aligned}$
-0.5	-0.4812	0.2136	-0.480l4	0.2541	0.840
-0.4	-0.380E	0.2261	-0.3815	0, 04,72	0.896
-0.3	-0.2804	0.1828	-0.2802	0.2034	0. 899
-0.2	-0.1828	0.1184	-0.1827	0.1241	0.954
-0.1	-0.0817	0.1535	-0.0815	0.1570	0,978
0.0	0.0275	0.2570	0.0277	0.1565	1.003
0.1	0.1196	0.1860	0.1197	0.1872	0.994
0.2	0.2255	0.1538	0.2259	0.1543	0.997
0.3	0.3280	0.1777	0. 3218	0.1783	0.997
0.4	D. 4232	0.1573	0.4242	0.1609	0.978
0.5	0.5233	0.1987	0.5247	0.3004	0.991

 ciferitution.

\leqslant	(1II avarate		O_{2} avaruse	41 anmel variance $\left(=10^{2}\right)$	Ertimated 4, 1+1 ${ }^{\text {(t) }}$
-0.5	-0.505T	0.3112	-0. 5066	0.3115	0.999
-0.1	-0.4136	0. 2936	-0. -152	0. 3200	0.918
-0.3	-0. 3016 6	0. 3119	-0.30t6	0. 3299	c.946
-0. 2	-0.2058	0.2644	-0.2058	0. 2731	0,968
$\bigcirc 0.1$	-0.1059	0.1881	-0.1075	0.1932	0.97\%
0.0	0.0070	0.2748	0.0050	0.2724	1.009
0.1	0.2071	0.2208	0.1077	0.2077	1. 061
0.2	0.2176	C. 2359	0.2160	0.2037	1.158
0.3	0. 3063	c. 3660	0.3065	0.1932	0.963
0.h	0. 2108	0.2744	0.4210	0.1642	1.210
0.5	-. 5076	0.2063	0.5098	0.2091	0.987

 (x0 at-netione)

-	${ }^{\text {SII }}$ avarage		${ }^{6}$ average	4_{1} amg 14 variance (-10^{2})	$R_{I_{0}} I I^{(B)}$
-0.5	-0.4939	0. 1067	-0.49e6	0.1200	0.992
-0.4	-0.3990	0.3135	-0.4003	0,316a	0.980
$-0_{1.3}$	-0.2943	0.1782	-0.299 ${ }^{\text {d }}$	0. 1792	0.994
-0.2	-0,2020	0.1606	-0.2030	0.1485	1.082
-0.1	-0.1005	0.20h4	-0.0996	0.1969	2.036
0.0	-0.0069	0. 3000	-0.00\%	C. 9076	0.975
0.1	0.0903	0.2863	c.090\%	0.1916	0.943
0.2	0. 1866	0.2163	0.1872	0.2289	0.965
0. 3	0.2902	0.1580	0. 2921	a. 2081	0.757
0. ${ }^{1}$	0.39614	0.1078	0. 3993	0.1289	0.857
0. 5	0.4972	0.2235	0.9009	0.1957	-. 794

Tahle 5,4. Sample means and verisnces of \hat{B}_{I} and $\bar{B}_{\text {III }}$ snd estimnted A.R.E. of \hat{b}_{1} compered to $\hat{b}_{I I I}$ for $\bar{B}=-0.5(0.1) \quad 0.5$ and $G 05$ censoring.
A) Two group onse (20 simulations)

8	B_{111} average	$\begin{aligned} & \hat{\mathrm{B}}_{\text {III }} \text { anample } \\ & \text { variance }\left(\times 10^{2}\right) \end{aligned}$	\hat{B}_{1} sverage	$\left\lvert\, \begin{aligned} & \hat{E}_{I} \text { sample } \\ & \text { varianee }\left(\times 20^{2}\right) \end{aligned}\right.$	$\begin{aligned} & \text { eetimnted } \\ & \mathrm{B}_{\mathrm{I}}, \mathrm{III}(\mathrm{~B}) \end{aligned}$
-0.5	-0.4626	0. 34.76	-0.4627	0.3634	0.956
-0, 4	-0.3715	0. 3015	-0.3705	0.3080	0.976
-0.3	-0.2640	0. 3148	-0.2631	0.3172	0.992
-0.2	-0.1751	0.1764	-0.17149	0.1719	1.027
-0.2	-0.0678	0.4003	-0.0676	0. 3952	1.013
0.0	0.0282	0.2773	0.0276	0.2778	0.998
0.1	0.1308	0.3300	0.1302	0. 3296	1.001
0.2	0.2290	0.1545	0.2283	0.1466	2.054
0.3	0. 3338	0.2323	0.3319	0.2280	1.019
0.4	0.4360	0.3434	0.43h 4	0.3403	2.009
0.5	0.5272	0.2332	0.5236	0.2292	1.017

 (10 admater foge)

\cdots	*213******	$\begin{aligned} & \theta_{111} \text { aapplo } \\ & \operatorname{varianen}\left(=10^{2}\right) \end{aligned}$	7, muaraga	T uacpled varlance $\left(\mathrm{m} 0^{2}\right.$)	mant imated $m_{1}, 111^{(s)}$
-0.5	-0.9036	0. 3270	-0.5078	0.3212	0.999
-0.6	-0,3093	0.5069	-0.3911	0.5799	1.012
-0.3	-0.2952	0. 3616	-0.2964	0.3302	1.034
-0.2	-0.1737	0.4937	-0.1739	C. ${ }^{\text {a }} 8.78$	1.012
-0.3	-0.0905	0.37th	-0.0918	0.3695	1.021
0.0	0.0180	0.5277	0.0186	0.5251	2.004
0.1	0.0989	-.61 6	0.0998	0.6076	1.023
0.2	0.2302	-. 33ar	0.2313	0.3304	0.999
0. 3	a. 3268	0. 5139	-0.3258	0. 5061	1.015
0.6	- \$181	0.2264	0.6179	0.2129	1.063
0.5	0.5186	0.2510	0.3180	0.2577	1.052

 (10 - fl-geticma)

s	1115 ararese		B_{2} vienke	s esepis Veriame $\left(=10^{2}\right)$	entinged
-0.9	-0.6625	0.7823	-0.1.610	0.7927	0.987
-0.4	-0.3T1 5	0.5730	-0.3712	0. 9632	1.017
-0.3	-0.2622	-. 28.8	-0.261T	0. 2898	0.992
-0.2\|	-0.1756	0.6420	-0.1761	0.64日	0. 990
-0.2	-0.0879	0.3472	-0.0871	0.3654	2.005
0.0	0.0233	0.3053	-.0245	0.3060	0.996
0.1	0.0981	0.4214	0.0979	0.4111	1.025
0.0	0. 1969	0.2932	0.1968	0.2862	1.031
0. 3	0.2968	0.20閏8	0.2973	0.2887	0.986
0.6	0.6253	0.1896	0.4169	0.1217	C. 989
0.1	0.4956	0.2437	0.4956	0.2395	2.026

Theae remale edaerly indiate thet, finamrel, the lerge

 particularly marled in eza cuo eftumeloas where tbe Indegendent

 Wen cacoorlat propartian 0.6. Copreapanding lowas mounan in the
 A enpertively.

$$
H_{I, I I I, n}(s)=c_{n}(0) e^{-N_{2} t^{2}}
$$

vere $c_{n}(0)=\frac{n+1}{n(n-1)} n_{n}$ is the Natuo of the informition retio oticainad it 5.2. by Kalbilaimeto. The validity of thia epgrorimation

 sol emacorim reapacively. The axprealon 5.6. Im almo ernlumied In teblee 5.54).
 obtained by eimulation in the 2 croup case ed to censorlra.

\#	uige implated 5.6 eatime				ue at billantod 5.6 entiet.		$\left\lvert\, \begin{aligned} & 50 \\ & \text { unise almated } \\ & 5 . E \operatorname{anc} i=t e \end{aligned}\right.$		to uaing rimalated 9.6 enษi		110 ution simuleted 5.6 exticte	
-0.5	0.706	0.560	0.722	0.593	0.731	0.588	0.730	0.641	C.715	0.716	0.795	0.781
-0. 1	0.72	0.571	0.790	0.666	0,000	0.668	0.807	0.697	0.819	0.794	c.035	0.856
-0.3	0.826	0.369	0.84?	0.935	0.858	0.720	0.866	0.766	0.419	0.094	0.806	0.916
-0.2	0, 071	0.567	0.890	0.786	c. 902	0.753	0.920	0.823	0.984	0.843	0.931	0.914
-0.1	0.897	0.597	0.917	0.800	0.929	0.777	0.938	0.803	0.952	0, 866	0.960	0.927
0.0	0.906	0.732	0.927	0.733	0.939	0.779	0.947	0.857	0,562	0.87%	0.969	0.820
0.1	0.897	0.791	0.917	0.761	0.929	0.754	0.930	0.852	0.952	0,881	0.960	0.692
0.2	0.87	0.980	0.890	0.787	0.902	0.72?	0.910	c. 813	0.921	0.871	0.931	0.831
0.3	0.880	0.673	0.8 n ?	0.661	0.058	0.936	0, 866	0.777	0.019	0.867	0.806	0.73
0.1	0.772	0.672	0.790	0.637	0.800	0.660	0.007	0.765	0.819	0.819	0.826	0.725
0.5	0.706	0.569	0.722	0.596	0.731	0.555	$0.73{ }^{\text {c }}$	0.767	0.769	0.756	3.755	0.705
mo. of isar intion:	100		100		100		100		T\%		50	

B) Eistimsted velues or reletive errieiency for $\mu_{2}=1$ and $80-0.5(0.1) 0.5$ obteined by simvintion. z eroup cese with 30% censoring.

B	20	30	40	50	80
-0.5	0.672	0.726	0.671	0.746	0.817
-0.4	0.668	0.771	0.743	0.797	0.829
-0.3	0.641	0.833	0.727	0.766	0.955
-0.2	0.688	0.772	0.888	0.765	0.943
-0.1	0.715	0.755	0.822	0.898	0.932
0.0	0.851	0.756	0.825	0.891	0.921
0.1	0.862	0.704	0.917	0.952	1.037
0.2	0.864	0.888	0.863	0.953	0.843
0.3	0.823	0.723	0.838	0.900	0.814
0.4	0.707	0.774	0.678	0.890	0.896
0.5	0.712	0.688	0.703	0.811	0.830

 to full effledency in at congerable rete. The ramults in table 5.5B) egein indieete that ine rolntion efticiency imcreene whem cemoring la impored.

Introdureion
The miturion of two independent marimblei conaidered in thie mection if on that frequentiy occure in modicmi metimtice, whera

Thm celewnetform involved fn the tho rerimble uncunmored cobe ere neturel extemion of thoe in 15.3. For $j e 1,2,1$ et
$z_{i j}=x_{i, j}-z_{j}, i=1, \ldots, n$,
where $\frac{x}{i}=\left(x_{11}, x_{12}\right)$ and $\bar{x}_{j}=\frac{1}{n} \sum_{i=1}^{n} x_{1 j}$

Under model III
$\Sigma^{I I I}\left(B_{1}, B_{2}, \lambda\right)=\left[\begin{array}{cccc}\Delta & \vdots & 0 \\ \ldots & \ldots & . . . & \ldots \\ 0 & 0 & n)_{\lambda 2}\end{array}\right]$ where $A=n\left[\begin{array}{ll}\mu_{2}, 0 & \mu_{1}, 1 \\ \mu_{1,1} & \mu_{0,2}\end{array}\right]$
and $u_{j, k}=\frac{1}{n} \sum_{i=1}^{P} z_{i 1}{ }^{j} z_{i 2} k$. Note that $u_{0,2}=\mu_{1,0}=0$,
*6 that aypptaticelly

$$
\operatorname{SIII}^{\infty}\left(\underset{\sim}{0}=A^{-1}\right)
$$

The Likelihood function under model I in thin unemmorna cere In

Putting

$=\mathbb{I}_{2,1}^{1}\left(\Theta_{1}, \omega_{2}\right)$.
$I_{2,2^{2}}^{\left(\theta_{1}, \theta_{2}\right)}=E\left(\sigma_{0} 2^{\left.\left(\theta_{1}, \sigma_{2}\right)\right)}=\sum_{0} \varepsilon_{0} 2^{\left(\theta_{1}, B_{2}\right)} \dot{L}\left(s_{1}, \theta_{2}\right)\right.$.

 relatively ulitio reaula may be obtelaed at $\|_{1}=i_{2}=0$.

$I_{22}^{1}(0,0)=E_{R}\left\{0,2^{(0,0)}\right\} \cdot \frac{2}{\pi-1}=v_{0,2}$
nell

10 that to $t_{1}-B_{2}=0$, themprototic ralaitve arriciensz R_{1}, III $(0,0)$ of B_{11} ecomered volifth in mqual to 1. Thi Lropimethat at $\mathrm{s}_{2}=0$, a tant of $H_{0} \mathrm{E}_{1}$ e o based on the marafmel diatribution of B_{12} is amymptoticelly fuly efficient.

An Is the winie iodepondent veriable came epprozintion to

It by be ahoun (the decaila ere diven in Appatifx bit the fin the

and lamee

40 the meletbourheod of $(0,0)$.
Puttina P1,2 0 in 5.7.

 (1974)。 thet 5.h. In egoos ruide is multiparaneter proble provided thet the 1ndependent teyleblee ere nemrly uncorrelefed

whete

$\mathrm{s}_{21} \cdot \mathrm{P} \cdot \mathrm{H}_{12}=\frac{1}{2}(1-\ldots-\log 1) \cdot \mathrm{s}_{21}$

no that $y=\left(A-c B^{-1} c^{1}\right)^{-1}$

 refuction seply here. Table 5.6. evalumted themengroptetic

15.5. Within etratitmode 11

Introduction
 uncambored cane mre metanded In thia memeion ta tha withie atrata matela IY, V and $\%$.

It will again be conveafent to traneform libeariy the indepandent

 the $\|^{1 / 4}$ stretin. Mate that

Table 5.6. $\mathrm{A}, \mathrm{R}, \mathrm{E}^{\prime}=\mathrm{B}_{1, I I I}\left(\mathrm{~B}_{1}, \mathrm{~B}_{2}\right), \mathrm{H}_{1, I I}\left(\mathrm{~B}_{1}, \mathrm{~B}_{2}\right)$ and $\mathrm{B}_{I I, I I I}\left(\mathrm{~B}_{1}, \mathrm{~B}_{2}\right)$
vhen $\mu_{2,0}=\mu_{0,2}=1$ for $\left|\mu_{1,2}\right|=0,2(0,2) 0.8$ and $\left|\mathrm{B}_{1}\right|=0(0,1) 0.5$.

$\left\|u_{2,2}\right\|$	$\left\|B_{1}\right\|$	$B_{1,111}\left(B_{1}, B_{2}\right)$	$\mathrm{B}_{1,21}\left(\mathrm{~B}_{1}, B_{2}\right)$	$\mathrm{H}_{11}, \mathrm{III}{ }^{\left(\beta_{1}, \mathrm{~B}_{2}\right)}$
0.2	0	1	1	1
	0.1	0.990	0.996	0.994
	0.2	0.962	0.965	0.977
	0.3	0.917	0.965	0.950
	0.4	0.858	0.938	0.915
	0.5	0.787	0.901	0.873
0.4	0	1	1	1
	0.1	0.992	0.997	0.995
	0.2	0.967	0.987	0.980
	0.3	0.927	0.970	0.956
	0.4	0.874	0.946	0.924
	0.5	0.811	0.914	0.857
0.6	0	1	1	1
	0.1	0.994	0.997	0.996
	0.2	0.975	0.990	0.985
	0.3	0.944	0.977	0.966
	0.4	0.903	0.959	0.941
	0.5	0.852	0.935	0.911
0.8	0	1	1	1
	0.1	0.996	0.999	0.998
	0.2	0.986	0.994	0.991
	0.3	0.968	0.987	0.981
	0.4	0.944	0.977	0.966
	0.5	0.914	0.964	0.946

In addition let $u_{r}=\frac{1}{n} \sum_{j=1}^{E} \sum_{i=1}^{\sum j} z_{j i^{r}}=\sum_{j=1}^{E} a_{j} u(j) r \cdot \quad r=2,2, \ldots$ where $q_{j} \omega_{j} / n \quad j=1, \ldots, n$ and $n=\sum_{j=1}^{f} n_{j}$ is the total nnmple aize.

Dnder model VI, the information matrix is then given by

snd it follows that asymptoticelly,

$$
B_{\mathrm{VI}}=N\left(B, 1 / /_{\mathrm{ma/2}}\right)
$$

Similarly, under model V the reaulta of 55.1 . indicate that the information matrix may be written as

Where

$$
A=n w_{2}
$$

$C_{0}=\left[-\frac{B n_{1} u(1) 2}{\alpha_{1}},-\frac{8 n_{2}^{u}(2) 2}{\alpha_{2}}, \ldots,-\frac{8 n_{8}^{u}(\mathrm{~s}) 2}{\alpha_{n}}\right]$,
$H_{A}=\operatorname{diag}_{5}\left(n_{3} /{ }_{2} 2\right)$.

$$
\begin{aligned}
& M=\left(a-£ g^{-1} g^{0}\right)^{-2} \text {. In chla cane } 52^{-2} G^{\circ} \text { reducem 2o }
\end{aligned}
$$

$$
\begin{aligned}
& \text { were } y_{0}=\left(\mathrm{EA}_{\mathrm{A}}-\mathrm{BA}_{\mathrm{E}} \mathrm{~B}_{\mathrm{a}}^{-1} \mathrm{Pi}_{\mathrm{i}}\right)^{-2} \text {. } \\
& \text { Iveluneita vern by ver }
\end{aligned}
$$

$$
\begin{aligned}
& \text { no that }
\end{aligned}
$$

It theo follutie thet

Fat = then $R_{V_{*}} w_{1}(0)=1$.

Under model IV. terve eppearing io $I^{I V}(a)$, the infornation mbout
 atrata of coryemponding model quantition. At Bea

$$
\frac{2 t^{\mid v}|c|}{n}=\sum_{j=1}^{t} x\left(\mathrm{~m}_{j}\right)=d(z)
$$

$$
\frac{a^{2} I^{I v}(0)}{\partial b^{2}}=-2 \sum_{j=1}^{n} n_{j} u^{2}(j) 2+\sum_{j=2}^{n} o\left(n_{j}\right)=-2 n \sum_{j=1}^{n} a_{j} u^{2}(j) z+o(n)
$$

so that for large n and in the neightourtiood of am

$$
I^{\mathrm{IV}}(B)=\operatorname{nuz} \exp \left\{-\frac{\varepsilon^{2}}{u_{2}} \sum_{j=1}^{8} q_{j} u_{(j) 2}^{2}\right) \text {. }
$$

It then follows that

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{IV}, \mathrm{VI}}(\mathrm{~s})=\exp \left(-\frac{\beta^{2}}{\mu_{2}} \sum_{j=1}^{p} q_{j} v^{2}(j) 2\right) \text { and } \\
& \mathrm{R}_{2 \mathrm{v}}, v^{(B)}=v\left(\sum_{j=1}^{\sum} \frac{a_{j} \mu(\omega) 2}{1+6 \mathrm{e}^{2} u(j) / n^{2}}\right)^{-1} \operatorname{vxp}\left[-\frac{B^{2}}{\nu^{2}} \sum_{j=1}^{\sum} g^{\nu^{2}}(j) 2\right]
\end{aligned}
$$

in the neighbourhood of $s=0$.
avo independent variable

$$
\begin{aligned}
& \text { Yer } k=1,2 \text {, let } \quad z_{j i k}=x_{3 i k}-\bar{x}_{j k} \quad i=1, \ldots, n_{j} i j=1, \ldots, n \text {, } \\
& \text { where } \bar{x}_{j k}=\frac{1}{n_{j}} \sum_{i=1}^{n_{j}} x_{j i k} \text {. In addition put } \\
& { }^{v}(j)_{r_{1}, r_{2}}=\frac{1}{n_{j i=1}} \sum_{\sum_{j i 2} j_{2}}^{r_{1}} z_{j 12}^{r_{2}} \quad j=1, \ldots, v^{n} \text { with } \\
& \mu_{r_{1}, r_{2}}=\frac{1}{n} \sum_{j=1}^{n} \sum_{i=1}^{p j} z_{j i 1}^{r_{1}} z_{j j 2} r_{2}=\sum_{j=1}^{p} a_{j}^{\mu}(j) r_{1}, r_{2}, r_{1}, r_{2}=1,2, \ldots \\
& \text { Note that }{ }^{n}(j) 0,1={ }^{n}(j) 1,0=0 \quad s=1, \ldots, 5 \text {. }
\end{aligned}
$$

Under model VI, the information matrix is given
vter. A = $\left[\begin{array}{ll}w_{2,0} & w_{1,2} \\ y_{1,2} & w_{1,2}\end{array}\right]$, and angrape oticeliy

Under nodel V, the inforetion metin may be writton an
whore A in ac in model VL,

$$
\begin{aligned}
& \text { Ein } \operatorname{tive}_{4}\left(\frac{\pi_{2}}{a_{j} j}\left\{2-\cdots-\log \lambda_{j}\right\}\right) \quad \text { and }
\end{aligned}
$$

A direct extension of the algebra weed in the singie independent variable case yields the result thet anymptoticsily $\hat{\mathrm{g}}_{\mathrm{V}} \sim \mathbb{N}(\underline{\mathrm{E}}, \mathrm{M})$ where
 vith $D_{3}=\frac{\pi^{2}}{6}+8_{1 u}^{2}(3) 2,0+25_{1} E_{2 \mu}(3) 2,1+8_{2}^{2} u(3) O, 2$ and
 saymptotic varlance of $\bar{\beta}_{V}{ }_{2}$ nay be obtained ξ_{n} the ususi way.

Under model IV conaiderations similar to those for model I yield the nsymptotic result

$$
\begin{aligned}
& \operatorname{var}\left(\bar{E}_{I V_{2}}\right)=v_{\left.I v^{\left(B_{1}\right.}{ }_{2} B_{2}\right)} \\
& =\frac{\mu_{0,2}}{n \mu} \exp \left[\left\{u^{2} 0_{, 2} \sum_{j=1}^{\beta} q_{j}\left(B_{2 \mu}(j) 2,0^{+B_{2} u}(j) 2,2\right)^{2}+u_{1,2}^{2} \sum_{j=1}^{p} a_{j}\left(B_{1} u(j) 1,1+B_{2} u(j) O, 2\right)^{2}\right.\right. \\
& \left.-2 \mu_{0}, 2^{\mu} 1,1 \sum_{j=1}^{\sum} Q_{j}\left(\beta_{1} \mu(3) 1,1^{+B_{2} u}(3) 0,2^{\prime}\right)\left(B_{2 \mu}(3) 2,0+B_{2 \mu}(3) 1,1^{\prime}\right\} / \mu_{0}, 2^{u}\right]
\end{aligned}
$$

where $u=u_{2,0} \mu_{0}, 2^{-u_{1}^{2}, 2}$, in the neighbourhood of $\left(B_{1}, B_{2}\right)=(0,0)$. Detaile of the enlculations leading to this remult are given in appendix C. Expresaions for the asymptotic relative erriciencien $\Pi_{1 \mathrm{~V}}, \mathrm{v}^{\left(B_{1}, B_{2}\right)}$, $\mathrm{R}_{1 \mathrm{~V}, \mathrm{VI}}\left(\mathrm{B}_{1}, B_{2}\right)$ and $\mathrm{K}_{\mathrm{V}, \mathrm{VI}}\left(\mathrm{B}_{1}, B_{2}\right)$ are obtained as ration of eppropriate saymptotic entimator variances.

Chapter 6

MODEL CHECKTMG

56.1 Introduction

Bummery.
Choosing the appropriste form of a model and aubsequent examination of its fit to the dsta sre two important pointil that will be oonaldered In thin ehnpter. The rest of thin section concerne the shofee of e model jrior to rormal ritting. Methods of eheoking nodel assumptiona nfter fitting mre dfacumand in 56.2.

Initial investigations

An initisl step in any anslysia will uaunliy be to 'sereen' a large number of independent varisbles for those likely to be or some interest regordine prognoatie predietion. At this btage only some fuformation on the monot of dependence is reguired snd comperine median survival timen (obtained as the 50% percentile of the murvivor function entimated as in 51.3) between various subgroupe of the dets defined by the independent variables may vell be ndequate.

Heving phonen a relatively small aubset on which to focus sttention more direct methode of sssessing the wny in whieh independent variables affect aurvival are available. Under model I, for esch independent varinble $k=1, \ldots, p$,

$$
\lambda_{1}(t)=\lambda_{0}(t) e^{B_{k} x^{i k}} \exp \left(\overrightarrow{\underline{B}}^{\prime} \overrightarrow{\underline{x}}_{i}\right)
$$

Where \bar{x}_{i} and ${\underset{B}{i}}^{\text {are }}$ as before with $x_{i k}$ and B_{k} omitted. For a binary variable x_{k}, thia relationahip is equivalently

$$
x_{i}(t)= \begin{cases}x_{0}(t) e^{B_{k}} \exp \left(\ddot{B}^{\prime}\right. & \left.\bar{x}_{i}\right) \\ x_{i k}=1 \\ x_{0}(t) \exp \left(\ddot{B}^{\prime} \bar{x}_{i}\right) & x_{i k}=0\end{cases}
$$

The assumption that the variable x_{k} acts on the hamard function in this way miny be tested by ritting a model of type IV with
$\lambda_{i}(t)= \begin{cases}\lambda_{a l}(t) \exp \left(\underline{\hat{B}}, \bar{x}_{i}\right) & x_{i k}=1 \\ \lambda_{02}(t) \exp \left(\overline{\mathrm{B}}, \bar{x}_{i}\right) & x_{i k}=0,\end{cases}$ estimating $\lambda_{o 1}(t)$ and $\lambda_{o 2}(t)$ and assessing the connection between these functions. An appropriate meana of assenament is provided by plotting log underlyine cumulative hazard functions ($10 \mathrm{~g} \bar{\Delta}_{01}$ (t) and $\left.\log \bar{\Delta}_{o 2}(t)\right)$ againat t. Conatant dirferenees ahould reault. For diacrete variablea taking more than 2 values this procedure ean be extended in an obvious way to provide useful orformation eoncerning the wny in which the varimble sota. Apprgriate groupings silow aimilar techniques for sontinudus variables.

16.2 Aliregnimu Roodnena of It

The poonibility of wing time dependent coveriasee mee mentioned briefly in f3, 3 and the gumeiricetion of tbeir inclumion van ciren fo 54. 7 . In thin menerth eívecion, modele I, ir and III ore

$$
\begin{aligned}
& \alpha_{i}(\varepsilon)=x_{0}(t) \exp \left(\sum^{*} \underline{x}_{3}(\varepsilon)\right)
\end{aligned}
$$

with corremponding likalibooda
 An example of the une of auch corrarimetalia amenaing the eppropidetenem of the proportional hetarde eeevegrion ie fiven by Coz (1972). In the anlyaig of the diate of EM.I, Cos une bil dimerete form of model I


``` Qenerel proepduran far thosing papelowlae funefonal form for mueh
```


Fanlan's 'xant for parallalive'
 model I taiken the form

$$
\lambda_{1}(t)=\lambda_{0}(t) \exp \left(B_{1} x_{i 1}+B_{2} x_{i 2}\right), \quad|\alpha|+r \mid+t_{+}
$$

where $x_{i 1}= \begin{cases}0 & \text { group } 1 \text { membera } \\ 1 & \text { group } 2 \text { nembera }\end{cases}$

$$
\lambda_{1}(t)=\left\{\begin{array}{ll}
\lambda_{0}(t) & \exp \left(B_{21} x_{12}\right) \\
\lambda_{0}(t) & \exp \left(B_{1}+B_{22} x_{i 2}\right)
\end{array} \quad \text { in } \quad\right. \text { vion in in mentern }
$$

 invludid in the model from tho outimet of the manyale and their
 of fuch timt exactionm.

The uete of reatavala

Mudel I my be mittem in the rolloving equivelent way,
 Afetribution virh

$$
\varepsilon_{i}=e \underline{B}^{\prime} \underline{x}_{i} \int_{0}^{\pi_{i}} \theta_{i}|+| \alpha_{i}=\ln _{i}\left(\tau_{i} b \operatorname{H}_{b} A_{0}(\cdot \beta)\right.
$$

Thim expreasion of the madel allow the une or the eethode of Goy and

 approximately the propertiam of a random acmple of biew from anit exponential diatribution. Inforsotion concermite paleible dmpendence of the error gumentition on the X_{i} 'an be gaided from plote of "crude' reeidunde egainmt correspondime indepeodent variable values for eech nuch mariable. Plotiing ordernd residual egminat expected order etatimtics provides a check of the menned dietributionel form of the c; "a
giailariy, modaln II and IIX cen be meprenned rampetively throunth the tranaforentiona

$$
\begin{aligned}
& 1=4, \ldots, \ldots n \text {, } \\
& \theta_{i}=\lambda e^{B^{\prime} x_{i}} I_{i}=n_{i}^{I 11}\left(T_{i} ; \theta_{i} \lambda\right), \quad 1-1, \ldots .
\end{aligned}
$$

where the c_{i} '"are nob above- 'Crude' renidumas are obemined on replacine parmaterm by their maximan dikelibood entimeres. To ertend

 Riss

$$
i^{3} r^{s}=h_{2}\left(t^{*}+h^{*}\right.
$$

'crude' penldusin。 Under eny of the mbove modela the error quantitian

$$
\operatorname{das}(E \mid=-c=-\Delta(\varepsilon)
$$

and a plot of loe bux"ifct functiona elleizntad frem the "crude" repiaumis.

 preheuter2y appropriale hez゙o.

> Frpreeming modely IV, Y and VI reapmetively through the

Lreanfarmatiaen

$$
\begin{aligned}
& \varepsilon_{j i}=x_{j} e^{B^{4} x_{j i}} T_{j i}=b_{j i} V I_{j i}\left(T_{j i}{\underset{\sim}{*}}_{3}, \lambda_{j}\right)
\end{aligned}
$$

 Alatributed with usit men allown correapooding etehoda io be uned
 these teehni quuen bhould provide an miequate check of model nimurptiona,

In the une ensored ceme inprovemants of the ehove prodmeuren ere posmible, Cox and Bnell, in efendral contert, evereat trangrorimeion

 Involve the onleulmetion of mana. verlabotillad coveriencall of tha

 show thet, $\operatorname{ta~o~}\left(\frac{1}{n}\right)$, for $i_{1}, 1_{1}=1, \ldots, n$

$$
k\left(n_{1}\right)=1 \cdot \frac{1}{2 n}+\sum_{k=1}^{f} b_{k} i_{i k}-\frac{1}{2} \sum_{k=1}^{p} \sum_{k=1}^{p} f^{k i} z_{i k^{2} i k}
$$

$$
=2+3
$$

$$
E\left(B_{1}^{2}\right)=2-\frac{2}{n}+\frac{2 n}{n}+4\left(\sum_{k=1}^{p} b_{k} z_{i k}-\sum_{k=1}^{p} \sum_{k=1}^{p} 1^{k L} n_{i k}{ }_{i k}\right)
$$

$$
=2+c_{i}
$$

$$
E\left(B_{1} H_{i}\right)=1+\left(s_{1}+s_{i_{1}}\right)-\frac{1}{n}-\sum_{k=1}^{p} \sum_{k=1}^{p} 1^{k i} z_{i k^{2}} i_{1} 2
$$

$$
=1+c_{i i_{1}}
$$

INH_{2}
vbare $b_{k}=E\left(B_{k}-B_{k}\right)=\frac{1}{2} \sum_{r=1}^{p} \sum_{i=1}^{P} \sum_{t=1}^{P} I^{r k k_{1} s t} \sum_{u=1}^{P} z_{u r} z_{u s} z_{u t}$,
 imformetion metrix. The miandurdieed form of model III beg been uand fic

 the velidity of the ameupelon that the propertion of the crude raiduale

$$
\begin{aligned}
& E\left(R_{i}\right)=\left(2-k_{i}\right) \equiv\left(1+\frac{1}{1+k_{1}}\right) \\
& E\left(R_{i}^{2}\right)=\left(1-k_{1}\right)^{2}+\left(2+\frac{2}{1+k_{i}}\right) .
\end{aligned}
$$

Equating theme expressiona to the approximations given eselier, expanding as a Thylor series about $k_{1}=k_{i}=0$ and ignoring hieher order terne of k_{i} and k_{1} it followe that

$$
\begin{aligned}
& k_{i}=\frac{1}{2}\left(4 s_{i}-a_{i}\right) \\
& k_{i}=\frac{1}{2}(1-u) a_{i}-(3-2 a) s_{i} .
\end{aligned}
$$

Observed values of the 'modiried' reaiduals in the uncensored case mey now be compruted and lused an before to check modez ansumpt iont. In addition, pairvise correlations between residunle may be exnmined by noting that, to the order considered,

$$
\begin{aligned}
& \operatorname{cov}\left(R_{i}, R_{j}\right)=E\left(R_{i} R_{3}\right)-E\left(R_{i}\right) E\left(R_{j}\right) \\
& =-\frac{1}{n}-\sum_{k=1} \sum_{k=1}^{R} 1^{k L} z_{j k} z_{j k}=\operatorname{corr}\left(R_{i}, R_{j}\right)
\end{aligned}
$$

aince the $R_{i}{ }^{\prime}$ a have approximately unit variance.
Under model VI extenaion of the enleulationa for model 111 (een

$$
\begin{aligned}
E\left(R_{j i}\right) & =1+\frac{p}{2 n_{j}}+\sum_{k=1}^{P} b_{k} z_{j i k}-\frac{1}{2} \sum_{k=1}^{P} \sum_{k=1}^{p} I^{k i} z_{j i k} z_{j i k} \\
& =1+n_{j i} * \\
E\left(R_{j i}\right) & =2-\frac{2}{n_{j}}+\frac{3 D}{n_{j}}+4\left(\sum_{k=1}^{f} b_{k} z_{j i k}-\sum_{k=1}^{p} \sum_{k=1}^{P} I^{k i} z_{j i k^{2}}{ }_{j i k}\right) \\
& =2+c_{j i}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3t } \sin _{1}^{1}
\end{aligned}
$$

*er for

Axther rebulee

 ect 1nalvidunt (rendo cenmoramip masely.

 allowing pirediation of the eurwivel patien roz the swoond croup. The cheerfed end predlcted petverns $\Rightarrow \mathrm{y}$ then be compered. Cemsored teq $=$ gain exkee thiv qechmiqua iutractibla.

16.3 11iacungion

 of the typemationed in 16.1 and fitting of an mpropriate form of
 Niolate the prapertional harerde ageumption. (altermetively, the Imeluion of tim-dependent coverietel my be canaidernd for muct
 finvaricating the effectio of indopendent variablan. little in to be ganad from an erficiency atendpaint by imgoafng mare etrimgent
 Belection of thone indeperdent meriablen meritiog ioclunion for the mogl my thon be cerfitd ous woing etaywiat procedure or the type
 mehode ableet rolevane indeponaent vefablea and oppropriately modal

 It Ia at thin mtero that invantimetan of particular parangeric form for $\lambda_{0}().\left(\mathrm{or} \lambda_{01}(),. \ldots, \lambda_{\text {on }}().\right)$ memem epgropriate

In the wast ehapter m mxanple winim the mbave eype of molymin vill sonmanted.

I. I Dabele

Tu sata

Abstract

 of Pradnimnna tremtennt. The Epial, coedmeted by the "Copenhagen study Oraup For Liver Dimeena" "began oe lat Josumry 1962 and rea terninnted ectivity of the cirrhomí (a well farined biochealeal tactor) and the abmence/prwaence of aneited.

 informetion bi bll the remining varinble mothtoned atare, eg of thead

 einal. 102 vere aintinct, therw being h paire of 2 tied observetionit,

Toble 7.1 Data from clinical trial eonducted by the 'Copenhegen Etudy Group for Liver Disesses' on 177 Mele sleoholies vith eirrhosis of the ilver,

```
Censored (0) or Survival
                                    Independent Variables
Uncensored (2) time (dsys) Age* Ascites Activity Trestment
```

1	13	-0.27	-1	1	1
1	15	1.64	1	-1	1
1	19	0. 54	2	1	1
1	26	-1.97	1	1	-1
1	32	1.64	1	1	1
1	33	1.24	-1	-1	1
1	36	-1.27	-1	-1	1
1	39	1.64	-1	-1	-1
1	40	1.64	1	1	1
1	45	0.74	-1	-1	1
1	46	-0.77	-1	-1	1
1	56	0.94	1	1	1
1	57	0.74	1	1	-1
1	66	0.04	-1	-1	-1
1	82	-1.67	-1	-1	1.
1	90	-0.77	1	1	1
1	90	0.64	1	1	1
0	91	0.84	1	-1	1
1	103	0.84	1	-1	1
0	108	-0.87	-1	-1	1
0	111	0.64	-1	-1	1
1	112	1.84	1	1	-1
1	114	1.04	-1	1	1
1	117	0.34	1	1	1
1	117	2.014	-1	1	1
1	118	0.74	1	-1	1
1	122	-0.57	1	1	1
\bigcirc	126	-0.17	1	-1	1

1	415	-0.37	1	-1	1
1	622	-0.37	-1	1	-1
1	487	-0.57	1	1	1
1	656	-0.17	1	-1	1
1	459	0.3*	1	-1	-1
1	469	0. 06	1	1	-1
1	473	0.64	-1	-1	-1
1	d79	0.46	-1	-1	1
1	934	0.16	-1	-1	1
1	6 m	0.54	2	-2	1
1	689	0.24	1	-1	1
0	no	-0.47	1	-1	1
2	723	-0.67	1	1	1
0	730	-0.57	-1	-1	-2
1	752	0.14	1	-1	1
0	75.4	-0.77	-1	-1	1
2	777	2.86	-2	-2	2
1	825	2.06	-1	-1	1
1	841	-0.27	-2	-1	1
1	051	-3.37	-1	1	1
1	879	0.34	-1	-1	1
1	961	0.54	-1	-1	1
1	975	-0.37	-1	-1	1
1	1057	0.04	1	2	1
1	2057	0.14	1	-2	1
2	1065	2.014	-1	1	1
0	1069	-1.07	1	-1	-2
1	1078	0.14	-1	-1	1
0	1084	-1.89	-1	-1	1
1	2101	-0.27	-1	-1	1
1	1114	-1.27	-1	-1	-1
1	2141	-0.27	1	-1	1
1	3142	0.14	1	-1	-1
1	2182	-0.17	1	1	1

1	1198	0.34	1	-1	1
0	1226	-1.67	1	-1	1
0	1233	0.84	-1	-1	-1
1	1242	1.54	-1	-1	1
1	1252	0.24	1	-1	1
0	1274	-0.27	-1	1	1
2	1316	-1.37	1	-1	1
1	1359	0.54	-2	-2	-1
0	1370	-3.28	-1	-1	1
1	1377	1.64	1	-1	1
0	1378	-1.67	-1	-1.	1
0	1477	0.24	1	-1	1
1	1544	-1.97	-1	-1	1
1	1614	0.64	-1	-1	-1
0	1614	-1.27	1	-1	1
1	1641	0.04	1	-1	-1
1	1695	0.64	-1	1	-1
1	1733	-0.27	1	-1	1
1	1744	0.94	-1	-1	1
1	1791	-0.57	1	2	1
0	1797	0.04	-1	-1	1
1	1810	0.74	-1	-1	1
0	1819	-0.77	1	-1	1
0	1826	-0.97	-1	-1	1
1	1858	-0.37	1	-1	1
0	1891	0.54	1	-1	1
0	1898	0.84	1	-1	1
1	1906	0.04	-1	-1	1
0	1926	-0.37	-1	-1	1
0	1932	-0.47	-1	-1	1
0	1960	-1.47	-1	-1	1
1	1961	0.64	-1	-1	1
1	1975	0.04	-1	-1	1
1	1976	-0.17	1	-1	1

Drale of faitinal model

Actrolm ana flumerazill (1975) In aiecumina ebis eridel and other

 goanderationa lanA co tentative model in wiok the hazard Nenction for patiens 1 ie siem by

$$
A_{i}(t)=\lambda_{a}(t) \exp \left(\int_{1} x_{j} \cdot \|_{L j}\right)
$$

 eativity mariablea, miven la table 7.1. and
$y_{i_{1}}=\left\{\begin{array}{l}\pi_{i} \\ 0\end{array}\right.$
$z_{i 2} *\left\{\begin{array}{l}z_{i} \\ 0\end{array}\right.$
$y_{i 3}=\left\{\begin{array}{l}z_{i} \\ 0\end{array}\right.$
$x_{i s}=\left\{\begin{array}{l}z_{i} \\ 0\end{array}\right.$
$x_{i_{2}}=-1, x_{1_{3}}=-1=$
otherwiae
$x_{i_{2}}=-1, x_{i_{3}}=+1$, othervise $H_{i_{2}}=* 1 . *_{i s}=\mathcal{I}_{1}$
a6xaexibe

-1 if 1 in coatral Eroup. -1 if 1 for tremtent grouy This model allowe tremement copparimonn to be mate within each of the grime actimed by mecitcm $=$ metivity,

Proliminary molel checting metmodn of the trpe dipeuned in 16.1 .
 vay. Figures T.1., T.2., 7.3. and F.h. provide plote of log underlying comulative hagmai nuctiog fobteined unint the Ralbriaiteh and Preatice
 ad enentmat defining etrate in turn.

Ric. 1.1. \log maderlying curulation materd faction.
ta check foeluion of age. Model IV fiteed with morblen x_{2}, y_{1} and $y_{j} d=1, \ldots \ldots, h$.

 Fith variblea $z_{1,1}=1$ mad $y_{j} j=2 \ldots \ldots, t$.

 chack facivion of octiolty. Sbisl IV fisead viel
verimiel z_{1}, x_{2} and $\mathrm{J}^{\prime} \mid=1, \ldots . \mathrm{y}^{\prime}$

a) $x_{2}=-1, x_{3}=-1$

Streta

$$
\text { b) } x_{2}=-1, x_{1}=+1
$$

e) $x_{1}=+1, y_{1}=-1$

(d) $x_{2}=+1, x_{3}=+1$

 and fieting model IV vich independent veriablo mge. Theef pleta
 of the model it T.1. cre Fiolaked.

Farmeter antimeen wizt beadard errorl. obtaiaed by alrecq

Fank 7. ${ }^{\text {che }}$	Parameter fatimate草 and mock 1 \# 1.2.	arcorm havine fitted
Indepandent 	Eaelmaked ralum of castileleat	Standard error of entimator
${ }_{1} 1$	0.6126	0.1214
x_{1}	0.4649	0.1265
${ }^{1} 1$	-9.2009	0.1319
Yi	-0.0239	0.2861
$y 2$	0.0292	0.1239
Y	0.4323	0.3028
yo	0.5806	0. 25289

Eajoction of nimiricant effurta

The methodi of 14.3 . hmve heen ebployed se select thone Indepeadent

Table 7. 3. Gulecting indepabdest variablea bavise oifaificant offoct on murvivel undor model I.
a) Forviard miapuiae procedure.

Independant veríallan	Hanima value of log Ifielihood	Valual of tent -tetietie
Hone	-694.669	
${ }_{\square 1}$	-477.512	39.916 ${ }^{\circ}$
${ }^{1}$	-482.801	23.336
F_{5}	491.655	5.620
y_{1}	-494.292	0. 554
y_{2}	-4.94.466	0.006
72	-492.037	4.864
76	-\$06. b $^{\text {¢ }}$ T	16.001 m
$\mathrm{X}_{1}=\mathrm{za}_{2}$	-1466.320	22.402*
$x_{1, x}$	-475.937	3.148
$z_{1} y_{1}$	-67T. 896	0.030
$x_{1} 97$	-477.650	0.122
\%1.81	-176.132	2.758
21, ${ }^{4} 4$	-4.70.429	14.164
	-463.397	1.026
	-466.218	0.18 h
	-466.272	0.076
	-465.635	1.350
E_{1}, $\mathrm{XI}_{2} \mathrm{Jm}_{4}$	-463.703	5.214^{4}
	-462.368	2.670
	-463.609	0.188
$x_{1} x_{2}, y_{n}+y_{2}$	-463.666	0.074
	-462.876	2.654
+ - reger In	celection.	

b) Seckroard aelection procedure.

Iadapowdent variablea	Maximu velue of 	Value of taet etetiletie
	-462.682	
	$-46 \% .010$	6.256
	-462-31	1.330
	-461.709	0.0515
	-461-605	0.006*
	$-462-744$	2.124
	-467.010	10.656
	-h7k.995	26.626
	-t64.821	6.272
	- 562 - 378	2. 306
	-462.713	0.0560
	-462.0䑲1	2.312
	-467.024	20.678
	-475.049	26.728
	-464.851	6.276
	-462.368	1.310*
	-462.876	2.326
*10\%1*Y1076	-667.061	10.696
	-4.75.050	26,674
	-465.397	6.058
	-163. TO3	2.670
	-460.174	11.612
	-476. 215	27.894
E187m	-466.310	5.214
	-470.h29	13-452
	$-479-313$	31.220
	ea	

 entimited coverience of the entimeorn obtainad. an berora by dimect

Teble 7. 4 . Pimal rareion of model 1 vith independent veriablee

Tradepmendent variable	Estimated value of coofriciant		geandard error - 邹imetor	0
x_{1}	$\left(s_{1}\right)$	0.61427	0.1181	
*8	(19)	0.4992	0.2209	
4	$\left(\mathrm{A}_{4}\right)$	0. 5091	0.2326	

Feti=ted cavarimace metrix

i_{1}	0.0110		
a_{2}	0.0003	0.0246	
d_{4}	-0.0001	-0.0216	0.0541

Hote thet emicuine a miection procedure beawd on the epprozizite
 have lad to the rete final model.

Macelonel forn ror y fel

${ }^{2}$ ilimation of the log underlying cumulative hamard function, enrried tut vaasing

$$
\hat{i}_{0}(t)=\int_{0}^{t} \hat{i}_{0}(u) d u
$$

I4 by oted apainnt $\log t$ at $t=100 \mathrm{r}, \mathrm{r}=1, \ldots, 31$ in rigure 7.5 . tha m etraight line ritted by eye. The plot suggeote that a reletionship ${ }^{\circ} \mathrm{P}$ thae rom

$$
\log \Delta_{0}(t)=e \log t+d
$$

7.2.

Hifatas between $A_{0}(t)$ and t.

 *rietem mquivelantly an

$$
\lambda_{0}(t)=2 \cdot 8^{e-1}
$$

vharm and and $\lambda=0$, thme fittive modiel or type 11 providen en
 Thble T.6. firem datella of ebla fit.

Incapardent verieble	Batibled parumper velue		Btanderd or eatimat
	(a)	0.9263	0.0718
	(a)	0.0011	0.0006
$\underline{3}$		0.6n3	- 21249
${ }_{2}$		0.5172	0.1207
8.		0.4895	-. 2345

Bearind im eind etandard errors, the entimated coufficionte of

 for 0 anc "rum the plot of loe $\hat{a}_{a}(t)$ mainst loet.

 16.2. Fifure T.6-pronente a plot or the evmiacíve baserd Rmetion -atimees $\dot{\Delta}(5)$ er poinea a $0(0.0511,1(0.2) 2,2(0.5) 3$. The

 realiduala, could bave been uned.

Fig. 7.6. Plot of \log emulative bazard finction for error quartity, wing Nitshuler's sethod. Crude residuals obtained fron model II.

Dfreuavion

Wate2 Pltalig wen cerciod out on men ICL 190ls conputer. The
 end glbcF (model II) (forort rrive-mpe contelined in mert h नmion of Hes wai Whsual for ICL 1900° ifbrmer) wera ued í the log Iflelibood caidefentions. houtinoe to celculate the valum of tho lag likelifeod

 treatmint offect and treatmett with Predeleone fo thia cen In
 en vhole, rounger peeineta cese to do better then older patientw.
 effect on survival length.
 cyux otive beserd plote prior to model ritting and rieidual plota
 It In mit clear whet saparturven gige be axpeeta if eome of the

17.2 A palatal area of atmod

 of The groupe mad chenge in treatmat dintua oceura if th all. in

 -plem (mowesemt sa proup 2) cevem plece be mom the eftar entry Into \&be trial ell a Eroug I minser.

Bhathit Mndetis

 when tim- mpandine caveriatia

$$
x_{1}(t)= \begin{cases}0 & \text { for patients remaining in group } 1 \\ 5\left(t-y_{i}\right) & \text { for patients in group } 1 \text { in oving to group } 2 \\ \text { at sise } y, \text { artar entery into atvo }\end{cases}
$$

sere $(u)= \begin{cases}u<0 \\ 1 & u * 0\end{cases}$

 rill commit of - tarn for each ilk of the rory

While for 1 en, the required quantity in

Tha garen ruacken $r(a)$. corimed ror abo. by

$$
r(a)=\int_{0}^{\infty} y^{-\infty} e^{-y} d y
$$

my lu expreemed man inginded prodmet

$$
\frac{2}{\Gamma(s)}=s e^{\infty}=\prod_{-1}^{\infty}\left\{(2 \cdot 1) v^{*}\right\}
$$

 from Al emat

$$
r^{(x)}(1)-\int_{0}^{\infty}(10 \varepsilon y)^{r}, z+0,0,1,2, \ldots
$$

and muceomilve difrersonliztion yiblda

$$
\begin{equation*}
\text { Fineci } \cdots \cdots \text { … } \tag{A3.}
\end{equation*}
$$

$$
\begin{array}{r}
r^{-1}(a+1)[\Gamma(a+1)]^{2}-3 \pi^{-\pi}(a+1) r^{\prime}(a+1) \Gamma(a+1) * 2\left[r^{\prime}(a+1)\right]^{3} \\
{[r(a+1)]^{2}}
\end{array}
$$

12 Follow thet
$P^{\prime}(1)=-r^{m}(1)=w^{2}+8(2) \cdot r^{\prime \prime \prime}(1)=\alpha^{\prime}-3 m 8(2)-26(3)$

$$
\text { Mhare } \quad \theta(x) \quad \frac{1}{t} \text { is ehe Zete-fuarsetion }
$$

$$
\text { 6A.2 Integrale of the ran }\left.\right|^{\tan }(\log y)^{b} y^{-} a y
$$

 -vilulata the incernal

$$
L(x, b)=\int_{i}^{\infty} y^{2}(20 a y)^{b} e^{-y} d y
$$

Hate that

$$
\begin{equation*}
L(a, b)=L(m-1, m)+b \mathbb{E}(a-1, b-1) \tag{A9}
\end{equation*}
$$

The recurreme ralation Ag. together with tbie imitial valuer AB. my mav

$$
\begin{aligned}
& L(m, 0)=\Gamma(\mathrm{s}+1)=\mathrm{B}, \mathrm{~L}(0, b)=r^{(b)}(1) \quad=-0,1,2 \ldots \\
& \mathrm{~b}=\mathrm{O}_{\mathrm{n}}, 1,2, \ldots
\end{aligned}
$$

```
Trble dl. Valuem of L(a,b) far m,b= 0,1,2,3.
```

b^{a}	1			2		3
0	1	1	2	6		
1	-0.577	0.523	2.523	8.523		
2	2.978	3.379	7.804	23.177		
3	-5.445	-14.357	-36.313	-85.527		

H. 3 Model It and Model y guanticiea

Under moded 11, $\tau_{1}, Z_{2}, \ldots, V_{8}$ wre indepmentent randu periebien vith T. heving p.d.r.

$$
P_{i}\left(z / g_{0} \lambda, a\right)=40 t^{a-1} \theta^{a^{\prime}} x_{i}+x ;\left(-\lambda t^{a} e^{B^{\prime} x_{i}}\right) \quad t \leqslant 0
$$

Thue, Row $a, b=0,2,2, \ldots$

reduces to

$=\frac{e^{-n \lambda^{\prime} x_{i}}}{a^{b} \lambda^{a}} \sum_{k=0}^{b} \frac{(-1)^{k} b!}{k!(b-k)!}\left(1 \log ^{\lambda}+i^{\prime} x_{i}\right)^{k} L(a, b-k)$

A.f Model KII and Yadel VI gumbithe

Whad - 1. Modil II radmeen to III. In thia oere quatition ef the fore
for a $\quad 1,2 \ldots$... are required.
Fatefrat e tand b 0 5banl. It Pallomathat

If Hedíiteng undier model vI

Appondix B. The arsmpotic varimece of (I)

$$
\begin{aligned}
& \text { For Alebreic minglicity, let }
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{I}=A B-C^{\dot{a}} \text {. }
\end{aligned}
$$

$\log V_{I}\left(A_{1}, B_{2}\right)=2 a_{6} \frac{\frac{1}{x}}{x}$

$=\frac{e^{2}}{2} \int_{B}^{(22)}-\frac{x}{x}^{(22)}+x^{(2)^{2}}-\frac{\left.n^{(2)^{2}}\right)}{\pi}(0,0) \quad+$

with $s^{(12)}=y^{(21)}$, and nimilarly for I functione.
Ertending thin notation in as obvioum my to include a and efugctions

$$
\begin{aligned}
& x^{(1)}=A^{(1)} 2 \cdot A n^{(1)}-20 c^{(1)}
\end{aligned}
$$

$$
\begin{aligned}
& x^{(22)} \cdot A^{(12)}+A^{(1)} B^{(2)} \cdot A^{(2)} B^{(2)}+A D^{(12)}-2 C^{(1)} c^{(2)}-20 c^{(12)} .
\end{aligned}
$$

$$
\left(A^{(2)}\right)_{(0,0)}=\left\{\frac{\left.\mu^{1}\right]_{1}}{\partial B_{1}}\left(\beta_{1}, B_{2}\right)\right\}(0,0)
$$

$$
=\left\{E_{2,2}(0,0)-c_{2,0}(0,0) e_{0,1}(0,0)\right\}
$$

$$
\left.-E_{D}\left[E_{1,0}(0,0)-2 \varepsilon_{3,0}(0,0) \varepsilon_{E_{0}}(0,0)-1 \varepsilon_{2,0}(0,0)\right)^{2}+E_{2,0}(0,0)\left(\varepsilon_{1,0}(0,0)\right)\right\}
$$

$$
\left(A^{(22)}\right)_{(0,0)}=\left\{\frac{\frac{1}{2}_{1}^{2}, 1,}{\partial i_{1} \partial B_{2}}\left(B_{1}, a_{2}\right)\right\}_{(0,0)}
$$

$$
=\left(F_{3,1}(0,0)-c_{2,2}(0,0) e_{1,0}(0,0)-e_{2,0}(0,0) E_{1,2}(0,0)\right.
$$

$$
\left.=\varepsilon_{3.0}(0,0) \varepsilon_{0.1}(0,0) \cdot \varepsilon_{2.0}(0,0) \varepsilon_{2,0}(0,0) e_{0.1}(0,0)\right\}
$$

$$
\left(a^{(2 a)}\right)_{(0,0)}-\left\{\frac{\left.n^{3}+\frac{1}{3}\right)^{2}}{}\left(e_{1}, a_{n}\right)\right\}(0,0)
$$

$$
=H_{2_{0}}\left[(0,0)-2_{2,1}(0,0) \varepsilon_{0,1}(0,0)-\varepsilon_{2,0}(0,0) e_{0,2}(0,0)\right.
$$

$$
\left.+8.0(0,0)\left[0_{0.1}(0.0)\right)^{2}\right] .
$$

The function wh be fatured almoety from the ubowe on conidaration of aymetry.

$$
\begin{aligned}
& { }^{(c)}(0,0) \cdot L_{10}(v, 0) \cdot E_{p}\left\{\sigma_{2,1}(0,0)\right\} \\
& \text { (c } \left.\left.^{(1)}\right)_{(0,0)}=\left\{\frac{1 h_{1}}{14, i+4}\right)\right\} \\
& =E_{p}\left(E_{2,1}(0,0)-\epsilon_{1,1}(0,0) E_{2,0}(0,0)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } \left.\varepsilon_{1,1}(0,0)\left\{E_{2,0}(0,0)\right\}^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } \left.82,2^{(0,0)} 0_{0,1}\{0,0) E_{2,0}(0,0)\right] \\
& \left(e^{(2,2)}\right)_{(0,0)}=\left\{\frac{\partial^{2} y^{2}}{\frac{2 z_{2}^{2}}{2} z\left(0_{1}, R_{2}\right)}\right\}(0,0) \\
& =E_{p}\left[E_{1,3}(0,0)-2 \varepsilon_{1,2}(0,0) \varepsilon_{0,1}(0,0)-E_{1,2}(0,0) \varepsilon_{0,2}(0,0)\right.
\end{aligned}
$$

18. 3 E functions expreased as serien expansions

$$
\begin{aligned}
& s_{1,0}(0,0)=\sum_{i=1}^{n} \frac{1}{n-1+1} \sum_{j=1}^{n} a_{j 2}^{n}
\end{aligned}
$$

$$
\begin{aligned}
& e_{3,1}(0,0) \quad \sum_{i=1} \frac{1}{-i+1} \sum_{j=1}^{0} 0_{j 3}^{3} x_{j 2}^{n}-\sum_{i=1}^{n} \frac{1}{(n-i+1)} \sum_{j=1}^{n} \sum_{i=1}^{n} j_{2}=i_{i 11}^{n}
\end{aligned}
$$

$$
\begin{aligned}
& -6 \sum_{i=1}^{n} \frac{1}{(n-1+1)^{4}} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{k=1}^{n} \sum_{m=1}^{n} z_{j 1}^{n} z_{k=1}^{n} z_{i 1}^{*} \sum_{m 2}^{*} . \\
& \varepsilon_{2,2}(0,0)=\sum_{i=1}^{n} \frac{1}{n-i+1} \sum_{j=1}^{n} z_{j 1}^{* 2} z_{j 2}^{* 2}-2 \sum_{i=1}^{n} \frac{1}{(n-i+1)^{2}} \sum_{j=1}^{n} \sum_{k=1}^{n} z_{j 2}^{*} m_{k=1}^{n 2} z_{k 2}^{*} \\
& -\sum_{i=1}^{n} \frac{1}{(n-i+1)^{2}} \sum_{j=1}^{n} \sum_{k=1}^{n} z_{j 2}^{* 2} z_{k 2}^{* 2}-2 \sum_{i=1}^{n}\left(\frac{1}{n-i+1)^{2}} \sum_{j=1}^{n} \sum_{k=1}^{n} z_{j 1}^{n} z_{j 2}^{n} z_{k 1}^{n} z_{k 2}^{n}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.-6 \sum_{i=1}^{n} \frac{1}{(n-i+1}\right)^{4} \sum_{j=1}^{p} \sum_{k=1}^{p} \sum_{k=1}^{P} \sum_{m=1}^{n} z_{j 1}^{n} z_{k 1}^{n} z_{k 2}^{n} 2_{m 2}^{*} .
\end{aligned}
$$

 A, $3(0,0)$ my be deduced from the blove.
 of ocoulation monent:
1)

$$
\begin{aligned}
& E_{p}\left\{E_{2,0}\{(0,0)\}=n \psi_{2,0} \circ 0(n)\right. \\
& (A)_{(0,0)}=n_{2,0}+0(n)
\end{aligned}
$$

[11)

$$
\begin{aligned}
& E_{p}\left(\varepsilon_{3,0}(0,0)\right)=n u_{3.0} \cdot \alpha(a) \\
& E_{p}\left(E_{2,0}(0,0)=E_{1,0}(0,0)\right)=n u_{3.0} \cdot d(a) \\
& \left(a^{(2)}\right\}_{(0,0)}=\alpha(0)
\end{aligned}
$$

(111)

$$
\begin{aligned}
& E_{p}\left(\varepsilon_{2,2}(0,01)-n w_{21} \cdot o(n)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left(A^{(2)}\right)_{(0,0)}=0(n)
\end{aligned}
$$

bri $\left.\quad E_{p}\left\{e_{6,0}(0,0)\right\}=\operatorname{an}_{4,0}-\sin _{2,0}+d m\right\}$

 $\left.\left(A^{(21)}\right)_{(0,0)}=204\right)_{2,0}^{2}+0(m)$.

 $-2 \mathrm{mu}_{1,2} \mathrm{H}_{2_{8} 0}(\mathrm{w} * 10 \mathrm{n} n) \operatorname{n}(n)$
$\left.A^{(22)}\right)_{(0,0)}=-v_{2,1}{ }^{n} 2,0$ od $\left.n\right)$
*1)

$$
+d(n)
$$

$$
\left.-20 w_{2,0} 0^{n} 0_{4} 2^{(4)} \cdot \log n\right) \cdot d(n)
$$

B runctions

These my bo oltinined from the above by aymetry
1)

$$
\text { (B) }(0,0)={ }^{n} 0.2 \cdot d(n)
$$

1i) $\left.{ }_{(B)}(2)\right)_{(0,0)}=4 \mathrm{al}$
1i1) $i_{1}^{|2|}(0,0)=o(n)$
iv) $n^{(212)}(0,0)=-2 \pi y_{1,1}^{1} \cdot t 01$

vi) $\quad\left(B^{(22)}\right)_{(0,0)^{0-2000} 0,2^{0} 0(n)}$

C fractions

1)

$$
E_{1}\left(E_{1,1}(0,0) \varepsilon_{0,2}(0,0)\right)=\operatorname{mop}_{1,2} \text { o(n) }
$$

$$
\left(c^{(2)}\right)_{(0,0)}=o(n)
$$

$$
\begin{equation*}
\sum_{p}\left(E_{1,2}(0,0)\right)=\operatorname{sum}_{2,2^{2}} a(\mathrm{~B}) \tag{14}
\end{equation*}
$$

$$
E_{1}\left(E_{3,1}(0,0)\right)={ }^{n 4} 3,2^{-3 m} 2,2_{2,0} \circ o(n)
$$

$$
\infty(\square)
$$

$$
(\log n+\omega+2)+0(n)
$$

$$
E_{p}\left\{E_{2,1}(0,0) e_{0,1}(0,0)\right\}=0_{2} 2^{-\mathrm{m}_{2}}, 0^{H} 0,2^{-2 \min }, 1+0(n)
$$

$$
E_{p}\left\{E_{1,2}(0,0) e_{2,0}(0,0)\right\}=m, 2,2^{\left.-m, 2,0^{\mu} 0,2^{-2 n}\right)}, \infty(\mathrm{n})
$$

$$
\left.E_{p} 1 \varepsilon_{1,2}(0,0) E_{0,1}(0,0) e_{2,0}(0,0)\right\}-2 \pi w_{2,2} 2^{2} u_{1,2}^{2}-2 \pi w_{2,0} 0,2
$$

$$
-2 \mathrm{os} 1_{1,1}(20 \mathrm{n}+\omega+1)+0(\mathrm{n})
$$

$$
\begin{aligned}
& E_{F}\left\{e_{1,1}\{0,0)\right\}==_{1,1}+0(\pi)
\end{aligned}
$$

-1)

$$
\begin{aligned}
& E_{0}\left(E_{2,2}(0,0) 0_{0,2}\{0,0)\right\}=\operatorname{sen}_{1,3}+\ln _{1}, 3^{n} 0,2 \text { of }(n)
\end{aligned}
$$

$$
\begin{aligned}
& \left(c^{(\pi)}\right)_{(0,0)}=-2 m N_{2,2} 0_{0,2} \circ(\mathrm{D})
\end{aligned}
$$

x rupctiona

$$
\begin{aligned}
& \text { 14) } \quad\left(x^{(2)}\right)(0,0)=\left(A^{(2)}+A 0^{(2)}-2 C^{(2)}\right)(0,0)=0\left(n^{2}\right) \\
& \text { iii) - imilarly }\left(x^{(2)}\right)_{(0,0)}=0\left(x^{2}\right) \\
& \text { iv) } \quad\left(x^{(21)}(0,0)=\left\{1^{(11)}+2 A^{(2)} n^{(1)}+A 8^{(21)}-2 C^{(1) 2}-2 C^{(2)}\right)(0,1)\right. \\
& =n^{2}\left(z^{2}, 2^{n} 2_{1}-n_{i, 0}^{1} 0,2\right) * 0\left(n^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.-2 c^{(22)}\right)(0,0) \\
& -n^{2}\left(2 n_{1,3}^{2}-2 u\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { - o (2) }
\end{aligned}
$$

Elaplanif

$$
\begin{aligned}
& \left.B_{2}\right|_{B_{3}^{(2)}} ^{\left(\frac{5}{2}^{(2)}\right)}(0,0)=o(2) .
\end{aligned}
$$

$$
\begin{aligned}
& =n \frac{6+\frac{10}{0}-\sqrt[1]{1} 1^{\prime}}{4,1} \cdot(1)- \\
& B_{1} A_{2}\left\{x^{(12)}-\frac{x^{(12)}}{x^{(12)}}-\frac{(2)}{z^{2}}-\frac{-(2)}{2}(2)_{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { - (2). }
\end{aligned}
$$

Thul in the neighbourhoed of $\left(B_{1,} B_{2}\right)=(0,0)$.

Appondí C the my yptotic veriance of 1 in 1

 quancithem, (wee is. 角).

4 Snctions

$$
\left(a^{1+}\right)(0,0)=o(x)=\left(a^{(2)}\right)(0,0)
$$

b finget 1 FR日

${ }^{1}{ }^{9}(0,0)^{-23} 00^{4}+|a|$
$\left(2^{(1)}(\alpha p)=o(n)=\left(B^{(2)} 3_{(0.0)}\right.\right.$
$\left.\left(3^{(21)}\right)\left(0_{n} 0\right)--2 \pi\right)_{-2}^{2}(1) 1,1+o(n)$

$\left(8^{(22)}\right)_{(0,0)}=-2 n+4+4+11,0(2)$
c gyactions

$$
\begin{aligned}
& \text { (C) }(0,0)=\mathrm{mu}_{2.2} \cdot o(\mathrm{D}) \\
& \left\{\mathrm{c}^{(1)}\right\}_{(0,0)}=o(\mathrm{n})=\left(\mathrm{c}^{(2)}\right)_{(0,0)} \\
& \left(c^{(21)}\right)_{(0,0)^{n}}=-2 n^{\mu}(3) 2,1^{u}(1) 2.0 * o(n)
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle c^{(22)}\right)_{(0,0)}=\sum_{i=1}^{8}{ }^{3} 1 J 11.1^{M}(5) 0.2^{+\cdots}
\end{aligned}
$$

1C. 3 Evaluntioe of x functioge at $\left(a_{1}, \theta_{2}\right)=(0,0)$

$$
\begin{aligned}
& (x)_{(0,0)}=a^{2}\left(v_{2,0} H_{0.2}-w_{2}^{2}\right)=o\left(x^{2}\right) \\
& \left(x^{(1)}\right)_{(0.0)}=\phi\left(x^{2}\right)=\left(x^{(2)}(0.0)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\mu_{2,0}\left(\sum_{1} Q_{j} v \psi_{3 j 2,1}\right)\right\} \in o\left(n^{2}\right) \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& A_{1}\left[\frac{3^{(1)}}{x}-\frac{x^{(1)}}{x}\right)_{(0.0)}==-21 \quad=E_{2}\left(\frac{8^{(2)}}{x}-\frac{x^{(2)}}{x}\right)_{(0,0)} \\
& \text {-1 }\left(\frac{x^{(12)}}{1}-\frac{x^{(12)}}{x}+\frac{x^{(1) 2}}{x^{2}}-\frac{8^{(1) 2}}{3^{2}}\right)_{(0,0)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { AEF }\left\{\frac{x^{(12)}}{1}-\frac{x^{(12)}}{x}-\frac{\frac{121+1}{(21)}}{8^{2}}-\frac{x^{(2)} x^{(2)}}{x^{2}}\right\}_{(0,0)}
\end{aligned}
$$

$$
\begin{aligned}
& 102^{2}\left(\frac{e^{(22)}}{3}-\frac{x^{(22)}}{x}+\frac{x^{(2) 2}}{x^{2}}-\frac{3^{(2) 2}}{x^{2}}\right)_{(0,0)}
\end{aligned}
$$

Thu fo the no ightourtiond of $\left(\theta_{1}, A_{2}\right)=(0,0)$

PHI Gaparel jasules

 and gaeli (1968) lnaicate that for a $1 . \ldots$. 1
and

$$
I_{r b}=E \quad\left(-\sum_{i=1}^{P} V_{r s}^{(i)}\right) \quad, \quad K_{r a t}=E\left(\sum_{i=1}^{P} w_{r a t}^{(i)}\right)
$$

$$
J_{r, v t}=E\left(\sum_{i=1}^{p} U_{r}^{(i)} v_{s t}(i)\right), \quad r, w, t=2
$$

where $\underline{L}^{-1}=\left[I^{1} \sqrt{i j} \quad\right.$ vith $\underset{q \times q}{ }=\left[I_{i j}\right]$.
the above authoral whow thet, to of $\frac{1}{y}$).

$$
\text { i4j D } 4 .
$$

SD. 2 Mode2 TII reanle.

Pvaluntion of bian term

Under model III, $q=p+1,2=\left(\beta_{1}, \ldots, B_{p}, \lambda\right)$ und
$\log P_{i}(t / 2)=\log \lambda+E^{\prime} z_{1}-\lambda E^{\prime} z_{1} t$ no that
$U_{j}^{(i)}=z_{i j}-\lambda T_{i} z_{i j} e^{8^{\prime}-z_{i}} \quad j m 1, \cdots P$
$U_{p+1}^{(i)}=\frac{1}{\lambda}-T_{i} e^{2^{\prime} z_{i}}$
$v_{j k}^{(i)}=-\lambda T_{i} z_{i j} z_{i k} e^{B^{\prime} z_{i}}$
$v_{j p+1}^{(i)}=-T_{i} z_{i j} e^{B^{\prime} \xi_{1}}=v_{p+1}^{(i)} j \quad j, k=1, \cdots, p$
$v_{p+1}^{(i)} p+1=-\frac{1}{\lambda^{2}}$
$w_{j k i}^{(i)}=-x T_{i} z_{i j} z_{i k} z_{i k} e^{6^{+} z_{i}}$
$w_{p+1}^{(i)} j k=-T_{i} z_{i j} z_{i k} e^{B^{\prime} z_{i}}=w_{j p+1 k}^{(i)}=w_{j k}^{(i)}$
$W_{p+1}^{(i)} p+1 j=0=w_{p+1}^{(i)} J p+1=w_{j}^{(i)} p+1 p+1$
$3, k, 2=1 \ldots p$
$w_{p+1}^{(i)} p+1 p+1=\frac{2}{x^{3}}$

$$
\begin{aligned}
& E\left(R_{1}{ }^{2}\right)=E\left(c_{i}{ }^{2}\right)+2 \sum_{r=1}^{q} b_{r} E\left(c_{i}{ }^{n} r i\right),
\end{aligned}
$$

$$
\begin{aligned}
& E\left(\mathrm{~B}_{1} \mathrm{~B}_{3}\right)=\left\{\varepsilon\left(\varepsilon_{1}\right)\right\}^{2}+\left(a_{1}+n_{3}\right) \mathrm{E}\left(\varepsilon_{1}\right) \\
& +\sum_{r=1}^{n} \sum_{n=1}^{n} I^{r a} E\left(\varepsilon_{1} H_{r}^{(j)} U_{n}^{(i)}+\varepsilon_{j} H_{r}^{(j)} U_{n}^{(j)}+H_{r}^{(i)} H_{E}^{(j)},\right.
\end{aligned}
$$

Uaing the results of \$A.h it follows thet

$$
\begin{aligned}
& k_{j k L}=-\sum_{i=1}^{p} z_{i j} m_{i k} s_{i k} \\
& k_{p+2} j k=-\frac{1}{2} \sum_{i=1}^{\sum_{1 j}} z_{3 j} E_{i k}=k_{j} p+1 k=k_{j k p+1}
\end{aligned}
$$

$$
K_{p+1} p+2 j=0=K_{p+2}, p+2=K_{2 p+2 p+2} \quad 5, k, i=1, \ldots+p
$$

$$
\mathrm{K}_{p+1} \mathrm{p}+1 \mathrm{p}+2=\frac{2 n}{\lambda^{3}}
$$

$$
\text { and } J_{3, k x}=\sum_{i=1}^{n} z_{i 3} z_{i k} z_{i k}
$$

$$
a_{3, k p+1}=\frac{1}{2} \sum_{i=1}^{p_{i j}} z_{i k}=3_{3, p+1} k=3_{p+1,} j k
$$

$$
J_{p+1}, j p+1=J_{p+1, p+2} j^{2}=J_{3, p+1} p+1=J_{p+1}, p+1 p+1=0
$$

Thus from D 1. to o $\left(\frac{1}{n}\right)$

$$
\begin{aligned}
& b_{j}=E\left(\dot{B}_{j}-\dot{b}_{j}\right)=\frac{2}{2} \sum_{r=2}^{P} \sum_{t=1}^{P} \sum_{u=1}^{P} I^{r j} 1^{t u} \sum_{i=1}^{n} v_{i r} z_{i t} v_{i u} j=1, \ldots, p \\
& b_{p+1}=E(\dot{\lambda}-\lambda)=\frac{\lambda}{2 n}(2+p)
\end{aligned}
$$

Moments of exude residunle
Putting $h_{1}\left(T_{1} ; 2\right)=x e^{2} E_{1} T_{1}=x_{1} \quad i=2, \ldots, n$
it rollows that

$$
\begin{aligned}
& E\left(H_{r}{ }^{(i)}\right)=z_{i r} \quad r=1, \ldots, N, E\left(H_{p+1}^{(i)}\right)=\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& E\left(B_{p+1}^{(i)} p+1\right)=0 \\
& \text { and } E\left(H_{r}^{(i)} U_{e}^{(i)}\right)=-v_{i r}{ }^{(i s} \text {. } \\
& E\left(H_{r}^{(1)} U_{p+1}^{(i)}\right)=E\left(H_{p+2}^{(i)} U_{r}^{(i)}\right)=-\frac{s_{i r}}{i} \quad r,=m, \ldots, p, \\
& E\left(H_{p+1}^{(i)} U_{p+1}^{(i)}\right)=-\frac{1}{\lambda^{2}} \text {. }
\end{aligned}
$$

Thus using $D 2$. it follows that, to o $\left(\frac{1}{n}\right)$, for $\{=1, \ldots$, n

$$
\begin{align*}
E\left(B_{1}\right) & =1+\frac{p}{2 n}+\sum_{r=1}^{p} b_{r} z_{i r}-\frac{1}{2}\left[\sum_{r=1}^{p} \sum_{n=1}^{P} I^{r n} z_{i r} z_{i n}\right] \\
& =1+s_{i}
\end{align*}
$$

In addition

$$
\begin{aligned}
& E\left(c_{i} H_{r}^{(i)}\right)=2 z_{i r} \quad E\left(\varepsilon_{i} H_{p+1}^{(i)}\right)=\frac{2}{\lambda} \\
& E\left(c_{i} H_{r}^{(i)} U_{n}^{(i)}\right)=-k z_{i r} z_{i n} E\left(c_{i} H_{p+1}^{(i)} U_{s}^{(i)}\right)=E\left(c_{i} H_{B}^{(i)} U_{p+1}^{(i)}\right)=-\frac{4}{\lambda^{2}} \text { is } \\
& \text { r, }==1, \ldots, P_{n} \\
& E\left(\varepsilon_{i} H_{p+1}^{(i)} \underset{p+1}{(i)}\right)=-\frac{2}{x^{2}} .
\end{aligned}
$$

$$
\begin{aligned}
& E\left(H_{p+1}^{(i)} H_{p+1}^{(i)}\right)=\frac{2}{\lambda^{2}} \text {. } \\
& E\left(c_{i} H_{r i}^{(i)}\right)=2 \tau_{i r}{ }_{i n}, E\left(c_{i} H_{p+1}^{(i)} s\right)=E\left(c_{i} H_{n}^{(i)} p+1\right)=\frac{2 z_{i s}}{\lambda} \quad r, E=1, \ldots, p \text {, } \\
& E\left(\varepsilon_{i} H_{p+1}^{(i)} p+1\right)=0 \text {. }
\end{aligned}
$$

Thus frow b 3. eoor (

Fine $2 x y$, for Ipj

$$
\begin{aligned}
& \text { F........... }
\end{aligned}
$$

$+i \operatorname{lig}_{j+1}^{(i)}(j)=\frac{\lambda}{\lambda^{2}}$
EO thate from 4. . \cos of $\left.\frac{2}{0}\right)_{4}$

ID, 3 Model VI Temule

halution of biee ternes

$$
\text { BoB. } z_{j i k}=x_{j i k}-\bar{x}_{j k} \text { where } X_{j k}=\frac{1}{n_{j}} \sum_{i=2}^{\mathrm{m}_{j}} x_{j i k} \quad k=1, \ldots, p \text {. }
$$

Conalderationg an in model III yield

$$
\begin{aligned}
& K_{k i m}=-\sum_{j=1}^{B} \sum_{i=1}^{F_{j}} z_{3 i k} \#_{j i x} z_{j i m} \\
& k_{k 2 p+j}=-\frac{2}{\lambda_{j}} \sum_{i=2}^{\sum_{j}^{2}} z_{j i k} z_{j i z}=k_{k p+j e}=k_{p+3 k i}
\end{aligned}
$$

$$
\begin{aligned}
& K_{p+j p+r ~ p+t}=\left\{\begin{array}{r}
2_{j} / \lambda^{2} \\
j
\end{array} \quad j=r=t\right. \\
& \text { otherwise, } \\
& r, t=1, \ldots, 8 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& J_{k, k=1}=\sum_{j=1}^{8} \sum_{i=1}^{j} z_{3 i k} z_{3 i k} z_{j i m}
\end{aligned}
$$

$$
\begin{aligned}
& J_{k, p+j} p+r=0=3 p+j, k p+r=3 p+j, p+r k \\
& =J_{p+3} \cdot p+r p+t \\
& \mathrm{~K}, \mathrm{~B}, \mathrm{~m}=1, \ldots \mathrm{p} \\
& 3, \mathrm{~F}, \mathrm{t}=1, \ldots, \text {, }
\end{aligned}
$$

Thus to o($\left.\frac{1}{n}\right)$
thrmat of gruce raiding

$$
\text { celculations fantitent eo thoe of SE. } 2 \text { ylala, eo of } \frac{3}{r}
$$

$$
=1 * e_{j 1}
$$

ana

For 11 jifis

$$
r=3_{2}
$$

otherwime

* + **)
so that for $\mathrm{j}=\mathrm{j}_{1}$

$$
E\left(B_{j 1} n_{j i_{2}}\right)=2-\frac{1}{n_{j}}+\left(n_{j 1}+n_{j i_{1}}\right)-\sum_{k=1}^{p} \sum_{k=1}^{p} I^{k 2} z_{j i k} z_{3 i_{1} k}
$$

$$
\text { where if } J \neq J_{1}
$$

$$
E\left(R_{j 1} R_{j i_{1}}\right)=1+\left(n_{j 1}+n_{j_{1} i_{1}}\right)-\sum_{k=1} \sum_{k=1} I^{k x} z_{j 1 x^{2}} j_{1} i_{1} k .
$$

$$
\begin{aligned}
& E\left(H_{p+x}(j i){ }_{p+t}\left(j i_{1}\right)\right)=\left\{\begin{array}{c}
1 / \lambda_{3} \lambda_{1} \\
0
\end{array}\right. \\
& \text { j*r, } j_{1} \text { * } \\
& \text { othervise } \\
& \mathrm{r}, \mathrm{t}=1, \ldots, \mathrm{n}
\end{aligned}
$$

RETHEDTCES

 in mimal experimate" Math, Diowaiancein. 6. 1-11.
 J. M. Bratiat, Bee. B, 22. 111-124.

 21. 579-59h.
 Hinometric: . 89-99.
 table and product linit animaten uder random eanaorehip' Anes. of 8tinti. ts 47t-ks3.

FYAR, O. P. and MAITEL, M. (29T5) 'Scee Interrelationabipe amene the regremsion confficiont matimaten ariaing in a cleam of modela eppropriet. eo reapanaetime data' Biometrica. 32 . $945-947$.

Cox. D. H. (1953) 'Sama Ebple Epprorizete teate for Folemon variates'

00X, D. R. (2972) 'Ragreesion madela and IIfotablew' J. R, Stetiat. Soc., B. 34. 189-220.

 J. R. Stetiat. Eloc. . . . 30, 248-275.

CROWLEY. J. (2973) 'Non-garmetric malymia of cemeored murrival data with diatributioa theory for the $k-s$ mple denernlimed Savage Etatiatie" Ph.D. Thenfa, Unirersity of Whahington.

CROMLET, I. (197t) 'A mote on mone recent likeldmoods lemdims to the log renk teat. Bicmetrilin, 61, 531-530.

Curuny, A. (1972) Contribution to dimeverita of paper by \mathbb{R}. Pato and J. Patc. J. R. Etatint. Bec. A. 135. 199-200.

DIMOM, W. J, and MCOD.A. M. (1946) 'The atatisticel aigen cest' J. Amar, geatiat. Ameoc., 12. 557-566.

EFROM, B. (1967) "Tae two eenple problen with cencortd date" Proc. Firth Barteley Syap.. $4.832-854$.

FANgTEIM, M. L. (1973) 'Di=trisution-rtee mothoda ros comperina ourrivel experiencen and the ure or the likelikood runction in the enelyaie of clínical eata on Hrenat Cancer" Ph.D. Thenim, State Univerility or lien Iork et Burfalo.
 prebabilitiea vith capcomitant infonation" Bionetrica, 2l. 926-835.

FiAgtan, D. A. B. (1968) 'The etructure of inforame' Neve York: Jokn Wiley end Some. Ine

Fhitrich, E. J. et. 02. (1963) 'The effact of 6 Earcaptopurine on the suretion of vearoid-indueed realenion fo achte leureemia Mlood. Lia 699-716.

GEMAN. I. (1965a) 't gemeraliaed Uilconon temt for eomparing arbizrayily wingle censored namples' Diontrika, 52, 203-223-
 concored sata' Rionerika, 52. 650-653.

GEKAM, 1. (1972) Contribution 20 dimevamion of pepar by Repete and J. Peto, d. A. Statiat. Boc. A. 135. 2010-205.

OEHAN: F. and THONAS, D. G. (1969) 'The performance of nome twoempls testa in amell samplea with and without censoring' Bicentira: 26, 127-132.
 of Chicase.
 Statiet. Alacoc. 62, 362-568.

CAREABERG. A. A. BAYARD, B, and BYAR, D. (1974) "gelecting comionitaut veriablem usimg lifielibood ratio etep-down proctulury and a method of zesting foodne日e of rit in an exyoneotim murvivel model' Bicuatrice. 30. 601-608.

MARTLEY, H. Q. and HOCKMMG, R. R. (2971) 'The malyoim or inconglete daté Dicentrice. 2I. T03-82 4.

ROLT, J. D. and PRETICE. R. L. (1974) 'Gurvival Andyais in twin ntudiem and etched peir experimeta" Biomerike, 61, 27-30.

JOHMBOM, H. A. and rempotha, E. ©. (2972) 'Iocelly mot powerful raniz terte for the tyonemple proble with cencored date. An, of Math. 8teviet - b3, A23-831
 LJVER DIGIMgEs (1974) 'Eer, alciten and aleoholima in eurvivel of patiente with cirrhogi=: Effect of pratminama* M. Engi. J. Mes.. 221. 271-273.
 dietribut ions' Bicmetrike. 61, 31-3A.
 Fegraenion and life molel. Peper prasented at che "Joint gtat. Nesting in Tullehmeee, Florian' Narch 1974.

 d.f. Sr=e1et. Soc.. 8, 32, 175

Kainhaisch, 2. D. and PREMTICE, R. 1972) Contribution to dimewemion

 baned on Cok's ragreamion ar ${ }^{4}$, it mode1. Bichetrika. 60. 267-278.

 vol. 11" Loodon; Clarlea oril: ACo.

LEE, E. F. DEsu, M. M. and OEIA" 1975) 'A Monte Cerlo mitudy of the powcr of som two-mman"a in tb" Bicmetrika, 62. te25-h32.

MHMEL. H. (2966) "Kvalumion of - -.vel atea and two naw rank order
 50. 163-170.

 respone-ti= date where ℓ. ard fuaction if lime dependent. Uapublianed paper.

 J. Aeer - stalint, ramoe.. 66. -k91.

MMEq. M. H., HAMCEY, B. F. and kW - W. (1973) 'A Logieticexponentiml model ror ure with a. . ima data involving

 relecionihip from cmamored detm - Purt 1. Bimple methode and their eypliceriona, Technometricn. 24. 247-269.
 relationmifp from cenmorad dute - Part 2. Batt 2 inear unbiased eatimetion end theory' Technchitrice, 15, 133-150.

OAKCs. D- (1972) Contribution to diacunaion of peper by D. R. Come.

 elternativae. Biometiza. 214472475.
PITO, A. (1973) 'Experimental murvival curven for intervel cemmored

PETV, R. and PETO, 3. (1972) "Aayntotically erticient rent inveriant tant procedures: J.R. Statint. Boc.. A. 235. 185-206.

 214-237.
 with Prucmieoae' V. Enel. J. Had.. 292. 1030-2018.
 Latemis 1 gryect of Ilactive Gplanectomy on the coturn of ciremel M.M.J.a 1. 175-179.

THomas, D. H. (1971) 'Qa a gaperalited Ravege etaciacie for congorlog

 analymia of Moart tranaglane dace" d. Aner. geatire. Aacoc. 62. $74-80$.
 Bfomeries, 1. 80-33.

2FLEM, M. (2973) 'Contingedey teblen and tha eveluntion of eurrival dite' Ungabliabed pemer.
 and inecmplete murvivel infornetion la the antimation or en

