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A b s t r a c t

The mycobacterial cell envelope is a complex structure the components of which have been 
implicated in the survival, virulence, permeability and resistance to antibiotics of 
Mycobacterium. The elucidation of the synthesis o f the cell envelope would improve the 
understanding of the structure and its influential properties and could lead to the identification 

of drug target sites. The isolation of genes encoding proteins involved in the biosynthesis of 
the cell envelope structures and their mutants would enable the biosynthetic pathways and 

functions of individual structures to be determined.

The objective of this project was to isolate genes encoding cell envelope structures in 
Mycobacterium leprae, using Mycobacterium smegmatis as model organism. The aim was 
to isolate an M. smegmatis strain with a mutant cell envelope and to complement the mutation 
using a genomic library of M. leprae.

M. smegmatis mc2155 was successfully mutagenised using /V-methyl-N-Nitro-fV- 
nitrosoguanidine (NTG), generating 0.1-0.2% auxotrophic mutants. A bank of 2,000 NTG- 
treated M. smegmatis strains were screened for alterations in phenotypes that may have 
reflected a change in the cell envelope i.e. mycobacteriophage resistance, temperature 
sensitivity and increased resistance and sensitivity to antibiotics. M. smegmatis strains with 

increased resistance to ofloxacin and ciprofloxacin (15) were isolated along with strains more 

sensitive to penicillin G(5) and pyrazinamide (1).

The pyrazinamide sensitive mutant, Pyramidll was further characterised and found to be 20% 

more sensitive to pyrazinamide than the M. smegmatis mc2155 wild type strain. Pyramidll was 
found to be less hydrophobic than the wild type strain, variably more sensitive to penicillin G 

and to exhibit a smooth colony morphology. The cell wall components of Pyramid II were 
analysed but no gross differences were observed in comparison to the wild type M. smegmatis 

strain. Pyramidll is believed to contain a mutation effecting its permeability to pyrazinamide.

Pyramidll was transformed with an M. leprae genomic pYUB18 shuttle vector library and 
complementing clones isolated (6%). A complementing cosmid, 57, found to map to cosmid 
B1308 in the ordered M. leprae library, was used to create a sub-library in pMV206 from 
which a 3.5kb fragment of complementing M. leprae DNA was isolated and found to contain 
three complete putative coding regions, possibly involved in osmoregulation.
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Chapter 1
Introduction

1.1 The mycobacteria

The mycobacteria are actinomycètes and are closely related to Nocardia, Corynebacterium 

and Rhodococcus. They are Gram-positive, aerobic, rod-shaped organisms, identified by their 

acid-fastness, whose genomes are 2-5x10*03 in size with a G+C content o f 58-69% (Clark- 

Curtiss, 1990). The majority of mycobacteria are saprophytic soil dwelling bacteria i.e. 

Mycobacterium smegmatis and Mycobacterium avium, but four members o f the genera 

Mycobacterium tuberculosis, Mycobacterium africanum and Mycobacterium bovis and 

Mycobacterium leprae are obligate pathogens. The mycobacteria can be grouped into two 

classes, the fast-growers and the slow-growers. The fast-growers which grow in less than 

seven days and are generally environmental bacteria e.g. Mycobacterium chelonae. The slow- 

growers require 2-4 weeks for growth and include the pathogens. These grouping were 

reinforced by the conserved 16SRNA sequence data obtained for slow and fast-growing 

mycobacteria (Clark-Curtiss, 1990).

The slow-growers are further divided into nonphotochromogenic species i.e. the M. 

tuberculosis complex and M. avium complex and the photochromogenic species. The 

members of the M. tuberculosis complex are the causative agents o f tuberculosis, M. 

tuberculosis, Mycobacterium bovis and Mycobacterium africanum, members o f this complex 

are slow-growing, acid-fast bacilli that display 95% DNA/DNA homology with each other. 

M. tuberculosis can be distinguished as it is niacin and nitrate reductase positive. The M. 

avium complex cause pulmonary and nonpulmonary infections, primarily in the 

immunocompromised and is composed of M. avium and Mycobacterium intracellulare 

although their DNA/DNA homology clearly indicated they are different species. The members 

of this complex are niacin and urease-negative and hybridise to MAC specific insertion 

element DNA probes (McFadden, 1990).

The slow-growing photochromogenic species are further subdivided into Runyon group I, 

which produce pigment on exposure to light e.g. Mycobacterium kansasii and Mycobacterium
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marinum  and Runyon group II species which produce pigment in the dark e g. 

Mycobacterium gordonae.

Fast-growing mycobacteria include the Mycobacterium fortuitum complex and M. smegmatis. 

The members of the M. fortuitum complex cause the most human disease out of the fast 

growers. The complex consists of M. chelonae, Mycobacterium peregrinum, and 

Mycobacterium abscessus.

Mycobacterium leprae is a straight rod bacillus of l-8^m long by 0.3/^m in diameter, the 

causative agent of leprosy and is unculturable in vitro, it has therefore been classed in a group 

alone. M. leprae is detected using specific antibodies, DNA probes and the identification of 

acid-fast bacilli (reviewed by Shinnick, 1994).

1.2 T h e  m y c o b a c t e r ia l  c e l l  e n v e l o p e

A simplified model of the mycobacterial cell envelope is shown in Fig 1., this model was 

initially based on the chemical properties of individual cell wall components and has 

subsequently been borne out by other experimentation i.e. x-ray crystallography and electron 

microscopy (EM) (Minnikin, 1982; Nikaido et al., 1993; Brennan and Nikaido, 1995). The 

mycobacterial plasma membrane is surrounded by a cell wall, thought to be an asymmetrical 

bilayer, the major components of which are lipid and polysaccharide.

The major lipid components of the cell wall are the characteristic mycolic acids, 70-90 carbons 

long, these are only found in other actinomycètes e g. Corynebacterium and Nocardia where 

they are 40-60 carbons long. The major mycobacterial polysaccharides are peptidoglycan, 

which is of chemotype IV, and the unique arabinogalactan.
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Fig. 1. A cartoon depiction of the cell envelope of Mycobacterium leprae 
(This picture was taken from Brennan, 1989).
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The cell wall consists of peptidoglycan covalently linked to arabinoglactan to which mycolic 

acids are covalently bound to form a surrounding monolayer and creating the 

mycolylarabinogalactan-peptidoglycan complex, mAGP. The mAGP complex, or covalent 

skeleton of the cell wall, is believed to make up the inner layer of the cell wall bilayer. The 

mycolates are arranged with their main and branched chains parallel to each other and 

perpendicular to the plane o f  the cell surface and the peptidoglycan (Brennan and Nikaido, 

1995). The mycolates therefore produce a close packed inner structural permeability barrier 

(Nikaido et at., 1993; Besra et al., 1995). The inner leaflet of mycolic acids is in turn believed 

to be covered by an outer leaflet of variable intercalating extractable lipids. The whole 

structure thus producing an asymmetrical lipid bilayer (Fig. 1). The extractable lipids are 

species-specific glycolipids and peptidolipids, the main variables in an otherwise fairly generic 

cell wall. The other dominant cell wall component is lipoarabinomannan, LAM, which is 

believed to be anchored in the plasma membrane and to span the cell wall; it is analogous to 

the lipopolysaccharide (LPS) of Gram-negative bacteria. The cell wall also contains 

intercalating proteins and porins which span the cell wall. The cell wall is in fact more 

analogous to the outer membranes found beyond the peptidoglycan in the cell walls of Gram- 

negative bacteria (Brennan and Nikaido, 1995).

1.2.1 Cell envelope components

The mycobacterial cell envelope is composed of numerous individual components o f varying 

complexity, many of which are lipid based. As a result the cell envelope is 30 to 60% lipid, 

depending on the growth environment (Ratledge, 1982). The lipids range from non polar 

waxes to sugar and amine-containing polar lipids. Mycobacteria contain a number of novel 

lipid components unobserved in most bacteria other than actinomycetes (Minnikin and 

Goodfellow, 1980; Minnikin, 1982) e g. phosphatidylinositol mannosides (PIMs), 

tuberculostearic acid and mycolic acids. Other conventional lipids e.g. isoprenoids, quinones, 

carotenoids and membrane polar lipids are also found in mycobacteria. Polysaccharides and
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proteins are the other main components of the cell wall.

The major and unique lipid, polysaccharide and protein components of the mycobacterial cell 

wall and their location within the cell envelope are discussed below.

1.2.1.1 The Plasma membrane

The plasma membrane of the mycobacterial cell envelope is a typical phospholipid bilayer, 

which appears asymmetrical when observed by EM (Paul and Beveridge, 1992). Other 

components such as proteins are integrated primarily into the outer layer of the membrane, 

hence its increased diameter. Some components of the plasma membrane are discussed below.

1.2.1.1.1 Phospholipids

These are the most common polar lipid types in mycobacteria and are generally 

phosphodiacylglycerol derivatives of phosphatidic acid. Phosphatidylglycerol (PG), 

diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE) and PIMs are the most 

common. They are all amphipathic, being composed of polar phosphatidic heads with long 

chain fatty acids of less than 20 carbons esterified to C-l and C-2 (Fig.2a). The glycerol, 

ethanolamine, inositol or phosphatidylglycerol groups are attached to the oxygen o f  the 

phosphate group. The fatty acids are a mixture o f straight chain monounsaturated palmitic 

(C,6:l)  oleic (C „:l) and 10-methyl branched tuberculostearic acids (Minnikin, 1982).

PE is almost universally found, DPG and PI are widespread and PG is less common (Minnikin, 

1982). PIMs (Fig. 2b) are the most unusual and highly characteristic phospholipids found in 

mycobacteria and other actinomycètes (Minnikin and Goodfellow, 1980; Minnikin, 1982). 

Phosphatidylinositol dimannoside (PIMJ from M. tuberculosis and Mycobacterium phlei was 

found to  consist o f a glycerol phosphate moiety attached to the L-l position of the myo- 

inositol ring with mannose residues glycosidically-linked to the 2 and 6 positions o f  the
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a )  R", R-

Man = D-mannopyranosyl

R, R't R", R" =  long-chain acyl groups

For n = 5 oligomannoside is Man 1 ------> 2 Man 1 > 2 Man

1 * > 6 Man 1 —— > 6 Man 1 6 Inositol

OH

Fig.2. The general structure of phospholipids and phosphatidylinositolmannosides, 
PIMj and PIM6
a) generalised phospholipid structure (taken from Minnikin, 1982)
b) phosphatidylinositol dimannoside PIM2 (taken from Besra and Chatterjee, 1994)
c) phosphatidylinositol hexamannoside PIM« (taken from Besra and Chatteijee, 1994)
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inositol ring (Lee & Ballou, 1964) (Fig.2b). PIM2 (n=l) is the most commonly isolated PIM 

in mycobacteria (Minnikin 1982). Phosphatidylinositol mannoside homologs PIMj (n=2), 

PIM4 (n=3), PIM5(n=4) and PIM6(n=5), (Fig.2c), have also been isolated (Lee and Ballou, 

1965; Chalteijee et al., 1992a). They also have a single a-D-mannopyranosyl group at the 2 

position of the mannose oligosaccarides e.g. [a  -D-MaryK 1 ~2)-]2-[a -D-Maqp-( 1 -6 )-]2-a  -D- 

Mapp in PIMg are found at the 6 position on the inositol ring.

PIM2 has been shown to have an additional acyl group attached at the 2 or 6 position of the 

dimannoside (Brennan and Ballou, 1967; Khoo et al., 1995a), this structure is known as a tri 

or monophosphatidylinositol dimannoside. PIMs are also believed to contain a  second acyl 

group which is thought to be on the C-3 position of the inositol ring (Ballou, 1972). The 

diacylated PIMs are not found in M. leprae, where they seem only to exist in a mono-acylated 

form (Minnikin et al, 1985).

1.2.1.1.2 Isoprenoid and related compounds

These are lipids synthesised by condensation o f isoprene units to form polyterpene-based 

products e.g. menaquinones and carotenoids.

1.2.1.1.2.1 Menaquinones

Menaquinones (2-methyl-3-polyprenyl-1,4,-naphthoquinones) are the predominant isoprenoid 

lipoquinones found in mycobacteria and are involved in electron transport. They generally 

have nine isoprene units, one o f which is hydrogenated; the precise structure of a 

menaquinone fromM phlei is shown in Fig.3a. This has all trans double-bond configurations. 

Non-isoprenoid lipoquinones have been isolated inM  avium (Minnikin, 1982).

1.2.1.1.2.2 Carotenoids

These are linear polyterpenes containing around 40 carbons (Fig. 3b) and are responsible for
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Fig. 3. The general structure of mycobacterial menaquinones, carotenoids and 
polyprenols
a) The most abundant menaquinone structure found in M. phlei (taken from Minnikin, 1982)
b) Carotenoid structures 1 ) lycopene 2) P -carotene (taken from Minnikin, 1982)
c) Phosphodecaprenol with a P-D-linked-arabinofuranosyl unit attached, P-D- 
Arabinofiiranosyl-l-phosphodecaprenol (Wolucka et al., 1994) (taken from Besra and 
Chatterjee, 1994).
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the characteristic yellow-orange colour of scotochromogenic and photochromogenic 

mycobacteria such as M. gordonae and M  kansasii.

1.2.1.1.3 Glycosylphosphopolyprenols

Glycosylphosphopolyprenols o f mycobacteria contain the polyprenols decaprenol and 

octahydroheptaprenol, rather than the undecaprenol found in common bacteria, and are 

believed to be carrier molecules associated with the plasma membrane (Brennan and Nikaido, 

1995). P-D-mannopyranosyl phosphodecaprenol and P-D-mannopyranosyl- 

phosphooctaheptaprenol were discovered inM  smegmatis and M. tuberculosis (Takayama 

et al., 1973; Takayama and Goldman, 1970) Fig.3c. Recently, P-D-arabinofuranosyl 

phosphodecaprenol, P-D-ribosyl-l-monophosphodecaprenoI and 6-O-mycolyl- P-D- 

mannopyranosyl phosphooctahydroheptaprenol have been found in M. smegmatis (Wolucka 

et al., 1994; Wolucka et al., 1995; Besra et al., 1994a). The polyprenols are thought to be 

involved in cell wall biosynthesis as carrier molecules for arabinose, ribose and mycolates.

1.2.1.2 The cell wall skeleton

The covalently-linked skeleton o f the cell wall consists of the peptidoglycan linked to the 

arabinogalactan, the side chains o f which are esterified at their distal ends with mycolic acids 

to form mAGP.

1.2.1.2.1 The peptidoglycan

Peptidoglycan makes up 18-25% of the cell wall and lends it rigidity and shape. It consists of 

long polysaccharide chains cross-linked by short polypeptide chains to form a net-like 

macromolecule. The polysaccharide chains of the mycobacteria and the Nocardia are 

composed of repeating N-acetyl- P -D-glucosaminyl-( P 1-4)-Af-glycosylmuramic acid units; 

in other bacterial species the muramic acid residues are A^-acetylated. The cross-linking 

peptide chains consist o f L-alanyl-D-isoglutaminyl-meso-diaminopimelyl-D-alanine, the
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diaminopimeiic acids (mDAP) being amidated. M. leprae is an exception in that it contains 

glycine in the place of L-alanine (Draper et al., 1986). The peptide chains are linked to each 

other by interpeptide linkages between alanine and mDAP residues and between mDAP 

residues. The peptide chains are in turn linked to the carboxyl groups of the N-glycolyl 

muramic acid residues of the polysaccharide chains (Fig.4a)

1.2.1.2.2 Mycolyl-AG

Arabinogalactan constitutes about 35% of the cell wall mass o f mycobacteria. Arabinogalactan 

is linked to the peptidoglycan via an unusual diglycosylphosphoryl bridge, 5-Gal/(l-4)-L- 

Rhap-(l-3)-D-GlcNAc(l-P) to the C-6 of the muramic acid residues (McNeil et al., 1990).

Arabinogalactan consists of arabinosyl (Ara) and galactosyl (Gal) residues, all in the furanose 

form which is rarely found in nature. The galactan segment is thought to exist as a 

homopolysaccharide linear strand of alternating 5- and 6-linked P -D-Gal/residues, [5)-P-D- 

Gal/^ 1 -6)- P-D-Gal/"-( 1 -  ]n, up to 30 units long (DafFe et al., 1990; Besra et al., 1995). The 

arabinan branched chains are thought to be attached to the C-5 of C-6-linked Galf  residues 

24-27 at the reducing end of the galactan backbone, near the peptidoglycan (Besra et al., 

1995) (Fig.4b). Arabinan exists as branched chains (Fig.4c), the majority of the homoarabinan 

chains are composed of linear 5-linked a-D-Ara/- residues with branching introduced by 3,5- 

a-D-Ara/-residues, substituted at both branch positions with 5-a-D-Ara/(Fig.4c). Arabinan 

chains were found to be terminated by a unique branched hexaarabinofuranosyl structure [p- 

D-Ara^-(1 -  2)-a-D-Ara/]2-3,5,-a-D-Ara/‘-(l-'5)-a-D-Ara/'(DafFe et al., 1990; McNeil et 

al., 1994). Recent work has shown the arabinan branches are now believed to consist of two 

hexaarabinofuranosyl residues linked to two l-5a-D-Ara/"residues joining at a 3-5 a-D-Ara/" 

making a 23-residue arabinan unit (Besra et al., 1995).
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Fig.4. The structure o f mycobacterial peptidoglycan a n d  arabinogalactan
a) the general structure o f  chemotype IV peptidoglycan, where f=furanosyl;n+m =8-10 units 
and x+y=8-10 units, (taken from Brennan, 1989)
b) the proposed structure o f arabinogalactan (taken from Besra et al., 199S)
c) the proposed structure of arabinogalactan branching (taken from Brennan and Nikaido, 
1995)
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’ I
R—C H —C H —COOH 

I
( C H j ) j j — C H j

b) Table 1. The structures of some mycobacterial mycolic acids

76-82 carbons, do not contain oxygen functions, 
apart from the inherent hydroxy group. Can be 
unsaturated, methyl-branched or contain 
cyclopropane rings, as in the example shown.

a - Mycolates from M. tuberculosis. Found in all mycobacteria.

C O O H

46-68 carbons, shorter versions of the mycolates, 
which are diunsaturated or monounsaturated and 
slightly more polar than mycolates.

a ’-Mycolates Found in M. smegmatis and M. chelonae.

Contain ketogroups in their main carbon 
backbone. M. tuberculosis cis and trans 
ketomycolates are shown, the trans form is the

Ketomycolates

most abundant. Found in many mycobacteria 
including M. kansassi, M. leprae, M. bovis and 
M. avium (Minnikin and Goodfellow, 1980)

C H a 9 * »  O H

Methoxy my col ates

Contain a methoxy group in their main carbon 
backbone again the methoxymycolates of M. 
tuberculosis shown are cis and trans forms, the 
cis being the most common. Also found in M. 
bovis, M. kansassi, M. marinum and M. gordonae 
(Reviewed by G. Dobson et al., 1985)

CHa OH

W h m m « n « 3 2

Epoxy mycol ates

Contain an epoxy group in their main carbon 
backbone and have only been found in M. 
smegmatis and M. fortuitum ( reviewed by 
Dobson et al., 1985)

C H , O  OH

C H , ( C H , | , , ^ o A  <c„HM K * f <CH’ ’" C ^
C O O H

W h«i*  n  ■ 31 -39

Wax ester mycolic acids have been observed in M. 
avium, M. intracellulare, M.scrofulaceum, M. 
vaccae, M. aurum and M. paratuberculosis 
among (reviewed by Dobson et al., 1985). Wax 
ester mycolates are difficult to isolate intact as 
they are degraded to Svcarboxymycolates and 2-

Wax ester mycolic acids eicosanol or alkali hydrolysis

Fig.5. The general structure of mycolates and a table o f the various types
a) general mycolate structure (taken from Minnikin, 1982)
b) Table. 1. The structure of the mycolates and the species in which they are found
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Two thirds o f the hexaarabinofuranosyl units are then mycolated. Long chain a -alkyl- P- 

hydroxy mycolic acids are selectively and equally distributed on the 5-hydroxyl functions of 

terminal p-D-Ara/and internal 2 a-D-Ara/-residues (Fig.4b). Mycolyl units are clustered in 

groups of four in each hexaarabinofiiranosyl non-reducing terminus; they are packed parallel 

to each other and extend upwards from the arabinogalactan, perpendicular to the cell surface 

(McNeil et al., 1991; Besra etal., 1995).

1.2.1.1.3 Mycolic acids

Mycolic acids are high molecular weight long chain P(C-3)-hydroxy fatty acids o f 70 to 90 

carbons in length. The acid group in the C-l position is at the terminus o f the main backbone 

o f50-60 carbons with a(C-2) side chains o f  20-24 carbons and a hydroxy group at the C-3 

position (Fig.5a). The main carbon backbone, or meromycolate, may also contain up to two 

unsaturations, double bonds (cis or trans), cyclopropane rings, oxygen functions (additional 

to the P-hydroxy group e g. keto groups) or methyl branches. These additional features of 

the carbon backbone distinguish mycobacterial mycolic acids from those o f Corynebacterium, 

Nocardia and Rhodococcus.

The structure of different types of mycolates has been reviewed by Minnikin (1982) and Besra 

and Chalteijee (1994). Six types of mycolates have been defined: a , a ', keto, methoxy, epoxy 

and wax ester mycolates. The structures o f  the various mycolates and the mycobacterial 

species in which they are found are described in Table 1 (Fig. 5b).

1.2.1.3 Extractable cell wall lipids

A wide variety o f cell wall lipids are not covalently bound and can be extracted by treatment 

with appropriate solvents. Extractable lipids are believed to make up the outer lipid leaflet 

which intercalates with the bound mycolates and those present in each species of mycobacteria 

vary. The most commonly found extractable lipids are described below in order o f increasing
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polarity, which generally coincides with a larger sugar component.

1.2.1.3.1 Waxes

True waxes consist o f long chain fatty acids esterified to long chain alcohols. An array of 

waxes are found in mycobacteria, particularly slow growers i.e. M. leprae. They are generally 

long chain diols, phthiocerols A and B, phthiodiolone A and phthiotriol A, in which 

mycocerosic acids are esterified to both hydroxyl groups (Fig.6: Table.2). The 

phenolphthiocerols are a related family, which form the basic lipid core of phenolic glycolipids 

(Fig.6: Table 2 ) (Minnikin, 1982; Besra and Chatteijee, 1994).

1.2.1.3.1.1 Mvcocerosates

The mycocerosic acids isolated from waxes are a complex mixture of multi-methyl branched 

acids, the major component of which is C32 2,4,6,8,-tetramethyloctacosanoate (Fig.6: Table 

2) (Minnikin, 1982; Besra and Chatteijee, 1994).

1.2.1.3.2 Phenolic glycolipids

Phenolic glycolipids (phenol phthiocerol glycosides, PGLs) have been found in five 

mycobacterial species to  date: M. kansasii (Mycoside B), M. bovis (Mycoside B), M. 

marinum (Mycoside G), M. leprae (PGL-1) and some strains o fM  tuberculosis (attenuator 

lipid) (reviewed in Brennan, 1989). PGLs consist of a phenolic phthiocerol group with 

two Cj, mycocerosate fatty acids attached (Fig.7a. where R=mycoserosate). There is also an 

oligosaccharide attached to  the phenol group which consists of 1-4 sugar residues depending 

on the species. The oligosaccharide o f M. bovis is a monoglycosyl unit, M. leprae and M. 

tuberculosis (Canetti) have triglycosyl units and M  kansasii has a tetraglycosyl unit (Fig. 7b, 

Table. 3). The sugar residues are not very hydrophilic, consisting of deoxy sugars that are 

multiply 0-methylated. PGLs are the major extractable lipid produced by M  leprae in vivo.
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Table.2

Phthiocerol B CH3(CH2 )20j>2''flN̂ «

OH OH
Phthiodiolone A CH3(CH2)20^ 2y/«s x fl

OH OH
Phthiotriol A CH3(CHz)2 0 X ' r ^ r

Phenolphthiocerol A HO— ^  /)—  (CH2)14.18̂ W  
x * Mycoœrosic Acid

CH3 CH3 CH3 CH3

Mycocerosic Acid CH3 (CH2 ) COOH

Fig. 6 .Waxes and mycocerosates found in the mycobacteria
Table 2. The structure of waxes and mycocerosates found in M. tuberculosis (taken from 
Besra and Chatteijee, 1994)
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Oligosaccharide—O' (C H I),, -C H -C H rC H -iC H ^-C H -C H -C îH j 

CH j

R = Long Chain Fatty Acyl

b) Table. 3. Summary o f structures o f  major phenolic glycolipids from M ycobacterium  species.__________________________________________

Mycobacterial species Structure of carbohydrate chain_______________________________

Mycobacterium bovis 2-0-Me-o-t-Rhap-( 1 -phenol-dimycocerosyl phthiocerol)
Mycobacterium leprae 3,frdi-0-Me-P-D^3Ml-4)-2,3-di-0-Me-o-L-Rhap-(l-S>-3-0-Me-a-L-Rhap-(l-pheiiol-dimycocerosyl phthiocerol)

Mycobacterium kansasii 2,6-dideosy-4-0-Me-c-«ratom>-hexp-(l-*3M-0-Ac-2-0-Me-<i-Futp-2-0-Me-a-Rhap-(l-*3>-2,<-di-0-Me-«-Rhsp<l-* phenol-
dimycocerosyl phthiocerol)

Mycobacterium tuberculosis 2,3,4-tri-O-Me-o-l-FucpK 1 -3)-a-L-Rh«p-< 1 -3)-2-Q-Me-a-i-Rh»rK I -phenol-dimycocerosyl phthiocerol)______________

Fig.7.The structure of mycobacterial phenolic glycolipids and their specific oligosaccharide haptens.
a) General structure of phenolic glycolipids (taken from Besra and Chatteijee, 1994)
b) Table.2. The specific oligosaccharide haptens of PGLs from the PGL containing mycobacterial species (taken from Brennan, 1989)
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J. 2.1.3.3 Glycopeptidolipids

Glycopeptidolipids (GPLs) are peptide-containing surface glycolipids and can be divided into 

two main types, simple apolar and complex polar hydrophilic molecules. Generally, GPLs 

consist of a core head group, the tripeptide, D-Phe-D-cr//oThr-D-Me-L-alaninol, where the 

alaninol is substituted with a 3,4 di-O-methyl-X-rhamnose and the aminogroup of the D- 

phenylalanine residue is substituted with a fatty acid residue. The D-a//o-threonine residue is 

substituted with oligosaccharides of varying length, the proximal portion of which are 

generally a-L-rhamnopyranosyl (l-*2)-6-deoxy-L-talopyranose in complex GPLs (Fig.8a). 

The simple polar GPLs differ from the complex GPLs in that they are singly glycosylated at 

the threonine substituent and are found in species which contain complex GPLs and others 

e.g. M. smegmatis which do not.

Complex GPLs are the major cell surface antigens of M. avium, M. intracellulare and M. 

scrofulaceum (MAIS complex) and M  peregrinum, M. chelonae and M. absessus, of the M. 

fortuitum  complex. The variable oligosaccharide region o f the MAIS complex GPLs is 

serospecific allowing the MAIS complex to be subdivided into 31 distinct serotypes, 12 of 

which have been completely defined (Fig.8b: Table.4) (reviewed by Brennan, 1989; Belisle 

and Brennan, 1994). The GPLs o f the M. fortuitum  complex vary slightly in that these 

oligosaccharides are attached to the alaninol (Lopez Marin et al., 1991, 1992 and 1994). 

Other variations include sulphated GPLs in M . peregrinum, Mycobacterium senegalense and 

Mycobacterium porcinum  (Lôpez-Marin et al., 1992 and 1993) and a novel GPL with a 

serine-containing lipoprotein core structure in M. xenopi (Rivière and Puzo, 1992; Rivière et 

al., 1993).

1.2.1.3.4 Acylated trehaloses

There are three families o f trehalose based lipids, trehalose 6,6'-dimycolate (cord factor) 

(Fig.9a), the simple acylated trehaloses, which contain a combination o f saturated straight
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a) Ç*Hj
CHj

R-NH-CH-CO-NH-ÇH-CO-NH-CH-CO-NH-CH-CH; 

HÇ-CHj

Oligosaccharide----0
OCHj

b) Table. 4. Structure of oligosaccharide haptens from the glycopeptidolipids of some serovariants of Mycobacterium avium.

Serovariant no. Structure

2
4

«

»
12
14

17

19
20 

21
25

26

2,J-Di^J-Me-L-FucrKol-*J)-l-Wiap(«l-2)W-l-Tal 
4^Me-i-RhtuHaI-4)2-0-Me-L-FucpXal-0)L-Rluu*«l—2)6d-iT«l 
4,Ml’ortttxyethytidene)3-0-Me-D<ilc/>®l"3H-RhV(®l'*2)M-i.-Til
2.3- Di-0-Me-i-Fucp(al-*4>-i>^31cA/>(|>l-*4)2,J-Di-0-Me-i.-Fucp(<il-'J>-i.-Rh»p(al"*2)6d-L-Tal 

4-A/-lactyl-3^3.Me-4,6-dideoxygliico(l-, 3)-40.Me-i-RhaF(«l'*3)-fahaF(ol-, 3H-Rhv(ol-*2)-6-d-i-Tal 

4-Formamido-3f4,6-trideoxy-2-O-Me-3-C-Me-Man(l-*3)2-0-Me-i>-Rhas(<tl"*3)2-O-Me-i.-Fuc/j(«l"*3)i.-Rhap(al-*2)6434.-Tal 

4K2'-methyl-3'-hydroxy-butyr)aniido-4,6-dideoxy-Hex(l-»3)40-Me-L-Rhtu>(nl"*3)i.-Rhap(<tl"*3)i.-Rhap(al'*2)6-d-l.-Til

3.4- Di-0-Me-D^3k A/XPI ~J)2.4-Di.O-Me-3-C-Me-6-dHex(ol-3)l-Rh«/><o I -3)L-Rhv(a I — 2)6-d-L-T«l 

2-O-Me-D-Rh v («  I -*3)2-O-Me-i.-Fuçp<0 I-3X-RIUUH« I -2 )W-l T«1 
4,6<l'<irobyxyethyUdene)-D-Clcp(Pl-*3)-L-Rh»p<ol-»2>6-d-i-T»l
4-ictumido4,W ideoxy 2^)-Me-Hex(ol-4)D<ilcAp(il-4)2^)-Me-L-Fucp(«l-3)i-RhatX«l-2)64l-L-Tal

2.4- Di-O-Me-Fuc/Xa 1 -4)OlcAp(P 1 ~4)2-0-Mc-l-FucpKa I-3)l.-Rh«rKal-»2)6-d-L-T»l___________________

Fig.8. The general structure of the glycopeptidolipids found in mycobacteria and the serovar specific oligosaccharide haptens of the M. 
avium complex
a) General GPL structure (taken from Besra and Chatteijee, 1994)
b) Table. 4. The serovar specific oligosaccharide haptens from 12 M  avium  serovars (taken from Brennan, 1989)
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chain mycocerosate (CI6-C„, C21-C25), mycolipanolic (C24-C2g) and mycolipenic fatty acids 

(C25-C 27) and the sulpholipids (Fig.9b). The sulpholipids consist of trehalose 2'-sulphate 

acylated with hydroxyphthioceranic, phthioceranic and saturated straight-chain fatty acids 

(Besraand Chatteijee, 1994).

1.2.1.3.5 Lipooligosaccharides

Lipooligosaccharides (LOSs) consist o f  variable oligosaccharides with an acylated a , a ' 

trehalose unit at one end (Fig.9c). LOSs vary from multi-glycosylated forms found in M. 

kansasii (Hunter et ai., 1985) to the simpler singly glycosylated compounds found in M  

smegmatis and M. fortuitum  (Kamisango et al., 1985; Besra et al., 1992).

The multi-glycosylated acyltrehaloses o f  M. kansasii were isolated from eight smooth colony 

variants (Hunter et al., 1985). Their oligosaccharides are composed o f variable residues of 

xylose, 3-0-methylrhamnose, fucose and N-acylosamine, a novel N-acylamino sugar linked 

to a common tetraglucose core, which contains an a  a'-trehalose moiety. The terminal 

glucose residue of the trehalose is usually acylated at positions 3, 4 and 6 by 2,4- 

dimethyltetradecanoic acid residues. Multiglycosylated LOSs with similar structures to  those 

found inM  kansasii have been found in M. gordonae and M. tuberculosis Canetti (Besra et 

al., 1993; Dafle e t al., 1991).

The simpler LOS of M. smegmatis consists of a pentaoligosaccharide unit of D-glucose 

residues. Two of the glucose residues are pyruvylated and one is 3-0-methylated. Acyl groups, 

2,4-dimethyl-2-eicosenoic acid and hexadecanoic acid are found on the 4 and 6 positions 

respectively, on both glucose molecules of the trehalose unit (Kamisango et al., 1985). The 

two pyruvate methyl groups and the 3-O-methyl ether group lie together on one side of the 

sugar and with the fatty acid chains are thought to result in a molecule with a non-polar 

surface.
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Fig.9.The structure of trehalose containing mycobacterial lipids
a) Trehalose 6,6,’dimycolate (taken from Besra and Chatteijee, 1994)
b) Sulpholipids of M. tuberculosis (taken from Besra and Chatteijee, 1994)
c) General structure of LOSs (taken from Besra and Chatteijee, 1994)
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1.2.1.3.5 Glycerophospholipids

Recent work by Rosenburg and Nikaido has revealed that the cell wall of M . chelonae 

contains at least two short chain (C,6-C„) fatty acid residues per bound molecule o f mycolic 

acid residue (Nikaido et al., 1993), some of the short chain acids found in PIMs (Brennan and 

Nikaido, 1995), implying PIMs are present in the cell wall. The cell wall extracts o fM  

chelonae contained less than 1% plasma membrane so it is unlikely that the 

glycerophospholipids found were contaminants from the plasma membrane.

1.2.1.4  Lipoarabinomannan

Lipoarabinomannan (LAM) is a major constituent of mycobacterial cell envelopes and is 

believed to be present in all mycobacterial species. Detailed structural analysis o f  LAM from 

M. leprae and M. tuberculosis Erdman has revealed that LAM is a multiglycosylated 

extension o f PIM2, consisting o f a mannose backbone with branched arabinogalactan 

extending perpendicularly (Fig. 10) (Hunter et al., 1986; Chatteijee et al., 1992a). The C6 of 

the inositol is the point of attachment o f a mannan backbone (Chatteijee et al., 1992a) which 

consists of a ( l - 6)-linked D-mannose {M ap) residues, with a variable degree o f a ( l-2 ) -  

Mary? linked side branches (Misaki et al., 1977; Chatteijee et al., 1992a; Venisse e t al., 1995). 

The main arabinan backbone consists of a(l-5)-linked a-D-arabinofuranosyl (Ara/) residues, 

w ith branches introduced by a -3,5-a-D-Ara/" linkages. There are two types o f arabinan 

branches shown in Fig.10. One type [ P -D-Ara/’-i 1 -  2)-a -D-Ar%/] 2-3,5 - a  -D-Ara/'-( 1 -  5)- a  -D- 

Ara/'is similar to arabinogalactan and the other, P-D-Ara/'-(l->2)-a-D-Ara/(l-5)-a-D-Ara/', 

is linear (Chatteijee et al., 1991).

Recently, the arabinose terminus o f LAM from M. tuberculosis Erdman, H37RV and H37Ra 

(Chatteijee et al., 1992b; Khoo et al., 1995b), M. bovis BCG (Prinzis et al., 1993) and M. 

leprae (Khoo et al., 1995b) have been shown to be mannose-capped (ManLAM). The 

branched or linear termini are extensively capped with mono, di or trimannosides (1-5)
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Fig. 10. The structure of lipoarabinomannan, LAM
(taken from Besra and Chatteijee, 1994)
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linked to an a-Ara/-residue (Fig. 10) and the terminal Mary? residues are a-D -M app-(l-2)-a- 

D-Manp-linked (Fig. 10), an arrangement that is uncommon in mycobacteria but is common 

on the glycoproteins of mammalian cell surfaces. The extent of the mannose-capping varies 

between species from 70% in M . tuberculosis Erdman to 30% in M. leprae (Khoo et al., 

1995b).

The non-reducing terminus o f LAM in fast-growing mycobacteria e.g. M. smegmatis, is 

devoid o f mannose-capping and has been shown to exhibit a degree of inositol phosphate 

capping (Khoo et al., 1995b). The inositol capping is believed to be restricted to the linear 

arabinan termini and attached at position 5 o f the terminal P-Ara f  residue.

The general structure of LAM does vary slightly from species to species e g. M . bovis BCG 

ManLAM has a shorter mannose backbone o f only 5 units of 2,6 linked mannose, a highly 

branched arabinofiiranosyl side chain and up to three 2-linked mannopyranosyl segments at 

the non-reducing ends of the molecule (Prinzis et al., 1993).

LAM was believed to be anchored in the plasma membrane by a PIM anchor and to span the 

cell wall, however the recent discovery of PIMs in the cell wall imply that LAM could be 

extractable and embedded in the cell wall (Brennan and Nikaido, 1995) .

1.2.1.5 Cell wall associated proteins

The lipoproteins found in M  tuberculosis are believed to be analogous to the periplasmic 

protons of Gram-negative bacteria and to be cell wall associated (Young and Garbe, 1991). 

The 38kDa protein of M. tuberculosis has 30% homology to the periplasmic PstS (PhoS) 

from E. coli which captures phosphate transported through the porin and releases it via a 

phosphate specific phosphate channel which spans the cytoplasmic membrane. The synthesis 

of the 38kDa protein is upregulated during phosphate starvation, implying the protein could
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be involved in phosphate biosynthesis (Andersen et a l., 1990).

The 19kDaM tuberculosis lipoprotein is anchored in the cell wall (Young and Garbe, 1991) 

and is also believed to be involved in phosphate uptake (Andersen and Brennan, 1994) but its 

exact functions are unknown.

Excreted proteins e.g. superoxide dismutase (Zhang et al., 1991; Abou-Zeid et al., 1988; 

Thole etal., 1992) must transverse the cell wall to reach the exterior. The 30/3 lkDa antigen 

85 complex contains signal sequences required to transverse the cell wall and has been found 

to be at least temporarily associated with the cell wall surface before release into the exterior 

(Rambukkana et al., 1991).

The high affinity iron binding compounds, exochelins and mycobactins are also cell wall 

associated. Exochelins are excreted into the extracellular environment, while mycobactins are 

thought to facilitate the transport of iron across the cell wall to the interior o f the bacterium 

(Ratledge, 1982). The mycobactins are highly lipophilic and the exochelins have recently been 

shown to share a common core structure with the mycobactins (Sharman et al., 1995).

Cell wall associated proteins with unknown functions have been found in a number of 

mycobacterial species e.g. the major 35kDaM leprae protein (Hunter et al., 1990) and the 

30kDa protein o fM  chelonae (Nikaido et al., 1993). Porins have also been found in the cell 

walls o fM  chelonae and M. smegmatis (Trias et al., 1992; Trias and Benz, 1994).

1.2.1.6 Physical organisation o f the cell envelope

The proposed model for the physical organisation o f the cell envelope of a plasma membrane 

surrounded by a bilipid cell wall was described in section 1.2. The model, based on the 

chemical properties of the cell envelope components (Minnikin, 1982) has largely been borne
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out by subsequent experimental evidence (Nikaido et al., 1993; Brennan and Nikaido, 1995).

1.2.1.6.1 Ultrastructure evidence

The ultrastructure of mycobacteria has been extensively studied using a variety of techniques 

including freeze-fracture, freeze-etching, negative staining, metal shadowing, thin sectioning 

and ffeeze-substitution (Reviewed by Draper, 1991; Brennan and Draper, 1994). These 

experiments have attempted to relate the visible structure to the physical organisation of the 

chemical components in the cell envelope.

The mycobacterial plasma membrane appears as two electron dense layers separated by a 

transparent layer, with integral membrane proteins and a freeze-fracture plane across the 

transparent layer (Nguyen et al., 1979; Silva and Macedo, 1983). The plasma membrane is 

asymmetrical, the outer electron dense layer appears thicker than the inner layer, due perhaps 

to  the presence of carbohydrate in molecules such as PIMs or LAM (Silva and Macedo, 1983; 

Paul and Beveridge, 1992). A pseudo-periplasmic space between the plasma membrane and 

the cell wall has not been categorically established through electron microscopy.

Observation o f the cell wall of mycobacteria by electron microscopy has given variable and 

contradictory data depending on the methods used. The wall appears to consist o f three 

layers; an inner layer (IL) of moderate electron density, a wider layer electron-transparent 

layer (ETL) and an outer electron-opaque layer (OL) of variable thickness and appearance.

The (IL) is 5.6-6.2nm wide (Paul and Beveridge, 1992) and is believed to contain the 

peptidoglycan because o f  the consistency of its moderate electron density across the species 

and the ability of the carboxyl groups o f diaminopimelic acid in this layer to bind metal ions 

during staining (Beveridge and Murray, 1980).
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The ETL represents the arabinogalactan-mycolate region of the cell wall. It is the most 

hydrophobic region and the most lacking in reactive chemical groups to bind the electron 

microscopy stains. The mycolic acids are thought to prevent access of the stain to the 

arabinogalactan making it part of the electron-transparent layer (Rastogi et al., 1984). The 

ETL disappeared following extraction o f  lipids with acetone in M . kansasii, and the lipid 

extracted was also shown by TLC analysis to contain large quantities of phenolic glycolipid. 

(Paul and Beveridge, 1994). This experiment implies that the ETL contains shorter-chain 

lipids predicted to intercalate with the mycolates in the models of the cell wall (Minnikin 1982; 

Nikaido etal., 1993; Brennan and Nikaido, 1995). The ETL was found to be 5-10nm in width 

by freeze-substitution (Paul and Beveridge, 1992).

The OL, approximately 5nm wide (Paul and Beveridge, 1992), is the most variable from 

species to species and has been identified in 18 mycobacterial species (Brennan and Draper, 

1994). The OL appears fibrillar, granular, or homogenous and varies in thickness and electron 

density; this is thought to be due to the various staining methods and growth conditions 

employed, as well as genuine differences between species. The OL is believed to consist of 

delicate surface structures and has been shown to contain polysaccharides, glycoproteins, 

proteins, phospholipids and complex glycolipids inM. avium (David eta l., 1988).

Ruthenium red staining was the first to allow clear and consistent observation o f the OL layer 

in different species. The dye binds to charged groups and does not penetrate the membrane; 

it is not clear which specific components of the mycobacterial cell wall bind to the dye 

(Rastogi et al., 1984). Recent freeze-substitution experiments ofM . kansasii showed a very 

feint OL towards the edge of the ETL but contained within it, suggesting that the components 

o f  the OL may be found in structures that also make up part of the ETL (Paul and Beveridge, 

1994). This indicates that the OL contains the sugar and protein components of the 

intercalating lipid o f the cell wall leaflet.
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A freeze-fracture plane has also been observed in the mycobacterial cell wall and supports the 

concept that the cell wall exists as a lipid bilayer (Draper and Brennan, 1994; Brennan and 

Nikaido, 1995).

1 2 1 6 1.1 Intracellular ultrastructure

The ultrastructure o f some mycobacteria inside macrophages has been studied. The 

mycobacteria were generally found within a vacuole but separated from its contents by a 

distinct "electron transparent zone" (ETZ). This ETZ is different from the ETL in 

mycobacteria grown in vitro and the boundary between the two is generally visible inside 

vacuoles. The ETZ corresponds with the position o f the outer layer o f cells grown in vitro.

In A/, leprae an ETZ was observed surrounding the bacilli in vivo (Nishiura et al., 1977). The 

use of a specific PGL-1 monoclonal antibody and indirect immunofluorescence resulted in a 

fluorescent zone surrounding the bacilli (Gaylord and Brennan, 1987) demonstrating the 

surface location o f the glycolipid antigen and implying the presence o f PGL-1 in the ETZ of 

M. leprae. InM  avium the ETZ consisted of a multilamella coat of parallel straight fibrils and 

is thought to contain GPLs (Rulong et al., 1991).

1.2.1.6.2 Biochemical evidence

The proposed arrangement of the arabinan branching in the arabinogalactan, at the base of the 

galactan chain (Besra et al., 1995) would allow the mycolates to extend upwards 

perpendicular to the cell surface, as proposed in the model.

The amounts of mycolic acid present in whole cell hydrolysates are comparable with the 

nonhydroxylated fatty acids of the plasma membrane suggesting there are sufficient mycolates 

to form the proposed lipid domain (Minnikin, 1982).
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The lack of acylation of the P-hydroxyl group of the mycolates implies that intramolecular 

and intermolecular hydrogen bonds could form between the hydroxy group and the carbonyl 

group of each mycolate (Besra et al., 1995). It is thought that the hydrogen bond would result 

in the a  branch and the meromycolate backbone of each mycolate being parallel to each other 

forming the predicted parallel packing of the mycolates. Recent x-ray diffraction studies of 

the cell wall of M  chelonae showed that a large part o f  the hydrocarbons are tightly packed 

in a parallel array, perpendicular to the surface (Nikaido et al., 1993).

If this arrangement is correct the mycolic acid structure would be predicted to produce 

domains of different fluidity, an inner region of low fluidity and a distal region of increased 

fluidity (Brennan and Nikaido, 1995). The a  branch is without double bonds or cyclopropane 

rings and the proximal portion o f the meromycolate chain generally contains a tram  double 

bond that does not introduce kinks, which would result in low fluidity in the region close to 

the arabinogalactan. In contrast, the distal end of the mycolates contains the second double 

bond or cyclopropane group with a cis configuration; oxygen-containing substituents may also 

be present at this position. These groups would strongly disrupt the lateral packing at the 

distal end o f the mycolates leading to increased fluidity towards the outer edge of the 

mycolate region (Brennan and Nikaido, 1995). The x-ray data showed that a large fraction 

of the cell wall lipid was in an almost crystalline arrangement o f low fluidity in M. chelonae 

(Nikaido et al., 1993). These two regions of fluidity would assist in the formation of the 

predicted outer bilayer (Brennan and Nikaido, 1995).

The model also requires sufficient amounts of extractable lipids as components of the outer 

leaflet. As the meromycolates and a  branches differ by about 26 carbons, lipids and fatty 

acids with between 14-18 and 30-40 residues are required to intercalate with the mycolates 

to form the outer leaflet o f  the lipid bilayer. M . chelonae was found to contain 

glycerophospholipids, GPLs and unknown lipids with intermediate chain length in ample
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quantities to form an outer leaflet (Nikaido et al., 1993; Brennan and Nikaido, 1995). Other 

species also have extensive quantities of extractable lipids which are thought to be located in 

the outer leaflet of the bilayer, e g. PGLs of M. leprae (Gaylord and Brennan, 1987) and 

GPLs o f M. avium (Rulong et al, 1991).

Some lipids may form independent aggregates outside the bilayer, particularly when over 

produced. The form in which these lipids exist outside the cell will vary e g. PGL-I of M. 

leprae is apolar and exists as oil droplets (Gaylord and Brennan, 1987) whereas GPLs ofM. 

avium  are amphiphilic and form micelles or fibrils (Barrow et al., 1980). Other extractable 

lipids, i.e. trehalose dimycolate, LOSs and sulpholipids, are more ideally shaped to form the 

lipid bilayer and are unlikely to exist outside the cell wall bilayer (Brennan and Nikaido, 1995).

1.2.2 B i o s y n t h e s i s  o f  s o m e  c e l l  w a l l  c o m p o n e n t s

The elucidation of biosynthetic pathways is important in the search for drug target sites for 

mycobacteria. Mutational analysis of operons encoding the cell wall components would help 

elucidate the pathways as shown by Mills et al., (1994) with the GPLs ofM  avium serovar2. 

Generally a larger number of individual enzymes are required to form oligosaccharides, while 

lipid synthesis appears to involve multifunctional enzyme complexes. This section describes 

what is known about the some o f the more unique mycobacterial cell wall components.

1.2.2.1 PIM  and L A M  biosynthesis

A proposed biosynthetic pathway for PIMs is shown in Fig. 11a. The recent discovery that an 

additional acyl group is attached either to the C-6  or C-2 position of the dimannoside moiety 

(Khoo etal., 1995a) has implications for LAM biosynthesis, as the addition o f an acyl group 

to the C-6  position would prevent the formation o f the mannose backbone.
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Fig. 11. The proposed pathways of PIM and phthicerol biosynthesis
a) The proposed pathway of PIM biosynthesis (taken from Minnikin, 1982)
b) The later stages of phthiocerol A biosyntheis (taken from Besra and Chatteijee, 1994)
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1.2.2.2 Arabinogalactan

Little is known o f  the biosynthesis of this compound. However, recently, a family of 

monoglycosyl polyprenylphosphates have been isolated from M. smegmatis which contain 

arabinose and ribose, P-D-arabinofuranosyl phosphodecaprenol and P-D-ribosyl-1- 

monophosphodecaprenol (Wolucka et al., 1994 and 1995). The polyprenols are thought to 

be involved in cell wall biosynthesis as carrier molecules for arabinose and ribose. The destiny 

o f the ribose is as yet unknown; it could be a component o f an unknown polysaccharide or a 

precursor for arabinose (Wolucka el al., 1995). Pulse-chase metabolic labelling o f  cells with 

[14C]-glucose indicated that decaprenyl-P-arabinose is an active intermediate in the 

biosynthesis of arabinogalactan and arabinomannan (Wolucka et al., 1994).

1.2.2.3 Mycotic acids

The complete biosynthetic pathways of mycolate formation have not yet been determined, 

although a number o f  individual steps have been established.

Initial studies on Corynebacterium diphtheriae (Gastambide-Odier and Lederer, 1960) 

showed that C32 mycolates were formed by Claisen condensation and reduction o f two CJ6 

acids. Similar condensations were subsequently revealed in the formation of mycolates of M. 

smegmatis (Etemadi, 1967a, b and c) as reviewed by Minnikin (1982).

A general pathway for the synthesis of the a  dicyclopropyl mycolates of M. tuberculosis 

H37Ra was initially proposed by Takayama and coworkers following detailed investigations 

(reviewed by Minnikin (1982)). An updated version of this pathway has been proposed by G. 

Besra (Brennan and Nikaido, 1995) (Fig. 12)

A Cj« fatty acid, formed in the cytosol by fatty acid synthesis FASI/FASII, is believed to enter 

one o f two branches o f the pathway. In one branch of the pathway the C24 acid is thought to
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Fig. 12. T he  proposed pathway of a  mycolate biosynthesis in M. tuberculosis H37Ra 
The proposed anabolic pathway o f mycolic acid biosynthesis in M. tuberculosis H37Ra was 
taken from Brennan and Nikaido,1995. The key products are (I) hexacosanoate-Rl (II) A -5- 
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be elongated to  a CM molecule by the addition o f £  attached to  a carrier molecule R 

(Fig. 12). The carrier molecule R, is possibly the recently discovered mycolyl phospholipid 

(Myc-PL), 6-0 mycolyl-P-D-mannopyranosyl-phosphaoctahydroheptaprenol, which contains 

an appropriate acyl carrier group (Besra et al., 1994a). The molecule is then thought to 

be caiboxylated to form an acid, tetracosanyl malonate, (CH3(CH2)23CH(COOH)2) (Fig. 12).

The C24 acid entering the other branch of the pathway is thought to  be attached to an acyl 

carrier molecule Rj, which could be CoA, an acyl carrier protein (ACP) or a membrane-bound 

protein (Brennan and Nikaido, 1995). The C24-R2 molecule is thought to be desaturated by 

A-5-desaturase to form C ^ l ,  A -5-tetracosanoate-R2. The A-5-tetracosanoate (Fig. 12 II) is 

then thought to  be elongated to a C32 molecule by the sequential addition of Q molecules 

before undergoing a second desaturation. The cyclopropane rings are then thought to be 

formed at the positions o f the double bonds before further elongation o f the C32 molecule to 

a meromycolate (C52-C54) (Fig. 12 III). The meromycolates and the £  acid, tetracosanyl 

malonate-R„ are then thought to undergo a Claisen condensation producing a ketomycolyl-R, 

intermediate. The intermediate is thought to be decarboxylated yielding an oxomycolate-R, 

which is reduced to give mycolate-R,. The mycolate-R, (R, = Myc-PL) may then be directly 

transferred to the non-reducing terminus of the D-arabinose residue o f  arabinogalactan matrix. 

Myc-PL could transfer the mycolate residues to trehalose to form trehalose monomycolates 

which are also thought to be the carriers of mycolic acid to the D-arabinose residues 

(Takayama and Armstrong, 1976).

Evidence has been gathered for some steps in the proposed pathway from a wide range o f 

studies, including investigations into the effect of antituberculous drugs.

That A 5-unsaturated C24 fatty acids are precursors of mycolates has been implicated by a 

number of groups. Asselineau et al. (1970) showed that a series o f  A 5-unsaturated C22, C24
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and C26 non-hydroxylated fatty acids (FA), from M. phlei, were structurally similar to the 

hydrocarbon terminal portion of its di-unsaturated mycolates. Oxidative cleavage of the 

double bonds in both the mycolates and FA gave identical degradation products. It was 

therefore suggested that A 5-acids may be formed by aerobic desaturation of C24 tetracosanoic 

acids. Investigation o f the monounsaturated FA of H37Ra (Takayama et al., 1978) revealed 

the position of the double bonds in the FA corresponded exactly with positions of the 

cyclopropane rings in the alkyl terminal portion of the a  mycolates (Qureshi et al., 1978). It 

was concluded that these unsaturated FA esters may be precursors of mycolic acids.

A system was developed to follow mycolic acid synthesis in intact M. tuberculosis H37Ra by 

measuring incorporation of a radioactive [MC]-acetate precursor into mycolates (Takayama 

et a l., 1972). A cell-free system able to synthesize whole mycolic acids was subsequently 

developed forM  aurum, again using [l4C]-acetate as a precursor (Lacave et al., 1990). The 

synthetic activity was found in an insoluble fraction extracted from disrupted M .aurum  cells. 

The addition of isoniazid (INH) to both systems inhibited mycolic acid synthesis and led to 

the accumulation o f non-hydroxylated fatty acids, implying that non-hydroxylated fatty acids 

are the precursors o f  mycolic acid.

Analysis o f the [,4C]-acetate distribution in the newly synthesized mycolic acids o f the cell-free 

system revealed that the [14C]-acetate was not uniformly incorporated into the unsaturated, 

oxy, dicarboxy and meromycolates formed by the system (Lacave et al., 1990b). Extraction 

and oxidation of the resulting mycolates fragmented the meromycolate chains at their double 

bonds and demonstrated that the methyl terminus and the next 18 carbon atoms were virtually 

unlabelled, indicating an endogenous C24:1 cisS precursor.

The fatty acids are probably synthesized by fatty acid synthases (FASs) FASI and

FASH. In M  tuberculosis this is a multifunctional enzyme system, a de novo synthase forms
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C ,6 acids which are elongated to the C24 or CM acids required as mycolate precursors.

Recently, cis  tetracos-5-enoic (A 5 tetracosenoic acid) acid was positively identified as a 

putative precursor in mycolic acid biosynthesis (Wheeler et al., 1993a). Following extraction 

with hexane to remove endogenous fatty acids, the incorporation of [,4C]- acetate into the a , 

a '  and epoxymycolates of M. smegmatis was observed, following addition o f the cis 

tetracosenoic as a precursor; other lengths of fatty acids had no effect. The use o f  a structural 

analogue in this system, methyl-4-(2-octadecylcyclopropene-l-yl) butanoate, inhibited mycolic 

acid biosynthesis (Wheeler et al., 1993b).

The subsequent elongation of the C24 fatty acid or C24:1 c/s-5-precursor in mycolate synthesis 

could be initiated by FAS enzymes or specific elongases. Analysis o f the cell free system of 

mycolate formation (Lacave et al., 1990a) revealed that [l4C]-acetate incorporation into 

mycolates was up regulated by CoA, biotin, KHC03 and MgCl2. As mycolate biosynthesis 

requires elongation, condensation, dehydrations and desaturation, Lacave et al., (1990a) 

concluded that a multi-enzyme complex is likely to exist. The recently discovered inhA gene, 

when mutated or over-expressed, confers resistance to  INH by preventing the inhibition of 

mycolic acid biosynthesis (Baneijee et al., 1994). Initial characterisation of the gene and its 

product revealed homology to envM of E. coli. NAD/NADH binding and a P-ketoacyl-ACP- 

reductase gene downstream of the inhA  gene suggested it was an enoyl-ACP-reductase and 

therefore, involved in elongation events. The 32kDa InhA protein has been expressed 

revealing its crystalline structure which contains an NADH binding site (Dessen et al., 1995). 

The protein has recently been shown to catalyse the NADH-specific reduction o f 2-trans- 

enoyl-ACP (Quemard et al., 1995) and possibly exists as a multienzyme-complex involved in 

mycolic acid biosynthesis.
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The incorporation of (S)-methyl-[uC]-adenosyl-methionine provides the methyl groups for 

cyclopropane rings. This is thought to occur late in the pathway as incorporation of (S)- 

methyl-[I4C] adenosyl methane and unlabelled malonyl CoA gave Q rC *  acids in a cell-free 

extract o fM  tuberculosis H37Ra (Qureshi et al., 1984). The correct double bond position 

was also essential for effective elongation. Recently, an M. tuberculosis gene cm a\ has been 

isolated which confers the ability to form cyclopropane rings at the double bond positions of 

a  mycolates inM  smegmatis, which is normally unable to produce cyclopropane rings (Yuan 

et al., 1995). Regions of the M  tuberculosis DNA adjacent to the cm al gene display 

homology to other fatty acid synthases and may represent part of an operon involved in 

mycolic acid biosynthesis (Yuan et al., 1995).

The mycolic acids of a number of mycobacteria have been found in the trehalose 

monomycolate (TM) form. These esters were thought to be carriers of the mycolic acids to 

the cell wall. The recently discovered Myc-PL may be a precursor of TM or may transfer the 

mycolate residue to trehalose (Besra et al., 1994; Brennan and Nikaido, 1995) .

The proposed biosynthetic pathway described was for a  mycolates of M. tuberculosis. Other 

studies indicated that a parallel pathway exists for the formation of oxygen containing 

mycolates (Quemard et al., 1992). The absolute configuration of the methyl group in 

epoxymycolates when compared to the (S) methyl group adjacent to keto, methoxy and wax- 

ester function has ruled out epoxides as common intermediates (Minnikin, 1982). Metabolic 

studies with different chain lengths indicate that cl mycolates are not precursors o f oxygenated 

mycolates. Pathways for a  mycolates and oxygenated mycolates appear to diverge from a 

common intermediate.

A strain o f M. smegmatis with defective mycolate synthesis has been isolated (Kundu et al.,

1991) which is believed to be unable to undergo the Claisen type condensation as it only
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produces short chain fatty acids. The isolation of other such mutants or those resistant to 

drugs which inhibit mycolate biosynthesis should help elucidate this pathway.

1.2.2.4 Phenolic glycolipids

The carbon atoms in the methyl branched structures of the mycocerosates and in phthiocerol 

had previously been shown to be derived from  propionate (Gastambide-Odier el al., 1963) 

(Fig. 1 lb). The mycocerosates themselves have recently been shown to be synthesised by a 

mycocerosic acid synthase (MAS), a novel fatty acid elongating multifunctional enzyme from 

the M. tuberculosis complex. The operon encoding the MAS enzyme contains a ketoacyl 

synthase, acyl transferase, dehydratase, enoyl reductase, P-ketoreductase, and acyl carrier 

protein in that order (Mathur and Kolattukudy, 1992).

The phenol-phthiocerols come from p-hydroxybenzoate, which is then elongated to  yield long- 

chain diols (Gastambide-Odier, 1970). The aromatic ring o f the phenol can be derived from 

tyrosine but not from phenylalanine (Minnikin, 1982).

Recent experiments in which M. microti was grown in the presence o f 2-[uC]-propionate led 

to the isolation of two lipids which were identified as phthiocerol dimycoserosate and 

phenolphthiodiolone dimycocerosate, the aglycosyl derivatives of mycoside B (the PGL o f M. 

microti and M  bovis). Cell-free extracts o f th e  organism were able to glycosylate the two 

lipids to  form the PGL in vitro. The lipids are  therefore believed to be intermediates in the 

biosynthesis of PGLs in mycobacteria (Thurman eta l., 1993).
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1.2.2.5 Glycopeptidolipids

Recent experiments have begun to elucidate the biosynthetic pathway of GPLs using a genetic 

approach (Belisle eta l., 1991; Mills et al., 1994). Initially, the gene cluster ser2 encoding the 

oligosaccharide hapten responsible for the serovar specificity of M  avium  serovar 2 was 

cloned and expressed in M. smegmatis. Expression of the ser2 genes in M. smegmatis 

produced a recombinant serovar 2-specific GPL, with a non-specific GPL (nsGPL) M. 

smegmatis base and the serovar 2-specific disaccharide 2,3,di-0-methyl-a-L-fiicopyranosyl- 

(l-3)-a-L-rhamnopyranose attached to the 6-deoxytalose of the nsGPL base (Belisle et al.,

1991). Subsequent transposon mutagenesis o f the ser2 gene cluster and screening o f the 

recombinants for ser2 expression revealed four essential loci spanning 14kb of M. avium 

DNA. These loci are believed to encode at least a rhamnosyltransferase, a fucosyltransferase 

and the methyltranferases required to methylate the fucose. It is possible the enzymes 

responsible for the de novo production of fucose are also encoded within this region (Mills 

eta l., 1994). Isolation of truncated versions o f the recombinant GPL following transposon 

mutagenesis of ser2 implied a chain of events in the biosynthetic pathway o f the GPLs of 

serovar 2. Synthesis is thought to be initiated by the transfer of a rhamnose unit to the 6- 

deoxytalose of the peptide core followed by the addition of the fucose and subsequent 

methylation of the fiicosyl unit.

1 .2 .3  FUNCTIONS ASSOCIATED W ITH  THE COM PONENTS O F THE C E LL  W A LL

1.2.3.1 Antigenicity

The glycolipids present in the cell wall outer leaflet of a number mycobacterial species are 

antigenic as a result o f their specific oligosaccharide components e.g. PGLs, LOSs, LAM and 

GPLs. The glycolipids can be sufficiently antigenic to evoke specific antibodies and thereby
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allow serodiagnosis or serotyping of the mycobacterial species in question. The glycolipids, 

although antigenic, are not always immunogens; for example, M. fortuitum  LOS reacts with 

antiserum raised against the whole bacteria strongly but only weakly against antibodies raised 

specifically against the glycolipid (Besra et al., 1992).

Multiglycosylated species-specific glycopeptidolipids (ssGPLs) are the major surface 

glycolipids o f M. avium, M .intracellulare and M  scrofulaceum  species and their 

oligosaccharide components are the determinants o f the 31 serovars within the MAIS 

complex. Glycopeptidolipids have also been isolated from M. chelonae, M. peregrinum  and 

M . absessus (of theM  fortuitum  complex) andM. porcinum. Non-specific singly glycosylated 

glycolipids are also found in these species.

M . gordonae is a serocomplex like the M . avium complex, but based on the trehalose 

containing LOSs rather than glycopeptidolipids as demonstrated by the dominant LOS of M. 

gordonae 990 reacting strongly with antiserum raised against it, but only very weakly with 

antiserum raised against M. gordonae 989 and vice versa (Besra et al., 1993). The 

multiglycosylated LOSs ofM. kansasii, M. szulgai, M. gordonae and M. tuberculosis Canetti 

are also highly antigenic (Brennan and Nikaido, 1995; Daffe et al., 1991). The serological 

dominance is resident in the terminal non-reducing arrangements o f the most polar LOSs from 

M . kansasii, M. szulgai andM  gordonae (Besra eta l., 1993).

PGLs are particularly antigenic evoking specific antibodies, e.g. in M. leprae recognition of 

P G H  with a monoclonal antibody (mAb) can be used to diagnose the disease. LAM found 

in all mycobacteria is also highly antigenic (Hunter et al., 1986; Gaylord and Brennan, 1987).
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J. 2.3.1.1 PGLs, LOSs and GPLs

PGL-1 has also been implicated in the pathogenicity of M  leprae. It is believed to contribute 

to the intracellular survival o f M. leprae within macrophages through its ability to scavenge 

oxygen radicals (Gaylord and Brennan, 1987). PGL-1 has also been implicated as an acceptor 

molecule on the bacilli for the C3 ligand which combines with the complement receptor to 

form a complex which initiates phagocytosis of the bacteria by the macrophage (Schlesinger 

and Horwitz, 1991). Ligation of complement receptors by C3 does not trigger an appreciable 

oxidative burst and ingestion of M. leprae is not accompanied by a significant oxygen burst. 

The C3 fixation to M  leprae has been shown to be mediated by natural antibody in the serum 

of nonimmune hosts (Schlesinger and Horwitz, 1994).

The LOSs are not thought to interact directly with the host but are thought to mask 

underlying virulence determinants such as LAM, preventing their pathogenic effects (Daffe 

et al., 1991).

There is mounting evidence from in vitro studies that GPLs may play a role in host-parasite 

interactions. GPLs have been shown to be immunosuppresive, decreasing the 

lymphoprolifération of murine splenic lymphocytes (Brownback and Barrow, 1988). 

Subsequent experiments with P -lipid, essentially the peptide core o f the GPLs, show it also 

had the ability to suppress lymphoprolifération of splenic lymphocytes (Tassell et al., 1991). 

Purified GPL and p-lipid also induced secretion of tumour necrosis factor a  (TNFa) 

(Pourshafie et al., 1993). The peritoneal macrophage membranes were disturbed by both GPL 

and P-lipid which may have caused their altered function. Barrow et al., (1993) gained similar

_________________________________________________________________________In t r o d u c t i o n
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results with human peripheral blood mononuclear cells (HPBMs) and serovar 4 (3-lipid.

The oligosaccharide moiety of serovar 4 or 2 was not immunosuppressive nor did it induce 

TN Fa or prostaglandin 2 (PGE2). However, M. avium serovar 8 GPL has been shown to 

induce secretion o f PGEj, which GPLs o f serovars 4 and 2 were unable to do, implying 

induction was due to  the variable oligosaccarides of the GPLs (Barrow et al., 1995).

1.2.3.1.2 Trehalose 6,6'-dimycolate

Trehalose 6,6 -dimycolate (cord factor) has been shown to induce cytokine-mediated events 

such as systemic toxicity (Kato, 1973), anti-tumour activity (Lepoivre et al, 1982), 

granulomagenic activity and macrophage release of chemotactic factors (Matsunaga et al 

1990). Cord factor also inhibits Ca2+ induced fusion between phospholipid vesicles (Spargo 

e t al., 1991) and migration of leukocytes (Goren and Brennan, 1979). Recently, lung 

inflammation produced by cord factor was shown to induce a coagulative response in murine 

lungs rather than the fibrinolytic response associated with lungs resistant to cord factor (Perez 

e ta l., 1994).

1.2.3.1.3 Sulpholipids

Sulpholipids are thought to inhibit phagosome activation thus promoting intracellular survival 

o f  the pathogen and have been shown to have multiple affects on the signal transduction 

pathways leading to phagosome activation and priming (Zhang et al., 1991b). They have been 

shown to prevent the release of superoxide (Oj‘) by the macrophage-activating factors LPS 

gamma interferon (IFN-y) interleukin-1P (IL-1P), TNFa and muramyl dipeptide. The 

inhibition o f macrophage priming was accompanied by an increase in the secretion of IL-1P
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and TNFa (Brozna et al., 1991).

J.2.3.1.4 LAM

In earlier investigations, LAM ofM. leprae andM tuberculosis (now known to be ManLAM) 

was shown to inhibit T-cell proliferation (Kaplan et al., 1987; Molloy et al., 1990). The IFN- 

Y mediated activation of macrophages via T-cell lymphokines was also inhibited by the 

presence o f M. leprae LAM in murine macrophages (Sibley et a i, 1988). Both inhibitory 

effects were prevented by the deacylation of LAM (Molloy et a i, 1990; Sibley et a l., 1988). 

LAM o f M . leprae and M  tuberculosis was also shown to scavenge potentially cytotoxic 

oxygen free radicals and inhibit protein kinase C activity (Chan et a i, 1991). The scavenging 

was upregulated by deacylation of LAM (Chan et a i, 1991).

LAM has also been shown to induce an array o f cytokines. AraLAM of the attenuated 

Mycobacterium strain initially thought to beM  tuberculosis H37Ra (Chatterjee et a l., 1992c) 

was shown to induce TNFa at levels 100-fold greater than those induced by ManLAM 

(Chatterjee et a i, 1992c). AraLAM was subsequently shown to increase production o f  TNFa, 

granulocyte macrophage-colony-stimulating factor (GM-CSF), IL-1 a , IL-1 P, IL-6, IL-8 and 

IL-10, generally produced by macrophages and resulting in increased antigen-induced T-cell 

proliferation (Adams et a i, 1993). ManLAM, lipomannan (LM) and PIMs were also found 

to induce the same cytokines to a lesser extent in both experiments. Deacylation of both types 

of LAM prevented the molecule inducing cytokines. (Chatteijee et a i, 1992c; Barnes et a i,

1992).
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AraLAM has also been shown to induce macrophage early gene expression (c-fos, KC and 

JE) and T N F a in murine macrophages which ManLAM was unable to do (Roach et al.,

1994). AraLAM has recently been shown to be a potential stimulator of intracellular nitric 

oxide synthase (iNOS) expression whereas ManLAM was not; the inability of ManLAM to 

induce iNOS was not due to the induction of inactivating IL-10, as AraLAM also induced IL- 

10 production. IFN-y was however found to completely inhibit the IL-10 production induced 

by AraLAM, implying an immunoregulatory role in determining the macrophage response 

(Roach et a l., 1995). The TNFa induction by AraLAM has been shown to be modulated 

through th e  binding activities o f transcriptional factors, NF-kb and NBF1, as with LPS. 

ManLAM was found to be considerably less potent at stimulating NF-kb (Brown et al., 1995). 

These experiments indicate that LAM is a potential regulator of macrophage functions.

Recently ManLAM has been shown to selectively enhance adherence of polystyrene 

microspheres to human monocyte derived macrophages whereas AraLAM did not. Adherence 

was decreased by down-modulating the mannose receptor on the macrophages or by 

removing the terminal mannose units of ManLAM, implying that ManLAM enhances 

adherence by interacting with the macrophage mannose receptors, providing a novel receptor- 

ligand pathway in phagocytosis o f  M . tuberculosis (Schlesinger et al., 1994).

ManLAM from M. leprae has been shown to be presented to T-cells by human CD lb; this 

presentation required internalisation and endosomal acidification as well as the presence of 

maimosides with (1-2) linkages and a phosphatidylinositol unit. LAM, a lipoglycan, can act 

as an antigen and be recognised by human T-cells (Sieling et al., 1995)
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1.3 Permeability of the mycobacterial cell envelope

1.3.1 P e r m e a b i l i t y  o f  t h e  m y c o b a c t e r i a l  c e l l  w a l l

The mycobacterial cell wall acts as an effective permeability barrier to both hydrophilic and 

hydrophobic solutes. Hydrophilic molecules are expected to transverse the cell wall through 

porins whereas lipophilic solutes are more likely to diffuse through the lipid bilayer.

1.3.1.1 Permeability to hydrophilic solutes

The permeability to hydrophilic solutes has been tested in two non-pathogenic mycobacterial 

species, M. chelonae andM  smegmatis mc2155 (Jarlier and Nikaido, 1990; Trias and Benz, 

1994). Precise measurement of the permeability of mycobacteria has not been straightforward 

as attempts to measure uptake of radioactively-labelled drugs were hampered by drugs binding 

to their targets, an inability to distinguish between partition into the lipid interior of the walls 

from true entry across the barriers, unequal distribution caused by the proton motive force 

across the membrane and the modification o f some drugs e.g. penicillins.

The Zimmermann-Rosselet method was used to measure the permeability o f intact 

mycobacteria to hydrophilic cephalosporins by measuring their rate of hydrolysis. The cell wall 

permeability was calculated by assuming that the drug molecules diffused through the cell wall 

following Flick's first law of diffusion and that they were then hydrolysed by periplasmic P- 

lactamase, following Michaelis-Menten kinetics. The rates of hydrolysis were then used to 

determine the permeability coefficients. The cell wall permeability coefficient of M. chelonae 

ranged between 0.9xl0",-10xl0'*, three orders of magnitude lower than E. coli and one order 

of magnitude lower than the notoriously impermeable Pseudomonas aeruginosa. Penetration 

of the cephalosporins was not dependent on temperature or the hydrophobicity o f the
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cephalosporin and the rate of diffusion was directly proportional to the hydrated size of the 

cephalosporin. These results indicated that permeation occurred mainly through aqueous 

channels. The permeability to hydrophilic nutrient molecules such as glucose and glycerol was 

also low. It was also noted that cephalosporins with no net charge diffused more rapidly than 

monoanionic cephalosporins. The cell wall permeability o fM  smegmatis mc2155 and M. 

tuberculosis to hydrophilic solutes, e g. hydroxalamine, has recently been investigated and 

found to be an order o f magnitude higher than in M. chelonae, although this is still low in 

comparison to other bacteria (Trias and Benz, 1994; Brennan and Nikaido, 1995).

Porins (aqueous diffusion channels) have been identified in M  chelonae and M. smegmatis 

(Trias et a l., 1992; Trias and Benz, 1994). M. chelonae cell wall proteins were extracted, 

added to reconstituted liposomes and the permeability of the liposome investigated by 

studying the diffusion o f hydrophilic compounds, e g glycine, glucose and maltose (Trias et 

al., 1992). The porin was formed by a 59kDa protein, which was found in small amounts in 

the cell wall. The porin formed was a water-filled channel with a large pore size, 2.2nm, and 

a  low ion specificity (Trias et al., 1992). The channels were voltage-gated; at 40mV of 

applied voltage the porin switched to a closed configuration; they were observed in an open, 

closed or flickering state in the reconstituted membranes (Trias et al., 1992; Trias et al.,

1993).

The porins are cation-selective due to the presence of 2.5 negative point charges at the mouth 

o f  the pore (Trias et al., 1993). The 59kDa protein appeared to be the only porin-like protein 

present in the cell wall o f  M. chelonae; the major 30kDa cell wall protein o f M. chelonae 

showed no porin-like activity (Trias et al., 1992).
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Similar porins were also found inM  smegmatis me2155; they are non specific water filled 

cation selective channels with a 3nm diameter and four negative point charges (Trias and 

Benz, 1994).

1.3.1.2 Permeability to hydrophobic solutes

The lipid bilayer is generally permeable to hydrophobic solutes but the permeability is 

inversely proportional to the fluidity of the lipid membrane. The rigid organisation of the 

mycolates within the mycobacterial cell wall implies an inner region o f very low fluidity. 

However, due to the relatively low permeability of the hydrophilic pathway, the hydrophobic 

pathway is o f greater importance in mycobacteria. This is borne out by the large number of 

relatively lipophilic antimycobacterial agents e g. tetracyclines, rifamycins, macrolides and 

fluoroquinolones. It has also emerged that the lipophilic derivatives o f a number o f these 

classes of antimycobacterials are more active against mycobacteria, presumably as a result of 

their improved penetration rate. The efficacy of the fluoroquinolones increases with increased 

lipophilicity, e g. more hydrophobic derivatives such as WIN57273 and sparfloxacin, are more 

effective than ciprofloxacin against M. leprae (Franzblau and White 1990; Gelber et al.,

1992) . The more hydrophobic tetracyclines such as minocycline and doxycycline are also more 

effective against mycobacteria than hydrophilic tetracyclines. There is no correlation between 

lipophilicity and efficacy in other bacteria such as Staphylococcus aureus because of the 

already rapid diffusion o f the compounds across the lipid membrane (Nikaido and Thanassi,

1993) .

The addition of alkyl groups to known antimycobacterials has also been known to increase 

their efficacy, for example the addition of palmitoyl to the hydrophilic agent INH, believed to
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utilise the porin route, enhanced the efficacy of INH against M. avium, which appeared to 

have a low hydrophilic permeability (Rastogi and Goh, 1990).

The penetration rate o f certain antimycobacterial agents is improved with an increase in 

temperature indicating the importance of the lipid pathway for diffusion in mycobacteria. For 

example the penetration rates o f norfloxacin into M  tuberculosis increased six-fold with a 

10°C increase in temperature (Brennan and Nikaido, 1995).

The permeability of different species of mycobacteria is variable in saprophytic fast-growing 

and soil-dwelling mycobacteria, e g. M. chelonae, M. fortuitum  and M. smegmatis, have less 

permeable outer membranes and are intrinsically more resistant to  lipophilic antibiotics. This 

is presumably as they must defend themselves against antibiotics and other toxic molecules 

in their natural habitat. Members of the M . avium complex, although slow growing, are 

thought to exist in the soil and are also resistant to many lipophilic and hydrophilic agents and 

presumably have poor porin permeability as well. The mycobacteria pathogenic for 

mammalian hosts, e.g. M. tuberculosis and M. leprae, are more susceptible to lipophilic 

agents, dyes and detergents. This is illustrated by the resistance of all the soil-species 

mentioned to rifampicin which is active against M  tuberculosis and M  leprae.

It is thought that the resistance o f the soil organisms stems from the type of mycolates found 

in these species. 41-75% of the a  mycolates o f M. chelonae, M. fortuitum , M. smegmatis and 

M. phlei contain irons double bonds at the proximal (inner) ends o f the mycolates. The trans 

bonds decrease the fluidity and therefore the permeability of the innermost part of the bilayer 

(Brennan and Nikaido, 1995). The more susceptible species however have cis double bonds
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or cyclopropane rings at this position, which would increase the fluidity and therefore the 

permeability of the innermost part of the cell wall (Brennan and Nikaido, 1995).

Some organisms exhibit intermediate levels of permeability with, for example, a low 

permeability to hydrophilic agents such as INH but susceptible to more hydrophobic 

compounds such as rifamycins e g. M. marinum. In this case it is assumed that the porin 

pathway has an exceptionally low permeability.

Despite the low permeability of the mycobacterial cell wall the half-equilibration times (the 

time needed for intracellular concentration to reach one-half of the external concentration) 

across the cell wall are only a few minutes, much less than the generation time of the 

organisms.

1.3.1.3 E fflu x  systems

For an organism to display resistance the low permeability must act in synergy with another 

mechanism such as hydrolysis or efflux of the compound. Efflux systems play an important 

role in the resistance of other bacteria to antibacterials. There are currently four major efflux 

systems; the major facilitator family, the resistance-nodulation division family, staphylococcal 

multidrug resistance and the ABC adenosine triphosphate binding cassette. As yet no efflux 

systems have been identified in mycobacteria, although six ABC-type transporters genes have 

been identified in theM  leprae genome. The intrinsic resistance o f P. aeruginosa was shown 

to be due as much to an efflux system as to the low permeability o f the outer membrane. An 

efflux operon, mexa mexB -oprK, believed to function in the export of siderophores was 

recently discovered in P. aeruginosa; when inactivated by insertional mutagenesis the strain
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became nearly as susceptible as E. coli to tetracycline and chloramphenicol (Poole et al.,

1993). The efflux system is thought to be the main reason the species displays the general 

drug-resistance phenotype and a similar system could exist in mycobacteria (Nikaido, 1994).

1 .3 .2  PER M E A B ILIT Y  OF T H E  CELL MEMBRANE

Information available about the permeability of the cell membrane in mycobacteria is limited 

and has been gleaned through studies o f nutrient uptake. Evidence for both active and 

facilitated diffusion of nutrients has been obtained. Glycerol is universally transported by 

facilitated diffusion and kinetic evidence for uptake of glycerol in mycobacteria suggests they 

are no exceptions (Connell and Nikaido, 1994). Studies inM. smegmatis showed that D- 

glutamic acid and D-aspartic acid are also taken up by passive diffusion, whereas D-alanine 

is taken up by active transport which would require a permease (Connell and Nikaido, 1994). 

Proline uptake inM  phlei has been the most extensively studied in membrane vesicles. It was 

found to  be an active transport which was dependent on the oxidation of the substrate and had 

a requirement for Na+ or Li+ (Lee and Brodie, 1979). The Na+ ions increased the activity of 

the active transport but not the specificity (Lee and Brodie, 1978). The transport was driven 

by an electrochemical gradient as it was found to be sensitive to uncouplers, which change the 

pH gradient, but not to ionophores which change the permeability of the membrane to ions 

(Lee et al., 1979). These results suggested a symport system where the substrate and H+ move 

across the membrane simultaneously driven by a proton-motive force created by a chemical 

gradient. The transport was also insensitive to respiratory inhibitors and is thought to bypass 

the respiratory chain using molecular oxygen as a terminal acceptor. A 20kDa monomeric 

protein was isolated from the membrane vesicles which when reconstituted into liposomes 

restored specific proline uptake (Lee et al., 1979) and is likely to be a permease. The
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membrane vesicles ofM. phlei are also capable of active transport o f  glutamine and glutamic 

add.

The M . leprae 46kDa protein is thought to be membrane associated; its exact function is 

unknown (Oskame/ al., 1995). TheM  leprae genome sequencing project has also revealed 

67 genes showing homology to known membrane transport proteins in other species.

1.4 Colony morphology

The colony morphologies of strains of mycobacteria within a given species differ. This has 

previously been attributed to alterations in the components of the cell wall; recently cytosolic 

proteins have also been implicated (Prinzis et al., 1994). There appears to be a complex link 

between morphology and virulence.

A number of cell wall components have been shown to help determine colony morphology. 

Strains ofM. kansasii containing LOSs were found to be smooth variants, while those without 

LOSs had a rough colony morphology (Hunter et al., 1985). Smooth M. kansasii were 

avirulent whereas rough colony variants o f  M . kansasii contained no LOS and were found to 

be virulent. The LOS-containing avirulent strain Canetti of M. tuberculosis has a smooth 

colony morphology, whereas virulent M . tuberculosis strains, e.g. H37Rv, have a rough 

colony morphology and are devoid of LOSs (Daffe et al., 1991). However, subsequent work 

showed that a spontaneous rough mutant o f  the M. tuberculosis Canetti strain still contained 

LOS and that other smooth variants ofM. bovis and M. tuberculosis H37Rv did contain LOS 

(Lemassu et al., 1992).
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LOS-containing strains of M. fortuitum  biovar fortuitum  also exhibit rough colony 

morphology. The LOSs o f these strains are however elemental acyl trehaloses and the lack 

o f  a large oligosaccharide could account for their rough colony morphology (Besra et at., 

1992).

Three distinct colony forms are described for the M. avium  complex; smooth transparent 

(SmT), smooth domed (SmD) and rough (Rg) (Vestal & Kubica, 1966; Belisle and Brennan,

1994).

The genetic basis o f colony morphology has been investigated in M. avium  serovar 2 (Belisle 

et a t., 1993b). The studies revealed that two types of Rg variant occur which arise from 

separate genomic deletions. Those Rg variants still able to produce the lipopeptide core had 

a deletion in the ser2 cluster in the region responsible for the synthesis of the haptenic 

oligosaccharide. Those Rg variants that have lost total GPL had a large deletion to the right 

of the ser2 gene cluster; this implied the region was encoding the lipopeptide or controlled the 

regulation of its production (Belisle et at., 1993b).

The difference in morphology between the SmT and the SmD has recently been investigated. 

The smooth transparent variants have been shown to produce significantly larger quantities 

o f nsGPL and generally more total GPL than the SmD variants (Belisle et at., 1989). 

Subcellular fractions of the different morphological forms o f M. avium  serovar 2 and serovar 

4 were extracted and analysed. Cell wall proteins were remarkably conserved but a novel 

cytosolic protein o f 66 kDa was observed in large amounts in all batches o f SmT cells and was 

barely visible in other variants (Prinzis et at., 1994). Three proteins o f 33.41 and 66 kDa have
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been observed previously in smooth but not rough variants ofM  avium serovar 20 (Ramasesh 

et al., 1992).

1.5 Antimycobacterial drug targets 

1.5.1 Cell wall biosynthesis

Cell wall biosynthesis is believed to be a target o f a number o f antimycobacterial drugs 

including ethambutol, ethionamide, INH and cycloserine.

1.5.1.2 Cycloserine

Cycloserine inhibits incorporation of D-alanine into the peptidoglycan precursor, by 

competitive inhibition of the alanine racemase and D-alanine:D-alanine synthase by binding 

to  the D-alanine binding sites in the enzymes. Alanine racemase converts L-alanine to D- 

alanine (Winder, 1982).

1.5.1.3 Ethambutol

Ethambutol, a polyamine, inhibits the biosynthesis o f the arabinan and galactan components 

o f arabinogalactan (Takayama et al., 1989; Deng et al., 1995) and LAM to a lesser extent 

(Deng et al., 1995). Treatment with ethambutol also results in the cleavage of arabinosyl 

residues; over 50% were removed from the cell wall following a lhr exposure to the drug 

resulting in severe disruption to the cell wall (Deng et al., 1995). Ethambutol also results in 

accumulation of the decaprenyl-P-arabinose implying that the drug interferes with the transfer 

of arabinose to the acceptor molecule from the donor, decaprenol carrier (Wolucka et al.,

1994). If ethambutol interferes with an arabinose transfer enzyme then an explanation is still 

required for the arabinosyl cleavage activity; this may be an inherent function noticed only
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when arabinose synthesis is interrupted or the ethambutol may upregulate the function in some 

way (Deng etal., 1995). Ethambutol may also inhibit early glucose biosynthesis, as its effects 

can be overcome by the addition o f specific monosaccharides (Silve et al., 1993). The exact 

mode of action remains unclear although the ability to transfer resistance between strains using 

cloned DNA fragments may elucidate the situation (Young, 1994).

1.5.1.3 IN H  and Ethionam ide

INH and ethionamide are both believed to inhibit the biosynthesis of mycolic acids. Mycolic 

acid synthesis in whole cells of M. tuberculosis were shown to be inhibited by INH by 

following the incorporation of radioactively labelled [,4C]-acetate (Takayama et al., 1972). 

INH and ethionamide have both been shown to inhibit mycolic acid synthesis in cell-free 

systems of wall extracts from M. aurum, again inhibiting the incorporation of radioactively 

[I4C]-acetate into mycolates (Lacave et al., 1990b; Quemard et al., 1991 and 1992). The 

inhibition o f  mycolic acid biosynthesis by INH appears to be non-reversible in cell-free 

systems implying that INH is covalently bound to a component o f mycolate biosynthesis 

(Quemard et al., 1992).

In recent experiments an INH and ethionamide resistant strain ofM  smegmatis (mc2651), was 

isolated (Baneijee et al., 1994). A genomic library was made from this strain and used to  

transform wild type M. smegmatis, recombinant clones were screened for their ability to  

confer drug resistance. A single gene, irihA, thought to encode a 32kDa enoyl-ACP-reductase 

protein (section 1.2.2.2), was found to confer INH resistance when present on a multicopy 

plasmid in M  smegmatis and M. bovis BCG(Baneijee et al., 1994). A single point mutation 

was revealed in the inhA genes o f resistant strains o f M . smegmatis and M. bovis which
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converted a serine to an alanine (Baneijee et al., 1994) in the NADH binding site of the 

protein, suggesting that INH binds to this region of the protein preventing the NADH-specific 

reduction of 2-trans-enoyl-ACP (Dessen et al., 1995; Quemard et al., 1995). The InhA 

protein may represent a common target for both drugs and appears to explain the ability o f 

INH to inhibit the mycolic acid synthesis.

The development o f even higher levels o f INH resistance (up to 0.5mg/ml) has been 

associated with the loss of catalase and peroxidase activities, which has been confirmed by 

genetic evidence. The gene encoding catalase-peroxidase (katG) was found to be absent in a 

number of resistant M  tuberculosis and M  smegmatis strains and transformation of these 

strains with the functional katG  gene restored their INH sensitivity (Zhang et al., 1992 and 

1993). The sequencing of the entire katG gene (Heym et al., 1993) has allowed the use o f 

PCR-SSCP on resistant clinical isolates ofM. tuberculosis and M. bovis (Heym et al., 1993). 

Sequencing o f the PCR products has revealed missense mutations in the N-terminal 

peroxidase domain o f the protein which reduces the enzyme activity and in the C-terminal 

domain of the protein (Heym et al., 1995; Wilson et al., 1995). INH is thought to  act as a 

prodrug, being converted to an active form inside the bacteria, possibly by the catalase enzyme 

and it is this active form which appears to inhibit mycolic acid biosynthesis.

1.5.2 Protein synthesis and nucleic acids

Proton synthesis is the target o f the aminoglycosides streptomycin, kanamycin and amikacin. 

The drugs are believed to bind to the 16S rRNA resulting in misreading o f the genetic code 

and the inhibition o f translational initiation. The ribosomal S12 protein is believed to  stabilise 

a pseudoknot in the 530 loop o f the 16S rRNA involved in the selection o f cognate tRNAs
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at the ribosomal A site. Streptomycin resistant M. tuberculosis strains have been found to 

have point mutations in the 530 loop o f 16S rRNA and in their S12 protein (rpsL) genes 

(Finken et al., 1993; Meier et al., 1994; Honoré and Cole., 1994).

Fluoroquinolones disrupt the bacterial chromosome by inhibiting the supercoiling activity of 

DNA gyrase, DNA topisomerase II. The DNA gyrase genes, gyrA and gyrB, of M  

tuberculosis have been sequenced and resistant M. tuberculosis strains were found to have 

point mutations in the gyrA gene, causing mutations in the N-terminal sequence o f  the gyrase 

protein and presumably preventing binding of the fluroquinones (Takiff et al., 1994).

Rifampicin inhibits transcription by interacting with the P-subunit of the RNA polymerase. 

TheM  leprae and M. tuberculosis rpoB genes encoding the P-subunit have been cloned and 

analysed (Honoré and Cole, 1993; Telenti et al., 1993) Point mutations within the rpoB genes 

of M. leprae, M. tuberculosis and M. avium have been shown to confer resistance to 

rifampicin and have been found in two main regions of the gene, at a 23 aa cluster and at the 

serine-531, areas which correspond to the mutated regions in E. coli mutants.

1.5.3 Pyrazinamide

Pyrazinamide is a bacteriostatic, prodrug only active against M. tuberculosis (Konno et al., 

1967; Stottmeier et al., 1967). Pyrazinoic acid is the active form and has been shown to be 

active against resistant strains o f M. tuberculosis (Konno et al., 1967; Speirs et al., 1995). 

M. tuberculosis sensitive and resistant strains are also susceptible to an ester o f  pyrazinoic 

add, n-propyl-pyrazinoate (Speirs eta l., 1995). Pyrazinamide is converted to pyrazinoic acid 

by a pyrazinamidase enzyme, thought to be a pyrazinamidase/nicotinamidase enzyme, as cross
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resistance to both nicotinamide and pyrazinamide has been observed in M. tuberculosis 

(Konno et al., 1967). The activity of pyrazinamide is reliant on low pH (pH5.2) in vitro, 

not believed to reflect the intracellular conditions within phagocytic vesicles (Crowle et al., 1991). 

The low  pH is not a requirement for the action of the pyrazinamidase which has an optimal 

pH of 7.0 (Konno et al., 1967) but it may be a requirement for the action o f pyrazinoic acid 

on its target site. The specific site of action of pyrazinamide is unknown.

The natural resistance of M. bovis to pyrazinamide is believed to be due to a lack o f active 

pyrazinamidase enzyme, as pyrazinoic acid is active against M. bovis (Konno et al., 1967). 

The mechanisms of resistance o f  other mycobacterial species which possess pyrazinamidase, 

e.g. M . smegmatis, are unknown. Pyrazinoic acid has been shown to be inactive against M. 

smegmatis indicating poor uptake or an internal mechanism to prevent the action of the drug 

(Konno e ta l, 1967). The resistance may result from a lower level o f permeability to the drug, 

increased efflux o f pyrazinamide or pyrazinoic acid, a lack of target site or a combination of 

a number o f these factors.

1.6 M y c o b a c t e r io p h a g e s

Over 250 types o f  mycobacteriophage have been identified which have been reviewed by 

Grange and Redmond (1978). Mycobacteriophages have been widely employed for the phage 

typing o f  strains due to their variable host range and more recently for genetic studies.

1.6.1 Structure of the mycobacteriophages

Mycobacteriophages generally have hexagonal or oval heads and long non-contractile tails 

(Grange and Redmond, 1978), although occasional variants have been found, e.g. the
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contractile tail of 13. The head has been shown to consist of distinct circular capsonars, 

containing double stranded DNA (Grange and Redmond, 1978). Mycobacteriophages also 

show differences in the terminal structure of their tail and in the length and number of tail 

fibres. Mycobacteriophages also contain lipids which allow their inactivation by organic 

solvents i.e. chloroform and acetone (Castelnuovo et al., 1970).

Mycobacteriophages infect by initial adsorption to a receptor site on the cell wall through a 

terminal structure on their tails. Tail termini vary between mycobacteriophages indicating that 

their receptor sites on the cell wall are also variable (Imadeda and San Bias, 1969). The simple 

apolar nsGPLs have been shown to be receptor sites for mycobacteriophage D4 in M  

smegmatis (Goren et al, 1972) and other mycobacterial species. Other strains of M. 

scrofulaceum, M. avium and Mycobacterium butyricum were however unsusceptible to 

infection by D4. This has been shown to be due to the haptenic oligosaccarides of the ssGPLs 

which are thought to mask the terminal methylated rhamnose phage receptor site, thereby 

preventing phage adsorption and subsequent infection (Dhariwal et a l., 1986).

The pyruvulated simple LOSs of M. smegmatis have recently been shown to be the receptor 

sites for mycobacteriophage D29 (Besra et al., 1994b). The LOSs in M. smegmatis strains 

pseudolysogenic for D29 were found to exhibit extensive 0-methylation and 0-acylation, 

increasing the hydrophobicity of the molecule and rendering the bacteria resistant to infection 

by further D29 mycobacteriophages (Besra et al., 1994b). D29 is a lytic phage of 

M.smegmatis, that has also been shown to absorb to the surface o f  M .leprae (David et al., 

1978). Other phage receptor substances, although not fully characterized, appear to contain 

lipids and sugars and are probably lipopolysaccharides (Imaeda and San Bias, 1969; Grange
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and Redmond, 1978).

1.6.2 Mycobacteriophage infection

Infecting mycobacteriophages establish a lytic, lysogenic or pseudolysogenic relationship with 

the mycobacterial host.

1.6.2.1 Lytic and lysogenic infection

The mechanisms by which a lytic or a lysogenic infection are established have been greatly 

elucidated by the work of Hatfull, on the temperate mycobacteriophage L5. The whole linear 

genome (52kb) o f  L5 has been sequenced and found to contain 85 putative coding regions 

(Fig. 13) including a central att? site with an adjacent integrase, ini gene (Hatfull and Sarkis, 

1993; Lee and Hatfull, 1991). The genes on the right arm are transcribed in the leftwards 

direction and control the lysogenic state while the genes on the left arm encode the assembly 

proteins and are transcribed in the rightwards direction (Hatfull and Sarkis, 1993; Donnelly- 

Wu et al., 1993; Nesbit et al., 1995). The lysogenic state is thought to be induced by the 

production of the gp71 protein shown to confer superinfection immunity (Donelley-Wu et al., 

1993). The protein is initially expressed from the PkB promoter and thought to  be established 

by a phage encoded protein in the 72-82 region. This establishment protein prevents 

degradation o f gp71 by the host enzymes; the Pkft promoter is then repressed by gp71 and 

gp71 can initiate its own production from three promoters just upstream o f it ( PI, 2 and 3). 

The high expression is enough to maintain lysogeny despite still being degraded to some 

extent by the host proteins as the establishment protein is now switched off.

An imbalance in the gp71 and degradative host proteins is thought to lead to  the induction of
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the lytic cycle. Transcription from Pkft is initiated due to reduced gp71 which will initiate 

production o f the early lytic genes, resulting in the inhibition o f host RNA polymerase and 

total shutdown of host protein production. Late lytic expression of left arm genes may 

overcome the host shutdown by modification o f the host RNA polymerase (Nesbit et al., 

1995).

1.6.2.2 Pseudolysogeny

Pseudolysogeny is a state where the interaction of the phage with their host superficially 

stimulates the conditions of lysogeny, not replicating or integrating, but preventing further 

infection by other mycobacteriophage (Hayes, 1968). There are two mechanisms by which this 

is achieved; the first in which the host is infected with phage and strains are produced which 

appear to be resistant to phage infection, however the subsequent generations o f the resistant 

strains are susceptible to infection. This is caused by lysed bacteria releasing an enzyme which 

removes all the phage receptors from the surrounding cells preventing their infection. The 

second is carrier state pseudolysogeny in which the phage exist as a non-integrating prophage 

within the cell which prevents infection. The carrier cells will only allow the transfer of the 

prophage to one daughter cell following replication and so a proportion o f second generation 

cells become infectable. However, a proportion o f unstable prophages will also enter the lytic 

cycle, reinfecting surrounding daughter cells no longer harbouring phage and so maintaining 

the pseudolysogenic state in subsequent generations.

Pseudolysogeny has been reported in a number of mycobacteria including M. kansasii, M. 

chelonae, M . marinum and M. smegmatis (Grange and Redmond, 1978).
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1.7 Molecular genetics of mycobacteria

1.7.1 Expression systems for recombinant DNA in mycobacteria

1.7.1.2 Expression systems in E  coli

Eariy work in the isolation of mycobacterial genes was carried out using E. coli-based vectors 

and was mainly directed towards the cloning and expression of protein antigens for possible 

use in recombinant vaccines.

E  coli cosmid vectors such as pHC79 and Lorist 6 have been used to construct genomic 

libraries o f mycobacteria such asM  leprae (Clark-Curtiss et al., 1985; Eiglmeier et al., 1993). 

However, it was found that mycobacterial genes were not always expressed in these E. coli 

vectors e.g. a citrate synthase mutant of E .coli could not be complemented by an M  leprae 

homolog present in pHC79; only when the M. leprae homolog was expressed from a 

Streptococcus promoter in the E. coli pYA626 was complementation observed (Clark-Curtiss 

eta l., 1985). Defective expression of mycobacterial genes in E. coli was widespread, but not 

complete e.g. BCG libraries in pBR322 (Moss eta l., 1987) and pEMBL3 (Thole et al., 1985), 

without additional promoters were found to express the 65kDa antigen.

Recombinant DNA expression libraries of M . leprae and M. tuberculosis were constructed 

in the£L coli expression vector Agtl 1 to improve mycobacterial gene expression (Young et 

al., 1985a and b). The DNA (l-7kb) was inserted into the P-galactosidase gene (lacZ) and 

genes were expressed as fusion proteins from E. coli transcription signals. Plaques formed 

were immunoblotted with monoclonal antibodies and polyclonal antisera (Young et al., 1985a 

and b; Young et al., 1987; Vega-Lopez et a l., 1988) and a number o f M. leprae and M  

tuberculosis antigen genes isolated, e.g. members of the heat shock protein family, such as the
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65kDa (GroEL) of M. tuberculosis and M. leprae (Young et al., 1985a and b)

The first mycobacterial genes, encoding protein antigens of M. leprae (Young et al., 1985a; 

Clark-Curtiss et al., 1985) M. tuberculosis (Young el al., 1985b) and M. bovis BCG (Thole 

e t al., 1985) were therefore cloned and expressed in E. coli based vectors. Again, many 

mycobacterial genes could be not be expressed in these systems which was attributed to the 

inability o f the E. coli transcriptional apparatus to recognise mycobacterial transcriptional 

signals and emphasised the need for systems to express recombinant genes encoding 

mycobacterial antigens and enzymes in surrogate mycobacterial hosts e g. M. smegmatis, M. 

bovis,M. vaccae and Mycobacterium w (Snapper eta l., 1988; Jacobs eta l., 1991; Winterer 

al., 1991; Garbe eta l., 1994).

1.7.1.2 Expression systems in Mycobacteria

The nature o f the mycobacterial cell wall has made it difficult to extract the large amounts of 

recombinant DNA required for manipulation in expression systems, from mycobacteria. As 

a result the majority o f vectors developed for use within mycobacteria are shuttle vectors, also 

able to replicate in E. coli.

1 .7.1.2.1 Shuttle phasmids

Shuttle phasmids were among the first mycobacterial vectors to be developed and consisted 

o f  the E  coli cosmid pHC7 containing the regions of mycobacteriophage TM4 or LI 

(phAE19) genome required for replication in mycobacteria (Jacobs et al., 1987; Snapper et 

al., 1988). The shuttle phasmids replicate as phages in mycobacteria, which can go into lytic 

or lysogenic cycle, and as cosmids in E. coli. In a lysogenic state these vectors provide the
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means to introduce and express foreign genes in mycobacteria. The TM4 vectors did not form 

stable lysogens, unlike the LI shuttle phasmid (phAE19) which proved capable of expressing 

the kanamycin resistance aph gene (Tn90i), in M. smegmatis and M. bovis BCG and also 

prevented LI superinfection (Snapper et al., 1988). The size of DNA (2-4kb) which can be 

cloned into these vectors is limited by the requirements of mycobacteriophage packaging.

1.7.1.2.2 Shuttle plasmid-based expression systems

Plasmid shuttle vectors with an increased cloning capacity, a higher copy number (5 copies/ 

genome (Stover et al., 1991)) and an improved ease of manipulation, compared to the shuttle 

phasmids, were developed for mycobacteria. When the first plasmid vector was produced no 

native plasmids had been identified in slow-growing mycobacteria, so a derivative o f the M. 

fortuitum  plasmid, pAL5000 (Labidi et al., 1985) was created. The plasmid developed, 

pYUB12, was constructed from the E . coli pIJ666 plasmid (6.2kb), which contains the Tn5 

neomycin gene, the p i5A origin o f  replication and the chloramphenicol acetyl transferase 

(CAT) gene and pAL5000. pU666 was randomly inserted into pAL5000 (5kb) and kanamycin 

selected transformants able to grow in M. smegmatis were isolated; the plasmid DNA from 

one of these transformants was used as the vector, pYUB12. (Snapper et al., 1988 and 1990).

The pU666 plasmid was consistently inserted into one side o f the plasmid implying that the 

other side o f pAL5000 contained the mycobacterial origin o f  replication. pYUB72 contains 

a 2.6kb EcoRV-Hpal fragment from the side of pAL5000 apparently essential for replication 

and was found to stably transform M . smegmatis and M. bovis BCG when ligated to the 

Tn903 aph gene (Snapper et al., 1990). The number o f open reading frames (ORFs) believed 

to be present in pAL5000 varies from two (Labidi et al., 1992) to five (Rauzier et al., 1988).
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The EcoKL-Hpal region of the genome contains ORF1 (Labidi et al., 1992) or ORF1, 2 and 

5 (Rauzier et al., 1988). Construction of second generation shuttle plasmids further localised 

the mycobacterial replicon to 1.8kb (Ranes et al., 1990; Stover et al., 1991).

Various derivatives of the pAL5000 plasmid replicon have been combined with E. colt 

plasmid replicons, e g. ColEl and pl5A, to form shuttle vectors. The vector pMV261, an 

example of a second generation plasmid, also contains a multiple cloning site, the M. leprae 

hsp60 promoter and a transcriptional terminator (Stover et al., 1991). Selection markers other 

than kanamycin cassettes have also been used, section 1.7.1.2.4.

17 1.2.2 1 Integrative vectors

Integrating plasmid vectors have been developed to express single copies of genes in 

mycobacteria that can be maintained for many generations without selection which may be 

useful for vaccine formation. These vectors can be formed by insertion of the integration 

region o f a temperate phage or integrating plasmid.

The non-replicative integration-proficient vectors pMH94 and pMV361 were constructed by 

inserting the attP-int region of the mycobacteriophage L5 (Lee e ta l., 1991) into pUC119 and 

pMV261 On place o f oriM) respectively (Lee et al., 1991; Stover et al., 1991). pMH94 was 

found to form stable recombinants in M. smegmatis, M. tuberculosis and M. bovis BCG (Lee 

etal., 1991) while pMV361 has been found to  stably express foreign genes i.e. HIV-1 gpl20 

as fusion proteins in M  bovis BCG (Stover et al., 1991).

The integrating region of plasmid pSAM2 from Streptomyces ambofaciens was inserted into
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a vector containing the E.coli pBR322 replicon and Tn903 to create pTSN39, which stably 

integrated into M. smegmatis (Martin et al., 1991). There is also an attB  attachment site in 

theM  leprae chromosome (Eiglmeier et al., 1991) so it may therefore be possible to follow 

the growth, viability and drug susceptibility using pTSN39 with a reporter gene e g. luciferase 

(Jacobs eta l., 1993).

Suicide and conditional plasmids based on transposons have recently been created for 

insertional mutagenesis (section 1.7.3.2) (McAdam eta l., 1995; Guilhot et al., 1994)

1.7.1.2.3 Shuttle cosmid-based expression systems

A number of E. coli-Mycobacterium  shuttle cosmid vectors have been constructed 

appropriate for the formation o f mycobacterial genomic libraries. The large insert size (30- 

40kb) allows the mycobacterial genome (3-5Mb) to be represented in approximately 100 

clones and to provide the possibility for opérons o f genes encoding complex polysaccharides 

or lipids be cloned together, thereby increasing the likelihood of their expression; e g. the 

glycolipids o fM  avium cloned were expressed in M  smegmatis (Belisle et al., 1991).

Shuttle cosmids have been constructed by the insertion of bacteriophage X cos sequence into 

plasmid shuttle vectors e.g. Xcos was inserted into pYUB12 to form pYUB18 (Jacobs et 

al., 1991). Other shuttle cosmids include pMSCl (Hinshelwood and Stoker, 1992a) and 

Tropist4 based on the X origin double cos-site vector E. coli vector Lawrist4, the £coRv- 

Hpa\ fragment of pAL5000 and a number of unique cloning sites (De Smet et al., 1993).

1 .7 .1231 Integrating cosmid vectors

-65-

\



In t r o d u c t io n

An integrative cosmid vector pYU178 (5kb) has been developed which consists of the oriE, 

from pUC19, the L5 attP-int region, the aph kanamycin gene (Tn903) and the X cos sequence 

(Pascopella el al., 1994). This vector has been used to form integrating genomic libraries o f  

M. tuberculosis H37Rv and M. bovis BCG in surrogate mycobacterial host genomes Kf. 

tuberculosis H37Ra (Pascopella et al., 1994) and M. smegmatis, (Falcone et al., 1995), 

respectively.

1.7.1.2.4 Selectable markers

The choice o f antibiotic markers available for use in mycobacteria is limited by their natural 

resistance to a number o f antibiotics. The E. coli kanamycin resistance genes from Tn5 and 

Tn903, encoding aminoglycoside phosphotranferase are the most commonly used selection 

markers in mycobacteria (Snapper et al., 1988; Ranes et al., 1990; Stover et al., 1991). 

Hygromycin was first used as a selectable marker in M. smegmatis and M. bovis BCG 

(Radford and Hodgson, 1991); since then problems encountered in recovering transformants 

from M . tuberculosis (Zhang et al., 1992) Mycobacterium vaccae and Mycobacterium w  

(Garbe et al., 1994), when using kanamycin resistance, have been overcome by the use o f  

hygromycin as a selectable marker (Zhang et al., 1993; Garbe et al., 1994). Hygromycin is 

possibly more efficiently expressed than kanamycin in some Mycobacterium species as the 

gene is from Streptomyces hygroscopicus. It also provides a second selectable marker for 

genetic experiments in mycobacteria. Other selectable markers include the chloramphenicol 

acetyl transferase gene (cat) functional in M. smegmatis (Snapper et al., 1988) and the 

mercury resistant gene (pier) from Pseudomonas aeruginosa, functional in M. smegmatis, M . 

bovis BCG and M. tuberculosis. The mycobacteriophage L5 repressor gene 71 (Donnelly-Wu 

eta l., 1993), conferring superinfection immunity to phage L5, could be used as a selectable
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marker in recombinant vaccines thereby avoiding the use of antibiotic selection which may be 

transferred to a pathogenic bacteria in the host. A green fluorescence protein, (GFP) has 

recently been used as a selectable marker in M. smegmatis and M. bovis BCG on agar and in 

liquid culture. GFP has the advantage o f not requiring a substrate as it is detectable by 

exposure to ultraviolet (UV) light (Kremer et al., 1995a).

1.7.1.2.5 Reporter genes

A number of reporter genes have been successfully used in mycobacteria. The E. coli lacZ 

gene was first used to form fusion proteins with mycobacterial genes in E. coli expression 

systems (Young et al., 1985 a and b) and since has been successfully expressed in M. 

smegmatis and M . bovis BCG as a fusion protein (Timm et al., 1994). Transcriptional fusions 

have also been created with the lacZ gene to isolate and analyse mycobacterial promoters 

fromM  smegmatis andM  bovis BCG (Barletta et al., 1992; Dellagostin et al., 1995). The 

lacZ  gene also proved a successful reporter gene for mycobacterial gene expression in M. 

bovis BCG within macrophages (Dellagostin et al., 1995). E. coli phoA  has proved a reliable 

reporter gene for the isolation o f  M. tuberculosis and M. fortuitum  genes encoding exported 

protons in anM  smegmatis host (Lim et al., 1995; Kremer et al., 1995b; Timm et al., 1994). 

The E. coli cat gene (Das Gupta et al., 1993) and the xylE  (Curcic et al., 1994) have also 

been used to analyse and isolate M  tuberculosis promoters. The green fluoresence protein gfp 

gene (Kremer et a l., 1995a) and the firefly luciferase lux gene (Jacobs et al., 1993) are also 

important mycobacterial reporter genes.

1.7.1.2.6 Introduction o f DNA into mycobacteria

The cell wall of mycobacteria make them difficult to transform with DNA. Protoplasts were
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initially used to transform mycobacteria with plasmid and phage DNA at efficiencies of 103- 

104 pfu or cfii/yug of DNA (Jacobs et al., 1987). This was superseded by electroporation with 

efficiencies o f 10M06 cfu///g in M. smegmatis me2155 (Snapper et al., 1990) and M. bovis 

BCG (Snapper et al., 1988; Jacobs et al., 1991 ).M . smegmatis me2155 is an electroporation- 

efficient strain believed to have a mutation that affects plasmid replication or maintenance, as 

the efficiency of phage transfection and transformation of integrating plasmids is similar in 

mc2155 and the parentM smegmatis mc26 (Snapper et al., 1990). The introduction of DNA 

into M. smegmatis, M. tuberculosis and M  bovis BCG by means of recombinant 

mycobacteriophages e g. phAE40 is even more efficient (Jacobs et al., 1993). Conjugative 

transfer of plasmid DNA between E. coli and M. smegmatis has also been reported (Gormley 

and Davies., 1991).

1.7.1.2.7 M ycobacterial cloning host

M. bovis BCG has proved a useful host for the expression of foreign and mycobacterial genes 

(section 1.7.2.4) (Stover et a l , 1991 and 1993, Haeseleer et al., 1993).

M. smegmatis is a useful model host for the expression of mycobacterial genes as it is a non- 

pathogenic fast-growing species. M. smegmatis has proved a successful surrogate host for the 

faithful expression of mycobacterial genes o f M. tuberculosis (Zhang et al., 1992; Garbe et 

al., 1993; Yuan et al., 1995), M. avium  (Belisle et al., 1991; Mills et al., 1994) and M. bovis 

BCG (Falcone etal., 1995). M. smegmatis is however not always the most appropriate host; 

for example hybrid superoxide dismutase enzyme is produced when the M. tuberculosis sodA 

gene is expressed in M. smegmatis (Zhang et al., 1991; Garbe et al., 1994). However, the 

recombinant M. tuberculosis sodA gene is expressed in the native form in M. vaccae (Garbe
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etal., 1994) which may prove to be a more appropriate cloning host for some mycobacterial 

genes.

1.7.2 A pplications of recombinant dna systems in mycobacteria 

Gene transfer systems for mycobacteria have provided an important new tool for the study 

of mechanisms of drug resistance (section 1.5), the generation of novel recombinant vaccines, 

the isolation and regulation o f virulence factors and for genome mapping and sequencing.

1.7.2.1 Genome organisation and sequence

The formation of ordered genomic cosmid libraries of the two major mycobacterial pathogens 

M. leprae (Eiglmeier etal., 1993) andM tuberculosis (Cole and Smith, 1994) has unified the 

known genetic information and facilitated the project to sequence the genomes. The revealed 

sequence of both the M. leprae and the M  tuberculosis genome will provide an invaluable 

source o f  information (D. Smith, Collaborative Research Inc.) in the biochemical and 

immunological characterization of mycobacteria by identifying genes encoding relevant 

antigens and enzymes.

1.7.2.1.1 TheM. leprae genome

The ordered cosmid library o f  M. leprae was made in Lorist 6 (Eiglmeier et al., 1993) by 

blunt end ligation o f 35-50kb fragments o f M. leprae DNA into the vector, yielding 1000 

clones. The clones were subjected to fingerprint analysis and chromosome walking 

experiments from which the inserts were grouped into four contigs. Attempts made to close 

the gaps in the chromosomal map failed as adjacent clones are often highly unstable and 

readily delete on subculturing, implying that the regions could be toxic sequences (Eiglmeier

-69-



In t r o d u c t io n

e t al., 1993). With average insert sizes of 40kb the genome size was estimated at 2.8Mb 

which was in keeping with the predicted 3.3 ± 0.5Mb (Clark-Curtiss et al., 1985; Eiglmeier 

e ta l., 1993).

Thirty known M. leprae genes were mapped to positions on the contig map (Fig. 14) along 

with 13 housekeeping genes from M. tuberculosis, E. coli, Bacillus subtilis and various 

Streptomyces species, which, among others, enabled the rpoB, rpoC, tu f, rpoD, aroA, asd and 

recA genes of M. leprae to be identified. Most antigen coding sequences were found to be 

randomly distributed, whilst multiple copies o f known M  leprae repetitive elements RLEPs, 

were found in some regions and not in others. A total o f 29 RLEPs were identified which 

were grouped into four classes. Clustered RLEPs may represent a site recognised by proteins 

maintaining the structural integrity o f the chromosome.

The ordered set of M . leprae clones provided the starting material for the systematic 

automated sequencing of the M . leprae genome by Collaborative Research Inc. The 

sequencing is carried out using the multiplex sequencing method (Church and Kiefer-Higgins, 

1988) which is based on sample mixing and molecular decoding by oligonucleotide 

hybridisation (Fig. 15). Complete sequences are submitted to GenBank and MycDB (Bergh 

and Cole, 1994), which also contains all the physical mapping data from the M. leprae and M. 

tuberculosis ordered libraries. 2,238,856nt o fM. leprae and M. tuberculosis DNA has been 

sequenced to date and 3,234 sequence objects identified (GenBank update 1995; World Wide 

Web ate). O f the M  leprae ORFs identified just over half have been assigned functions based 

on their homologies with other known bacterial genes. The identified genes include those 

involved in DNA replication, recombination and repair, respiration, catabolism o f amino
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Fig .15 The sequencing strategy for the Genome Sequencing Projects of M. leprae and 
M. tuberculosis
High purity DNA preparations are made for each cosmid to be sequenced and a shotgun 
subclone library is then constructed in one of a set of 20 uniquely tagged “plex” vectors . 
Individual clones from 15-20 different subclone libraries are pooled and the DNA is purified 
from enough of the pools to guarantee a final eightfold random coverage for each cosmid. 
These samples are chemically sequenced, separated on polyacrylamide gels and transferred 
onto nylon membranes by using the direct transfer electrophoresis technique. The membranes 
are probed with labeled oligonucleotides to visualise sequence ladders from each subclone 
library individually. The membranes are stripped and reprobed upto 40 times providing a large 
number of films from each gel. The films are scanned using a CCD-based film or a lazer- 
scanning device, entered into the computer and assembled using the REPLICA and GTAC 
programmes (taken from Cole and Smith, 1994). Finished sequences are submitted 
electronically to GenBank and a mycobacterial mapping and sequence database MycDB.
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acids, organic acids, and aromatic compounds, regulatory functions, nucleotide biosynthesis, 

fatty acid and lipid biosynthesis, protein and carbohydrate synthesis, transport across the cell 

wall and cell wall synthesis. Operons of genes have also been observed e g. the polyketide 

synthesis gene complex, in cosmid BS18.

Two sequenced M. leprae cosmids have been analysed in detail, cosmid B1790 (Honoré et 

a l., 1993) and B961 (Fsihi and Cole, 1995). B1790 was found to contain 12 ORFs in 

36,716bp, 40% of the coding capacity, which encoded 5 ribosomal proteins, two elongation 

factors, the P and P' subunits of ribosomal RNA and two unknown proteins. One of the 

unknown proteins, end gene is homologous to the nfo gene of E. coli and the apurinic 

endonuclease of yeast both of which are involved in the repairing the base-free lesions in DNA 

caused by free radicals which may be important for the survival o f M. leprae in the 

macrophage, a prolific source of free-radicals (Honoré et al., 1993). B961 revealed 10 ORFs, 

7 isocitrate catabolite genes, 2 ATP-dependent transport systems and a novel polA  locus 

flanked by RLEPs, which may contain a promoter site (Fsihi and Cole, 1995).

Seventy-five percent of the codons end in G or C, initiation codons GTG and ATG were 

found and TAG was the most common termination codon in both cosmids (Honoré et al., 

1993; Fsihi and Cole, 1995).

1.7.2.1.2 M. tuberculosis genome and sequencing

Two cosmid libraries ofM. tuberculosis, in shuttle vector pYUB18 (Jacobs et al., 1991) and 

E. coli vector pYUB328 (Cole and Smith, 1994) are being ordered to form a map of the 

chromosome which currently contains 15 contigs. The contigs account for most of the
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chromosome (4Mb) predicted by the D ral physical map formed using pulse field gel 

electrophoresis (PFGE), with which the contigs can be correlated (Philip et al., 1993).

Twenty five known M. tuberculosis genes have been mapped to cosmids, these include katG, 

inhA, regX  and the fibronectin binding protein genes (Cole and Smith 1994). The one M. 

tuberculosis cosmid (TBC2, 32kb) sequenced so far was found to contain 23 ORFs which 

include the polyketide synthase operon and a homolog of the M. bovis BCG mycocerosic acid 

synthase gene (mas) (Cole and Smith, 1994); other cosmids are currently being sequenced.

1.7.2.2 Cloning o f genes involved in cell w all biosynthesis

The products of genes involved in cell wall biosynthesis may be potential drug target sites and 

possible virulence determinants; a few of these genes have been cloned.

The mas gene ofM  bovis BCG was cloned by N-termina! sequencing o f  the purified protein 

and screening of a Agtl 1 genomic library expression library (Mathur and Koiattukudy, 1992). 

The ORF was 6.3kb long, encoding a 22.5kDa elongating multifunctional enzyme with S 

domains: P-ketoacyl synthase, acyl transferase, dehydratase-enoyl reductase, P-ketoreductase 

and an acyl carrier protein (Mathur and Koiattukudy, 1992). The M. leprae and M. 

tuberculosis accBC genes, for the biotin carboxylase-biotin carrier protein have been cloned; 

the protein is believed to be a subunit of acyl-CoA carboxylase which carries out the first 

committed step fatty acid biosynthesis (Norman et al., 1994). This was achieved by the 

selection of a false-positive, biotin containing protein when screening an M . leprae Agtl 1 due 

to the streptavidin detection system (Norman et al., 1994). The M. bovis BCG NADP- 

dependent alcohol dehydrogenase gene, adh has been cloned, the protein is required for the
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esterification of long chain alcohols to form cell wall waxes (Stelandre et al., 1992).

The genes, set'!, involved in the biosynthesis o f the oligosaccharide segment of the M. avium 

serovar 2-specific glycopeptidolipid were cloned and expressed in M. smegmatis from a 

pYUB18:M avium genomic library (Belisle et al., 1991). The region of the M. avium genome 

responsible for the expression has been narrowed down to 5.7kb, with 4 essential loci, serA- 

D, serB and D  encode methyltransferases, serA rhamnosyltransferases and serC or serD the 

fucosyltransferases (Mills et al., 1994) (section 1.2.2.5). M. smegmatis was also used as a 

surrogate host to clone and express the M. tuberculosis cm al gene responsible for the 

formation o f cyclopropane rings at the double bond positions of M  smegmatis a mycolates 

(Yuan etal., 1995). The inhA gene encodes an enoyl-ACP-reductase thought to be involved 

in mycolic acid biosynthesis (sections 1.2.2.2 and 1.5.1.3) (Baneijee et al., 1994; Dessen et 

al., 1995; Quemard et al., 1995). The trehalose-6-phosphate synthases o fM  leprae andM. 

smegmatis have been cloned and expressed (De Smet et al., unpublished, 1995). The M. bovis 

BCG weso-diaminopimelate genes (m-dap) involved in peptidoglycan biosynthesis were 

cloned by complementation o f E. coli mutants (Cirillo et al., 1994). TheM. tuberculosis 

UDP-N-acetyl-glucosamine-enolpyruval transferase (murA) gene which catalyses the first step 

in peptidoglycan biosynthesis has also been cloned (Kempsell eta l., 1995, unpublished).

1.7.2.3 Virulence determinants

The construction of integrative cosmid vectors has allowed the non-virulent H37Ra strain of 

M. tuberculosis to be transformed with the entire genome o f the virulent strain H37Rv in an 

attempt to restore virulence. A 25kb genomic fragment, ivg, was isolated from the 

pYUB178::H37Rv library that conferred a more rapid growth rate o fM  tuberculosis H37Ra
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on passage through mice (Pascopella et al., 1994). The same in vivo complementation 

technique has been used to restore virulence to attenuated strains of M. bovis as assessed by 

a guinea pig model and lead to the isolation of a 2.7kb fragment of DNA which restored 

virulence (Collins et al., 1995). The complementing DNA encoded a principal sigma factor, 

rpoV, which was shown to contain a point mutation, that caused an arginine to  histidine 

change in a region of the protein known to interact with promoters. The RpoV is homologous 

to the sigma factors ofM. smegmatis (Predich et al., 1995) and is likely to be involved in the 

regulation of virulence genes (Collins et al., 1995). The formation of promoter probe and gene 

fusion libraries with reporter genes such as lacZ (Dellagostin et al., 1995), gfp  (Kremer et al., 

1995) and phoP  (Timm et al., 1994) are being used to investigate the regulation o f genes 

expressed inside macrophages (Dellagostin et al., 1995; Dhandayuthapani et al., 1995;). The 

phoA reporter gene is also being used to isolate genes encoding secreted proteins (Lim et al.,

1995) which may also be virulence factors. The differential production o f M. bovis BCG 

(Monahan et al., 1994) and M. tuberculosis (Lee and Horwitz, 1995) proteins inside 

macrophages is also being studied and a number of potential virulence proteins have been 

observed. The differential intracellular gene expression of M. avium in human macrophages 

is also being analysed by subtractive RNA analysis (Plum and Clark-Curtiss, 1994).

1.7.2.4 Recombinant vaccines

The one of the goals for mycobacterial molecular genetics is the development of a 

recombinant BCG (rBCG) vaccine system delivering heterologous antigens. Foreign genes 

e.g. HTV-lpl7 gag have been successfully expressed in M. bovis BCG (Stover et al., 1991) 

using pMV261 and pMV361 and were shown to elicit an immune response. Foreign proteins 

expressed in rBCG have also been shown to be protective in animal models of disease e.g.
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BCG expressing the OpsA protein of Borellia burgdorferi has been shown to elicit sterilising 

immunity in mice (Stover et al., 1993).

The simultaneous expression and delivery of multiple foreign antigens is also a priority in the 

development of rBCG vaccine vectors. The simultaneous expression of two antigens from P. 

falciparium  in rBCG (Haeseleer et al., 1993) is an encouraging result for the potential 

production of multivalent rBCG vaccines, which would elicit a protective immune response 

to each foreign antigen.

Early experiments in E. coli expression vectors led to the isolation of a number of 

mycobacterial protein antigens in the search for protective antigens. It remains unclear which 

additional M  tuberculosis protein antigens would provide effective protection against 

infection when expressed from rBCG. M  smegmatis is also a potential vaccine delivery 

vehicle and has been shown to express immunogenic recombinant M. bovis BCG genes 

(Falcone et al., 1995).

1 .7 .3  M u t a g e n e s i s  i n  m y c o b a c t e r i a

The isolation and characterisation o f mutations in the genomes of mycobacterial species is 

crucial for the analysis of gene function and regulation. A variety of strategies for the creation 

of mutant strains of the fast and slow-growing mycobacterial species have been developed.

2 .7.3.1 Chemical mutagenesis

A number o f fast growing mycobacterial species i.e. M. smegmatis (Holland and Ratledge, 

1971; Subramanyametal., 1989; Hinshelwood and Stoker, 1992b)M. fortuitum ,M . vaccae
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(Subramanyam et a l., 1989) and M. phlei (Konickova-Radochova et al., 1970) have been 

successfully mutagenised using the chemical mutagen N-methyl-N'-nitro-N-nitrosguanidine 

(NTG). The percentage of stable auxotrophic mutants produced by the treatment varied from 

0.02% in M. vaccae to  0.46% in M. smegmatis (Subramanyam et al., 1989); the highest 

values were found in M . smegmatis and M. phlei. INH-enrichment of mutagenised cultures 

increased the efficacy o f mutagenesis up to 0.9% in KÍ. smegmatis (Holland and Ratledge, 

1971). As INH is only effective against actively growing bacteria it enriches for slow growing 

auxotrophs. Other mutagens tested on M. phlei included UV irradiation, hydroxylamine and 

ethyl methanesulfonate, only the latter produced levels of stable mutants comparable with 

NTG (Konickova-Radochova., 1970).

1.7.3.2 Transposon mutagenesis

Transposon mutagenesis is an efficient means of generating libraries o f insertion mutants. The 

mutant mycobacterial strains can be easily selected by antibiotic resistance marker, e g. 

kanamycin, and the problems of clumping are avoided. Two transposon mutagenesis libraries 

have been formed in mycobacteria, one in the slow-growing M .bovis BCG (MeAdam et al.,

1995) and the other in the fast-growing M. smegmatis (Guilhot et al., 1994).

TheM  bovis BCG mutagenesis procedure has employed the use o f a suicide vector which is 

unable to replicate in M . bovis BCG, transformants can therefore be isolated by selection on 

the selectable marker encoded for by the transposon. The transposon was constructed by 

inserting the aph kanamycin resistance gene into the M. smegmatis IS1096 insertion element. 

The transposon was cloned into a derivative of pMV261 in which the oriM  had been disabled 

and which contained a tetracycline resistance gene (tetr). The vector was transformed into M
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bovis BCG by electroporation and kanamycin resistant transformants (102-103 cfu/ug) 

selected. O f923 transformants screened 3 auxotrophs (two leucine and one methionine) were 

isolated, an efficiency o f 0.325%. The auxotrophs were all stable with reversion frequencies 

of 1x10"7-2x10'7 (McAdam et al., 1995).

The M. smegmatis transposon library was formed using a conditionally- replicating plasmid 

(Guilhot et al , 1992). The plasmid, pCG79, is a thermosensitive shuttle vector (pCG63) that 

replicates at 30°C but not at 39°C, (due to the thermosensitive mutations for replication in 

the pAL5000 replicón) and that contains the Tn<5/7 transposon (Guilhot et al., 1994). Stable 

auxotrophic mutants were isolated at frequencies o f  0.1-0.4% with reversion rates o f  2x10' 

‘/cell.

Random shuttle insertional mutagenesis has also been successfully performed on an M  

smegmatis plasmid DNA library in an E. coli host using an E. coli transposon Tn5 seql. The 

transposon containing recombinant plasmids were reintroduced into the M. smegmatis 

chromosome by homologous recombination and three auxotrophic mutants were isolated 

(Kalpana et al., 1991). This approach has been used subsequently for mutational analysis of 

the M. avium ser2 loci (Mills et al., 1994).

1.7.3.3 Homologous recombination

Homologous recombination has been successfully employed in other bacterial systems to 

create specific chromosomal mutations to investigate gene functions. Although homologous 

recombination has been achieved inM  smegmatis (Husson et al., 1990; Kalpana et al., 1991) 

attempts to use this approach in the clinically important slow-growing M. tuberculosis and
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M. bovis BCG have been unsuccessful (Kalpana et al., 1991). M. tuberculosis and M. bovis 

BCG exhibit high levels o f illegitimate recombination (Kalpana et al., 1991; Colston and 

Davies, 1994) and single rather than double cross-over events obtained (Aldovini et al., 

1993). Recently, gene replacement has been achieved in M  bovis BCG, with the accBC gene 

(Norman et al., 1995) and theM  tuberculosis urease gene, ureBC, (Reyrat et al., 1995), in 

M. intracellulare (Marklund et al., 1995) and in M. tuberculosis with 40-50kb lengths of 

DNA (Balasubramanian et al., 1996).

Homologous recombination may be limited by the unusual nature of the M. tuberculosis Rec A 

protein which contains an additional internal sequence (intein), that has to be removed by a 

protein splicing mechanism (Davis et al., 1991; Davis et al., 1992; Davis et al., 1994). A 

similar structure has been observed for M. leprae Rec A but not other mycobacteria eg . M  

smegmatis (Davis et al., 1994; Colston and Davis, 1994).

1.8 P r o j e c t  a im s  a n d  o b je c t iv e s

The main objective of this project was to isolate M. leprae genes encoding cell envelope 

biosynthetic enzymes using an M  smegmatis model system.

The cell envelope of mycobacteria is a complex structure which is believed to contain many 

of the elements responsible for the pathogenicity, toxicity and virulence associated with M. 

leprae, M. tuberculosis and M. avium. The cell envelope also confers a permeability barrier 

that underlies the resistance of mycobacteria to many existing antibacterial agents. The 

isolation and subsequent mutational analysis o f cell envelope genes should elucidate the 

function and biosynthetic pathways o f  encoded cell envelope components. Ultimately, this
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may lead to the design of target specific antimycobacterial drugs.

The inability to culture M. leprae has made it extremely difficult to determine the functions 

o f A/, leprae components. The proven ability to express M. leprae genes in a surrogate 

mycobacterial host e g. M. smegmatis would provide a useful system for the further study o f 

M. leprae and so the decision was made to try and isolate M. leprae genes functional in an 

M. smegmatis host.

The aim of the project was to isolate a cell envelope mutant of M. smegmatis and to 

complement the mutation with a functional, possibly homologous M  leprae gene from an M. 

leprae genomic shuttle cosmid library.

The isolation of a cell envelope mutant o f mycobacteria is difficult as there are no clear cut 

phenotypes to select such mutants. Phenotypic changes which may define cell envelope 

mutations include alterations in antibiotic resistance and sensitivity, phage resistance, the 

binding o f mAb specific to cell wall components, e g. PGL-1, and binding of lectins to 

carbohydrate components of the cell wall. A single cell wall mutant o f M . smegmatis, 

defective in its mycolate formation (Kundu et al., 1991), had been isolated at the initiation o f 

this project. This mutant was isolated by the screening of M. smegmatis mutants for increased 

sensitivity to penicillin G.

1 .8 .1  T h e  isolation of an M  s m e g m a  r i s  mutant

The initial aim was to screen M . smegmatis mc2155 for spontaneous resistance to 

mycobacteriophage which may be caused by the alteration of the phage receptor in the
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mycobacterial cell wall.

The screening for spontaneous phage resistance proved unsuccessful and it was decided to 

form  an M. smegmatis mutant bank which could be screened for a number phenotypic 

changes. It was decided to create mutant M. smegmatis mutants using the chemical mutagen 

N TG  shown to generate 0.1-0.9% auxotrophic mutants (Holland and Ratledge, 1971) as the 

methodology was available in the laboratory (Hinshelwood and Stoker, 1992b). Transposon 

mutagenesis was not available and as NTG produces point mutations rather than truncated 

proteins it would possibly result in fewer lethal mutations of cell wall components.

1.8.1.1 Screening methods fo r  potential cell envelope mutants o f  M. smegmatis 

A bank of these treated mutants were screened for resistance to lytic mycobacteriophage, eg. 

D29, D4, D33, and changes in antibiotic sensitivity and resistance.

Lytic mycobacteriophage were used, some which have known receptor sites on the cell wall 

e.g. D29, the LOSs (Besra et al., 1994b) and D4 the GPLs (Goren et al., 1972).

Resistance to antibiotics could be caused either by a change in the permeability of the cell 

envelope or by an alteration in the drug target sites. NTG-treated M  smegmatis strains were 

therefore mainly screened for resistance to drugs whose target site is thought to be associated 

w ith cell wall biosynthesis i.e. ethambutol, ethionamide and cycloserine; as well as for 

resistance to other antibiotics in which resistance could be caused by a decreased permeability.
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Increased antibiotic sensitivity could be due to increased cell envelope permeability, the NTG- 

treated strains were therefore screened for increased sensitivity to penicillin G and 

pyrazinamide, to which M. smegmalis is naturally resistant; this was a similar method to that 

employed by Kundu et a/.(1991) to isolate the mycolate mutant o fM  smegmatis.

Any mutants isolated would be fully characterised in an attempt to determine the target of the 

mutation, the analysis would include biochemical analysis of the lipid components of the cell 

wall to look for any alterations in the components of the cell wall (Dobson et al., 1985).

1 .8 .1  C o m p l e m e n t a t i o n  w i t h  M. leprae g e n o m i c  l i b r a r y

Having isolated an M  smegmatis mutant the aim was to complement the mutation using an 

M. leprae cosmid library. The mutant strain would be transformed with the M. 

leprae:.pYUB18 cosmid library. It was elected to use a cosmid library because if the 

complementing M. leprae gene was part of an operon it was more likely to be expressed. 

Operons of mycobacterial genes have been shown to be expressed in surrogate hosts i.e. the 

ser2  genes of M. avium have been expressed in M. smegmatis (Belisle et al., 1991). The 

complementing region of the cosmid DNA would then be isolated by the formation o f a 

sublibrary of the cosmid DNA in the plasmid pMV206. The complementing DNA could also 

be sent for mapping to the ordered M. leprae cosmid library (Eiglmeier et al., 1993), to 

determine whether it had been sequenced in the M  leprae genome sequencing project.

This thesis describes the formation of a bank ofM. smegmatis mc2l 55 NTG treated cells with 

0.1-0.2% levels o f auxotrophy and the isolation of a number o f M. smegmatis mutants 

including a pyrazinamide sensitive M  smegmatis mutant, with decreased hydrophobicity
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which has been complemented using th eM  leprae pYUB18 genomic cosmid library. The 

complementing region ofM. leprae DNA, which restores pyrazinamide resistance to theM  

smegmatis mutant, is 3.5kb region of th eM  leprae B1308 cosmid and has been shown to 

contain three complete putativeM leprae open reading frames (MycDB and GenBank, 1995;

D. Smith, Collaborative Research, Inc).
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Materials and M ethods

2.1 Determination of concentration and purity of DNA solutions

100-fold dilutions of sample DNA were prepared with sterile distilled water (SDW) in 1.5ml 

microfiige tubes. A quartz cuvette containing SDW was used to blank a UV 

spectrophotometer set at a wavelength of 260nm. 1ml of the dilute DNA solution was placed 

in the quartz cuvette and placed in the spectrophotometer and an absorbance (A260) reading 

taken. This was repeated with the spectrophotometer set at a 280nm wavelength. The 

concentration and purity of the DNA was determined whereby 1.0A26„=50pg/ml of double 

stranded DNA and the sample is pure when A260/2g0=l .8or greater, as stated in Sambrook et 

al., (1989).

2.2 Gel electrophoresis

Electrophoresis in agarose gels was used according to the methods described in Sambrook 

et al., (1989). Agarose gel electrophoresis was carried out using 0.8% agarose 

(Electrophoresis grade agarose, Gibco, BRL) containing 0.2^g/ml ethidium bromide (Sigma), 

in TAE buffer (Appendix B), unless otherwise stated. Medium gels 16.5x 12cm (Flowgen) or 

15x14cm (NBL) were run at 80V for 3-4hr or at 15V for 16-20hr. Minigels 7x7.5 cm (NBL) 

were run at 100mA for 20-40min. 2//1 of bromophenol blue loading dye (0.25% w/v 

bromophenol blue [Sigma], 0.25% w/v xylene cyanol FF [Sigma], 30%v/v glycerol [BDH]) 

were added for every 10/zl of DNA sample prior to loading on the gel for samples >1.5kb. 

Orange G dye (0.25%w/v Orange G [Sigma], 30%v/v glycerol [BDH]) was used with DNA 

samples <1.5kb in size, often PCR products, as the dye runs ahead of small products ensuring 

the DNA remains visible under UV light. 3/zl of Orange G were used for every 10/zl of DNA 

sample to be loaded. DNA size markers A///«dill (AH3 [Promega]) and A.Z/mdlH/EcoRI 

(XH3E1 [Promega]) were diluted with bromophenol blue loading buffer and SDW to give a
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concentration of 0.05/^g//ri and 10/̂ 1 run on gels to determine the size of the sample DNA 

loaded. For DNA samples <1.5kb such as PCR products a 123bp ladder (NBL) was diluted 

with SDW and Orange G loading buffer to a concentration of 0.05/zg//ri and 10^1 were 

loaded. The DNA was visualised on a UV transilluminator and recorded photographically with 

a Gel Documentation System (UVP)

2.3 Phenol extraction of DNA

Phenol extractions were performed as stated in Sambrook et al., (1989). The aqueous DNA 

solution was made up to at least 200//1 with SDW when extracting impurities. An equal 

volume of TE-equilibrated phenol pH 7.5 (Sigma) was added to the DNA , in a 1.5ml 

microfuge tube (unless otherwise stated). The solution was mixed by inversion, and the two 

phases separated by centrifugation at 10,000xg (13,000rpm) in a microfuge tube, (unless 

otherwise stated) for lmin. The upper aqueous phase was transferred to a new 1.5ml 

microfuge tube taking care not to carry over any debris from the interface. An equal volume 

of phenol: chloroform: isoamylalcohol (25:24:1) (Sigma) was added, the phases mixed and 

then separated by centrifugation. Again the aqueous phase was removed and re-extracted with 

an equal volume of chloroform:isoamylalcohol (24:1) (Sigma), as above. The DNA was then 

recovered from the final aqueous solution by ethanol precipitation (section 2.4).

2.4 Ethanol precipitation of DNA.

Ethanol precipitations were performed as stated in Sambrook et al., (1989). DNA was 

precipitated from aqueous solution by the addition of 0.1 volume 3M Na acetate pH4.8, and 

2 volumes 100% ethanol and followed by incubation at -20°C for 30min. The solution was 

then centrifuged at at 10,000xg (13,000rpm) for 15min to pellet the DNA. The excess ethanol 

was removed with a 200//1 Gilson pipette, taking care not to dislodge the DNA pellet. The 

DNA pellet was washed, to remove excess salt by resuspension in a 0.1 volume o f 70% 

ethanol followed by centrifugation as above. The 70% ethanol was removed and the DNA
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pellet was air-dried and resuspended in TE buffer (Appendix B).

2.5 DNA MODIFICATION PROCEDURES

The majority of these procedures were carried out as stated in Sambrook et al„ (1989), unless 

otherwise stated.

2 .5 .1  Restriction enzyme digests

Restriction enzyme digestions were carried out according to the manufacturers instructions 

i.e. with one unit of enzyme///g of DNA present in the reaction volume. Reaction buffers were 

added in 0.1 or 0.2 volumes depending on the concentration of the buffer provided by the 

manufacturer. The reactions were usually carried out in 20pl for small digests (l^g) and 

100/̂ 1 for large scale digests (10-20Mg). Care was taken to ensure that the volume of enzyme 

added did not exceed 1/10th of the entire reaction volume, above which the glycerol in the 

enzyme storage buffer could become inhibitory. The reactions were left to proceed at 37°C, 

unless otherwise stated, for lhr or overnight. Restriction enzymes were supplied by Promega, 

Gibco BRL and Boehringer Mannheim.

2 .5 .2  Alkaline phosphatase treatment

Alkaline phosphatase treatment was used to prevent the re-ligation of compatible ends of 

linear DNA, when required. The linear DNA was treated with 0.1 unit/yug of calf intestinal 

alkaline phosphatase (CIAP, Boehringer Mannheim) in a reaction volume containing 0.1 

volume of lOx CIAP buffer, at 37°C for 15min. The solution was then heated at 72°C for 

lOmin to halt the reaction and the DNA cleaned using the Wizard DNA Clean Up Kit 

(Promega; section 2.6.1).

2 .5 .3  DNA end-repair

End repair of sonicated insert was performed to create blunt ended DNA. 2.5mM dNTPs and
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2M MgCl2 were added in l/10th volumes to a given volume of DNA solution resulting in a 

final concentration of 0.5mM dNTPs and 50mM MgCl2. 1.5/ri (5-10u/|il) of T4 DNA 

polymerase (Promega) were added to the solution which was left at room temperature for 15 

min. This was followed by the addition of 1//1 (5-10 units/pl) Klenow DNA polymerase 

(Promega) and a further 15min incubation at room temperature. The reaction was inhibited 

by heating at 68 °C for 15min.

2 .5 .4  D N A  LIG A TIO N

Ligation reactions were usually performed in a 10/̂ 1 reaction volume containing 750ng of 

insert DNA, 250ng of vector DNA, 1//1 of lOx ligase buffer and 3 units of T4 DNA ligase 

enzyme (3,000u/ml, Boehringer Mannheim). The reactions were left to proceed overnight at 

4°C.

2.6 DNA PURIFICATION

Following restriction enzyme digestion, alkaline phosphatase treatment or DNA size selection 

from agarose gels, DNA samples required purification. The removal of enzymes, buffer and 

agarose allowed the DNA to be successfully manipulated in further reactions.

2 .6 .1 . W i z a r d  C l e a n  U p  S y s t e m  ( P r o m e g a )

DNA purification was achieved with the Wizard DNA Clean Up Kit produced by Promega. 

The kit was used according to the manufacturers instructions. 1ml of DNA purification resin 

was added to the designated DNA solution in a 1.5ml microfuge tube and mixed by gentle 

inversion. On purification of DNA from agarose, the DNA band was excised using a sterile 

scalpel blade in approximately 300mg of agarose and transferred to a 1.5ml microfuge tube. 

The agarose was then incubated at 70°C, with 3x w/v 6M Nal until it had completely 

dissolved, before adding the resin. A 2ml disposable syringe was taken, the plunger removed 

and the syringe attached to the barrel of a Wizard minicolumn. The resin/DNA mix was
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pipetted into the syringe and the slurry gently pushed through the minicolumn with the syringe 

plunger. The syringe was removed from the minicolumn, its plunger was removed and the 

syringe reattached to the minicolumn. 2ml of 80% isopropanol were then pipetted into the 

syringe and gently pushed through the minicolumn with the plunger. The minicolumn was then 

transferred to a 1.5ml microfuge tube and centrifuged for lmin at 10,000xg (13,000 rpm) to 

dry the resin. The minicolumn was transferred to a new 1.5ml microfuge tube and 30-50/ri of 

TE buffer pre-heated to 70°C was added to the minicolumn and left for lmin. The minicolumn 

was then centrifuged at 10,000xg (13,000rpm) for lmin to elute the DNA. The 30-50/ri of 

DNA sample were stored at -20°C.

2.7 C u l t u r e  o f  E. c o l i

Cultures were grown in Luria Broth (LB; Appendix A) and incubated at 37°C with shaking 

(200rpm), for 16-20hr, or on LB plates and incubated at 37°C for 16-20hr. Antibiotic 

selection for plasmid or cosmid maintenance was achieved by the addition of kanamycin 

(Sigma) or ampicillin (Sigma) to give a final concentration of 50^g/ml.

2.8 P r o d u c t io n  o f  c o m p e t e n t  E. c o l i  c e l l s .

The following method was described by D. Hanahan and developed by V. Simanis (Imperial 

College London). 100ml of SOB (Appendix A) in a 11 flask was inoculated with several, 2-3 

mm, E. coli colonies grown overnight on minimal media, at 37°C. The culture was incubated 

for 4 hours at 37°C until the cell density was 4-7 xlO7 viable cells/ml (A ^  0.6-0.8). The 

culture was transferred to two chilled 50ml polypropylene tubes and incubated on ice for 

15min. The cells were pelleted by centrifugation at 3500xg (4,000rpm) for 15min at 4°C. The 

supernatant was discarded and the pellet gently resuspended in 1/3 volume of RF1 ( lOOmM 

RbClj, 50mM MnCl2.4H20 , 30mM K acetate, lOmM CaCl2.2H20 , glycerol 15%w/v, pH5.8) 

and the cell suspension incubated on ice for 15min. The cells were pelleted, as before, 

resuspended in 1/25 volume RF2 (lOmM MOPS, [BDH] lOmM RbCl2,75mM CaCl2, 15%
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glycerol, pH6.8 ) and incubated on ice for a further 15min. 1ml aliquots of the cell suspension 

were then distributed into chilled screwcapped tubes, snap frozen in an ethanol/dry ice bath 

and stored at -70°C.

2.9 Transformation of E . c o u

Transformation of competent E. coli was carried out using the method described in Sambrook 

et al., (1989). A 200//1 aliquot of competent E. coli cells (section 2.8), thawed on ice, was 

added to a pie-chilled 1.5ml microfuge tube containing 1/^g of the appropriate DNA solution. 

The cells were incubated on ice for 30min, heat shocked at 42°C for 90s and returned to ice 

for 2min. The cells were then inoculated into 1ml of LB and incubated at 37 °C with shaking 

for 1 hr. When small (ng) or unknown amounts of DNA were used the cells were pelleted by 

centrifugation at 3500xg (4,000rpm), resuspended in 200/^1 of LB and spread on LB agar 

plates (6cm), containing the appropriate antibiotic. When larger amounts of DNA (¿¿g) were 

used 200/^1 (1/5 volume) of cell culture was spread onto the plate, without pelleting the cells 

first. All plates were then incubated at 37°C for 16-20hr to allow colony formation.

2.10 Transformation of E . c o u  with M . l e p r a e  cosmid library phage

LYSATE

This method was carried out as stated by Eiglmeier et al., (1993). 100ml of LB supplemented 

with 0.02% maltose and 10mM MgS04 were inoculated with 2-3 colonies of E. coli NM554 

and the culture was incubated at 37°C for 3-4hr with shaking (200rpm). When the culture 

reached late log-phase growth (0.6-0.SA ^), the cells were pelleted by centrifugation at 

3500xg (4,000rpm) in 50ml polypropylene tubes. The cells were washed twice in 10ml of 

10mM MgS04 and finally resuspended in 8ml LB. 100^1 of cell suspension was placed in a 

1.5ml microfuge tube and 5//1 of phage lysate added. The cells were left at room temperature 

for 30min whereupon 800//1 of LB were added and the solution was incubated at 37 °C
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(without shaking) for lhr. The cells were then pelleted by centrifugation at 10,000xg 

(13,000ipm) for 2min and resuspended in 200/ri LB. The cells were then spread on selective 

LB agar plates containing kanamycin at a concentration of 50^g/ml.

2.11 Small scale plasmid preparation from E . c o l i

All plasmid DNA isolation from E. coli was based on the alkaline lysis method of Bimboim 

and Doly (1979).

Cells from a 5ml overnight culture, incubated at 37°C in Luria broth (LB) containing 50//g/ml 

of the selective antibiotic, were pelleted by centrifugation at 3500xg (4,000rpm) for 7min. 

The pellet was resuspended in 200//1 of GET (50mM glucose, 70mM EDTA, 50mM Tris-Cl 

pH8) containing 2mg/ml lysozyme (Sigma), transfered to a 1,5ml microfuge tube and placed 

on ice for 5min. 400/ri of alkaline SDS solution (0.2M NaOH, 1%SDS) were added, the 

solution mixed thoroughly and left on ice for 5min. This was followed by the addition of 

300//1 of 3M sodium acetate pH4.8 and a 5min incubation on ice. The precipitate was pelleted 

by centrifugation at 10,000xg for lOmin and the supernatant was decanted into a clean 1.5ml 

microfuge tube. An equal volume of phenol:chloroform:isoamyl alcohol (25:24:1) (Sigma) 

was added to the supernatant, the solutions mixed by inversion and centrifuged at 10,000xg 

for lmin. The upper aqueous layer was retained, transferred to another 1.5ml microfuge and 

the extraction procedure repeated. A 0.5 volume of isopropanol (BDH) was added to the 

retained aqueous upper layer, the solution was left at room temperature for 15min before 

being centrifuged at lO.OOOxg for 15 min to pellet the DNA. The supernatant was discarded 

and the DNA pellet air dried before being washed in 200/ri of 70% ethanol. The solution was 

recentrifuged at 10,000xg for lOmin to repellet the DNA and the 70% ethanol discarded. The 

DNA pellet was air dried and resuspended in 50/u\ of TE buffer. 1 //I (19 units) of RNAase T 1 

(1930 units/^1; Boehringer Mannheim) was added to the DNA solution which was incubated 

at 37°C for lhr.
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2.12 Midi plasmid preparation from E .  c o u .

The strain of E. coli carrying the plasmid DNA was streaked out onto LB agar containing 

50/^g/ml of the selective antibiotic required by the plasmid and grown for 16-20hr at 37°C. 

50ml of LB, containing 50/zg/ml of the appropriate antibiotic, was inoculated with a single 

colony from the overnight plate. The culture was then incubated at 37°C, with shaking, for 

16-20hr. The cells were then pelleted by centrifugation at 3,500xg (4,000rpm) in 50ml 

polypropylene tubes for 15min. All traces of excess medium were removed from the E. coli 

cells, which were the resuspended in 5ml GET solution (section 2.11) containing lysozyme 

(Sigma) at 2mg/ml and incubated on ice for 30min. The cells were then lysed by the addition 

of 10ml alkaline SDS (section 2.11) followed by incubation on ice for lOmin. 7.5ml o f  3M Na 

acetate was then added to the solution and incubated for a further 60min before pelleting the 

cell debris by centrifugation of the solution at 3,500xg for 20min. The supernatant was 

retained and placed in a clean 50ml polypropylene tube with an equal volume of 

phenol:chloroform:isoamylalcohol (25:24:1 [Sigma]) and mixed by inversion. The two phases 

were separated by centrifugation and the upper aqueous layer was removed without disturbing 

the debris at the interface of the two phases. An equal volume of chloroform was added to the 

aqueous layer and the solution mixed and centrifuged, as stated above. Again the aqueous 

upper layer was retained and 0.5 volumes of isopropanol were added. The solution was mixed 

by inversion and left to stand at room temperature for 15min. The DNA was then pelleted by 

centrifugation of the solution at 3,500xg for 20min. The supernatant was discarded and any 

excess removed using a Gilson pipette 200/ri tip. The DNA pellet was washed in 1ml 70% 

ethanol, to remove any excess salt and recovered by centrifugation of the solution at 3500xg 

for lOmin. Excess ethanol was removed and the DNA pellet left to air dry before being 

resuspended in 500^1 TE buffer. 200U of RNAase T1 (Gibco BRL) were added to the DNA 

solution and incubated at 37°C for 16-20hr to digest any RNA present. The RNAase and 

excess nucleotides were removed by further phenol xhloroform and chloroform extractions 

(section 2.3), the DNA was then recovered by ethanol precipitation (section 2.4). The DNA
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was resuspended in 300//1 of TE and stored at -20°C until use.

2.13 Large scale plasmid preparation from E. c o l i using the Qiagen

METHOD

The Qiagen maxi prep method has a maximum yield of 500mg DNA from 150-500ml. The 

cells of a 400ml culture, grown at 37°C overnight, were pelleted by centrifugation at 3,500xg 

(4,000rpm) for 15min. The cells were gently resuspended in 10ml of solution PI (RNAase A 

[lOOmg/ml] in 50mM Tris-Cl, lOmM EDTA pH8.0) and transferred to a 50ml Beckman 

centrifuge tube. 10ml of solution P2 (0.2M NaOH, 1% SDS) was then added and the solution 

incubated a t room terr^jerature for 5min. 10ml of solution P3 (2.55M K acetate pH4.8) were 

added immediately, the solution was mixed gently forming a precipitate and then centrifuged 

at 20,000xg (17,000rpm) for 30 min, at 4°C. The supernatant was retained and recentrifuged 

under the same conditions for 10 minutes, to give a particle-free clear lysate. A Qiagen ion 

exchange 500 column was equilibrated by the addition of 10ml of QBT buffer (750mM NaCl, 

50mM M OPS, 15% ethanol pH7.0). The lysate was then poured into the Qiagen column, 

invading the resin by gravity flow. The Qiagen column was washed three times with 10ml of 

QC buffer (lOOmM NaCl, 50mM MOPS, 15% ethanol pH 7.0) and the DNA eluted with 15ml 

of QF buffer (120mM NaCl, 50mM MOPS, 15% ethanol) into a 50ml polypropylene tube. 

0.7 volumes of isopropanol were added to the eluate and the solution was left at room 

temperature for 30min before being centrifuged for 15min at 3,500xg (4,000rpm). The DNA 

pellet was then recovered by centrifugation, washed with 1ml 70% ethanol, repelleted under 

the same centrifugation conditions, air dried and dissolved in 1ml TE.

2.14 C o s m id  EXTRACTION fr o m  E. c o l i

2ml of LB containing 50//g/ml of selective antibiotic was inoculated with a single colony of 

a cosmid-containing E. coli strain, maintained on LB agar (plus antibiotic) at 37 °C. The 

culture w as then incubated at 37°C to grow, for 16-20hr. The cells were pelleted by
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centrifugation at 3,500xg (4,000rpm) for 5min, the supernatant discarded and the cells 

resuspended in 200//1 of GET buffer (section 2.11) containing 2mg/ml lysozyme and 

transferred to 1.5ml microfuge tube. The cells were left on ice for 30min before the addition 

of400/d of alkaline/SDS (section 2.11) and a further lOmin incubation on ice. 300/d of 3MNa 

acetate were then added to the solution which was left on ice for a further 60min. The cell 

debris was pelleted by centrifugation at 10,000xg (13,000rpm) in a microfuge for 15min. The 

supernatant was retained and an equal volume of phenol:chloroform:isoamylalcohol (25:24:1) 

was added and the solution mixed by inversion. The two phases were separated by 

centrifugation at lO.OOOxg (13,000rpm) for lmin and the upper aqueous layer removed, 

talcing care not to disturb any debris at the interface. This step was repeated, again retaining 

the upper aqueous layer, to which 0.5 volumes of isopropanol were added. The solution was 

mixed, by inversion and left to stand at room temperature for 15min. The solution was 

centrifuged at 10,000xg (13,000 rpm) for 15min to pellet the DNA, which was then washed 

in 70% ethanol, repelleted and left to air dry. The DNA pellet was dissolved in 25 /̂1 TE, 

19units (1//1) of RNAase T1 (Gibco BRL) was added and the solution incubated at 37°C for 

Ihr before storing the DNA sample at -20°C until used.

2.15 Plasmid preparation from M . s m e g m a t is  mc2155

This method is based on the alkaline lysis method of Bimboim and Doly, (1979) but has been 

adapted for mycobacteria by the addition of lipase IV to the GET buffer. 5ml-10ml 

Middlebrook 7H9 media, containing kanamycin at 25/^g/ml, were inoculated with a single 

colony taken from an M. smegmatis plasmid-containing strain maintained on Middlebrook 

agar, containing kanamycin (25//g/ml), at 37°C. The culture was incubated at 37°C, with 

shaking, for48-72hr (until the culture reached late log-phase) and the cells were pelleted by 

centrifugation at 3,500xg for lOmin. The supernatant was discarded and any recalcitrant liquid 

removed by pipetting. The cells were resuspended in 200//1 GET buffer containing 30mg/ml 

lipase IV (Sigma) and lOmg/ml lysozyme (Sigma). The suspension was incubated at 37 °C

-94-



M a t e r i a l s  a n d  M e t h o d s

with shaking for 16-20hr before being transferred to an 1.5ml microfuge tube and placed on 

ice for 30min. 400//1 of alkaline/SDS solution was added to the suspension which was kept 

on ice for 60min before the addition of 300//1 3M Na acetate solution and a further 60min 

incubation on ice. The cell debris was pelleted by centrifugation at 10,000xg for 20min; the 

supernatant was retained and phenol ¡chloroform extracted (section 2.3). The DNA was then 

recovered by ethanol precipitation (section 2.4), air dried and resuspended in 25//1 of TE. The 

plasmid recovery from M. smegmatis is generally less efficient (0.05//g/ml) than from E. coli; 

in order to prevent further loss of the plasmid DNA it was not RNAase treated and the whole 

sample was transformed directly into E. coli DH5a.

2.16 COSMID PREPARATION FROM M . SMEGMATIS MC2155

Cosmid preparation from M. smegmatis me2155 was identical to that stated for plasmid 

preparation (section 2.15) except that smaller 5ml cultures were always used due to the 

instability of the cosmid DNA. Cosmid DNA recovery was poorer than plasmid recovery 

(<0.05pg), so to prevent further loss of the cosmid DNA it was not RNAase T1 treated and 

the whole sample was then transformed into E. coli DH5a.

2.17 Sequencing

2.17.1 Preparation of double stranded recombinant DNA for sequencing 

50//1 (3pg) of dsDNA were added to 50pl of denaturation solution (0.4M NaOH, 0.2mM 

EDTA) and incubated at 37°C for 30min, denaturing the DNA. The single stranded ssDNA 

was precipitated by the addition of 10//1 of 3M Na acetate pH5.2 and 200//1 of 100% ethanol, 

followed by a 30min incubation at -20°C. The solution was centrifuged in a microfuge at 

10,000xg (13,000rpm) for 15min to pellet the DNA. The DNA pellet was washed in 200//1 

of 70% ethanol, dried and dissolved in 7pl of TE. This ss DNA was sequenced as stated in 

section 2.17.2.
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2.17.2 Single stranded sequencing of recombinant DNA

Single stranded recombinant plasmid DNA was prepared as described above (section 2.17.1) 

and sequenced using the United States Biochemical (USB) Sequenase Kit Version 2.0, 

according to the instructions provided by the manufacturers. 3pg (7pi) of ss recombinant 

plasmid DNA was mixed with 3ng (1/zl) of primer (-40) and 2pl of 5x Sequenase Buffer 

(200mM Tris-Cl pH7.5, lOOmM MgCl2,250mM NaCl) in a 1.5ml microfuge tube and placed 

in a water bath maintained at 65 °C for 2min. The water bath was then left at room 

temperature until it reached 30°C. A labelling master mix had been prepared which contained 

4.4//1 0.1M Dithiothreitol (DTT), 8.8//1 5X Labelling Mix (7.5pM dGTP, 7.5//M dCTP, 

7.5//M dTTP), 2.2/d [ a '35S]dATP (lOMCi/ml, Amersham) and 8.0/ul of diluted Sequenase 

v2.0 enzyme ( 1/zl enzyme and 7/d Enzyme Dilution Buffer (lOmM Tris-Cl pH7.5, 5mM 

DTT, 0.5mg/ml BSA), enough for four reactions. 5.5^1 o f the labelling "cocktail" was 

immediately added to the primer/template DNA and left at room temperature for 3min. Four 

0.5ml microfuge tubes were taken and 2.5^1 of the dideoxynucleotide termination mixes were 

placed in each and preheated to 37 °C. 3.5^1 of the labelled template/primer was added to each 

termination mix and incubated at 37 °C for 5min. The reaction was stopped by the addition 

of 4/d of Stop solution buffer. Samples were then denatured by heating to 80°C, in a heating 

block, for 7min prior to loading on the sequencing gel.

2.17.3 Preparation and electrophoresis of sequencing gel

Two sequencing plates, 33x39.5cm and 33x42cm, were cleaned thoroughly with detergent 

(Decon) and wiped down with absolute ethanol. The smaller plate was wiped down with 

Sigmacote (Sigma) then placed on top of the larger plate with 0.3mm spacers in between the 

plates at their outer edges. The plates were sealed around three sides with electrical tape. 75ml 

of a 6% polyacrylamide gel mix was prepared from a 40% acrylamide:/?«' acrylamide (19:1) 

stock solution (CAMLAB) in lx TBE and 8M urea (Sigma). 240pl 20%(w/v) ammonium 

persulphate (APS, Sigma) and lOOpl N,N,N',N'-tetramethyl-ethylenediamine (TEMED,
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Sigma) were added to 70ml of gel solution and mixed gently. The gel solution was taken up 

in a 50ml syringe and injected between the plates from one comer, allowing the plates to fill 

from one side, reducing the risk of air bubbles. Any air bubbles formed were removed with 

a Bubble Remover (Promega). A shark's tooth comb with 23 teeth was immediately inserted 

inverted into the top of the gel, to later form twenty arch shaped wells. Generally 

polymerization occurred within 5min, but gels were left 16-20hr before electrophoresis. The 

lower strip of tape was removed from the plates, which were placed in the sequencing 

apparatus (Life Technologies) and secured. The gels were prewarmed by running in 1 xTBE 

buffer for 30min at 60V until they reached 55°C. Urea which had accumulated in the wells 

was flushed out using a 20ml syringe containing lxTBE buffer from the upper chamber of the 

gel tank. 2/ri of the four termination reactions, for every sequenced clone, was loaded into 

four adjacent wells (TCGA). The reactions were loaded using a flat-ended sequencing tip 

(Gilson). The gels were run at 60W for l-3hr, depending on the length of sequence to be 

obtained; gels were run for lhr to read approximately 200bp of sequence (blue dye migrated 

3/4 length of the gel) and 3hr (blue dye run off the gel) to read 200-400bp of a given clone. 

Following electrophoresis the shorter plate was removed, the gel adhering to the larger plate. 

The larger plate and gel were placed in a tray and submerged in 11 of fixer (5% acetic acid 

[BDH], 15% methanol [BDH]) for 15min. The plate was removed from the tank, draining 

excess fixer and the gel carefully transferred to Whatman 3MM paper. The gel was covered 

in Saran wrap and dried for 90min at 80°C, on a heated vacuum gel dryer. The dried gel was 

placed in an autoradiography cassette and a photographic X-film (Kodak) placed on the gel. 

The film was exposed to the gel for 16-72hr, depending on the strength of the signal and then 

developed in an automatic film processor. Sequence data were read manually, entered into 

the computer and assembled using the Staden software. The software was accessed through 

the MRC Human Genome Mapping Project.
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2.18 Culture of M y c o b a c t e r iu m  s m e g m a t is

M. smegmatis mc2155 (Snapper et al., 1990) was obtained from W.R.Jacobs and mutant 

strains were created by NTG mutagenesis (section 2.27). Both wild type and mutant strains 

of M. smegmatis mc2155 were stored as frozen cultures in 25% glycerol at -70°C. The strains 

were maintained at room temperature on Lowenstein-Jensen (LJ) slopes (Difco) following 

initial growth at 37 °C for 16-20hr.

M. smegmatis strains were streaked to single colonies on Lemco (Appendix A) or 

Middlebrook 7H10 agar (Difco) and incubated at 37°C, for 2-6 days or at 28°C for 4-10 

days. Small scale liquid cultures (5-10ml) were generally grown in Lemco broth containing 

0.1% Tween, but in certain circumstances in Middlebrook 7H9 media containing 0.1% Tween 

80 was used. Large scale liquid cultures (100ml-11) of M. smegmatis were grown in 

Middlebrook 7H9 medium containing 0.1% Tween 80 for 1-3 days at 37 °C or 2-6 days at 

28 °C with shaking at 150rpm (incubation times were dependent on the size of the inoculum 

and the volume of the culture). 0.1% Tween 80 was used in all liquid cultures unless 

otherwise stated, to reduce clumping.

Kanamycin selection for the mycobacterial plasmid and cosmid DNA used in M. smegmatis 

strains was achieved by using the antibiotic at 15//g/ml and 20^zg/ml in Lemco and 

Middlebrook media, respectively. M. smegmatis cosmid-containing strains were grown in 5ml 

Middlebrook 7H9 media at 37°C for DNA extraction and in 20ml volumes at 28°C for lipid 

extraction (section 2.29).

2.19 A c id -F a s t  s t a in in g  o f  M . s m e g m a t is

Cultures of M. smegmatis were acid-fast stained to ensure their identity and their purity, using 

the TB Staining Kit (Difco). 1ml of a culture was transferred to an microfuge tube and the 

cells pelleted by centrifugation in a microfuge for 2min at 10,000xg (13,000rpm). The excess
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medium was discarded and the cells resuspended in 200/d of medium. The cell suspension was 

spread on a glass slide, air dried and flamed to heat fix the cells. The slide was left to cool 

before being covered in carbolfuschin for 5min. The carbolfuschin was gently poured off and 

the slide covered in acid-alcohol (15% ethanol 5% H2S 04) for 30s to decolourise the cells. 

The slide was gently washed with water and then counterstained with malachite green for 

5min. Again the slide was rinsed in water and then left to air dry. The cells were viewed under 

a microscope at lOOOx magnification using immersion oil to ensure they were stained the 

characteristic magenta of acid fast bacilli and that there were no green staining contaminants 

presenL

2.20 Large scale mycobacteriophage preparation

Four plaques were picked with a sterile wire loop and placed in 10ml of Lemco broth (without 

Tween) and incubated at 37°C, with shaking (200rpm) for 16-20hr. The culture was taken 

up in a 10ml syringe and pushed through a 0.2^m sterilising filter (Acrodisc). The retained 

phage suspension was stored at 4°C. To determine the phage concentration 1-lxlO'9 dilutions 

of the solution were made and 10/d of each used to infect 200//1 of M. smegmatis as stated 

(section 2.21). The number of plaques on each plate was counted and the number of plaque 

forming units/ml (pfu/ml) calculated for a given phage type.

2.21 Infection ofM. s m e g m a t is  with mycobacteriophages

Mycobacteriophage were provided by Dr.J.Grange, The Middlesex Hospital, London. The 

mycobacteriophages were either stored in Lemco broth at 4°C (short term) or freeze-dried 

in glass ampoules (long term). The mycobacteriophages were released from long term storage 

by adding the freeze-dried material to 1ml Lemco broth, in a 1.5ml microfuge tube, mixing 

them by inversion and incubating at 37 °C for 4hr. 10ml of Luria broth (without Tween) was 

inoculated with a single colony of M. smegmatis, maintained on Middlebrook agar at 37 °C 

and incubated at 37°C for 16-20hr. 10/d of a given mycobacteriophage solution (1x10s
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pfu/ml) was added to 200//1 of the overnight M. smegmatis late log-phase (A ^  0.8) culture 

and left for 30min for the phage to adhere to the bacteria. The mixture was then added to 3ml 

of Lemco soft top agar and poured on to a Lemco agar plate, allowed to set and incubated 

at 37°C for 24 -36hr until a lawn of bacteria formed and any plaques were visible.

2.22 Drop method for testing phage sensitivity

200//1 of an overnight late log-phase M. smegmatis me2155 culture were added to 3ml of 

Lemco soft top agar, mixed by inversion, poured onto a Lemco agar plate and left to set. 10^1 

of mycobacteriophage solution were then pipetted ("dropped") onto the surface of the Lemco 

soft top agar containing the M. smegmatis cells. The plates were then incubated at 37°C for 

12-24hr until a bacterial lawn was formed and any clearing caused by phage infection could 

be observed. On testing of a given M. smegmatis strain for infectability with a number of 

mycobacteriophage, the phage solutions were placed in the wells of a microtitre plate (in a 

known order). A multichannel pipette was used to take up 5//1 of each phage solution. The 

solutions were then released from the pipette onto the soft agar containing the M. smegmatis 

cells, and the test plate was then incubated at 37 °C as above. The maximum number of phages 

which could be used to test a given M. smegmatis strain for infectability on a single plate was 

six.

2.23 Overinfection method for the isolation of phage resistant

COLONIES

lxlO9 pfu (100/ri of lxlO10 pfu/ml phage stock) were added to 200//1 o f late log-phase M. 

smegmatis mc2155 in a 1.5ml microfuge tube and left for 20min at room temperature. The 

infected culture was then plated out in 3ml Lemco soft top agar onto Lemco agar before being 

incubated at 37°C. The infection plates were observed after 24hr to ensure complete lysis had 

occurred and no bacterial lawn had been formed. The plates were then incubated at 37°C for 

a further 4 days to allow for the formation of colonies by any phage resistant M. smegmatis
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cells.

2.24 Testing for pseudolysogeny in M . s m e g m a t is

Mycobacteria often exhibit pseudolysogeny i.e. they are able to harbour individual phage 

which inhibit infection by other phage, but are not integrated into the mycobacterial genome. 

The following method was developed to determine if a given strain of M. smegmatis was 

pseudolysogenic. The test strain and the wild type M. smegmatis strains were streaked out 

from frozen culture to single colonies on Lemco agar, and grown at 37°C for 20-40hr. Single 

colonies of each strain were inoculated into 10ml of Lemco broth (no Tween) and incubated 

at 37°C, shaking, for 16-20hr. 200//1 of M. smegmatis culture were added to 3ml of Lemco 

soft top agar and plated out onto a Lemco agar plate. 10//1 of the test strain were pipetted on 

to  the centre of one half of the soft top agar and 10/zl of the wt on to the other half. This 

procedure was carried out in duplicate. The plate was incubated at 37°C for 24-36hr until a 

bacterial lawn had formed. Any clearing in the lawn around the test strain indicated the 

presence of phage in the strain infecting the susceptible wild type M. smegmatis.

2.25 Production o f  competent M . s m e g m a t is  mc2155

Competent M. smegmatis were produced using a method developed by Snapper et al., (1988 

and 1990). A 5ml volume of Middlebrook 7H9 media was inoculated with a single colony of 

M. smegmatis and grown for 16-20hr at 37°C, with shaking. A 500ml volume of Middlebrook 

7H9 was inoculated with 1ml of the overnight M. smegmatis culture, incubated at 37°C with 

shaking (200rpm) and grown for 24-36hr, to late-log phase (A ^ ^ .S ) . The flask was placed 

on ice and the culture incubated for 60min. The culture was transferred to a 11 Beckman 

container and centrifuged at 3500xg (4,000rpm) to pellet the cells. The cells were resuspended 

in 100ml (1/5 volume) of ice cold 10% (v/v) glycerol (BDH) and repelleted by centrifugation 

at 3500xg (4,000rpm) for 15min. The cells were then resuspended in 20ml (1/25 original 

volume) o f ice cold 10% (v/v) glycerol and pelleted by centrifugation as before. The cells
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were finally resuspended in 5ml (1ml for library efficiency) of ice cold 10% (v/v) glycerol, 

transferred to 1.5ml microfuge tubes and stored frozen at -70°C. This gives a final 

concentration of between 2-5x109 cfu/ml and a transformation efficiency of ltf-lCf cfu//ig 

D N A .

2.26 Transformation of M . s m e g m a t is  mc2155 by  electroporation

M . smegmatis cells were transformed using the method developed by Snapper et al., (1988 

and 1990). A frozen stock of competent M. smegmatis cells (section 2.25) were thawed on 

ice, aliquotted and placed into a  pre-chilled 1.5ml microfuge tube containing the DNA 

solution to be transformed. Care was taken to ensure the DNA and cells were evenly 

suspended and the DNA/cell suspension was left on ice for 30min. The cell suspension was 

mixed gently by pipetting, avoiding the introduction of air bubbles and was transferred to a 

pre-chilled 200p\ electroporation cuvette. A Bio-Rad Gene Pulse and Pulse Controller were 

set at 2.5kV, 25//F and 1000Q. The cuvette was placed in the chamber of the pulser and the 

cells electroporated. The cuvette was placed on ice for lOmin before the cell suspension was 

transferred using 2ml of Lemco broth into a universal and incubated, with shaking (200rpm), 

at 37°C for 2hr. The cells were then centrifuged at 3,500xg (4,000rpm) for lOmin and 1ml 

o f the Lemco broth removed. The cells were resuspended in the remaining 1ml of Lemco 

broth and spread on Lemco o r Middlebrook 7H9 agar (12cm plates), containing the 

appropriate selective antibiotic. T he cells were then incubated at 37°C for 4 days or at 28°C 

for 8 days.

2.27 Mutagenesis of M . s m e g m a t is  with N-methyl-N-Nitro-N- 

nitrosoguanidine (NTG)

The mutagenesis procedure was carried out according to a method established by Holland and 

Ratledge (1971). 100ml supplemented minimal medium (MM+AA; Appendix A) containing 

0.1% Tween 80 were inoculated with 1ml of an overnight M. smegmatis mc2155 culture and
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incubated at 37°C, with shaking (150rpm) until the culture reached late log-phase (A^O.S), 

approximately 40hr. 1ml of the culture was removed at this point and plated onto Lemco 

plates in serial dilutions (1-lxl0"9) to determine the percentage killing of cells following the 

NTG treatment. The remaining cells were harvested by centrifugation in J6B rotor (Beckman) 

at 3,500xg (4,000rpm) for 7min and resuspended in 10ml of unsupplemented minimal media, 

pH6.3. 10ml of minimal medium (pH6.3) had previously been injected into a sealed bottle 

containing lOmg of NTG (Sigma) and the 10ml of M. smegmatis me2155 cell suspension was 

injected into the sealed bottle giving a final concentration of 0.5mg/ml NTG. The M. 

smegmatis/NTG suspension was incubated at 37°C, with shaking (150rpm) for45min, in the 

sealed container. The suspension was removed from the bottle with a syringe and the NTG- 

treated cells were pelleted, washed four times with 0.2M phosphate buffer (KH2P 04/K0H 

pH6.3) containing 0.5% Tween 80 and finally resuspended in 2ml MM. The wash solutions 

containing NTG were pooled and treated with 0.1M HC1 to destablise the remaining NTG 

before disposal. This procedure was carried out on two individual M. smegmatis me2155 

cultures and known as the first and second mutagenesis procedures. The NTG-treated cells 

of these two procedures were treated differently following exposure to NTG.

2.27.1 F i r s t  m u t a g e n e s i s  - i n h  t r e a t m e n t

The use of INH in this method was previously described by Holland and Ratledge ( 1971). 

The 2ml of NTG-treated M. smegmatis cells were divided into two. 1ml of NTG-treated cells 

were resuspended evenly in 100ml MM+AA (0.5% Tween 80). 1ml of this cell suspension 

was removed, serially diluted 1-lxlO'9 and plated in 200/d volumes onto Lemco agar (12cm 

plates) and incubated at 37°C for 24hr. The cells were then incubated at 28°C for 48hr to 

allow the cells to recover. These NTG-treated cells left to recover at 28°C were known 

collectively as SetA.

The remaining NTG-treated cells from the first mutagenesis were evenly resuspended in
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100ml MM+AA (0.5% Tween 80) containing 50//g/ml INH and then incubated at 37°C for 

24hr, with shaking (150rpm). The INH-treated cell culture was transferred to 50ml Falcon 

tubes, the cells precipitated by centrifugation at 3500xg (4,000rpm) and the cells were then 

resuspended in 30ml MM. The cells were washed 3x in MM and finally resuspended in 100ml 

MM+AA (0.5% Tween 80) and incubated at 28°C, with shaking (150rpm) for 48hr. The 

NTG and INH-treated M. smegmatis cells were known collectively as SetB(INH).

2.27.1.1. Dilution procedure o f NTG-treated M. smegmatis from  the first mutagenesis 

Following recovery at 28°C the NTG-treated M. smegmatis cells of SetA and SetB(INH) 

were transfered to 50ml Falcon tubes (50ml stored at 4°C and 50ml stored at -20°C, from 

each of SetA and SetB(INH)). 10ml of culture from SetA and SetB(INH) were taken and 

dilutions of 1-10-9 in final volumes of 5ml were made up in 10ml uni versáis with SDW. 1ml 

volumes of each dilution from SetA and SetB(INH) were plated onto MM+AA and MM agar 

plates (14cm), in duplicate. The 1ml volumes of each dilution were passed through 25 gauge 

needles, to reduce clumping. One set of MM+AA and MM serial dilution plates from both 

SetA and SetB(INH) w ere incubated at 37°C for 48 hr; the duplicate sets of MM+AA and 

MM agar serial dilution plates, from SetA and SetB(INH), were incubated at 28 °C for four 

days. The number of colonies formed on MM+AA and MM, at comparable dilutions were 

compared within SetA and SetB(INH); as well as the colonies formed at 28°C and 37°C on 

MM+AA and MM, within SetA and SetB(INH).

1000 colonies from MM+AA dilution plates of SetA and SetB, incubated at 28°C, were 

randomly selected and transferred to Middlebrook 7H10 agar. The 2000 colonies were 

arrayed in the dimensions of a 96 well microtitre plate, on the Middlebrook 7H10 agar plates 

(14cm), and incubated a t 28°C for 6 days. The set of 2000 colonies was known collectively 

as Bank 1.
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2.27.2 Second mutagenesis

Following treatment with NTG the M. smegmatis cells of the second mutagenesis procedure 

were left to recover at 28°C in 100ml MM+AA (0.5% Tween 80) for 48hr. The culture was 

then transferred to two 50ml polypropylene tubes and all but 10ml was stored at -20°C. The 

10ml of NTG-treated cells were used to make serial dilutions 1-lxl 0"9 which were then plated 

in 1ml volumes onto Middlebrook 7H10 agar and incubated at 28°C for 6 days to allow 

colony formation. 1,000 of the colonies formed were randomly selected and transferred to 

Middlebrook 7H10 plates in arrays of 96 as above, the arrays were incubated at 28°C to 

recover. The 1,000 colonies of NTG-treated M. smegmatis from the second mutagenesis were 

known collectively as Bank 2.

2.28 Screening of NTG-treated M . s m e g m a t is  colonies for

RESISTANCE OR SENSITIVITY TO ANTIBIOTICS 

2.28.1. Replica plate screening of NTG-trf.ated M. smegmatis 

Initially arrayed NTG-treated M. smegmatis colonies from Bank 1 or 2 were replica plated 

onto Lemco agar containing the test antibiotic at the MIC, when looking for resistance and 

just below the MIC, when looking for sensitivity to the test antibiotic. The colonies were 

replica plated using a replicating device with 96 pins arranged in the dimensions of a microtitre 

plate. The 96 pin device was sterilised, placed in the arrayed colonies, removed and plunged 

into the Lemco agar containing the test antibiotic. This was repeated for all the colonies in the 

Bank and the inoculated Lemco agar plates containing the test antibiotic were incubated at 

28°C for 8 days.

2.28.2 Large scale screening for mycobacteriophage and antibiotic 

resistance

100ml of Middlebrook 7H9 media was seeded with 1ml of NTG-treated cells from a frozen 

stock. The cell suspension was incubated at 28 °C with shaking for 48hr until the culture
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reached a 0.8A ^ . 10/d, 100/̂ 1 and 1ml volumes of the NTG-treated M. smegmatis me2155 

cells were plated onto Lemco agar plates (14cm) containing the test antibiotic (MIC) or 

spread with 1ml phage solution (xlO^fu/ml). The test plates were then incubated at 28°C for 

8 days before being read for growth. Any resistant strains were analysed further.

2.28.3 C o n f i r m a t i o n  o f  a n t i b i o t i c  r e s i s t a n c e

Any M. smegmatis strains which appeared resistant to a given antibiotic were subcultured 

from the master plates and subsquently retested against the same concentration of the given 

antibiotic. Initially a single colony of the subcultured strain was streaked out onto a Lemco 

plate containing the test antibiotic at the same concentration. If the M. smegmatis strain 

remained sensitive or resistant to the test antibiotic the strain was subcultured and a single 

colony was retested on solid agar (plus antibiotic) or used to seed 5ml Lemco broth (0.5% 

Tween) which was incubated at 28°C until the culture reached late log-phase (A ^  0.8); the 

liquid culture was then streaked on Lemco agar containing the same concentration of the test 

antibiotic. Any strains remaining resistant or sensitive to the test antibiotic at this stage were 

subcultured again, a Lemco liquid culture created as before and again cells streaked onto two 

Lemco agar plates containing the test antibiotic, one of which was incubated at 37°C (48- 

72hr) and the other at 28°C (6-8 days). In some cases equal numbers of the test strain cells 

(2.5xl07) and M. smegmatis mc2155, cells were added to 5ml liquid Lemco containing the test 

antibiotic in the test concentrations. Control cultures of wild type and test strains without 

antibiotic were also set up. The liquid cultures were incubated at 37°C, with shaking 

(150rpm), for 48hr. The A ^  of the test and wild type cultures with and without the test 

antibiotic were read and compared.

2.28.4 A n t i b i o t i c  s e n s i t i v i t y  t e s t i n g  i n  l i q u i d  c u l t u r e

An overnight culture, seeded with a single colony of an antibiotic sensitive strain of M. 

smegmatis, was grown to late log-phase culture (0.8 A ^ ). 100//1 of the cell culture (2.5x107
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cfu, unless otherwise stated) was then added to a series of 9x5ml volumes of Lemco, eight of 

which contained increasing concentrations of the test antibiotic (200-900/ig/ml); the ninth, 

control culture, contained no antibiotic. An identical series was set up seeded with 2.5x107 

M. smegmatis me2155, wild type cells. The two test series were incubated at 37°C or 28°C 

until the control cultures reached 0.8 A***, or 1.5 A ^  and then the A ^  of all the cultures in 

the two series were read. The growth of the test strain at each increasing concentration of 

the antibiotic was then compared with that of the wild type at the same concentration of 

antibiotic.

2.29 E x t r a c t io n  o f  f r e e  m y c o b a c t e r ia l  l ip id s

These methods were carried out as described by G.Dobson et al., (1985).

2.29.1 N o n  p o l a r  l i p i d s

A 50mg dry biomass sample was placed in an 8.5ml PTFE-capped Coming tube. 2ml of 

aqueous methanol (10ml 0.3% NaCl: 100ml methanol [BDH, HPLC grade]) and 1ml of 

petroleum ether (BDH, HPLC grade) boiling point (b.p.) 60-80°C were added to the sample 

and mixed vigorously on a shaking platform for 15min. The solution was then centrifuged at 

3,500xg (4,000rpm) for 7min to separate the two phases. The upper phase was transferred 

with a glass pasteur pipette to 5ml glass vial and another 1ml of petroleum ether (b.p. 60- 

80°C) added to the remaining lower layer. The mixture was mixed vigorously for a further 

15min, centrifuged again for 7min and the upper layer retained with the previous one. The 

upper layers were dried with N2 at <37°C, redissolved in 70/d of chloroform:methanol (2:1) 

and stored at -20°C until use. The lower layer was retained for the extraction of polar lipids.

2.29.2 P o l a r  l i p i d s

The retained lower layer residue was heated at 100°C in a heating block for 5min and allowed 

to cool to 37°C before the addition of 2.3ml of solution 1 (chloroform: methanol:0.3% NaCl,
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90:100:30). The mixture was shaken vigorously for 60min and centrifuged for 5min, at 

3,500xg (4,000rpm) to pellet the cell debris. The upper solution was retained and the cell 

debris resuspended in 0.75ml of solution 2 (chloroform: methanol: 0.3% NaCl, 50:100:40). 

The suspension was mixed vigorously for 30min and centrifuged at 3,500xg (4,000 rpm) for 

7min to pellet cell debris. The upper aqueous layer was retained and added to the 8.5ml tube 

containing the previous extraction. This step was then repeated. The supernatants were 

combined by the addition of 1.3ml chloroform and 1.3ml 0.3% NaCl, followed by vigorous 

mixing for 30min. The two phases were separated by centrifugation at 3,500xg (4,000rpm) 

for 7min and the upper layer was discarded, carefully removing any debris at the interface. The 

lower layer was retained and evaporated with N2 The residue was then dissolved in 70/d of 

chIoroform:methanol, 2:1 and stored at -20°C.

2 .3 0  TW O DIMENSIONAL THIN LAYER CHROMATOGRAPHIC (T L C ) SYSTEMS 

FOR THE ANALYSIS OF POLAR AND NON POLAR LIPIDS OF MYCOBACTERIA.

A 7/d sample of a nonpolar or polar lipid fraction was applied to a 6.6x6.6cm aluminium 

backed TLC plate (Merck 5554) using a glass capillary tube in one comer of the plate, 1cm 

away from each side and left to air dry. One of the following solvent systems was then 

applied.

2.30.1 System A

This system is used to detect menaquinones, triacylglycerols and mycocerosates of the 

phthiocerol family as it separates the least polar of the non polar lipids. A TLC plate loaded 

with non polar lipid extract, was developed with petroleum ether (bp 60-80°C): ethyl acetate 

(98:2 v/v) the first direction solvent, until the solvent reached the top of the plate. The TLC 

plate was removed and left to air dry; this procedure was repeated twice. The TLC plate, was 

turned 90° and developed with petroleum ether:acetone (98:2), the second direction solvent, 

once. The TLC plate was left to air dry, before observation under ultraviolet light for the
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presence of menaquinones. The separated lipid components could then be revealed by 

spraying the plate with 5% (w/v) ethanolic molybdophosphoric acid (MPA) solution and 

subsequent heating at 180°C for lOmin.

2.30.2 System D

This system separated the most polar of the non polar lipids and the least polar of the polar 

lipids. A TLC plate loaded with non polar or polar lipid extract was developed with 

chloroform;methanol water (100:14:0.8), the first direction solution, until the solvent reached 

the top of the plate when it was removed and left to air dry. The plate was then turned 90° 

and developed with the second direction solvent, chloroform:acetone:methanol (50:60:2.5), 

until the solvent reached the top of the plate. The plate was left to air dry before being sprayed 

with MPA and placed at 180°C for lOmin, to detect lipids. In order to detect any sugars 

present on the lipids, the system was repeated and the plate ultimately sprayed with a- 

naphthol-sulphuric acid (NAS) and incubated at 120°C for 2min. This system detected 

trehalose dimycolates and sulpholipids from non polar extracts and glycopeptidolipids from 

polar lipid fractions.

2.30.3 System E

This system detected the most polar lipids in the polar lipid extract. A TLC plate loaded with 

polar lipid extract was placed in a TLC tank containing chloroform:methanol:water (10:5:1) 

until the solvent reached the top of the plate. The plate was air dried before being placed, at 

a 90° turn, in the second direction solvent, chloroform:acetic acid:methanol:water ( 40: 

25:3:6), until the solvent reached the top of the plate. The plate was sprayed with MPA and 

heated at 180°C to detect the lipids. The process was repeated and the plate sprayed with 

NAS and heated at 120°C to detect sugars. This system detects phospholipids and glycolipids 

including forms of phosphatidylinositol.

-109-



M a t e r i a l s  a n d  M e t h o d s

2 .3 0 .4  S y s t e m  F

This system also detected the most polar lipids in the polar lipid extract and was an adaptation 

of system E. A TLC plate loaded with polar lipid extract was developed with a first direction 

solvent chloroform: methanol: water (65:25:4) until the solvent reached the top of the plate. 

The plate was left to air dry before being placed, at a 90“turn in the second direction solvent 

chloroform: acetic acid: methanol: water (80:15:12:4) until the solvent reached the top of the 

plate. The plate was sprayed with MPA and heated at 180°C for lOmin to detect the lipids. 

The process was repeated and the plate sprayed with NAS and heated at 120°C, to detect 

sugars. This system detects phospholipids and glycolipids including forms of 

phosphatidylinositol.

2.31 Extraction and detection of mycolic acids

50mg samples of dried biomass were placed in an 8.5ml Coming tube, 2ml of 5%v/v aqueous 

tetrabutylammoniumhydroxide was added and the mixture placed at 100°C for 16-12hr. The 

mixture was cooled, centrifuged and the supernatant transferred to a Coming tube containing 

2ml dichloromethane (Sigma) and 25//1 iodomethane (Sigma). The preparation was shaken 

for 30min, the upper layer discarded, and the lower layer washed with 1ml of 10% aqueous 

HC1 followed by 1ml distilled water and evaporation to dryness under N2.

2 .31 .1  T L C  O F  M Y COLIC M ETHYL ESTERS

The alkaline methanolysates were dissolved in 0.1ml petroleum ether (b.p. 60-80°C) and 2/̂ 1 

applied to 6.6 x 6.6cm aluminium backed TLC plates. The plates were developed three times 

with petroleum ether (b.p. 60-80°C):acetone (95:5 v/v) in the first direction and once with 

toluene:acetone (97:3) in the second direction. The positions of the separated components 

were revealed by spraying with 5%, w/v ethanolic molybdophosphoric acid followed by 

heating at 180°C for 15min.
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2.32 Analysis o f  bacterial h y d r o p h o b ic it y

The hydrophobicity of M. smegmatis cultures was measured using an adaptation of the 

method of Rosenberg et al., (1980). Two 200ml cultures of the test strain and of the wild type 

strain of M. smegmatis were grown to late-log phase (0.8 A ^ ) and early stationary phase 

growth (1.6 Â oq). The cells from each culture were pelleted following centrifugation at 

3500xg (4,000rpm) and washed twice and resuspended in 20ml of PUM buffer (22.2g 

K2HP04.3H20, 7.26g KH2P04, 1.8g urea, 0.2g MgSO4.7H20 in ll,pH7.1). 1.5ml of each of the 

cell suspensions were added to individual round bottomed Coming tubes followed by addition 

of 15/ri of the hydrocarbon n-hexadecane (Sigma) and incubation at 30°C. Each suspension 

was vortexed for 120s before being left to stand at room temperature for 15min. The lower 

aqueous phase was removed carefully with a glass Pasteur pipette and transferred to a 1ml 

cuvette. The optical density of the aqueous phase was measured at 400nm, using a 

spectrophotometer. The optical densities of the test strain and the wild type strain from the 

same stage of growth were compared, as were the A400 from different stages of growth of the 

same strain.

2.33 Api-Zym TEST

The Api-Zym test was carried out according to the manufactures instructions. An overnight 

M. smegmatis culture was diluted with SDW to 0.5-0.6 A ^  (105- 107 cfu/ml). An incubation 

tray was taken, 5ml of water placed in the bottom, and an Api-Zym strip was then placed in 

the incubation tray. Using a Pasteur pipette, two drops of culture were added into each cupule 

of the strip. Following inoculation, the plastic lid was placed on the tray and the tray incubated 

at 37°C for 4hr. After incubation one drop of ZYM A (25% w/v Tri-hydroxmethyl-amino- 

methane,3.7% HC1, 10% w/v Laryl sulphate) and one drop of ZYM B (0.35% w/v Fast blue 

BB [2-methoxyethanol diluent]) were added to each cupule. The strips were left in daylight 

for five minutes for the colour to develop. A value ranging from 0-5 was assigned to the 

colours produced when compared with the colour chart where 0 is a negative result, 1 - 4 are
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intermediate reactions (1=5 nmoles, 2=10 nmoles, 3=20 nmoles, 4=30 nmoles) and 5 is a 

reaction of maximum intensity (5=40nmoles and above).
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Chapter 3

R e s u l t s

3.1  T h e  a t t e m p t  t o  is o l a t e  a  c e l l  e n v e l o p e  m u t a n t  M. sm e g m a  n s  

m c 25 5  m u t a n t

The initial approach to isolating a cell wall mutant of M  smegmatis mc2155 was to find or 

create a mycobacteriophage-resistant strain ofM  smegmatis mc2155. This strategy was based 

on the theory that as mycobacteriophages adhere to receptor sites on the cell wall (Grange and 

Redmond, 1978; Goren et al., 1972; David et al., 1978) of the bacteria then resistance to 

phage infection may be as a result of an altered cell wall, which lacked the appropriate phage 

receptor site.

3.1.1  ISOLATING SPONTANEOUS PH A G E RESISTANT MUTANTS OF M . SM EG M A  T IS  MC2155 

The original aim was to isolate a spontaneous phage resistant mutant of M. smegmatis 

me2155.

3.1.1.1 Overinfection method

The strategy adopted was to overinfect an M. smegmatis mc2l 55 population with sufficient 

numbers of a lytic mycobacteriophage so as to cause confluent lysis of the infectable portion 

o f the population. Any spontaneously resistant M. smegmatis cells within the population 

would be able to replicate in the surrounding "sea" of phages and form visible colonies. The 

overinfection method was used in an attempt to isolate strains of M. smegmatis mc2155 

resistant to three mycobacteriophage D29, D4, and D33. D4 and D29 were chosen as their 

receptors had been shown to be a nsGPL in M. avium (Goren et al., 1972: Dhariwal et al., 

1986) and a simple LOSs in M  smegmatis (Besra et al., 1994b), respectively. D29 has also 

been shown to adsorb to the cell wall o fM. leprae (David et al., 1978)

Initially straightforward infections were performed with 1x10s pfu/ml of each phage (section
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2.21) , to ensure infection o f M. smegmatis mc2155 was possible. The three phages D29, D4 

and D33 all successfully infected M. smegmatis mc2155. D29 produced 2mm clear circular 

plaques, D4 produced large, 3-4mm, clear circular plaques and D33 produced small 0.5- 1mm 

clear circular plaques.

Having established that the three phages infected wild type M . smegmatis mc2155, the 

overinfection method (section 2.23) was performed with each phage type. The overinfection 

plates were observed after 24hr, to ensure that total lysis o f the M. smegmatis lawn had 

occurred and then incubated at 37°C for a further 4 days to allow for the formation of 

colonies by any phage resistant M. smegmatis cells. This method was carried out three times 

for each phage with three independent M. smegmatis me2155 cultures, seeded with single 

colonies, to  increase the chances of isolating independent mutants.

The number of colonies formed on the overinfection plates varied slightly between the three 

phages but remained consistent for each o f the three infections for individual phages. On 

average lx l0 2 colonies were formed on D29 infection plates; they were mucoid and l-3mm 

in diameter. 2xl02 colonies o f 0.5-lmm in diameter were formed on D4 infection plates; the 

colony morphology was of two types, mucoid and rough, in equal proportions, lx l 02 colonies 

formed on average on the D33 infection plates and were small (1mm) in diameter and mucoid.

Twelve colonies which were "resistant" to each phage were selected, four from each of the 

three overinfection plates for each mycobacteriophage, and subcultured. The 36 "resistant" 

strains were then retested for infectability by the phage to which they were "resistant" (section

2.21) . Control infections, to which no phages were added, were set up for each "resistant" 

strain.

Initially four D4, eight D29 and twelve D33 "resistant" strains remained resistant to infection.
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These strains were subcultured again and retested. On retesting, more strains became sensitive 

to  phage infection and only two D4, six D29 and five D33 strains remained resistant to 

infection. However, the control plates of these thirteen strains produced mottled bacterial 

lawns, which appeared to contain a background of plaques, or in some cases clear plaques. 

Following four subsequent subcultures and retesting, all of the strains became infectable.

These results implied that the strains were losing their "resistance" on serial transfer, which 

would be expected from unstable mutant strains; however the presence o f clear and 

background plaques in the control infections of the strains indicated that the strains were in 

fact harbouring phages.

This suggested that the "resistant" strains were in fact pseudolysogenic, containing a non 

integrated phage which prevented induction o f  the lytic cycle on attempted reinfection, while 

forming clear plaques on subculture without infection due to the instability o f  the lysogenic 

state.

3.1.1.2 Pseudolysogeny

A rapid method was developed to test large numbers of resistant strains for pseudolysogeny. 

The test was simply to "drop” liquid culture (10 /̂1 of late log-phase culture; 0.8 A ^ ) of the 

test strain onto a lawn of wild type M. smegmatis cells and to incubate the plate overnight at 

37°C (section 2.24). The rationale was that some cells in the liquid culture of a 

pseudolysogenic strain would revert to the lytic cycle releasing phage which would infect the 

wild type M. smegmatis cells, forming a visible "halo" of clearing. Non-pseudolysogenic 

strains should not create a clearing "halo" and would form a confluent bacterial lawn.

The original 36 "resistant" strains obtained from the D4, D33 and D29 overinfection plates 

were tested for pseudolysogeny using this method. Three visible outcomes were obtained
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from the pseudolysogeny test o f the 36 phage "resistant" strains tested. The predicted "halo" 

o f clearing was observed around a few pseudolysogenic strains, caused by lysis of the 

surroundingM smegmatis mc2155 lawn cells (Fig. 16a). The region in which the culture was 

"dropped" of the majority o f these strains was mucoid and translucent, apparently caused by 

lysis o f the underlying lawn cells. A larger number of test strains did not produce distinct 

clearing and formed a uniform lawn were the culture had been "dropped", (Fig. 16b).

Of the 36 strains retested for pseudolysogeny 34 were found to be pseudolysogenic. One D4 

and one D29 strain did not appear to be pseudolysogenic. Both the D4 and D29 non- 

pseudolysogenic and "resistant" strains were retested for infectability, using fresh cultures 

seeded with single colonies. The non-pseudolysogenic D4 strain was infectable, as it had been 

when previously tested, in the overinfection experiment. The non-pseudolysogenic D29 strain 

was not infectable, but had previously only been infectable following two subcultures of the 

frozen stock whereas the colonies used for this D29 infection and the pseudolysogeny test 

were formed directly from frozen stocks. The non-pseudolysogenic D29 resistant strain was 

therefore subcultured and six cultures, seeded from single colonies, were tested for 

pseudolysogeny and infectability. One culture was pseudolysogenic but uninfectable while the 

remaining five were infectable but not pseudolysogenic.

The results suggested that this D29 "resistant" strain contained a mixed population o f  

pseudolysogenic and non-pseudolysogenic cells and therefore colonies which gave varying 

results in culture i.e. both pseudolysogenic uninfectable, and non-pseudolysogenic infectable 

cultures. The "nonpseudolysogenic" D4 strain could well have been a mixed population o f  

pseudolysogenic and non-pseudolysogenic strains but the two cultures tested were non- 

pseudolysogenic and infectable concurring with a negative test.
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smegmatis rnd lSS  strains.

a) shows the test plate for a strain pseudolysogenic for mycobacteriophage D4.
b) shows the test plate for a strain non pseudolysogenic for mycobacteriophage D29.
a+b show M. smegmatis me2155 bacterial lawns formed in Lemco soft top agar following 
incubation at 37° C for 24-48hr divided into sections 1, 2 and 3. 5/ri of mycobacteriophage 
solution lx l05pfu/ml), was "dropped" onto section 1 of each plate, D4 on la  and D29 on lb. 
The test cultures (10/ri of late log phase culture) were "dropped" onto sections 2 and 3. 2a 
and 3 a clearly show the "halo" of clearing created by the lysis of lawn cells with D4 phage 
released from the pseudolysogenic strain. In sections 2b and 3b a complete bacterial lawn was 
formed following the addition of a non pseudolysogenic from an apparently D29 resistant 
strain.
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3.1.1.3 UV induction o f  the lytic cycle in pseudolysogenic strains

In order to improve the clarity of the pseudolysogeny test, by creating unequivocal "halos" 

o f clearing, the overinfection plates were exposed to UV following complete lysis in an 

attempt to induce the lytic cycle in any pseudolysogenic strains.

Two overinfection plates were set up for D29, D33 and D4, respectively using the same M. 

smegmatis culture for lawn cells. One overinfection plate for each phage type was exposed 

to 40x10-3 J of UV, following total lysis of the lawn cells, before reincubation of the  plates 

(4 days at 37°C) to allow for colony formation. Similar numbers of colonies were produced 

on the overinfection plates following exposure to UV as were formed on the unexposed plates 

and had previously formed on the overinfection plates. A total o f 50 strains "resistant" to  each 

o f the three phage types were selected, 25 from the UV exposed plates and 25 from the 

unexposed overinfection plates. All the strains were subcultured and tested for 

pseudolysogeny. 144 strains appeared to be pseudolysogenic. The pseudolysogenic strains of 

D4 and D33 exposed to UV light exhibited more distinguishable clearing zones than those that 

had not been exposed to UV light; 80% in D4 strains and 20% in D33 strains. The UV 

exposed D29 strains did not exhibit any increase in those producing a distinct clearing zone.

The six apparently non-pseudolysogenic strains were all isolated from UV exposed 

overinfection plates, two D33, three D4 and one D29 strains. All six of these non- 

pseudolysogenic possibly resistant strains were found to be infectable with their respective 

phage. No truly phage resistant strains were obtained from this screen of 150 "resistant" 

colonies produced on overinfection plates.

The results of the pseudolyogeny testing suggested that within a given strain, varying 

proportions of cells were pseudolysogenic and that this proportion decreased with serial 

subculture, which would be expected from an unstable lysogen. The pseudolysogeny test

________________________________________________________________________ R esu lts
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whilst screening out the vast majority o f positively pseudolysogenic strains could also give 

false negatives in strains with higher proportions of non-pseudolysogenic cells. These false 

negative pseudolysogenic strains could give a negative infectability test if the culture used was 

generated from a pseudolysogenic single colony of the strain; this could give the impression 

that the strain was phage resistant. The false negative pseudolysogeny results could have been 

reduced by carrying out the initial pseudolysogeny tests on the same culture o f each strain and 

by performing both tests on more than one culture from each strain at a time, however this 

would have defeated the object of providing a quick screen for pseudolysogeny. The exposure 

to UV increased the clarity of the test, although this may have been improved upon by 

increasing the amount o f UV to which the overinfection plates were exposed. Overall the 

pseudolysogeny test proved a quick method of screening large numbers o f "resistant" strains 

produced by the overinfection method for pseudolysogeny.

No mycobacteriophage resistant mutants were isolated by the overinfection method which was 

possibly because an insufficient number o f "resistant" strains had been screened. Due to the 

difficulties associated with this method, caused by pseudolysogeny, the search for a 

spontaneous M. smegmatis mutant was abandoned.

An alternative approach was to increase the probability o f finding a resistant strain by 

mutating a population o fM  smegmatis mc2lSS cells and screening for phage resistant strains. 

The strategy had the advantage that the M. smegmatis strains would not have been previously 

exposed to  phage and would not therefore be pseudolysogenic.

3.1.2 Mutagenesis of M .  s m e g m a t i s  mcj155 with N-Methyl-N’-Nitro-N- 

Nitrosoguanidine (NTG)

The proposal was to create and isolate a mutant strain o f M. smegmatis mc2155 with a 

defective cell wall, which would manifest itself as a screenable altered phenotype i.e. phage
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resistance or antibiotic resistance. N TG  was used to generate mutated strains o f M. 

smegmatis, acting by intercalation into the DNA double helix during replication and causing 

point mutations by preventing correct incorporation o f nucleotides. The formation o f point 

mutations can be an advantage as mutations in essential genes could possibly be isolated. A 

bank o f  NTG-treated strains would then be screened for phenotypic alterations which may 

indicate an altered cell wall structure.

M. smegmatis mc2155 cultures were treated with NTG as described in section 2.27. A late 

log-phaseM smegmatis mc2155 culture was treated with 0.5/yg/ml NTG at 37°C for 45min, 

before being washed with buffer, resuspended in minimal medium supplemented with 

Casamino acids (MM+AA) and incubated at 28°C; this temperature was used because the 

mycolic acid mutant (Kundu et ai„ 1991) was isolated at 28 °C and found to be 

thermosensitive, presumably due to the altered properties of the lipids in the cell envelope (Dr. 

P. Chakrabati, personal communication). This mutagenesis procedure was performed twice, 

on individual late log-phase cultures o f M . smegmatis mc2155, and described below.

Following recovery o f the cells at 28°C  the NTG-treated cells o f the first mutagenesis 

procedure were serially diluted ( 1-lxl 0"9) and plated onto duplicate sets o f  minimal media 

(MM) agar and MM+AA agar plates and incubated at 28°C and 37°C (section 2.27.1.1; 

Fig. 17). This was done in order to be able to determine the levels o f  auxotrophy and 

temperature sensitivity within the NTG-treated population, directly after the mutagenesis 

event, before subculture.

On the basis o f the results obtained from phenotypic screening o f the first mutagenesis a 

second mutagenesis procedure was carried out. NTG-treated cells were diluted (1-lxlO'9), 

plated onto Middlebrook 7H10 agar and incubated at 28°C (section 2.27.2)
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The colonies initially formed by the NTG-treated cells, from both mutagenesis procedures, 

were mucoid after incubation at 28°C and 37°C. Some white and orange colonies, with 

altered chromogenesis, were observed on plates of colonies from each mutagenesis, at both 

temperatures.

3.1.2.1 Percentage survival following the NTG treatment o f M. smegmatis mc2155 cultures 

It was important to ensure a balance was kept between the loss of viability and effective 

mutagenesis caused by the NTG treatment of M. smegmatis cultures. The percentage survival 

was therefore measured following each NTG treatment as a measure o f  this balance and 

therefore as an indication of the success of the mutagenesis procedure. The results for both 

the mutagenesis procedures are shown in Table 5.

Table 5. Effect on survival of M. smegmatis mc2155 following exposure to NTG

Mutagenesis
procedure

Untreated cells 
cfii/ml

Treated cells 
(NTG) cfu/ml

% Killing % Survival

2xl09 1.6x10* 92 8

l____ l _________ 1.36x10* 2.4x10* 82.3 17.6

The percentage survival was 8% and 17.6% following NTG treatment in the first and second 

mutagenesis procedures respectively. These results were within the levels described by 

Holland and Ratledge (1971) and Hinshelwood and Stoker (1992b) as resulting in successful 

mutagenesis without a damaging loss o f viability.

3.1.2.2 IN H  enrichm ent

INH kills only actively growing cells and has been found to enrich for mutant strains with poor 

growth at 37°C in mycobacteria (Holland and Ratledge, 1971). In an attempt to enrich for 

mutated strains, half o f the NTG-treated M. smegmatis cells from the first mutagenesis
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experiment were exposed to INH (50^g/ml) at 37°C (24hr) before being left to recover at 

28°C (2.27.1.) The first mutagenesis therefore resulted in two groups of NTG-treated cells 

Set A, not exposed to INH and SetB(INH) which were INH treated (Fig. 17). Following 

recovery at 28 °C the NTG-treated cells of the first procedure, SetA and SetB (INH), were 

serially diluted, each dilution was plated onto MM and MM+AA in duplicate and incubated 

at 37°C and at 28°C (section 2.27.1.1; Fig.17). The numbers o f colonies formed were 

compared at corresponding dilutions (Table.6).

SetB(INH) from the first mutagenesis produced a greatly reduced number of colonies on both 

MM and MM+AA than at comparable dilutions for SetA at both incubation temperatures. 

The percentage survival of SetB(INH) following INH treatment varied from 5% at 37°C to 

13.6% at 28 °C on MM+AA. On unsupplemented MM the percentage survival following INH 

treatment was slightly lower at both temperatures, 11.6% at 28 °C and 4% at 21°C. Strains 

which were incubated at 28 °C following INH treatment showed higher survival levels than 

those incubated at 37°C, (Table.6).

Table 6. Effects of INH treatm en t and subsequent incubation tem perature on survival 

of NTG-treated strains

Incubation
temperature

Percentage survival on MM+AA 
SetB/SetA Percentage

Percentage survival on MM 
SetB/SetA Percentage

28°C 676/5325 12.7 515.5/5087 10

37°C 68/1314 5.1 55/1318 4

These initial results suggested that the INH treatment had significantly reduced the percentage 

survival under all conditions and appeared to be enriching for NTG-treated strains better able 

to survive at 28°C.
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M. sm egm atis me2155 
Log phase culture ( A ^  = 0.8) MM

^  37 °C

NTG (500 mg/ml) 
Incubate 37 °C (45 min)

Set (A) +
second mutagenesis Set (B)
Recovery at 28 °C
MM + aa (48 hr)

Recovery at 37 °C + INH
MM + aa (24 hr)

I
Recovery at 28 °C 
MM + aa (48 hr)

Plate out
MM MM + aa

96 well array

Fig.17. A schematic diagram of the first mutagenesis procedure.

-123-



R esu lts

3.1.2.3 Auxotrophy

3.1.2.3.1 First mutagenesis

The NTG-treated M  smegmatis me2155 strains from both procedures were screened for 

auxotrophs, as a marker of the efficiency of the mutagenesis.

An initial estimate of the level of auxotrophy in SetA and SetB(INH) was made by comparing 

the number of colonies formed on the original MM and MM+AA dilution series (Fig. 17 and 

2.27.1.1), at 37°C and 28°, (Table.7).

Table 7. The initial levels of auxotrophy observed following the first NTG mutagenesis

procedure

NTG-treated 
M . smegmatis 
( 1 st procedure)

Level o f auxotrophy at 28°C 
No. of colonies 
MM/MM+AA Percentage

Level o f  auxotrophy at 37°C 
No. o f  colonies 
MM/MM+AA Percentage

Set A 5175/5450 5.3 1318/1314 -0.3

Set B (INH) 600/744 24.0 575/696 21.0

The estimated percentage of auxotrophs within the NTG-treated M. smegmatis strains of 

SetA was 5.3% at 28°C and -0.3% at 37°C. The estimated percentage of auxotrophs within 

SetB(INH) was 24% at 28°C and 21% at 37°C, higher than in the cells of SetA, which were 

not INH treated. The estimated levels of auxotrophy were higher at 28°C than at 37°C for 

both sets of NTG-treated cells.

The actual percentage o f  stable auxotrophs within the NTG-treated cell populations o f SetA 

and SetB(INH) was then established. 2,000 colonies were randomly selected, 1,000 from 

SetA and 1,000 from SetB(INH) from the MM+AA plates incubated at 28°C. The colonies 

were maintained on Middlebrook 7H10 plates arranged in arrays o f 96 and were known
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collectively as Bank 1.

The 2,000 colonies of Bank 1 were replica plated onto MM and MM+AA plates, at 28°C. 36 

o f the NTG-treated strains of Bank 1 showed no growth on MM while exhibiting growth on 

MM+AA. 14 (0.67%) of the 36 strains were from Set A (1.4%/of Set A) and 22 (1.11%) from 

SetB(INH) (2.2% of SetB). These strains were picked from the MM+AA plates, grown to 

late log-phase in liquid culture at 28 °C, before being individually retested on MM and 

MM+AA agar at both 28°C and 37°C. Five strains (0.25%), one from SetA and four from 

SetB remained auxotrophic only growing on MM+AA, at both temperatures; AM2 and 

AM I,3,4,5 although three of these appeared leaky showing a little growth on MM agar, at 

both temperatures.

3.1.2.3.2 Nutritional requirements o f the auxotrophs

Determination of the nutritional requirements of the auxotrophs was then carried out. To 

determine the amino acid required for survival, each of the five auxotrophic strains (AM 1-5) 

were tested on "dropout" plates containing 19 of the 20 Casamino acids. Strains AM2 and 

AM4 exhibited weak growth on drop out plates without tryptophan, proline, asparagine, 

glycine or methionine. AMI did not grow on agar without proline. AM3 and AM5 grew on 

all 20 dropout plates.

The five strains were then tested on MM agar containing single amino acids. AMI only grew 

on proline-containing MM agar. AM2 grew on MM agar containing only arginine, aspartic 

acid, phenylalanine, serine or valine. AM3, 4 and 5 grew on all 20 single amino acid plates.

Thus two stable auxotrophs were isolated: AMI a proline mutant from SetB(INH) and AM2 

(SetA), a mutant requiring aspartate, phenylalanine, arginine, serine and valine. The overall 

percentage of stable auxotrophs was found to be 0.1% within this population of NTG-treated
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M . smegmatis me2155. The percentage o f  stable auxotrophs was the same within both the 

INH treated, SetB(INH), and untreated sets o f cells (Set A), although three additional leaky 

auxotrophs (AM3, AM4, AM5) were isolated from SetB(INH). The reduction in the 

estimated levels of auxotrophy to the actual level of stable auxotrophs from initial estimates 

o f  5.3% in SetA and 24% SetB(INH) to 0.1% in both was also observed by other groups 

(Konickova-Radochova et al., 1970; Subramanyam et a l, 1989).

3.1.2.3.3. Second mutagenesis

One thousand NTG-treated M. smegmatis strains from the second mutagenesis were randomly 

selected and maintained on Middlebrook 7H10 agar arranged in arrays of 96 following 

incubation at 28 °C. The 1,000 strains, known collectively as Bank 2, were then replica plated 

on to MM and MM+AA agar and incubated at 28°C. Fifty eight strains grew poorly or not 

at all on M M  agar and these strains were subcultured from the master plates before being 

retested individually. Two stable strains 570 and 657 were consistently unable to grow on 

MM following subculture. Although the nutritional requirements o f these auxotrophs has not 

yet been determined, they were taken to be auxotrophs. The cell population o f the second 

mutagenesis therefore had a 0.2% level o f  auxotrophy.

The actual percentage of stable auxotrophs derived from both mutagenesis procedures 0.1% 

and 0.2% were comparable to those found by other groups (Holland and Ratledge, 1971; 

Hinshelwood and Stoker, 1992b).

3.1.2.4 A ltered  chromogenesis

A number o f  NTG-treated strains with altered chromogenesis were observed in SetA but not 

in SetB(INH) following the first mutagenesis procedure. Three strains (17, 143 and 186) 

appeared to have no colouring, remaining white even after prolonged growth and exposure 

to  light. Two strains 96 and 356 were observed to be a bright orange colour from an early
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stage of growth. One white strain, 17, one orange strain, 96, and the parent M. smegmatis 

mc2155 were cultured at 28°C and 37°C to late stationary phase (0.8 A ^ ). The cells were 

freeze dried, their pigments extracted and their absorption spectra analysed. The pigment 

analysis was carried out by Dr.G.Britton, Department of Biochemistry, University of 

Liverpool.

The analysis revealed small amounts o f a P-carotene like-pigment in wild type mc2155 M  

smegmatis strain but the main pigment was theophytin, a chlorophyll degradation product 

which absorbed at 409nm. No pigment was found in the white NTG-treated M. smegmatis 

strain, 17, while the orange strain 96, produced higher levels o f both pigments. The amounts 

of pigment produced by the strain 96 at 37°C were slightly higher than the amounts produced 

at 28°C.

3.1.2.5 M elanin and Mitomycin C mutants

One thousand of the NTG-treated strains of Bank 1 were also screened for a number of other 

altered phenotypes, including increased sensitivity to Mitomycin C and lack o f melanin 

production. This work was carried out by R.Rees, LSHTM. The 1,000 NTG-treated strains 

were screened for Mitomycin C sensitivity, in the search for a recA  strain. Initially the strains 

were screened by replica plating onto Lemco plates containing 0.5/zg/ml Mitomycin C and 72 

strains with poor or no growth were isolated. The 72 strain were subcultured, retested and 

ultimately 12 stable Mitomycin C sensitive strains were isolated, strains 42, 43, 147, 149, 218, 

316, 386, 426, 427, 460, 681, and 734 all from SetB(INH).

The screen for melanin mutants initially produced 10 possible mutants, with pale colour when 

replica plated onto tyrosine Lemco agar containing CuS04. These strains were subcultured and 

retested, revealing 2 strains which were consistently white when grown on tyrosine medium, 

387(INH) and 418(INH). The Mitomycin C sensitive strains and the melanin mutants are
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currently being investigated.

The isolation of auxotrophic mutants at 0.1 and 0.2% indicated that both mutagenesis 

experiments had been successful. The additional chromogenesis, Mitomycin C and melanin 

mutants retrieved from Bank 1 were further evidence that the first mutagenesis was successful 

and had produced diverse mutations. Having established the success o f the mutagenesis 

procedures the NTG-treated strains could then be screened for any alteration in phenotypes 

that may indicate a change in the cell envelope of the strain.

3.1.3 Screening and selection for M .  s m e g m a  t i s  mutants with altered cell

EN V ELO P ES

In order to isolate cell envelope mutant strains of M. smegmatis from the NTG-treated 

population the strains were screened for altered phenotypes which may indicate a defective 

cell envelope. The NTG-treated M  smegmatis strains were initially screened for temperature 

sensitivity and mycobacteriophage resistance and then for increased resistance and sensitivity 

to  a variety of antibacterials.

3.1.3.1 Mycobacteriophage resistance

Following unsuccessful attempts to  isolate a spontaneous phage resistant mutant o f M. 

smegmatis me2155 NTG-treated M . smegmatis strains were screened for resistance to a 

number of mycobacteriophages.

3.1.3.1.1 First screening o f Bank 1 strains

1170 colonies from Bank 1 of NTG-treated M. smegmatis strains, 584 from SetA and 586 

from SetB(INH), were screened for resistance to four mycobacteriophages: D29, D4, D33 

and DNAIII8. The strains were initially screened using the "drop" method (section 2.22). The 

basis of this method was to pipette mycobacteriophage solution (105 pfu/rnl) onto a lawn of
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the NTG-treated test culture and to incubate at 37°C. Resistant strains would form a 

complete lawn where as infectable strains should form a clearing zone, caused by 

mycobacteriophage lysis of the surrounding cells. The NTG-treated M. smegmatis mc2l 55 

strains were replica plated into 96 well micronic tubes containing 800/d of Middlebrook 7H9 

media and incubated at 37 °C with shaking for 48hr before 200//1 of each culture was plated 

out in Lemco soft top agar. 5^1 o f D29, D4 D33 and DNAIII8 solutions were then dropped 

onto the soft top and the plates incubated at 37°C for 48hr.

A total o f 28 NTG-treated M. smegmatis strains, 14 each from SetA and SetB(INH), 

appeared resistant to one or more of the mycobacteriophage tested (Table. 8). Seven strains 

initially appeared resistant to all four mycobacteriophages and another seven were apparently 

resistant to D29, D33 and DNAIII8. Two strains appeared resistant to both D33 and DNAIII8 

and three to D29 and DNAHI8. Six strains were resistant to D29, the most frequent resistance 

to a single mycobacteriophage, with single strains showing resistance to D33, DNAII8 and 

D4.

Table 8. The results of the initial screening of Bank 1 strains for mycobacteriophage

resistance

Type o f phage resistance No. of NTG-treated 
resistant strains

D29, D4, D33 and DNAIII8 7

D29, D33 and DNAIII8 7

D33 and DNAIII8 2

D29 and DNAIII8 3

D29 6

D33 1

D4 1

D29 i
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The 28 "resistant" strains were subcultured onto Middlebrook 7H10 plates before being 

retested for phage resistance by the infection method (section 2.21). On retesting all 28 strains 

were found to be sensitive to infection by all four mycobacteriophage types.

3.1.3.1.2 Second screening o f an additional 1,000 SetA mutants

Having been unable to isolate any stable mycobacteriophage resistant strains from Bank 1 of 

NTG-treated strains, a  further batch of 1,000 NTG strains from SetA were screened. The 

1,000 NTG-treated M . smegmatis strains were grown to late log-phase in 5ml Lemco at 

37°C, with shaking. Each culture was then tested for infectability with D29, D4, DNAIII8, 

D33 and Lg (1x10s pfii/ml) using the "drop" method (section 2.22). Those strains which 

appeared to be resistant following this initial screen were retested following subculture using 

the infection method (section 2.21).

Table 9. The results of serial screening of 1,000 NTG-treated M. smegmatis for 

mycobacteriophage resistance

Phage Screen 1 
"Drop" Method

Screen 2 
Infection

Screen 3 
Infection

Screen 4 
Infection

D4 4 0 « _

D29 94 24 4 0

D33 0 _ _ 0

DNAIII8 2 0 _ _

______________
0 - - -

Following the initial screen using the drop method 100 strains appeared resistant; 94 o f  these 

(94%) to D29, 4 to D 4 and 2 to DNAIII8 (Table.9). The high numbers o f D29 "resistant" 

strains indicated that the titre of the phage solution had fallen and a new preparation (section 

2.20) was used in subsequent experiments. On retesting of the 100 strains using the infection 

method (section 2.21) only 24 strains resistant to D29 remained, a five fold reduction. After
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subculture the 24 strains were retested twice following subculture, using the infection method 

and all the strains were found to be infectable with D29 implying the strains were unstable 

mutants which would have been unsuitable for complementation.

3.1.3.1.3 Large scale selection fo r  mycobacteriophage resistance

To increase the chances of isolating a mycobacteriophage resistant strain o fM  smegmatis 

larger numbers of NTG-treated M  smegmatis mc2155 strains, derived from frozen stocks and 

grown to late log-phase at 28°C, were screened for mycobacteriophage resistance (section 

2.28.2). The selection involved plating large numbers of NTG-treated M. smegmatis strains 

onto plates soaked in mycobacteriophage and analysing any M. smegmatis strains able to 

survive this "sea" o f phage. The mycobacteriophage solutions used were of lower 

concentrations (lxlOM xlO5 pfu/ml) than those which had previously resulted in 

pseudolysogenic strains (lxl0*-lxl09pfu/mlXsection 3.1.1). 1ml (3xl0‘ cfu) 100/d (3xl07cfu) 

and 10//1 (3x10® cfu) of a late log-phase culture o f NTG-treated M. smegmatis cells from 

SetB(INH) was spread onto Lemco plates soaked with 1ml of individual mycobacteriophage 

solution (Ix l0 4-lx l0 5pfu/ml). Colonies were only formed on plates seeded with 3x1 (f cfu, 

no colonies were observed when lower numbers of NTG-treated M. smegmatis strains were 

used. No colonies were formed on any plates spread with equal numbers of wild type M. 

smegmatis mc2155 cells. A similar number of resistant colonies were formed for each phage 

type used, 35 with D29, 30 with DNAIII8, 25 with D33 and 24 with D4.

The "resistant" strains were all subcultured, tested for pseudolysogeny (section 2.24) and then 

infectabilty with D29, D33, DNAIII8 and D4, using the drop method (section 2.22). All 24 

D4 strains were found to be non-pseudolysogenic but infectable with D4 and the three other 

phage on retesting. All 30 DNAIII8 and D29 strains were found to be pseudolysogenic and 

were not therefore tested for infectabiiity. Of the 25 D33 resistant strains only 13 were 

successfully subcultured and tested for pseudolysogeny and infectabiiity. Seven D33 strains
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were non-pseudolysogenic and infectable with all four phages.

Six D33 "resistant” strains remained uninfectable with both D33 and also DNAIII8 but four 

of these were pseudolysogenic on the initial screen. Two uninfectable strains 2 and 21 were 

retested for pseudolysogeny and infectability, using the infection method. On rescreening two 

strains were found to be pseudolysogenic and remained resistant to infection by both D33 and 

DNAIII8.

This large scale screen for phage resistant mutants was unsuccessful in isolating any stable 

mycobacteriophage resistant strains o fM  smegmatis, although initially colonies were formed 

on phage-soaked plates spread with NTG-treated M. smegmatis which were not found on the 

wild type plates, suggesting these were resistant strains. The resistant strains were all 

pseudolysogenic apart from the D4 derived colonies. The experiment implied that strains 

pseudolysogenic for D33 were resistant to infection with DNAIII8 as well as D33. 

Unfortunately as the DNAIII8 strains were all pseudolysogenic they were not tested for 

infectability with any phage including D33. The levels of pseudolysogeny observed for 

DNAIII8, D29 and D33 indicated that the Ix l04-lx l0 5 pfu/ml required to cause confluent 

lysis, was still capable of producing pseudolysogenic strains.

The individual (2170) colonies and large scale screening of NTG-treated M. smegmatis strains 

for resistance to a range of mycobacteriophage failed to isolate a stable phage resistant mutant 

strain ofM. smegmatis. The decision was made to discontinue this approach to the isolation 

of M  smegmatis cell wall mutant strains and to commence the search for temperature 

sensitive strains o r strains with altered antibiotic resistance or sensitivity as a phenotypic 

indication o f an altered cell wall.
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3.1.3.2 Temperature sensitivity

All NTG-treated M. smegmatis cells were left at 28 °C to recover in an attempt to retain any 

temperature sensitive mutants, as there is some evidence that cell wall mutants may survive 

better at lower temperatures. This approach was also adopted by P. Chakrabarti (personal 

communication) when isolating the M. smegmatis mycolic acid mutant strain (Kundu et al., 

1991).

An initial estimate of the percentage o f temperature sensitive mutants, from the first 

mutagenesis was determined by comparing the number of colonies formed on the initial 

MM+AA dilution plates (2.27.1.1 and Fig.17) at 28°C and at 37°C, for SetA and 

SetB(INH)(Table. 10).

Table 10. Initial levels of temperature sensitivity observed following the first 

mutagenesis procedure

NTG-treated Levels of temperature sensitivity Levels of temperature sensitivity
M. No. of colonies on MM+AA No.of colonies on MM
smegmatis 28°C/37°C Percentage 28°C/37°C Percentage

Set A 1325/1314 0.83 1087/1318 -21.0

Set B(INH) 744/696 6.9 600/575 4.3

A greater number of colonies were formed on MM+AA plates incubated at 28 °C than those 

incubated at 37°C, for both SetA and SetB(INH). The estimated percentage of temperature 

sensitive strains was 0.83% for SetA and 6.9% for SetB(INH). These results implied that both 

recovery at 28°C and particularly INH treatment o f the NTG-treated cells had initially 

enriched for strains only able to survive at 28 °C on MM+AA.

The initial number of colonies formed from SetA and SetB(INH) on MM at 28°C and 37°C 

was also compared (Table. 10). Within SetA the number of colonies able to  survive at 37°C
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on MM was 21% higher than those able to survive at 28°C. The colony counts for SetB(INH) 

were 4.3% higher for those able to survive at 28°C than at 37°C on MM. These results 

suggested that the INH treatment was enriching for temperature sensitive mutants, although 

th e  numbers able to survive on MM were lower than those able to survive on MM+AA. 

Recovery at 28°C was insufficient to select for mutants which were stable at 28°C on MM.

These initial results on MM indicated that while INH treatment was probably enriching for 

strains truly stable at 28°C and sensitive to growth at 37°C. Recovery at 28°C was possibly 

allowing metabolic mutants to survive at the slower growth rate incurred at 28°C on 

MM+AA; while on MM with the added disadvantage o f poor nutrition these strains were 

unable to survive.

In an attempt to  isolate stable temperature sensitive strains, Bank 1 was replica plated onto 

duplicate sets Middlebrook 7H10 agar plates. One set o f duplicates was incubated at 28°C 

and the other at 37°C. The colonies were then screened for those with poor growth at 37°C 

and strong growth at 28°C. Twenty one strains were found which fulfilled this criteria, five 

o f  these strains were from SetB(INH) and 16 from Set A. The 21 strains were subcultured 

onto duplicate 7H10 agar plates and their growth at 28°C and 37°C retested. Three strains 

continued to show poor growth at 37°C while retaining proliferative growth at 28°C; one 

strain, 228, from Set A and strains 166 and 621 from SetB(INH). A subsequent subculture of 

these three strains and a repeat testing o f their growth at 37°C and 28°C showed an apparent 

reversion to growth at 37°C. No stable temperature sensitive mutants were isolated from 

Bank 1.

3.1.3.3 Screening fo r  altered antibiotic resistance and sensitivity

There are a variety o f antibiotics whose mode o f action is thought to involve the 

mycobacterial cell wall, as well as those whose uptake would be affected by a change in the
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permeability of the cell envelope (section 1.5). An increased antibiotic resistance or sensitivity 

could therefore be due to an altered cell envelope. The NTG-treated M. smegmatis strains 

were screened for altered antibiotic resistance and sensitivity in an attempt to isolate a strain 

with a defective cell wall, while remaining aware that other non-cell wall target site mutations 

could be involved.

3.1.3.3.1 Minimum Inhibitory Concentrations, MICs

Initially MICs of the selected antibiotics were determined on solid Lemco agar at 28°C . A 

late log-phase (0.8-1 A*«,) liquid culture of wild type M. smegmatis m e2155 was streaked onto 

Lemco agar containing increasing concentrations of the given antibiotic, from 0 - 1  mg/ml, in 

doubling increments i.e. 2, 4, 8, 16, 32, etc. The plates were incubated at 28°C for 6 days 

before being read. The results are shown in Table 11.

The MICs of each antibiotic for M. smegmatis mc2155 on Lemco agar at 28°C were on the 

whole similar to those found by other groups (Table. 11); variations were put down to the 

differing conditions of media, temperature and growth stage and size o f  inoculum under which 

these values were established. M. smegmatis mc2155 was, as expected, sensitive to 

antimycobacterials 1-7 (Table. 11) and resistant to penicillin G and pyrazinamide. The most 

suitable concentrations for the initial screening of the banks of NTG-treated M. smegmatis 

strains for increased resistance to antimycobacterials 1-7, or sensitivity to penicillin G and 

pyrazinamide, were determined (Table. 11).
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Table 11. The Minimum Inhibitory Concentrations (MICs) of nine antibiotics against

M. sm egm atis mc2155 at 28°C

Antibiotic M. smegmatis me2155 
MIC (Mg/ml) at 28 °C 
(on Lemco media)

Published M. smegmatis 
MIC's (¿¿g/ml), at 37°C 
(in various media)

Screening
concentration
(//g/ml)

1) Minocycline 32 2-5 (Yamada et al., 
1991)

50

2) Ethambutol 2-4 3-5 (Silv e e ta l., 1993) 5

3) Ethionamide 32 10 (Baneijee et al., 
1994)

50

1 4) Amikacin 32-64 Unknown (5-20 for M. 
tuberculosis Dulwich, 
PHL)

75

5) Cycloserine 128 Unknown (< 50 for M. 
tuberculosis, Dulwich 
PHL)

200

6) Ofloxacin 2-4 < 2 in M. tuberculosis 5

7) Ciprofloxacin 2-4 5

8) Penicillin G 1024 200 + 500

9) Pyrazinamide 600 at least 500 (Konno et 
al., 1967)

500

3.1.3.3.2 Antibiotic resistance

NTG-treated M . smegmatis were screened for resistance to ethambutol, ethionamide and 

cycloserine as their target site is believed to be in the cell wall (section 1.5.1.); the tetracycline, 

minocycline, was used as its efficacy against mycobacteria is attributed to its ability to traverse 

the lipid permeability barrier, an alteration in the cell wall could result in increased resistance 

to this antibiotic. Amikacin is a polycationic aminoglycoside whose uptake is self promoted 

and believed to be due to the negative surface charges on the mycobacterial cell wall; the drug 

was used as an alteration in the cell wall could again lead to reduced uptake of the drug. The 

fluoroquinones, despite the fact that their main target site is DNA gyrase, were used as a
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permeability alteration could also result in increased resistance.

Bank 1 of 2,000 NTG-treated M. smegmatis strains were screened for resistance to seven 

antibiotics. The 2,000 strains were replica plated onto Lemco agar containing an inhibitory 

concentration of the given antibiotic and subsequently incubated at 28 °C for 5 days. Any 

strains able to grow were subcultured onto Middlebrook 7H10 agar before being retested by 

streaking single colonies onto Lemco agar containing an inhibitory concentration o f antibiotic. 

The strains were subsequently incubated at 28 °C for 5 days. Any resistant strains isolated 

were retested in liquid Lemco media containing increasing concentrations of the antibiotics.

If  no resistant strains were isolated from Bank 1 then a large scale screen of NTG-treated 

M. smegmatis strains was undertaken. 1ml (3x10* cfu) o f  a  late log-phase culture o f  NTG- 

treated M. smegmatis strains, seeded from frozen stocks o f  SetB(INH), was spread onto 

Lemco agar containing the inhibitory concentration of the  antibiotic. Again any resistant 

strains were subcultured and retested individually.

3.1.3.3.2.1 Minocycline

Bank 1 was replica plated onto Lemco agar containing SOjug/ml of minocycline and 12 

apparently resistant strains were observed. These 12 strains were found to be sensitive to the 

same concentration when subcultured and retested. No stable minocyline resistant strains were 

isolated from Bank 1.

A large scale screen (section 2.28.2) for minocycline resistant strains at 50>ug/ml concentration 

was then carried out which was also fruitless .
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3.1.3.3.2.2 Ethambutol

Bank 1 was replica plated onto Lemco agar containing 2/^g/ml ethambutol and incubated at 

28°C. The majority of the Bank 1 strains appeared sensitive to the 2/^g/ml MIC, which had 

been difficult to determine exactly. Twenty-nine strains, 18 from SetA and 11 SetB(INH), 

grew on the ethambutol containing agar. These strains were subcultured and restreaked onto 

agar containing ethambutol at 2//g/ml and 5//g/ml. One strain showed growth on 2//g/ml 

ethambutol, five strains showed some growth on 2 and 5Aig/ml of ethambutol. The other 23 

strains showed no growth on either concentration of ethambutol. Concentrations o f 2/^g/ml 

and 5/^g/ml ethambutol were used to determine the degree o f resistance exhibited by resistant 

strains. The six apparently resistant strains were retested on 2/^g/ml and 5^g/ml of ethambutol 

on solid and liquid Lemco agar and were found to be sensitive to both concentrations on solid 

and in liquid media.

Large scale screening (section 2.28.2) yielded two apparently resistant strains which were 

found to be sensitive on subculture and retesting, again no strain was found.

3.1.3.3.2.3 Ethionamide

Bank 1 was replica plated onto Lemco agar containing 50/^g/ml of ethionamide. Thirty nine 

strains showed growth on ethionamide, 24 from SetA and 15 from SetB(INH). On subculture 

and retesting, nine strains, all from SetA were found to be weakly resistant, whereas the other 

30 were all sensitive. On subsequent subculture and retesting of these 9 strains on solid and 

in liquid media the resistance was not maintained.

Large scale screening (section 2.28.2) for ethionamide resistance involved the plating out of 

NTG-treated M . smegmatis strains from SetA and SetB(INH). The screen yielded 45 resistant 

colonies, 21 from SetA and 24 from SetB(INH). The 45 strains were subcultured and 

restreaked onto plates containing ethionamide; 19 SetA strains and 20 SetB(INH) strains

________ R esu lts
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remained resistant. The test was repeated by streaking from liquid cultures of each strain on 

to ethionamide plates. This repeat test resulted in 4 strains from Set A and 3 from SetB(INH) 

retaining very weak resistance, only 3-4 resistant colonies per plate. The seven weakly 

resistant strains were deemed unsuitable for complementation experiments and therefore 

further investigation.

3.1.3.3.2.4 Amikacin

Bank 1 was replica plated onto Lemco agar containing 75^g/ml amikacin. Four strains were 

found to grow strongly on the Lemco agar containing amikacin. These strains were 

subcultured and retested on Lemco agar with 75>ug/ml amikacin. The four strains no longer 

showed resistance to this concentration of amikacin.

A large scale amikacin screen (section 2.28.2) did not produce any resistant strains. No stably 

amikacin resistant strains were isolated.

3.1.3.3.2.5 Cycloserine

Bank 1 was replica plated onto Lemco agar containing 200/ig/ml cycloserine. 150 strains were 

found to grow on cycloserine following this initial screen, 65 from SetA and 85 from 

SetB(INH). These strains were subcultured and retested on Lemco agar containing 200/^g/ml 

cycloserine. Forty nine strains retained resistance, 22 from SetA and 27 from SetB(INH). 

These strains were again subcultured and retested and all forty nine strains regained their 

sensitivity.

3.1.3.3.2.6 Ofloxacin

Bank 1 was replica plated onto Lemco agar containing 5/ug/ml ofloxacin. Forty five strains 

showed growth on 5/zg/ml ofloxacin, 25 from SetA and 20 from SetB(INH). O f these only 

12, eight from SetA and four from SetB(INH), were found to remain resistant following
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subculture and subsequent retesting. The strains from Set A were 4, 134, 290, 291, 486, 934, 

944 and 1008, those from SetB(INH) were 259, 601, 712 and 720. The strains retested on 

Lemco agar containing 5/^g/ml and 10/^g/ml ofloxacin and found to remain strongly resistant 

to  5/zg/ml and weakly resistant to 10^g/ml.

The resistance of the 12 strains was also tested in 5ml Lemco media with a 5/^g/ml 

concentration. Seven of the strains were found to remain resistant to 5/zg/ml in liquid culture, 

while five (134, 486, 1008, 259(INH) and 712(INH)) were inhibited at this concentration in 

liquid culture.

The 12 strains were also tested for cross reactivity to ciprofloxacin by streaking them onto 

5 and 10^g/ml of ciprofloxacin.

Two strains 486 and 712(INH) were found to be sensitive to 5//g/ml ciprofloxacin, the other 

ten strains were resistant. It was more likely that those strains resistant to both ofloxacin and 

ciprofloxacin had all sustained mutations in their gyrA or gyrB  genes, the primary site of 

action of both drugs. It was also conceivable that those strains resistant to ofloxacin only had 

acquired mutations in other genes which resulted in resistance through decreased permeability 

possibly due to an alteration in the cell envelope.

3.1.3.3.2.7 Ciprofloxacin

Bank 1 of NTG-treated M. smegmatis cells were replica plated onto Lemco agar containing 

5/^g/ml ciprofloxacin. Eighteen strains were found to grow on this concentration of 

ciprofloxacin, 12 strains from SetA and 6 from SetB(INH). The strains were subcultured and 

retested and three of the strains from SetA remained resistant (273, 487 and 719). The other 

15 strains were sensitive to 5/zg/ml ciprofloxacin. None o f the cross resistant ofloxacin 

resistant strains were picked up from this screen for ciprofloxacin resistance.
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In summary, NTG-treated strains were screened for resistance to seven antimycobacterial 

agents at concentrations to which they were normally susceptible. Although initial screens 

appeared to pick up some strains resistant to each antibiotic the majority o f these strains 

became sensitive following serial subculture and retesting. Finally, the only stable NTG- 

treated M  smegmatis mutant strains isolated were resistant to ofloaxcin and ciprofloxacin 

(Table. 12)

3.1.3.3.3 Antibiotic Sensitivity Testing

NTG-treated M. smegmatis me2155 strains were screened for increased sensitivity to 

compounds to whichM smegmatis mc2l 55 possessed a naturally high level o f resistance i.e. 

pyrazinamide and penicillin G (Table. 11). An increased level o f sensitivity may be have been 

due to a change in permeability, caused by an alteration in the cell envelope structure, as with 

the penicillin G sensitive mycolic acid mutant ofM  smegmatis (Kundu et al., 1991).

3-1.3.3.3.1 Penicillin G

Bank 1 was screened for sensitivity to penicillin G by replica plating onto two sets of Lemco 

plates containing 500/rg/ml and 200//g/ml penicillin G respectively, followed by incubation 

at 28°C. As the MIC for penicillin G was >lmg/ml at 28°C, any strains unable to survive 

these concentrations of penicillin G would be exhibiting increased sensitivity to the antibiotic. 

From the initial screening nine strains were isolated from SetA and five of these showed weak 

growth at 200jug/ml penicillin G as well as no growth at 500/zg/ml penicillin G. Eight strains 

showing no growth on 50<Vg/ml penicillin G  were isolated from SetB(INH). These seventeen 

strains were retested for sensitivity to 200//g/ml and 500/ug/ml. Seven SetA strains and one 

SetB(INH) strain continued to show increased sensitivity to penicillin G at 500/^g/ml. These 

strains 251, 255, 357, 396, 730, 758 and 826 from SetA and 722 from SetB(INH), were 

subcultured and further analysed. Two single colonies from each strain were streaked out onto 

Lemco plates containing penicillin at 200^g/ml and 500//g/ml. All showed increased
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sensitivity in that they were sensitive to 500^g/ml penicillin G, although resistant to 200/^g/ml 

on solid medium.

The penicillin G sensitivities of liquid cultures of these strains were then investigated at 28°C 

and 37°C. Eight single colonies from each of the penicillin sensitive strains were picked and 

used to inoculate 5ml o f Lemco broth. Four cultures from each strain were incubated at 28°C 

and four from each strain were incubated at 37°C. The cultures were then streaked onto 

duplicate 200//g/ml penicillin G and 500/^g/ml penicillin Lemco plates, one set of duplicates 

were incubated at 37°C and the other set at 28°C. The eight cultures derived from single 

colonies o f  the eight initially sensitive strains were all resistant to 200^g/ml, at 28 °C and 

37°C. All cultures o f the three strains 251, 357 and 826 also showed complete resistance to 

500//g/ml penicillin G at both temperatures. In contrast five strains 255, 396, 758, 730 and 

722 (INH) showed variable results when their eight liquid cultures were plated onto solid 

Lemco containing 500/^g/ml penicillin G; although the results were consistent at both 

temperatures.

These five cultures showing variable results were analysed further. The cultures of each strain 

unable to survive 500/^g/ml penicillin were subcultured onto Lemco plates at 28 °C, five single 

colonies from each of these strains were cultured and retested on 500 ¿¿g/ml penicillin G at 

28°C and 37°C. Three strains (255, 396 and 758) were found to be resistant to 500/^g/ml 

penicillin G  at both temperatures. The cultures of strains 730 and 722 showed variable 

sensitivities to penicillin G. Four cultures o f 722 were sensitive to 500yug/ml penicillin G and 

one was resistant, at both temperatures. Two cultures o f 730 were sensitive to 500/^g/ml at 

37°C and 28°C. One 730 culture was sensitive to 500/^g/ml penicillin G at 28°C one at 37°C 

and one was contaminated. The inconsistency of the results obtained for both strains 730 and 

722 indicated that the strains were mixed or unstable and had reverted to the wild type in 

some o f the cultures.
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In conclusion, two strains, 730 and 722, showing some penicillin sensitivity were isolated; 

since they did not appear stable it was concluded that neither were suitable for further use.

3.1.3.3.3.2. Screening of NTG-treated strains from the second mutagenesis for penicillin 

sensitivity

The screen for penicillin sensitivity had unearthed some sensitive strains, albeit unstable and 

the decision was taken to continue the search. The majority o f the sensitive strains isolated 

from the previous screen were from SetA, strains which had not been INH treated; the repeat 

screen was therefore carried out on the INH untreated strains of Bank 2 from the second 

mutagenesis procedure (section 2.27). The NTG-treated strains were again screened by 

replica plating for sensitivity to penicillin G at 28°C.

57 strains initially appeared sensitive to  penicillin G, these were subcultured and retested on 

Lemco agar containing 500/ug/ml penicillin G from single colonies on Lemco plates. 

Seventeen strains appeared sensitive, showing no growth on 500/ug/ml o f penicillin G. The 

strains were retested by streaking liquid culture, derived from single colonies, onto Lemco 

agar containing 500/^g/ml penicillin. 15 strains were found to remain sensitive to  a 500/ug/ml 

concentration of penicillin G  at both 28 °C and 37°C.

The antibiotic sensitivity of these fifteen strains was then compared to the wild type in liquid 

culture. Equal numbers (2xl07 cfu) of test strain cells were added to a series o f 5 ml volumes 

of Lemco media containing increasing concentrations of penicillin G (1 OO^g/ml-1 mg/ml). A 

series was set up for each test strain and wild type M. smegmatis mc2155, all the series were 

incubated at 37°C for 48hr (section 2.28.4). The A*,*, o f the individual cultures o f  each series 

was taken as a measure of growth at each concentration of penicillin. The antibiotic sensitivity 

o f the fifteen test strains were then compared to the wild type. The results represented 

graphically in Fig. 18.
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Fig. 18. Graphs depicting the penicillin G sensitivity of NTG treated M. sm egm atis 
strains in liquid culture
An approximately equal number o f cells (2xl07) of each strain were added to 5ml Lemco 
containing increasing concentrations (100/ig/ml) of penicillin G and incubated at 37°C. The 
A^o of each of the individual cultures, at increasing penicillin G concentrations, o f each strain 
were then taken. Strains 221, 442, 605, 611 and 650 (a-e) exhibited increased sensitivity to  
penicillin G. Strain 557 (f) showed such poor growth that a proper comparision with wild type 
could not be made. Strain 21 (g) is an example of a strain exhibiting no increased sensitivity 
to penicillin G.
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Five of the strains clearly showed increased sensitivity to penicillin G: 221, 442, 605, 611 and 

650 (Fig. 18). Eight of the strains (140, 190, 350, 463, 570, 557, 879, 889) showed poor 

growth in comparison to the wild type in Lemco alone (only 557 is shown in Fig. 18) and as 

well as at the lower concentrations of penicillin G. One o f these strains, 570, was also pulled 

out on the screen for auxotrophs from the second mutagenesis procedure. Four strains, 21, 

922, 939 and 806 showed no increased sensitivity to penicillin G (only 21 is shown Fig. 18). 

This experiment also revealed a reduced MIC of 500/^g/ml for penicillin G against the M. 

smegmatis mc2155 strain in liquid culture at 37°C following a 48hr incubation when compared 

with the 1 mg/ml MIC on solid media. Similar results were obtained on repetition of this 

experiment.

Penicillin G sensitive strains 221, 442, 605 and 611 showed increased sensitivity to penicillin 

G with an MIC o f 400/^g/ml, 100^g/ml less than the wild type (500^g/ml) in liquid culture. 

Strain 650 showed the greatest increase in sensitivity, with an MIC of 200^g/ml, 300^g/ml 

lower than the wild type in liquid culture (Fig. 18). The five penicillin G sensitive strains were 

therefore candidates for further analysis and possible complementation.

3.1.3.3.3.3 Pyrazinamide
The bank of 2,000 NTG-treated colonies was screened for increased sensitivity to 

pyrazinamide by replica plating onto Lemco agar pH5.2 containing 500^g/ml pyrazinamide, 

at a concentration o f  100^g/ml lower than the 600/^g/ml MIC. Fourteen strains from Set A 

and from SetB(INH) were isolated which appeared to show increased sensitivity to 

pyrazinamide. These were subcultured and retested on solid medium at pH5.2, at a 

concentration of500^g/ml pyrazinamide at 28°C and 37°C. Two strains, 826 and 415, were 

found to remain sensitive to 500//g/ml pyrazinamide at 28 °C, showing no growth on solid 

medium. The 415(INH) strain showed weak growth at 37°C and with strain 826 only the 

inoculum was visible. The two strains were subcultured, the test repeated and the same results
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obtained.

Both strains 415(INH) and 826 had been selected from other screens. Strain 415(INH)(AM2) 

had previously been isolated from the auxotroph screen and was found to require aspartate, 

phenylalanine, arginine, serine or valine for growth. Strain 826 had been selected on the initial 

screen for penicillin G sensitive strains although it appeared not to be consistently sensitive 

to penicillin G on retesting.

The sensitivity o f 415(INH) and 826 to pyrazinamide was then compared to the wild type 

strain in liquid culture (section 2.28.3). Equal numbers of cells (5x10® cfu) from strains 415, 

826 and the parent M. smegmatis mc2l 55 were added to a series often 5ml volumes of Lemco 

broth pH5.2 containing concentrations of pyrazinamide, from 0-1054/^g/ml in doubling 

quantities. The series were set up in duplicate, one series for each strain was incubated at 

37°C and the duplicate at 28°C for 48hr and 72hr, respectively.

The MIC of pyrazinamide for the wild type strain was reduced in liquid culture (by 1 OO^g/ml 

to 500/^g/ml) as had been observed for penicillin G. Strain 415(INH) did not show significant 

sensitivity to pyrazinamide in liquid culture at either temperature when compared with the 

wild type, (Fig. 19a+b). Strain 826 was considerably more sensitive than the wild type to 

pyrazinamide in liquid culture, particularly at 28°C (Fig.l9a+b). As was observed for 

penicillin G, the MIC of pyrazinamide for the wild type strain was reduced in liquid culture, 

by 100^g/ml to 500//g/ml.

The fact that 415 was not sensitive to pyrazinamide in liquid culture implied that 415(INH) 

was not specifically sensitive to pyrazinamide but showed poor growth on solid media 

containing pyrazinamide due to another mutation which resulted in a poor growth rate; 

alternatively the strain could have been specifically pyrazinamide sensitive but unstable in
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b)

pyrazinamide concentration (ng/ml)

Fig 19. A graph depicting the pyrazinamide sensitivity of two NTG treated strains of 
M. sm egm atis.
An approximately equal number of cells (5xl06) were added to 5ml Lemco (pH 5.2) with 
increasing concentrations of pyrazinamide (2//gml-1054^g/ml in doubling quantities) which 
were incubated at a) 37°C and b) 28°C Strain 826 (Pyramid II) exhibited increased sensitivity 
to pyrazinamide in liquid culture, (particularly at 28 °C) while strain 415 did not, when 
compared with theM  smegmatis mc2155 wild type resistance (500pg/ml).
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liquid culture.

Strain 826 appeared to be a stable specific pyrazinamide sensitive mutant and as such was 

considered a candidate for further investigation and possible complementation experiments.

In conclusion the screen o f NTG-treated M. smegmatis strains for sensitivity to penicillin G 

and pyrazinamide yielded five stable penicillin G-sensitive strains and one stable pyrazinamide- 

sensitive strain. The two sensitivity screens also selected seven other slow growing, possibly 

mutant strains, two known auxotrophic strains 415(INH)(AM2) and 570 and the 

pyrazinamide mutant 826 on the penicillin G screen.

This suggested that the initial sensitivity screening was less specific than the resistance 

screening, picking up other mutant strains which were not specifically sensitive to the test 

drug. These nonspecific mutant strains were probably picked up because of their poor growth 

rates. The sensitivity screening ultimately proved successful in isolating a number o f mutant 

strains.

3.1.3.3.4 Summary o f antibiotic screening

The screen for antibiotic resistant and sensitive strains of NTG-treated M. smegmatis 

successfully isolated 12 ofloxacin and 3 ciprofloxacin resistant strains as well as 5 penicillin 

G and 1 pyrazinamide sensitive mutant (Table. 12). The isolation o f  strains resistant to 

antibiotics whose mode of action was thought to be involved directly with the cell wall i.e. 

ethambutol, ethionamide proved elusive.

The initial screening procedure by replica plating pulled out apparently resistant strains or 

sensitive strains for every antibiotic tested. However, on subsequent subculture and retesting 

the majority o f these strains appeared to lose their resistance or sensitivity (Table. 12).
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Num ber o f  serial transfers

(a) A ntibiotic  
resistance

1 2 3 A ctual
m utan ts

M in o c y c l in e 12 0 0

E th a m b u to l 3 0 6 0 0

E th io n a m id e 3 9 9 0 0

A m ik a c in 4 0 0

C y c lo s e r in e 1 5 0 4 9 0 0

O f lo x a c in 4 5 12 12 12

C ip ro f lo x a c in 18 3 3 3

(b) A ntibiotic  
sensitivity

P e n ic i l l in  G  - 
B a n k  1

17 8 5 2  v a r ia b le

P e n ic i l l in  G  -  
B a n k  2

17 15 5 5

P y r a z in a m id e 14 2 1 1

Table. 12. Antibiotic resistant and sensitive mutant strains of isolated from Bankl and 
Bank2 of NTG-treated M. smegmatis strains
a) shows the results of screening for antibiotic resistance
b) shows the results of screening for antibiotic sensitivity
The numbers of potential mutants following each serial transfer are shown as well as the final 
number o f  mutants isolated.
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This phenomenon has been observed by other groups screening NTG-treated mycobacteria 

and was put down to the instability o f the mutations.

At this point a decision had to be made about which strains to investigate further and it was 

considered appropriate to pursue the penicillin G and pyrazinamide sensitive mutants. The 

basis for the selection o f the penicillin G mutants was the previous isolation of a penicillin G 

sensitive mutant with defective mycolic acid biosynthesis (Kundu et al., 1991); while 

remaining aware that the penicillin G sensitive strains may have defective P -lactamases 

resulting in increased sensitivity to penicillin. Of the penicillin G sensitive strains, 650 (PenG 

650) was selected for further investigation as it exhibited the greatest degree o f sensitivity. 

The pyrazinamide sensitive mutant 826 (Pyramidll) was chosen as it could be a permeability 

mutant with some form o f cell envelope alteration; as little w as known o f the mode o f action 

o f pyrazinamide and the levels of resistance to the drug in M . smegmatis it was considered 

preferable to follow this mutant further.

3.1.4 Biochemical analysis of candidate strains for  complementation 

As described above, two strains, a pyrazinamide sensitive strain (Pyramidll) and a penicillin 

G sensitive strain (PenG 650) were considered candidate strains for further analysis. The initial 

decision taken was to investigate the lipid content of the cell envelope o f the strains to look 

for any gross alterations.

The mycobacterial lipids o f strains Pyramidll and PenG 650 were systematically analyzed 

using the strategy created by G. Dobson et al. (1985), in order to locate any gross alterations 

in the components of the cell envelope. The lipids of wild type M. smegmatis and the 

uncharacterised auxotroph (570) from the second mutagenesis were analysed as controls. This 

work was carried out under the supervision of Dr.D.Minnikin and Mr R.Bolton, Department 

o f  Biochemistry, University of Newcastle.
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3.1.4.1 Non Polar and Polar "free” lipid analysis

The free lipids were extracted from 50mg of the freeze-dried cells from a late log-phase 

culture (0.8 A ^) of each strain (section 2.29). There are a total of six specifically developed 

two-dimensional thin layer chromatographic (2D-TLC) systems (A-F) which are used to 

analyze the range of polar and non polar lipids. Three o f these systems, A, D and F (section 

2.30.1-3) were used to analyze the "free" lipids of the strains, Pyramidll (826), Aux 570, 

PenG 650 andM  smegmatis mc2155.

3.1.4.1.1 System A

System A is the least polar system and this was used to search for menaquinones, 

characteristically found in M. smegmatis, in the four strains. Menaquinones were observed 

under UV light in all four strains. This system can also be used to detect mycoserosates and 

phthiocerols.

3.1.4.1.2. System D,

The most polar of the non polar lipid extracts were analyzed using system D,, which detects 

trehalose dimycolates (cord factor) and the sulpholipids found in M. tuberculosis. Trehalose 

dimycolate (cord factor) was observed in Pyramidll (826), M. smegmatis, Aux 570 and PenG 

650 (Fig.20).

Sulpholipids were not present as would be expected. Other identical but unknown glycolipids 

were also observed in all four strains under this system, all of which reacted positively with 

the a-naphthol sulphuric acid spray, NAS which detects sugar moieties (Fig.20).

3.1.4.1.3 System D2

The least polar of the polar free lipids were also analyzed using system D which revealed the 

glycopeptidolipids or C-mycosides. All four strains appeared to have the same simple

__________________________________________________________ _________________ R e s u l t s
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Fig.20. Two dimensional TLCs of the most polar class of lipids in the non-polar lipid 
fraction of mycobacterial “free” lipids (System D,)
1st direction, chloroform:methanol:water (100:14:0.8 v/v/); 2nd direction, chloroform : 
acetone : methanol (50:60:2.5 v/v). Organisms: a+b) M. smegmatis mc2155, c+d) Pyramidll 
M. smegmatis, e+f) Aux 570 M. smegmatis, g+h) PenG 650 M . smegmatis.
Detection: a,c,e + g - 5% ethanolic molybdophosphoric acid M PA all lipids; b,d,f+ h - a -  
naphthol sulphuric acid for sugars components i.e.CF and GL.
CF - cord factor (trehalose dimycolate)
GL - glycolipids
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Fig.21. Two dimensional TLCs of the least polar class of lipids in the polar lipid fraction 
of mycobacterial "free" lipids (System D2).
1st direction, chloroform:methanol:water (100:14:0.8 v/v/); 2nd direction, chloroform : 
acetone : methanol (50:60:2.5 v/v). Organisms: a+b)M. smegmatis mc2155, c+d) Pyramidll 
M. smegmatis, e+f) Aux 570 M. smegmatis, g+h) PenG 650 M. smegmatis.
GPL - glycopeptidolipid
Detection: a,c,e + g - 5% ethanolic molybdophosphoric acid MPA, all lipids; b,d,f + h - a -  
naphthol sulphuric acid for sugars components i.e. GPL
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Fig.22.Two dimensional TLCs o f  the most polar class of lipids found in the 
mycobacterial polar "free" lipid fraction (System F).
1st direction, chloroform:methanol:water (65:25:4 v/v); 2nd direction chloroform:acetic acid: 
methanol water (80:15:12:4 v/v).
Organisms: a+b) M. smegmatis mc2155, e+f) Aux 570 M. smegmatis strain, c+d) Pyramidll 
M. smegmatis strain, g+h) PenG 650 M . smegmatis strain.
DPG - diphosphatidylglycerol 
PE - phosphatidylethanolamine acid 
PI - phosphatitylinsositol
DPIDM + MPIDM - di and mono acylphosphatidylinsositol dimannosides 
DPIPM + MPEPM - di and mono acylphosphatidylinsositol pentamannosides 
GL - glycolipid
Detection system: a,c,e + g - 5% ethanolic molybdophosphoric acid spray (MPA) for all lipids. 
b,d,f + h a-naphthol sulphuric acid (NAS), for sugar components, i.e. GL, DPIDM, MPIDM, 
DPIPM and MPIPM
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glycopeptidolipid components, revealed with both 5% molybodophosphoric acid (MPA) and 

the a-naphthol sulphuric acid sprays (Fig. 21).

3.1.4.1.4 System F

This system was used to analyze the most polar lipids of the polar lipid fraction, phospholipids 

found in mycobacteria and the polar glycolipids. The polar lipids were detected with MPA 

(Fig.22). The largest proportion o f phospholipids observed were diphosphatidylglycerol and 

phosphatidylethanolamine (Fig.22). Phosphatidylinositol-mannosides (PIMs), were also 

observed in smaller amounts. No gross differences in the proportions o f any of these 

components were noted between the wild type mc2155 and the mutant strains Aux 570, PenG 

650 and Pyramidll.

Fig.22 also shows System F TLC plates of the four strains sprayed with a-naphthol sulphuric 

acid spray, in which the polar glycolipids of each strain could be distinguished better. Three 

glycolipids, GL 1, 2 and 3, were clearly visible, particularly strongly in the Pyramid II strain. 

In strains Aux 570 and PenG 650 another glycolipid appeared to  be running to the right of 

glycolipid 3; a fourth glycolipid was also weakly visible in the wild type strain. This glycolipid 

did not appear to be present in the Pyramidll strain.

3.1.4.2 My colate analysis

The mycolates of the M. smegmatis mc2155, Aux 570, Pyramidll and PenG 650 were also 

analyzed by a 2D-TLC system following an alkali extraction which hydrolysed and the 

esterified the lipids to obtain fatty methyl esters and methyl mycolates (section 2.31). Fig.23 

shows the mycolates o f the four strains, the characteristic a , a ' and epoxymycolates o fM  

smegmatis were observed in all four strains, although there may be differences in the 

actual amounts of each mycolate component in each strain.
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Fig. 23. Two dimensional TLC of the mycolic acid methylester obtained from the 
extraction of mycolic acids
1st direction, petroleum ether (b.p. 60-80°C), acetone (95:5v/v), three times; 2nd direction 
toluene, acetone (97:3, v/v).
Organisms: a)M . smegmatis mc2l 55, b) Aux 570 M. smegmatis c) Pyramidll M. smegmatis
d) PenG 650 M. smegmatis. Detection: MPA all lipids 
a  - a mycolates 
a '- a ' mycolates 
E - epoxymycolates 
FA - Fatty acids
All strains exhibited the expected a , a ' and epoxymycolates expected from M  smegmatis 
strains in similar proportions.
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3.1.4.3 Fatty acid analysis using gas chromatography

The fatty acid methyl esters of the fatty acids produced by the mycolate extraction were 

extracted and analysed by gas chromatography. The gas chromatography was carried out by 

Mr.R.Bolton, University of Newcastle.

Similar amounts of the various fatty acids were found in all four strains (Table. 13). The 

majority of the fatty acids in the strains were oleic acids (40%), closely followed by palmitic 

acid at 30%. Palmitoleic acid and tuberculostearic acid were found in similar amounts at about 

12%. The only slight variation was in the strain PenG 650 which contained slightly less oleic 

acid (32.6%).

___________________________________________________________________ ________ R esu l t s

Table. 13. The fatty acid composition of three mutant M. smegmatis strains and the wild 

type M. smegmatis me2155 strain

Fatty Acid M. smegmatis 
mc2155

Pyramidll Aux 570 PenG 650

Palmitoleic acid 
(C16:l) %

11.90 12.21 12.54 10.98

Palmitic acid 
(C:16) %

28.89 31.58 27.2 32.42

Oleic acid 
(C18:l) %

39.83 37.68 40.00 32.60

Tuberculostearic 
acid (C19Br) %

10.72 12.79 13.23 18.66

In conclusion, no gross alterations were observed in the lipid content of the two mutant 

strains, Pyramidll and PenG 650, or in the control mutant strain Aux 570, following this 

systematic analysis.
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3.1.5 Further analysis of PyramidII

Given that no gross alterations were observed in the lipid content o f Pyramidll and PenG 650, 

it was difficult to make the decision on which one to investigate further. On balance the 

decision was made to  pursue Pyramidll, as even if it turned out not to be the permeability 

mutant of interest, little is known o f  the mechanisms employed by mycobacteria to cope with 

pyrazinamide. It was also conceivable that PenG 650 had a defective P -lactamase as opposed 

to a more generalised permeability mutant.

3.1.5.1 Detailed analysis o f the pyrazinam ide sensitivity o f P yram idll in liquid culture. 

The pyrazinamide sensitivity experiment in liquid culture was repeated with strain Pyramidll 

and wild type M. smegmatis mc2155 at 37°C in duplicate (section 2.28.4). The control 

cultures for each strain were grown to two stages of growth, mid log-phase (O ^A ^) and very 

early stationary phase growth (1.0 A ^). The results of these experiments are shown in Fig.24. 

It was observed that strain Pyramidll was more sensitive to pyrazinamide than the wild type 

M . smegmatis at both stages o f  growth. However, the resistance o f both strains to 

pyrazinamide increased with increasing age of the cells in each culture and extended exposure 

o f the cells to a given concentration of the drug. In mid log-phase the greatest difference in 

the sensitivity between the two strains was observed at a 500/ig/ml pyrazinamide where the 

Pyramidll culture had an O ^ S A ^  (2xl07 cfu/ml) while the M. smegmatis mc2l 55 value was 

0.55 A600 (1.4x108 cfu/ml), a difference o f 0 .3 2 5 ^  , which represented a seven fold 

difference in the cfu/ml of each o f  the cultures of the two strains (Fig.24a). At early 

stationary-phase growth the most substantial difference in sensitivity between the two cultures 

was observed at 700//g/ml of pyrazinamide, when the two cultures had a 0.425 A ^  

differential, representing a 10 fold difference in cfu/ml (Fig.24b). Similar observations were 

made on repetition of this experiment and at other phases o f growth. Strain Pyramidll was, 

at all stages of growth, significantly more sensitive to pyrazinamide than the wild type M. 

smegmatis me2155, however the resistance o f  both M. smegmatis strains to
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Fig. 24. A graph depicting the pyrazinamide sensitivity of the Pyramidll M. sm egm atis 
strain in liquid culture, at two growth stages.
An equal number of cells (3xl07) and were added to two sets of 5ml Lemco (pH5.2) 
containing increasing concentrations (200//g/ml-900yug/ml) of pyrazinamide, for Pyramidll 
andM  smegmatis me2155 strains. Control cultures without pyrazinamide were also set up. 
The Â qo of each culture for set 1 was read when the control reached mid log-phase growth 
Â oq 0.6 and for set 2 when the control reached late log/early stationary phase growth 1.0 A ^. 
Graph a) represents mid-log phase growth and graph b) represents early stationary phase 
growth. At both stages o f  growth Pyramidll remained more sensitive to pyrazinamide than 
the wild typeM  smegmatis mc2155, although the resistance o f both strains increased with 
stage of growth and also time.
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pyrazinamide increased with the age of the cells and continuing exposure to the drug. This 

increase in resistance with age was more pronounced in the wild type M. smegmatis mc2l 55 

strain than the Pyramidll strain. The increase in resistance with age was probably due to  a 

number of factors such as the decrease in permeability o f elderly cell walls, an increase in the 

pH of the culture with time reducing the efficacy of the drug and the bacteriostatic nature o f 

the drug. It was concluded that strain Pyramidll was a stable pyrazinamide sensitive mutant 

that would be suitable for further analysis.

3.1.5.2 Penicillin sensitivity o f  Pyram idll

In order to  determine whether the increased sensitivity o f Pyramidll was specific to 

pyrazinamide, the penicillin sensitivity of Pyramidll was retested in liquid culture (section 

2.28.4.) The experiment was carried out five times with concentrations of penicillin G 

increasing from 1-1,000/^g/ml in 100/^g/ml increments. Two out of the five times Pyramidll 

showed similarly increased levels o f sensitivity to penicillin G as to pyrazinamide; on the other 

three occasions Pyramidll showed resistance levels similar to the wild type M. smegmatis 

mc2155 (data not shown).

3.1.5.3 M orphology and Acid-Fast Staining

The colonies of Pyramidll had a smoother morphology than the rougher wild type M. 

smegmatis m c2155 strain on both Lemco and Middlebrook 7H10 agar at 28°C or 37°C, as 

illustrated in Fig.25. Both strains were acid fast; although the Pyramidll strain did appear very 

slightly less acid fast than the wild type cells, this may have been due to a slight variation in 

the stage o f growth o f the cells.
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Fig.25.Colony morphology of strain Pyramid n  in comparison to wild type M  
smegmatis me1155
a+b) Pyramidll colonies on Middlebrook 7H10 agar 
c+d)M  smegmatis me2155 on Middlebrook 7H10 agar
All colonies were produced following 10 days growth at 37°C but from different dilutions of 
an early stationary phase culture 1.5 a+c) lxlO-9 dilution and b+d) 1x10'* dilution.
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3 .1 .5 .4  Api-Zym  Test

To ensure both strains were M. smegmatis, an Api-Zym test was carried out according to the 

manufacturer's instructions (section 2.33) on cultures of the wild type M. smegmatis mc2l 55 

and Pyramidll strains. The test results for both strains were concurrent with those for M. 

smegmatis mc2l 55 as shown in Table. 14 and Fig.26. The only variable result between the two 

strains was test 12 for naphthol-(31-phosphohydrolase activity which appeared to be lower 

fo r the Pyramidll mutant strain as indicated by a weak positive blue colour (Fig.26). The 

results for both strains were consistent with their being M. smegmatis.

3 .1 .5 .5  Growth curves

T he growth o f Pyramidll was compared to the wild type M. smegmatis mc2155 strain by 

following the of both strains over time. As shown in Fig.27 the Pyramidll strain has a lag- 

phase at least eight hours longer than the wild type M. smegmatis me2155 strain, having 

initially been seeded with a similar number of cells, 1x10*. The growth rate of both strains 

during log-phase growth appeared identical in both strains. The cfii/ml at each stage of growth 

were very slightly higher in the Pyramidll strain (Fig.27b). The cells o f Pyramidll in culture 

were observed to form more o f an even suspension in culture than the M. smegmatis mc2l 55 

strain and this reduction in clumping may have accounted for the slightly higher numbers of 

colonies formed by the Pyramidll strain in the growth experiment.

3.1.5.6. Further biochemical analysis

Pyramidll strain was further analyzed by Dr.G.Besra, Colorado State University, Colorado 

fo r alterations in the glycosyl composition by HPLC. No alterations were found in the 

arabinogalactan or in the lipoglycan fraction composed of LAM, LM and PIMs. The 

glycolipids, PIMs and trehalose mycolate profiles were re-analyzed by 2D-TLC and again no 

differences were found in Pyramidll lipids when compared to the wild type, M. smegmatis 

m c2155 lipids.
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a)

Fig. 26. The results of the Api-Zym test of Pyramidll and wild type me2155, M. 
smegmatis strains
a) M. smegmatis me2155 wild type and b) Pyramidll M. smegmatis
The results indicated that both both strains were M  smegmatis (Table 14). The results 
obtained from both strains were the same apart from test no. 12 the assay for Naphol-AS-BI- 
phosphate phosphohydrolase which was distinctly lighter in the Pyramidll strain.

Enzymes assayed for:-
1) Control
2) Phosphatase alcaline
3) Esterase (C4)
4) Esterase Lipase (C8)
5) Lipase (C l4)
6) Leucine arylamidase
7) Valine arylamidase

8) Cystine arylamidase 15) ß glucuronidase
9) Trypsin 16) a  glucosidase
10) Chemotrypsin 17) ß glucosidase
11) Phosphatase acid 18) N-acetyl-ß glucosaminidase
12) Napthol-AS-BI-phosphohydrolase
13) a  galactosidase 19) a  mannosidase
14) ß galactosidase 20) a fucosidase
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Enzyme assayed 
for

Substrate Wild-type
M . smegmatis

Pyramid
n

P h o sp h a tase  a lca lin e 2 -n a p h th y l p h o sp h a te + +

E ste ra se  (C 4 ) 2 -n a p h th y l b u ty ra te + +

E ste ra se  L ip a s e  (C 8 ) 2 -n a p h th y l c ap ry la te + +

L ip ase  ( C l 4 ) 2 -n a p h th y l m y ris ta te - -
L eucine  a ry la m id a se L - le u cy l-2 -n a p h th y la m id e -H- + +

V aline  a ry la m id a se L -v a ly l-2 -n a p h th y la m id e + +

C ystine  a ry la m id a se L -cy s ty l-n ap h th y la m id e - -
T rypsin N -b e n z o y l-D L -a rg in in e -2 -

n ap h th y la m id e
+ +

C hym otrypsin N -g lu ta n y l-p h en y la la n in e -2 -
n ap h th y la m id e

- -

P h o sp h a ta se  a c id 2 -n a p h th y l p h o s p h a te + +

N a p h th o l-A S -B I-  
p h o sp h o h y d ro l a sc

N a p h th o l-A S -B I-p h o sp h a te + ±

a  g a la c to s id a sc 6 -B r-2 -n a p h th y l-  a D - 
g a la c to p y ran o s id e

- -

P  g a la c to s id a se 2 -n a p h th y l-p D -g a la c to p y ra n o s id e - -

P g lu c u ro n id a se N a p h tlio l-A S -B l-  p D -g lu c u ro n id e - -

a  g lu co sid ase 2 -n a p h th y l-a D -g lu c o p y ra n o s id e + +

P  g lu co sid ase 6 -B r -2 -n a p h th y l-P D -  
g l u c o p y ra n o sid e

+ + + +

N -a c e ty l-P -
g lu c o sa m m id a sc

1-n a p h th y l-n -a c e ty l-p D -  
g lu c o sa m in id e

- -

a  m a n n o sid ase 6 -B r - 2 -n a p h th y l-a D -
m a n n o p y ra n o s id c

- -

a  fu co sid ase 2  -n a p h th y l - a  L -fu co p y ran o sid e - -

Table. 14. The API-ZYM test results for M. smegmatis me2155 and Pyram idll
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a)

0 20 40 60 80

l i m e  (h r )

Pyramidll

b)

Fig.27 . Graphs comparing the growth of Pyramidll and wild typeM  smegmatis me2155
a) The growth measured in optical density, A^, against time of a 200ml culture of each strain 
in Middlebrook 7H9 medium 0.1% Tween 80, of Pyramidll and M. smegmatis mc2l 55.
b) The growth measured by colony forming units (cfu)/ml against optical density
Graph a) shows a lag-phase o f 8-10 hr for the Pyramidll strain followed by a log-phase 
growth rate not significantly different from the wild ty p eM  smegmatis me2155.
Graph b) shows a slight increase in the efu's produced by Pyramidll when compared with M  
smegmatis mc2l 55 at stages o f growth defined by A ^ .
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3.1.5. 7 Hydrophobicity

A change in the hydrophobicity of a bacterial strain can indicate an alteration in the structure 

o f its outer surface (Rosenberg et al., 1980). The hydrophobicity of Pyramidll was measured 

in comparison to the wild typeM  smegmatis mc2155 using the method of Rosenberg et al. 

(1980)(section 2.32). The basis of this method was to determine the solubility o f cells in an 

organic solvent as a measure of their hydrophobicity. The solubility of a culture in the 

hydrocarbon was assessed by measuring the change in optical density of the aqueous layer on 

the addition o f the hydrocarbon.

A standard volume of hexadecane was added to 1,5ml o f the test strain cultures, which were 

at the same stage of growth and incubated at 28°C for lOmin. The solutions were then 

vortexed, left to settle and the A400 o f the aqueous layer was then measured. The original 

system was adapted slightly to use a non limiting number o f cells i.e. 200ml o f culture in 7H9 

broth were concentrated ten-fold. The hydrophobicity o f the test strains, Pyramidll and 

mc2155, was measured at two stages o f growth, late log-phase (O SA ^) and early stationary 

stage (l.bA^oo), following growth at 37°C. The optical density of the aqueous layer of 

Pyramidll was measured at 400nm and was significantly higher than the wild type culture at 

both stages o f growth, by at least 0.5A4OO, (Table 15).

_____________________________________________________________________  R esults

M le J 5 J h e h 2 d r o g h o b k i^ o f^ r a m id n « n d M _ ^ ^ ^ _ m c |1 5 5

Growth stage of the culture Pyramid II aqueous layer 
A400

M. smegmatis me2155 
aqueous layer Ajno

Late log-phase (O^A**,) 0.59+ 0.1 0.167 ±0.014

Early stationary-phase 1.53 ± 0.05 0.92 ±0.082
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The results shown were the average of two readings for each strain. The results indicated that 

Pyramidll was more hydrophilic than the wild type M. smegmatis. The hydrophilic nature of 

Pyramidll may have been due to the lack o f  a hydrophobic molecule on the cell surface or the 

increase in a hydrophilic molecule which could have resulted in the strain being more 

permeable to hydrophilic molecules such as pyrazinamide.

In summary strain Pyramidll was proven to  be more susceptible to pyrazinamide than the wild 

type M. smegmatis mc2155 strain and variably sensitive to penicillin G. Pyramidll was shown 

to beM  smegmatis through Acid-Fast staining and Api-Zym testing. Pyramidll also exhibited 

a smooth colony morphology and a lag-phase 8-10hr longer than the wild type strain. 

Although no gross differences were detected in the lipid content o f the Pyramidll strain a 

distinct decrease in the hydrophobicity o f the strain was discovered which may be caused by 

some cell envelope defect and may also have caused the increased permeability of the strain 

to hydrophilic molecules such as pyrazinamide.
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3.2 C o m p l e m e n t a t io n  o f  P y r a m id I I  w it h  a  c o s m id  pYUB18::M. l e p r a e

GENOMIC LIBRARY.

The next objective was to isolate a region of M . leprae DNA which would complement the 

pyrazinamide sensitive phenotype o f the M  smegmatis Pyramidll strain.

The proposed strategy was to transform competent Pyramidll M. smegmatis cells with the 

cosmid shuttle vector pYUB18: M . leprae genomic library by electroporation. The 

Pyramidll :M. leprae transformants would then be screened for increased resistance to 

pyrazinamide. Apparent revertants and their cosmids would then be analysed in more detail.

3.2.1 T r a n s f o r m a t i o n  o f  P y r a m i d I I  w i t h  c o s m i d  pYUB18::M l e p r a e  g e n o m i c  

LIBRARY.

T heM  leprae pYUB18 shuttle vector cosmid library was provided by Dr. W.R. Jacobs as 

a phage lysate with a titre of 1x10s pfu/ml. E. coli NM554 cells were transformed with 5/ul 

o f phage lysate (section 2.10) and 2xl04 colonies were produced. The transformation 

efficiency of4xl06 cfu/ml was lower than the lxlO9 (or 5x10* cfu) expected, however 2xl04 

colonies were considered sufficient to be a representative sample of the entire library.

As cosmid DNA is particularly unstable in mycobacteria, small culture volumes were used to 

reduce the loss of unstable cosmids, on the basis that the cells would go through a reduced 

number o f cell divisions. The colonies were therefore resuspended in 10ml LB (Kan 50//g/ml) 

and 1ml volumes o f the resuspension were added to ten 2ml volumes o f LB (Kan 50>ug/ml) 

to form overnight cultures for small scale cosmid preparation (section 2.16). The cosmid 

DNA from each of the extractions was pooled to give a final concentration of 0.5/zg//zl.

Competent cells of the M. smegmatis Pyramidll strain were produced (section 2.25) and 

transformed (section 2.26) with l^ g  pYUB12 (11.2kb) forming 1028 colonies on Lemco
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(Kan 1SpglmY) after 4 days at 37°C, a transformation efficiency of lx l0 3//^g. 400/ul o f 

Pyramidll competent cells were transformed with 2.5//g pYUB18:M. leprae cosmid library 

DNA Three hundred and twelve transformants were formed, a transformation efficiency o f 

1.2xl02///g, eight fold lower than pYUB12, which would be expected due the large size 

(30kb) of the M. leprae insert DNA.

The Pyramidll transformants were of two colony types, smooth and crinkly. The smooth 

colonies were akin to the parental strain and the crinkly ones were crenellated and invaginated, 

generally to an even greater extent than observed in wild type M. smegmatis mc2l 55. Of the 

312 transformants, 48% (150) were smooth and 52% (162) were crinkly. The size of the 

transformed colonies also varied, from 0.5-5mm; the smooth colonies were generally the 

larger.

The transformants were transferred onto Lemco (Kan 15>ug/ml) agar and arranged in arrays 

of 96, divided on the basis of their apparent morphology. The transferred colonies were then 

incubated at 37°C for four days to grow. 130 (41%) of the original transformants did not 

survive the transfer onto Lemco (Kan 15/^g/ml) and 90% of those lost were crinkly colonies, 

with a diameter of 0.5-1mm. This loss of transformants was thought to be due to the small 

colony size of the majority o f lost transformants, which made transfer difficult; it may also 

have been due to the instability o f the cosmid DNA.

182 (59%) transformants were successfully transferred onto Lemco (Kanl5//g/ml) and 

assuming, conservatively, an average insert size of 30kb this was considered a sufficient 

number of transformants to represent the entire estimated genome size of 2.8Mb for M. leprae 

(Clark-Curtiss ela l., 1985; Eiglmeier et a l , 1993).
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3 .2 .2  S c r e e n i n g  o f  P y r a m i d I I : : M . l e p r a e  t r a n s f o r m a n t s  f o r  i n c r e a s e d

RESISTANCE TO  PYRAZINAM IDE

The 182 arrayed Pyramidll.iM leprae transformants were then screened for increased 

resistance to pyrazinamide at 28 °C, to obtain the clearest possible phenotype. The 182 

colonies were replica plated onto Lemco pH5.2 (Kan 15/^g/ml) containing pyrazinamide 

(500/zg/ml) agar and Lemco (Kan 15/zg/ml) agar. The replicated transformants were then 

incubated at 28°C to grow for six days.

132 (75%) transformants grew strongly at 28°C on Lemco (Kan 15/^g/ml) and fourteen 

(9.8%) o f these colonies grew on Lemco pH5.2 (Kan 15//g/ml) agar containing 500/^g/ml 

pyrazinamide. Hence 75% of the 182 PyramidII::M leprae transformants were stable at 28°C 

and 37°C, while 25% were only stable at 37°C. 9.8% o f the 182 transformants initially 

appeared resistant to 500/zg/ml pyrazinamide. This which was a fairly high level o f 

complementation, 1-2% being the expected result. The complementing strains were then 

analysed in more detail.

3.2.2.1 Analysis o f the fourteen PyramidII:M . leprae transformants selected on 

pyrazinam ide (500pg/ml)

3.2.2.1.1 Resistance on solid media at 28 X

The resistance of the 14 transformants was first assessed on solid media at 28°C. The fourteen 

Pyramidll: M . leprae transformants which showed increased resistance to 500/i/g/ml of 

pyrazinamide were placed in 5ml Middlebrook 7H9 broth (Kan 20/ug/ml) and incubated at 

28°C until each culture reached late log-phase culture (0.8 A ^ ). The pyrazinamide sensitivity 

o f the 14 transformants was retested by streaking the late log-phase cultures onto Lemco 

pH5.2 pyrazinamide 500/^g/ml (+Kan 20/^g/ml for the transformants) agar. The growth of the 

14 Pyramid!!:: M. leprae clones was then compared to the Pyramid!! and wild type mc2155
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strains of M  smegmatis following incubation at 28 °C for five days.

The sensitive M  smegmatis Pyramidll strain showed no growth, while Pyramidll ::M leprae 

transformants 42, 59 and 78 showed very weak growth on the pyrazinamide (500/^g/ml) 

containing media. Eleven of the Pyramidll :M . leprae strains showed stronger growth on 

Lemco pH5.2 pyrazinamide (500^tg/ml) agar than the parental Pyramidll strain. The growth 

o f the eleven transformants was, however, not as strong as the wild type me2155 M. 

smegmatis, this may have been due to a reduction in growth rate caused by the presence o f 

cosmid DNA (20-30kb) in the transformants.

An accurate assessment o f  the individual levels of pyrazinamide resistance exhibited by the 14 

transformants was difficult on solid media as the transformants growth rate became the only 

measure of individual levels of pyrazinamide resistance. However, the presence of 30-40kb 

of cosmid DNA within these strains slowed down their growth rate and made individual levels 

of resistance impossible to  ascertain on solid media. In order to gain a true comparison of the 

individual levels of pyrazinamide resistance found in the transformants their sensitivity had to 

be measured at the same stage of growth. This could be done in liquid culture.

3.2.2.1.2 Resistance in liquid culture at 37 °C

In order to observe the degree of increased pyrazinamide resistance in the 14 Pyramidll: M . 

leprae clones at the same stage of growth as the Pyramidn and mc2155 strains further analysis 

was carried out in liquid culture (section 2.28.4).

A set of eight tubes containing 5ml o f Lemco pH5.2 (Kan 15/^g/ml) with pyrazinamide 

concentrations increasing in 100^g/ml quantities, from 200/ig/ml - 900/ug/ml were set up for 

each strain. The range o f  pyrazinamide concentrations selected was based on the results 

obtained for the growth o f  the wild type and the mutant Pyramidll strain (section 3.1.3.3.3).
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A control was set up for each strain containing 5ml Lemco pH5.2 (Kan 20/^g/ml) only. The 

14 Pyramidll: M . leprae clones were grown to early stationary stage (1.5 A ^ )  and an 

approximately equal number of cells (1x10*) from each strain were then added to a series of 

nine tubes. The each series o f tubes were incubated at 37°C, with shaking, until the control 

cultures i.e. those without pyrazinamide, reached mid log-phase growth (0.6 A600). The A ^  

o f the cultures within each series then read.

The resistance o f each Pyramidll:M . leprae clone to increasing concentrations of 

pyrazinamide represented and compared to the parental and wild type M. smegmatis strains. 

The growth of the 14 Pyramidll: M . leprae clones was also compared to that of Pyramidll 

(His), the Pyramidll strain harbouring a cosmid containing the histidinol D gene, hisD  

(Hinshelwood and Stoker, 1992b). This was a control to determine wether the presence of 

random genes in a cosmid would confer a growth advantage that could be misinterpreted as 

increased resistance to  pyrazinamide.

Variable levels of resistance to pyrazinamide were observed for each Pyramidll: M . leprae 

clone in liquid culture, as shown in Figs. 28, 29 and 30. Six clones 10, 33', 45, 57, 83 and 116 

consistently showed levels of growth over and above the parental Pyramidll, Pyramidll(His) 

and the wild type mc2155 M. smegmatis strains in increasing concentrations of pyrazinamide 

(Fig.28). Clones 32, 332, 34 and 38 showed an intermediate increase in resistance to 

pyrazinamide (Fig.29). Clones 42, 59 and 78 showed no increased resistance to pyrazinamide 

in liquid culture (Fig.30) The results for clone 54 are not shown as the strain was tested in 

liquid culture only once before the strain became unculturable from frozen stocks.

As is evident from the growth of the Pyramidll (His) strain in liquid culture and on solid 

media the presence o f these random genes in a given cosmid did not confer any significant 

growth advantage on the parental Pyramidll strain in the presence o f pyrazinamide.
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t------ *-------1---------------- 1-------------- 1------U ---------------------
0  2 0 0  4 0 0  6 0 0  8 0 0  1 0 0 0

p y r a z in a m id c  c o n c e n t r a t io n  U ig /m l)

p y  r a z in a m id c  c o n c e n t r a t i o n  ( l i g / a l )

----------*--------1---------------1---------------1------- T U------
0  2 0 0  4 0 0  6 0 0  8 0 0  1 0 0 0

* Pyramidll •  clone p y r a z l n a « l d c  c o n c e n t r a t i o n  (« ( /n i l )

* PyramidII(His) — o—  M. smegmatis mc2\55
Fig.28. Graphs of Pyramidll: :M.leprae clones which exhibited increased resistance to 
pyrazinamide in liquid culture
An equal number of cells (3xl07) and were added to a set o f 5ml Lemco (pH5.2) containing 
increasing concentrations (200^g/ml-900^g/ml) of pyrazinamide, for six Pyramidll M . leprae 
clones 10, 331, 45, 57, 83, 116. Control cultures without pyrazinamide were also set up. The 

of each culture, in the six sets, was read when the control reached mid log-phase growth 
O^A^oq. The sensitivity of each clone to pyrazinamide was compared to the parental strain, 
the parental strain harbouring an unselected cosmid (PyramidII[His]) and the wild type 
me2155. The graphs represent the following Pyramidll: \M.leprae clones a) 10 b) 33' c) 45 
d) 57 e) 83 and f) 116. All six o f these Pyramidll. M .leprae clones exhibited an increase in 
resistance to pyrazinamide over and above the parental Pyramidll, Pyramidll and the wild type 
M. smegmalis me2155 strains.
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p y r a z i n a m i d e  c o n c e n t r a t i o n  (^ ig /m l)

* Pyramidll(His) * clone
— o—  M. smegmatis me2155

Fig. 29. Graphs ofPyramidII::M/(prae clones which exhibited an intermediate increase 
in resistance to pyrazinamide in liquid culture, in comparison to wild type levels.
An equal number o f  cells (3xl07) and were added to a set of 5ml Lemco (pH5.2) containing 
increasing concentrations (200//g/ml-900^g/ml) of pyrazinamide, for four
Pyramidll:M .leprae clones 32, 332, 34 and 38. Control cultures without pyrazinamide were 
also set up. The of each culture, in the four sets, was read when the control reached mid 
log-phase growth 0.6 A ^. The sensitivity o f each clone to pyrazinamide was compared to the 
parental strain, the parental strain harbouring an unselected cosmid (PyramidII[His]) and the 
wild type mc2155. The graphs represent the following Pyramidll: M .leprae clones a)32 b)332
c)34 and d)38. The four Pyramidll.M .leprae clones exhibited an intermediate increase in 
pyrazinamide resistance in comparison to the wild type and parental strains, in liquid culture.
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a) b)

c)

pyrazinamide c o n c e n t r a t i o n  (f tig /m l)

"•—  clone 

-*—  Pyramidll

3—  M. smegmatis me215 5

PyramidII(His)

Fig.30. Graphs o f Pyram idll::M.leprae clones which did not exhibit any increase in 
resistance to pyrazinamide, in liquid culture.
An equal number o f cells (3x107) and were added to a set o f 5ml Lemco (pH5.2) containing 
increasing concentrations (200^g/ml-900^g/ml) o f pyrazinamide, for three 
PyraimdU M./eprae clones 42, 59, and 78. Control cultures without pyrazinamide were also 
set up. The o f each culture, in the three sets, was read when the control reached mid log-
phase growth 0.6 Aftoo The sensitivity of each clone to pyrazinamide was compared to the 
parental strain, the parental strain harbouring an unselected cosmid (PyramidII[His]) and the 
wild type mc2155. The graphs represent the following Pyramidll: M .leprae clones a)42 b)59
c)78. These three Pyramidll: M .leprae clones, initially isolated as exhibiting some increased 
resistance to pyrazinamide showed no increased resistance in liquid culture when compared 
to the wild type and parental strains, in liquid culture.
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In summary, o f  the initial 14 Pyramidll: M . leprae clones isolated due to their survival 

following replica plating o f  182 Pyramidll vM. leprae transformants onto pyrazinamide 

(500/ig/ml), 11 showed an increased level of resistance when compared with the parental 

Pyramidll strain. Six of the clones exhibited levels of resistance to  pyrazinamide in excess of 

the wild type M . smegmatis mc2155. Four Pyramidll: M . leprae clones showed levels of 

resistance between the parental and the wild type strains. The eleventh strain (54) showed 

resistance to pyrazinamide 500//g/ml on solid media at 28°C.

The final level o f  complementing Pyramidll: M . leprae transformants was 6% of the 182 

transformants which survived the initial transfer onto Lemco (Kan 15/ig/ml) agar. Values are 

higher than would be estimated for the percentage of complementing cosmids; this and the 

varying levels o f  pyrazinamide resistance exhibited by the 11 complementing Pyramidll M. 

leprae clones suggested that there may be more than one region o fM. leprae DNA able to 

complement the pyrazinamide sensitive phenotype.

3.2.3 Isolation of cosmid DNA from PyramidII::M. l e p r a e  transformants 

Cosmid DNA was extracted from all of the initially isolated fourteen Pyramidll: M . leprae 

transformants, in order to compare the DNA of the complementing and non complementing 

clones.

The cosmid DNA was extracted using an adaptation of the method described for the 

extraction of E. coli DNA (section 2.16). Cell pellets from 48hr 5ml Lemco (Kan 15/zg/ml) 

cultures of each transformant strain were resuspended in GET containing lipase (30mg/ml) 

and lysozyme (lOmg/ml) and incubated overnight at 37°C, with shaking. The DNA was then 

extracted by the alkaline lysis method described for small scale cosmid preparation (section 

2.16).
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The DNA extracted from each strain was transformed directly into competent E. coli DH5a 

(transformation efficiency 1x10s cfti/z^g). The number o f E. coli transformants obtained from 

the extracted cosmid DNA of each Pyramidll: :M leprae transformant varied between 

PyramidII::M. leprae strains, but was consistent for individual strains. Generally the number 

of transformants obtained from Pyramidll transformants 10, 32, 33l, 332, 34, 38, 59 and 42 

was lxK^cfus which was 100 fold higher than from strains 45, 57, 83 and 116. E. coli DH5a 

transformants from each Pyramidll transformant strain were inoculated into 2ml Lemco (Kan 

15^g/ml) to reduce rearrangements, incubated at 37°C overnight before the cosmid DNA was 

extracted using the normal method (section 2.16).

Initially the mycobacterial cosmid DNA was transformed into the E. coli strain TG2 but the 

majority of the cosmids appeared unstable. The cosmid DNA extracted from repeated 

transformations o f TG2 with mycobacterial cosmid DNA from a given Pyramidll: M . leprae 

strain varied in size and exhibited varying restriction patterns. A recombination stable E. coli 

strain, DL795, was also tried and while those cosmids recovered appeared stable, the 

transformation efficiency obtainable with DL795 was too poor (lxlO 4 cfu///g) to produce 

transformants from all fourteen mycobacterial cosmids.

Cosmid DNA was obtained from thirteen Pyramidll :M . leprae clones, all except 54, 

following transformation of the mycobacterial cosmid DNA into the E. coli DH5a strain. On 

the whole, the cosmid DNA extracted from DH5a was consistent for each Pyramidll M. 

leprae clone, although occasional rearrangements and deletions of the entire insert DNA were 

observed.
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3.2.3.1. A nalysis o f the cosmid DNA in the P yram idll transformants 

Cosmid DNA from each of the thirteen Pyramidll: M . leprae clones (10 complementing and 

3 non complementing) was individually digested with BamHl, Pst\, EcoRl and ///«dill 

(Fig.31 and Fig.32). Common band sizes were observed in a number o f the cosmids 

suggesting some were overlapping (Table. 16). The P st\ and EcoRl digests both resulted in 

the formation o f  five bands common to a minimum of two cosmids. The EcoRl digests created 

fragment sizes o f  2.55kb from cos83 and cosl 16, 4.2kb from cos332 and cos45, 6.4kb from 

cos57 and cosl 16, 7.6kb from cos33' and cos45 and 9.6kb from cos45 and cos57 . The sixth 

EcoYKl fragment size 4.64kb common to all thirteen cosmids was a fragment from the 

pYUB18 cosmid shuttle vector itself (Fig.32). The P stl digests created fragment sizes of 

0.2kb in cos34 and cos57, l.lkb from cos34 and cos57, 2.45kb from cos34, cos45 and cos83, 

2.75kb from cos33‘ and cosl 16 and 5.5kb from cos45 and cos57. A 0.85kb fragment common 

to all the cosmids is produced from the pYUB18 vector (Fig.31). ///«dill digests created a 

2.4kb fragment found in coslO, cos32, cosl 16 and cos57. A 7.2kb fragment was found in 

cos33‘ and cos57 and a 6.9kb fragment was found in cos42 and cos 3$ (Fig.32). A 5.8kb 

band common to all the cosmids was from the pYUB18 vector (Fig.32). The BamHl digests 

created fragments o f 1.75kb in cos45 and 331, 2 6kb in cos45 and cosf3 and a 3.4kb 

fragment in cos57 and cos78 (Fig.31). pYUB18 vector only DNA was not available for 

analysis.

_________________________________________________________________________R esults
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1 2 3 4 5 5 6 7 8 9 10 11 1213 14 15

Fig. 31. Restriction analysis of complementing and non-complementing cosmids 
using a) BamHX and b) P stl showing shared band sizes (kb).
Complementing cosmids: Non-complementing cosmids Markers:
lane 1) cosl 16 
lane 2) cos83 
lane 5) cos57 
lane 7) cos45 
lane 8) cos38

lane 9) cos34 
lane 10) cos332 
lane 11) cos33‘ 
lane 12) cos32 
lane 13) coslO

lane 3) cos78 
lane 4) cos59 
lane 6) cos 42

lane 14) XHindlll 
lane 15) JJiindlUJEcoRl

a) Shared bands in BamHl digest: 1.75kb in cos45 and cos331, 2.6kb in cos45 and cos331 
and 3.4kb in cos57 and cos78.
b) Shared bands in Pstl digest: 0.2kb in cos34 and cos57, 1.1 kb in cos34 and cos57, 
2.45kb in cos34, cos45 and cos83, 2.75kb in cos33' and cosl 16 and 5.5kb in cos45 and 
cos57. The 0.89kb fragment is from the vector pYUB18 common to all the cosmids.
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1 2 3 4  5 6 7 8 9  10111213141516

(b)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 15

Fig. 32. Restriction analysis of complementing and non-complementing cosmids 
using a) fc o R I  and b) HinAWl showing shared band sizes (kb).
Complementing cosmids: Non-complementing cosmids Markers:
lane 1) cosl 16 
lane 2) cos83 
lane 5) cos57 
lane 7) cos45 
lane 8) cos38

lane 9) cos34 
lane 10) cos332 
lane 11) cos33‘ 
lane 12) cos32 
lane 13) coslO

lane 3) cos78 
lane 4) cos59 
lane 6) cos 42

lane 14) XHindlll 
lane 15) kH indllVEcoRl

and
and

a) Shared bands in EcoRl digests: 2.55kb in cos83 and cosl 16, 4.2kb in cos33 
cos45, 6.4kb in cos57 and cosl 16, 7.6kb in cos331 and cos45 and 9.6kb in cos45 
cos57. The 4.6kb fragment common to all cosmids is from the vector pYUB18.
b) Shared bands in H indlll digests: 2.4kb in coslO, cos32, cosl 16 and cos57, 7.2kb in 
cos33' and cos57 and 6.9kb in cos42 and cos332. The 5.8kb band common to all is from 
the vector pYUB18.
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Table. 16 Showing the restriction fragment sizes of various cosmid digests of

PyramidlI:M leprae clones
II . .Restriction enzyme Fragment sizes 

(kb)
PyramidlliM leprae 
cosmid DNA (kb)

BaniiH 1.75 45, 33*
2.60 45, 332
3.40 57, 78

EcoKi 2.55 83, 116
4.20 332, 45
6.40 57, 116
7.60 33', 45
9.60 45, 57

Pstl 0.20 34, 57
1 1.10 34, 57

2.45 34, 45, 83
2.75 33‘, 116
5.50 45, 57,

H indlll 2.40 10, 32, 116
7.20 33', 57
6.90 42, 332

3.2.3.2 Insert sizes

The average sizes of the M. leprae insert DNA contained in the cosmids were calculated from 

an average of the sum of the fragments from each of the four digests (Table. 17). The largest 

inserts were found in cosl 16, cos57 cos83 and cos45 which were 31,6kb, 26kb, 22. lkb and 

18.6kb respectively. The insert sizes of coslO, cos32, cos33', cos332, cos34 and cos78 varied 

between 6-9kb, small for cosmid inserts. Due to the very small predicted insert size and the 

error margin on its calculation it was concluded that cos42 was possibly pYUB 18 vector 

alone. Cosmid 59 and cos38 gave an average size o f 13.8kb ± 4.46 implying that the DNA 

could have been smaller than the vector.
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Table^JJ^ShowinjjJh^total^cosmid^sizesjindA^/i^jra^ûisertjizes

Cosmid Cosmid size (kb) Insert size (kb)

10 20.50 ± 2.56 8.65 ± 3.0

32 19.84 ± 3.78 7.35 ± 3.64

33' 19.00 ± 1.02 7.65 ± 1.38

332 17.95 ± 5.07 5.65 ± 5.00

34 18.66 ± 2.38 6.18 ± 2.10

38 13.80 ± 4.30 N/A

42 15.30 ± 3.47 3.32 ± 3.28

45 30.95 ± 2.30 38.60 ± 2.46

57 38.60 ± 2.46 26.90 ± 2.47

59 13.70 ± 4.30 N/A

78 21.04 ± 0.83 8.37 ± 1.04

83 34.30 ± 4.75 22.13 ± 4.70

116 43.80 ± 4.46 31.60 ± 4.46

From the digests and the cosmid sizes estimated for cos42 it was concluded that the DNA 

consistently extracted from E. coli was probably vector pYUB 18 DNA. Both cos59 and 

cos38 were undigestable with BamHl and gave band sizes smaller than predicted for the 

pYUB18 vector alone with H intIIII, EcoKi. and Pst\ i.e. bands of 5.6kb and 5.8kb were 

produced from a///«dill digest instead of the 6.3 and 5.8kb which would be predicted. This 

implied a deletion of at least lkb had occurred, which included the BamHl cloning site, and 

possibly unstable M  leprae insert DNA. An early cosmid extraction o f  transformant 38 from 

TG2 yielded cosmid DNA which was found to contain an insert on BamHl digestion.

Following single and double digests (not shown) of the other ten cosmids, nine from 

complementing PyramidII::A/. leprae clones and one from a non complementing clone (cos78) 

similar band sizes were observed although a restriction map overlapping all the complementing 

cosmids could not be formed. It may have been that a number of different regions of M.
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leprae DNA were capable of phenotypically complementing the mutant M. smegmatis mc2l 55 

strain.

There was therefore no single M. leprae DNA fragment from one of the cosmids deemed 

suitable for use as a probe in Southern hybridisation, to determine whether any of the cosmids 

were related, at this point.

3.2.4 Morphology of PyramidII::M.leprae transformant strains 

The morphology of the fourteen PyramidlliM leprae strains was o f two types, smooth and 

crinkly, on both Lemco and Middlebrook agar. Complementing strains 10, 32, 332, 34 and non 

complementing strains 42 and 59 showed similar morphology to the Pyramidll strain, (Fig.33) 

The five other complementing strains 331, 45, 57, 83, and 116 exhibited a crinkly morphology 

stronger than the wild type (Fig.33). Complementing strain 38 exhibited a mixture of smooth 

and crinkly morphology colonies, it is possible that the insert DNA had deleted out of the 

cosmids in the smooth colonies. There was no clear cut correlation observed between crinkly 

morphology and complementation. Four transformants 116, 57, 83 and 45 exhibiting crinkly 

morphology had larger M. leprae insert DNA in their cosmids i.e. 116, 57 and 45 see 

Table. 17.
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a)

d)

Fig 33. The colony morphology of the Vyr»m\AU::M.leprae clones.
The Pyramidll: M . leprae clones showed two morphological types, shown above on 
Middlebrook 7H10 agar. Smooth colony morphology similar to the parental strain was 
exhibited by complementing and non complementing PyramidlliiM/eprae clones, a) 
complementing clone 32 b)non complementing clone 42. Only complementing clones 
exhibited crinkly colony morphology c) complementing clone 57 d) complementing clone 45.
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3.2.5 Biochemical analysis of PyramidII::M. l e p r a e  clones

3.2.5.1 Analysis o f polar and non polar "free" lipids

The lipids of a number o f the initial 14 Pyramidll: jV/. leprae clones isolated were analysed to 

establish whether the presence o f the M  leprae containing cosmid DNA had altered the lipid 

profile o f Pyramidll.

Initially, four complementing Pyramidll M . leprae clones 54, 57, 116 and one non 

complementing clone 78, were investigated. The three complementing clones also had a 

crinkly morphology whereas the non complementing clone had a smoother morphology. Clone 

54 was still culturable from frozen culture at the time o f this experiment.

The free lipids, polar and non polar, and the covalently bound lipids were extracted as before 

(section 2.29). The free lipids were analysed by 2D-TLC systems A, D and F. The lipid 

profiles were compared with those of the mc2l 55 wild type and the parental Pyramidll strains 

of M. smegmatis.

3.2.5.1.1 Systems A and D

Two dimensional TLC system A revealed menaquinones in all four Pyramidll vM. leprae 

clones 54, 57, 116 and 78, in the same proportions as wild type.

The most polar lipids o f the non polar lipid fraction of each strain were analysed using 2D- 

TLC system D, to disclose trehalose dimycolates, again in similar proportions to those found 

in the wild type and Pyramidll M . smegmatis strains (Fig.34 and Fig.35). None of the three 

unidentified glycolipids found in M . leprae (Minninkin et al., 1985) using this system, were 

observed.
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Fig. 34. Two dimensional TLCs or the most polar class of lipids in the non-polar lipid 
fraction of mycobacterial "free" lipids of PyramidII::M. leprae clones, (System D„ with 
MPA)
1st direction, chloroform:methanol:water (100:14:0.8 v/v/), 2nd direction, chloroform : 
acetone : methanol (50:60:2.5 v/v). Organisms: a )M  smegmatis mc2155, b) PyramidllM 
smegmatis, Pyramid: M .leprae clones c) 78 (non complementing) d) 54 e) 57 f) 116 
(complementing).
Detection: a-f 5%  ethanolic molybdophosphoric acid, MPA, all lipids.
CF - cord factor (trehalose dimycolate)
GL - glycolipids

-186-



Results

Fig.35. Two dimensional TLCs of the most polar class of lipids in the non-polar lipid 
fraction of mycobacterial "free" lipids of PyramidII::M./eprae clones, (System D„ with 
NAS).
1st direction, chloroform:methanol:water (100:14:0 8 v/v/); 2nd direction, chloroform : 
acetone : methanol (50:60:2.5 v/v). Organisms: a) M  smegmatis mc2l 55, b) Pyramidll M  
smegmatis, Pyramid: M .leprae clones c) 78 (non complementing) d) 54 e) 57 f) 116 
(complementing).
Detection: a-f 5% a-naphthol sulphuric acid, NAS, specifically detects sugar components.i.e. 
CF and GL.
CF - cord factor (trehalose dimycolate)
GL • glycolipids
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a) b)

Fig 36 Two dimensional TLCs of the least polar class of lipids in the polar lipid fraction 
of mycobacterial "free" lipids of complementing and non complementing 
Pyramid!!: :M. leprae clones (System D2, with MPA).
1st direction, chloroform:methanol:water (100:14:0.8 v/v/); 2nd direction, chloroform : 
acetone : methanol (50:60:2.5 v/v). Organisms: a)M . smegmatis mc2l 55, b) PyramidllM 
sm egm atis, Pyramid: M . leprae clones c) 78 (non complementing) d) 54 e) 57 f) 116 
(complementing).
GPL - glycopeptidolipid
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a) b)

d)

Fig.37. Two dimensional TLCs of the least polar class of lipids in the polar lipid fraction 
of mycobacterial "free” lipids of complementing and non complementing 
PyramidlT: :M. leprae clones (System D2, with NAS).
1st direction, chloroform:methanol:water (100:14:0.8 v/v/); 2nd direction, chloroform : 
acetone : methanol (50:60:2.5 v/v). Organisms: a) M. smegmatis mc2155, b) Pyramidll M. 
smegmatis, Pyramid: M . leprae clones c) 78 (non complementing) d) 54 e) 57 f) 116 
(complementing).
GPL - glycopeptidolipid
Detection: a-f a-naphthol sulphuric acid, NAS, for all sugars components i.e. GPL

-189-



R esults

The least polar lipids were also analysed using system D2. The four Pyramidll: :M leprae 

clones displayed the same pattern of glycopeptidolipids that were present in the wild type and 

parental M. smegmatis strains and in similar proportions (Fig.36 and Fig.37).

3.2.5.1.2 System F

This was used to investigate the most polar of the polar lipid extracts from each of the four 

clones i.e. phospholipids and phosphatidylinositolmannosides, PIMs. The phospholipids, PIMs 

and glycolipids present in the parental Pyramidll and wild type me2155 M . smegmatis strains 

were also present in the four Pyramidll :M. leprae clones in similar proportions with one 

exception, (Fig.38 and Fig.39). A large quantity o f an unknown lipid, P, was detected in the 

complementing clones 54, 57 and 116 which was barely visible in the non complementing 

clone 78, the parental Pyramidll and the wild type M  smegmatis mc2155, (Fig 38). The 

unknown lipid was not visible under a-naphthol spray (Fig. 3 9) and therefore contained no 

sugar moieties such as mannose.

The free lipid extraction and analysis by system F was repeated in duplicate, with clones 57 

and 116 wild type me2155 and parental strain Pyramidll. The same unknown lipid, P, was 

detected when the plates were sprayed with MPA to detect the lipid. The unknown lipid P 

spot was also detected when plates were sprayed with Molybdenum blue, used to detect 

phospholipids, implying that it was a phospholipid. No phospholipids were detected with this 

spray at the same position in the parental Pyramidn o rM  smegmatis mc2l 55 wild type strain, 

although small amounts o f a lipid were detected in a similar position (Fig.40).

The position of the unknown lipid P, in system E, from which system F was derived, seems 

to correspond to an unknown lipid observed in M. leprae using the same system (Minnikin 

e ta l., 1985) (Fig.41).
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Fig.38.Two dimensional TLCs of the most polar class of lipids found in the 
mycobacterial polar "free" lipid fraction of PyramidII::M./^prae complementing and 
non complementing strains (System F, with MPA).
1st direction, chloroform ¡methanol: water (65:25:4 v/v); 2nd direction chloroform acetic acid: 
methanol water (80:15:12:4 v/v).
Organisms: a )M  smegmatis me215 5, b) Pyramidll M. smegmatis, Pyramid: M . leprae clones
c) 78 (non complementing) d) 54 e) 57 f) 116 (complementing).
DPG - diphosphatidylglycerol 
PE - phosphatidylethanolamine acid 
PI - phosphatitylinsositol
DPIDM + MPIDM - di and mono acylphosphatidylinsositol dimannosides 
DPIPM + MPIPM - di and mono acylphosphatidylinsositol pentamannosides 
GL - glycolipid 
P- unknown lipid
Detection system: a-f 5% ethanolic molybdophosphoric acid spray (MPA) for all lipids.
An unknown lipid was found in the complementing Pyramidll: M .leprae clones (54, 57,116) 
which was not found in the non complementing clone (78), the parental or wild type strains 
in the same quantities.

-191-



R esults

Fig.39.Two dimensional TLCs of the most polar class of lipids found in the 
m ycobacterial polar "free" lipid fraction of PyramidO::M .leprae complementing and 
non complementing strains (System F, with NAS).
1st direction, chloroform:methanol:water (65:25:4 v/v); 2nd direction chloroform:acetic acid: 
methanol water (80:15:12:4 v/v).
Organisms: a) M. smegmatis mc2155, b) Pyramidll M. smegmatis, Pyramid: M . leprae clones
c) 78 (non complementing) d) 54 e) 57 f) 116 (complementing).
DPG - diphosphatidylglycerol 
PE  - phosphatidylethanolamine acid 
PI - phosphatitylinsositol
DPIDM + M PIDM  - di and mono acylphosphatidylinsositol dimannosides 
DPEPM + M PIPM  - di and mono acylphosphatidylinsositol pentamannosides 
G L  - glycolipid
Detection system: a-f a-naphthol sulphuric acid (NAS), for sugar components, i.e. GL, 
DPEDM, MPIDM, DPIPM and MPIPM.
P, the unknown lipid found in the complementing Pyramidll: M .leprae clones (54, 57,116) 
but not in the non complementing clone (78), the parental or the wild type strains in the same 
quantities was not dectable with NAS and therefore did not contain a sugar component.
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P

mpidm 
• mpipm

Fig. 40 Two dimensional TLC of the most polar class of lipids found in the mycobacterial 
polar "free" lipid fraction of PyramidII::M. leprae complementing clone 57, showing 
the unknown phospholipid
1st direction, chloroform: methanol: water (65:25:4 v/v); 2nd direction chlorofomracetic 
acid methanol: water (80:15:12:4 v/v);
Organism: Pyramid:M . leprae complementing clone 57.
Spray: Molybdenum blue which detects phospholipids 
DPG- diphosphatidylglycerol 
PE- phosphatidylethanolamine 
PI- phosphatidylinositol
DPIDM + MPIDM - di and mono acylphosphatidylinositol dimannosides 
DPIPM + MPIPM - di and mono acylphosphatidylinositol pentamannosides 
P confirmed as a  phospholipid, found in the complementing clones 57, 116 and 54.
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d)

Fig. 41. Two dimensional TLCs of the most polar class of lipids found in the 
mycobacterial polar "free" lipid fraction of Pyramid!!, PyramidII::M leprae 
complementing clone 57 and 116 compared with M. leprae using system E (with MPA)
1st direction, chloroform: methanol: water (10:5:1 v/v); 2nd direction chloroform:acetic 
acid:methanol:water (40:25:3:6 v/v);
Organisms a) Pyramid!!M. smegmatis, b)M . leprae taken from Minnikin et al., 1985) c and
d) Pyramid M . leprae complementing clones 116 and 57 respectively.
DPG- diphosphatidylglycerol 
PE-phosphatidylethanolamine 
PI- phosphatidylinositol
DPIDM + MPIDM - di and mono acylphosphatidylinositol dimannosides 
DPIPM + MPIPM - di and mono acylphosphatidylinositol pentamannosides 
P unknown phospholipid found in the complementing clones 57 and 116 and in M. leprae 
(Minnikin et al., 1985) but not in the parental Pyramidll M. smegmatis
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In an attempt to identify the phospholipid produced by the Pyramidll: M . leprae clones, ngs 

o f the phospholipid were isolated and are currently being analysed by gas chromatography 

mass spectrometry. This analysis is being carried out by Dr.P. Wheeler, LSHTM and 

Dr.W.Blackstock, Glaxo pic.

3.2.5.2 Covalently bound lipids

The mycolates of the four Pyramidll :M leprae clones were analysed (Fig.42). The 

characteristic a, a ' and epoxymycolates ofM. smegmatis were present in all four clones in 

similar proportions to those found in the wild type and Pyramidll M. smegmatis strains.

3.2.5.3 Fatty acid analysis using ga s chromatography

The fatty acid composition of the four clones was also analysed using gas chromatography. 

The proportions of the dominant types of non hydroxylated fatty acids were altered in all four 

o f the Pyramidll M . leprae clones in comparison with M. smegmatis mc2l 55 and the parental 

Pyramidll strains (Table. 18).

Table 18. The fatty acid composition of the PyramidII:M.leprae clones in comparison 

with parental and wild type composition

% Fatty acid mc2155 Pyramidll 78 57 54 116

Palmitoleic acid 
(C16:l)

11.90 12.21 10.33 10.67 8.52 11.74

Palmitic acid 
(Cl 6)

28.89 31.58 41.46 38.53 35.34 36.35

Oleic acid (C l8:1) 39.83 37.68 15.67 14.65 13.59 16.06

Stearic acid (C l8) 2.10 1.40 3.16 4.28 3.40 2.50

Tuberculostearic acid 
(C19:Br)

10.72 12.79 23.82 22.35 35.14 H
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Fig.42. Two dimensional TLC of the mycolic acid methylester obtained from the 
extraction of mycolic acids
1st direction, petroleum ether (b.p. 60-80°C), acetone (95:5v/v), three times; 2nd direction 
toluene, acetone (97:3, v/v).
Organisms: a) M. smegmatis mc2155, b) Pyramidll M. smegmatis, Pyramid: M .leprae clones 
c) 78 (non complementing) d) 54 e) 57 f) 116 (complementing).
Detection: MPA all lipids 
a - a  mycolates 
a ’- a ' mycolates 
E - epoxymycolates 
FA - Fatty acids
All Pyramidll .M .leprae clones exhibited the expected a , a ' and epoxymycolates expected 
from M. smegmatis strains in similar proportions.

-196-



R e su l t s

The percentage of oleic acid in the clones decreased from 38% in the wild type to 15% in the 

clones. The levels of palmitic acid increased by 5-10% in the clones as compared to the wild 

type or parental strains. The amounts of tuberculostearic acid were up by 10-17% in three 

clones 57, 78 and 116 and by 25% in clone 54, when compared to wild type levels.

In conclusion, the systematic biochemical analysis of the four clones resulted in the detection 

of an unknown phospholipid in the three complementing strains 54, 57 and 116, which was 

not present in the non complementing clone, 78. The proportions of the individual fatty acids 

in the Pyramidll leprae clones also differed significantly from those found in the wild type 

me2155 and the parental Pyramidll M  smegmatis.

3.3 Further analysis of PyramidII complementing cosmid 57

Pyramidll: :M leprae transformant containing cosmid 57 showed increased pyrazinamide 

resistance on solid and in liquid medium, exhibited a crinkly morphology and produced an 

unknown phospholipid in larger quantities than were visible in the parental Pyramidll or M. 

smegmatis mc2155. Strain 116 also displayed these properties, the only difference being that 

it produced slightly smaller amounts of the unknown phospholipid. Cos57 was therefore 

chosen as the cosmid from which to isolate a specific region of M. leprae DNA which 

complemented the pyrazinamide sensitive phenotype of the Pyramidll strain. The relationship, 

if any, between the M. leprae DNA complementing the pyrazinamide sensitivity, the crinkly 

morphology and the phospholipid production, o f  strain 57 could also be investigated.

3 .3 .1  T h e  m a p p i n g  o f  c o s m i d  57 t o  t h e  o r d e r e d  M. leprae c o s m i d  l i b r a r y  

An ordered M  leprae cosmid library exists (Eiglmeier etal., 1993) and the position o f cosmid 

57 M. leprae insert DNA in the M. leprae genome could be determined by Southern 

hybridisation o f a fragment of cos57 DNA to the ordered library. A random fragment of 

cosmid 57 was therefore cloned.
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A 1.2kb fragment created by a BamHl digest o f cosmid 57 (Fig.43) was cloned into the 

ZfcimHI site of pMV206 producing pC57B2. 2^g o f the construct was digested with B atnHI 

and purified as described in section 2.6.1.

The 1.2kb insert DNA was labelled and hybridised to filters of the ordered M. leprae cosmid 

library by Dr.K.Eiglmeier, Institute Pasteur, Paris. The insert DNA was found to hybridise to 

a 1.17kb fragment o f cosmid B1308 in the ordered cosmid library. This cosmid had been 

sequenced and was adjacent to a second sequenced cosmid, L308, at the end of contig 35 

(Fig. 14) (Eiglmeier et al., 1993).

3.3.1.1 M apping o f cosm id 57 to cosmid BIO3

The results of the hybridisation indicated that the length of M. leprae insert DNA contained 

in cosmid 57 mapped within cosmid B1308 or overlapped one of the adjacent cosmids, L308 

or Y236. To ascertain the position of cosmid 57 within the ordered cosmid library and how 

much o f the cosmid was sequenced, the restriction patterns of cosmid 57 were compared with 

those o f cosmid B1308, available from the Mycobacterial Genome Database, MycDB (Bergh 

and Cole, 1994). 0.5/ivg of cosmid 57 was digested with each of the restriction endonucleases 

BamHl, Pstl, H indlll, EcoRl, Notl and EcoRV. The restriction fragments of cosmid 57 

produced by Pstl and BamHl digests and the loci o f  these individual fragments in cosmid 

B1308 are shown in Fig.43.

The average size of the M. leprae DNA insert in cosmid 57, calculated from the band sizes 

produced by the six digests, was 25.7kb ± 1.9kb. Cosmid B1308 is 33,312bp long and and 

the largest region o f B 1308 initially shown to be present in cosmid 57 was the 24.059kb 

between 5,992-30,051 defined by the BamHl and P stl digest of cosmid 57 (Fig.43). The P stl 

rite at 30,051 was confirmed by sequencing in subsequent experiments (3.5.2.4). The EcoRW  

digest also produced a 1.443kb fragment which requires a site at 30,603 also found in later
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Fig 43. The alignment of the P stl and Bam H I fragments of cosmidS7 with restriction 
maps of B1308 as quoted in MycDB.
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experiments (Fig.44 and 45) which would extend the insert size to at least 24.61 lkb. This is 

not in agreement with the Ztor/wHI digest shown, which would be expected to produce a 

5.823kb and 0.69kb fragment due to sites at 29,511, 30,255 and 30,255; it is thought that the 

digest shown is a partial and that the sites closest to the vector have not been cut, due to the 

19kb fragment present which would appear to  be pYUB18 (12kb) and at least another 7kb 

of DNA. It is also possible that one of the BamHl sites has been lost during cloning. The distal 

end o f cosmid 57 was known not to extend beyond 31,624, as there was a Pstl site at this 

locus which would have produced a 1.385kb band not visible following the P.st I digest of 

cosmid 57, (Fig.43). Later experiments implied that another 1.3kb o fM. leprae DNA was 

present in cosmid 57 at the distal locus, extending to position 31,540 of B1308. There is also 

a band o f 5.4kb in the Psll digest which would extend the proximal region o f  the insert to 

3,198, however it is possible that this fragment consists of 2kb of pYUB 18 vector DNA which 

would be created by a Pstl digest and 3.4kb o f  proximal insert DNA; this would extend the 

proximal end o f the insert to at least 5, 236, giving an insert size of at least 26.548kb.

In summary the insert DNA of cosmid 57 was contained within cosmid B1308 and was 

thought to extend from at least bases 5,230 to 31,540 giving a 26.3kb insert. The mapping of 

cosmid 57 within cosmid B1308 confirmed that the entire sequence of cosmid 57 was known. 

Having determined the approximate coordinates of cosmid 57 within B1308, the business of 

narrowing down the complementing region o f  cosmid 57 was begun.

3 .3 .2  T h e  i s o l a t i o n  o f  t h e  s p e c i f i c  l e n g t h  o f  c o m p l e m e n t i n g  D N A  i n  c o s m i d  5 7

3.3.2.1 Cloning o f the B am H Ifragm ents o f  cosmid 57

The initial strategy for narrowing down the area of M. leprae DNA within cosmid 57 

complementing the mutant phenotype, was to  clone the five ZtarmHI fragments of cosmid 57 

into the pMV206 shuttle vector plasmid. The five constructs would be individually 

transformed into Pyramidll and the five transformed Pyramidll strains would then be tested
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for their sensitivity to pyrazinamide.

BamYil fragments were chosen since the sites interrupted only one gene, lysine-6-amino 

transferase, in the cosmid, whereas other restriction enzymes cut through a greater number 

of open reading frames. This information was gleaned from the restriction maps and positions 

of the genes within cosmid B 1308 available from MycDB. The terminal lengths of M. leprae 

DNA would remain attached to  the pYUB 18 vector following a BamHl digest of cosmid 57 

and was not therefore a complete screen o f  all the insert DNA for complementation.

5pg o f  cosmid 57 DNA was digested with ZtormHI restriction enzyme. The digested DNA was 

loaded into the extended well o f  a 0.8% agarose gel and run at 20V overnight. Fig.43 shows 

the bands the bands of fragment sizes 1.1 kb, 2.4kb, 3.4kb, 4.2kb and 4.6kb which were 

excised and the DNA recovered using a Wizard DNA Clean Up Kit (Promega)(section 2.6.1). 

5/ug o f  plasmid vector pMV206 was cut, treated with alkaline phosphatase and run on a 0.8% 

LMP agarose gel from which only cut vector was excised and recovered. Ligation reactions 

were set up for each of the five fragments with 750ng insert DNA and 250ng vector DNA and 

these were subsequently transformed into E.coli DH5a.

The ligation reactions of fragments 1.1 kb and 2.4kb produced on average lxlO3 

transformants//ug and those of fragments 3.4kb, 4.2kb and 4.6kb produced 2xl02 

transformants//ug. Recombinant plasmids containing inserts of 1.1 kb and 2.4kb were 

successfully recovered from the transformants. Recombinant plasmids with the correct insert 

size were not obtainable for 3.4kb, 4.2kb and 4.6kb fragments, after repeated attempts. The 

subcloning of the BamHl fragments was eventually discontinued.
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3 .3 .3  C r e a t i o n  o f  a  s u b - l i b r a r y  o f  c o s m i d  5 7  i n  P M V 2 0 6

The next approach was to make a Sau3M  sublibrary of cosmid 57. 5ug  of cosmid 57 DNA 

was partially digested with Sau3Al, run on a 0.8% LMP agarose gel and DNA fragments of 

3kb and 6kb were size selected by excision. The size selected DNA fragments were purified 

from the agarose using Wizard DNA Clean Up Kit (Promega). 5^g o f pMV206 was linearised 

by digestion with BamHl and alkaline phosphatase treated at 37°C for 15min. The cut, 

phosphatased pMV206 DNA was run on an LMP agarose gel at 80V for 3hr and the linear 

vector band excised and recovered using the Wizard DNA Clean Up Kit (2.6.1).

Individual ligation reactions were set up for both sizes of insert DNA, 3kb and 6kb. l^g  of 

insert was added to 350ng o f cut and phosphatased pMV206 vector. A control vector only 

ligation was also set up. The three ligations were transformed into competent E.coli DH5a 

with a transformation efficiency of lx l0 6cfu///g. 1x103 and 1.5x10 * transformants were 

produced from the 3kb and the 6kb ligation reactions respectively. The plasmid DNA was 

extracted from five colonies o f the 3 kb cos57 sub-library and eight colonies from the 6kb 

cos57 sub-library using the small scale plasmid extraction method (section 2.11). The 

remaining transformants of each sub-library were pooled and used to seed two 100ml Lemco 

which were incubated at 37 °C overnight. The cells from each of two "sub-library" cultures 

were pelleted and the plasmid DNA extracted using the midi plasmid preparation (section 

2.12). 0.5/ig o f plasmid DNA extracted from the two pooled libraries and from the thirteen 

individual plasmid DNAs was digested with Pstl. As there was only one P stl site in pMV206, 

digestion with the enzyme linearised the pMV206 plasmid DNA; those plasmids containing 

inserts could be distinguished by increased size of the plasmid and by "drop out" fragments 

caused by the presence o f P stl sites in the cosmid 57 insert DNA.

Of the five plasmid DNAs o f the 3kb sub-library, four contained small inserts, up to 1 kb, one 

strain appeared to contain no insert DNA. Of the eight plasmid DNAs o f  the 6kb sub-library,
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six appeared to contain inserts ranging in size from 0.2kb-5kb. The .Pstl digests of the pooled 

plasmid DNA of both the 3kb and the 6kb sub-libraries produced the expected DNA "smears". 

The fragment sizes produced from the 6kb sub-library ranged from 9kb to 1 kb, while the 

fragment sizes o f the 3kb sub-library ranged from 6kb to lkb. Strong bands were observed 

at 4kb in the digests of pooled plasmid DNA from both libraries, probably consisting mainly 

of linearised pMV206 without inserts. The 6kb sub-library appeared to be the superior library, 

with a greater number of plasmids which contained insert DNA than the 3kb sub-library; this 

was deduced from the range and brightness of the DNA smear produced from the Pstl 

digestion o f the 6kb sub-library DNA in comparison with that of the 3kb sub-library DNA.

3.3.3.1 Transformation o f  Pyram idll with the 6kb sub-library o f cosmid 57 

Competent Pyramidll M. smegmatis cells were transformed with 2/ig of the 6kb sub-library 

DNA, the cells were then plated onto Lemco (Kan 15^g/ml) and incubated at 37°C for four 

days. 2 X 1 0 3 transformants were produced, the colonies all had a smooth colony morphology, 

except for one which had a crinkly morphology.

3.3.3.2 Screening fo r  increased pyrazinam ide resistance

Initially 96 transformed strains, all with a smooth colony morphology, were selected and 

transferred onto a Lemco (Kan 15/ig/ml) plate and incubated at 37°C for four days to 

recover. The strains were then replica plated on to Lemco pH5.2 agar containing 500pig/ml 

pyrazinamide and a control Lemco agar plate. Both arrays o f the strains were incubated at 

28°C for six days. Fourteen strains grew on 500/^g/ml pyrazinamide, while all strains grew 

on Lemco (Kan 15/^g/ml) at 28°C. The fourteen "resistant" strains were sub-cultured onto 

Lemco (Kan 15/^g/ml) and incubated at 37° C to recover.
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The fourteen PyramidII::cos57 transformant strains were named Pyrl-14. Single colonies 

from Pyrl-14 were used to inoculate 5ml Lemco (Kan 15//g/ml) cultures which were 

incubated at 37 °C until the cultures reached approximately late log-phase of growth O.SA^. 

Control cultures o f Pyramidll and wild type M. smegmatis me2155 strains were also grown 

to late-log phase (OSA^).  The Pyramidll::cos57 cultures, Pyrl-14, were then streaked onto 

Lemco pH5.2 (Kan 15//g/ml) containing 500//g/ml pyrazinamide and incubated at 28°C for 

five days. The control cultures were streaked onto Lemco pH5.2 agar containing 

pyrazinamide 500/zg/ml and also incubated at 28°C for five days. The mutant Pyramidll M. 

smegmatis strain did not grow on 500/zg/ml pyrazinamide. Ten of the Pyramidll::cos57 

strains, Pyrl,3-6 and 10-14, exhibited stronger growth on 500^g/ml pyrazinamide than the 

wild typeM  smegmatis mcz155 while four of the strains Pyr 2,7,8, and 9 showed no growth 

on 500/zg/ml pyrazinamide. This experiment was repeated and the same results obtained.

3.3.3.3 Analysis o f the plasm id DNA in the Pyram idll transform ants 

The recombinant plasmid DNA contained in the fourteen Pyrl-14 strains was extracted using 

the small scale plasmid prep method for mycobacteria from overnight cultures of each strain 

grown in 5ml Lemco (Kan 15/^g/ml) media at 37°C with shaking. The recombinant plasmid 

DNA recovered from each strain was investigated by restriction digest analysis. Initially, the 

plasmids were double digested with Pstl and £coRV and by Pstl and Kpnl restriction 

enzymes. These pairs o f sites were situated either side o f  the BamHl site in the multiple 

cloning region o f pMV206 into which the cos57 insert DNA was cloned. Double digests of 

the plasmid DNAs with these enzyme pairs would therefore "dropout" the insert DNA o f each 

recombinant plasmid. Single digests with PstI, Kpnl and ZscoRV were also carried out. The 

results of the double digests are shown in Fig.44 and illustrate the similarity o f the 

recombinant plasmid DNA in each of complementing strains Pyrl, 3-6 and 10-14, whereas 

the non complementing strains Pyr 2, 7, 8 and 9 were visibly different. The ten complementing 

strains produced 0.8-0.9kb and 1.8kb fragments following a  Pstl, £coRv double digest, not
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Fig. 44. P stl /  EcoRV  and b) Pstl /  K pnl double digests of ten complementing and 
four non-complementing plasmids.

Non-complementing plasmids Markers 
lane 6) pYR9 lane 15) AiZ/wdlll / EcoRl
lane 7) pYR8 lane 16) XJ//>idIII
lane 8) pYR7
lane 13) pYR2

Complementing recombinant plasmids 
lane 1) pYR14 lane 9) pYR6 

lane 10)pYR5 
lane ll)pY R 4 
lane 12) pYR3 
lane 14) pYR2

lane 2) pYR13 
lane 3) pYR12 
lane 4) pYRl 1 
lane 5) pYRIO
pYR 3, 5, 7, 10 and 14 all appear to have lost the EcoRV and Kpnl sites during cloning.
a) Shows the 0.9kb fragment found in all complementing plasmids. The approximate 1.8kb 
fragment was found in pYRl, 3, 4, 6, 10, 11, 12 and 13 and is contained within the region 
between the EcoRl site at 29160 and pMV206 Pstl cloning site (Fig.45). The size o f this 
band varies in the different plasmids, only 1.4kb of the region is apparent in pYR5 and 14. 
The 3.3 kb region is part o f pYUB18 which contains part of the mycbacterial origin of 
replication pAL500 (Fig. 45).
b) The 2.7kb represents the region from the Pstl site at 30051 to the Pstl site in pMV206 
and is present in all the clones containing the 1.8kb EcoRV I Pstl fragment (Fig.45). The 
2.3kb fragment represents the region between the Kpnl site present in pYUB18 and the 
Pstl site at 30051 (Fig.45).
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0.9 1.4

Pstl / Kpnl
1.5 2.3 2.7

Pstl / £coRV 3.3 0.5 0.9 1.8

Pyrl, Pyr4, Pyr 10,
I____________________________ _____________________________ l Pyrl2,Pyrl3

Pyr3,Pyr5,Pyr6,
L ...#/_______________________________ _________________ » -------------- 1 Pyrii.PyrH

Fig.45. Restriction map of the complementing DNA found in Pyramidll strains complemented 
with a sublibrary of complementing cosmid 57.

The complemented clones all contained at least 3.5kb from the distal end o f cosmid, cosmid57 which correponds to the distal region of B1308. 
All the complementing recombinant DNA also contains variable lengths of the pAL5000 region of pYUB18 cloned between the EcoKW/Kpnl and 
Pstl sites of pMV206. The coordinates shown in the region of B1308 are taken from MycBD. The map shows the coordinates for the plasmid DNA 
ofPyrl.4,10,12 and 13. Pyrl4 and Pyr5 contain approximately 0.5-0.6kb lessM leprae DNA proximal to the Pstl site and so the complementing 
region as defined so far is approximately 3.5kb. The plasmid DNA of Pyr3,5,6,11 and 14 appears to have lost its £coRV and Pstl sites.
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Results

present in the Pstl only digest. A 2.75kb fragment produced by a Pst I only digest was not 

present following digestion with PstI, PcoRV.

With the aid of the restriction patterns produced for cosmid B1308, available from the 

MycDB database the complementing length of cosmid 57 DNA was mapped to a 3.5kb region 

o f cosmid B1308 (Fig.45), located at the distal end of both cosmid57 and B1308, between 

28,000 and 31,500 of B 1308 (The coordinates are those found in MycDB which are in the 

opposite orientation to those in the EMBL database).

3.3.3.4 Sequencing Analysis

In order to confirm the mapping of the complementing DNA to the distal end o f both cosmid 

57 and B1308 the ends o f a fragment o f  the complementing plasmid were sequenced.

A 0.9kb Pi/I/£coRv fragment ([E] 29,160-30,0051 [P]) found in all the complementing 

plasmids was subcloned into the PstVEcoRv sites of pMV206. A large scale PsfUEcoKv 

digest of 5/^g of plasmid DNA extracted from Pyrl was run on an 0.8% agarose gel and the 

0.9kb band excised and recovered with Wizard DNA clean up kit. 750ng o f 0.9kb insert DNA 

was placed in a ligation reaction with 250ng of PstUEcoRV digested pMV206. The ligation 

reaction was transformed into Ecoli DH5a, small scale plasmid preparations were carried out 

on overnight cultures of the transformants and the plasmid DNA recovered was digested with 

P stl/E coR v to confirm that it contained the 0.9kb insert DNA. The procedure was then 

repeated with a HindlW Xbal digest o f the pMV206 plasmid, dropping out the 0.9kb 

fragment, and the subsequent cloning o f the 0.9kb insert into HindllUXbal digested pUC19.

Having successfully cloned the 0.9kb fragment into pUC19, universal forward and reverse 

primers could be used to sequence across the ends of the insert DNA. The double stranded 

sequencing was carried out (section 2.17.1, 2 and 3) and the sequence generated aligned to
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q u e r y  f o r ..............................................A T A T C C G C A A G G C G C C A A G TT G TT TG TC T TC G A C C
I I I  I I I I I I I I I I II  I I I I I I I I I I I I I I I I | | | |

B 1 3 0 8  2 9 1 5 1  C T G C C T T C G C C T T C G A T A T C C G C A A G G C G C C A A G TT G TT TG TC T TC G A C C  29 20 0  
G ACG G AAG CG GA A G CTA TA G G CG TTC C G C G G TTC A A CA A A C A G A A G C TG G  

E c o K V

q u e r y  f o r .  C C G A TG G A G A C C G A C C C G A TTG TC A C C G C A G A A G TG G G C G G TT..................
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I  I I I 

B 1 3 0 8  2 9 2 0 1  C C G A TG G A G A C C G A C C C G A TTG TC A C C G C A G A A G TG G G C G G TTC A G C G C T 29 25 0  
G G C TA C C TC TG G C TG G G C TA A G A G TG G C G TC TTC A C C C G C C A A G TC G C G A

B 1 3 0 8  2 9 9 7 1  G CC AC CC CG CTG G G G TAA G C G G C TG C G C G CTA CG CG C CG CA CC CA CA CC C  3 0 02 0  
C G G TG G G G C G AC C CC ATTCG CC G A CG C G C G A TG C G C G G C G TG G G TG TG G G  

I I I I I I  I I I I I I I I I I I I I I I I I I II I I I I I I I I I I I I I I 
q u e r y  r e v ................................A C C CC ATTCG CC G A C G C G C G A TG C G C G G C G TG G G TG TG G G

P s t I
B 1 3 0 8  3 0 0 2 1  C A TTC A C C A C A G C G TC A C C C G TA G G C TG A A C C G G C C TGCAG G TGA AG ACC 30070  

G TA A G TG G TG TC G C A G TG G G C A TC C G A C TTG G C C G G A C G TC C A C TTC TG G  
I I I I I I I I  I

q u e r y  r e v . G T A A G T G G T ..................................................................................................................

Fig.46.a) An alignment of a sequenced region of cosmid 57 with B1308
An alignment of the sequence obtained from the ends of the0.9kb PstVEcoRV  fragment 
isolated from complementing recombinant plasmid pYRl with B 1038. One end of the 0.9kb 
fragment aligned with the 30,0051 P sll site and the other end with the EcoRW 29,160 site so 
confirming the restriction mapping analysis of the region o f B 1308/57 contained within the 
complementing clones.

Fig 45.b) Table. 19. Homologies of six putative coding regions found at the distal end of 
cosmid B1308

Putative
coding
regions

Location on 
B1308  

(M ycDB)

B e s t
match

Probability 
o f  match

D atabase

P 3 1 0 8 4 -3 2 1 8 7 p ro p io n y l  C o A  c a rb o x y la se 5 x l 0 ,39e EMBLV
S w is s p ro t

i 2 9 4 8 9 -2 9 9 8 3 n o  s ig n ific a n t m atch - -

a  /  c 2 8 1 1 8 -2 8 4 8 6 n o  s ig n ific a n t m atch - -

b 2 8 7 1 5 -2 8 9 6 5 n o  s ig n ific a n t m atch - -

A 2 5 5 7 1 -2 6 1 2 5 P .s a t ir u m  tu r g o r  re sp o n se  
p ro te in  /  a ld e h y d e  

d e h y d ro g e n a s e

6 x l 0 '2,e EMBLV
S w is s p ro t

C 2 5 5 7 1 -2 6 1 2 5 D N A  b in d in g  re p re s so r  
p ro te in  o f  E .c o li  

o s m o re g u la to ry  system

2x1 C e EMBIV
S w is s p ro t
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Fig.47. A map of the region the distal region of cosmid B1308 showing putative coding regions
The map show the positions o f  the putative coding regions p, /', a,and b found in the region o f  B 1308 which complements Pyramidll and o f  tw o  
coding regions upstream o f  / and the complementing region o f  M. leprae D N A , which are believed to  be involved in osmoregulation (Table. 19. 
Fig.46). The complementing region o f  D N A  is represented by the black bar.

R
e

s
u

l
t

s



Results

Forward strand

5 0 8 7 -6 1 0 0  p a b B  an tig e n  B

7 5 4 9 -7 8 1 2  M .le p ra e  g en e  s e q u e n c e

7 7 6 1 -8 9 4 2  a c d  acy l c o A  d e h y d ro g e n a s e

9 1 9 7 -9 5 1 6  p u r 6  p h o sp h o rib o sy lam in o im id a zo le  
carb o x y la se

9 5 4 0 -1 0 9 0 7  p u r K  p h o sp h o rib o sy la m in o d a z o le  
c a rb o x y la se  (A T P ase )

1 0 9 4 1 -1 1 6 3 3  M .le p ra e  g en e  s e q u e n c e

1 1 5 8 9 -1 2 2 3 8  M .le p ra e  g e n e  s e q u e n c e

1 2 8 0 2 -1 3 1 3 4  M .lep ra e  g e n e  s e q u e n c e

1 9 2 0 8 -1 9 6 2 1  rpsB  s ig m a  fa c to r  B  

1 9 9 5 0 -2 0 2 2 8  M .le p ra e  g en e  s e q u e n c e  

2 1 4 9 7 -2 2 0 4 5  la tA  L y s in e -6 -a m in o  tran sfe rase

2 8 1 1 8 -2 8 4 8 6  M .le p ra e  g en e  s e q u e n c e  a /c  

2 8 7 1 5 -2 8 9 6 5  M .lep ra e  g en e  s e q u e n c e  b  

3 1 0 8 4 -3 2 1 8 7  M .le p ra e  g en e  s e q u e n c e  p

Reverse strand
4 4 0 6 -4 6 7 2  tra n sp o rt p ro te in

1 3 0 8 9 -1 4 7 7 4  p c c  p rop iony l c o A  carb o x y la se  

1 4 7 9 6 -1 5 6 6 2  M .leprae  spec ific  

1 5 8 6 0 -1 6 7 5 3  r/ifR T h io su lfa te  su lfo tra n sfe ra se  

17231 -1 9 0 8 4  b io tin  carb o x y l c a r r ie r  p ro te in - m e t

2 3 9 9 9 -2 4 2 8 3  M .leprae  g en e  seq u e n c e  

25191 -2 5403  a ldehyde  d e h y d ro g e n ase  

2 5 5 7 1 -2 6 1 2 5  p robab le  d e h y d ro g e n a s e  A 

261 1 5 -2 6 8 5 8  M .leprae  g ene  se q u e n c e  C

2 9 4 8 9 -2 9 9 8 3  M. leprae  g en e  seq u e n c e  i

Fig. 48. A list of open reading frames found in cosmid B1308 and their coordinates on 
the cosmid as defined by MycBD (opposite orientation to GenBank)
The numbers given show the position of each ORF identified in relation to the length o f the 
cosmid. ORFs on the left are on the forward strand; ORFs on the right are on the reverse 
strand. ORFs putatively identified by homolgy with known genes are named; genes without 
homologies to sequences in the database are shown as M. leprae gene sequences.
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that o f B1308 in the region of the 0.9kb PstUEcoRV fragment (Fig.46a). This confirmed the 

position of this fragment and the other mapping of the complementing plasmids generated 

from cosmid 57.

The 3.5kb complementing region has been shown to contain 3 entire open reading frames a/c 

(70aa) b(l 1 laa) and i(142aa) and part of a fourth at the most distal end, p (303) in MycDB; 

while in Genbank (1995) the region was predicted to contain the complete coding region i and 

part o f  p at the distal end (Fig.47). The region was reanalysed for possible coding regions 

using PC gene and shown to contain the same ORFs as predicted on MycDB and in GenBank.

Blast searches were repeated on the four MycDB predicted ORFs contained within the region, 

the genes all appeared M. leprae specific showing no significant homologies to genes of 

bacterial or eukaryotic species listed in the EMBL and Swissprot databases (Fig.46b). The 

results confirmed those of MycDB and GenBank. The complete list of all known and putative 

coding regions on cosmid B1308 are listed in Fig.48.

3.3.4 Pyrazinamide sensitivity and hydrophobicity of PyramidII:cos57

RECOMBINANT STRAIN PYRl

The pyrazinamide sensitivity o f recombinant strain Pyrl was measured in liquid culture 

(section 2.28.4). Strain Pyrl exhibits significantly increased resistance to pyrazinamide when 

compared with the parental mutant strain PyramidI and with wild type M. smegmatis mc2l 55 

in liquid culture (Fig.49).

The hydrophobicity test was repeated for 200ml of early-stationary phase Pyrl culture. The 

strain was found to have a greater hydrophobicity than both the parental Pyramidll strain and 

the wild typeM smegmatis strain, with an aqueous layer A400 of 0.314 compared to 0.9 and 

0.5 for Pyramidll andM  smegmatis mc2155 respectively.
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O 200 400 600 800
pyrazinamide concentration (jug/ml)

1000

Pyramidll

M. smegmatis me215 5

• ---- Pyrl

Fig.49. A graph of strain Pyrl which exhibits increased resistance to pyrazinamide in 
liqiud culture, when compared with the parental strain.

An equal number o f  cells were added to a set o f 5ml Lemco(pH5.2) containing increasing 
concentrations (200 pg/ml-900pg/ml) of pyrazinamide. Control cultures without pyrazianmide 
were also set up. T heA ^ was taken when the control cultures reached, mid log-phase growth 
0.6A«,,, Pyrl was found to exhibit an increased resistance to pyrazinamide over and above the 
levels attained by M . smegmatis me2155 wild type cells.
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The levels of resistance to pyrazinamide and increased hydrophobicity exhibited over and 

above those found in the wild type may be due to increased copy number or to upregulation 

of the gene or genes involved by a mycobacterial promoter found in the length of pYUB18 

vector cloned into pMV206 beside the M. leprae genes, or both.

3.3.5 Biochemistry

The free lipids o f strains Pyrl and another recombinant strain of Pyramidll containing the 

2.2kb BamYW fragment of cosmid57, in pMV206 were analysed. The phospholipids o f  the two 

strains were analysed with the 2D-TLC system F (data not shown). The Pyrl strain does not 

produce the unknown phospholipid in the same quantities as were found in the Pyramidll 

strain containing cosmid 57. This implies that the phospholipid is not encoded by the M  

leprae genes contained in the recombinant plasmid of the Pyrl strain. The genes encoding or 

controlling production of the phospholipid may be located elsewhere on cosmid 57.

3.3.6 Summary

In summary a 3.5kb region of M. leprae DNA was mapped to cosmid B1308 and shown to 

contain four M. leprae putative coding regions (MycDB), confers increased pyrazinamide 

resistance and hydrophobicity in the pyrazinamid sensitive, Pyramidll strain.
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Chapter 4

D i s c u s s i o n

4.1 The Isolation o f M. s m e g m a t is  mc2155 with mutant phenotypes

4.1.1 Pseudolysogeny and the isolation of M . s m e g m a  77.S mc2 155 phage resistant 

MUTANTS

The attempt to isolate spontaneous mycobacteriophage resistant mutants failed due to the 

prevalence o f  pseudolysogeny in M. smegmatis mc2155; what appeared to be phage resistant 

colonies on the overinfection plates were in fact pseudolysogenic strains (section 3.1). A 

number of facts were indicative that the “resistant” strains were pseudolysogenic: the strains 

released mycobacteriophages on spotting of cultures onto a wild type lawn and formed 

spontaneous clear plaques and background plaques on their own uninfected lawns. 

Approximately, l-2xl02 phage "resistant" colonies were formed on the overinfection plates 

for each phage type plated with 1-3x10* M. smegmatis nic 155 cells, a frequency of 

pseudolysogeny of 0.5-lxlO"6 (section 3.1).

The pseudolysogeny observed in M. smegmatis me2155 is believed to be of the carrier type 

found in o ther mycobacteria (Grange and Redmond, 1978) in which the prophage does not 

replicate o r  integrate into the genome and is passed into one daughter cell of the next 

generation. The prophage can be induced into lytic growth thereby reinfecting daughter cells 

which do n o t retain the prophage and maintaining the pseudolysogenic state. A number of 

factors lead to  this conclusion; some colonies (derived from single cells) within a strain were 

positive and some negative when tested for pseudolysogeny, the level o f "resistant" colonies 

within a given strain was reduced by serial subculture and the appearance of background 

plaques within the bacterial lawn (mottled effect). The mottled lawns containing background 

plaques suggested that some phage-infected cells within the lawn were undergoing a lytic 

cycle, infecting others and preventing their reinfection to allow a masking layer of
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pseudolysogenic cells to overgrow plaques within the lawn. The mottled backgrounds often 

occurred in strains that had been serially subcultured.

Pseudolysogenic colonies were smooth and mucoid, a phenomenon noted in other 

pseudolysogenic species, for example M. kansasii mucoid strains all released phage without 

prior infection (Grange and Bird, 1977). This change in morphology may be mediated by the 

chemical alteration of the phage receptor site, presumably undertaken to prevent further phage 

infection e g. the simple LOSs o f a D29 resistant strain of M. smegmatis mc2l 55 were found 

to be O-methylated and O-acylated (Besra et al., 1994b).

The lytic cycle was induced by exposure to UV in most pseudolysogenic strains, improving 

the accuracy of the pseudolysogenic test in most cases and reducing the mucoid nature of the 

"resistant" strains. Only strains pseudolysogenic for D29 appeared unaffected by exposure to 

UV; that is the lytic cycle was not readily induced and the strains retained a mucoid 

appearance. It appears that the D29 prophage is more stable within M. smegmatis than the 

other phages tested.

DNAIII8 and 33D appeared to confer superinfection immunity to each other, a phenomenon 

noted with other mycobacteriophage e g L5 and D29 (Donnelly-Wu et a l., 1993); this effect 

was not exhibited by any o f the other mycobacteriophage used in these experiments.

The number of pfus (lxl09/plate) used to cause confluent lysis was comparable with numbers 

(lxlOVplate) used to select L5 gp71 transformants (Donnelly-Wu et al., 1993). The numbers 

of pfus used to produce confluent lysis were reduced (106) in an attempt to lower the levels 

of pseudolysogeny in later experiments when screening NTG-treated M. smegmatis mc2155 

(1-3x10*) cells; however, this approach was unsuccessful and it may have been preferable to 

have reduced the numbers o f M. smegmatis me2155 cells plated rather than the number of

- 2 1 5 -



Discussion

pfus.

M . smegmatis infected with LI has been described as having an intermediate host/phage 

relationship between pseudolysogeny and true lysogeny; although phage LI establishes a 

lysogenic relationship with the host, this broke down at high frequencies and led to lysis or 

curing o f the host bacterium. Cured bacteria were then susceptible to reinfection (Tokunaga 

and Sellers, 1970). M. smegmatis mc2155 has been shown from these experiments to establish 

a  similar relationship with D29, 33D, D4 and DNAIII8. How this relationship is maintained 

is a matter o f speculation and some light may be shed on the situation by comparison to the 

biology o f L5 where lysogeny is host induced. For example, if the phage produced residual 

amounts of a repressor protein which switches off the lytic cycle and the levels o f this protein 

are controlled by a host protein as predicted for L5 (Nesbit et al., 1995), an altered host 

environment could lead to a reduction in the host degradative enzyme and an increase in the 

levels o f  the phage inhibitory protein, inhibiting the lytic cycle; if the phages have no 

integrative apparatus i.e. int or attP then they would be unable to form the more stably 

inherited lysogens (Hatfull and Sarkis, 1993).

A  total o f sixty two strains produced on the overinfection plates were screened for resistance 

to  each phage. On the basis that spontaneous L5 resistant strains were observed at a frequency 

o f  lxlO'* on confluent lysis plates when plated with 10*M smegmatis me2155 efus (Donnelly- 

Wu et al., 1993), 1-3 in 100 would have been expected to be spontaneously resistant. It was 

therefore conceivable that a spontaneously resistant mutant would have been identified by 

screening 62 strains, although these numbers were low. Pseudolysogeny would mask a strain 

resistant to phage infection as the result o f a mutation which prevented replication. It is 

unlikely, however that it could mask a mutant resistant through an altered receptor as the 

phage would have been unable to infect the strain to cause pseudolysogeny. However, it is 

possible that a phage resistant strain caused by a receptor mutation would not have been
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detected if it was a mixed culture of pseudolysogenic and phage resistance as resistance to 

infection may have been attributed to a positive pseudolysogeny test.

Phage D4 overinfection produced four colonies which were rough not mucoid and non 

pseudolysogenic, but were infectable on retesting; it is possible that these strains were genuine 

phage resistant mutants that were unstable. This also applies to the two 33D and one D29 non 

pseudolysogenic strains isolated, which were infectable on retesting.

4 .1 .2  M u t a g e n e s i s

The NTG mutagenesis ofM. smegmatis mc2l 55 resulted in the creation of 0.1-0.2% of stable 

auxotrophic mutants, without INH selection. These levels are comparable with those found 

by other groups using NTG to mutagenise M. smegmatis and M . phlei, (0.46% and 0.11%, 

respectively) (Subramanyan et a l, 1989, Konickova-Radochova e t a l, 1970). The use o f INH 

enrichment increased the levels to 0.4%, again comparable to the levels found by others using 

this selection on M. smegmatis, 0.37% (Hinshelwood and Stoker, 1992b) and 0.1-0 9% 

(Holland and Ratledge, 1971). The level of auxotrophy achieved by INH enrichment is 

variable as shown by the results of Holland and Ratledge (1971). In M. phlei and in M. 

smegmatis, this was shown to be due to the percentage survival following the NTG treatment, 

a significant increase in INH enrichment was observed at survival levels below 5%, the 

maximum effect was seen at less than 1% survival auxotrophy (Konickova et al., 1978; 

Holland and Ratledge, 1971). The percentage survival was 8% in the INH-enriched NTG- 

treated M. smegmatis cells in these experiments. This may account for the fact that 3 o f the 

4 auxotrophs isolated following INH enrichment were leaky. The colonies formed following 

mutagenesis were initially mucoid, a phenomenon also noted by Holland and Ratledge (1971).

Both the INH and non-INH NTG-treated sets of M  .smegmatis mcJ155 cells produced 

mutants, with a variety of phenotypes (Mitomycin C resistance, melanin mutants, quinolone
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resistance, penicillin G and pyrazinamide sensitivity) implying that NTG is an appropriate 

mutagen for the creation o f mutant strains of Mycobacterium, corresponding with the findings 

o f other groups (Konickova-Radochova et al., 1970).

The levels o f stable auxotrophs formed were also comparable with the levels formed in 

transposon mutagenesis libraries ofM  smegmatis me2155 (Guilhot et al., 1994) and M. bovis 

BCG, (McAdam et al., 1995). Transposon mutagenesis has the advantages of being able to 

directly select mutants with antibiotic selection markers e g. kanamycin, before screening for 

altered phenotypes, and o f stably maintaining the mutations by selection on kanamycin. 

Transposon mutagenesis is also less likely to cause multiple mutations and may have been 

used if the technology were available at the initiation of this project. However NTG has the 

advantage o f creating point mutations less likely to form lethal mutations which may have 

involved cell wall biosynthesis.

One of the main observations of the NTG procedure was the apparently high levels of 

reversion, within the auxotrophic population. Levels of auxotrophy within the INH enriched 

group fell from 24% on the initial plating to 2.2% on the first serial transfer to a final value 

of 0.4% following individual testing. The first set of values for auxotrophs from Bankl may 

be slightly increased by the decision to test all strains with weak looking growth, but this may 

also have been counter balanced by any accidental elimination of auxotrophic strains due to 

carry over of media to the MM test plates, allowing their growth. Again this phenomenon has 

been observed by others using NTG as a mutagen and the reasons for it are unknown. One 

proposal is that the strain possesses a mutational hotspot which is particularly unstable, 

resulting in high levels of reversion as was observed with glycine/serine mutations o f M. phlei 

with a number of mutagens (Konickova et al., 1970). Alternatively, point mutations may be 

more readily resolved in Mycobacterium in comparison with other genera, for example E. coli 

which formed 40% stable auxotrophs following NTG treatment (Adelberg et al., 1965). The
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high levels o f reversion were also noted when screening for other phenotypes such as 

antibiotic resistance and phage resistance.

4.1.2.1 Conditions fo r  the survival o f cell wall m utants

The penicillin sensitive M. smegmatis mycolic acid mutant described by Kundu et a l, (1991) 

was isolated at 28°C and is temperature sensitive (Dr. P. Chakrabaty personal 

communication). This may be because the production of cell wall components such as 

mycolic acids are reduced at 27°C (Takayama et al., 1978) and the levels of phospholipids 

increase (Taneja et al., 1978) forming a barrier to  the external environment. This natural 

adaptation to low temperatures may therefore increase the chances o f survival o f a cell wall 

mutant by increasing its levels of phospholipid to create a barrier to the environment that the 

mutant would not possess at 37°C. For these reasons the NTG-treated M. smegmatis cells 

were left to recover at 28°C and at 37°C in an attempt to select for temperature sensitive 

mutants and to enhance the survival o f cell wall mutants.

The initial plating of NTG-treated cells which had been INH-enriched appeared to successfully 

select for temperature sensitive mutants. Twenty four percent of INH-enriched cells were only 

able to grow at 28°C on the initial plating of cells onto MM+AA, indicating that the INH 

treatment enriched for temperature sensitive strains better able to survive at 28 °C, even 

though no stable temperature sensitive mutants were isolated. As the NTG-treated M. 

smegmatis strains were grown at 37°C when treated with INH and INH is only bactericidal 

to  growing strains this was as predicited.

The INH-enriched NTG-treated M. smegmatis strains did not display any chromatogenic 

mutants, as opposed to the 0.3% found in SetA, the NTG-treated M. smegmatis cells allowed 

to  recover at 28°C; chromatogenic mutants may have grown rapidly enough at 37°C to have 

been selected out by the INH treatment. There did however, seem to be a slight variation in
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the types of mutant phenotypes selected for by recovery at 28°C alone and subsequent INH 

treatment at 37°C. The initial antibiotic sensitive mutants were selected from SetA which had 

not been INH-enriched; on the basis of these results a second mutagenesis was carried out 

which was not INH-enriched in order to select for antibiotic sensitivity. Although selecting 

for mutants which may have been temperature sensitive as result o f an altered cell wall by 

recovery at 28°C, using the INH selection may have selected against an altered cell wall 

phenotype merely by the required incubation at 37°C. The INH selection may also have 

selected out cell membrane transport protein mutations which if involved in active transport 

are more likely to be able to overcome a mutation at 37°C than at 28°C, when their uptake 

is reduced anyway. If this is the case then they would have been selected out by INH at 37°C 

due to their faster growth. It is possible that simple selection by recovery at 28°C may have 

been the most appropriate way to isolate cell envelope mutants of M. smegmatis me2155.

4.1.3 S c r e e n i n g  f o r  m u t a n t  p h e n o t y p e s  

4.1.3.1.M y cobacteriophage resistance

Bankl and an additional 1,000 strains from SetA were screened for resistance to a number 

of mycobacteriophage, but no phage resistant colonies were isolated. On initial screening for 

phage resistance 2.8% and 2.4% respectively appeared resistant, but on subculture and 

reinfection these were all found to be sensitive. These levels o f initial resistance were 

comparable to those initially found for auxotrophy in the Bankl strains and imply that the 

strains could have been genuinely phage resistant but unstable. It is also possible that the 

strains appeared resistant through an artifact such as low phage titre in the sample added to 

the lawn of the test strain. If these initial strains were genuinely resistant then the seven strains 

from Bankl which were initially resistant to all phage types tested were likely to have had 

mutations effecting the internal mechanisms of phage production, as phage D4 and D29 are 

known to have different phage receptors. An example of such an internal mutation could be 

an alteration in the host RNA polymerase which allowed host protein production but not
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adaptation by the mycobacteriophage for their use.

Screening o f the NTG-treated M. smegmatis strains of Bank 1 and the additional 1,000 strains 

from SetA had the advantage that the strains had not previously been exposed to 

mycobacteriophage when infected and were extremely unlikely to be pseudolysogenic.

The large scale screening of NTG-treated M  smegmatis strains for resistance to 

mycobacteriophage was carried out by plating out large numbers of cells (1x10*) onto agar 

spread with 106 pfii/ml, which resulted in confluent lysis and the formation o f  25-35 "resistant" 

strains, a frequency of lxlO'7. These strains were all pseudolysogenic except for those formed 

on plates spread with D4. The D4 colonies could have been unstably resistant or unstably 

pseudolysogenic strains. These experiments implied that pseudolysogeny is dependent on a 

host mutation as lowering the number of pfus used did not prevent its occurrence.

The inability to isolate stable mycobacteriophage resistant strains may have been dictated by 

a number o f  factors. The specificity of the mycobacteriophage receptors to oligosaccharide 

units of cell wall components e.g. D4 and GPLs (Dhariwal et al., 1986) and the large number 

o f genes encoding enzymes involved in the formation of those structures may make it more 

difficult to mutate the specific enzyme involved in the addition of the specific receptor sugar. 

Mutations further back in the pathway of these cell wall structures are also more likely to 

prove lethal to the host. The mutations required for resistance to mycobacteriophage through 

inhibition o f  the lytic cycle may also have proved lethal to the host e g. an RNA polymerase 

mutation.

4.1.3.2 Temperature sensitive mutations

Again a number of temperature sensitive (ts) mutations were initially isolated from Bankl at 

1%, levels slightly lower than those of the initial auxotrophic mutants found. On subculture
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0.15% remained temperature sensitive; however the temperature sensitivity was lost on 

further subculture from frozen stocks. Temperature sensitive mutations were noted by Holland 

and Ratledge, 1971 using NTG mutagenesis but were apparently not subcultured at all and 

so their degree of stability is unknown. The three ts mutants lost from frozen culture may have 

had cell wall mutations which could not survive being frozen and recultured.

4.1.3.3 Antibiotic resistance and sensitivity mutations

The MICs of the antibiotics to be determined were tested at 28°C and the MICs for 

minocycline, and ethionamide were found to be ten fold higher than those reported by other 

groups, at 37°C (Yamada eta l., 1992; Baneijee et a i , 1994).

Minocycline is the most effective tetracycline against mycobacteria and this is thought to be 

due to its lipophilicity and consequent ability to penetrate the lipid permeability barrier of the 

mycobacterial cell wall. It is thought that the decrease in temperature, causing a decrease in 

the fluidity of the cell wall, has reduced the ability of minocycline to transverse the cell wall. 

Mycolic acid biosynthesis is believed to be the site of action of ethionamide and the reduced 

production of mycolates at low temperatures may have rendered ethionamide less effective, 

as the cell’s ability to survive without mycolates is improved at these low temperatures.

The MICs of the other antibiotics used appeared unaffected by incubation at 28°C. In some 

cases MICs were not available for M. smegmatis and so were compared to MICs for M. bovis 

BCG and M. tuberculosis which are generally ten fold lower (Public Health Laboratories, 

Dulwich, personal communication).

The concentrations used in order to isolate antibiotic resistant and sensitive mutants were 

generally close to the MICs in an attempt to isolate mutants with lower levels of resistance 

and sensitivity, where mutants are perhaps less likely to be in the primary target site of the
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drug and perhaps more likely to be cell envelope associated e g. low level INH resistance 

mutants lead to the isolation of the inhA  gene (Baneijee et al., 1994) rather than the higher 

level resistance observed with mutations of the katG  gene (Zhang el al., 1993).

4.1.3.3.1 Antibiotic resistance

O f the seven antibiotics tested only NTG-treated M. smegmatis strains resistant to the 

quinolones ofloxacin (12) and ciprofloxacin (4) were isolated. The initial levels of possible 

antibiotic mutants isolated from Bankl for amikacin (0.2%), minocycline, (0.6%), ethambutol 

(1.45%) and ethionamide (1.95%) were lower than those seen for auxotrophic mutants (2.2%) 

and were all found to be unstable on further subculture. The initial levels of cycloserine 

resistance were very high at 7.8% but again resistance was lost on subculture and retesting.

Large scale screening for resistance to  minocycline, ethionamide, ethambutol and amikacin 

only yielded colonies on the ethionamide and ethambutol plates at frequencies of 1.5x1 O'7 and 

0.6xl0‘9 respectively, which are lower than the spontaneous levels of INH resistance for M. 

smegmatis me2155 (Baneijee et al., 1994). These results implied that the NTG-treated M  

smegmatis cells, grown from frozen culture, had not retained their mutations at a level much 

above wild type on reculture at 28°C.

The higher numbers of quinolone resistant mutants (0.75%) isolated also indicate that it is 

easier to form mutations in some loci than others; the mutations in the quinolone resistant 

strains are more likely to be found in the gyrA and gyrB genes.

The isolation of stable antibiotic resistant mutants appeared more difficult even from initial 

levels o f possible mutants, this may have been caused to some extent by the selection 

concentration being too high, particularly in the case o f minocycline and amikacin. Resistance 

to all of these drugs particularly ethambutol and ethionamide could have been caused by a cell
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wall mutation; it is possible that the essential nature of some o f the cell wall components may 

lead to a selection pressure for revertants, resulting in the isolation of unstable mutants. A 

mutation in less essential genes, possibly the gyrA  gene, may not adversely affect the strain 

resulting in the maintenance of the mutation.

4.1.3.3.2 Antibiotic sensitivity screening

The screening for increased antibiotic sensitivity was generally more successful than the 

screening for antibiotic resistance. A pyrazinamide sensitive strain (0.05%), five penicillin G 

sensitive strains (0.5%) and eight other strains with poor growth were isolated, the majority 

from the second mutagenesis procedure. Screening for sensitivity tended to throw up other 

types of mutants with slow growth as well as strains genuinely sensitive to the test antibiotic 

e g. auxotrophic mutants AM2 and 570 were isolated from screens for pyrazinamide and 

penicillin G respectively. The antibiotic sensitive strains seemed to have survived better 

without INH enrichment as discussed above. Again the MICs o f  M. smegmatis mc2155 wild 

type differed at 37°C and 28°C by decreasing at 37°C, presumably as the result of an increase 

in the permeability o f  the strain at this higher temperature.

4 .2  C h a r a c t e r is a t io n  o f  m u t a n t  s t r a in s  o f M . s m e g m a t is

4 .2 .1  A u x o t r o p h i c  m u t a n t s

One stable proline mutant (AMI) and one mutant auxotrophic for aspartate, phenylalanine, 

serine and valine were isolated from Bankl.

Proline biosynthesis involves the conversion of glutamic acid to  glutamate semialdehyde 

dehydrogenase which spontaneously converts to A-l-pyrroline-5-carboxylate, which is 

converted to proline by pyrroline-5-carboxylase. The proline mutant could have altered 

glutamate dehydrogenase or pyrroline-5-carboxylase enzymes. Which enzyme is mutated 

could be determined by adding only glutamic acid semialdehyde to  MM. If the strain did not
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grow on glutamic acid semialdehyde it would indicate a pyrroline-5-carboxylase reductase 

mutation, whereas if the strain grew on the glutamic acid semialdehyde this would indicate 

that the mutation was in the glutamate kinase or hydrogenase enzyme.

Proline mutants of mycobacteria had been previously isolated (Subramanyan et al., 1989) and 

the M. leprae genes encoding glutamate kinase (argB) and dehydrogenase (gadCfD) and 

pyrroline-5-carboxylate reductase (proC) have been identified (GenBank., 1995).

The second auxotrophic mutant investigated, AM2, was able to grow on single amino acid 

plates containing either aspartate, arginine, phenylalanine, serine or valine. The exact nature 

o f this mutation is not obvious; there may be an alteration in the transaminase enzyme 

glutamate dehydrogenase, o r  in the glutamine synthetase and glutamate synthase. However, 

the synthesis of other amino acids, tyrosine and L-alanine also require transamination. E. coli 

posseses several glutamate dehydrogenase enzymes that are specific for linear, branched and 

aromatic amino acid biosynthesis. M. smegmatis may also possess several glutamate 

dehydrogenase enzymes , some of which may be specific to the formation of aspartate, 

phenylalanine, serine and valine. Although it is not specifically transaminated, arginine 

biosynthesis requires a-oxoglutarate, the by product of transamination from glutamate; 

reduced transamination may therefore result in low levels o f a-oxoglutarate and hence 

arginine.

The mutant would not grow  on "drop out" plates without methionine, tryptophan, proline, 

asparagine and glycine. The biosynthesis o f methionine and asparagine, glycine and tryptophan 

requires aspartate and serine respectively. It therefore also possible that AM2 is a double 

mutant in serine and aspartate production.
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4 .2 .2  P i g m e n t a t i o n  m u t a n t s

Two mutants with altered pigmentation, one orange and one white were isolated from Bankl 

and their pigmentation analysed, along with wild type M . smegmatis me2155.

The adsorption spectra analysis of the pigments of M. smegmatis mc2155 wild type revealed 

the presence of two pigments; small amounts of a P-carotene like xanthophyll 4-ketorulene, 

and the main pigment theophytin, a chlorophyll degradation product which absorbs at 409nm. 

The white mutant (17) contained no pigments while the orange mutant (96) contained more 

4-ketorulene. M. smegmatis is known to contain 4-ketorulene, but not the leprotene or a -  

carotene found in M. leprae and M. aurum or the P-carotene found in M. phlei (David, 

1984). The formation of the 4-ketorulene is believed to occur via the route 

phytoene-phytofluene-carotene-neurosporene-4-ketorulene (David, 1984). In most other 

species neurosporene is converted to lycopene which undergoes cyclisation to form first the 

mono and then the dicyclic leprotene, a and P carotenes. The xanthophylls in other species 

are also generally formed using lycopene as a precursor, however M. smegmatis does not 

contain lycopene.

Carotenoid mutants, one white and one red, have been used in M. aurum to isolate the 

leprotene and a-carotene coding region (Houssaini-Iraqui et al., 1992 and 1993a). The genes 

encoding the biosynthesis of carotenes in M  aurum are clustered in a 10.83kb operon, while 

the genes to convert lycopene into xanthophylls appeared to be located elsewhere in the M . 

aurum genome, as when the gene cluster was placed in M . smegmatis only small amounts o f 

xanthophyll accumulated (Houssaini-Iraqui et al., 1993b). The white (17) and orange (96) 

mutants could be used to investigate the unusual production of the xanthophyll 4-ketorulene 

and the theophytin pigment. The pigment encoding genes are probably regulated from a 

similar area or found in an operon, as the white mutant contains neither pigment and the levels 

o f both pigment are increased in the orange mutant.
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Two M. smegmatis strains were isolated with an inability to synthesis melanin on tyrosine 

containing media, one of which was leaky. The melanin mutant has been complemented with 

a M. smegmatis cosmid library and the complementing genes cloned; it is hoped that melanin 

production could be used as a selectable marker in mycobacteria that do not produce melanin 

and in mutant strains of those that do.

4.2.3  M i t o m y c i n  C  m u t a n t s

Relatively large numbers of mutants (2.4%) were found on screening for sensitivity to 

mitomycin C which interferes with DNA recombination. These strains were deficient in their 

recombinational and repair mechanisms; the fact that there are large numbers of enzymes 

involved in these processes would explain the higher frequencies o f mutants isolated from the 

mitomycin C screen. This screen was carried out in the search for a recK  mutant The twelve 

stable strains were sent to Dr. E. Davis, NIMR for further analysis.

4.2.4  QUINOLONE RESISTANCE

The 12 ofloxacin and 3 ciprofloxacin resistance mutants isolated could contain mutations in 

their gyrA and/or gyrB genes, which code for the A and B subunits o f topoisomerase DNA 

II. Point mutations have been identified in the gyrA genes o f ciprofloxacin resistant mutants 

ofM  tuberculosis and M  bovis (TakifFet al., 1994). None were observed in the gyrB gene 

which has been shown to result in low level resistance in other species. Mutations in the gyrA 

gene are thought to cause high level resistance as the A subunit o f the DNA topoisomerase 

II is the binding site of the quinolones.

The ten ofloxacin resistant strains were cross-resistant to ciprofloxacin and must have 

mutations in a site of action of both drugs i.e. gyrA ox gyrB  genes, or a transport protein. The 

M. tuberculosis gyrA  and gyrB sequences could be used to design PCR primers to the gyrA 

and gyrB  genes o f  the resistant M. smegmatis strains; PCR products could be screened for
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single strand conformational polymorphisms which would indicate defective gyrA  or gyrB 

genes. Any strains not defective in these genes could have altered permeability caused by a 

change in the cell wall structure or transport proteins across the cell wall or the cell membrane 

or other novel sites of action o f the drugs, and could be investigated further. Three 

ciprofloxacin mutants and 2 ofloxacin mutants were not cross-resistant, which could imply 

that the mode o f transport of the two drugs varies, possibly differing uptake proteins in the 

cell membrane

4.2.5 Penicillin G

Five stable penicillin G sensitive strains were isolated, four of which showed low level 

sensitivity (1 OO/^g/ml lower than wild-type), and one which showed high level sensitivity, 

PenG 650, (300/^g/ml less) in comparison with the wild type (500/yg/ml at 37°). It was not 

possible to compare the levels of penicillin G sensitivity of these strains with the mycolic acid 

mutant (Kundu et al., 1991) as the degree of penicillin sensitivity of the strain was not 

published.

High levels of resistance to penicillin and other P -lactams may result from factors including 

low permeability to the drugs, P-lactamase activity and the affinity of penicillin binding 

proteins (PBPs) for the drug (Jarlier et al., 1991; Fattorini et al., 1992). The degree of the 

effect of each factor on penicillin resistance is variable, although altered permeability and 

lower affinity o f PBPs have been shown to produce up to 512-fold greater resistance to 

amoxicillin in a M. fortuitum  mutant with normal p-lactamase activity (Fattorini et al., 1992). 

Increased sensitivity could have resulted from a mutation which caused increased permeability 

to the drug, reduced P-lactamase activity or increased affinity o f the PBPs for the drug.

Mutant PenG650 was chosen for further analysis as it was the most sensitive to  penicillin G, 

and since high levels of resistance were noted with permeability changes in M. fortu itum  it was
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possible that they could be the cause of high level sensitivity as well. PenG650 was analysed 

for any gross changes in the cell envelope lipids on the basis that the M. smegmatis mycolic 

acid mutant was penicillin sensitive and it may therefore contain cell wall alterations; whilst 

remaining aware it was equally possible that the increased sensitivity could be caused by 

decreased P-lactamase activity or an increased affinity of PBPs for penicillin G.

A change in permeability could have been caused by an alteration in the cell wall structure, 

but no gross changes were noted in any o f the cell wall components studied; a a ' and epoxy 

mycolates were all present, as were the glycolipids, GPLs, LOSs, cord factor and 

phospholipids. The increased permeability could still have been caused by a more subtle 

change in a cell wall component; for example the amounts of each mycolate type present may 

vary - this could be determined by HPLC analysis of the mycolates which is more quantitative. 

Increased permeability could also be caused by an upregulation o f a transport protein or by 

an increase in porin production.

The five penicillin G mutants require further analysis to determine the exact nature o f their 

increased sensitivity which could be identified by assessing their P -lactamase activity and 

PBPs affinities for penicillin G, as well as by assaying for a change in permeability.

4,2.6 P y r a z i n a m i d e  s e n s i t i v e  m u t a n t s

Two pyrazinamide-sensitive mutants were isolated from BankI; Pyramidll (discussed below) 

and AM2 (415). As discussed above, the screening for antibiotic sensitive mutants resulted 

in the isolation o f other slow growing mutants e g. auxotrophs. The possible transaminase 

mutant AM2 was isolated on the screen for pyrazinamide sensitive mutants and appeared 

genuinely sensitive to pyrazinamide at 28°C but not at 37°C. It is possible that the increased 

sensitivity to pyrazinamide is a secondary effect of a lack of transaminase enzyme, which may 

result in the reduction of substrate for the pyrazinamidase/nicotinamidase enzyme; this would
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reduce any competition for the enzyme leaving it free to hydrolyse pyrazinamide, producing 

more pyrazinoic acid and apparently increasing the sensitivity of the mutant to pyrazinamide. 

This effect is probably recognised to  a greater degree at 28 °C where the active uptake of the 

required amino acids will be lower resulting in an internal lack of substrate for the 

pyrazinamidase.

4.3 C h a r a c t e r is t ic s  o f  P y r a m id  II

4.3.1 Pyrazinamide sensitivity on solid and in liquid culture 

Pyramidll exhibits increased sensitivity to pyrazinamide on solid and in liquid media, when 

compared with the wild type M. smegmatis strain at 28°C and at 37°C. The actual MIC for 

Pyramidll varied under different conditions but was consistently at least lOO/zg/ml lower than 

the wild type MIC, a 20% increase in sensitivity. For example on solid media at 28° Pyramidll 

was unable to grow on a 500^g/ml concentration, 100/ig/ml lower than the wild type MIC 

600//g/ml, whereas at 37°C Pyramidll was unable to grow on 400/^g/ml while the MIC for 

wild type was 500/^g/ml. The MIC for liquid culture increased with the growth stage of the 

cultures as pyrazinamide is bacteriostatic not bactericidal.

The level of sensitivity of Pyramidll and the wild type to pyrazinamide appeared to be higher 

in mid log-phase growth as opposed to early stationary-phase growth and the differential 

between them was higher at early stationary-phase growth. Both strains would be expected 

to exhibit higher levels of sensitivity during mid log-phase compared to stationary phase 

growth as the permeability o f the cell envelope would be predicted to decrease towards the 

end o f stationary growth; However, the fact that the difference between the two strains 

increases from a 7-10 fold differential in the numbers of cfu/ml indicates that pyrazinamide is 

able to maintain a greater effect on early stationary phase Pyramidll cells than on early 

stationary phase wild type cells. This may indicate that the mutant does not present as strong 

a permeability barrier as the wild type cells at stationary phase.
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The exact mode of action of pyrazinamide is unknown, pyrazinamide is known to be a pro­

drug converted by pyrazinamidase to pyrazinoic acid, which is believed to be the active form. 

However, as M. smegmatis is ostensibly resistant to pyrazinamide despite the fact that it 

produces pyrazinamidase, unlike the resistant M. bovis which does not produce 

pyrazinamidase (Konno et al., 1967) it must employ other mechanisms of resistance to 

pyrazinamide. Possible resistance mechanisms include reduced permeability caused by the cell 

wall structure of M. smegmatis, increased efflux of pyrazinamide or pyrazinoic acid, or a 

mechanism capable of degrading pyrazinoic acid. Pyramidll may have a mutation which 

causes increased permeability, this may be an alteration in a cell wall structure, an upregulated 

transport protein or an increase in porin production. The increased sensitivity o f Pyramidll 

to pyrazinamide could also be a result of down regulated efflux or pyrazinoic acid control 

system or upregulation o f the pyrazinamidase enzyme.

4.3,2 Identity, colony morphology and growth

The identity o f Pyramidll as a mycobacterium was confirmed by the results of the acid-fast 

test and as M. smegmatis me2155 by the results o f the API-ZYM test.

Pyramidll colonies were smooth and filamentous, as opposed to the wild type which are 

uneven and invaginated, which was also reported for the mycolic acid mutant of M. smegmatis 

(Kundu et al., 1991). Changes in morphology have been associated with alterations in cell wall 

components e g. rough morphology mutants o f M. kansasii and M. avium  have lost the 

oligosaccharide components of their LOSs and GPLs respectively, resulting in a loss of 

smooth morphology (Hunter et al., 1985; Belisle and Brennan, 1989). These results would 

imply that smooth morphology is associated with the presence o f  oligosaccharides on the cell 

surface, although the M. avium  SmT smooth variant has recently been shown to contain a 

66kDa cytosolic protein not present in the SmD or the rough variants (Prinzis et a l., 1994). 

It is possible that the Pyramidll strain is upregulating a cytosolic protein that is causing a

- 2 3 1 -



D iscussion

morphological change o r that an additional oligosaccharide has been exposed or expressed 

on the cell surface which was too small to have been detected by the biochemical analysis.

Pyramidll formed an even suspension in liquid culture; the reduction in clumping may have 

been due to a slight alteration in the cell wall surface, preventing adherence to neighbouring 

cells. The slightly variable acid-fast stain may also have been the result o f cell wall alteration, 

although an internal mutation may have had a similar effect. The slight variation in growth 

phase of the cells in comparison with a wild type culture may also have created this effect.

Pyramidll was able to grow at 28°C and 37°C and exhibited an additional 8hr lag-phase in 

comparison to wild type growth, when grown at 37°C. This implied that the mutation was in 

a function that is required for the early growth of the strain to the point at which log-phase 

growth can be initiated. The log-phase growth rate appears identical to the wild type M. 

smegmatis me2155 strain implying that the mutation is no longer inhibitory to the growth of 

the strain. The viable cell counts for Pyramidll are slightly higher than for the mutant, but this 

is believed to be caused by the reduced clumping o f the strain in comparison with M. 

smegmatis me215 5.

4 .3 .3  BIO CH EM ISTRY  AND HYDROPHOBICITY

The systematic analysis of the cell envelope lipid components of Pyramidll by 2D-TLC 

analysis did not reveal any gross alterations in the mycolates, glycolipid, glycopeptidolipid or 

phospholipids. HPLC analysis of the arabinogalactan, LAM and LM ( Dr.G. Besra, Colorado 

State University, Colorado) did not reveal any alterations either. These results indicate that 

there is no gross alteration of a cell envelope component, and suggest that the strain is not 

harbouring a major cell wall mutation. It is however possible that subtle changes are present, 

only detectable by techniques such as GCMS, NMR as with the O-methylation and O- 

acytylation o f the simple LOS inM  smegmatis resistant to D29 infection (Besra et al., 1994).
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Alterations in the quantities of mycolates formed would not have been detected using these 

methods, but should be found using HPLC analysis. The alterations in waxes and 

mycocerosate components were not screened for using the 2D-TLC system and so alterations 

in these would not be noted.

Pyramidll was found to be less hydrophobic than the wild type M  smegmatis in late log-phase 

and early stationary phase, which indicates an alteration in the cell surface. In other species

E. coli and Salmonella typhimurium , rough mutants lacking oligosaccharides have been 

shown to be more hydrophobic (Rosenburg et al., 1980) using a similar methodology. The 

reduced hydrophobicity of Pyramidll may be caused by the upregulated production o f a sugar 

moiety at the cell surface or by the reduced production o f fatty acid components such as 

mycolates.

4.3.4 Summary of PyramidII

The exact mutation of Pyramidll is unknown. An alteration in its cell surface is suggested by 

its decreased hydrophobicity and its smooth colony morphology; however, no alterations in 

the cell wall components which may be responsible have been detected. Other possibilities 

include a mutation resulting in an increased pyrazinamidase activity, a decreased efflux or a 

change in an other internal mechanism controlling the composition of the pyrazinoic acid. The 

Pyramidll mutant was chosen for complementation without being categorically defined as a 

cell envelope mutation as little is known of the resistance mechanisms o f M. smegmatis or 

other mycobacteria e g. M. leprae and M. avium  to pyrazinamide.

4.4 C o m p l e m e n t a t io n  o f  p y r a m id  II

4.4.1 Transformation with pYUB18::A/. l e p r a e  genomic cosmid library 

Pyramidll was successfully transformed with a representative coverage of the M . leprae 

genome in pYUB18 shuttle vector cosmid; the transformants exhibited variable colony
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morphology which was attributed to the expression of the M. leprae genes contained in the 

transformants.

Complementing cosmid clones were isolated at a frequency of 6%. This is a relatively high 

frequency o f  complementation, which should theroretically be 1-2% (Hinshelwood and 

Stoker, 1992b). The high frequency of complementation may have been a result of the ability 

o f more than one gene to complement the mutation or due to a higher representation of the 

complementing cosmid in the pYUB18::M. leprae DNA used to transform the strain.

The 11 complementing clones all grew well on pyrazinamide in solid media and exhibited 

intermediate (4) and higher than wild type (7) resistance in liquid culture. The intermediate 

degree of complementation in liquid culture could have been caused by a number of factors: 

a number o f  different cosmids may be complementing the mutation, conferring different levels 

o f complementation, or if all of the required complementing region is not present the DNA 

may only be partially complementing the mutation. It is also possible that the recombinant 

strains with intermediate growth contain cosmids with unstable insert DNA which has been 

deleted in a proportion of the cells resulting in a mixed culture of complemented and non- 

complemented cells, e.g. cos38 is unstable in E. coli, the recombinant M. smegmatis strain 

exhibits intermediate resistance to pyrazinamide in liquid culture and on solid media displays 

colonies with both smooth and crinkly morphology types.

When using the liquid culture method, the results were taken when the control was as close 

to O .bA ^ as possible, and the slower growth o f cosmid containing clones meant that the 

incubation times required to reach this A ^  were generally longer.

Three clones which appeared resistant to pyrazinamide on the initial replica screening of the 

transformants onto pyrazinamide were found to  grow very weakly on pyrazimamide in solid
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agar while apparently not exhibiting any increased resistance in liquid culture. The 

bacteriostatic nature of pyrazinamide may have allowed the initial growth of these strains.

4.4.2 C h a r a c t e r i s a t i o n  o f  t h e  c o m p l e m e n t i n g  M .  l e p r a e  DNA 

The extraction of complementing cosmid DNA from M. smegmatis strains proved difficult, 

despite adapting the cosmid DNA extraction method for mycobacteria by the addition of 

lipase type IV to the overnight cultures to improve the lysis step. Cosmid DNA was found to 

be unstable in E. coli despite the use of recombination deficient strains and small culture 

volumes, the cosmid DNA of all the complementing recombinant strains was unstable to some 

extent. The instability of mycobacterial insert DNA from both plasmid and cosmid vectors in 

E. coli has been noted by other groups and generally occurs in the form o f  deletions. 

Instability of recombinant DNA within the homologous M. smegmatis and M. bovis BCG 

strains has also been noted (Haeseleer, 1994)).

Restriction analysis of the complementing clones revealed a number of similar bands between 

cosmids but no clear map could be formed. The insert sizes of five o f the cosmids were 

particularly small (6-9kb) and the insert appeared to have been completely deleted from other 

cosmids e.g.cos38.

The complementing cosmid cos57 was mapped to cosmid B1308 of the overlapping M. leprae 

cosmid library (Eiglmeier et al., 1993) .This cosmid is found at one end of the four contigs 

and any o f the complementing cosmids containing M. leprae DNA which extends towards the 

end of the contig is likely to be unstable as this region o f DNA has so far proved unclonable 

(Eiglmeier et al., 1993). This could also account for the small predicted insert sizes (6-9kb) 

of some clones and the complete deletion of others. The inability to form a map may be due 

to deletions of regions of the M. leprae insert within certain cosmids, or it may be due to the 

fact that different genes are complementing the mutation, or both.
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Successful complementation of the pyrazinamide sensitivity o f Pyramidll with the M  leprae 

DNA indicates that M  leprae genes can be expressed inM . smegmatis mc2155.

4.4.3 Complementation with c o s57

Complemented recombinant strain 57, exhibited increased pyrazinamide resistance, a crinkly 

morphology and the production of the unknown phospholipid, and was used to narrow down 

the region of complementing DNA to  investigate these phenomena.

The cosmid was shown to map to B 1308; open reading frames and their possible functions 

as predicted in MycDB and in GenBank (GB) 1995, are listed in Fig 48. Using the available 

information on MycBD an attempt to  narrow down the complementing region was made by 

subcloning BamHl fragments known not to disrupt ORFs, however the larger fragments 

proved unclonable.

Transformation of Pyramidll with a plasmid sublibrary of cos57 DNA in pMV206 resulted 

in the isolation of 1% of transformants which restored resistance to pyrazinamide at a level 

over and above that of wild type, on  solid and in liquid media. The 3.5kb complementing 

fragment ofM  leprae DNA contained within the transformants was mapped to the distal end 

o f  B1308 between 28,000-31,500 (1,812-5,312 GB). This region of B1308 maps next to 

L308 on the contig, away from the  unknown end of the contig (Fig.47). This region is 

predicted to contain three complete ORFs of unknown function; ORF / (142aa), ORF a/c 

(70aa) and ORF 6(11 laa) and the terminal end of ORF p  (303aa) predicted in the MycDB 

database while in the GenBank database the region is predicted to contain only the terminal 

end o f ORF p  and the complete ORF/.

PC Gene was used to predict potential ORFs in the 3.5kb region; these were found to be in 

keeping with the predictions put forward by both groups and suggested that the GenBank
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predictions had eliminated any ORFs under 300bp. Repeat searches of the EMBL and 

SWISSPROT databases were carried out using the predicted amino acid sequences of ORFs 

/, b, and a/c, no significant homologies were found for b or a/c in either database (Table 19).

As ORF/ is found in all complementing clones it is possible that this is the complementing 

region. ORF /' is contained within the 0.8-0.9kb EcoYW-Pst\ fragment subcloned for sequence 

analysis. This region was subcloned into pMV206 and used to transform Pyramidll. The 

recombinant clone was then tested for pyrazinamide sensitivity, preliminary data suggest that 

the fragment does not complement Pyramidll, however the fragment used only contained a 

300bp region upstream of ORF/ and may not contain the promoter region of the gene. No 

putative promoters were found in the upstream region o f ORF/ but the promoter may be an 

unrecognisable mycobacterial type of promoter; alternatively it is possible that the ORF/ is 

expressed as part of an operon from a promoter upstream of ORFs a  and c (Fig.47).

The region upstream from the complementing region contains a putative turgor response 

aldehyde dehyrogenase protein, A (179aa) and an osmotic repressor protein, C (201aa), it is 

therefore conceivable that protein /  is encoded within the complementing region and is part 

o f an osmoregulatory operon.

The homologies found for the ORFs a/c and b were generally proteins from other GC rich 

organisms and did not appear significant; it is therefore possible that the ORFs do not 

represent genuine coding regions (Table 19 ). Alternatively it is possible that ORFs a/c and 

b are genuine and expressing the complementing gene products.

The region of complementing DNA requires further analysis to determine the exact source of 

the complementation. This can be achieved by further subcloning regions e g. the 2.75kb Pst 1 

fragment which covers the region containing ORF/ and approximately 1.9kb of upstream
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sequence. Alternatively, transposon mutagenesis of the region could be carried out to 

determine the exact complementing region (Jacobs et al., 1991; Mills et al., 1994))

4.5 B io c h e m ic a l  a n a l y s is

The expected M. smegmatis lipid components were found in both M. smegmatis and 

Pyramidll, although the actual amounts of each component present are unknown, and no 

alterations were found in the lipoglycan fraction analysed by HPLC (Dr. G Besra, Colorado 

State University, Colorado). The specific amounts and proportions of the mycolates in all 

strains could be measured by HPLC which may uncover differences not apparent in the 2D- 

TLC system. Equally the Pyramidll strain could be analysed further with techniques (NMR) 

which may pick up subtle changes e g. O-methylation or O-acylation of sugars which may not 

have been detected by the systems used.

The lipid components of the cosmid-containing complemented clones 57, 54 and 116 analysed 

contained all the components observed in wild type M. smegmatis me2155 strain as well as 

an unknown phospholipid. This phospholipid appears to be present in M. leprae (Minnikin 

et al., 1985) and may be a  direct product of an M. leprae gene or a secondary product. The 

second explanation seems most likely, since acetyl CoA carboxylase ( accC), the nucleotide 

biosynthesis genes pur6 and purk and the phosphate-transport protein genes ( pstB) which are 

all found on B1308 (Fig.48) all have the potential to indirectly alter phospholipid biosynthesis. 

Phospholipid accumulation may have been enhanced by the apparently reduced activity of 

phosphohydrolase enzyme found in Pyramid II.

Changes in the regulation of phospholipid biosynthesis could also lead to the accumulation 

of a secondary product which is not generally visible. The phospholipid is less polar than PI 

and PIMs and more polar than DPG and PE; the decrease in polarity in comparison with PI 

may be due to methylation or acylation which may then block alternative pathways. This
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méthylation or acylation may be encoded by a gene found on the cosmids. It is also possible 

that a specific M. leprae gene on the cosmids encodes an enzyme responsible for a 

méthylation or acylation event which causes a block in the pathway, again leading to a visible 

intermediate.

The unknown phospholipid produced in complementing strains 57, 54 and 116 has not yet 

been specifically identified by GCMS.

The fatty acid content of the cosmid-containing strains appeared to be significantly altered in 

the levels o f palmitic acid and tuberculostearic acid, these increased by approximately 10% 

in all cosmid-containing strains. The increase in palmitic acid and the larger tuberculostearic 

acid, both of which contain no saturated bonds, would result in a decreased fluidity of the cell 

membrane and may be connected to the mechanism of kanamycin resistance since it occurred 

in all cosmid containing strains.

4.6 F u t u r e  W o r k

The nature of the Pyramidll mutant should be investigated further; the permeability of the cell 

envelope could be measured (Nikaido and Jarlier, 1991; Connell and Nikaido, 1994) and 

sensitivity to other antibiotics investigated. An amide test could be carried out to ensure the 

mutation was not caused by upregulation o f the pyrazinamidase enzyme.

The complementing region ofM  leprae DNA needs to be narrowed down to a gene function 

as stated and could be achieved by subcloning or transposon mutagenesis (Jacobs et al., 1991 ; 

Mills et al., 1994). The 0.9kb fragment containing ORFi could be cloned into an expression 

vector to determine whether it was able to complement, when expressed from a mycobacterial 

promoter. The 0.9kb fragment could also be used as a probe to analyse the other 

complementing cosmids for homologous regions to categorically determine whether they all
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contain the same complementing cosmids or whether they encode varying complementing 

regions. The complementing gene could be used to probe a M. smegmatis genomic library to 

determine whether the gene is present in M. smegmatis, if so it could be cloned and PCR- 

SSCP analysis carried out to determine wether the M. smegmatis homolog was in fact 

mutated. Pyramidll could be transformed with an M. smegmatis cosmid or plasmid genomic 

library and the complementing region of DNA determined directly; this could then be used to 

probe the M. leprae complementing region to determine whether they were homologs. The 

complementing DNA, when isolated may also be used to carry out a zoo blot on a number of 

mycobacterial strains, including M. smegmatis to determine whether the gene is M. leprae- 

specific and therefore not the true homolog of the mutation or if it is present in other strains.

Cell free extracts o f  complemented Pyramidll (containing pYRI) could be extracted and 

western blots ran to  try and identify any protein being overproduced which could be purified 

and further analysed.

Other mutants generated by this project e g. penicillin G sensitive mutants, auxotrophic 

mutants and fluoroquinone mutants all require further analysis and transformation with an M. 

smegmatis genomic library to isolate the complementing genes.

4.7 S u m m a r y

This project has resulted in the formation o f two banks ofNTG-treated M. smegmatis me2155 

and has led to the isolation of a number of M. smegmatis mutants with alterations in a variety 

of phenotypes e.g. penicillin sensitivity, fluoroquinone resistance and melanin production.

A pyrazinamide sensitive mutant with decreased hydrophobicity, smooth colony morphology 

and variable increased sensitivity to penicillin was isolated. Pyramidll may have altered cell 

envelope permeability which could be due to a variety of factors i.e. upregulation of porin
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production or a subtle alteration in the cell wall structure, implied by the decrease in 

hydrophobicity and the altered colony morphology. Increased sensitivity to pyrazinamide 

could be caused by an upregulated efflux system, upregulated pyrazinamidase enzyme or by 

another mutation in an unknown internal mechanism for resistance to pyrazinamide in M. 

smegmatis.

A 3.5kb region ofM  leprae DNA was found to complement this mutation and contains three 

putative ORFs. The region is found down stream of a putative osmoregulatory site and it is 

possible that one or all three o f these coding regions are involved in osmoregulation. If 

Pyramidll has altered permeability it would follow that it would require a change in its 

osmoregulation, to overcome the change in permeability. It is therefore possible that the 

complementing region of M. leprae DNA is involved in osmoregulation.
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A p p e n d ix  A : M e d ia  a n d  a n t ib io t ic s

M9 Minimal Medium (MM) 
5x M9 salts *
Distilled water

200ml
800ml

sterilize by autoclaving
add 20ml 20% glucose (autoclaved) and 1ml 1% thiamine (filter sterilized) 
for agar plates Bacto agar was added to 1.5% 
cas-amino acids were added at 1 g/1 for MM+AA

*5x M9 salts
Na2H P04.7H20
k h 2p o 4
NaCl
NH4C1
Distilled water 
sterilize by autoclaving

64g
15g
2.5g

5g
to 1000ml

Luria Broth  (LB) 
Bacto-tryptone 
Bacto-yeast extract 
NaCl
Distilled water

10g
5g
10g

to 1000ml
sterilize by autoclaving
for agar plates Bacto agar was added to 1.5%

SOB
Bacto-tryptone 
Yeast extract 
NaCl
Distilled water 
sterilize by autoclaving

20g
5g 
0.5g 

to 1000ml

Lem co  Broth
Bacto-peptone
Bacto Lab Lemco powder
NaCl

10g
5g
5g

Distilled water to 1000ml
pH to 7.2 with 2M NaOH, sterilize by autoclaving 
for Lemco soft top, Bacto agar was added to 0.75% 
for agar plates Bacto agar was added to 1.5%
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Appen dix  A

M lD D L E B R O O K  7 H 9  MEDIUM
Ammonium sulphate 0.5g
Monopotaasium phosphate l.Og
Disodium phosphate 2.5g
Sodium citrate O.lg
Magnesium sulphate 0.05g
Calcium chloride 0.0005g
Zinc sulphate 0.001 g
Copper sulphate 0.001 g
L-glutamic acid 0.5g
Ferric ammonium citrate 0.04g
Pyridoxine 0.001g
Biotin 0.0005g
Distilled water to 900ml
sterilize by autoclaving, cool to 50-55 °C and add 100ml ADC+ enrichment (filter sterilized)

M lD D L E B R O O K  7 H 1 0  AGAR

Ammonium sulphate 0.5g
Monopotaasium phosphate 1.5g
Disodium phosphate 1.5g
Sodium citrate 0.4g
Magnesium sulphate 0.025g
Calcium chloride 0.0005g
Zinc sulphate 0.001 g
Copper sulphate 0.001 g
L-glutamic acid 0.5g
Ferric ammonium citrate 0.04g
Pyridoxine 0.001 g
Biotin 0.0005g
Malachite green 0.00025g
Bacto agar lSg
Distilled water to 900ml
sterilize by autoclaving, cool to 50-55°C and add 100ml ADC+ enrichment (filter sterilized)
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Ap pe n d ix  A

M i d d l e b r o o k  7 H 1 1  a g a r

Pancreatic digest of casein lg
Ammonium sulphate 0.5g
Monopotaasium phosphate 1.5g
Disodium phosphate 1.5g
Sodium citrate 0.4g
Magnesium sulphate 0.05g
L-glutamic acid 0.5g
Ferric ammonium citrate 0.04g
Pyridoxine 0.001 g
Biotin 0.0005g
Malachite green 0.001 g
Bacto agar 15g
Distilled water to 900ml
sterilize by autoclaving, cool to 50-55°C and add 100ml ADC* enrichment i

ADC* EN RICH M EN T

Albumin Fraction V, Bovine 5g
Dextrose 2g
Catalase (beef) 0.003g
distilled water 100ml
sterilize by filtration

A n t i b i o t i c  s t o c k  s o l u t i o n s

Penicillin G 10 mg/ml in H20  (buffered with NaOH)
Pyrazinamide 10 mg/ml in H20  (pH to 5.2 with HC1)
Ethionamide
Ethambutol
Kanamycin 50 mg/ml in H20
Ampicillin 50 mg/ml in H20
Ciprofloxacin 50 mg/ml in H20
Oxofloxacin 50 mg/ml in H20
Minocycline 50 mg/ml in DMF
Amikacin 50 mg/ml in H20
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A p p e n d ix  b : b u f f e r s

TAE
50x stock
Tris base 242g
glacial acetic acid 57.1ml
0.5M EDTA pH8.0 100ml
Distilled water to 1000ml

Tbe
5x stock
Tris base 54g
boric acid 27.5g
0.5M EDTA pH8.0 20ml
Distilled water to 1000ml

TE
2M Tris-Cl pH8.0 0.5ml
0.5M EDTA pH8.0 0.2ml
Distilled water to 100ml
sterilize by autoclaving
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A p p e n d ix  c : b a c t e r ia l  s t r a in s  a n d  p l a s m id s

E.coli

DH5a

TG2

NM554

DL795

F-, <|>80D/acZAM15, ree A l, endAl, gyrA46, th i-1, hsdR il (rK-,mK+), supE44, 
relA\,deoR, A(ZacZYA-argF)U 169
supE, hsdA5, thi, A(lac-proAB), A (srl-recA) 306::Tnl0 {tef), F ' {traD 36 
proAB+ laclq lacZA M 15}
ree A 13 araD139 A(ara-leu)7696 A(/ac)/7A gal\J galK hsdR rpsh (StrO mcrA  
mcrB
AhsdKMS, mcrBC, mrr, e!4 mcrA°; sbcC2Q\ ; recA::Cmr

M.smegmatis

me2155 high efficiency of electroporation strain of M.smegmatis 607

P l a s m id s

pYUB 18:.* 
M. leprae 
pYUB12 
pMV206 
pUC19

library of genomic M.leprae DNA in shuttle cosmid pYUB 18 (kanr) 
E.co/i-mycobacterium shuttle plasmid (kanr)
E.co/i'-mycobacterium shuttle plasmid (kanr)
E.coli cloning vector (ampr)

-247-



B i b l i o g r a p h y

AbouZeid C., Ratliff T.L., Wiker H.G., Harboe M., Bennedsen J., Rook G.A.W. 1988. 
Characterisation of fibronectin-binding antigens released by Mycobacterium tuberculosis and 
Mycobacterium bovis BCG. Infection and Immunity, 56: 3046-3051.

Adams L.B., Fukutomi Y., Krahenbuhl J.L. 1993. Regulation of murine macrophage 
effector functions by lipoarabinomannan from mycobacterial strains with different degrees of 
virulence. Infection and Immunity, 61: 4173-4181.

Adelberg E.A., Mandel M., Grace Chein Ching Chen. 1965. Optimal conditions for 
mutagenesis by N-methyl-N'-nitro-N-nitrosoguanidine in Escherichia coli K12. Biochemical 
and Biophysical Research Communications, 18: 788

Aldovini A., Husson R.N., Young R.A. 1993. The uraA locus and homologous 
recombination in Mycobacterium bovis BCG. Journal o f Bacteriology, 175: 7282-7289.

Andersen A.B., Brennan P.J. 1994. M. tuberculosis proteins and antigens. In Bloom B.R. 
(ed.). Tuberculosis: pathogenesis, protection and control. American Society for 
Microbiology, Washington DC. pp. 307-332.

Andersen A.B., Ljungqvist L., Olsen M. 1990. Evidence that protein antigen b of 
Mycobacterium tuberculosis is involved in phosphate metabolism. Journal o f General 
Microbiology, 136: 477-480.

Asselineau C., Lacave C.S., Montrozier H.L., Prome J.C . 1970. Relations structurales 
entre les acides mycoliques insatures et les acides inferieurs insatures synthétisés par 
Mycobacterium phlei. European Journal o f Biochemistry, 14: 406-410.

Balasubramanian V., Pavelka Jr M.S., Bardarov S.S., Martin J., Weisbrod T.R., 
McAdam R.A., Bloom B.R., Jacobs Jr W.R. 1996. Allelic exchange in Mycobacterium 
tuberculosis with long linear recombination substrates. Journal o f Bacteriology, 178:
273-279.

Ballou C.E. 1972. Biosynthesis of mannophosphoinositides in Mycobacterium phlei. Methods 
in Enzymology, 28: 493-500.

Banerjee A., Dubnau E., Quemard A., Balasubramanian V., Um K.S., Wilson T., 
Collins D., De Lisle G., Jacobs W.R., Jr. 1994. inhA, a gene encoding a target for isoniazid 
and ethionamide in Mycobacterium tuberculosis. Science, 263: 227-230.

Barletta R.G., Kim D.D., Snapper S.B., Bloom B.R., Jacobs W.R., Jr. 1992.
Identification of expression signals of the mycobacteriophages Bxbl, LI and TM4 using the 
Escherichia-Mycobacterium shuttle plasmids pYUB75 and pYUB76 designed to create 
translational fusions to the lacL gene. Journal o f General Microbiology, 138: 23-30.

-248-



R eferen ces

Barnes P.F., Chatterjee D., Abrams J.S., L u S., Wang E., Yamamura M., Brennan P.J., 
Modlin R.L. 1992. Cytokine production induced by Mycobacterium tuberculosis 
lipoarabinomannan: relationship to chemical structure. Journal o f Immunology, 149: 541-547.

Barrow W.W., Davis T.L., Wright E.L., Labrousse V., Bachelet M., Rastogi N. 1995. 
Immunomodulatory spectrum of lipids associated with Mycobacterium avium serovar 8. 
Infection and Immunity, 63: 126-133.

Barrow W.W., De Sousa J.P.C., Davis T.L., Wright E.L., Bachelet M., Rastogi N. 1993. 
Immunomodulation of human peripheral blood mononuclear cell functions by defined lipid 
fractions of Mycobacterium avium. Infection a nd  Immunity, 61: 5286-5293.

Barrow W.W., Ullom B.P., Brennan P.J. 1980. Peptidoglycolipid nature of the superficial 
cell wall sheath of smooth-colony-forming mycobacteria. Journal o f Bacteriology, 144: 
814-822.

Belisle J.T., Brennan P.J. 1989. Chemical basis of rough and smooth variation in 
mycobacteria. Journal o f Bacteriology, 171: 3465-3470.

Belisle J.T., Brennan P.J. 1994. Molecular basis of colony morphology in Mycobacterium 
avium. Research in Microbiology, 145: 237-242.

Belisle J.T., Klaczkiewicz K., Brennan P.J., Jacobs W.R., Jr., Inamine J.M. 1993b. 
Rough morphological variants of Mycobacterium avium. Characterization of genomic 
deletions resulting in the loss of glycopeptidolipid expression. Journal o f Biological 
Chemistry, 268: 10517-10523.

Belisle J.T., McNeil M.R., Chatterjee D., Inamine J.M., Brennan P.J. 1993a. Expression 
of the core lipopeptide of the glycopeptidolipid surface antigens in rough mutants of 
Mycobacterium avium. Journal o f Biological Chemistry, 268: 10510-10516.

Belisle J.T., Pascopella L., Inamine J.M., Brennan P.J., Jacobs W.R., Jr. 1991. Isolation 
and expression of a gene cluster responsible fo r biosynthesis of the glycopeptidolipid antigens 
of Mycobacterium avium. Journal o f Bacteriology, 173: 6991-6997.

Bergh S., Cole S.T. 1994. MycDB: An integrated mycobacterial database. Molecular 
Microbiology, 12: 517-534.

Besra G.S., Chatterjee D. 1994. Lipids and carbohydrates of Mycobacterium tuberculosis.. 
In Bloom B.R. (ed.), Tuberculosis: Pathogenesis, protection and control. American Society 
for Microbiology, Washington DC. pp. 285-306.

-249-



R eferences

Besra G.S., Khoo K.H., Belisle J.T., McNeil M.R., Morris H.R., Dell A., Brennan P.J.
1994b. New pyruvylated, glycosylated acyltrehaloses from Mycobacterium smegmatis strains, 
and their implications for phage resistance in mycobacteria. Carbohydrate Research, 251: 
99-114.

Besra G.S., Khoo K.H., McNeil M.R., Dell A., Morris H.R., Brennan P J. 1995. A new 
interpretation of the structure of the mycolyl-arabinogalactan complex of Mycobacterium 
tuberculosis as revealed through characterization of oligoglycosylalditol fragments by 
fast-atom bombardment mass spectrometry and 1H nuclear magnetic resonance spectroscopy. 
Biochemistry, 34: 4257-4266.

Besra G.S., McNeil M.R., Brennan P.J. 1992. Characterization of the specific antigenicity 
of Mycobacterium fortuitum. Biochemistry (USA), 31: 6504-6509.

Besra G.S., McNeil M.R., Khoo K.H., Dell A., Morris H.R., Brennan P.J. 1993. 
Trehalose-containing lipooligosaccharides of Mycobacterium gordonae: Presence of a 
mono-O-methyltetra-O-acyltrehalose ’core' and branching in the oligosaccharide backbone. 
Biochemistry (USA), 32: 12705-12714.

Besra G.S., Sievert T., Lee R.E., Slayden R.A., Brennan P J ., Takayama K. 1994a. 
Identification of the apparent carrier in mycolic acid synthesis. Proceedings o f the National 
Academy o f Sciences o f the United States o f America, 91: 12735-12739.

Beveridge T.J., Murray R.G.E. 1980. Sites of metal deposition in the cell wall of Bacillus 
subtilis. Journal o f Bacteriology, 141: 876-887.

Birnboim H.C., Doly J. 1979. A rapid alkaline extraction procedure for screening 
recombinant plasmid DNA. Nucleic Acids Research, 7: 1513

Brennan P J . 1989. Structure of mycobacteria: Recent developments in defining cell wall 
carbohydrates and proteins. Reviews o f Infectious Diseases, 11: S420-S429.

Brennan P J., Ballou C.E. 1967. Biosynthesis of mannophosphoinositides by 
Mycobacterium phlei. Journal o f Biological Chemistry, 242: 3046-3056.

Brennan P J., Draper P. 1994. Ultrastructure of M. tuberculosis.. In Bloom B.R. (ed.), 
Tuberculosis: Protection, pathogenesis and control. American Society for Microbiology, 
Washington DC. pp. 271 -284.

Brennan P.J., Nikaido H. 1995. The envelope of mycobacteria. Annual Review o f 
Biochemistry, 64: 29-63.

Brown M.C., Taffet S.M. 1995. Lipoarabinomannans derived from different strains of

-250-



R eferen ces

Mycobacterium tuberculosis differentially stimulate the activation of NF-kappa B and KBF1 
in murine macrophages. Infection and Immunity, 63: 1960-1968.

Brown back P.E., Barrow W.W. 1988. Modified lymphocyte response to mitogens after 
intraperitoneal injection of glycopeptidolipid antigens from Mycobacterium avium complex. 
Infection and Immunity, 56: 1044-1050.

Brozna J.P., Horan M., Rademacher J.M., Pabst K.M., Pabst M.J. 1991. Monocyte 
responses to sulfatide from Mycobacterium tuberculosis: Inhibition of priming for enhanced 
release of superoxide, associated with increased secretion of interleukin-1 and tumor necrosis 
factor alpha, and altered protein phosphorylation. Infection and Immunity, 59: 2542-2548.

Castelnuovo G., Bellezza G., Yamanaka S. 1970. Phage inhibiting substances of 
mycobacteria. 1. -The nature of phage inhibiting substances of Mycobacterium phlei. Ann 
Inst Pasteur, 119: 302-311.

Chan J., Fan X., Hunter S.W., Brennan P.J., Bloom B.R. 1991. Lipoarabinomannan, a 
possible virulence factor involved in persistence of Mycobacterium tuberculosis within 
macrophages. Infection and Immunity, 59: 1755-1761.

Chatterjee D., Bozic C.M., McNeil M., Brennan P.J. 1991. Structural features of the 
arabinan component of the lipoarabinomannan of Mycobacterium tuberculosis. Journal o f  
Biological Chemistry, 266: 9652-9660.

Chatterjee D., Hunter S.W., McNeil M., Brennan P.J. 1992a. Lipoarabinomannan: 
multiglycosylated form of the mycobacterial mannosylphosphatidylinositols. Journal o f 
Biological Chemistry, 267: 6228-6233.

Chatterjee D., Lowell K., Rivoire B., McNeil M.R., Brennan P J . 1992b. 
Lipoarabinomannan of Mycobacterium tuberculosis. Capping with mannosyl residues in some 
strains. Journal o f Biological Chemistry, 267: 6234-6239.

Chatterjee D., Roberts A.D., Lowell K., Brennan P.J., Orme I.M. 1992c. Structural basis 
of capacity of lipoarabinomannan to induce secretion of tumor necrosis factor. Infection and 
Immunity, 60: 1249-1253.

Church G., Kieffer-Higgins S. 1988. Multiplex DNA sequencing. Science, 240: 185-188.

Cirillo J.D., Weisbrod T.R., Banerjee A., Bloom B.R., Jacobs W.R., Jr. 1994. Genetic 
determination of the meso-diaminopimelate biosynthetic pathway of mycobacteria. Journal o f 
Bacteriology, 176: 4424-4429.

Clark-Curtiss J.E. 1990. Genome structure of mycobacteria. In McFadden J. (ed.).

- 2 5 1 -



References

Molecular biology o f the mycobacteria. Academic Press, London, pp. 77-96.

Clark-Curtiss J.E., Jacobs W.R.J., Docherty M.A., Ritchie L.R., Curtiss R.I. 1985. 
Molecular analysis of DNA and construction of genomic libraries of Mycobacterium leprae.. 
Journal o f  Bacteriology, 161: 1093-1102.

Cole S.T., Smith D.R. 1994. Towards mapping and sequencing the genome of 
Mycobacterium tuberculosis.. In Bloom B.R. (ed.), Tuberculosis: Pathogenesis, protection 
and control. American Society for Microbiology, Washington DC. pp. 227-238.

Collins D.M., Kawakami R.P., De Lisle G.W., Pascopella L., Bloom B.R., Jacobs WR
J r , 1995. Mutation of the principal sigma factor causes loss o f virulence in a strain of the 
Mycobacterium tuberculosis complex. Proceedings o f the National Academy o f Sciences of 
the United States o f America, 92: 8036-8040.

Colston M .J., Davis E.O. 1994. Homologous recombination, DNA repair, and mycobacterial 
recA genes. In Bloom B.R. (ed.), Tuberculosis: Pathogenesis, protection and control. 
American Society for Microbiology, Washington, DC 20005. pp. 217-226.

Connell N.D., Nikaido H. 1994. Membrane permeability and transport in Mycobacterium 
tuberculosis. In Bloom B.R. (ed.), Tuberculosis: Pathogenesis, protection and control. 
American Society for Microbiology, Washington DC. pp. 333-352.

Crowle A.J., Dahl R., Ross E., May M.H. 1991. Evidence that vesicles containing living 
virulent Mycobacterium tuberculosis or Mycobacterium avium in cultured human 
macrophages are not acidic. Infection and Immunity, 59: 1823-1831.

Curcic R., Dhandayuthapani S., Deretic V. 1994. Gene expression in mycobacteria: 
Transcriptional fusions based on xylE and analysis of the promoter region of the response 
regulator mtrA from Mycobacterium tuberculosis. Molecular Microbiology, 13: 1057-1064.

Daffe M., Brennan P.J., McNeil M. 1990. Predominant structural features of the cell wall 
arabinogalactan of Mycobacterium tuberculosis as revealed through characterisation of 
oligoglycosyl alditol fragments by gas chromatography/mass spectrometry and by 'H and 
,3C-NMR analyses. Journal o f Biological Chemistry, 265: 6734-6743.

Daffe M., McNeil M., Brennan P.J. 1991. Novel type-specific lipooligosaccharides from 
Mycobacterium tuberculosis. Biochemistry (USA), 30: 378-388.

Das Gupta S.K., Bashyam M.D., Tyagi A.K. 1993. Cloning and assessment of 
mycobacterial promoters by using a plasmid shuttle vector. Journal o f Bacteriology, 175: 
5186-5192.

-252-



R efer e n c e s

David,H.L. 1984. Carotenoid pigments of the mycobacteria. In Kubica.G.P., Wayne,L.G. 
(eds). The Mycobacteria: a sourcebook. Part A. New York: Marcel Dekker, Inc. pp696-699.

David H.L., Clement F ., Meyer L. 1978. Adsorption of mycobacteriophage D29 on 
Mycobacterium leprae. Annales de Microbiologie, 129: 563-566.

David H.L., Levy-Frebault V., Thorel M.F. 1988. Characterisation of distinct layers of the 
Mycobacterium avium envelope in respect of their composition by fatty acids, proteins, 
oligosaccharides and antigens. Zentralblatt fur Bakteriologie Mikrobiologie und Hygiene - 
Abt 1 OrigA, A268: 193-208.

Davis E.O., Jenner P.J., Brooks P.C., Colston M.J., Sedgwick S.G. 1992. Protein splicing 
in the maturation of M. tuberculosis RecA protein: A mechanism for tolerating a novel class 
of intervening sequence. Cell, 71: 201-210.

Davis E.O., Sedgwick S.G., Colston M J. 1991. Novel structure of the recA locus of 
Mycobacterium tuberculosis implies processing of the gene product. Journal o f Bacteriology, 
173: 5653-5662.

Davis E.O., Thangaraj H.S., Brooks P.C., Colston M.J. 1994. Evidence of selection for 
protein introns in the RecAs of pathogenic mycobacteria. EMBO Journal, 13: 699-703.

De Smet K.A.L., Jamil S ., Stoker N.G. 1993. Tropist3: A cosmid vector for simplified 
mapping of both G + C-rich and A + T-rich genomic DNA. Gene, 136: 215-219.

De Smet K.A.L., Weston T., Young D.B. 1995. Trehalose synthesis in mycobacteria. 
Abstract for the Glaxo “Action TB: Scientific conference and workshops”, 18 August 1995.

Dellagostin O.A., Esposito G., Eales L.J., Dale J.W., McFadden J. 1995. Activity of 
mycobacterial promoters during intracellular and extracellular growth. Microbiology, 141: 
1785-1792.

Deng L., Mikusova K., Robuck K.G., Scherman M., Brennan P.J., McNeil M.R. 1995. 
Recognition of multiple effects of ethambutol on metabolism of mycobacterial cell envelope. 
Antimicrobial Agents and  Chemotherapy, 39: 694-701.

Dessen A., Quemard A .,  Blanchard J.S., Jacobs W.R., Jr., Sacchettin J.C. 1995. Crystal 
structure and function of the isoniazid target of Mycobacterium tuberculosis. Science, 267: 
1638-1641.

Dhandayuthapani S., V ia L.E., Thomas C.A., Horowitz P.M., Deretic D., Deretic V.
1995. Green fluorescent protein as a marker for gene expression and cell biology of 
mycobacterial interactions with macrophages. Molecular Microbiology, 17: 901-912.

-253-



Re f e r e n c e s

Dhariwal K.R., Liav A., V atter A.E., et al. 1986. Haptenic oligosaccharides in antigenic 
variants of mycobacterial C- mycosides antagonize lipid receptor activity for 
mycobacteriophage D4 by masking a methylated rhamnose. Journal o f Bacteriology, 168: 
283-293.

Dobson G., M innikin D.E., Minnikin S.M., Parlett J.H., Goodfellow M., Ridell M., 
M agnusson M. 1985. Systematic analysis of complex mycobacterial lipids. In Goodfellow M„ 
Minnikin D.E. (ed.), Chemical methods in bacterial systematics. Academic Press, London, 
pp. 237-265.

DonnellyWu M.K., Jacobs W.R., Jr., Hatfull G.F. 1993. Superinfection immunity of 
mycobacteriophage L5: Applications for genetic transformation of mycobacteria. Molecular 
Microbiology, 7: 407-417.

D raper P. 1986. Structure of Mycobacterium leprae. Leprosy Review, 57: 15-20.

D raper P. 1991. The structure of the mycobacterial cell envelope is not yet understood. 
Research in Microbiology, 142: 420-422.

Eiglmeier K., Honore N., Cole S.T. 1991. Towards the integration of foreign DNA into the 
chromosome of Mycobacterium leprae.. Research in Microbiology, 142: 617-622.

Eiglmeier K., Honore N., Woods S.A., Caudron B., Cole S.T. 1993. Use of an ordered 
cosmid library to deduce the genomic organization of Mycobacterium leprae. Molecular 
Microbiology, 7: 197-206.

Etem adi A.-H. 1967a. Correlations structurales et biogenetiques des acides mycoliques en 
rapport avec la phylogenese de quelques genres d'actinomycetales. Bulletin de la Société de 
chimie biologique, 49: 695-706.

E tem adi A.-H. 1967b. Les acides mycoliques structure, biogenese et interet phylogenetique. 
Exposes Annuels de Biochimie Medicale, 28: 77-109.

E tem adi A.-H. 1967c. The use of pyrolysis gas chromatography and mass spectroscopy in 
the study of the structure of mycolic acids. Journal o f Gas Chromatography, 5: 447-456.

Falcone V., Bassey E., Jacobs W J r , Collins F. 1995. The immunogenicity of recombinant 
Mycobacterium smegmatis bearing BCG genes. Microbiology, 141: 1239-1245.

Fattorin i L., Orefici G., Shao Hong Jin;, Scardaci G., Amicosante G., Franceschini N.,
C hopra I. 1992. Resistance to beta -lactams in Mycobacterium fortuitum. Antimicrobial 
Agents and Chemotherapy, 36: 1068-1072.

-254-



R efer e n c e s

Finken M., K irschner P., Meier A., W rede A., Bottger E.C. 1993. Molecular basis of 
streptomycin resistance in Mycobacterium tuberculosis: Alterations of the ribosomal protein 
S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot. Molecular 
Microbiology, 9: 1239-1246.

Franzblau S.G., W hite K.E. 1990. Comparative in vitro activities of 20 fluoroquinolones 
against Mycobacterium leprae. Antimicrobial Agents and Chemotherapy, 34: 229-231.

Fsihi H., Cole S.T. 1995. The Mycobacterium leprae genome: Systematic sequence analysis 
identifies key catabolic enzymes, ATP-dependent transport systems and a novel polA  locus 
associated with genomic variability. Molecular Microbiology, 16: 909-919.

G arbe T., H arris D., Vordermeier M., Lathigra R., Ivanyi J., Young D. 1993. Expression 
of the Mycobacterium tuberculosis 19-kilodalton antigen in Mycobacterium smegmatis: 
Immunological analysis and evidence of glycosylation. Infection and Immunity, 61: 260-267.

G arbe T.R., B arath i J., Barnini S., Zhang Y., AbouZeid C., Tang D., M ukherjee R., 
Young D.B. 1994. Transformation of mycobacterial species using hygromycin resistance as 
selectable marker. Microbiology, 140: 133-138.

Gastambide-Odier M., Delaumeny J.M ., Lederer E. 1963. Biosynthesis of phthiocerol: 
incorporation of methionine and propionic acid. Chem Ind, 1963: 1285-1286.

Gastambide-Odier M., Lederer E. 1960. Biosynthese de l'acide corynomycolique a partir de 
deux molecules d'acide palmitique. Biochem Z, 333: 285-295.

Gastam bide-Odier M., Sarda P. 1970. Contribution a etude de la structure et de la 
biosytnese de glycolipides spécifiques isoles de mycobacterias: les mycosides A et B. 
Pneumologie, 42: 241-255.

Gaylord H., B rennan P.J. 1987. Leprosy and the leprosy bacillus: recent developments in 
characterization of antigens and immunology of the disease. Annu Rev Microbiol, 41: 
645-675.

Gelber R.H., Iranm anesh A., M urray L., Siu P., Tsang M. 1992. Activities of various 
quinolone antibiotics against Mycobacterium leprae in infected mice. Antimicrobial Agents 
and Chemotherapy, 36: 2544-2547.

Goren M.B. 1972. Mycobacterial lipids: Selected topics. Bacteriological Reviews, 36: 33-38.

Goren M.B., B rennan P.J. 1979. Mycobacterial lipids: chemistry and biologic activities. In 
Youmans G.P. (ed.). Tuberculosis.. The W.B.Saunders Co. Philadelphia, pp. 69-193.

-255-



Referen ces

Gormley E.P., Davies J. 1991. Transfer of plasmid RSF1010 by conjugation from 
Escherichia coli to Streptomyces lividans and Mycobacterium smegmatis. Journal of 
Bacteriology, 173: 6705-6708.

G range J.M ., Bird R.G. 1977. Lysogeny associated with mucoid variation in 
Mycobacterium kansasii.. Journal o f Medical Microbiology, 11: 1-6.

G range J.M ., Redmond W.B. 1978. Host-phage relationships in the genus Mycobacterium 
and their clinical significance. Tubercle, 59: 203-225.

Guilhot,C.B., Gicquel,B., Martin,C. 1992. Temperature-sensitive mutants of the 
Mycobacterium plasmid pAL5000. Ferns Microbiology Letters. 98: 181-186.

Guilhot C., O tai I., Van Rompaey I., M artin  C., Gicquel B. 1994. Efficient transposition 
in mycobacteria: Construction of Mycobacterium smegmatis insertional mutant libraries. 
Journal o f  Bacteriology, 176: 535-539.

Haeseleer F. 1994. Structural instability of recombinant plasmids in mycobacteria. Research 
in Microbiology, 145: 683-687.

Haeseleer F., Pollet J.F ., Haumont M., Bollen A., Jacobs P. 1993. Stable integration and 
expression of the Plasmodium falciparum circumsporozoite protein coding sequence in 
mycobacteria. Molecular and Biochemical Parasitology, 57: 117-126.

H atfull G.F., Sarkis G.J. 1993. DNA sequence, structure and gene expression of 
mycobacteriophage L5: A phage system for mycobacterial genetics. Molecular Microbiology, 
7: 395-405.

Hatfull,G.F., Jacobs, W .R Jr. 1994. Mycobacteriophages: Cornerstones o f  Mycobacterial 
research. In Bloom B.R. (ed.). Tuberculosis: Pathogenesis, protection and control. American 
Society for Microbiology, Washington DC. pp. 165-184.

Hayes W. The genetics o f bacteria and their viruses. 2nd ed. London and Edinburgh: 
Blackwell Scientific Publications; 1968;

Heym B., Alzari P.M., Honore N., Cole S.T. 1995. Missense mutations in the 
catalase-peroxidase gene, katG, are associated with isoniazid resistance in Mycobacterium 
tuberculosis. Molecular Microbiology, 15: 235-245.

Heym B., Honore N., TruffotPernot C., Banerjee A., Schurra C., Jacobs W.R., J r . ,  Van 
Em bden J.D.A., Grosset J.H ., Cole S.T. 1994. Implications of multidrug resistance for the 
future of short-course chemotherapy of tuberculosis: A molecular study. Lancet, 344: 
293-298.

-256-



R efer en c es

Heym B., Zhang Y., Poulet S., Young D., Cole S.T. 1993. Characterization of the katG 
gene encoding a catalase-peroxidase required for the isoniazid susceptibility of 
Mycobacterium tuberculosis. Journal o f Bacteriology, 175: 4255-4259.

Hinshelwood S., Stoker N.G. 1992a. An Escherichia coli-Mycobacterium shuttle cosmid 
vector, pMSCl. Gene, 110: 115-118.

Hinshelwood S., Stoker N.G. 1992b. Cloning of mycobacterial histidine synthesis genes by 
complementation of a Mycobacterium smegmatis auxotroph. Molecular Microbiology, 6: 
2887-2895.

H olland K.T., Ratledge C. 1971. A procedure for selecting and isolating specific 
auxotrophic mutants of Mycobacterium smegmatis.. Journal o f General Microbiology, 66: 
115-118.

H onoré N., Bergh S., Chanteau S., DoucetPopulaire F., Eiglmeier K., G am ier T., 
Georges C., Launois P., Limpaiboon T., Newton S., Niang K., Del Portillo P., Ramesh 
G.R., Reddi P., Ridel P.R., Sittisombut N., W uH unter S., Cole S.T. 1993. Nucleotide 
sequence of the first cosmid from the Mycobacterium leprae genome project: Structure and 
function of the Rif-Str regions. Molecular Microbiology, 7: 207-214.

H onoré N., Cole S.T. 1993. Molecular basis of rifampin resistance in Mycobacterium leprae. 
Antimicrobial Agents and Chemotherapy, 37: 414-418.

H onoré N., Cole S.T. 1994. Streptomycin resistance in mycobacteria. Antimicrobial Agents 
and Chemotherapy, 38: 238-242.

H oussainilraqui M., Clavel-Seres S., Rastogi N., David H.L. 1993b. Partial physical and 
functional map of a Mycobacterium aurum carotenogenesis operon. Current Microbiology, 
26: 65-74.

Houssainilraqui M., David H.L., Calvel-Seres S., Hilali F., Rastogi N. 1993a. 
Characterisation of car a, car Lep, and Crt I  genes controlling the biosynthesis of carotenes 
in Mycobacterium aurum. Current Microbiology, 27: 317-322.

Houssainilraqui M., Lazraq R., ClavelSeres S., Rastogi N., David H.L. 1992. Cloning 
and expression of Mycobacterium aurum carotenogenesis genes in Mycobacterium 
smegmatis. FEMS Microbiology Letters, 90: 239-244.

H un ter S.W., G aylord H., B rennan P.J. 1986. Structure and antigenicity of the 
phosphorylated lipopolysaccharide antigens from the leprosy and tubercle bacilli. Journal o f 
Biological Chemistry, 261: 12345-12351.

-257-



R eferen ces

Hunter S.W., Jardine I., Yanagihara D.L., Brennan P.J. 1985. Trehalose-containing 
lipooligosaccharides from mycobacteria: structures of the oligosaccharide segments and 
recognition of a uniqueN-acylkanosamine-containing epitope. Biochemistry, 24: 2798-2805.

Hunter S.W., Rivoire B., Mehra V., Bloom B.R., Brennan P.J. 1990. The major native 
proteins of the leprosy bacillus. Journal o f Biological Chemistry, 265: 14065-14068.

Husson R.N., James B.E., Young R.A. 1990. Gene replacement and expression of foreign 
DNA in mycobacteria. Journal o f  Bacteriology, 172: 519-524.

Imaeda T., San Bias F. 1969. Adsorption of mycobacteriophage on cell-wall components. 
Journal o f  General Virology, 5: 493-498.

Jacobs W.R., Tuckman M., Bloom B.R. 1987. Introduction of foreign DNA into 
mycobacteria using a shuttle plasmid. Nature, 327: 532-535.

Jacobs W.R., Jr., Barletta R.G., Udani R., Chan J., Kalkut G ., Sosne G., Kieser T., 
Sarkis G J ., Hatfull G.F., Bloom B.R. 1993. Rapid assessment o f drug susceptibilities of 
Mycobacterium tuberculosis by means of luciferase reporter phages. Science, 260: 819-822.

Jacobs W.R., Jr., Kalpana G.V., Cirillo J.D., Pascopella L., Snapper S.B., Udani R.A., 
Jones W., Barletta R.G., Bloom B.R. 1991. (25) Genetic systems for mycobacteria.
Methods in Enzymology, 204: 537-555.

Jarlier V., Gutmann L., Nikaido H. 1991. Interplay of cell wall barrier and beta-lactamase 
activity determines high resistance to beta-lactam antibiotics in Mycobacterium chelonae. 
Antimicrobial Agents and Chemotherapy, 35: 1937-1939.

Jarlier V., Nikaido H. 1990. Permeability barrier to hydrophilic solutes in Mycobacterium 
chelonei. Journal o f  Bacteriology, 172: 1418-1423.

Jarlier V., Nikaido H. 1994. Mycobacterial cell wall: Structure and role in natural resistance 
to antibiotics. FEMS Microbiology Letters, 123: 11-18.

Kalpana G.V., Bloom B.R., Jacobs W.R., Jr. 1991. Insertional mutagenesis and illegitimate 
recombination in mycobacteria. Proceedings o f the National Academy of Sciences o f the 
United States o f America, 88: 5433-5437.

Kamisango K., Saadat S., Dell A., Ballou C.E. 1985. Pyruvylated glycolipids from 
Mycobacterium smegmatis. Nature and location of the lipid components. Journal of 
Biological Chemistry, 260: 4117-4121.

Kaplan G., Gandhi R.R., Weinstein D.E., Levis W.R., Patarroyo M.E., Brennan P.J.,

-258-



Re fer e n c e s

Cohn Z.A. 1987. Mycobacterium leprae antigen-induced supression of T cell proliferation in 
vitro. Journal o f Immunology, 138: 3028-3034.

Kato M . 1973. Effect of anti-cord factor antibody on experimental tuberculosis in mice. 
Infection and Immunity, 7: 14-21.

Kempsell K.E., Kelly V.A., Hutchinson S.E., Duncan K. 1995. Cloning and expression of 
the Mycobacterium tuberculosis homologue for UDP-N-acetylglucosamine enolpyruvyl 
transferase. Abstract for the Glaxo “Action TB: Scientific conference and workshops ”, 18 
August 1995.

Khoo K.H., Dell A., Morris H.R., Brennan P.J., Chatterjee D. 1995b. Inositol phosphate 
capping of the nonreducing termini of lipoarabinomannan from rapidly growing strains of 
Mycobacterium. Journal o f Biological Chemistry, 270: 12380-12389.

Khoo K.H., Dell A., Morris H.R., Brennan P.J., Chatterjee D. 1995a. Structural 
definition of acylated phosphatidylinositol mannosides from Mycobacterium tuberculosis: 
Definition of a common anchor for lipomannan and lipoarabinomannan. Glycobiology, 5: 
117-127.

Konickova-Radochova M., Konicek J., Malek I. 1970. The study of mutagenesis in 
Mycobacterium phlei. Folia Microbiologica, 15:88-102.

Konno K., Feldmann F.M., McDermott W. 1967. Pyrazinamide susceptibility and amidase 
activity of tubercle bacilli. American Review o f Respiratory Disease, 95: 461-469.

Kremer L., Baulard A., Estaquier J., Content J., Capron A., Locht C. 1995b. Analysis of 
the Mycobacterium tuberculosis 85 A antigen promoter region. Journal o f Bacteriology, 177: 
642-653.

Kremer L., Baulard A., Estaquier J., PoulainGodefroy O., Locht C. 1995a. Green 
fluorescent protein as a new expression marker in mycobacteria. Molecular Microbiology, 17: 
913-922.

Kundu M., Basu J., Chakrabarti P. 1991. Defective mycolic acid biosynthesis in a mutant 
of Mycobacterium smegmatis. Journal o f General Microbiology, 137: 2197-2200.

Labidi A., David H.L., RoullandDussoix D. 1985. Cloning and expression of mycobacterial 
plasmid DNA in Escherichia coli.. FEMS Microbiology Letters, 30: 221-225.

Labidi A., Mardis E., Roe B.A., Wallace R.JJ. 1992. Cloning and DNA sequence of the 
Mycobacterium fortuitum var fortuitum plasmid pAL5000. Plasmid, 27: 130-140.

-259-



R eferen ces

Lacave C., Laneelle M.A., Laneelle G. 1990a. Mycolic acid synthesis by Mycobacterium 
aurum cell-free extracts. Biochimica et Biophysica Acta, 1042: 315-323.

Lacave C., Quemard A., Laneelle G. 1990b. Cell-free synthesis of mycolic acids in 
Mycobacterium aurum: radioactivity distribution in newly synthesised acids and presence of 
cell wall in the system. Biochimica et Biophysica Acta, 1045: 58-65.

Lee B.Y., Horwitz M.A. 1995. Identification of macrophage and stress-induced proteins of 
Mycobacterium tuberculosis. Journal o f Clinical Investigation, 96: 245-249.

Lee M.H., Pascopella L., Jacobs W.R.J., Hatfull G .F. 1991. Site-specific integration of 
mycobacteriophage L5: integration-proficient vectors for Mycobacterium smegmatis, 
Mycobacterium tuberculosis, and bacille Calmette-Guerin. Proceedings o f the National 
Academy o f Sciences o f the United States o f America, 88: 3111-3115.

Lee S.-H., Brodie A.F. 1978. A model proteoliposomal system for proline transport using a 
purified proline carrier protein from Mycobacterium phlei. Biochemical and Biophysical 
Research Communications, 85: 788-794.

Lee S.-H., Cohen N.S., Jacobs A.J., Brodie A.F. 1979. Isolation, purification and 
reconstitution of a proline carrier protein from Mycobacterium phlei.. Biochemistry, 18: 
2232-2238.

Lee S.-H., Brodie A.F. 1979. Resolution and reconstitution of active transport of calcium by 
a protein(s) from Mycobacterium phlei. Journal o f Biological Chemistry, 254: 6861-6864.

Lee Y.C., Ballou C.E. 1964. Structural studies on the myo-inositol mannosides from the 
glycolipids of Mycobacterium tuberculosis and Mycobacterium phlei. Journal o f  Biological 
Chemistry, 239: 1316-1327.

Lee Y.C., Ballou C.E. 1965. Complete structures of the glycophospholipids of mycobacteria. 
Biochemistry, 4: 1395-1404.

Lemassu A., LevyFrebault V.V., Laneelle M.A., Dafffe M. 1992. Lack of correlation 
between colony morphology and lipooligosaccharide content in the Mycobacterium 
tuberculosis complex. Journal o f General Microbiology, 138: 131-137

Lepoivre M., Tenu J.P., Lemaire G., Petit J.F. 1982. Anti-tumour activity and hydrogen 
peroxide release by macrophages elicited by trehalose clusters. Journal o f Immunology, 129: 
860-866.

Lim,E.M., RauzierJ., TimmJ., Torrea,G., Murray,A., Gicquel,B., Portnoi,D. 1995. 
Identification of Mycobacterium tuberculosis DNA sequences encoding exported proteins by

-260-



Refer e n c e s

using phoA  gene fusions. Journal o f Bacteriology, 177: 59-65.

Lopez Marin L.M., Laneelle M.A., Prome D., Daffe M. 1993. Structures of the 
glycopeptidolipid antigens of two animal pathogens: Mycobacterium senegalense and 
Mycobacterium porcinum. European Journal o f Biochemistry, 215: 859-866.

Lopez Marin L.M., Laneelle M.A., Prome D., Daffe M., Laneelle G., Prome J.C. 1991. 
Glycopeptidolipids from Mycobacterium fortuitum : A variant in the structure of C-mycoside. 
Biochemistry, 30: 10536-10542.

Lopez Marin L.M., Laneelle M.A., Prome D., Laneelle G., Prome M. 1992. Structure of a 
novel sulfate-containing mycobacterial glycolipid. Biochemistry, 31: 11106-11111.

Lopez Marin L.M., Quesada D., Lakhdar-Ghazal F., Tocanne J.F., Laneelle G. 1994. 
Interactions of mycobacterial glycolipids with membranes: Influence of carbohydrate on 
induced alterations. Biochemistry, 33: 7056-7061.

Marklund B.I., Speert D.P., Stokes R.W. 1995. Gene replacement through homologous 
recombination in Mycobacterium intracellulare. Journal o f Bacteriology, 177: 6100-6105.

Martin C., Mazodier P., Mediola M.V., Gicquel B., Smokvina T., Thompson C.J., 
Davies J. 1991. Site-specific integration of the Streptomyces plasmid pSAM2 in 
Mycobacterium smegmatis. Molecular Microbiology, 5: 2499-2502.

Mathur M., Kolattukudy P.E. 1992. Molecular cloning and sequencing of the gene for 
mycocerosic acid synthase, a novel fatty acid elongating multifunctional enzyme, from 
Mycobacterium tuberculosis var. bovis Bacillus Calmette-Guerin. Journal o f Biological 
Chemistry, 267: 19388-19395.

Matsunaga I., Oka S., Inove T., Yano I. 1990. Mycolyl glycolipids stimulate macrophages 
to release chemotactic factors. FEMS Microbiology Letters, 67: 49-54.

McAdam R.A., Weisbrod T.R., Martin J., Scuderi J.D., Brown A.M., Cirillo J.D., 
Bloom B.R., Jacobs W.R J .  1995. In vivo growth characteristics of leucine and methionine 
auxotrophic mutants of Mycobacterium bovis BCG generated by transposon mutagenesis. 
Infection and Immunity, 63: 1004-1012.

McFadden J., Kunze Z., Seechurn P. 1990. DNA probes for detection and identification. In 
McFadden J. (ed.), Molecular biology o f the mycobacteria. Academic Press, London, pp. 
139-172.

McNeil M., Brennan P J. 1991. Structure, function, and biogenesis of the cell envelope of 
mycobacteria in relation to bacterial physiology, pathogenesis, and drug resistance; some

-261-



R eferences

thoughts and possibilities arising from recent structural information. Research in 
Microbiology, 142: 451-463.

McNeil M., Daffe M., Brennan P.J. 1990. Evidence for the nature of the link between the 
arabinogalactan and peptidoglycan of mycobacterial cell walls. Journal o f Biological 
Chemistry, 265: 18200-18206.

McNeil M.R., Robuck K.G., Harter M., Brennan P.J. 1994. Enzymatic evidence for the 
presence of a critical terminal hexa-arabinoside in the cell walls of Mycobacterium 
tuberculosis. Glycobiology, 4: 165-173.

Meier A., Kirschner P., Bange F.C., Vogel U., Bottger E.C. 1994. Genetic alterations in 
streptomycin-resistant Mycobacterium tuberculosis: Mapping of mutations conferring 
resistance. Antimicrobial Agents and Chemotherapy, 38: 228-233.

Mills J.A., McNeil M.R., Belisle J.T., Jacobs W.R., Jr., Brennan P.J. 1994. Loci of 
Mycobacterium avium ser2 gene cluster and their functions. Journal o f  Bacteriology, 176: 
4803-4808.

M innikin D.E. 1982. Lipids: complex lipids, their chemistry, biosynthesis and roles. In 
Ratledge C., Stanford J.L. (ed.), The Biology o f  the Mycobacteria. Academic Press, London, 
pp. 95-184.

Minnikin D.E., Dobson G., Draper P. 1985. The free lipids of Mycobacterium leprae 
harvested from experimentally infected nine-banded armadillos. Journal o f General 
Microbiology, 131: 2007-2011.

Minnikin D.E., Goodfellow M. 1980. Lipid composition in the classification and 
identification of acid-fast bacteria. In Goodfellow M., Board R.G. (ed.), Microbiological 
Classification and Identification. Academic Press, London, pp. 189-256.

Misaki A., Azuma I., Yamamura Y. 1977. Structural and immunochemical studies on 
D-arabino-D-mannans and D-mannans of Mycobacterium tuberculosis and other 
Mycobacterium species. Journal o f Biological Chemistry, 82: 1759-1770.

Molloy A., Gaudernack G., Levis W.R., Cohn Z.A., Kaplan G. 1990. Suppression of 
T-cell proliferation by Mycobacterium leprae and its products: The role of lipolysaccharide. 
Proceedings o f the National Academy o f Sciences o f the United States o f America, 87: 
973-977.

Monahan I.M., Banerjee D.K., Butcher P.D. 1994. Gene expression of Mycobacterium 
bovis BCG induced in vitro by stress stimuli associated with infection. Biochemical Society 
Transactions, 22: 89SI.

-262-



R eferen ces

Lee M.H., Hatfull G.F. 1993. Mycobacteriophage L5 integrase-mediated site-specific 
integration in vitro. Journal o f Bacteriology, 175: 6836-6841.

Moss, M.T. Cloning and expression of mycobacterial genes in Escherichia coli. University of 
Surrey; 1987. PhD thesis.

Nesbit C.E., Levin M.E., DonnellyWu M.K., Hatfull G.F. 1995. Transcriptional regulation 
of repressor synthesis in mycobacteriophage L5. Molecular Microbiology, 17: 1045-1056.

Nguyen H.T., T rach D.D., Man N.V., Ngoan T.H., Dunia I., Ludosky-Diawara M.A., 
Benedetti E.L. 1979. Comparative ultrastructure of Mycobacterium leprae and 
Mycobacterium lepraemurium cell envelopes. Journal o f Bacteriology, 138: 552-558.

Nikaido H. 1994. Prevention of drug access to bacterial targets: Permeability barries and 
active efflux. Science, 264: 382-388.

Nikaido H., Jarlie r V. 1991. Permeability of the mycobacterial cell wall. Research in 
Microbiology, 142: 437-443.

Nikaido H., Kim S.H., Rosenberg E.Y. 1993. Physical organization of lipids in the cell wall 
of Mycobacterium chelonae. Molecular Microbiology, 8: 1025-1030.

Nikaido H., Thanassi D.G. 1993. Penetration of lipophilic agents of multiple protonation 
sites into bacterial cells: tetracyclines and fluoroquinolones as examples. Antimicrobial Agents 
and Chemotherapy, 37: 1393-1399.

Nishiura M., Izumi S., M ori T., Takeo K., Nonaka T. 1977. Freeze-etching study of 
human and murine leprosy bacilli. International Journal o f Leprosy, 45: 248-254.

Norm an E., De Smet K.A.L., Stoker N.G., Ratledge C., W heeler P.R., Dale J.W . 1994. 
Lipid synthesis in mycobacteria: Characterization of the biotin carboxyl carrier protein genes 
from Mycobacterium leprae and M. tuberculosis. Journal o f Bacteriology, 176: 2525-2531.

Norm an E., Dellagostin O.A., McFadden J., Dale J.W . 1995. Gene replacement by 
homologous recombination in Mycobacterium bovis BCG. Molecular Microbiology, 16: 
755-760.

O skam  L., Hartskeerl R.A., Hermans C J .,  De W it M.Y.L., Jarings G .H., Nicholls R.D., 
K latser P.R. 1995. A 46 kDa integral membrane protein from Mycobacterium leprae 
resembles a number of bacterial and mammalian membrane transport proteins. Microbiology, 
141: 1963-1968.

Pascopella L., Collins F.M ., M artin J.M ., Mong Hong Lee;, Hatfull G .F., Stover C.K.,

-263-



R e fer e n c e s

Bloom B.R., Jacobs W.R., Jr. 1994. Use of in vivo complementation in Mycobacterium 
tuberculosis to identify a genomic fragment associated with virulence. Infection and 
Immunity, 62: 1313-1319.

Paul T.R., Beveridge T J .  1992. Réévaluation of envelope profiles and cytoplasmic 
ultrastructure of mycobacteria processed by conventional embedding and freeze-substitution 
protocols. Journal o f Bacteriology, 174: 6508-6517.

Paul T.R., Beveridge T.J. 1994. Preservation of surface lipids and determination of 
ultrastructure of Mycobacterium kansasii by freeze-substitution. Infection and Immunity, 62: 
1542-1550.

Perez R.L., Roman J., Staton G .W ., J r., H unter R.L. 1994. Extravascular coagulation and 
fibrinolysis in murine lung inflammation induced by the mycobacterial cord factor trehalose-6, 
6'-dimycolate. American Journal o f  Respiratory And Critical Care Medicine, 149: 510-518.

Philipp W, Poulet S, Pascopella L, et al. Genome organisation of Mycobacterium 
iafcercM/oii'j.[Unpublished] 1993; Quoted in Cole and Smith, 1994.

P lum  G., ClarkCurtiss J.E. 1994. Induction of Mycobacterium avium gene expression 
following phagocytosis by human macrophages. Infection and Immunity, 62: 476-483.

Poole K., Krebes K., McNally C., M eshat S. 1993. Multiple antibiotic resistance in 
Pseudomonas aeruginosa: evidence for involvement of an efflux operon. Journal o f  
Bacteriology, 175: 7363-7372.

Pourshafie M., Ayub Q., Barrow W.W . 1993. Comparative effects of Mycobacterium 
avium  glycopeptidolipid and lipopeptide fragment on the function and ultrastructure of 
mononuclear cells. Clinical and Experimental Immunology, 93: 72-79.

Predich M., Doukhan L., Nair G ., Smith I. 1995. Characterization of RNA polymerase and 
two sigma-factor genes from Mycobacterium smegmatis. Molecular Microbiology, 15: 
355-366.

Prinzis S., Chatterjee D., B rennan P.J. 1993. Structure and antigenicity of 
lipoarabinomannan from Mycobacterium bovis BCG. Journal o f General Microbiology, 139: 
2649-2658.

Prinzis S., Rivoire B., Brennan P .J . 1994. Search for the molecular basis of morphological 
variation in Mycobacterium avium. Infection and Immunity, 62: 1946-1951.

Q uem ard A., Lacave C., Laneelle G . 1991. Isoniazid inhibition of mycolic acid synthesis by 
cell extracts of sensitive and resistant strains of Mycobacterium aurum. Antimicrobial Agents

-264-



R eferen ces

and Chemotherapy, 35: 1035-1039.

Q uem ard A., Laneelle G., Lacave C. 1992. Mycolic acid synthesis: A target for ethionamide 
in mycobacteria? Antimicrobial Agents and Chemotherapy, 36: 1316-1321.

Q uem ard A., Sacchettini J.C ., Dessen A., Vilcheze C., Bittm an R., Jacobs WR Jr , 
Blanchard J.S . 1995. Enzymatic characterization of the target for isoniazid in 
Mycobacterium tuberculosis. Biochemistry, 34: 8235-8241.

Qureshi N., Sathyam oorthy N., Takayam a K. 1984. Biosynthesis of to C56 fatty acids 
by an extract of Mycobacterium tuberculosis H37Ra. Journal o f  Bacteriology, 157: 46-52.

Qureshi N., Takayam a K., Jordi H.C., Schnoes H.K. 1978. Characterisation of the 
purified components of a new homologous series of a  -mycolic acids from Mycobacterium 
tuberculosis H37Ra. Journal o f Biological Chemistry, 253: 5411-5417.

R adford A.J., Hodgson A.L.M. 1991. Construction and characterisation of a 
Mycobacterium - Escherichia coli shuttle vector. Plasmid, 25: 149-153.

Ramasesh N., W right E.L ., Barrow W.W. 1992. Cell-free system responsible for internal 
radiolabeling of glycopeptidolipids of the Mycobacterium avium complex. Infection and 
Immunity, 60: 308-311.

R am bukkana A., Das P.K., Chand A., Baas J.G ., Groothuis D.G., Kolk A.H.J. 1991. 
Subcellular distribution of monoclonal antibody defined epitopes on immunodominant 
Mycobacterium tuberculosis proteins in the 30-kDa region: Identification and localisation of 
29/33-kDa doublet proteins on mycobacterial cell wall. Scandinavian Journal o f Immunology, 
33: 763-775.

Ranes M.G., Rauzier J., Lagranderie M., Gheorghiu M., Gicquel-Sanzey B. 1990. 
Functional analysis of pAL5000, a plasmid from Mycobacterium fortuitum : construction of a 
"mini" mycohacVtmim-Escherichia coli shuttle vector. Journal o f  Bacteriology, 172: 
2793-2797.

Rastogi N., Frehel C., David H.L. 1984. Evidence for taxonomic utility of periodic 
acid-thiocarbohydrazide-silver proteinate cytochemical staining for electron microscopy. Int J 
Syst Bacteriol, 34: 293-299.

Rastogi N., G oh K.S. 1990. Action of l-isonicotinyl-2-palmitoyl hydrazine against the 
Mycobacterium avium complex and enhancement of its activity by m-fluorophenylalanine. 
Antimicrobial Agents and Chemotherapy, 34: 2061-2064.

Ratledge C. 1982. Nutrition, Growth and Metabolism. In Ratledge C., Stanford J.L. (ed.),

-265-



R e f e r e n c e s

The Biology o f the Mycobacteria. Academic Press, London, pp. 185-271.

Rauzier J., Moniz-Pereira J., Gicquel-Sanzey B. 1988. Complete nucleotide sequence of 
pAL5000, a plasmid from Mycobacterium fortuitum. Gene, 71: 315-321.

Reyrat J.M ., Berthet F.X., Gicquel B. 1995. The urease locus of Mycobacterium 
tuberculosis and its utilization for the demonstration of allelic exchange in Mycobacterium 
bovis bacillus Calmette- Guerin. Proceedings o f the National Academy o f Sciences o f the 
United States o f America, 92: 8768-8772.

Riviere M., Auge S., Vercauteren J., Wisingerova E., Puzo G . 1993. Structure of a novel 
glycopeptidolipid antigen containing a O-methylated serine isolated from Mycobacterium 
xenopi. Complete 1H-NMR and 13C-NMR assignment. European Journal o f Biochemistry, 
214: 395-403.

Riviere M., Puzo G. 1992. Use of 1H NMR ROESY for structural determination of 
O-glycosylated amino acids from a serine-containing glycopeptidolipid antigen. Biochemistry 
(USA). 31: 3575-3580.

Roach T.I.A., Barton C.H., Chatterjee D., Liew F.Y., Blackwell J.M. 1995. Opposing 
effects of interferon-gamma on iNOS and interleukin-10 expression in lipopolysaccharide- and 
mycobacterial lipoarabinomannan-stimulated macrophages. Immunology, 85: 106-113.

Roach T.I.A., Chatterjee D ., Blackwell J.M. 1994. Induction of early-response genes KC 
and JE by mycobacterial lipoarabinomannans: Regulation of KC expression in murine 
macrophages by Lsh/Ity/Bcg (candidate Nramp). Infection and Immunity, 62: 1176-1184.

Rosenberg M.D., Gutnik D ., Rosenberg E. 1980. Adherence of bacteria to hydrocarbons: A 
simple method for measuring cell-surface hydrophobicity. FEMS Microbiology Letters, 9: 
29-33.

Rulong S., Aguas A.P., Da Silva P.P., Silva M.T. 1991. Intramacrophagic Mycobacterium 
avium bacilli are coated by a multiple lamellar structure: Freeze fracture analysis of infected 
mouse liver. Infection and Immunity, 59: 3895-3902.

Sambrook J., Fritsch E.F., Maniatis T. 1989. Molecular cloning: A laboratory manual. 
Cold Spring Harbor Laboratory Press,

Schlesinger L.S., Horwitz M.A. 1991. Phenolic glycolipid-1 of Mycobacterium leprae binds 
complement component C3 in serum and mediates phagocytosis by human monocytes. 
Journal o f Experimental Medicine, VIA'. 1031-1038.

Schlesinger L.S., Horwitz M.A. 1994a. A role for natural antibody in the pathogenesis of

-266-



R e f e r e n c e s

leprosy: Antibody in nonimmune serum mediates C3 fixation to the Mycobacterium leprae 
surface and hence phagocytosis by human mononuclear phagocytes. Infection and Immunity, 
62: 280-289.

Schlesinger L.S., Hull S.R., Kaufman T.M. 1994b. Binding of the terminal mannosyl units 
of lipoarabinomannan from a virulent strain of Mycobacterium tuberculosis to human 
macrophages. Journal o f Immunology, 152: 4070-4079.

Sharman G.J., Williams D.H., Ewing D.F., Ratledge C. 1995. Isolation, purification and 
structure of exochelin MS, the extracellular siderophore from Mycobacterium smegmatis. 
Biochemical Journal, 305: 187-196.

Shinnick T.M., Good R.C. 1994. Mycobacterial taxonomy. European Journal o f Clinical 
Microbiology and Infectious Diseases, 13: 884-901.

Sibley L.D., Hunter S.W., Brennan P.J., Krahenbuhl J.L. 1988. Mycobacterial 
lipoarabinomannan inhibits gamma interferon-mediated activation of macrophages. Infection 
and Immunity, 56: 1232-1236.

Sieling P.A., Chatterjee D., Porcelli S.A., Prigozy T.I., Mazzaccaro R J ., Soriano T., 
Bloom B.R., Brenner M.B., Kronenberg M., Brennan P.J., Modlin R.L. 1995.
CD 1-Restricted T cell recognition of microbial lipoglycan antigens. Science, 269: 227-230.

Silva M.T., Macedo P.M. 1983. The interpretation of the ultrastructure of mycobacterial 
cells in transmission electron microscopy of ultrathin sections. International Journal o f 
Leprosy, 51: 225-234.

Silve G., ValeroGuillen P., Quemard A., DuPont M.A., Daffe M., Laneelle G. 1993. 
Ethambutol inhibition of glucose metabolism in mycobacteria: A possible target of the drug. 
Antimicrobial Agents and Chemotherapy, 37: 1536-1538.

Snapper S.B., Lugosi L., Jekkel A., Melton R.E., Kieser T., Bloom B.R., Jacobs WR Jr.
1988. Lysogeny and transformation in mycobacteria: Stable expression of foreign genes. 
Proceedings o f  the National Academy o f  Sciences o f the United States o f America, 85: 
6987-6991.

Snapper S.B., Melton R.E., Mustafa S., Kieser T., Jacobs WR Jr. 1990. Isolation and 
characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. 
Molecular Microbiology, 4: 1911-1919.

Spargo B.J., Crowe L.M., Ioneda T., Beaman B.L., Crowe J.H. 1991. Cord-factor (a  -a ' 
-trehalose 6,6' dimycolate) inhibits fusion between phospholipid vesicles. Proceedings o f the 
National Academy of Sciences o f the United States o f America, 88: 737-740.

-267-



R eferen ces

Speirs R.J., W elch J.T., Cynamon M.H. 1995. Activity of n-propyl pyrazinoate against 
pyrazinamide-resistant Mycobacterium tuberculosis: Investigations into mechanism of action 
of and mechanism of resistance to pyrazinamide. Antimicrobial Agents and Chemotherapy,
39: 1269-1271.

Stelandre M., Bosseloir Y., De Bruyn J., Maes P., Content J . 1992. Cloning and sequence 
analysis of the gene encoding an NADP-dependent alcohol dehydrogenase in Mycobacterium 
bovis BCG. Gene, 121: 79-86.

Stottm eier K.D., Beam R.E., Kubica G.P. 1967. Determination of drug susceptibility of 
mycobacteria to pyrazinamide in 7H10 agar. American Review o f Respiratory Disease, 95: 
1072-1075.

Stover C.K., Bansal G.P., Hanson M.S., Burlein J.E., Palaszynski S.R., Young J.F., 
Koenig S., Y oung D.B., Sadziene A., B arbour A.G. 1993. Protective immunity elicited by 
recombinant bacille Calmette-Guerin (BCG) expressing outer surface protein A (OspA) 
lipoprotein: A candidate Lyme disease vaccine. Journal o f Experimental Medicine, 178: 
197-209.

Stover C.K., De la Cruz V.F., Fuerst T.R., Burlein J.E., Benson L.A., Bennett L.T., 
Bansal G.P., Young J.F., Lee M.H., Hatful! G.F., Snapper S.B., Barletta R.G., Jacobs 
W .R.J., Bloom B.R. 1991. New use of BCG for recombinant vaccines. Nature, 351: 
456-460.

Subram anyam  V.R., Pal B.B., M ohanty K.K. 1989. Inducibility and stability of 
auxotrophic mutations in Mycobacterium fortuitum, M. smegmatis and M. vaccae. Letters in 
Applied Microbiology, 8: 161-164.

Takayam a K., A rm strong E.L. 1976. Isolation, characterisation and function of 
6-mycolyl-6'-acetyltrehalose in the H37Ra strain of Mycobacterium tuberculosis. 
Biochemistry, 15: 441-447.

Takayam a K., A rm strong E.L., Davidson L.A., Kunugi K.A., K ilburn J.O . 1978. Effect 
of low temperature on growth, viability and synthesis of mycolic acids of Mycobacterium 
tuberculosis strain H37Ra. American Review o f Respiratory Disease, 118: 113-117.

Takayam a K., Goldman D.S. 1970. Enzymatic synthesis of
mannosyl-l-phosphoryldecaprenol by a cell-free system of Mycobacterium tuberculosis. 
Journal o f Biological Chemistry, 245: 6251-6257.

Takayam a K., K ilburn J.O . 1989. Inhibition of synthesis of arabinogalactan by ethambutol 
in Mycobacterium smegmatis. Antimicrobial Agents and Chemotherapy, 33: 1493-1499.

-268-



R efer e n c e s

Takayam a K., Qureshi N., Schnoes H.K. 1978. Isolation and characterisation o f the 
monounsaturated long chain fatty acids of Mycobacterium tuberculosis. Lipids, 13: 575-579.

Takayam a K., Schnoes H.K., Semmlier E.J. 1973. Characterization of the alkali-stable 
mannophospholipids of Mycobacterium smegmatis. Biochimica et Biophysica Acta, 136: 
212- 221.

Takayam a K., Wang L., David H.L. 1972. Effect of isoniazid on the in vivo mycolic acid 
synthesis, cell growth and viability of Mycobacterium tuberculosis. Antimicrobial Agents and 
Chemotherapy, 2: 29-35.

TakifF H.E., Salazar L., G uerrero C., Philipp W., Wai Mun Huang;, K reisw irth B.,
Cole S.T., Jacobs W.R., J r ., Telenti A. 1994. Cloning and nucleotide sequence o f 
Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance 
mutations. Antimicrobial Agents and Chemotherapy, 38: 773-780.

Taneja R., M alik U., Khuller G.K. 1979. Effect of growth temperature on the lipid 
composition o f Mycobacterium smegmatis ATCC 607. Journal o f General Microbiology, 
113: 413-416.

Tassell S.K., Pourshafie M., W right E.L., Richmond M.G., Barrow W.W. 1991. 
Modified lymphocyte response to mitogens induced by the lipopeptide fragment derived from 
Mycobacterium avium serovar-specific glycopeptidolipids. Infection and Immunity, 60: 
706-711.

Telenti A., Lowrie D., M atter L., Imboden P., Cole S., Schöpfer K., M archesi F., 
Colston M.J., Bodmer T. 1993. Detection of rifampicin-resistance mutation in 
Mycobacterium tuberculosis. Lancet, 341: 647-650.

Thole J.E.R., Dauwerse H.G., Das P.K., Groothuis D.G., Berwald L.G., T iesjem a R.H., 
Van Embden J.D.A. 1985. Cloning of Mycobacterium bovis BCG DNA and expression of 
antigens in Escherichia coli.. Infection and Immunity, 50: 800-806.

Thole J.E.R., Schoningh R., Janson A.A.M., G arbe T., Cornelisse Y.E., C lark-Curtiss 
J.E ., Kolk A.H.J., O ttenhoff T.H.M., DeVries R.R.P., Abou-Zeid C. 1992. Molecular and 
immunological analysis of fibronectin-binding protein antigen secreted by Mycobacterium 
leprae. Molecular Microbiology, 6: 153-163.

Thurm an P.F., Chai W., Rosankiewicz J.R ., Rogers H.J., Lawson A.M., D rap er P.
1993. Possible intermediates in the biosynthesis of mycoside B by Mycobacterium microti. 
European Journal o f Biochemistry, 212: 705-711.

Timm J., Perilli M.G., Duez C., Trias J., Orefici G., Fattorini L., Amicosante G.,

-269-



R eferen ces

Oratore A ., Joris B., Frere J.M., Pugsley A.P., Gicquel B. 1994. Transcription and 
expression analysis, using lacZ and phoA  gene fusions, of Mycobacterium fortuitum  beta 
-lactamase genes cloned from a natural isolate and a high-level beta -lactamase producer. 
Molecular Microbiology, 12: 491-504.

Trias J., Benz J. 1994. Permeability o f the cell wall of Mycobacterium smegmatis. Molecular 
Microbiology, 14: 283-290.

Trias J., Benz R. 1993. Characterization of the channel formed by the mycobacterial porin in 
lipid bilayer membranes. Demonstration of voltage gating and of negative point charges at the 
channel mouth. Journal o f Biological Chemistry, 268: 6234-6240.

Trias J., Jarlier V., Benz R. 1992. Porins in the cell wall of mycobacteria. Science, 258: 
1479-1481.

Vega-Lopez F., Stoker N.G., Locniskar M.F., Dockrell H.M., Grant K.A., McAdam
K .P.W .J. 1988. Recognition of mycobacterial antigens by sera from patients with leprosy. 
Journal o f  Clinical Microbiology, 26: 2472-2479.

Venisse A ., Riviere M., Vercauteren J., Puzo G. 1995. Structural analysis of the mannan 
region of lipoarabinomannan from Mycobacterium bovis BCG. Heterogeneity in 
phosphorylation state. Journal o f Biological Chemistry, 270: 15012-15021.

Vestal A .L., Kubica G.P. 1966. Differential colony characteristics of mycobacteria on 
Middlebrook and Cohn 7H10 agar-based medium. American Review o f Respiratory Disease, 
94: 247-252.

Wheeler P.R., Besra G.S., Minnikin D.E., Ratiedge C. 1993a. Stimulation of mycolic acid 
biosynthesis by incorporation of cis-tetracos-5-enoic acid in a cell wall preparation from 
Mycobacterium smegmatis. Biochimica et Biophysica Acta, 1167: 182-188.

Wheeler P.R., Besra G.S., Minnikin D.E., Ratiedge C. 1993b. Inhibition of mycolic acid 
biosynthesis in a cell wall preparation from Mycobacterium smegmatis by methyl 
4-(2-octadecylcyclpropen-l-yl) butanoate, a structural analogue of a key precursor. Letters in 
Applied Microbiology, 17: 33-36.

Wilson T.M ., De Lisle G.W., Collins D.M. 1995. Effect of inhA and katG on isoniazid 
resistance and virulence of Mycobacterium bovis. Molecular Microbiology, 15: 1009-1015.

Winder F.G . 1982. Mode of action o f the antimycobacterial agents and associated aspects of 
the molecular biology of the mycobacteria. In Ratiedge C., Stanford J. (ed.), The Biology o f 
the Mycobacteria. Academic Press, London, pp. 354-440.

-270-



R eferen ces

W inter N., Lagranderie M., Rauzier J M Timm J., Leclerc C., Guy B ., Kieny M.P., 
Gheorgiu M ., Gicquel B. 1991. Expression of heterologous genes in Mycobacterium bovis 
BCG: Induction of a cellular response against HIV-1 Nef protein. Gene, 109: 47-54.

W olucka B.A., De Hoffmann E. 1995. The presence of
beta-D-ribosyl-1-monophosphodecaprenol in mycobacteria. Journal o f Biological Chemistry, 
270: 20151-20155.

W olucka B.A., McNeil M.R., De Hoffmann E., Chojnacki T., B rennan  P.J. 1994. 
Recognition of the lipid intermediate for arabinogalactan/arabinomannan biosynthesis and its 
relation to the mode of action of ethambutol on mycobacteria. Journal o f  Biological 
Chemistry, 269: 23328-23335.

Yamada T., Mizuguchi Y., Isono S., Isono K. 1992. Genetic and biochemical analysis of 
ribosomal proteins of minocycline-susceptible and -resistant Mycobacterium smegmatis. 
Microbiology and Immunology, 36: 139-148.

Young D.B. 1994. Strategies for new drug development. In Bloom B.R. (ed.), Tuberculosis: 
Pathogenesis, protection and control. American Society for Microbiology, Washington DC. 
p p .559-568.

Young D.B., Garbe T.R. 1991. Lipoprotein antigens of Mycobacterium tuberculosis. 
Infection and Immunity, 142: 55-65.

Young D.B., Kent L., Young R.A. 1987. Screening of a recombinant mycobacterial DNA 
library with polyclonal antiserum and molecular weight analysis of expressed antigens. 
Infection and Immunity, 55: 1421-1425.

Young L.S., W ormser G.P. 1994. The resurgence of tuberculosis. Scandinavian Journal o f 
Infectious Diseases,Supplement, 9-19.

Young R.A., Bloom B.R., Grossinsky C.M., Ivany J., Thomas D., D avis R.W. 1985a. 
Dissection of Mycobacterium tuberculosis antigens using recombinant DNA. Proceedings o f 
the National Academy o f Sciences o f the United States o f America, 82: 2583-2587.

Young R.A., M ehra V., Sweetser D., Buchanan T., Clark-Curtiss J .E .,  Davis R.W., 
Bloom B.R. 1985b. Genes for the major protein antigens of the leprosy parasite 
Mycobacterium leprae.. Nature, 316: 450-452.

Yuan Y., Lee R.E., Besra G.S., Belisle J.T., Barry CE I.I.I. 1995. Identification of a gene 
involved in the biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis. 
Proceedings o f the National Academy o f  Sciences o f the United States o f  America, 92: 
6630-6634.

- 2 7 1 -



R eferences

Zhang L., English D., Andersen B.R. 1991b. Activation of human neutrophils by 
Mycobacterium tuberculosis-derived sulfolipid-1. Journal o f Immunology, 146: 2730-2736.

Zhang Y., Garbe T., Young D. 1993. Transformation with katG restores 
isoniazid-sensitivity in Mycobacterium tuberculosis isolates resistant to a range of drug 
concentrations. Molecular Microbiology, 8: 521-524.

Zhang Y., G arcia M.J., Lathigra R., Allen B., Moreno C., Van Embden J.D.A., Young
D. 1992. Alterations in the superoxide dismutase gene of an isoniazid-resistant strain of 
Mycobacterium tuberculosis. Infection and Immunity, 60: 2160-2165.

Zhang Y., Heym B., Allen B., Young D., Cole S. 1992. The catalase-peroxidase gene and 
isoniazid resistance of Mycobacterium tuberculosis. Nature, 358: 591-593.

Zhang Y., Lathigra R., Garbe T., Catty D., Young D. 1991a. Genetic analysis of 
superoxide dismutase, the 23 kilodalton antigen of Mycobacterium tuberculosis. Molecular 
Microbiology, 5: 381-391.

-272-

»



Appendum

5.1 M . LEPRAE GENES IDENTIFIED THAT MAY BE RELEVANT TO PERMEABILITY

The permeability o f  bacterial cell envelopes are defined by the structure of their cytoplasmic and outer 

membranes and the transport systems found within these membranes. The relatively low permeability of 

the mycobacterial cell envelope is believed to be effected by the complex cell wall structure but may also 

be effected by low activity of transport systems e g. specific uptake proteins and porins and the presence 

o f efflux systems in the cytoplasmic cell membrane. The effects on permeability made by selected M. 

leprae gene products may be investigated by cloning the genes by PCR, overexpressing them in a model 

organism such as M.smegmatis or M. bovis BCG and measuring their permeability (5.4). Alternatively 

the homologous genes could be cloned from the model organisms by degenerative PCR, knockouts made 

using homologous recombination and the permeability of the mutated strains could then be investigated.

General alteration o f  permeability is most likely to be caused by the mutation of genes encoding products 

involved in the formation of the cell wall. M. leprae homologues of the peptidoglycan mur genes (B,CJ),G  

and Z) would be possible candidates for investigation as would genes involved in glucose metabolism, 

such as glgC, as glucose is thought to be a precursor of arabinogalactan (Silve et al., 1993). The gene 

products involved in the formation of mycolic acids may effect the permeability e g. the M. leprae 

homologue of cma2 which forms the proximal cyclopropane ring in mycolates.. Other M. leprae 

homologues which may be involved in mycolate biosynthesis include the inhA gene encoding an enoyl- 

ACP-reductase, the fatty acid biosynthesis and synthase genes fab B, D, G  and J  and u l 3s, u l3 t and u!3u  

respectively (as the short chain fatty acids are thought to be precursors o f mycolates) and the xclC  long 

chain fatty acid ligase gene. T heM  leprae mycocerosate synthase genes masA, B  and C may also be 

worth investigating as an altered expression could lead to a change in permeabilty.

The M. leprae genome sequencing project has identified sixty seven ORFs which show significant 

homology to genes in other species to encoding transport proteins, found in the cytoplasmic membrane 

or in the ‘periplasmic’ space. Permeability to specific substrates such as cystidine, maltose and phosphate 

could be investigated by the altered expression of the M. leprae homologue encoding their transport
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systems cysA, m alf and g  and phoS, T, U, W, X  and Y respectively. The investigation o f possible efflux 

proteins would be of particular interest as they would affect the apparent permeability to certain 

antibiotics; the M. leprae homologues o f efflux proteins drrA and ddrB as well the arsA gene which 

extrude danorubicin and arsenicals respectively, are possible candidates. No M. leprae porin homologues 

have been identified as yet and it is possible that they do not contain any.

5.2 Alternative secretory pathways in bacteria

Bacterial proteins destined for secretion usually contain a cleavable hydrophobic signal peptide at the N- 

terminus of the polypeptide that target them to the cytoplasmic membrane via the secretion apparatus 

encoded by the sec genes, the classical secretory pathway. Signal peptide independant pathways also exist 

in bacteria, particularly for toxins e g. the related E.coli haemolysin and Pasturella hemolytica leucotoxin 

and unrelatd E.coli colicin V. The targeting signals for all these toxins have been located in the last lOOaa 

o f the carboxy terminus which are predicted to form amphipathic a-helices. The related toxins also 

contain conserved repeat domains of a glycine rich sequence GGXGXD located close to the carboxy­

terminal sequence, thought to be involved in correct folding for passage through the membranes. The 

secretion and translocation of these Gram-negative toxins occurs as a single event across both membranes 

without stopping in the periplasmic space at the junction of the two membrane (Wandersman, 1992)

The superoxide dismutase and ESAT6 proteins of M. tuberculosis are apparently secreted into the 

culture supernatant of early logarithmic cultures but contain no signal peptides. It is possible they are 

released by damaged cells within the culture or they contain as yet undefined signal sequences such as the 

carboxyterminal or internal sequences o f toxins such as haemolysin which allow their secretion.

5.3 The structure and function of porins and efflux proteins 

5.3.1 Porins

Porins are transport proteins (Nikaido, 1992) found in the outer membranes of Gram-negative bacteria 

which have recently been detected in the cell walls of the Gram-positive Mycobacterium (Trias et al., 

1992; Trias and Benz, 1993 and 1994). ‘Classical’ non-specific porins o f  the enteric bacteria studied
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include the OmpF, OmpC and PhoE porins of E.coli. These porins are 34-50kDa in size and exist as 

trimeric complexes, each monomer producing a water filled channel. The porin proteins are not 

hydrophobic, instead the monomeric polypeptide chain traverses the membrane as antiparallel P-strands 

which form a P-barrel thus creating a channel. Loops extend from the P-barrel of the polypeptides into 

the periplasmic and external side of the outer membrane and one of the external loops appears to fold 

back into the channel producing a narrowing of the channel opening to a diameter o f  approximately lnm 

(Nikaido and Saier, 1992). Specific porin-like channels have similar structures but with specific ligand 

binding sites. Monomeric porins found have been shown to have similar p-sheet structures e g. the non­

specific OprF of P. aeruginosa (Nikaido, 1992).

Porins have been shown to exist in both M. chelonae and M . smegmatis and are thought to exist in M. 

tuberculosis ( Trias etal., 1992; Trias and Benz, 1994; Brennan and Nikaido, 1995). TheM. cheolonae 

protein is known to be 59kDa, present in relatively small amounts and the only porin present. M. 

smegmatis and M. chelonae porins have a relatively large pore size, 3nm and 2nm repectively, with 

negative point charges at their openings o f 3.5 and 2.5 respectively. The exact structure and the presence 

of P-sheets in mycobacterial porins has not yet been established but the M. chelonae porin is believed 

to be monomeric.

The function of porins is to transport specific or non-specific substrates, nutrients and waste products 

across the outer membranes. The majority of Gram-negative bacteria contain more than one type o f porin 

which may be specific or general diffusion porins, trimeric or monomeric and are often the most abundant 

outer membrane proteins present. The penetration rates of solutes through general diffusion channels is 

inversely proportional to the size of the molecules and reduced for hydrophobic molecules. General porins 

may also display a preference for cations or anions as a result of charges present on the diameter 

constricting loops at the channel openings e g. M. smegmatis, M. chelonae OmpC and OmpF channels 

prefer cations. Mycobacterial porins are apparently less active than the porins of other bacteria e.g. E.coli 

this may be because they are monomeric and present in small numbers (Trias and Benz, 1994).

5 .3 .2  E f f l u x  p r o t e i n s
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There are four families of efflux systems in bacteria; the major facilitator (MF) family, the resistance- 

nodulation-division-family (RND), the staphylococcal multidrug resistance family (Smr) and the ABC 

type systems. The MF, RND and Smr systems consist of a single cytoplasmic membrane protein that 

extrudes drugs using a proton motive force i.e. as an H+ antiporter. The ABC system consists of two 

transmembrane transporter proteins and two ATP-binding subunits which function as ATPases. The 

cytoplasmic membrane proteins contain an even number of hydrophobic transmembrane a helices, only 

4 in Smr transporters. MF efflux proteins differ from nutrient transporters in that they contain the 

consensus sequence G-X-X-X-G-P-X-X-G-G. The function of efflux proteins is to extrude toxic 

substances, antibiotics and proteins produced by the bacteria.

An efflux protein sequence, IfrA, has recently been identified in M. smegmatis by selection for increased 

resistance to fluoroquinones (Takiff et al., 1996). The protein is predicted to be 504 amino acids long 

and to contain 14 transmembrane helices, as predicted for the encoded streptomyces MF efflux proteins 

o f  quaC, actll, tcmA and mmr (35-27% identity and 60-52% similarity). The LfrA protein of M  

smegmatis extrudes ciprofloxacin, ofloxacin, levofloxacin, EtBr, acriflavine and CTAB but not the 

hydrophobic fluoroquinolones such as sparfloxacin, similar substrates as the efflux proteins to which it 

is homologous. However, IfrA was not mutated and conferred resistance by increased expression from 

a vector promoter. It is possible that the resistant M  smegmatis strain has a mutation in another pump 

or in a regulatory locus eg. mar which would increase the expression of LfrA or the relevant efflux pump.

5.4 M e t h o d s  f o r  m e a s u r in g  t h e  p e r m e a b il it y  o f  M . s m e g m a t is  m u t a n t s  

5.4.1 Measurement of the permeability to b-lactam cephalosporins 

The permeability coefficient, P, a measure of permeability, is determined by measuring the comparative 

rates of hydrolysis of P -lactam cephalosporins by intact M. smegmatis cells and cell extracts (Trias and 

Benz, 1994), using a similar method to that developed for M. chelonae (Jarlier and Nikaido, 1990). The 

method is based on the principles that 1) the net rate of diffusion across the cell wall (V,) should occur 

according to  Fick first law o f passive diffusion 2) that the rate o f hydrolysis of the cephalosporin in the 

space between the cell wall and the cell membrane (V2) occurs according to Michaelis-Menten kinetics
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and 3) at steady state the net rate of drug influx should be equal to the rate o f  drug degradation i.e. V,=V2.

The hydrolysis of the cephalosporins leads to the disruption o f the P-lactam ring and the loss o f u.v. 

absorption in the 260nm range allowing the rate o f  hydrolysis to be measured spectrophotometrically. 

To measure rates of hydrolysis of cephalosporins (cephaloride, cephalothin, cefamandole) intact cells 

were resuspended in PIPES buffer pH6-6.5 to  a turbidity of lOOKletts units and a final 0.5mM 

concentration o f cephalosporin, the optical density of the solution was measured over 40min at 25°C. 

The P-lactamase activity o f supernatants and cell extracts obtained from a portion o f the original cell 

suspension were assessed in the same way. The Michaelis-Menten constants, for each cephalosporin 

used were determined by measuring their rates o f hydrolysis with increasing concentrations. The internal 

rate of hydrolysis of cephalosporins, V2 ,was calculated in pmol/min/mg from the rate of change o f A260 

with the sonicated cell extract and the w as determined. As V2 Ci/(I^, +Ci) Ci the internal 

concentration o f the drug could then be determined. From Fick’s law of diffusion V,=PA (Co-Ci) where 

A is the cell surface/unit weight o f cells and C o is the external concentration o f the drug, V, was 

calculated in pmol/min/mg from the rate of change o f  A ^  with the intact cells, so P, could be determined.

5.4.2 Measurement of permeability to small hydrophilic molecules 

This method was employed to measure the permeability of M. chelonae (Jarlier and Nikaido, 1990) but 

may also be feasible for M. smegmatis strains. Permeability to small hydrophobic molecules can be 

estimated from their uptake kinetics. Cell suspensions are diluted in 2mM PIPES-NaOH (pH6.5) and 

0.5mM MgCl2 to give a final turbidity of 1,000 Klett units. Increasing final concentrations o f [14C] 

glucose, [3H] glycerol, f 4 C] glycine and t  H] leucine were added to samples of the cell suspension. 

Samples were removed at regular time intervals, washed, dried and scintillation counted. The initial cell 

suspension was dried and weighed to measure the exact concentration o f cells in the assay. Rates of 

uptakes were determined in gmoles/mg/min, the and of overall transport were calculated 

graphically from rates of uptake and at different concentrations of substrates.The permeability coefficients 

were calculated assuming that the overall transport system was functioning at half maximal capacity 

• e and Co=K„, and that Ci is negligible due active transport therefore P = ( V ^ l / A  x K ,̂).
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a)

i
16 LAGQLLDHVELRELCNPEVITATERQLQNLLDNRVGHDTEAIADLLRLLGPLTAADAAAWSNGCSD 81

L LL V+ EL +P+VI E +LQ L R E + DLLR LGP+T D A  G S+
3630  LLRNLLGQVDPGELLDPQVIRQVEEELQRLAPGRRAKGEEGLFDLLRELGPMTVEDLAQRHTGSSE 3827

rnt

b) o/c 16 WRSRNSRNSSQRNACRMCRGPGGS 39  
WR+R R ++R A C G S 

1 3 1 4 7  WRARARRARARRRARCACSGARSS 1 3 2 1 8

ryanodine receptor gene

c / c  34 RGPGGSVLRS RRRVGLGGR 52
RGPGG +R R R+GLGGR 

1 3 9 2 2  RGPGGCRVRGRLRLGLGGR 1 3 9 7 8

30  CRMCRGPGGSVL 41 
-CR+CRG G VL 

1640  CRVCRGRGS*VL 1 6 7 5

9 RPATPTGWRSRNSR 22 
RPATP G R SR 

4 0 7 0  RPATPGGGRGPGSR 4111

ryanodine receptor gene

c)

, 12 ARRSCAAAPRMGCPGP 27
"  ARRS A+ PR G P

16783 ARRS VAS RPRAGRSAP 1 6 8 3 0

S. lincolnensis lincomycin gene

10 VWARRSCAAAP 20 
VW R C AAP 

880 VWTARRCTAAP 912

b 11 WARRSCAAAPRMGCPG 2 6 
WARR+ APR G G 

15473 WARRTGRGAPRCGSTG 1552 0

26 GPDGVAPLAG 35 
GPDG+AP+ G

16981 GPDGLAPVGG 17010

S. lincolnensis lincomycin gene

Fig. 50 Alignments of the three complete ORFs i, a/c and b in the complementing region with 

possible protein homologues

a) Shows the alignment of 65aa of a putative protein of 141aa from ORF / with the long helicase-related 

region o f the E.coli RnaseT (mt) gene, with a 40% identitiy and a 51% similarity in this region. It is 

possible that ORF / encodes an area o f helicase activity rather than encoding a protein, although the 

region of homology is small and may not be significant.

b) Shows the alignment of several short regions of 70aa the putative polypeptide encoded by a/c with the 

rabbit skeletal muscle mRNA for ryanodine receptor

c) Shows the alignment o f the 11 laa putative protein encoded by ORF b with several short regions of 

of the protein with the Streptococcus lincolnensis lincomycin production genes, presumably pulled out 

due to the GC rich DNA o f  streptomyces.
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b)

Fig 51. Hydrophobicity analysis of th e  three complete OFRs i, a/c and b in the complementing 

region of M. leprae DNA.

a) Shows the hydrophobicity plot of putative protein i , with one hydrophobic region itis predicted to be 

an integral membrane protein, by the PC gene program.

b) Shows the hydrophobicty plot of putative protein a/c predicted to be a peripheral protein associated 

with cell membrane

c) Shows the hydrophobicity plot of putative protein b predicted to be a peripheral protein, associated 

with the cell membrane.
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Fig.52 a) A restriction m ap of pYUB18
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Fig. 52 b) O ther restriction sites of pYUB18
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B St XI
cf no
d a i  
CviJI 
D d e l  
Dpnl 
Dral 
Dirai I 
DralII 
DrdI 
Deal 
Eael 
EamllOS 
Ecll36 
Eco31 
Eco47-3 
Eco57 
Eco78 
EcoNI 
" c o R I  
.„coRII 
EcoRV 
Esp3I 
Espi 
P n u 4 H  
FokI 
FepI 
Gdill 
Gsul 
Hael 
Haell 
HaelII 
Hgal 
HgiAI 
Hhal 
H i n d i  
HindiII 
Hinf I 
HinPI 
«oal 
pali 

Hphl 
Rasi 
Kpnl 
Ksp6 3 
Mael 
Mae II 
MaelII 
MboII 
Mmel 
MnlI 
Msel 
Munì 
Nael 
Nari 
Neil 
Ncol 
NgoMI 
Nhel 
NlalII




