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Introduction

Malaria is a devastating parasitic disease, which is endemic in

many parts of the developing world. Human malaria is caused

by five species of Plasmodium, of which, P. falciparum causes

the greatest number of deaths, affecting many parts of Africa.
P. vivax causes severe morbidity and affects mainly Latin Ameri-

ca and South East Asia.[1] In 2017, there were 219 million re-
ported cases of malaria, and >400 000 deaths, many of which

were in children under the age of five years.[2] The malaria par-
asite is transmitted to humans through the bite of an infected
female anopheles mosquito when taking a blood meal. Follow-

ing infection, malaria parasites in the form of sporozoites, mi-
grate from the skin to the liver, where they invade and develop
into merozoites. When merozoites outgrow liver cells, they are
released into the blood stream, invading red blood cells,

where they continue to grow and develop, repeating the cycle
in the erythrocytes. During the intraerythrocytic stages of in-

fection, some parasites differentiate into the sexual form (ga-

metocytes), while others remain as the asexual form, progress-
ing through multiple stages of development within the blood

cells. When the parasites are mature, infected red blood cells
burst, releasing parasites into the bloodstream, causing the fe-

brile symptoms associated with malaria. Asexual merozoites
are then free to invade other red blood cells, whereas gameto-

cytes may be taken up through the bite of a feeding mosquito

and transmitted to another human, perpetuating the malaria
parasite life cycle.[3] Current front-line therapies for the treat-

ment of malaria are failing due to the increasing development
of drug resistance and new antimalarial treatments are urgent-

ly needed.[4] Furthermore, novel therapies that target the ma-
laria parasite in all life-cycle stages are required, to both treat

Herein we describe the optimization of a phenotypic hit
against Plasmodium falciparum based on an aminoacetamide

scaffold. This led to N-(3-chloro-4-fluorophenyl)-2-methyl-2-{[4-
methyl-3-(morpholinosulfonyl)phenyl]amino}propanamide

(compound 28) with low-nanomolar activity against the intra-

erythrocytic stages of the malaria parasite, and which was
found to be inactive in a mammalian cell counter-screen up to

25 mm. Inhibition of gametes in the dual gamete activation

assay suggests that this family of compounds may also have
transmission blocking capabilities. Whilst we were unable to

optimize the aqueous solubility and microsomal stability to a
point at which the aminoacetamides would be suitable for

in vivo pharmacokinetic and efficacy studies, compound 28
displayed excellent antimalarial potency and selectivity; it
could therefore serve as a suitable chemical tool for drug

target identification.
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and prevent the spread of malaria and to help in the process
of eliminating this disease.[5]

Results and Discussion

Project initiation

To develop potential new antimalarials, we focused our atten-
tion on the publicly available results of a high-throughput
screening (HTS) campaign of nearly two million compounds

carried out by GlaxoSmithKline (GSK), to identify new chemical
matter with antimalarial activity.[6] The screening campaign

identified >13 500 compounds malaria blood-stage actives

(Tres Cantos Antimalarial Set, TCAMS). Chemical filtering and
prioritization resulted in 47 different chemotypes with antima-

larial potency (EC50) <2 mm. Herein we describe the selection
of one particular series of inhibitors from the TCAMS library

screen and the subsequent optimization of a new class of anti-
malarials, based on a substituted amidoacetamide core.

Hit selection

Amidoacetamide TCMDC-123553 (Series 10)[7] was selected as a

new chemical starting point based on good antimalarial poten-
cy against chloroquine/pyrimethamine-sensitive and -resistant

strains, suitable physicochemical properties for further devel-
opment[8] and was not subject to drug discovery efforts from
any other MMV funded programs. Series 10 comprised a clus-

ter of two compounds: TCMDC-123553 and TCMDC-125117
(Figure 1). The enamide moiety of TCMDC-125117 was flagged

as a possible Michael acceptor and with the added risk of ep-
oxidation of the double bond to give a reactive intermediate.[9]

Therefore, our focus was directed toward TCMDC-123553 (1)
for further in vitro assessment.

As a suitable chemical starting point, TCMDC-123553 (1) dis-
played good antimalarial activity in vitro and was inactive in a

mammalian counter-screen. In a preliminary malaria parasite

rate of kill assay (the parasite reduction ratio (PRR) assay[10]), 1
showed a relatively slow rate of kill, intermediate between pyr-

imethamine and atovaquone (Figure 2). In this assay, parasites
were treated with 10 V EC50 concentrations of 1 and samples of

parasites taken from treated cultures after 24 and 48 h, and
the number of viable parasites determined.

Compound 1 was investigated for activity against other Plas-
modium life-cycle stages. In a P. berghei liver-stage schizont

assay,[11] compound 1 was found to be inactive up to 50 mm. It
displayed no effect in P. cynomolgi liver-stage assay[12] against

both large forms and small forms (the latter indicative of
P. vivax hypnozoites) at 10 mm. Therefore, compounds of this

series do not appear to be suitable for malaria chemoprotec-

tion or radical cure. Compound 1 (incubated at a concentra-
tion of 1 mm) gave decreases of 99 and 81 % in male and

female gamete formation (sexual stages found in the mosqui-
to) assays,[13] respectively. However, although 1 was an inhibi-

tor of male and female gamete formation, it was inactive in a
late-stage (stage IV/V) gametocyte assay[14] at 40 mm. This latter

assay measures the ability of compounds to kill mature game-

tocytes. Based on the inhibition in the dual gamete formation
assay the aminoacetamide series would be expected to show

transmission blocking activity, but this would need to be con-
firmed in a standard membrane feeding assay, which uses

mosquito-based readouts.
In vitro assessment of 1 showed moderate solubility

(160 mm) and poor metabolic stability in mouse liver micro-

somes (CLint>50 mL min@1 (g liver)@1). Therefore, our initial
design efforts were focused on improving solubility and meta-
bolic stability, whilst improving or retaining potency. To obtain
sufficient compound exposure in vivo, our initial goal was to

identify antimalarials displaying aqueous (kinetic) solubility of
ideally >250 mm and in vitro metabolic clearance of

<5 mL min@1 (g liver)@1, in mouse liver microsomes,[15] for phar-
macokinetic (PK) and efficacy experiments.

Optimization of R1

Modifications at R1 (Figure 3 and Table 1) were initially investi-
gated around the substituted phenyl ring. Modifications were

focused on improving or retaining activity, whilst increasing

metabolic stability and solubility. We envisaged that an in-
crease in metabolic stability could be achieved by modifica-

tions to the phenyl ring by the introduction of heteroatoms to
both modulate logP and remove potential sites of metabolism.

Alternatively, replacement of the phenyl ring with aliphatic
polar and/or basic groups, could simultaneously improve met-

Figure 1. Compounds from TCAMS Series 10.[6]

Figure 2. Parasite reduction ratio (PRR) assessment of compound 1. Standard
antimalarials atovaquone, chloroquine, and pyrimethamine were used as
controls. Data for the controls were reported previously.[9]
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abolic stability and aqueous solubility. Removal of the chlorine
atom at the C3 position to afford fluorophenyl 2, decreased
lipophilicity and improved solubility, but resulted in a small
drop in potency. Removal of the fluorine atom at C4 (4) had
little effect on potency, whilst removal of both halogens (3)

gave a 10-fold decrease in activity. Furthermore, removal of
one or both halogens had little effect on metabolic stability.

Synthetic modifications at R1 were then directed toward aro-

matic heterocycles. Direct replacement of the di-halogenated
phenyl of 1 with a pyrazine (5) did not improve solubility or

metabolic stability and lost all antimalarial activity. Thiazole (6)
and oxazole (7) however, did improve solubility although all

antimalarial activity was lost and metabolic stability was not
improved.

Despite the relatively low clogP, the compounds still showed
poor metabolic stability. We then focused on aliphatic hetero-

cycles. Substituting the R1 di-halogenated aniline of 1 for mor-
pholine 8, lost all antimalarial activity, although led to an im-

provement in metabolic stability. Cyclohexylamine 9 retained
some activity, but suffered from &20-fold drop in antimalarial

potency relative to compound 1, and was metabolically unsta-
ble. The difluoro derivative (10) showed similar activity to com-

pound 9, but with significantly improved solubility, possibly

due to the difluoro giving a small dipole moment.[16] Replace-
ment of the morpholine oxygen atom in 8 with difluoro 11
was also inactive, and lost metabolic stability relative to 8. The
addition of a nitrile group on the cyclohexyl ring of 9, as exem-
plified by 12, led to a loss of activity. Replacement of the R1

amino cyclohexyl moiety of 9 with a piperazine (13) improved

metabolic stability and aqueous solubility but not metabolic

stability and also lost all antimalarial activity. Substitution at R1

with piperidine 14 afforded a compound with lower solubility

and microsomal stability than 13, and again rendered the com-
pound inactive. Efforts to improve potency and physicochemi-

cal properties were then directed toward changes at the R2 po-
sition.

Figure 3. Developing structure–activity relationships (SARs).

Table 1. Modifications at R1.

R1 EC50 [mm][a] Mr [Da] clogP[b] Mouse microsomal
CLint [mL min@1 (g liver)@1]

Sol. [mm][c]

Pf (3D7) HepG2

1
0.14 (n = 6)

CI 0.18–0.10
>50 (n = 3) 442 2.4 >50 164

2
0.42 (n = 4)

CI 0.52–0.34
>25 (n = 2) 407 2.1 45 >250

3
1.45 (n = 4)

CI 1.51–1.31
>25 (n = 2) 389 2.0 42 183

4
0.19 (n = 4)

CI 0.28–0.13
>25 (n = 2) 424 2.3 >50 219

5 >50 (n = 5)
4.98 (n = 3)

CI 17.59–1.64
391 1.5 42 55

6[d] >50 (n = 3) >25 (n = 2) 396 1.6 32 >250

7 >50 (n = 3) >25 (n = 2) 380 1.3 9.7 >250

8 >50 (n = 3) >25 (n = 2) 395 2.2 3.8 110

9[e] 2.67 (n = 3)
CI 3.37–2.17

>25 (n = 3) 383 0.8 37 20

10
1.71 (n = 6)

CI 2.24–1.21
>25 (n = 3) 431 2.2 19 >250

11 >50 (n = 3) >25 (n = 2) 417 1.7 10 >250

12 >50 (n = 3) >25 (n = 2) 406 1.2 4.6 >250

13 >50 (n = 5) >25 (n = 3) 382 0.6 1.1 >250

14 >50 (n = 3) >25 (n = 2) 381 1.7 11 >250

[a] n : number of screening replicates; CI : 95 % confidence interval. [b] Values were calculated using StarDropS from Optibrium. [c] Kinetic solubility in water.
[d] Purity: 84 %. [e] Purity : 81 %.
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Optimization of R2

Substitution of the methyl group of 1 at R2 with fluorine to
afford 16, displayed a small drop in potency, but 16 was still

rapidly metabolized (Table 2). Replacement of the methyl
group on R2 with a chlorine atom (15), displayed a moderate

improvement in potency, but aqueous solubility and metabolic
stability were still poor. Removal of the methyl group altogeth-
er with 17, did not improve metabolic stability or solubility

and gave rise to a &100-fold drop in potency. Modifications at
R2 were then directed toward replacement of the morpholine
sulfonamide moiety. Removal of the morpholine oxygen atom
from 1 gave the piperidine sulfonamide 18, which showed

similar potency but increased lipophilicity and decreased aque-
ous solubility. The smaller and less lipophilic diethyl sulfona-

mide (19) and dimethyl sulfonamide (20) did not improve met-

abolic stability or solubility relative to 1, although 19 retained

potency, and 20 only showed a small drop. Replacement of
the sulfonamide morpholine group of 1 with a morpholine

amide (21), led to a loss of activity. However, compound 21
showed increased solubility, although the metabolic stability

was still too high. To try and recover potency, we removed the
carbonyl group of morpholine amide 21 to afford benzyl mor-

pholine 22. We envisaged that free rotation of the alkyl-linked
morpholine around the phenyl ring of R2 may allow the mor-
pholine group to find an optimal interaction with the un-

known biological target. However, 22 was inactive against ma-
laria parasites. We then explored the bridged morpholine sulfo-
namide moiety 23, to decrease the planarity of the molecule,
with a view to increasing solubility through the possible dis-
ruption of crystal packing[17] Compound 23 retained only a
slightly reduced potency relative to compound 1, and may

have shown an marginal improvement in solubility but was

very unstable with microsomes. We then moved to the,

Table 2. Modifications at R2.

R2 EC50 [mm][a] Mr [Da] clogP[b] Mouse microsomal
CLint [mL min@1 (g liver)@1]

Sol. [mm][c]

Pf (3D7) HepG2

1
0.14 (n = 6)

CI 0.18–0.10
>25 (n = 3) 442 2.4 >50 164

15
0.06 (n = 7)
CI 0.11–0.03

25.72 (n = 3)
CI 26.39–24.69

462 2.5 29 79

16
0.58 (n = 3)

CI 0.79–0.44
>25 (n = 2) 446 2.3 48 219

17[d] 11 (n = 5)
CI 22–4.8

>25 (n = 5) 427 2.1 >50 187

18
0.22 (n = 4)

CI 0.28–0.16
24.03 (n = 3)

CI 24.97–23.37
440 3.2 >50 55

19
0.27 (n = 4)

CI 0.41–0.18
>25 (n = 2) 428 2.2 >50 79

20[e] 0.69 (n = 4)
CI 0.79–0.59

>25 (n = 2) 400 2.3 >50 181

21 >50 (n = 3) >25 (n = 2) 405 2.3 5.6 >250

22 >50 (n = 5) >25 (n = 3) 392 3.2 41 >250

23[f] 0.64(n = 7
CI 1.0–0.35

>25 (n = 3)) 454 2.7 >50 219

24
0.76 (n = 3)
CI 1.1–0.55

>25 (n = 2) 468 2.9 >50 79

[a] n : number of screening replicates; CI : 95 % confidence interval. [b] Values were calculated using StarDropS from Optibrium. [c] Kinetic solubility in water.
[d] Compound 17 was only weakly active, with two of five replicates returning an EC50 value greater than the top concentration tested. [e] Purity: 83 %.
[f] Purity : 88 %.
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bridged homomorpholino to investigate if we could modulate
activity with a larger sulfonamide. Compound 24 displayed

similar potency to 23, but decreased solubility. We then inves-
tigated changes to the linker functionality, to improve potency

and modulate physicochemical properties.

Increasing antimalarial activity: modifications to the linker

Initial changes to the aliphatic linker sought to determine the

importance of the linker hydrogen bond donors for antimalari-
al activity, through the systematic methylation of each NH

functionality. Methylation of the R1 amide NH (25) gave rise to
a loss in potency. However, methylation of the R2 aniline NH
(26) was tolerated although aqueous solubility and metabolic
stability were not improved compared with 1. Removal of the

amide carbonyl to afford 27 resulted in >100-fold drop in po-
tency and also decreased aqueous solubility. We then investi-

gated if the metabolic instability of 1 was associated with me-

tabolism a to the carbonyl, which would also be N-dealkyla-
tion, a known phase 1 biotransformation.[18] A common ap-

proach to decrease metabolic instability is the geminal dime-
thylation of metabolically labile regions.[19] The dimethylated

analogue 28 did not show improved metabolic stability but
displayed an approximate 20-fold improvement in potency rel-

ative to hit compound 1 (Table 3).

Met ID studies

To understand what was causing the microsomal instability, we

sought to identify the chemical functional groups that were
susceptible to metabolism, incubating mouse liver microsomes

in the presence 1 and monitoring for metabolites by mass
spectrometry. Two main metabolites were identified, [M + H]+

458 and [M + H]+ 440, suggesting hydroxylation and dehydra-

tion. However, the exact sites of metabolism and metabolite
structures were not clear from our Met ID experiments.

Combining key SAR

A final attempt was made to investigate different combina-
tions of previously tried functional groups, to improve physico-
chemical characteristics as well as potency against P. falciparum
(Table 4). Substitution of the linker moiety with a geminal di-

methyl group, combined with bridged morpholine analogues
at R2, afforded 29 and 32. Both gave a 10-fold increase in po-

tency relative to 1. However, solubility and metabolic stability

were not improved. New combinations at R2, replacing the
methyl group with methoxy as exemplified by 30, also resulted
in a 10-fold increase in potency and improved solubility rela-
tive to 1, although again, metabolic stability was not im-

proved. Substitution of the R2 morpholine on 1 with the spiro-
cyclic morpholine sulfonamide of 31 displayed similar potency

to 1 but the desired increased levels of metabolic stability and

aqueous solubility were not obtained.

Conclusions

Through iterative rounds of drug design and synthesis, we
were able to improve the antimalarial potency of 1 by >10-
fold to afford 28, which displayed single digit nanomolar po-
tency against P. falciparum and good cellular selectivity. It
should be noted, however, that not all compounds in this

series inhibited growth of P. falciparum to 100 % in vitro. Un-
fortunately, we were unable to identify compounds that com-

bined both potency and good metabolic stability to progress
to in vivo pharmacokinetic studies. Furthermore, we were not

able to understand the reasons for the metabolic instability.

Within this series, only compounds with very low lipophilicity
(clogP<1) displayed the desired levels of microsomal stability

(<5 mL min@1 (g liver)@1). Unfortunately, these compounds lost
all antiparasitic activity. Therefore, during the optimization of

the aminoacetamides, lowering lipophilicity was not sufficient
to significantly decrease microsomal instability to the required

levels. It should also be noted that compounds with very low

logP values are likely to have a large free unbound fraction,
which could lead to higher levels of clearance in vivo.[19]

Table 3. Modification of linker.

Linker EC50 [mm][a] Mr [Da] clogP[b] Mouse microsomal
CLint [mL min@1 (g liver)@1]

Sol. [mm][c]

Pf (3D7) HepG2

1
0.14 (n = 6)

CI 0.18–0.10
>25 (n = 3) 442 2.4 >50 164

25 >50 (n = 5) >25 (n = 3) 456 2.2 39 180

26
0.29 (n = 3)

CI 0.57–0.16
>25 (n = 2) 456 2.8 >50 142

27
22.57 (n = 3)

CI 27.83–18.76
>25 (n = 2) 428 2.6 37 39

28
0.007 (n = 7)

CI 0.015–0.003
>25 (n = 7) 470 3.0 >50 110

[a] n : number of screening replicates; CI : 95 % confidence interval. [b] Values were calculated using StarDropS from Optibrium. [c] Kinetic solubility in water.
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Given the excellent antimalarial activity and selectivity of 28,

mode of action studies to determine the molecular target of
this series may be valuable. These results may open new ave-

nues to identify novel chemotypes with improved metabolic
stability, aqueous solubility and potent antimalarial activity.

Experimental Section

Please refer to the Supporting Information for all experimental de-
tails.

The human biological samples were sourced ethically, and their
use in research was in accord with the terms of the informed con-
sents under an IRB/EC-approved protocol.
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>25 (n = 3) 482 3.3 >50 143

[a] n : number of screening replicates; CI : 95 % confidence interval. [b] Values were calculated using StarDropS from Optibrium. [c] Kinetic solubility in water.
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