

Rachad, HM; (1978) The estimation of adult mortality from defective registration data. PhD thesis, London School of Hygiene \& Tropical Medicine. DOI: https://doi.org/10.17037/PUBS. 04655126

Downloaded from: https://researchonline.lshtm.ac.uk/id/eprint/4655126/
DOI: https://doi.org/10.17037/PUBS. 04655126

Usage Guidelines:

Please refer to usage guidelines at https://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license. To note, 3rd party material is not necessarily covered under this license: http://creativecommons.org/licenses/by-nc-nd/3.0/

TiE EStIiATION OF ADULT MORTALITY
FROM DEFECTIVE RLGISTRATION DATA

A Thesis presented for the Degree of Doctor of Philosophy in the Faculty of Reciicine

University of London

by

Heda Mohamed Rachad

London School of Hygiene and Tropical Medicine 1978

ABSTRACT

The availability and quality of demographic data in developing countries are far from adequate. The introduction and improvenents of techniques for estimating mortality from nontraditional sources of data and for correcting the shortcomings in traditional data are indispensible.

Data on deaths in a period but with an unknown completeness of coverage is usually available through vital registration or from single or multi round household surveys. The growth balance method makes use of such data and provides an estirate of the extent of the under-registration of deaths. An extensive study of this method, regarding the effect of deviations from the underlying assumptions and possible modifications to overcome its shortcomings, is presented.

This study reveals that the method is generally robust to patterns of mortality change similar to those in developinf countries and also to recent changes in fertility. Possible modifications to allow for certain types of changes in mortality and fertility are also presented.

A modification of the method to allow for the effect of migration is introduced and applied to actual data of Kuwait.

The effect of differential under-registration of deaths on the method is discussed and a procedure to estimate this differential under-registration is proposed. This procedure is applied to hypothetical data as well as to data on Iraq.

A model of age error and the general likely effect of this error on the growth balance estimate are discussed. Several practical considerations are also dealt with, such as the effect of graduating the age and death distribution
before applying the method, the appropriate method of f it and an alternative formula that may be used.

Finally, as an illustration of the interaction of several deviations from the underlying assumptions and the suitability of the technique and the adjustments procedures suggested, a general application using hypothetical data and actual data for Guinea is presented.

CONTEITS

Page
ACKNO'NLEDGEMENTS
CHAPTER (I) IHTRODUCTION 1
1.1 Introduction 2
1.2 Brief review of some of the available methods for estinating adult mortality from defective data 3

1. The first category 4
2. The second category 7
3. The third category 12
1.3 Objectives and outline of the study 18
CHAPTER (II) ALTERNATIVE FORMULA FOR APPLYING THE GROVTH BALAICE METHOD 22
2.1 Introduction 23
2.2 Detailed presentation of the growth balance method 23
2.3 Alternative formula 26
Chapter (III) Effect of changes in mortality and ffrtility on THE GROWTH BALANCE METHOD 39
3.1 Introduction 40
3.2 The first approach 41
4. Review of the available information on changes in mortality and fertility in developing countries 4)
5. Patterns and data used 45
6. Results 51
3.3 The second approach 6.
7. Justification for the effect of mortality decline 61
8. Possible modifications on the growth balance method to allow for mortality changes 77
9. Justification for the effect of fertility change 79
10. Possible modifications on the growth balance method to allow for fertility changes 80
CHAPTER (IV) EFFECT OF MIGRATION ON THE GROWTH BALANCE METHOD S4
4.1 Introduction 85
4.2 Adjustment procedure for the effect of migration 85
4.3 Illustration on actual data 83
4.4 Discussion of the adjustment procedure 93
4.5 The general likely effect of migration 04
CHAPTER (V) EFFECT OF TiE UNEQJALITY OF PROPORTIOMATE UNDER- RLGISTRATION ON THE GROHTH BALANCE METHOD 105
5.1 Introduction 106
5.2 A method for estimating the actual death rate when the proportionate under-registration is not equal 107
5.3 Numerical applications 108
11. Application (1) 103
12. Application (2) $11 ?$
13. Application (3) 115
5.4 Effect on the graph due to the unequality of under- registration 118
5.5 Discussion 12.1
5.6 Magnitude of the error due to differential under-registration 124
CHAPTER (VI) EFFECT OF AGE MISREPORT ON THE GRO:TTH BALANCE METHOD 127
6.1 Introduction 128
6.2 A model for age reporting 129
14. The distribution of the different groups 137
15. The distribution of the random error 131
16. The distribution of the bias error 132
6.3 Estimating the magnitude of error in the growth balance estimate using simulation procedure 132

Page

1. The same kind of error in the population and
death distribution
2. Different error in the population and death distribution

143
6.4 Effect of graduation on the growth balance estimate

CHAPTER (VII) THL BEST KETHOD OF EIT 151
7.1 Introduction $15 \hat{2}$
7.2 Brief presentation of the methods 153

1. Wald method 25,3
2. Bartlett method 153
3. Least square method 154
4. Weighted least square method 150
5. Anscombe method 155
6. Biweight regression method (Tukey) \quad 35
7.3 Numerical applications on several types of data 157
7.4 Discussion 17 ?

CHAPTER (VIII) APPLICATIO:I 178
8.1 Introduction 179
8.2 Application on hypothetical data 170

1. Detailed procedure and data used 180
2. Results 188
8.3 Application on actual data 191
3. Data and general techniques used 192
4. Detailed studies of the data 195
5. Assessment of the results 202
Page
APPENDIX (A) $2 n$ n
APPENDIX (B) 216
APPENDIX (C) 227
APPENDIX (D) $23 n$
REFERENCES 213

cuictanco curirs t'e ryenaration of thit tiosis and for rabine tis
tire avajlable nerever asted.

Fhants to riv lushard, "ohomed, for lis raral sunabit and orcouragemert.

CHADTL: I

INTROIUCTTGN

1.] İTR

The availmbility and cualit: of demncxaphic statistics in develonine countrins are far from axlecuate. Nocording to a stucy conducted hy the United Nationg for 1951-55 (1'miteri 'ations lo66) only about 33 of the *orld deaths anc 42 ? of the vorlc: bixthe were heine registeren. rin sifuation har; not chamed greatly since, another more recert stury (frass et al lorig) concerned with the deroreaphy of tronical nfrica pointed out that in foth rerinns of tronical Africa therp is almost no informatiom even on the size of the oonclation anc. though most conntries of tronical Africa have sort of vital registration it is usually of very limited coverage and dou: trul accuracy. Itie later stetement annly to the majority of develoning countries.

The lack of accourate dernoranhic statistice ir develoning countries is one of the ohetacjes facing thojr develoment proarang. io cietailed tarqets may te set without a roallstic linoriledrge of the mresent denogranhic status of the nowulation and thedr fromth notential.

The straichtforvarc solution of ertatishine ner sources of basic statistics - if thoy are non-existent - or of imnroving the existing ones, may rot al \because agr nrove feasinle. An introduction of a commehensive vital reclstration suster or conductirg a full scale consus may be too exnensive as comared to the unconinitted resources in these countries, and even when such systems are availahle it is gonerally ac̣reed trat attainment of $31 . g h$ quality data is a gradual process. In other vorcis, the difficulties of improving the traditional sources of vital statistics lies in tho cost and organizational constraints involven and it is more lifely that econcmic develonrent is a pre-requisite for any such improvements.

The intermedjate amroach where the collection procciure relies on sampling has a quicker nay-off in producing the needed data, this approach
is acvantargous rot in terms of cont alonc tut also in the detailed and untraditional troe of data it may suproly. On the other hand, the dato collncted still suffer frnm the ushal deficiencins which characterizes deronranhic clate of clevelonind countrics in addition to sammling error.

Wo matter ingt collection procecure is usor, tre develomment and extension of methode which en rure a botter ntilization of the data is indisnensihle. The bertinent literature is cuite large and a full accorat of such rethods $j=$ not attemoter ! bit retror a rriof rovion ns some cif tio available methods for ertfo:ating adult nortality from defective data is nresented. The emphasis is on mortality as it is one of the basic comnonents of population change.

 sensitive to the characteristics and trpes nf error in tioe ciata and there is aloroys a demand irnocsed on tha rosearcher's slijls rhother in manipulating the nata or noclifyinc tio mothoin. Tlee Eollorinn is a presentation of the cereral methodolonical mrenctrles.

Different clarsification systens ray le atternted lut noither conetitute a clear cut roundary. In this section tra rethocis of estiriation are divicied into three categories; the first is riajnly depondent on age distrihntion ciata. Fihis tyrie of data - tracijtionally availahle through consuses reflects the curnlative rosults of past demographic flows and consequent.iy offer a base for estimatina them. The second category fis more dependent on unconventional t;pe information which are related to deaths in various ways. Finally, the third caterrory includn methods attempting to correct
is advantageous not in terns of cost alone hut also in tha detallad anf untraditional type of data it may sumply. On tho ot'er hand, 1 her (1) collected still suffer from the usasl deticionciof which gharacterf hat demographic date of cleveloning countrics in aulition ta banmling hitme

No matter what collection procedure is used, the devolapment and owlartiont of methods which ensure a better ntilisation of tho data in indimamallow.
 is not attemnted lut retier a hrtaf ravion at somen flan ayallalin pothoin for estimating adult nortality from gefective data is pirasentea. The emphasis is on mortality as it is one of the basic compenents off perpulationt change.

MORTALITV YRO" DIFECIIVI DITA

is acvantagnous rot in terns of cost alone rut also in the detailed anel untraditional trone of cata it may supply. on the other hand, the data collectied still nuffer from tho uswal deEiciencins which charncterizos derogranhic rate of cievelonincy countries in ajdition to samplinç error.
bo matter wat collection rroceciure is usol, tre develorment and extension of methode mifch enjure a benter meilization of tro data is indisnonsllye. The mertinent litorature is cuite large anc a full accomet of such rethods $j=$ not attmmite ' lit rether a fryff ravil... ns some of tin available methods For nesti::atirg alult roytality from defretive data is prosented. The empirasis is on mortality as it is one of the baric commonts of population chancje.

 way in which ary of ther nay be andira. ripe retaller? aroceciure is sensitire to t? characteristics and trper of orror in tine ciata and thore
 the rlata or modifyine tho mothour. Th:e folloninn is a prosentation of the cereral rethodological meincimles.

Different clansification systens rias lo attennted lut reither constitute a clear cut roundary. In this saction tromethocs of estimation arn divicied into three categories; the first is riainly denendent on age distribution cata. Fihis tyne c^{f} data - traditjorally available thrmupi: censuses reflects the curulative rosults of past demorgaphic flons and consequently offer a hase for estimating them. The second category in mone dependent on unconventional tine information which are relatnd to deaths in various ways. Finally, the third caterrory includn methods attempting to correct
the inficient datin on deatho.

1.2.1. The firsit category

"ntr \because in this cutanory rocoives sicler annlication man nore extensive discumcion in the literature tion the other tiro catororine. Tlifs is pro: ahly run to their carlor rovelonnent and to tio fact that - until recently - their date reoulrenonts were more abundantly availahle ane of hettar ruality tran data on deatlr in develonina countrics.

Irethor $(\lambda):$ stahle arch musi stahle konnlatinn fralysjs
Tho methori assilmes trat the aqu ijstribution of a given nopulation mav he approxiratec by a ctahle roriel. Dn the zasis cf the cvicence availahle, a muital le mocinl is niebed anc the varicus parareters of this stable mociel are acsianed to the actual monviaticn.
 the flata aveilaisle aze ton defective to nermit a aroner choice of a stable mocicl, the estiruztes rnactuod rav lum ruite crromerus.

The term ruasi-statility is unec to incicate that feztility is the eieterminant factor in shapinct the arie cistributions; thus the age stwucture of the nopulation with cleclining rootality ard corstant fertility mas still be appraximaterl $1 \cdot \operatorname{a}$ atable distrilution.

Of course, it this orinciple was comnletely true, stal je analysis would se insuitalie for suphlying adecuate information on mortality. Actually, the effect of the derilne in mortality on deviation from ctainitity is strongly related to the age pattern of chonac in mortality.

Various correction procedures have leen devtsed to anjust for the effect of mortality change, such as Coale $\&$ Demeny (Unitad liations, 1967),
 rectutres tonnledge ct tion curation of mortality cieclire and its averaçe
 stalilit: on tic irirt: rate.
rua:i stability nlayer an inmertant role in eunglying seme of our current knovilertas on demoriaphic trends, cospeciall: when date were scarce and nothind elso could have teen done. Jrmprovements in the volume and cuality of data and intronuction of now technicues is reducing more and rerf the need for statio tachifice:

Methon (f.): Cuncus Elirvival lates

 sectional बomonrandic :urvoys. In this cano the icontification of hirth
 effect ofrertali:" cat thet colnrt. Fiplo censur: survival rates arc calculatere ard life tanlos corartrumto -

Ihis ortnci:נ] is true if the ncmulation io clognc, tie toe cens:ases aze
 non-coffetent or the she for erny rarticular cohnrt at different noints in time.

Tf micration occurred cluring the irterconsal perfoc or if the census coverace is not the siere, crronecus estirates ray te reached when this methon is used. (unless, of course, corroctions for these factors lave heen anzied). :rass (l075) molnt's out that: 'an analysis of intarcansal nortality in Thailanc betwen 1937 and 1970 procluced estimates that surgosted (unreasonakly) a decrease in mortality followed by an increase. Further analysis reveeled changes in census coverage over this neriod.

Inless ac?jutments can terede to nllow for such chames in coveract, use of the interceneal met?od is ursultalile uncer thesc circumstances.'
theier the tunjcal concitinns of aco risrerort and differertial underrocintratjon in develnojne countrieg, survival ratas sin: marleci fluetuatfons which are unlikely a true feature of rertality ane tloy ern frecuent?y hiorer than cne. Tihe hisual Erccectuef for dealing with these nroblers was cither smonthing tion erikinal arje distributinns ox the resultinr survival rates. The intrenuction nf molel life tardan allowne a further acijustment, a reasonalle mathon is :ronosecl ty Coale R Demeny (United liations loG7) in which cumulative rurvival ratos nre calculated ancl matality levels corresmonding to than are located through the use of moclel life tables, then an average lenel is selected as the estimate of moxtnlit; in the population analyzet.
several problemf noe usvally related wit: this ret?ent of estiration. The first is that the mecedure of locetine the corres"nming monel mortality level ra" hecome ton comilcatnd when the intercensal nerind is not a multiole of 5 yenrs. The secons is that it dnes not rfve a measure of rootality for the açes winich are youncer tian the intercenoal period, since a related hirth cohort con not tee icontifinc in the first cersus. The thind arises when the nexind between tre two censusen is not a multiole of the age group length. The second problem is solved by usind the model value in the average level selected as an estimate of mortality of these young acges; in other words the mortality pattern is forced to conform to one of the four patterns nvailable in Conls o Dereny rodel Jife tables. I'he thira nroblevi; in the aksence of detalled tatulations - may se selved tirough internolation within the re:sorted age distrirutions so as to form new age trouns.

Erass (1972) pronoses another procedure of arplying this metron, rainly by
 ewact nete: \therefore are $x+n$) urince the coneus survival retes ard initial values

 Fhus, the first nroblom is made simyler kuenuse the lonit syster is more adaptatile to acijustront ance the second solved throunh in mosing a roro flewihle roned syriter.

1.2.2 Thie Sncord Coterior.,

"hen the dirret recording of deatir is ron-existert or greatly eistorted

 thesen in wirins ing of comlete cenows or cress-secticnal surveve, but gencrall" the latter fs forn arryonrinte vhen retronective informetion are
 تuality information are rore liknl: avallah? for a staller fize orcration.
r. gnneral c'arnctnristic oi the methons in t'ien category is their roliance
 familiar types of data anc? for comleting and filling cans in the existing information.

One of tho rost Earrous and successful mothocin uncier this category neals with the estimation of infant and childhood mortality from proportions
 th:is n:easure with adult rortality, in the absence of otime information, is reachece ky imosing a cartain pattern on the ciata.

Several reference sets of life tamlen (rodel life tablen) are available and they may be used for linkind childhood rortality with mortality at
later açes. If there is no information about adult nontality, the extension of rootality is reachor bw usirg a one warateter monel life table such as those of tho United liations (1ct,5) or the coalemeneny system (1966). These rodel tables have been constructed $b y$ averaging recorcer rottalit \because atterns: thus one expecte to obtair rasonale estimates of aoult rortelijty onl" when the mattern of mortality studicd conifre to tris dveracn nattorn. irass (1972) consjders the case of Turkey where the relation of adult to childhood mortality is atynical; I:e noints nut that tio eytension of c!eilchood rortalitv, fron the 1963 retrosnective surver, throunh the use of roorels results in an expectation of life at arge 5 chi ahout 47 years while other information sincos tim actual exncetation to he in the region of 63 years.

Tun narameters roolel life tahles, such as the locit syster (erass lofu and 1971) ancl some of Lecermann sets (Iedermann 1960), 2llow the age varsations Let: coen mortalitv rettexns to :e exflicitly rrourht out. Fhus, if further informedion ahout adult rortality if: availaine, the uer of a torn porameter syoster nrovincs a suitalye ornceciarn for lintinc the available information.

Hethon (x) : Or:nanhone "retwod

Thi: methor atternts to ointain arlult mortality estimates from data on the survjvorship of perents. (1rass \& Hill 1973). The principle of obtaining adult feriale (or malf) mortality from maternal for natornal) ormanhood may re presented as follows:
$P R(x, t)=\frac{\ln (y, t-x) f(y, t-x) \frac{1(v+x, t)}{1(y, t-x)} d y}{\ln (y, t-x) f(y, t-x) d y}$
where:
$\operatorname{PR}(x, t)=$ oronortion of childron of exact age x whose mothers (fathers) were alive at time (t).
$n(y, t-x)$: numher of woren (men) of childbearing age y at time (t-x).
$\mathrm{f}(\mathrm{y}, \mathrm{t}-\mathrm{x}$) : fernaln (rialr) ago smocific: fertility rates at time (t-x). l. $(v+x, t):$ life talule survirore ot açe $(y+x)$ at time (t).

Nsकur ing that the ane smocific foctility and wortality ratof remainea constant. noer the rewudrad tire neriod, tran:
$P R(x)=\frac{f_{n}(y) \Sigma(y) \frac{1(y+x)}{1(y)} d y}{f_{n}(y) E(y) d y}$

If the changes in tre nrobahilitice of survival from arc y to $y+x$ are linear - actrally, the survival ratio curve is not linear rut its curvature is not ver: nxenolmced - tion the provinus expression ray he approxirated as:
$F R(x)=\frac{1(\overline{3}+x)}{1(\cdot \cdot)}$
 mopulation wner comstioration. "hur the nromortion of chilciren of fiact

For tho jagt nomyeasin th be of ornctical volue, two pojnts reed further discursion. Whe ajmplest is that $\Gamma R(x)$ is usually arailarile corresmondinct to age grouns rather than exact açes x. The second is concerned with the use of $\overline{\text { Wh }}$ as the rase are, since $\overline{\mathrm{T}}$ ray he any Exactirnal age its direct use leads to survival rates corresnoncing to very irregular age intervals.

The first rrohler was tackled $k y$ unine the following expression:

 $e_{i} \simeq z 2+\frac{n}{2}$
(1.5)

Where (i) denntes; the ith aete groun ane 2$]$ anc $\% l+n$ donote the vennelar:" of thin are eroun. "ilur t": (i) ir, an estirete fer the survival raten
 chileren.
 factors c_{i} sucki trat:

PI (j) $=c_{i} \frac{1,+c_{i}}{I_{i}}$

 ard fortility furctionerne an analytical foy for tione dimerivimien.
 ornhanaond data if the ser., in rexctise the ectiraticn of ferale mortality is more rewardinc. "nis is cue to several factors, rainly tle rearoductive period for fernale is shorter and votter defirec, the rhane and charactoristics of the female aef snectfic dietrirution are lettor foonn, the data for calculatirf $\overline{\text { F for ralec are }}$ monerall" unavailatle anc! finally rore is
 mortality arm ushal li rore accurate.

The general criticism; assoclatec with thir rfther? are mainly directed to the underlying assumtions that there fa no rolation retwepn mortality experjence and nurber nf surviving dilldren, since those with ro survivinc shildren have ro weirht wilile these with several survivin
childxor auco riven reveral woight (an ancroach for offontting the letter
 ordor). הl.so to file assurgtione on wilich the woiriting factors pere lased, anc finally to tlif nscurmeinr of corstant rortality and fortility.

Fhe ultimete jugtification of tie retrool lier in the olausible estirates it yrovincs, at leost concorning foralo rortalit;
"etr:ed i: flidn:shene "ethod

```
I Gimilar indirfct ront of beasures, as in rethod (A), may be found in
vicowlood data ns followe:
nromoxtinn of wiven (iustanis) aged y nover widowed of tizst bunkand (vives) =
```


1 (wnan ane of firat linslands (wivé) at rarsjace at tire (t-n))
where a renotes the length of marriage (ex-osure tirie).

A direct advantage of this method results fron the fact that maryiaec takes nlace earlier and over a luss dilspressed are distribution than chfldhearing, thus the frevious cxpression is rore sxact than expression (1.3) and also the standara error of the mean age of bushands (rives) at first rarriace is much less than the corresmonding standard error for the mean acte ref dillibearirg.

The previous expression is easily rodified to corresnond to ace crouns rather than fixed age y. The problem that the mean age of hushanda at marriage are usually a fractional acte and thus renult in irrerular gurvival
ration may he dealt rith throunh a ronowlecres of the bivariate distrinution of acocs at minriacte of ron and wornon.
 distritution of aroe at rerrjain ane calculateri a set of correction factors sirilar to the one unpd in the ormbanioni rotrod. Thase factors denend on two matsures, the rean arge of rarrincte of the cobort of worien (men) and the geriod mean afe of marriocte of men ("orma); these reasures min te. Angrosirnted using the availatle data on the nyonotion of nersons sincle by ace croun and tie ane ciistribution.

I'hn criticism asncciatma oith this rethoch are rasicall: similar to the orohamhood methox. İirst that there is ro relution =etween the mortality experience inn marital status. Of course, tie revidus hias is much less

 the correction factn:r ane: treir feasibility.

1.2.3 The 'rhixd caterory

Data on cleaths, whether throurg vital roglstration syiters or other sources, are avnilable in rany dovelnoine countries wht the cuality nf data is suck that no great confidence may be placed on tholr direct ure. The data suffer fror uncer-rngistration and are risyenoxt anei there is alyays a need for methods which tackle these proklers.

Fre metlons availakle are two tyone the first atterots to dotect the
 concirtency or uning a dfeforont: set of data. Tho second tyme dnclurie methods directec? te offant the effect of the rajn source of exror, underrenistration, on the measure nf nortality.

The Fizrt Turn:
OHE of tho mont sienilisticater af there methods rorulfo the existence of a dun] rustrm of recordiner ares the commarion introcen ther is performen at
 The fnymula for entirntine thr totel number of nvente, on conditinn that the recorcife in the two sunters ife irdemendent, is given by chancero Gelar
 cventr, : 1 and : i? nern the total recordece in the first and second syster, and ly? those cormen to soth as cietermined w... ratehing.

The nrovicus procerfure demands suำ3tnntial expenciture and hiegh level of organization :ikills ancl naturally is only ner Eorred on a somple jasis.

Another inetrod mar in the use of a sarme furvag to estirate the cormleteness of tinc pxistirn vitel ronjstration serstrp. Tf the ecmarionn totumen
 riethod in simnly tion Chandra selear mothorl amo the acturntare nained way
 difficulty in mate! 3 grg the event-. If it jis nossihle to rely on resnonses fin the samme survey ahout messemsion of dentr certificntes or recistration of events, then a meniure of the comploteness of the resistration mas he reached.

A further method depends on an internal conparison of the data, for example if it is believed a certain area exneriences migher montality than another whiln the data contradict this, the data corresponding to the higter nortality area may either he nerflected or rodified. This rethon han bean
often usci in connection with rural and urtan mortality, for example E.L. Iadry (1965) used this principle on ligrontian data in radsing the nortality of rural areas without health bureau to match the level of mortality in similar areas but with health bureau. The difficulty in
t?is :Metror? fa that tie rules for rojectinn or rodifyinc some data neor to bo bascd on close vonlecre of the ponulation under stury, since if the reasonincs for altering tho cinta are not nement a ne:n source of fins is introducne.

Arother methoe? compares the data sunnlire? $\because *$ two cencuses ant vital regintration Bata to nctust. for the discronancins in the rectistration data. Under the assumption of ersual uncin-reeristration ofth are in the first anc:
 closecl monulatiom, the cifference hetreen tie colculated ropulation expectec at. the tire of the secome census (ur.jor the firgt censug and the recistared ciention and the reported momulation at the eecone cormas is a function of this wherevorevetratiem.

 for are grouns i, nji tre monortec momulation in the first census fon the $i^{\text {th }}$ ane groun, n_{i} the reported cieatha corresmomedinct to time colort in the $i^{\text {th }}$ acee errour in the intersecinte ncriod. K and $h^{\text {a }}$ denctes the oronorticnate under-reoistration ir the first and rocone consun rersectively and (T) the under-recistration of deat's.

If the assumptione are eorrect lac intersection of the lings forron using the data for ench are groun gives an estimnte for ($\frac{h^{2}-x^{2}}{3-2}$ and $\left(\frac{a^{2}-h^{2}}{1-y^{2}}\right)$. fictualjv, due to tion djfferential under-regjstration ty age and age risceport thi lipes can't all iritersoct in ones pojet, almo thin rothoci sives only ait estirate of the radnitude of the uncler-reत̣istretion in the vital data in terms of the uncer-rerietretion in the census (aince more inforratien is recuined to selve t:o eguations in three unknowns) and firally the identification of cleaths corresponcling to pacll cohnrt may nrove to be too complicated.

Filen reconci "ivun

Uncier-romjetration of deaths in a conmon definiency in tion ciata of develcninc count-ies. It is crenerally agreed that reporting of young childran in the first year of life is rore strongly affected iy thic tyne of error.

Iarlier atter:nts to correct umpr-reqistration of youns clilldren deienced on commang tino rortality of age groug (l-A) years with the mortality of açe $(0-1)$ through tla use of rociel lifc table. vrless there is enouçin evicence for accenting a certain pattern of rortaltty, this method may he uned as a rougl: indication of the mossibility of uncer-recordinct.
f:ourgeoisi-richat (Indted Nations 1952) nresented a method for estiratirg Fortalit; in the early month; of life fror the trend over the remt of the ffrst yoar of arie. 'rhis ronthed reoulxes a dotailec tabulation for conath rater ly monts of life to be available.

Soveral methods are oresented to correct under-rogistratinn of deatra for adult agos, all the ret?nds asmum that after a certair are the mromortion of deathe that are not reported is constant, the sirnle rut effective idea that the mronortionate death distribution js not affected ly a constant under-recistration is emnloyed.

Methon (a): Carrier Methnc
Carrier (1958) showed that in a stable nopulation

Where, ${ }^{d l_{x}}$: actual number of deaths at age x

```
        r: rate of aro%tr
```


In care of ecunl urecer-reci=tration of doaths after age y, the formula may he exnmontex ar:

$x=y(1-x)^{:}$

Hon : conotes are çrcun yation than exact are, the formula in casily motificd.

The mair mrollem asmociatec aith this rict:o: is the recumement trat r

 accerres.

Carrier shomer that his met'ou is sennitive to chancen ir r and paterns of mortality; ie acceried that t'e resulte nep reasnnerly accurate only if r is entlmated within one ox two nor thousinc:.

Fethod (f:): Farguer and Coushane llethoc
Fargues \& Couriame (1972) used the relation
$n^{m}=\frac{\text { Tl }(x, x+n) \text { Ton Tot }}{\text { Tot.n }(x, x+n)}$
(1.0)
where, n^{m} : death rate corresponding to ace rroun $(x-x+n)$. $d i(x, x+n)$: number of deaths in age groun $(x-x+n)$.

TD: total number of deaths.

Tot: total nomuletion
$n(\pi, x+n):$ number of nersons fn ane groun $(x-x+n)$.

In case of erfal uncer-recistration cll $(x, x+n) / T D$ mag he annroximated hy the mronortionate doath distribution. Irsine the availahln data on the age distriturion all is needed to eritirate the ase rancjfic death ratos is an annroximation for $\frac{\text { mit }}{\text { Mot }}$.

Using tho hernotronis thet in sevayal ponulationc witi tac sare age pattern there ire a nesative corrolatinn zentroen the roortalit! level. and the ratic of deaths at old ares to enaths at all aron ir arroxiration for foltot was calculatert ar followts:

- arjustne? cloath rates are calculated uring thn age sposific drath rates in several countrims and tin arte dintrinution of the country studier. These enuntrie: are carofully nicker ac to bo sirilar in coneitinns to the ore stugirn anc with relisizle statistic:
- For cach of the countries nick fi a rolation fintroen comathat ald aces divided hy deatin after arge 5 and tho acljustec eioath rates is entahlicted. Deaths after acre rather than total Aeaths arn used, since it is expected t!at deatios at young açs suffer from a hirfor undez-renistration.
- Usina the availainle information on deaths nt nld afes divided by deaths at age after 5 in the country stuijne and tho relation estahlisher in the previous sten, an anmroxiration for $T D / T o t$ ray be reached.

The main difficulty of this retlond lies in the choice of apronitate enuntries to dotermine the ostimation relating as there may he con-tieratle Hifference in the estirata according te the rovtalyty mottern cheren as standard. Another difficulty arises from tion erroxs of aqe reporting, especinlly for old anos; thus the ratio of renorted deaths at old ages to all denths may be diffexent from the actual ratio.

I'ction (c): Thn Croontin inalance isuthod

Srases (197a) nborifoc trat in a stalde morulation:
$X_{y}=x \cdot y+c \Gamma_{y}$
where ${ }^{\prime} y$: romblation remortion arge y
F: riondilation troncrtien cover age :
D_{y} : Bramortion of deaths oviry acje y
r : rate of ratural increase
CDR: crule cieath rate

Rssurine emin! uncter-rocistration, in the ronorted cieaths, from a certain age; the nrovicur relation bolas from tiat ace unwart.
rhus usine the remortoe ane anci deati Girtri!ution the crude death xate anc? tie rate of aromth rey te calculated. In nssonce tris rected is a modification of Ceryjer's mother; it. surplins the extre information necter? (gronth rate) through the use of the aviliatle ace instrilution.

The difficliltifes associatec with thic ret'ox is the effoct of deviations fron: stability on the estinate and the nossinle effect of anc misrenort and differential under-registration.

1.3 OFJECTIVES AY' OUTLIIE OF TFI ETUDY

From the erevious presentation we note that the first category of methods received the wicler and earlier application in corooraptic analysis. The ust of samnle siurvegr by riny cicvelorino countriess anc tie realization that the census need not be limited to the traditional troe of data - but may include suitalle questions which supply direct infon:nation on past events shifted the importance to the seconci catonory of metrocis.

The accurdey of thone rethod. demencts on rany factors and there is still
 Hoij rolinhility and to justify rose sompisticated morifications. Fino nain advantare of these rethoris which is their depencuence on simple tyoe of dumstions ray be considereci one of their dravhacke; if the snecial cunstions thoy ronuire were rot included in the stucter then the road ray te rlncien?

The thire catecorv of wethoen, wore procisely the rirowth ralance methera includnd in tho gerend tyme, still nends further discursion. It mates use
 oundowation fe rordiral sinco the theoretical nssumptions of this rethod arn nover fully satistincl. "ortality and fertilit? are cinoming in nomely all develoning countrier, mideation mays ar irmortant roln in scre of these courtrim; thus it in mite ironrtant to mowe the eferet of such changes ant the monsifility of redifujn the metion bren tre moplation ir not starle. Mreo, llise rethed nosures ecual urinumperfstration of eaths after a cortain inftial acte, but sifce the rogistration of rifatis of very young ages is ununly differmit from other ares, the entimate of the death rate corresponts to cortain anesenly; it is extrernly valualle if an allowance is made in this rethod for the differentinl under-reristration. fige error is a feature of renortinc in Gevelontrif countries, effect af this error on the method is significant fin fudelne its appropriateness. It is the purgose of this stury to discurs all these tonics as vall a= some practical considerations such as the lest method of fit that ray be used ran the cuestion of sroothing the data hefore arnlydng the method.

In Chapter (2) the orowth balance method is discussed in detail and a modification in annlying the method suggested. This nodification, theugh quite simple, may prove to be helpful in somn cases.

Chanter (3) focuses the attention on the effect of chancers in mortality anc fertility on thr rethod; j.t cifals with this nroblem using tron anmoaches. The firet tixnloch standerd nomulation nrojection usine different naterns of mortality deciinn amp a eninarison of tho nrojected death rate and the cotirntef a!nj"ina the crowth halanen retiou. The secone ancroach is kased on the analytical relation ketween the acen structure and the chancing scheduler of rortality anc fortjuits; several thoretical modifications are introcuco for certain nattorns of chance in rertality and fertility and also hermothetical annlications of this morifitcations are orenented.

Chapter (4) riscursen the offect of miciration on tin reatti distrirution methoci, en arifurtront mececiure is nresented ard illustratel usine actual rata.

Ghanter (5) deale with tre nroblem of uneruaj under-refictiration of deaths.

 preseriteci. The cffoct of the differnntial urder-rectistrition on tie rurarh
 mianituin of error lively to affect the ertimate as a rosult of different conlinations of under-xegistration are fiver.

Chapter (f) tachler the neoklem of ane revorting in cievoloning countries. First, a model nf age error in discussed in cienexal. Then, the rançe of 1ikely lias introduced in the estiriate of the death rate due to age error is shown under tio different assurntions. Fixst, the type of age error is the satue in hotl: the agm anci death ristrirution; second, the error is ilfferent. Finally, the effect of graduatinc the data tefore anglying the gro:th balance method is discussed.

In Chanter (7) several methods of fittinc straight lines are precenter and the bert rethons to to used vinn annlyinct the erowt? halance technicue surrgested.

w, sevoral deviations from t? ersurntions are presented, and tine conclunions reaclied in tha frevious chanters illustrated.

CHMPriz IJ

 Tree rrocis of the metior? anc scm : ractical conciserationg are preserteri.
 of thif terrula inth or ntiule ar. ruasi stallle erfe eimtributions are illustrator and alno ex criterion for woln! tre neri formula is presented.

An intuit:tuc nresphtation of the croth balance methoc starts by considering the sirgle ranic rolation:

$$
\begin{aligned}
\text { rirth rate }- \text { death rate } & =\text { aromth rate } \\
r-\text { cbr } & =r
\end{aligned}
$$

Thie relntion tolela frow ony initial osc unvards, trus:

$$
1_{1}=x_{1,}+\operatorname{con}_{y}
$$

If the nonulation is rialule, ry cinnotes the intrinsic rate of cront. and fs constant for all ares. thus, we react, the finsic forrula of the arouth ralancer retzod:

$$
\begin{equation*}
r_{y}=r+C i r ? \tag{2,1}
\end{equation*}
$$

In other morcis, in a stable nopulistion the fleath rate and the birtin rate over age y form a straight line with slone 1 .

If the refintration of deaths is incomplete, lut is the same for all aces over \because, the slope of the ilne is no longer 1 . The ratic of actual to
 reportec death rate and the birtr wate for actes over Y. Thus, enuation (2.1) may be rewritten as:
$\frac{n_{y}}{D_{y}}=x+f \frac{d y}{n_{y}}$
rohorn, r_{y} : marbor of incones at age y
Py: nu bey of rex=an- ovor ar:e \because
r : the arcioth zate
f: ratic of true to inportad deatis
${ }^{2}$: murber oss deatho ouny aere \because.

Fnother convenient way of uritincj (2.2) ir:
$\frac{y}{P y}=r+\cos \frac{n}{y} y$
where y ano? n, are the rroncirtions at rist and dying after are g and I!, the renortion of mersong at aefe y.

A : ether atical rocef of ewntion (2.3) in mresentec ac follows:

where, ${ }^{\prime} x$: fore of rortality at are $\%$
Tet: total romulatjon.

Then,

where, 1_{x} : life table survivors at age x when $1_{0}=1$
1_{x} : the first derivative of l_{x} with respect to x

Inteirating by rarts, we get:
$\operatorname{cons} D_{y}=-\left.1_{x} \frac{H_{x}}{j_{x}}\right|_{y} ^{v}+y_{y}^{1_{x}}\left(\frac{N}{1_{x}}\right) d x$

$$
\begin{equation*}
\because_{y}=\cos n_{\because}-\underset{y}{v} i_{x} \text { (d).ne }\left(\frac{!}{1_{x}}\right) \tag{2.4}
\end{equation*}
$$

If the innulation in stabe fimen $I_{x}=\operatorname{we}^{-r x_{1}} x_{x}$ and:
$H_{y}=\cos D_{y}+r \because y$
$\frac{n}{N_{y}}=r+c \cos \frac{D}{p} y$

If the romartionate warler-merintration in the ciata is enual, the nrevinus ecmation ray br usce to estirato tion actuel crucie death rate in ritable
 Al:us it i rent necosfary ton ancuin that the ronertine of the deatis of
 usan to rofinate the deatil rate of acult aces in case of aifferertial uncrer-registration.

In nractise the data are avafla?:If corresnorcing to mge exouns, thus r_{y}
 tectniemes ray be usery, but a ver: simple and usually accurate proceciure is to tale N, ars the average of the age grouns on either side of y. Thus, if the length of the açe groun is n :
$N_{y}=\frac{1}{2 n}\left(N_{y-n, y}+N_{y, y^{\prime}+n^{\prime}}\right.$.
$\frac{H_{i}}{P_{Y}}$ is plotted acgainst $\frac{D_{V}}{P_{Y}}$ and a ntraight line is fitted through the noints.

Graml (2.1)* Fistfination of acult mortality Exon the rolation of deat: anc nonvlation are clistributions
Jorian, lefi?: feralfas

d_{y} / c_{y}
$n_{y} / n_{y}=$ monulation ner year at ace y/numior at ris: after ace y $A_{y} / g_{y}=$ nuriher difing after age y/number at ris! after age y
*Soure: Erass (1274)
 cata arn afferted he are riferenort and differentinl unc?er-reogistration,
 linse 1: tie mointis lie cloeely en a stroisht linc, tie assunnticne are Glven surncert and thoye can la corfirence in the rerulte; if tile roirta
 rosestild.

Fhn fitting of the bert. strainlat line is not easily accomelished. Eeveral proceituras are availalic, but the ones usuall: used are least sefuarn anc: the avorage ("ald) rethocir. In the first methoti the eienth rate is
 method the data are cisvicon into tron grouns of size ni and n2 respectlvely (n) ard n ? pay io prual) anc the tifath rate estimateci as tho slone of the straicht lige rerain thyougt the feren polnts of ti:f two crouns:
$\operatorname{con}=\frac{\bar{v}_{2}-\bar{v}_{1}}{\bar{x}_{2}-\bar{v}_{1}}$

Several aprlicatiens of tho frowth Malance rothori arp rvailatle. Erass (1074) End! (]ח7K), nnnlied tho nrocfiure succemsfully te dnta on Jordan and Irarg, lontter (1076) apniled it to Colonala and lilacker (1977) alsc anolieci it to cract. In illurtration for the annlication of the rethod on acturl eata is gitven in riraph (2.1).

2. 3 AIILERINTIUE FORINTA

In anplyint Brass methor for mortality estifiation on several stanle distrihutions jt was notsced that in some instances the estimated death rate differs consicierarly from the actual deatr rate. For exarple, apolying the methed on the stinble distributions given in Coale $:$ remeny (lor.6), model west, level $1,3,5,7,9,11,13$ and 15 , we get the folloving results: (see Tratile (2.1))

Tahle (?.1) The actual doath rate corresponding to mociel vest, males, for elifferent levels ance frowth rates and tre estimated ecath rate using the death ilstritution method

level	nrowth rate	actual core	estimated cop
1	10	59.77	67.63
3	10	15.94	49.85
5	10	36.95	33.90
7	25	32.04	33.55
9	25	25.97	26.73
11	25	21.25	21.76
13	25	17.3n	17.51
15	25	14.21	14.24

Thourj from level 7 th 15 , the estimate does rot deviatie considerably from the actual death rate, the estimates corrcoscading te level 1,3 anct 5 are greati" तistorten.

It is cur nurnose to discuss tie reason for this distortion and sucaect an alteration which helrs to imarove the estirate.
a - The reason for the distortion:
In anplying rrass rethod on the hypothetical data all assumptions were met, the nonulation is stable, no differential under-registyrtion and no age misrenort. The resson for the distortion nay he at.tributed to the method of estimmting " y " ${ }^{\prime \prime} y$ was estimateci by assuming that tin are distrilution is linear such that:
$\left.N_{y}=N_{(y-5)-y}+N_{y-(y+5)}\right) / 10$

Equation (2.2) where H_{y} is estimated assuming linearity will be denoted
formula (π). irosabl: formula (r), though generally acceptable, coos give rather distorto? estimate of the actual deat? rate mben the age diatribution (esneciall \because for ole aces) ceviates consiceralily fror linearit!.).

1. - Inrrula (!) :
$\operatorname{since}: \frac{n}{n}=r+\operatorname{con} \frac{n}{\pi}$
interrating both sices from the start to the ond of tho interval:

$\begin{aligned} & Y+r \\ & \because \\ & \because\end{aligned} H_{y}=A_{y}=$ nronortion within the age arour
$y_{y}^{+n} p_{y}=n=v_{v}^{*}$

$$
\because \because+n<r *<\ddot{\because}<\ddot{\square}
$$

$\int_{y}^{+n} \eta_{y}=n n_{y}^{n}$

$$
n_{y+n}<r_{i}^{*}<n_{y}
$$

assuming the cur:uletive cistri utions are inear winin the agf interval, then:
$r_{\underline{y}}^{*}=\left(F_{Y+n}+F_{Y}\right) / ?$
$D_{y}^{*}=\left(D_{y+n}+D_{y}\right) / 2$

ఇᄁทus:
$n_{y}=\operatorname{nor} \frac{\left(\Gamma_{y}+I_{v+n}\right)}{2}+n \cdot \operatorname{cor} \frac{\left(D_{y}+\Gamma_{y+n}\right)}{2}$
$\frac{n}{n \cdot P_{y}^{*}}=r+\cos \frac{n_{y}^{*}}{r_{y}^{*}}$

This last formula *ill be clenotecl formula (!).

Aprlyine formule (I) on the nrevicus stakle ristributions we get:

Tati]n (2.) The actual neath rete corresnondineg to moand vost, males, for diffcrert levels anc crovtr raten and the estimated death rate using hoth formula (A) and formula ((5).

level	gromth rate	actual CDR	estiriated CDR	
			forrula (a)	formula (B)
1	10	5 5. 77	67.63	59.05
3	10	45.94	49.85	45.76
5	10	36.85	38.90	36.15
7	25	32.04	33.55	30.48
?	25	25.97	25.73	24.82
11	25	2.]. 2 ?	21.76	20.6 .4
13	25	17.3n	17.51	16.75
25	35	14.21	14.24	13.70

It is clnar that formula (I) holps to correct the distortion to a great extent; on the other hanc corresmoneing to lnvel $7, \%, 11,13$ and 15 formula (A^{\prime}) civer a slightly better estirate. Thourt the difference hetween the two entimates in the latter is not that sinnificant, nevertheless it is important to show that, in gencxal:

- If formula (B) does not inprove the estimate considerably it does not affect it to a great extent.
- a criterion exiats to choose hetween both formulae in arplication when the actual death rate is not availahle.

The first point may te illugtrated by applying both formula (A) anc (E) on scveral age distributions and comparing the tho entimates of the death rate.

If the formulan arn anolied to data subjest to rortality decline rather then stal lo data, the illumtration ray be morn realistic. In chanter (3) the effect of mortality encline on the gro\%th halance rethed is discussed in cetail; talle (2.3) is an extract frer tre results riven in chanter (3) In tarles (3.4), (3.5) and (3.6). :anle (a.3) preserio the actual death rate ane the rrowt: -alance nstirate using loth Eormala (r) anc Eorrula (D) wen the ciata are suaject to different natterng of decline in rortality (these fatterns ank tocir imulications ijll be dealt witr fn detail jater). Our noint of concirn fere is that the difference betroen the estirates
 difference between the estimatof in almays siall when formula (i) is hetter. Thus, an a neneral rule the une of formula (n) is recorenencd.
 and to uer the sran? as tien criterion for chonsing the west enti:-ate. For
 boty:

 tions, rodel wnst, level 1,3 and 5 respectively. Craph (2.5), (2.6) anc. (2.7) rerresents tio first three results in the case of mortality deciine according to pattern (1.6). In all the quanhs the roro linear the line the cloenr the estirate to the actual death rate.

Table (2.3)* Comarlson ketween the estimates of the ieath rate using formula (ㅇ) and (I)

nattorn (1.ה)			nattern (1.?)			nattern (?, a)		
$\begin{aligned} & \text { acto:3]. } \\ & \text { CDR } \end{aligned}$	FStiratrea		$\begin{aligned} & \text { acturl. } \\ & \text { cDI: } \end{aligned}$	astirated		actual CUR	estivated	
	Forrula (I.)	frranula (1)		farmula (A)	Fonnuta (b)		formula (1.$)$	fortula (t.)
14.55	.18.46	41.39	32.05	37. 0	32.83	34.37	35.48	34.64
37.54	4.3 .52	37.14	3n. 26	35.82	31.02	34.79	33.04	32. 50
33. .09	33.40	30.55	27.75	33.65	29.23	34. 35	29.59	29.65
25.37	27. 3.8	24.79	25.39	31.42	27.47	31.90	23.34	22.6.1
22.38	21.34	19.95	23.17	29.15	25.72	27.68	28.90	27.71
16. 19	17.56	15.93	21. ${ }^{\text {a }}$ \%	26.83	23.99	24.6.7	26. 41	25.40
12. 6,4	1.3.84	12.55	13.12	24.66	22.27	23.01	23.45	22.E1
?. 58	1.0.6.2	9.66	17.29	22.50	$2 \therefore .54$	20.63	25.49	20.00
6.96	7.85	7.22	15.5 ${ }^{\circ}$	29.42	18.82	17.50	17.12	16.65
4.80	5.5%	5.20	14.01	18.39	17.07	1.4.85	14.05	13.55
3.01	3.73	3.52				12.70	11. 86	11.34

* extract firom tabins (3.4), (3.5) and (3.6)

Estimation of the crude death rate, stable rale distribution, rodel vest, level 1, using hoth formula (N) and formula (B)

method 1 formula (λ)
method 2 formula (1)

Granh (2.3)
FST. $1=49.85 \cdot E S T \cdot 2=45.76$

Estimation of the crude drath rate, stable male distribution, model west, 8 ACTUAL CDR $=45.94$ level 3. using both formula (Λ) and formula (E)

method 1 formula. (λ)
method 2 formula (D)

Graph (2.1)

Lstimation of the crude death rate, stable male distribution, mocel west, level 5 , using both forrula (A) and formula (B)

method 1 formula (A)
method 2 formula (E)

$$
\text { EST } 1=37.90, \text { ESTI. } 2=32,83
$$

Estimation of the crude death rate, declining mortality pattern (1.6), $B=1.6$, using both formula (N) and formuln (E)

method 1 formula (Λ)
method 2 formula (D)

$$
\text { EST , } 1=35.82 \text {, ESTI. } 2=31.02
$$

Estination of the crude death rate, declining nortality pattern (1.5). $B=1.6$, using both formula (Ω) and formula (E)

Craph (2.7)

Fstimation of the crucle death rate, declining martality nattern (1.4).

method 1. formula (n)
method 2 Enmula (R)

CIMPRE: III

It is our ournose to stuc; the effect of chances in mortality and fertility on the rrovth bal ance estinate for the crurie deatr rate. Several studies concerner liftl tire pifect of mortality changes on the age distrinution are already availaine, lut thesen studies are either devoter th the effect ef changing roztality ecinchules on alfferent stai-le age iifetribution or remtrictec? to a sncial rattern of mortality channe. our concern is of a nore nractical nature, which is to assess the effect of changes in rortality and fertilit: - esmoriencec by cevoloping countries - on the epplicahility of the quont' balance rethot fon ertimation. le should roint out that we are net interestec: in the cefect of mortality and fertility changes on the age structure, tomense this is merely a sufficient not necessary condition, In otler :ords, cases ray arisc - as will be illustrated - when the arge diatribution deviates from a staije 'ochel rut still the growth balance methed is anclicalle.

Two aroncactes, are used in this chantre. Thn first anmroach depends on standard confoncol rethode of monulation rrofoction in illustrating the effect of chancjes in rortality and fertility, of the nature found in develonin: countries, on the arnlicability of tie groveh balance retion. A general nattern of mortaljty no finctility chance eoes not exist ercent in ver:: lroad ternis, because : iti in the develonsng countries the decree ance rapicity of the channe has been euite uneven, also the avallability and quality of dato riakes any atternt to find accurate natterns almost irnossible. :iuch of the discusaion - under the first angroach - is cirected to fincing several natterre of mertality mon fartility change, which as a wholn p-bociy a rançe of feasinle trend patterns for develoning countries. The senond approach is of a more thporetical nature it is an attennt to analyse the relation fetiveen the growith halance estimate and certajin features of mortality and fertility change. It exnlains and justifies the results reached in the first approach and also pronoses possible modifications on
the rroutir balance "otione.
3.2 ThM proct apronsci

(N) Noxthlits Chancon
rhe mont tristoortig Egature of rortality chonem in develoning countries is the ragicit: oE it= decline. The sreed of this decjine is unnrececlented and has not hem matcised in the no." advanced countries. Davis (1956t) illustrater this fact es follo:as: analyzing the data far fifteen underdevolowed countries wo find that the crude reath rate dromed hy 33 during the thirt: years fro" $1920-24$ to 1950-54. The dirfnuation has been accelerating ... over a five snar nertod (fror: the averaçe for 1945-49 to the average for 1950-54), tho death rate in einhtenn underdeveloped countries
 the ciģteenth centur: sinows ne t-ixty year peried in or ich e consistent decline nceurree? : etroon half-ricade averanes, or in which the tetal thirty yoar charge wins nnw nre near the 53% recorc of our backrard areas.' The reason for using the cruae death rate as tion reasure of mortality decline, var justifici beits incing the only index of rortality levels reacily availat at for a nurlec of bactward countrine and that it is lalikel:" the AGe structure of the norulation considered has chanfod nuch due to the short nerind studied and the fact that fertility remained constant.

Stolnitz (1965) - using the available information from life tables on changes over 10 to 20 year perieds ending in the 1950's - showed tiot the avarage increascs in expectation of life at hirth exceeds 0.5 yearis jex annur: and more often than not tlicy are closer or above one year per annum. To compare tris macnitude of chanre to the one experienced by develoned countries; the sare study indicated that hefore 1900 the average rise in IIfe expectancy in acveloped countries emounted annually to about two-tenths
 only four-tenths. finc highest recorier? short tern increase in life exnectenc:' Fetreen 1840 and 1946 ros 0.63 vears, in tio Netherlancia petween 1915 Hnc: 1926.

It should he noted tiat though the decline in mortality has occurred nearly every-there in non-incustrial areas, the dectree and repldity of this recline has: finer fuite unnven; thus in A-sa, Africa and Latin frerica there is ot mesent creat disharity in mortality levele in devclonjrg countrier. Tie?
 inaccurate statistics, it ray generally te statee tont the level os rortality In Intin prorfocan echrtries is closer to the level in the undezdevelonec countries of hista thar it is to tiat in countries of rixica. lost. of the
 Arrfaca vavir (ICfig) 'in the lofn's 13 out ot 20 countries with fremration

The arto nattorn of mortality chance fer devoloning countries car onl: ke documanted rith sreat caution. fr:is is due to the lirited and sketchy nature of the cata availahln: thus it cannot re claimed thot the few data be can rely on are renrementative. Also, the quality of the inforration availahle may distort the chances by aqe and one niay तouist if gome of the ace pattern characteristics are a true feature of mortality or the effect of these crrors.

The main findings of the avallahle atterpts te analyse the age pattern of mortolity change may be summarized as follows: in a linited Natiers ntidy (United Nations, 1962) using data for develouing countries it was stated 'The data for these countries shon a greater diversity of age patterns of recent rortality recuctions than seems to have been characteristic of the earlier reductions in countries of Europe, forthern America, Australia and New Zealand. Also it seers that in these under-develonec. countries, adults
un to miflule mac lave shared vith children in thr renefit of the rocent mortality rectuctions, to a more nearly equal extent than they rreviously did in tire countries minch led in the moverent of declining death rates.' Illustrations sto:ing these diversity of patterns of rortality declines ere civen ir 'äat lo (3.1).

Faمle (3.1) Fercontacte annunl ancltnc in aron sperific death rates and the annual fncrease in e_{0} (rales)

Countr: Perice Ane	Chile $1020-19.59$	Taiwan $1920-1960$	Nauritius 1944-1952
0	1.396\%	2.157\%	3.700%
1-	2.034	2.175	5.975
$5-$	2.134	2.2800	6.755
10-	1.820	2.140	8.137
15-	1.941.	2.143	5.250
20-	1.995	2.075	2.337
25-	1.717	2.213	2.200
3n-	1.631	2.211	8.912
35-	1.622	2.183	8.212
An-	1.187	2.098	7.r-2
$15-$	1.220	1.984	6.612
5\%m	1.173	1.894	6.075
55-	. 547	1.632	5.837
60-	. 845	1. 499	5.825
65-	. 725	1.207	4.825
70-	.653	. 845	2.050
75-	. 440	. 779	2.675
$80-$. 849	. 950	1.862
${ }_{0}$. 607	.89	

${ }^{1}$ source: Preston \& Keyfitz \& Schoem (1972)
${ }^{2}$ source: United lations (1962)
stolmitz (1965) incicated that in a general way absolute declines in age speciflc probalidities of dyjng (q_{x}) or rises in their combernents, the prewalititins of eurviving resentile reversed j's or puen v's, a relater reault, -ince arce srecifle survivorshin falls fin the age heronai then chillohond years, is that the corresponcin percentarge chancen have also bern reversed J's or H^{\prime}-'.

To surfarize ti.n nrevicun revinu, bie may atress that to imitate the pattern nf decline in dovojoning countries - usirg nosulation projection - one should lie careful to renroc?uce a rapid decline in mortality and to allow for several sprecis and age matterns of decline. some of the age patterns of clange in survivorshin ratios should resemble a reversed J or lis.

(!) Fertilit: Chancin

Fertility is nlrosst universally fiçi in developinc countries. Kirk (Pehrran \& Coria \& Preedman 10Go) incimated titet there is a sharp dichotory Fetreen thenenatality of the "revoloped" and the less apreloped countries. tho "less dovelonec" country of rajer consecuence yet hae a lirti rate under 30. : IC, devoloned country !? as tifth rate over 25 , and fen have a hirth rate cuer 2..'.
netailed stury, for the historical pattern of fertility change are avallable for nany develoning countries. In contraat to the common picture of mortality decline, fertility chonge seems to have taker different forms. In some cases, such as the cnrrihean islands (Jamaica, Trinidad and Suiana), thern noem to be an unward movement in fertility un till the 196n's. In others, including several countries of Latin frerica in the 1940's to the 1960's (Eil Salvador, Guatemala, Nexjco, frazil....), the picture is mere of a constant fertility. As recently as $196 n$ Taiwan, sincamnre and Fuerto Rico were almost the only countries with a sinnificant declining trend of fertility, the list has been growing since and is including countries such as

Ceylon, lorca and chile. "ore and fince countries are joinine in the cecline of fortility, : Wt the general doon'vard trend las not been firmly cetarlishare vet.

3.2.2 Fattryme and Date lient

(I) \qquad
Pattrorn 1
rine idead sithetion - in such s study - ic tn firn actual renresentative nattern- of rortality declinf, wich will nrovice n direct check on the arrlicatility of the rurot: halance mettoc? The lach of actual historical data necessitates the use of a model nyster. I suitable rodel needs to incornnzate tho Nasic characteristics found in the arge structure of rortality ratus at a certain moint in tire torices befing flexible enoury. to sinw the rencral tereiencter rovealed in tren noth of chance.

 cons on in tian nomtality schofulen of develonire countrins, alse the logit
 the reruifrod nat!: of chencer smone the multitucios of neths avallable are finally the rodel la readily suitad for aymlication on cormuter.

The lonft rodel descrites tre relation betiocn mortalities in different countries - or at different periods in the sar: courtr: - using a mathematical function as:
lorifit $_{x}=a+i \log 1 \ln _{x}$
where locit $1_{8:}=\frac{1}{2} \log \frac{1-1 x}{1_{x}}=-\frac{1}{2} \log ^{1-1} \frac{1}{1-1_{x}}=-100$ it $\left(1-1_{x}\right)$, and 1_{x} denotes the survivorn at nge x in the life table. i_{x} dnotes the survivors at age x in an arnitrary life table chosen as a hasic standard nattern. The standard
life talle used in all the Enllovint arplications is basec on frass neneral standare life talile (rase 1371), ifich is an avorace ronensentation for nullictoct life tallos of rederote and hifh mortalit\% re and B are corstants mifis vary ar:ore life tillen: their irplycations are not fully defirex kut ir ronnmal or ray lec resardent is a reasure of the level of rortality shile
 t' n ranpe observed Ecr recordec roptality schpinles of developine countries, is within $-1.0 \rightarrow 0.5$ for r and $0.6 \rightarrow 1.6$ for f.

The decline in rortality may be achieved throunh chancing one or both of the merameters ns folloirs:
n - chareing a and fixing f.
b, chancing a and foimultaneously.
 chenço in $=0$ ly accor-lishes small crannes in on Eor example:

Cl	-	C).5	2	$=$	$\therefore 6$	${ }^{0}$	$=$?4.7
α	$=$	0.5	β	$=$	1.6	${ }^{\text {e }}$	2=	31.0
a	$=$	\bigcirc	\uparrow	\ldots	.2.6	0	$=$	43.1
4	F	\bigcirc	n	$=$	1.6	${ }^{\text {c }}$	$=$	45.0

Pattern (1.a):

In this optinn α is cecreasing and $\hat{\beta}$ is kert constant. The reason for using this pattern of ciecline is that the age fattern of change in q_{x}, due to a change in $u_{\text {, }}$ remerhles some of the available information ohich sugcest that the absclute decilinc in $n{ }^{7} \times i_{n} T_{x}$ denctes protatility of cipinci retreen x and $x+n$) Eollov a $\|$ shane. Tahle (3.2) sinows the decline in $n{ }^{\prime} x$ ven fis constent and α declinirg.

$\begin{gathered} 9 \\ \text { er, } \end{gathered}$	0.6	1.0	1.6
\because	22. 28	17.13	0.6,3
1	C.6.1	9.99	\&. . 0
r	1. 47	2.21.	2.63
10	1.05	1.6 .2	$? .02$
15	1. . 6.5	?.59	3.38
20	3.03	3.24	4.47
25	1.91	3.09	4.50
36	1.83	3.90	4.52
35	1.8?	3.11	4.73
80	2.22	3.31	5.15
45	2.269	3.69	5.6 .5
50	2.65	4.17	6.0.7
5.5	3.83	4.53	5.01
fr:	3.57	0.85	5.45
65	3.93	4. 58	3.90
73	- . 2.4	3.87	2.10

*source values of T_{x} vers niven in Eyans (1271), tahlor.

Pattcrn (1.t):

In this option, "pere α and $?$ are chancincy, the relation zetweer chilchood and adult rortality conges whic mortality is cleclinisc. mis kinc of decjline vould affect the ace corrooltion consideratly and allow us to test the death distribution method uncer the worst circurstances.

To avoid unnecossary comnlications - due to the several comhinations of change in a and p that may be tried - ve restricted our attention to a conatant decrense in 0 while α has been changed indirectly through fixing l_{1}.

Natia ursed in the nrestection:

For mach case :: started with a stable age distribution resulting fron a constant schectule of mortality and a certain arowt? ratn. The scheciule of mortality urnd corresronds to the inftial values of x and e and tho standarj life tahln for cach sex serarately. The starle age diftribution was suly decline: the fertility schedule used vas haserl on rodel fertility, pattern 6 of thr United Hations (Unitec iations 1963) corresnoneing to the crude wirth rate of the stable acte distribution.

Pattern (1.a):

Difterent. conetant values of prere used, rancinç fron $O=0.7$ to $R=1.3$; Ior each constant value of β, α was channed to achieve a snecified rate of increame in exnectation of life at hirth. Two rates of increase in e were anoliec: a rate of annual incrnase of 0.5 years and a faster annual rate of l. gears. The initial value ef a bas 6.7 . The projection stonped when en excoeced 70.0 or after 20 morinis equivalent to 100 years.

Pattern (1.1):

Tre initial value of $f=1 . C . l_{1}$ was fixei to the value of $1 s_{1}$. Thus the fmplied indtial value of a for rales $=(1-f)$ logit $1 \mathrm{I}_{1}=0.486$. R was decreasec? from 3.6 to 0.6 in steps of 0.1 and a slower step of 0.05 . 'he nrojection stods when $G=O . G$.

Pattern (2):

In conrtructin: this nattern, and the follorifng one, ve rienended heavily on two studies: (Keyfitz \& Flieger 196E) anc (J'reston \& Keyfitz \& Schoen 1972), In which detailed information on mortality and fertility for several countries are given. Two countries were picked and their mortality decline patterns calculated. These countries arei Taivan and Chile. The reasons for choosing them are that their data goes further back than other fublished
data on covoloninc colntrins and toat me are not only intercsted in a coman jottorn (wtici han no significant effect on tre ajo structure) but ratiner en pore citzern rattonn (oxtreme in a rense nf a very lig anci/ox fasit docilne in rortili:t: .

Hata ured ir tha rerojaction:
 a constant schedule of -octality - corresronding to the actual deat. probalilitios given ry (Preston \& Majfitz \& schon lo72) for the garliest. perien - and a certaln gro:th rate as a measure of reonatle value which may have annlinc in the rase year of mrojection. Tro stakle age distribution is sutfected to constant fortility and to a mortality change illustratinn tha actual nattern of decline in each ecuntry; the Eertility scherule used is hased on mociel fortility rattern 6 of tion Unitnd "ations linited
 djetrilution. ral: mentalit: secline is masem on the acturl percentace Incraabe in the riale survivorshir retion; tirs increase j.s calculater for cach two consecutive nublinhed data and it is assured to he uniformly cifeributers witt:in the givan perjod.
a) $\operatorname{ch} 11 \mathrm{e}$

Starting with the nublished robability $\left(q_{x}\right)$ corresponilnt to the base year 1009 and a hypothetical growth rate . 00 , Chile is projected for 50 vears, assuming the decline in rortality to follo: the annual increase in rale survivershin ratios.
b) Tajivan

Sinilarly, Taivan is projected for AO years starting vilth the base year 1320 and a growth rate $=.009$.

Fattern (3):

Though our concern i.3 mairily with mortality iecline of under-develoned countries, this third rattern dealn with Euromean data. The fustification for this is the exfating possifility that somp under-develoned countries did follon a Furonean nattern of decline:

The data of three countries are used; rainly fweden, Fortucal and Italy. Sueden represnt a snecial case duc to the availablility of Eairly reliable data on mortality from the $18^{\text {th }}$ contury unoras; so the sweden trend of mortality has been recelerated to anree more with the fast reduction that has hen ohsorved in under-cieveloped countries. Thus two cases are ancliec! here:
a) The actunl Swedish, Italian and Fortugese pattern;
h) the actiual swedish pattern from 1783 till 1863 (corresponding ton
 is doublen. Thus it is assured thot a gain in lise ex-ectancy equal te 24.282 years is ectieved ir 40 gears rather than 80 years. This is cone hy considering eack 10 year secline to happen in 5 years only.

The same procecure - as in the previaus pattern - has heen followed here starting with the base year 1783 and a growth rate cf oog for sweden, the hase year for Italy is 1881 and the growth rate usect is . On5 and finally Portural is projected for 40 years starting 1920 and with a growth rate . Ong.

(H) Fertility Datterns:

For each of the ccuntries consiclered; the annual nattern of decline in age specific fertility rates is calculated using actual data and startine from the earliest fublished data on age specific fertility rates. The female age distribution is subjected to mortality and fertility decline. Mortality decline started from the same base year as in the previous patterns; fertility is held constant till period 10 for Italy, neriod 7 for Chile,
nerlod 7 for maiwar, nerioc 3 for portugal ond the Eirst geriod for swoden. Fach porion is emivalent to 5 years of rortality decine.
3.2.3 nesults
(A) nontality ieclirs enc iartinitu con-tant

Fattern (1):
Considering the results of pettexn (1.a) - aiven in tei•1es (3.3) anc. (3.4) we note that rencrally the estimate 1 is close to the ectual death rate.

Comparing the actual death rate oith the lost estirate wiother estirate (m) or estirate (i) - wfore estinate (M) is calculater using Eomula ((π) and lnast souare fit, and estirate (\because) is calculated usinc: formula (5) and least scuare fit - we cet: for $p>1$, whetrer the annual increase in e_{c} is .5 or 1. . the manimur devintion does not excecc 1% For $\hat{x} 1$ only in the slow decline the cieviation exceedr 1 ng wen $\%=0.7$ the raxirum deviation is 2.62\% and this eieviation only occurs onee corresnencing to seriod lif for other values of 6 the maximum devintion decraase reachinc 2. $21,1.78$ and 1.16 for $P=0.8,0.9$ and 1.0 .

Considering the results of pattern (1.b) - civen in talle (3.5) - and comparing the actual deati rate and estirater (A), there is a considerable amount of deviation in the neigilnurhood of 5 since this deviation starts from the first nerino when the porulation is starle and mortality decline ras not started yet, one is quite suspicious that the source of deviation is due to the method of estimation rather than the effect of mortality decline. The second estimate does confirm this point, so we will assume that the difference betweer the actual ceath rate and estimated (E) is due to mortality decline whlle the difference between estimated (A) and entimated (3) is the effect of the method of petimation.

There is a difference between the actual death rate and the estinated (B).

Tahle (3.3) Fixes? 3 , changing α.
The actual anci estirated cieatr rate, using formula (A) and (13), corresnonding to annual increase in $e_{0}=0.5$. pattern (1, a)

Letia neriocil	0.7			0.8			0.9			1.0		
	actual CDR	1ist. (त)	f.st. (E)	actual CDI?	$\begin{aligned} & \tilde{x}^{\prime} s t . \\ & (\stackrel{y}{1}) \end{aligned}$	E.st. (I)	ectual CDR	Fst. (r)	$\begin{aligned} & \text { Fst. } \\ & \text { (Fi) } \end{aligned}$	actual CDR	I.st. (Z)	Est. (B)
1	54.76	$5 \wedge .95$.	54.55	53.01	53.70	52.82	51. 25	52.48	51.07	49.51	51.35	49.33
2	50.78	59.93	50.6.2	49.10	49.66	48.90	C.7.41	43.45	47.19	45.72	47.29	45.48
3	46.87	46.81	45.60	45.13	45.52	44.89	43.55	41.34	43.23	41.89	43.17	41.54
4	42.85	42.53	42.44	11.29	41.32	40.82	39.72	10.19	39.24	38.15	39.11	37.66
5	39.15	38.41	38.44	37.53	37.31	36.94	36. 12	36.26	35.45	34.6 .4	35.25	33.03
6	35.80	34.73	34.89	34.40	33.69	33.46	32.33	32.71	32.06	31.50	31.78	30.68
7	33.03	31.37	31.65	31.51	31). 39	30.30	30.03	29.44	28.93	28.65	28.57	27.64
3	30.25	28.14	28.51	28.75	27.20	27.24	27.301	26.33	25.97	25.94	25.52	24.75
$\%$	27.57	25.00	25.53	25.10	24.17	24.31	24.69	23.39	23.14	23.34	22.62	21.92
10	24.95	22.04	22.62	23.50	21.28	21.49	22.17	20.06	20.45	20.89	19.94	19.43
21	22.45	19.31	19.92	23.08	18.69	18.93	19.80	18.08	17.99	18.61	17.51	17.09
12	20.11	17.90	17.49	18.82	1.6. 35	16.61	17.60	15.82.	15.77	16.40	15.33	14.99
13	17.93	11.32	15.34	16.71	14.33	14.55	15.58	13.87	13.82	14.54	13.42	13.11
14	15.91	13.13	13.48	14.76	12.68	12.78	13.70	12.23	12.11	12.74	11.82	11.19
15	14.00	11.93	11.34	12.94	11.46	11.30	11.97	11.02	10.69	11.10	10.60	10.13
16	12.24	11.23	10.35	11.28	10.70	10.22	10.40	10.19	9,62	9.61	9.71	9.06
17	10.62	10.10	10.01	9.75	9.54	9.35	8.98	9.0	8.71	8.24	8.51	8.13
18	9.15	3.42	0.41	8.38	7.95	7.85	7.66	7.53	7.33	7.02	7.12	6.85
10	7.79	7.07	7.05	7.08	6.67	6.56	6.44	6.29	6.12	5.88	5.94	5.71
20	6.49	5.95	5.88	5.88	5.59	5.17	5.33	5.26	5.09	4.81	4.94	4.74
${ }_{0}$	68.62.			68.94			63.35			69.83		

${ }^{1}$ each period denotes a 5 year interval.

Tamle（3．3）（centinued）

Feta neried	1.1			1.2			1.3		
	actual CDR	「ret． （r．）	Est． （路）	actual CNR	Pst． （i．）	「st． （か）	actual CDP	Est． （ 1 ）	Est． （E）
1	47.80	rn． 29	47.13	45.14	49.33	45.98	41.55	48.46	44．39
2	44.03	46.18	43.77	12.45	45．22．	42.17	A0．91	44.32	40．6．2
3	40.32	42.13	39.75	38.80	41.15	33.39	37.31	40.27	36． 88
4	36.67	38.13	$3 \pi .16$	35.22	37.21	34． 50	33.82	36.35	33.28
5	33.20	34．31	32．55	31.54	33.47	31.20	37.53	32.6	29.90
ϵ	30.23	30.71	29.35	28.81	30.10	28．06．	27.58	29.40	25．87
7	$2.7 .3 n$	27.74	26.38	26.04	27.07	25.20	24.83	26.33	24.00
8	24.65	24.70	23．60	23.42	24．02	22． 18	22.27	23.46	21.44
9	22.11	21.96	20.94	20.95	21.34	12．94	19.67	20.79	19．00
10	19.71	19.34	18.47	18.64	18.81	17．59	17．6．3	18.33	15.75
11	17.50	16．98	16.24	16.49	16． 51	15．45	15． 5.5	16.07	14．7c
12	15.46	1．4．87	14.23	14.52	14.44	13.53	13.68	14.07	17． 13
13	13.59	13.01	12.15	12.72	12.62	1］．． 83	11.94	12.28	11.26
14	11．87	11.13	10.90	11.09	11.07	10.35	10.38	10.75	9．84
15	10.32	10.22	9.60	9.61	9.86	9.10	ก．97	9.54	8.63
16	8． 89	9.28	8.54	8.26	8.90	5.07	7.75	8.55	7.63
17	7.62	8.08	7.61	7.05	7.69	7.13	6.56	7.36	6.72
1.8	6.45	6.75	6.41	r． 96	6.43	6.02	5.54	6.15	5.68
19	5.39	5.63	5.36	4.96	5.35	5.04	4.60	5.11	4.76
20	¢． 42	4.66	4.44	4.06	4.43	4.19	3.76	4.22	3.96
${ }_{0}$	70．36			70.93			71.56		

Fahle (3.1) Fixed i, charging o.
The actual ane entirated ceath rate, using formula (r) anc (r), corresmoniling to annual incronse in $e_{0}=1.0$.
rattern ($1 . a$)

reta reriocl	0.7			c. 8			0.9			1.0		
	actual CDR	$\begin{aligned} & \text { Fort. } \\ & (R) \end{aligned}$	$\begin{aligned} & \text { Sist. } \\ & \text { (b) } \end{aligned}$	$\begin{gathered} \text { actual } \\ \cos \end{gathered}$	Est. (a)	Fst. (i)	actual CDP.	Est. (A)	List. (F)	actual cos	Est. (A)	rst. (3)
1	51.76	54.05	54.55	53.01	53.70	52.82	51.25	52.48	51.07	49.51	51.35	49.33
2	47.31	47.141	47.20	45.58	46.07	45.42	13.91.	44.32	43.69	42.21	43.59	41.94
3	40.17	10.05	39.96,	33.57	38.77	38.30	36.98	37.55	36.65	35.41	36.38	35.03
4	33.55,	33.12	33.14	32.07	31.98	31.66	30.60	30.87	30.17	29.21	29.85	28.75
5	27.81	27.08	27.21	26.45	26.10	25.91	25.3.2	25.15	24.62	23.82	24.23	23.35
6	23.05	22.06	22.29	21.76	21.20	21.13	2C. 52	20.37	20.00	19.35	19.59	18.90
7	18.94	17.73	18.0	17.71	26.98	17.03	16.56	15.27	16.04	15.47	15.58	15.09
8	15.20	13.85	14.24	14.07	13.23	13.37	13.01	12.64	12.54	12.04	12.08	11.75
9	11.78	10.4?	10.82	1 n .79	9.94	10.13	9.87	9.49	9.47	9.03	9.04	8.85
10	8.72	7.48	7.85	7.80	7.14	7.31	7.11	6.81	6.86	6.45	6.48	6.39
11	6.05	5.06	5.37	5.40	1.83	5.01	1.81	4.EC	4.66	4.28	4.36	4.34
${ }_{0}$	71.13			71.78			72.21			72.71		

${ }^{1}$ each perind denotes a 5 year interval.

Tahle (3.4) (continued)

Ect.a nerind	1.1			1.2			1.3		
	nctual Co?	rst. (I)	Ent. (I)	actual con	vist. (n)	$\begin{aligned} & \text { Est. } \\ & (\mathrm{F}) \end{aligned}$	actual CD?	rist. (N)	Est. (b)
1	47.36	50.29	47.63	46.14	49.33	45.98	41.55	98. 18	44.39
2	90.62	42.50	40, 30	30.05	41.48	38.69	37.54	40.52	37. 14
3	33.80	35.29	33.46	32.46	34.31	31.90	31.09	33.40	30.56
d	27.84	29.85	27.35	2G.5月	29.01	26.06	25.32	27.18	24.79
5	22.62	23.41	22.26	21.15	22.64	21.02	20.38	21.94	19.95
6	18.22	18.85	17.85	17.19	18.19	16.87	15.15	17.56	15.93
7	14.46	14.96	14.19	13.51	14.37	13.31	17.64	13.84	12.55
ก	11.15	11.56	1.1.01	10.33	11.07	12.32	9.56	10.62	9.65
9	8.78	R.6:3	8.27	7.58	¢. 23	7.72	6.96	7.88	7.22
10	5.84	0.16	5.96	5.29	5.87	5.56	4.80	5.59	5.20
11	3.42	4.14	4.04	3.40	3.93	3.77	3.04	. 73	3.52
${ }^{6}$	73.27			73.87			74.54		

This difference increases as mortality decreasen, but the magritude of difference is not ver: disturbing (hearing in mind that ve expect this sort of decline to noduce the fiçest chance on age-dist.). For example, while expectation of life at hirth for males increaeed from 30.79 years to 51.33 ynars the entimatn deviates only 3. लfist

The ma:ifum deviation in the fast decline reaches 3.25 shile it is only 1.68s in the slow decline.

Takle (3.5) Changing α and B.
The actual and estimated death rates using formula (A) and (i) corresponding to fast and slow decline in \mathfrak{i}.
Fattern (l.t.)

Peta	fast ferjise in p			slow decline ir ?		
	acturd death rate	$\left\lvert\, \begin{gathered} \text { estimated } \\ \text { (} \mathrm{A}) \end{gathered}\right.$	$\begin{gathered} \text { estiriated } \\ (1) \end{gathered}$	actual deatr rate	estimated (A)	estimateà (B)
1.6	32.95	37.80	32.83	32. 25	37.90	37.83
1.055				31.for	36.85	31.92
1.5	30.26	35.82	31.02	30.31	35.71	30.98
1.45,				29.08	34.49	$3: .04$
1.4	27.75	33.65	25.23	27.50	33.21	29.06
1.35				25.76	31.90	29.11
1.3	25.39	31.4?	27.47	25.5 \%	33.57	27.13
1.25				24.50	29.24	26.16
1.2	23.17	29.15	25.72	23.56	27.93	25.10
1.15				22.55	26.63	24.21
1.1	21.08	26.88	23.99	21.56	25.34	23.24
1.05				20.60	24.05	22.26
1.	19.12	24.66	22.27	19.67	22.78	21.27
. 95				18.76	21.55	20.28
. 9	17.29	22.50	20.54	17.88	20.40	10.32
. 85				17.03	19.35	18.12
. 8	15.59	20.42	18.82	16.21	18.34	17.56
. 75				15.42	17.34	16.68
. 7	14.01	18.39	17.07	14.67	16.37	15.82

Fattern (2):

General? xate, the raximur. cieviation for maiman dces met nacenci 27% (the devifition is calcialated with rasinct to the best estimate); for chile also, the fotirate fe ruite cone ryentt fer the firot ir joars of rortality encline riern the reviatinn raparns f.3ring

Pabln (3.r) Th.r actual anc esti:ated death rates, usine formule (f) arsi (i) corresroniins to actual nattorns ef mortalit: eiecline. rattern (2)

Cun -ertoc ${ }^{1}$	a) Chile			r) Tax:zan		
	actual ceath rate	$\begin{gathered} \text { Enti-ated } \\ \text { (is) } \end{gathered}$	r.stimatec (L^{3})	actual ceath rat.e	ertir atec (a)	eatimatec (E)
(0)	34.37	35.48	34.64	37.44	$39.9 n$	37.62
(1)	34.79	33.04	3?.5n	33.K9	35:56	33.73
(2)	34.35	29.99	29.06	25.06	29.65	26.93
(3)	31.95	29.34	23.6.1	21.66	24.85	22.54
(4)	27.f.e	28.80	27.71	2n. 72	23.07	21.05
(5)	24.67	26.41	25.40	18.77	20.75	23.99
(6)	2.3 .01	23.45	22.81	15.81	17.56	15.10
(7)	20.63	20.49	20.00	12.8 .5	14.26	13.08
(3)	17.50	17.12	16.65	2. $\mathrm{BE}^{\text {c }}$	10.94	10.03
(9)	14.85	14.98	13.55			
(10)	12.70	11.86	11.34			

leach nexiod denotes a 5 year interval.

Finble (3.7) Finn nctual and sstirated denth rateos, usfreg formula (n .) and (B), corresmonding to actual ratterns of mortalfty cecline. jattern (3)

	Ital: ${ }^{\text {r }}$			Fortugal			Sperien (actual nattern)			Sweden (accolerated natterin)		
berioc ${ }^{1}$	$\begin{aligned} & \text { act- } \\ & \text { ual } \end{aligned}$	est:noted (I.)	estimated (iz)	actแลl	estiretecì (.)	Esti- rectec (E)	$\begin{aligned} & \text { act- } \\ & \text { ual } \end{aligned}$	estiriated (A.$)$	estirated (r)	actual	estimated (A)	lestimater? (P)
(c)	30.17	30.20	30.0)	28.87	29.13	23.56	29.36	30.15	29.04			
(3)	28.67	28.60	28.33	26.92	27.53	26.95	28.47	29. 20	28.21			
(2)	25.59	25.53	25.15	2.2 .63	23.95	23.43	25.6 .9	27.51	26.30			
(3)	23.06	23.17	22.76	19.84	20.54	20.16,	25.76	26.59	25.59			
(4)	21.17	21.33	21.02	13.50	18.20	18.00	25.60	26.10	25.34			
(5)	1.9.40	19.94,	19.25	15.77	16.50	16.27	25.60	25.55	24.79			
(f)	18.06	18.02	17.75	14.74	14.57	14.51	2.5 .6 .6	25.47	24.63			
(7)	1.6.64	16.70	16.50	12.95	12.62	12.54	24.78	24.87	23.94			
(8)	1.5 .21	15.14	15.11	11.34	19.58	1-.65	22.85	23.32	22.40		the	same
(9)	13.35	12.73	12.82				22.08	22.43	21.63			
(10)	10.33	3.75	9.94				22.57	22.39	21.71			
(11)	$\bigcirc .75$	7.88	8.01				22.65	21.03	21.34			
(12)	7.42	6.84	8.94				27.35	21.21	20.e.rs			
(13)	¢.@1	5.53	5.56				22.57	21.55	20.8]			
(18)	4.45	1.02	4.01				23.2 ?	22.02	21.8ก			
(15)	3.08	2.81	2.79				22.72	23.37	22.11			
(16)	2.10	1.8 ?	1.89				20.8	22.14	20.98			
(17)							10.80	21.27	20.19	19.76	21.35	20.26
(18)							10.7	21.15	20.12	18.13	20.07	18.95
(19)							18.0	20.58	13.19	15.69	1.7.82	16.78
(20)							17.6	19.50i	1.7.39	14.c5	3 r .03	15.09
(21)							16.4	18.67	17.56,	12.66	14.18	13.43
(22)							15.4	17.27	16.60	10.9.9	11.81	11.41
(23)							14.6	15.31	15.11	9.34	9.44	9,37
(21)							13.8	13.60	13.51	7.90	7.46	7.46
(25)							13.0	12.49	12.31			
(25)							12.1	11.72	11.51			
(27)							11.1	10.83	10.65			
(28)							10.0	9.72	9.56			
(29)							9.1	8. 76	8.64			
(3c)							8.5	7.98	7.92			
(31)							7.7	7.13	7.09			
(32)							6.7	6.23	6.16			

[^0]Sattern (3):
For all truree countrjes the arreement ketwcen the estriate and actual death
rate ir very qoce, for exarple the raxinul devjation for Italy cones not exceer . 298 and this only occurs in cne Doriod (rerice 10), also for Portugal
 gattern. the raximuri gevicition in 1.53%
(E) Mortality and Ecrtility Decline

The results of the offect of rortality and forfility decline on tre estirate of the ceath rate are siven in Table (3. ε) and (3.9). Fe note that the pattern of fnrtility cecline usec hardly affect the nstirate.

Tate (3.9) The actual anc? entinated deat! rates, using forrule (A) and (F), cormononcins to actual pattcrns ce rortality ane fertility decifine.

countr ${ }^{\text {a }}$	a) cinde			?) Taiwan		
$\begin{gathered} \text { Cnf } \\ \text { perion } \end{gathered}$	actual CD?	entiratred (I)	estiriater $\text { (} 13)$	actual crut.	อetjo atの (C$)$	est.jrateci (I')
(0)	31.35	31.53	31.05	34.25	34.85	33.91
(1)	31.24	29. 30	29.12	3r. $3 n$	31.50	30.41
(?)	35.87	26. 51	26.53	22.37	24.58	23.22
(3)	28. 4.6	25.72	25.39	18.02	10.35	18.70
(1)	24.17	24.99	24.39	17.24	18.34	17.12
(5)	21. 26	22.59	21.91	15.38	15.24	15.48
(6)	19.76	19.34	19.58	12.46	13.25	12.64
$(7)^{?}$	17.51.	17.21	16.96	9.50	10.11	9.63
(8)	14.17	13.76	13.47	6.54	7.01	6.64
(9)	11.98	11.29	10.95	4.62	5.09	4.82
(10)	30.10	9.33	9.04			
(11)	7.6a	7.50	7.28			

leach feriod denotes a 5 year interval
$\mathbf{2}$ the kerfinning of fertility decline for raiwan and Chile

Tat le (3.0) The actual ars estratec deatr rates, usinc formula (5) and (0) , corrcsponiink to antwal patterns of rortality anci frytility decline.

countrs	Italy			Portural			eweden (actual)			sweden	(accolerated)	
$\left\|\begin{array}{l} \text { CDR } \\ \mid \text { rorice? } \end{array}\right\|$	$\begin{aligned} & \text { act } \\ & \text { uel } \end{aligned}$	estiratel (a)	nstimated (F)	$\begin{aligned} & \text { not- } \\ & \text { nel } \end{aligned}$	costimated (A)	$\begin{aligned} & \text { enti- } \\ & \text { ratec } \end{aligned}$ (r:)	$\begin{aligned} & \text { act- } \\ & \text { ual } \end{aligned}$	estiratec (A)	estimated (F)	$\begin{aligned} & \text { act- } \\ & \text { nal } \end{aligned}$	est.rated (n)	estimatec (E)
(0)?	29.38	29.39	20.20	25.22	25.09	24.95	2.5 .64	27.06	28.35	26.64	27.26	26.36
(1)	27.87	27.8ก	27.54	23.20	23.54	23.35	25.91	26.25	25.47	25.91	2 F. 25	25.47
(2)	24.79	24.75	24.37	159.09	20.11	19.88	23.53	24.25	23.44	23.9 .3	24.25	23.44
$(3)^{3}$	22.27	22.3?	21.98	16.27	12.76	16.59	23.64	33.54	22.00	23.ก¢	23.54	22.80
(4)	20.39	20.54	20.24	14.60	14.34	14.90	22.87	23.07	22.63	$22 . \varepsilon 7$	23.07	22.63
(5)	18.72	18.73	18.48	13.25	13.09	12.06	22.88	22.65	22.19	22.88	22.65	22.19
(f)	17.23	17.28	17.01	11.6.4	11.82	11.75	23.04	22.63	22.16	23.0\%	22.69	22.16
(7)	15.88	15.94	15.74	10.211	10.24	10.17	22.35	22.28	21.6.7	22.35	22.28	21.67
(8)	14.46	14.30	14.34	8.90	ع.68	8.65	20.67	20.96	20.34	20.67	20.96	20.34
(9)	12.59	12.04	12.11				19.8?	20.06	10.55	19.89	20.06	19.55
(10)	10.07	9.15	9.28				20.21	10.87	19.48	2 c .21	19.87	19.48
(11) ${ }^{1 /}$	7.91	7.10	7.26				20.09	19.27	18.94	20.09	19.27	18.94
(12)	6. 30	5.86	5.91				13.59	18.12	13.11	19.59	19.42	18.11
(13)	5.64	5.29	5.28				19.74	18.71	12.24	19.74	19.71	18.24
(14)	4.49	4.25	4.19				20.47	20.10	12.32	25.47	20.10	19.32
(15)	3.51	3.36	3.3 c				20.02	20.56	19.60	20.02	2). 56	1.9 .60
(1f)	2.75	2.62	2.59				18.33	19.04	18.57	18.33	19.04	18.57
(17)							17.36	18.11	17.26	17.25	18.18	17.29
(18)							17.17	19.17	17.62	15.53	16.29	16.37
(19)							16.10	17.58	15.66	13.11	14.72	13.26
(20)							15.00	17.03	15.89	11.57	13.50	12.61
(21)							13.93	15.54	15.41	10.38	12.18	11.40
(22)							13.13	15.49	14.77	8.80	10.11	9.67
(23)							12.43	13.44	13.45	7.43	7.75	7.80
(24)							11.81	11.35	11.59	6.12	5.65	5.82
(25)							10.98	9.93	10.0s			
(26)							10.09	9.11	¢. 15			
(27)							9.11	8.54	3.40			
(28)							8.07	7.96	7.76			
(29)							7.48	7.57	7.33			
(30)							7.26	7.40	7.19			
(31)		-					6.94	6.99	6.88			

${ }^{1}$ each perfod denotes a 5 year interval
${ }^{2}$ the heginning of fertility decline for sweden
${ }_{4}$ the heginning of fertility decline for portugal
"the beginninc of fertility decline for Italy

The nrevinus ammon! illustrates tho marninturn of error likely to gefect the aroith ralanch estirate of ti:e cride death rate then applife to date of Covelminc rountries. Conerallv, it ray ho statec thet the estirate, evecert in for cises, is mot sinnifjcantly fffectory ry thn rattern of mortality and fortility charẹe that =rnvailed in efevenomer enuntries.

In this amproach, an atter-t. to explair this femarent rohuctness in the growth halnoce ertimate aris a flistification for tife fer cases whon a deviation anneared is presented. Also, noesil le rodifications of the growth halonce method are pronosec?.

3.3.1 Justification for tine Effect nf :iortality veclinn

The immortant role of the ac̣e rattern of rortajity chonge in shapinc̣ the age ristritution has heen sufficiently stresser in demogranio literature; though most of tifis literature wins cevoteci to stucying tise nffect of chancinc rortality scheciules on difforent stable age cifstributiens.

F general rule - which anolins wether we are dyscussine actual or statie ace distriblitions - is that an noual differnnce fetwen two mortality schedules (irnlying the same relative chence in ace smocific survival rates) does not. affect the urorortionate acte distrilutinn. nf course, the absoluth are distribution is increased hy ncual nercentaces at all anes corrennonding to the lower mortality achedules.

Mhis rule does clarify why in sore cases fig mortality differences only affect the arge distrirution gligntly. For esamnle, ve note that in rattern (1.a) a is decreasinc while B is kent constant; this reans that tioucyh mortality is eeclining the relation hetionn crildhood and adult mertalit: is constant. In nattern (l,b), the relation zeticen chilihood and adult mortality changes vifile mortality declines. This iriplies that the relative change in
ane snecific survival fates in nearly constant undex nattern (1. a) es cornared to nattorn (1.1). This fact is illmetrated in Fablo (3.10) vindor E'nk tin ralativn c'once: ir acio swecific survival rates when a is chang̣ing

「able (3.10)* \& relativo change in age snecific survival rates frow $a=0.5$ to $c=-0.5$

\times	$\begin{gathered} 0=0.6 \\ \text { rettern }(1 . a) \end{gathered}$	E chanding fror 1.6 to 0.6 pattern (1.2)
5	2.653	4.110
10	1.898	3.233
15	2.958	5.792
20	3.883	8. 354
25	3.708	9.927
$3 r$	3.6ก1	9.774
3!	3.736	11.-5:
¢	c.27	13.74.
45	4.3n-	17.7ヶ\%
50	r.ere	24.096
55	7.234	32.745
R0	9.311	47.980
$\bigcirc 5$	11.365	67.117
70	11.523	105.54!
75	16.878	157.648

*source: using values of ${ }^{\circ} \mathrm{x}$ givon in prass (1n71), teble 5.

Exarining the results of gottern (l,a) and (l,h), we note that as exnected - higrer deviation in tize estirate annear in the latter.
ane mnci fc murvival =atos $\{\pi$ noszly constant under riettorn (1. A) es corpared to nattorn (1."). This fact is illuntrater? in Fable (3. Jo) vincor

rable (3.10)* \% relative change in age specific survival rates frow $a=0.5$ to $c=-0.5$

x	$\begin{gathered} g=S \\ \text { Fettern (1.3) } \end{gathered}$	© chancing fixcr l.f te O.f nattern (1.2)
5	2.653	4.110
10	1.048	3.233
15	2.955	5.791
20	3.883	8.354
25	3.708	ก. 227
3 r	3. ¢@	9.774
$3:$	3.784	11. 2 :
\therefore	6.17	13.7:3
65	4.80\%	17.79%
$5: 3$	r.are	24.594
55	7.234	32.74 c
6.0	9.311	47.386
9.5	11.365	67.117
70	14.523	105.54!
75	16.87P	157.6.19

*source: using valuen of r_{x} Given in frass (1の71), tahle 5.

[^1]
$\frac{n_{y}}{F_{y}}=\operatorname{con} \frac{D}{F_{y}}-\frac{\int_{f}^{\omega} x \log \frac{1}{x}}{?}$
(eçuation 2.4)
wheren $\|^{\prime}, p^{2}, \cap_{\because}, I_{x}$ and Cnis are as defiren.
 measures of the "o: ulatien esneriencinc the current rortolity and fertility. In other worde, if aralytic esnressicrs are available rnlating are cosiosition to chancinf sciefliles af fertijity and mortality just as the stable formula relates age composjtion to constant scleriuler, the rro:ith halance method n. be rearily crereralized to apnly to cares ohen sches?ules of fertility and mortality has lefn chanring rathar tion enrstant.

Let x_{x}^{s} cenote the stille ace distribution corresponcifre to the mertality and fertilit:' schesiulpe currant in ' x ' thon:

$\frac{1 d}{1}=\cos \frac{n_{y}}{\Gamma_{y}}+x+z y$

The deviation in tha growth balnnce estimate results from ignoring thin last tern: z_{y}. It is our purrose to discusa the ragnitude of this term under different nat.terns of changing mortality.

Approximate analytic expressions for the arge composition of a closed one
sex ponlilation sulject to a shncific tume of chancic as related th the stalsle ade distrirution with tios curcent roortajity anc fertility $\frac{\left(\frac{x}{1}\right)}{\%}$ have heen presented (coale 1972). A sumary of these exnressinns are aiver here:

Then Tertality iz declinirn after a leng rerico of conctant fertility and rortaljty (ntatilitw) anc. when the chance in rortajity is subject to the following nostulates:
(1) Rs urortalitg cianres, a fixec Acje structure is assurned in the differonce in age specific doatt, rates fron any roment to any othor. In:us if $U\left(a, t_{1}\right)$ and $v\left(a, t_{2}\right)$ are ase-s.eccific rortality scheciules at troo roments When mortality is changinc, $U\left(a, t_{1}\right)-l\left(a, t_{2}\right)=\|i\|(a)$, where is a constant and $A r(a)$ is a non-alterinr characteristic anc scliesule of mortality change.
(2) The are pattern of cinnce in mortality rates can re anproximated by a steenly ceclirinej sectirn fre" acie o to alout are 5, a section that can be consicereri lewnl fron arge 5 to 45 , and a scetion that. rises linearly with are arove 45.
(3) The time pettorn of the mortality change initiotociat $t=0$ is one of linear chançe at each ane. Thur $\because(a, t)=U(n, \eta)-t A U(a) '$

Itfe açe distrikution of a population surject to this mortality decline relative to the stable age distribution is given hy:

$$
t<3 \frac{T}{4}
$$

$$
\begin{align*}
\frac{N_{x}(t)}{N_{x}^{s}(t)} & =\frac{b_{K}}{h_{S}} \exp \left(-k\left(1-\frac{t}{T}\right) x-1.27 \frac{Y x}{T}\right) & 5<x \\
& =\frac{b_{K}}{r_{s}} \exp \left(-K\left(1-\frac{x}{2}\right) t-1.27 \frac{K x}{T}\right) & t<x< \tag{3,4}\\
& =\frac{b_{K}}{b_{s}} \exp \left(-K\left(1-\frac{x}{T}\right) t-1.27 \frac{K x}{T}\right) s(x, t) & 45<x
\end{align*}
$$

$$
\begin{aligned}
& \frac{N(t)}{\frac{x}{x}(t)}=\frac{n}{n} \operatorname{sex}\left(-\frac{5}{2} x+\frac{\pi}{2 \pi} x^{2}-1.27 \frac{7 x}{7}\right) \quad 0<x<t-\frac{3 \pi}{4}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\because_{n}(t)}{\because_{n}^{s}(t)} r(x, t) \\
& 45<z<\omega
\end{aligned}
$$

ricre:

$$
\begin{aligned}
& s(\pi, t)=A x_{j}\left(-1(x-4 r,)^{3} / E\right) \quad A r,: \because<t+45 \\
& =\operatorname{cxs}\left(-1 \frac{(x-65)^{2} t}{2}-\frac{\left(x-(5) t^{2}\right.}{2}+\frac{t^{3}}{6} ?\right) \quad t+45<x<0
\end{aligned}
$$

anel:

$$
\begin{aligned}
& \text { I: mean lenqth of generation in tre strile nopuletion }
\end{aligned}
$$

current etanlo ajo cistribution
en anrual rate \because for t trones

F: the annual sropertionete increare in fevtilitr to mich the annual increare j s survival t $\underset{y}{ }$ oung ages $i s$ orivivalenc, or more precisely: $K=\int_{f}^{5} z(x) d x, z(x)=$ tine annual decline in agf suecific rortality the level portion fror. 5 to 45 .
h_{s} infth rate in the stable nopulation
Il: tixe suone of the line annroximeting tlas zate at whicin the annual change in age snecific rertality rater increases ahove 15.

Fefore using the rrevious exnressions to evaluate z, we need first to discuss the underlying postulates end their feasitility and estimates of
 the fixst annxoach.

「easibjlity of the Undarlujng Tontulaters:
It was mentioned hefore that - oithon the avaflahle information - it is generally fonre likely thot the agp nattern of decline in mortality follored a reverrifec T or U. (when the pattern is revernine J, isl may he set to zero). Also, in nrincirle, Coale forrulae co apply to cases when the ege pattern of chançe reserule either of the follexing shanes:
$(x \& r:-v e)$,

($\mathrm{K}+\mathrm{ve}, \mathrm{I} \mathrm{l}$ - ve)
'ihus the only restriction in grstulnte (2) ir tlat the section loetwern ace 5 ani 45 ja consicierect level. thes is a fair anproxiration to the actual pattorn of chance experinnced in rortality data.

Postulntes (1.) and (3) may he challencer on the crouncs that acge patterns of change tenct to the erratic over short norionis, but once it is acreec that the cumulat.f.ve pffects of these short rerind changes mar feclosely apnroxirated by the average changes over a longer interval the nrevious mostulates rosy he readily accepted.

The data prosented in Takle (3.11) are presented in (Coale 1972) an an illustration of the feasibilit: of ncrtulate (1).
"ah (3..11)* Disforerice in age-soncific mortality rates, 'ver:

acin \quad \%	A洔(x), $\varepsilon_{n}^{0}=2.2$ anc? 50	13.4 AU $(x),{ }^{\circ} \mathrm{O}=35$ ant 37.5
0.5	. 351	. 346
1.5	.196	.110
2.5	. 25.4	. \square^{5}
3.5	.035	.-37
4.5	. 30	.037
7.5	.0.11	. 211
12.5	. 503	. 0
17.5	. 611	. -11
22.5	.013	.214
27.	.015	. 215
32.5	.017	. 23.3
37.5	.218	- 010
42.5	.210	.220
47.5	. 119	- 020
52.5	. 02.1	. 025
57.5	-(3)	.231
62.5	. 0.9 .4	.045
67.5	. 255	. 056
72.5	.075	.075
77.5	. 0 deg	.035

*enurce: reprocuced from (Coale 1972), talle 5.1

Istimates ns the i'avareters:

Estimate of K

5
1
2
2 (a) da
$e^{K}=e^{0}$

Whare $z(a)=$ antual cecline in are snecffic mortality - the level nortion frorn 5 to 45.

```
z ( a ) = ( 1 ) ( A , t ) - U ( a , t + n ) - U ( 2 5 , t ) + U ( 2 5 , t + n ) ) / n
```

where $U(a, t)$ cierotes the force of montality around ara a at time $t, v(25, t)$ is an apnroxiration for the jevel portion.
$e^{K}=e^{\frac{5}{j}(U(a, t)-U(a, t+n)+i(2 r, t+n)-U(2 r, t)!/ n}$
$c^{k}=\left[\frac{5^{I^{*}} 2^{(t+n)} \cdot 5^{5} 2 r^{(t)}}{5^{5} 0^{(t) \cdot 5^{\Sigma} 25^{(t+n)}}}\right]^{\frac{1}{n}}$
where $\bar{n}^{2} x$: nere specific eursival rater fro: $:$ to $x+n$
$y=\frac{3}{n}\left[\operatorname{lng} \frac{1_{5}(t+n) \cdot 1_{25}(t+n)}{1_{0}(t+n) \cdot 1_{30}(t+n)}-\log \frac{1_{5}(t) \cdot 1_{25}(t)}{1_{0}(t) \cdot 1_{30}(t)}\right]$
vhere $I_{x}(t): 1$ fen tanlo survivore nt ane x end time t.

Estimate of P1

$A 1=(z(65)-z(50)) / 15$
$=\{\pi(f .5, t)-U(65, t+n)-U(5 n, t)+11(5 n, t+n)\} / 15 n$

If we approxiriate $U(x, t)$ by $n^{m} x(t)$, where $n_{x}(t)$ denotcs the aqe specific death rates for age group $(x-x+n)$ at. tine t, then
$B 1=\frac{\left.\left(5^{m}{ }_{55}(t)-5^{m} 50(t)\right)-1_{5}{ }_{5} 55^{(t+n)}-5^{m} 5_{0}(t+n)\right)}{15 n}$

bstirate of.

 demenc on the current fertility aric mortalitw schedules. Fossible values
 lin assingef a cenftant value $3 n$ simply ! fecaure p srall c!eviation in $=$ sill hardlv affect tre illustratims.
 exnectancy luy two and a jalf yenrs incrernes from $3 n$ to 50 in the vest frmale rociel life tailes as calculated hag Coale (l972).

Tatile (3.13) sto:s values of i and mi (calctiated vaing tie nrevicus amproximations) intnrent in rortality change following chile pattern from 1927 to 1959 and for maivan from 1920 to 1 กร, and Fortural fror 1920 to 1960.

Tak:le (3.1.2)* values of Kt anci Th.t. inherent ir the feet feraln model life tobles

ctange in e_{0}^{0}	10	$1 . t .1 .1^{3}$
30 to 32.5	.0424	.170
32.5 to 35.0	.0370	.161
35.0 to 37.5	.0345	.145
37.5 to 40.0	.0315	.133
40.0 to 42.5	.0283	.121
42.5 to 45.0	.0266	.111
45.0 to 47.5	.0246	.123
47.5 to 50.0	.0233	.095

*source: reproduced from Coale (1972), Tahle 5.2.

Table (3.13) values of y : :ll inherent in Chile, Taiwan and Fortural's mortality ciange

country	k	$E 1$
Chile (1920-1950)	.008	.00001
Taiwan (1020-1950)	.008	.00003
portugal (1920-1960)	.008	.00001

lion let us reconsicins the terr: z_{y} :

From formulae (3.4) and (3.5), it is clear that $\frac{x}{N_{x}^{\prime \prime}}$ (and consequently $d \log \frac{k^{i}}{i j^{3}}$) is not a continuous function over tie whole rance from y to w, but is continuous over several limited intervals within the whole range. The number of these intervals and their width denend on the lengtl: cf. mortality decline and the are considered.

For example, in the snecial case where $t<\frac{3 \pi}{4}$ and $y<t$, $\frac{x}{N_{x}^{3}}$ is continuous within four smaller intervals given respectively hos

$$
\begin{aligned}
& \pi \log \frac{N_{x}}{H_{x}^{s}}=-Y\left(1 \frac{t}{T}\right)-1.27 \frac{K}{T} \\
& =\frac{K t}{T}-1.27 \frac{K}{T} \\
& \text { t. }<x<45 \\
& =\frac{K t}{T}-1.27 \frac{K}{T}-\frac{B 1}{2}(x-45)^{2} \\
& 45<x<t+45 \\
& =\frac{K t}{T}-1.27 \frac{K}{T}-B 1\left(t(x-45) \frac{t^{2}}{t}\right) \\
& t+45<x<\omega \\
& \int_{y}^{W} N_{x} d \log \frac{x}{N}=\left[-K\left(1-\frac{t}{T}\right)-1.27 \frac{K}{T}\right] \int_{y}^{t} N_{x} d x+\left(\frac{K t}{T}-1.27 \frac{K}{T}\right) \int_{t}^{45} N_{x}^{d} d_{x} \\
& +\int_{45}^{t+45}\left(\frac{K t}{T}-1.27 \frac{I t}{T}-\frac{E 1}{2}(x-45)^{2}\right) 14 x d x
\end{aligned}
$$

$$
+\int_{t+15}^{\omega}\left(\frac{K t}{T}-1.27 \frac{K}{1}-31 \cdot t(x-15)-\frac{t^{2}}{2}\right) 1 i_{x}^{2} x
$$

Let u: deal with the General case when $\frac{{ }^{\prime \prime} x}{i_{x}^{-3}}$ is continuous within r intervals defined by $y \rightarrow a_{1}, A_{1} \rightarrow a_{2}, \ldots, a_{m-1} \rightarrow w_{\text {; then }}$

$$
\begin{align*}
& \operatorname{let} \because_{x}=c \log \frac{x}{n_{x}^{5}} / d x \tag{3.7}
\end{align*}
$$

Since " x is continuous within. the srialli intervals, then using the mean value theoret, $\quad 7$ ray he ap-roxirated as:
where $z<x 1<a_{1}$

$$
\begin{gather*}
a_{1}<x ?<a_{2} \\
a_{r-1}<:<r, \omega \tag{3.9}\\
z_{y}=\sum_{i=1}^{\pi} V_{x i} c_{i}
\end{gather*}
$$

where $c_{1}=\int_{y}^{a_{1}} \pi_{x} d_{x} / \int_{y}^{\infty} n_{x} d_{x}$

$$
\begin{aligned}
& c_{2}=\int_{a_{1}}^{a_{2}} N_{x}^{\prime} c_{x} / \underset{y}{m} n_{x} c_{x} \\
& c_{v}=\int_{m-1}^{\infty} H_{x}^{c} x / \int_{z}^{\infty}: d_{x}^{c} x \\
& \sum_{i=1}^{m} c_{i}=1
\end{aligned}
$$

 Eollowinn cases tinet when the grouth halance estirate in not affected my rortality acellac, or all valuen of "xi are connected offth fig weiftts folle
 negliefly values for \because (especiall: corresmencing to olet ages).

Case (1)

Consicerint the values of kt and rlet - inherent in chanfee in life expectancy fror 30 to $5 n$ years fin rest feriale model life tahles - presented in mable (3.12). Assuming that tiois gain in life exrectancy mas accorelisheत̃ In 20 years - a nlaurihle assunption vith regard the smeed of decline in mortality exmeriencer in sore develoning countries - ?e get:

$$
\begin{aligned}
& F_{x 1}=-\%\left(1-\frac{t}{N}-1.27 \frac{\mathrm{~K}}{\frac{\mathrm{~N}}{\sim}}\right. \\
& x<20 \\
& { }^{407} \times 2=\frac{K t}{T}-1.27 \frac{K}{T} \quad 2 n<x<45 \\
& F_{x 3}=\frac{Y . t}{2}-1.27 \frac{K}{T}-\frac{H 1}{2}(x 3-45)^{2} \quad \text { I5 }<x<6.5 \\
& \because_{x 1}=\frac{K t}{T}-1.27 \frac{K}{T}-E 1 .+(x 4-15)+B 1 \frac{t^{2}}{2} 65<x<w
\end{aligned}
$$

 to $85, \times 3$ is apmroximated as $\frac{45+65}{2}$ for $y<45$ and as $\frac{z+65}{2}$ for $45<y<65$. Actually, hetter ernroxirations for $z y$ ray he achieved, rut since our aim: is to illustrate rounhly the magnitude of y the nrocedure is lent as simple as possitile.

Using the age distrihution of ferale, model west, corresmonding to po 50 and $r=15$ (level 13) - the age diatrihution that should be uged in this case is different - we get the following values of z_{y} as conipared to $\frac{\mathrm{li}}{\mathrm{p}} \mathrm{y}$.
 follovine the vest fifrale rociel life talles patterr

Anp	$\%$	$\because i v$
5	. 2014	.078?
$1 r:$	-ヘ122	. 0365
15	.0.32	. 3305
25	. 0341	.032.4
25	.0010	. 0345
30	. 0033	. 2370
35	. 0024	.cand
40	.0015	. 0441
15	. $0: 203$.0491
5	-.0091F	.0550
5.5	-.005:-	.0051
60	-. $\times 184$. 0776

The neglicjhle values of $z y$ illustrate the lnon Enct that chances in mortality follonin thon west mocel arn bollcurd te affect the stable

Case (2)

Vising tre values of K enc ol fresented in ralle (3.13). Ue get for Cille:

$W_{x 4}=\frac{K t}{T}-1.27 \frac{K}{T}-\frac{3}{2} B 1(\times 4-45)^{2} \quad 45<x<84$
$\because 5=\frac{K t}{T}-1.27 \frac{1}{T}-121(x 5-45)++\frac{t^{2}}{2} D 3 \quad$ R4<x<u

Io sirrilify the calculaticns the rrovious first thren exnressions are assur:ce? to corremmore to anes: r-15, 15-40 and 40-45. Fan lart too expresstons axe mociflpe to:
$V_{x 1}=\frac{K t}{T}-1.27 \frac{\mathrm{~K}}{2}-\frac{\mathrm{J}}{3} \mathrm{~F} 1(\times 1-6.5)^{2} \quad 45<x<\omega$
and $x 5$ is nerlectoci. (The value of $z_{y}, y>85$ joes not exceec . ono3.) $x 4$ fis apmoximated ns: $\frac{45+u}{2}$ for $y<45$, 1 is set arritrare to 85 ane as $\frac{(x+1 .)}{2}$ for $y>45$.
 get the follo:ing valuns of z, as comenced to in y_{y}.

Tonle (3.15) The values of $\%$, anc $\frac{i y}{\mathrm{~F}} \mathrm{y}$ when rnetriity is decilning following Chile nattern from 1920 to 1950

acte	z		$z^{2}-.0032$
5	- 0032	.0377	0
10	.0045	. 0323	. 0013
15	. 0056	. 0390	. 0024
20	. 0053	. Man1	. 2021
25	.0052	- 0 A20	. M20
30	. $\cos 5$. 244 F	. 2023
35	. 0065	. 0471	. 0033
40	. 0078	. 2498	. M4s
45	. 0071	. 0540	-9739
50	- 2090	- 1.2	- concos
55	- \times \% 7	. 0721	- coss
60	.0074	. 0865	.0n4?

From male (3.15), we note that \% or rece frecisely $\left(z_{y}, 0032\right)$ - since a constant. value of z_{y} over all arges cons not affect the estionate of tive slone - are roglicil:le.

Case (3)
The proviour tho ceres Eocureci on situations when z_{z} is relatively srall and thus the estimate js rot affectod. It ray ke of interest to shon the racinfude of z_{y}, hen the ertifrate is affected.

Let us consider the first 10 years of mortality rlecline in Chile; folloving the sare previous nrocecurn ve cet: $x=-.008,1=-.00013$. The netative signs of hott K anc Fi anc the ragnitucle of 1.1 illustrate the extraordinary age pattern of mortality clange, durinc this short pertoc?, as the change is mainly due to declinc in the mortality of widele ace croms associated with an increase of nortality in roth yourg and old age orouns. This tupe of cecline is not ver: cormon in actual situations - it wav he a result of error In the data - and urilleel: to persist for a long rexiod.

Table (3.16) presents the annual channe z ir nore srecific death rate in the first ten years of mortality decline in Crile, Tajwan ane Porturgal.

Table (3.17) shows values of $z y$ as conpared to $H / P y_{y}$ for Chile in 1920 .

Comparinc Table (3.17) and (3.15) ve note that the values of $z y$ are consicierably blgger in mable (3.17) (especially corresponding to old ages). This exnlains the deviation in the estimate of the crude death rate of Chile after 10 years.

Tabic (3.16) rnnual change in arge specific deat! rates in the first ten years

$\begin{gathered} \text { Country } \\ \text { ane } \end{gathered}$	Chile	Taivan	Portuanl
C-	-.0143	-. 175%	-. 726%
1-	.139	-. 245	-. 235
5-	. 02.8	-. 082	-.055
10	-.006	-. 038	-. 021
15-	-. 030	-. .060	-. 022
20-	-. .052	-.096	-.037
25-	-.Cf. 6	-. 129	-. 025
30-	-.03es	-. 265	-. 015
35-	-.03s	-. 183	-.019
4,0	-. 025	-. 16	-.033
45-	-. 0.17	-. 3.75	-.037.
$50-$	-n?p	-. 195	-. ner
55	-. 011	-. 230	-. 0.5
(\%)-	.111	-. 26.7	-.001
$6.5-$. 227	-. 337	-. 103
7シー	. 323	-. 282	-. 182
75-	.506	-. 391	-. 305
87-	.995	-. 566	-. 227

 follewing chile nettern frer lone to legn

y	4	$\because 10$
5	.002	.030
10	.002	.033
15	.023	.034
20	.004	.037
25	.005	.040
$3 n$	$.0 n 7$.062
35	.009	.045
40	.012	.050
65	.017	.056
50	.024	.061
55	.033	.070
60	.033	.053

 तोanilnत "ortalit"

The cijgcunginn un till no\% :ien orilg liffted te juntifusne the deviatier in the ortifate due to declimine rartality lut ne prterwt was racie to morify the method of estimation to allow for tris rertajity cincilne. returlly, if the rattern of decline is relievec to be fairly armonximpted the the assumntions usnd to derive the formulae (3.4) and (3.5) ance if the time since the initiation of the decline is fnown, the formulae are readily general.ized.

For example, if mortality is declining for time t, where $t \geqslant 45+\frac{3}{4}$, then using equation (3.3) and (3.5) we get:
$\frac{N}{P_{y}}=x+\operatorname{CDR} \frac{D_{v}}{P_{y}}-\int_{y}^{\omega}{ }^{n} n_{x} d \log \frac{N_{x}}{H_{x}^{3}} / F_{y}$
and

$$
\begin{aligned}
& \frac{n_{x}}{N_{x}^{5}}=\frac{r_{1}}{r_{s}} \exp \left(-\frac{k}{2} x+\frac{k}{25} x^{2}-1.27 \frac{1:}{5} x\right) \quad 5<x<15 \\
&=\frac{r_{1}}{r_{s}} \exp \left(-\frac{1}{2} x+\frac{K}{2 \pi} x^{2}-1.27 \frac{1}{T} x-\frac{B 1}{6}(x-45)^{3}\right) \\
& 45<x<10
\end{aligned}
$$

$\frac{N}{N_{y}}=r+\operatorname{CDR} \frac{D}{p^{2}}-\frac{1}{y} n_{x} \frac{a \log \frac{x}{n^{3}}}{p^{3}}$
$15<y<\omega$
then,

$$
\begin{align*}
& 5<\because<45 \tag{3.10}
\end{align*}
$$

$$
\begin{aligned}
& 45<y<\omega
\end{aligned}
$$

Thus inntead of a linear erguation of the form: $y=r+C D x_{1}$, we have an equation of the form: $y=a_{0}+C D R x_{2}+a_{2} x_{2}+a_{3} x_{3}$ where: $y=\frac{n y}{p_{y}}$,

$x_{3}=\frac{\int_{1}^{1}(x-45)^{2} x x^{2} \mathrm{~d} x}{P_{y}}$ for $y>45$.

Numerical methods for evaluating x_{2} and x_{3} ray be easily suggested and the death rate entirated using multinle regression.
tiat the acvantage gainod lo introducine tinj ex:nression for simjor ones defondini on the value of $t)$ rax te offset eite to the extra cornlications involvec anf to tiee extra linnileçoce of the duration of mortality decline required anc to tie fact that tion deficioncirs arsociater with actual data (differentidel uncier-ronintration, ecre errors and cieviations fror the thenrctical nettern cf eैecline) are lifel: to aefect this new exnression. Thus, in vies of the robustness of the rixoiti talence estirate, the previnus modification ir not recorrended for actual annlications, unless very siçnificant or atunical (with resnect to the açe rattern of decline) chances in mortality are susrected.

3.3.3 Ji:ntificatien forr the Effect of Fertility Decline

nost. devoloning countrien experienced only a recont fortility chancie, thus the tyne of oxnression that is relevant to our discussion is the one concernec? : \because th short -exfot changes in fertility.

Rion fertility is fixec? in age structure tht changinc in lnvel at a constant annual rate (k), then the nrenortionate are cisatrihution in tre years near $t=r$ wen the fertility clecline brains at that noint giver in Coaln (1972) as:

$$
t<\frac{3 \pi}{4}
$$

$$
\begin{array}{ll}
H_{x}(t)=h(t) n^{-r(t) x-r\left(1-\frac{t}{T}\right)^{x}} 1_{x} & x<t \\
N_{x}(t)=b(t) e^{-r(t) x-k\left(1-\frac{x}{r^{2}}\right)^{t}} 1_{x} & x>t
\end{array}
$$

where:

t: the number of years that fertility has heen docilining
$T:$ mean learetr of generation in the stabla gorulation $N_{x}(t)$: rronortionate agc cistribution at açe x and tire t $h(t):$ rirth rate at time t
$r(t)$: intrinsic rate of growth corresponcing to fertility and mortality of tine
1_{x} : life tahle survivors at ago x rhen $1(n)=1$.
Since:

tiven,

$\frac{N_{y}}{F^{\prime}}=\operatorname{CDR} \frac{D}{V_{y}}-\int_{y}^{\omega}\left(-r(t)+\frac{K t}{T}\right) N_{x} / \int_{y}^{w} N_{x} a_{x}$
finally:

Thus, when fertility is sibject to this snecific tyne of change, the growth balance method is exact for noints correspondirn ton ars older than t, excent of course that the intercept nov donotes $\left(x(t)-\frac{K t}{T}\right.$) vhich is approximptely pouivalont to the intrinsic rate oi grocth hefore fertility chance hegins (at $t=0$).

Since t is small and noints corrosponding to youns agen con't affect the estimate greatly, direct apnlication of the groyth bolence formula on all ages yields good results.

3.3.4 Possible lodifications on the Grotuth Lolance Method to allon for Fertilit" Chanres
 A case that may he theoretically interesting and result in a simple rodification

of Trase metiocd is tiat :hn fertility has heen declining for a long tire. In tids cacn the rramertionate acn distrilutinn as nresentori fy Cnale (1972) is:
$H_{x}(t)=F(t) e^{-\frac{k}{2} x+\frac{k}{2 T} x^{2}-r(t) x} 1_{x}$
thus:

In rractine, ${\underset{Y}{Y}}_{\|}^{\|} N_{x}$ ex ray le annroximated by ri vore:
$P 1_{y}=\sum_{i=}^{w} \bar{x}_{i} \lambda_{i}$
\bar{x}_{i} : mean anc corresmandire to a'gn croun ($1-i+n$)
r_{i} : propoztion in tio arje erour (i-i+n)
 projected for a lons serinc. Tine initial crowth rate was furposely assifned a righ value of 0.05. "ortality uns relc constant corresmonding to level 17 for ferale rodel west in Coale f Seneny (1n(C). Fextility vas declining such tiat ane snecific fertility rate at $(t+1)=$ age snecific fertility rates at time $(t) x e^{-\cap} .1$. The actual death rate and the entimated eeath rate, using the grovith balance method and formula (A) and the estimated death rate using exression (3.12) are nrenented in table (3.18) after 20 perioxs of fextility decline erivivalent to lon yeara.

In another application, sirilar to the previous illustration, but corresponding to high mortality (level 2, model west, forales), a different method of estimation was attemnted. Thus, instead of anslying eçußtion (3.12) directly we used:

Table (3.19) rrse actual and estimated death rate usinc the growth balance met!or and a modified method

veriod	actual leatl: rate	estirated (crowth balance method)	estimated (eruatien 3.1?)
21	23.33	27.10	22. 50
$2 ?$	25.05	29.13	24.27
23	26.84	31.25	26.20
24	28.70	33.19	28.32

$\frac{A v}{n P_{y}^{*}}=\left(r(t)+\frac{K}{2}+\operatorname{cDR} \frac{D_{i}^{*}}{\sum_{y}^{*}}-\frac{K}{T} \frac{P D^{*}}{\Gamma_{y}^{*}}\right.$
(3.13)
where A_{y}, P_{y}^{*} and V_{y}^{*} are as ichentifiec? in eruation (2.4)
$\left.P 1_{y}^{*}=\left(P 1_{y}+P\right]_{y+n}\right) / ?$

This is of course the ernivalent of formula (f) when using the modified equation. The actual chatr rate and the estimated usinत hoth the grouth halance method (formula (A)) and formula (3.13) are tiven in Table (3.19) after 18 reriod of fertility decline equivalent to 80 years.

Table (3.19) The actual and estirated death rate usind the death distribution metliod and a modified riethod

neriod	actual death rate	estimated (Frass)	estimated (equation 3.13)
18	39.87	51.65	41.95
1.9	39.59	50.66	39.42
20	39.46	49.74	39.58
2.1	39.49	49.34	37.21
22	39.68	49.40	37.80

rahle (3.19) (continued)

rerios	actual death rate	cstimater? (Iracs)	estimated (ncuation 3.13)
23	4.cs	43.67	38.75
24	An. 56	50.05	$3 ? .23$
25	41.24	5n. 5.5	Ar:.n5
25	12.27	51.35	62.19
27	43.0r.	52.19	03.61
2.	14.18	53.33	45.27

Wile the entimater raton uring the rodifinc expressicns ere a much better estimate for the actual rinath ratc, it should re ernhosized that the cominationa nf mortality ane fertility, use? in tils illustration, are unvealistic and urfemeible in actual annlicaticns.

THE FFEECT OF MICRATION ON THE CROHTH EALFNCE :ETYOD

4.1 Infroduction

The effect of migration on the anplicability of the growth halance method for mortality potimation is treated here. An adjustmont procedure to allow for the effect of recent miriration is presented and dllustrated usine actual data for Kuraft. folscussion of ths procecure, especially ir onnnection to its data reriuirnmonts, and the general lively effect of micretion is also introducer.

It shoulc re strensed that we are not only interestec in the flow of migrants during a certain pericd hut also in the curulative effect of migration over the past recent history of the country. Even if riaratinn is not significant in terms of the total numbers, it may still affect the are structure due to its age selective nature.

In the following nart, no atteript is riade to differertiate between the effect of internal and international migration since tre sare princinle anplies to elthor case. Thus, the term foreign and home horn does not necessarily apply to different countries rut may denote different regions in the same country.

4. 2 ADJUSTMLITT FROCEDURE FOI THE EFFECT OF PECEINT VIICRATION
 Sunpose we start with a fopulation that follows a stahle model. If this ponulation is surjected to a migration moverent for a certain deriod, then the resulting mopulation at the end of this perind is affected by the effective contribution of imnigration or emigration to the age distribution.

Let G_{x} denote the ponulation aged x at the end of the nifration perind, in case there was no in and out migrants. Let n_{x} denotes the resulting nopulation aced x, affected by in and out migration.

For any age distribution, it was shown that:
$\frac{N_{y}}{P_{y}}=\operatorname{CDH} \frac{D_{v}}{F_{y}}-\frac{\int_{y^{\prime}}^{\omega} n_{x} \cdot d \log \frac{N_{x}}{1_{x}}}{P_{y}}$
(erquation 2.4)
rewriting the previous equation in terms of numbers, instead of pronortions, we get:

$=\frac{q_{y}}{P_{y}}-\frac{\dot{y}^{\frac{1}{j} n_{y}} d \log \frac{C_{x}}{1_{x}} \cdot \frac{n_{x}}{C_{x}}}{P_{y}}$
(4.2)
let $E_{x}=\frac{n}{C_{x}}=\frac{\text { total ponulation aceed } x}{\text { nopulation arter } x \text {, in case of no in and out migrants }}$

Since G_{x} follows a statle form, then:
$\frac{n_{y}}{P_{y}}=\frac{E d_{y}}{p_{y}}-\frac{\int_{y}^{\omega} n_{x} d \log \left(2 e^{-r x} \cdot L_{x}\right)}{p_{y}}$
where B and r denote the number σ° births and rate of growth of the population in case of no in and out micrants.

Differentiating and rearranging (4.3) we get:
$\frac{n_{y}}{p_{y}}+\frac{\int^{\prime} n_{x} a \log E_{x}}{P_{y}}=r+\frac{f\left(\frac{d}{n_{y}}\right.}{y}$
and, finally:
$\frac{n_{y}}{r_{y}}+\frac{\int_{v}^{n} n_{x} \frac{E_{x}^{-}}{E_{x}}}{n_{y}}=r+\frac{d_{y}}{r_{y}}$
where f_{x} is the first derivative of E_{x}.

Thus, to offset the effect of migration, an adfustinent term is acced to the formula. For numerical evaluation of this term the following js suggested:
$\int_{y}^{\omega} n_{x} \frac{E_{x}^{2}}{F_{x}} d x=\sum_{i=1}^{\frac{\omega-v}{n}} \frac{E_{y}+(i-y) m}{E_{y}+(i-y) m}{ }_{y} y+(i-1) m$
where m: length of the are interval.
$A_{y}+(i-1) r^{2}$ age distrinution corrosponding to age grouz $(y+(i-1) r$ to $\mathrm{y}+\mathrm{im}$.
$E_{y}+\left(i-\frac{f}{2}\right)$: the value of E correspendirg to tre are groun $(y+(i-1) m$ to $y+i m\rangle$.
$E^{-} \underline{v}+(i-4) r$ the rate of change of r in the age group and may he annroxirated as $(1 . y+(i+t) m-E y+(i-1 y) r) / 2 m$.

To calculate I_{x}, ve need to know the distribution by ages of the population In case of no in and out rigration.

The population in the case of no in and out migration = natives calculated in the consus + natives of the country studied living in other countries. (4.6)

Actually, the previous expression is a rouch annroximation since the natives calculated in the census are inflated by those who acquire nativity, and the natives living in other countries are deflated hy those who acquire the nativity of other countries. These terre are guite difficult to nstimate. n more exact exprossion, if the data permita, is given as:

The nopulation in case of no in and out migration $=$ natives calculated In the census - natives whose narents are foreign + netives of the country studied living in other countries + foredgners whose nerents are natives of the country studied. (4.7)

4. 3 LLLUSTRATIOIH ON ACTUAI DATR.

f:iquation in kuwit nlays a vital rale. Jt is a country with rich oil resources and high standard of living which attracts imigrants. The age structurn of those immigrants has tyoically a concentration around the lahour force range. The clata for kuwait shows that male immigrants constitute 583 of the total male nopulation in 1970 and 69\% of aces $15-45$.

Fertility of Kuwait natives seems to have remained at a relatively high level. :lortality has been reduced as a result of the develonment activities connected with the discovery of oil in Kuwat.

Kuwait is an ideal case for the application of the micration adjustrent procedure; data on Kwaiti and non-Yuwaiti nopulatior as well as deaths are available ly arge and given in table (4.1).

Table (4.1) Age and death distribution of Kumati and non-Kuwaiti males, 1970 census.

açe	population	deaths		
	Kuwaiti	non Kuwaiti	Kuwaiti	non Kuwaiti
$0-$	34073	35109	444	411
$5-$	30607	25076	44	24
$10-$	23709	14633	21	11

age	nopulation		deaths ${ }^{1}$	
	Kuwaiti	$\begin{aligned} & \text { non } \\ & \text { kuwaiti } \end{aligned}$	Yuwati	$\mathrm{Kon}_{\text {Kuraiti }}$
15-	166.15	16237	14	12
20-	138.38	28237	14	28
25-	11887	35473	21	54
30-	9924	30286	26	61
35-	8859	23883	28	55
40-	6.117	15643	25	52
45-	5199	9398	27	48
50-	4606	5243	45	63
55-	2525	2352	37	33
for	2584	1511	63	43
$65-$	1.418	563	65	23
70-	1743	398	78	32
75-	6,96	154	57	11
80-	628	96	54	13
85+	386	67	74	16
Rotal	175514	241359	1138	1002

${ }^{1}$ Deaths: average of the three years (1969, 1970, 1971).

For a country like Kuvait, out miçration may be assumed negligible, thus:
$E_{x} \simeq$ nonulation aged x natives aged x calculnted in the census - natives ag̣ed x whose narents are foreign.

Suppose we approximate E_{x} as:
$E_{x}=$ ponulation aged x
Kuwaiti population aged x.

Of course, Fuwaiti nonulation include all pexsons who chanced their nationality and consequently the values calculated for E_{x} are not exoct. Nevertheless, they may still serve our purnose.

The details of calculating the rdjustment term and the acljusted set of nolnts are civen ir talole (4.2). fraph (4.1) represents the sets of points $\left(\frac{n^{n}}{n_{y}}, \frac{d y}{n_{y}}\right)$ and the odjusted sets of mints corresponding to total monulation. The sets of points corresponding to the data of Yuwaiti only are also shown In the same graph.

The improverent of the adjuster? set and its similarity with the set corresponding to Kuriatit only is auite noticeable.

Table (4.2) The details of calculating the acjuster sets of points to allow for rrigration.

age (y)	n	n	d^{\prime}	I	E.9+?. 5	$5: 9+?$	$N_{V} \cdot \frac{E+2.5}{E+2.5}$
0	69182				2.0304		
5	55683	12486.5	12.85	350605	1.8192	-. 0413	-1264.1314
10	38342	3402.5	1217	295012	1.6171	. 155	374.6234
15	32852	7119.4	11.85	256670	1.9772	.1453	2414.2199
20	41875	7472.7	1159	223818	3.0704	. 2006	2735.8406
25	47360	8923.5	1117	181943	3.9841	.0981	1166.1394
30	40210	8757.0	1042	134583	4.0517	-. 02.88	- 285.8178
35	32742	7295.2	955	94369	3.6959	-. 0614	- 543.9429
45	22060	5480.2	872	61627	3.4377	-. 0888	- 569.8368
45	14597	3665.7	795	39567	2.3076	-. 1299	-675.3634
50	9849	2444.6	720	24960	2.1382	-. 08876	- 403.5040
55	4877	1472.6	612	15121	1.9314	-. 0553	- 139.6386
60	4095	897.2	542	102.44	1.5847	-. 0534	- 137.9901

Graph (1.1) The peints corressurdi.g to total ixpulaticr nf furint, the rcjustcc solita r-A tie poistr= correrforfifen to Fu:dati orly

	${ }^{\text {A }} \mathrm{y}$	${ }^{n} y$	${ }^{\text {d }}$	r_{y}	$\mathrm{F}_{\mathrm{y}} \mathrm{t} 2.5{ }^{1}$	$\mathrm{F}_{\mathrm{Y}+2.5}^{-}{ }^{1}$	$\mathrm{A}^{\mathrm{y}} \cdot \frac{\mathrm{E}_{\mathrm{v}+2.5}^{2}}{\mathrm{E}_{y+2.5}}$
65	1981	607.6	430	6149	1.3970	-. 0356	- 50.4821
70	2141	412.2	335	4158	1.2283	-. 0175	- 30.5035
75	850	299.1	225	2027	1.2212	-. 0075	- 5.2202
80	724	157.4	157	1177	1.1528	-.0204	- 12.8119
85	453				1.0508*	-. 0136	- 5.8629

*The values of F_{x} corresnonding to ages 85 and 90 are roughly anproximated as: 1.0848 and 1.0168 rospectively.

$$
\left.\begin{array}{rlrl}
\text { (1) } & E_{y+2.5}^{*} & =\left(E_{y+7.5}-E_{y-2.5}\right) / 10 & y
\end{array}\right)=5,10, \ldots 75 .
$$

Table 4.2 (continued)

$\begin{aligned} & \text { age } \\ & (\mathrm{y}) \end{aligned}$	$\sum_{y}^{4} A_{y} \cdot \frac{E_{y+2.5}^{2}}{E_{Y+2.5}}$	The adjusted noints $\left(n_{y}+\Sigma\right) / r_{y}$	$\mathrm{d}_{Y} / \mathrm{P}_{Y}$
5	2565.7177	. 0429	. on3r
10	3829.8491	. 0148	. 0041
15	3455.2257	. 0411	. OnAF.
20	1041.0058	. 0380	. 0051
25	-1694.8348	. 0397	.0061
30	-2860.9742	. 0438	. 0277
35	-2575. $=564$.0500	. 0101
40	-2031.2135	. 0559	. 0141
45	-1461.3767	. 0557	. 0200
50	- 786.0133	. 0664	. 0288
55	- 382.5093	. 0720	. 0404
60	- 242.8707	. 0638	. 0529
65	- 104.8806	. 0817	. 0699

$\begin{aligned} & \text { ane } \\ & (y) \end{aligned}$	$\sum_{y}^{\omega} x_{y} \cdot \frac{E_{v+2.5}^{2}}{E_{y+2.5}}$	The adjusted noints $\left(n_{y}+\Gamma .\right) / r_{y}$	$d_{y} /{ }^{\prime}{ }^{\prime}$
70	- 54.3905	. 0858	. 2803
75	- 23.8950	. 1358	. 1110
80	- 18.6748		

4.4 DISCUSSION OF TEE ADJISST::EMT PROCEDURE:

For a country where in miaration plays a cominant role, the data needed to apmly the adjustrient procedure may generally he estimated elther directly or through indirect calculations.

The same may not te true when out migration plays an irnortant role, since the procedure recuires the knowledge of native rersons living in All other countries by age froun. This mresumoses detailen statistics on foreign korn not only classified by age but also by country of origin. Actually, when the statistics are available one ray reduce the analysis to practical promortions by considering only the princinal country or countries receiving emigrants from the country urder stucy.

The effect of urhanization may be taken into account by anplying the balance growth method to the country as a whele and the adjusted procedure to the cities. The rural rates may then be estimatec using resicual prncerlures.

Another difficulty associated with this nroceclure is in estimating the native number of each agte whose parents are foreign. Fin did not go further than the direct parents as it may he true that fif migration has been going on for a long enough period vith appronyiate constancy the population is likely to stabilize.

In a country where in migration is dominant and recent, neglecting the natives of foreign born parents will deflate E_{x}. This deflation decreases with age. Thus $E x$ is deflated and E_{x} is inflated, which results in a higger adjustrent term than $1 s$ rectuired for younc ages.

Simjlarly, in a country where out miotation is more dominant, E_{x} is inflated for young ages and E_{x} deflated, which results in amaller adjustment than is reçujred for young ages.

Actually, kirths to foreign horn parents below certain young ages are not important in the application as they hardly affect the slone. In addition, the rate of change in Σ_{x} for the second generation is likely to be much smaller than the chance for the first generation.

It should ke pointed out that since the term involved in the equation is a relative rate of change $\left(\frac{E_{x}^{*}}{E_{x}}\right)$, it may not be sensitive to errors wlich are not differential by age.

4.5 THE GENEPAL LIKELY EFFECT OF I:IGRATIOI

The effect of migration on the estimate of the death rate using Brass method depends on the type of the net movement, the magnitude of this movement, the age structure of migrants and the period since the movement started. An indication of the rlirection of this rias - according to the net movement $=$ is given assuming that the age structure of migrants is mainly of lahour force ages.

Using Graph (4.1) - corxesponding to the application on Kuwait - we note that the unadjusted data have a bulge corresponding to middle ages. This bulge tends to increase the slope and results in higher estimate of the death rate. If this bulge is due to in migration - as suspected - ore
expects that the effect of out migration is to form a gap corresponding to middle ages, which in turn results in a lower estimate of the death rate.

To confirm the nrevious observation, $\because e$ nrojected a stable age distritution for 50 yoars, durino which age snecific mortality and fertility rates were held constant, with a contiruous out-flow of rigrants. For the sake of simplicity, a fixed mraportion of the projected nopulation in each age groun was assumed to erigrate at the end of each profection interval, 5 year time interval in this casc. These pronortions are riven in Tahle (4.3). Brass method of estiration was then applied to tre projected distribution and the set of points $\left(\frac{v}{p_{y}}, \frac{D}{\Gamma_{y}}\right)$ nlotted.

In Table (4.1), the estimated and actual death rates are given at the end of each nrojection period. In Granh (4.2), the lines passing through the corresponding sets of noints for eacl: nerica are nloted. The estirated death rate is loss than the actual rate and the plot form a gan corresponding to middle ages.

Table (4.3) The nroportions assumed to emigrate at the end of each projection perina

age	proportions
$0-$.011
$5-$.03
$10-$.05
$15-$.10
$20-$.20
$25-$.21
$30-$.17
$35-$.14
$40-$.10

Projection period (3)

profection neriod (5)

Projection neriod (6)

Projection neviod (7)

Projection perind (9)

(UT) puFiou uşitoutiuls
lable (1.3), continued.

age	promortions
$45-$.08
$50-$.05
$55-$.03
$60-$.02
$65-$.01
$70+$	0.0

Table (4.4) The actual and estimated crude death rate at the end of each projection pericd

perind	time elapsed in years	actual con	estimated*CD?
2	10	.01417	.01401
3	15	. 01444	.014]?
4	20	.01485	.01422
5	25	. 01525	.01403
6	30	.01550	.01331
7	35	.01550	.01223
8	40	.01532	.01095
9	45	.01504	.00974
10	50	. 01466	. 00895

*The method of fit used is the least square.

For further illustration of the effect of out migration, the actual data for Puerto Rico (1960) given in Keyfitz flieger (1968) is used. The reason for choosing Puerto Rico is that the age composition of its population has been significantly affected by mass emigration to the United States; for example while 617,056 persons living in the United

States in 1960 kere born in Puerto Rico, only 50,910 nersons living in Puerto kico were bern in the united states.

The recorded crude birth rates for Puerte Rico during 1900 tn 1940 show an increasing trend hut this - as mointed nut by vazovez, J.L. (196E) is only तue te improvements in hirth refistration. Tris is illustrated in Table (4.5).

Table (4.5)* Peported and corrected hirth rates for Puerto Rico 1900-1940

perich	reported birth rate	corrected wirtr ratel
$1300-1900$	31.1	47.1
$1910-1919$	36.4	46.1
$1920-1929$	37.3	44.9
$1930-1939$	38.8	44.6

*source: reproduced from Vazquez, J. 1. (l9f8), table 2.
lreported birth rates coryected for underrecistration.

Very little change nccurred in the age composition of the population of Fuerto Rico during this neriod, so it may be concluded that the fertility rates remained more or less stationary during 1900-1940.

After 1940 , more significant changes occurred in the rirth rates as shown in Table (4. B). The birth rates declined more than 25 in 20 years. Of course, the age commosition of the nonulation of Puerto Rico has been strongly affected by emigration to the United states; the 1960 enumerated population was 30% less than the expected nopulation in the absence of migration. ihen changes in age structure are taken into account, the aqe adjusted birth rates - the 1960 ponulation is used an standard - still
show the same picture of declining fertility - thourh to a lesser extent as illustrated in Table (4. 6).

Tarle (4.6)* Crude hirth rates and age standardized birth ratem Puerto Rico 1910-196n

year	cride riyth rates	age stancardized hirth rates
1940	44.8	40.0
1950	30.1	37.0
1960	33.5	33.5

*snurce: reproduced, Vazquez, J.I.. (1968), tahle 9.

Thus, Puerto Rico devietes from stahility. since the decline in fertility
is recent and the emigration so strong, we expect that thought the sets of points $\left(\frac{n}{n}, \frac{d y}{n}\right)$ may deviate from linearity - the cap corresnoncing to middle ages will still he noticeable. Granh (4.3) illurtrates this ano.

$i^{120} i^{140} i^{160} i^{180}$

EFFECT OF TI:E IREOUALIqY OF THF PROPORTION:TE

UNDER RFGISIRATION OI: TGE GRDITH BALANICE METEOD

5.1 INTRODUCTIOI

The growth ralance rethod of estimation reruires that the nronortionate uncler-reristration of deatis is erimal at all aree. risis assumption is more likely to ancly over the riddile age ranfo than Eor very young agen. Thus, this method is in rractice used for estimatirg rortality of aciult aṇes onlu.

It is our purnose in this chapter to extend the rethod to cover cases when there are tion different nromotionate uncerrenistration. This is ideally suitahle to allow for the different underrenistration of young ages since as nointer out hy carrinc (1958): 'a sukstantial pronortinn of infants die shortly after birtr. For a varicty of reascns and in a variety of ways this ray leac to a nronortion of infant coaths leing treated differently from deaths at older ages, both as regares disnosal of the remains and recording the event. Thus data which divn adequate mresnntation to deaths at older ages, or at lwast enual deficiencies at all these acres, are liahle to suffer from excessive deficiencies in irfant deaths'.

In princinle, of course, the extension of the rechod may anoly to other cases, such as the differential uncierregistration of old age deathe. The pronortionate underregistration of old ages is less or more than the general underregistration according to the significance and role of the older generation in different cultures.

In the following sections we will show that the difference in underreqistration may be fully accounted for once the age groups suffering unequal under-renort are located. Several nurerical anplications are illustrated. The effect on the graph due to the inequality of underregistration is also discussedi this may serve in locating the age groups sufferinc̣ from different registration. A discussion of the advantaçen and
disadvantages of the method is presented. Finally, illustrations of the magnitucle of the error in the estimate - due to differential underregistration - according to several combinations of underregistration and shapes of age distribution are given.

5.2 A METHOD FOR ESTIHATIAC THE ACTUAL DERTII RATE FHFN THE PRODORTIONATE ULDER-RIFORT IS NOT ESUAL

The general case when the first m aqe groups suffer from nronortionate underregistration ou while age qroups from m to M suffer from underregistration u is treated here.

In case $0>1$, underregistration for younç age groups 1 to m in higher than for age groups m to H. If $0<1$ the opposite occurs.

- The first step is to calculnte u:
using the renorted number of deaths and ponulation for ages over m and the relation:
$\frac{n_{y}}{F_{y}}=r+\left(\frac{1}{1-u}\right) \frac{d_{y}^{r}}{F_{y}} \quad y>m$
or,
using the reported proportions of deaths and ponulation for ages over m and the relations
$\frac{N_{y}}{P_{y}}=r+\operatorname{CDR}^{-} \cdot \frac{D^{r}}{P_{y}} \quad y>m$
$u=1-\frac{\text { total rerorted deaths }}{\text { total porulation }\left(C D R^{2}\right)}$
where,
n_{y}, n_{y}, I, N_{y} and P_{y} are as defined before. d_{y}^{r} and D_{y}^{r} denote the numher and proportion of reported deaths over age y resnectively.
- The second step is to estimate using the following relations:

$0=\frac{v_{y}}{u}+\left(D_{y}^{r}-D_{m}^{r}\right) \frac{1}{\left(D_{y}^{r}-D_{m}^{r}+v_{y}\right)} \quad y<m$
- Finally the actual death rate is equal to:
$C D:=\left(\frac{\text { Remorted deaths from } 1 \text { to } m}{1-0 u}+\frac{\text { Recorted deaths from m to 1! }}{1-u}\right) /$ total ponulatior
or,
$C D R=C D R^{*} / K(u, 0)$
where,
$K(u, \sigma)=1-\frac{u(a-1)}{(1-u)+(1-\Gamma, u) \frac{D_{m}^{r}}{1-D_{m}^{r}}}$

Note that when $0=1$, there is no differential uncer recistration. Then $K(u, 0)=1$ and $C D R=C D R$.

The proof of this method is given in detail in Appendix (A).

5.3 NUMERICAL APPLICATIONS

5.3.1 Annlication (1)

Starting with a stable distribution, model north, mortality level ll, $r=10.0$ corresponding to actual death rate $=22.26$ given in coale \& Demeny (1966). Subjecting the deaths corresponding to age groups from

0 to 20 to under-renort 0.3 , while the deaths correaponding to ages fron 20 to $80+$ are suhjected to under-renort $0.1(0=3, u=.1)$. Assuming the total nomilation 100,000 and the total number of actual deaths 2,226 , the actual and remorted number of deaths and population is presented in tatle (5.1).

The detailed calculations for estinating u are given in Tatle (5.2).
using least square fit, $\frac{1}{1-u}=\frac{\Sigma X Y-\bar{X} \Sigma Y}{\Sigma X^{2}-n \bar{X}^{2}}$
where $x=\frac{d_{y}^{r}}{p_{y}}, \quad y=\frac{n_{y}}{p_{y}}$.
$\frac{1}{1-u}=1.120$, then $u=.107$.

To estirate v_{i}, we need to calculate r and CDR". r is the intercent of the straight line whether using nroportion or numbers.

```
r=}\overline{Y}-1.120,\overline{X}=.00n=.01
```

Table (5.1) The actual and renorted number of population and deaths in case of differential underregistration of deaths

age	Actual data	Reported data deaths	
	2880	487.27	341.09
$1-$	9870	307.63	215.34
$5-$	10950	109.29	76.50
$10-$	10030	51.86	36.30
$15-$	9280	54.98	38.48
$20-$	8520	71.89	64.70
$25-$	7760	69.00	62.10
$30-$	7050	66.78	60.10

age	Actual data	Reportec data deaths	
	6370		61.90
$40-$	5710	74.34	66.91
$45-$	5060	79.69	71.72
$50-$	4400	88.14	79.33
$55-$	3740	97.72	87.94
$60-$	3040	111.52	100.37
$65-$	2320	123.98	111.58
$70-$	1590	130.44	117.39
$75-$	920	113.30	101.97
$80+$	510	119.53	107.58
rotalation	100000	2226.14	1801.29

Taine (5.2) The details of calculating u

$\begin{gathered} \text { age } \\ y \end{gathered}$	number around age y (n_{y})	pop. heyond age y (D_{y})	reported deaths beyond age y $\left(d_{y}^{r}\right)$	$\mathrm{d}_{\mathrm{y}}^{r^{x} / n_{y}}$	
20	1780	56900	1093.377	. 0191	. 031
25	1628	48470	1028.708	. 0212	.033
30	1481	40710	966.741	. 0237	. 036
35	1342	33660	966.647	. 0269	. 039
40	1208	27290	844.732	. 0309	. 044
45	1077	21500	$777.84{ }^{\circ}$. 0360	.049
50	946	16520	706.137	. 0427	. 057
55	814	12120	626.805	.0517	. 067
60	678	8380	538.862	. 0643	. 080
65	536	5340	430.508	. 0821	. 100
70	391	3020	326.931	. 1082	. 129
75	251	1430	209.536	.1465	. 175

CDR $^{*}=\frac{\text { Total renorted deaths }}{\text { Total population }} \frac{1}{1-u}$
$=\frac{1801(1.12)}{100,000}=.020$

The detailed calculations of v_{i} using aqes less than 20 are civer in Table (5.3).

Table (5.3) The detailed calculation of \mathbf{v}_{i}

age	Y_{i}	P_{1}	D_{1}	$x=\frac{Y_{1}-r}{\operatorname{CDR}^{2}} \cdot P_{i}$	$v_{i}=\frac{Y_{1}-r}{C D R R^{r}} \cdot P_{i}-D_{1}^{r}$
5	. 0265	87.25	69.077	71.981	2.904
10	. 0274	76.3	64.837	66.381	1.544
15	. 0291	66.27	62.827	63.287	. 46

To calculate 0 , the following relation is used:
$0=\left\{\frac{v_{i}}{u}+\left(0_{i}^{Y}-D_{m}^{r}\right)\right\} \frac{1}{\left(v_{i}+D_{i}^{r}-D_{m}^{Y}\right)}$
$D_{m}^{r}=D_{20}^{r}=60.697$

0 (using v_{1} and D_{1}^{r} corresponding to age 5$)=\frac{29.04+8.38}{2.904+3.39}$
$=3.31$

0 (using v_{2} and D_{2}^{r} corresponding to age 10) $=3.44$
0 (using v_{3} and D_{3}^{r} corresponding to age 15) $=2.60$

The mean of the previous values is used as an estimate for $0=3.11$
$K(1,0)=1-\frac{u(0-1)}{(1-u)+(1-0 u)} \frac{D_{m}^{x}}{1-D_{m}^{x}}=.892$
and finally,
actual dcath rate $=\frac{C D R^{2}}{K(u, G)}=22.40$

Thus instead of a reported death rate 18.01 ir this rnthoc results in an estimated death rate $=22.40 z$ which $1 s$ quite close to the actual death rate $=22.25^{\circ}{ }^{\circ}$

5.3.2 fumerical Annlication (2)

The principal application of this rethod is to allow for the highest underregistration of very young ages. This application illustrates this case. Starting with a stable arge distrifution, model vest, rales, level 13 , $R=20 . C z$ and $C D B=17.50$ given in Coale s Demen'; (29ה(\%). Surjecting age arouns from 0-4 to under-reprort. 3, while arre 5-80+ are subjected to underrenort. $1(u=.1,0=3)$. Table (5.4) illustrates the actual (stable) and reported are and death distribution.

Table (5.4)

age	stahle Dist.	Renorted Dist.	
	age dist.	death dist.	death dist.
$0-$	3.37	29.62	25.4139
$1-$	11.60	12.32	10.5705
$5-$	12.79	3.04	3.3535
$10-$	11.37	1.95	2.1511
$15-$	10.1	2.56	2.824
$20-$	8.89	3.21	3.541

age	Stalle Dist.	Renorted Dist.	
	ace dist.	deatr dist.	death dist.
$25-$	7.79	3.09	3.4087
$30-$	6.70	3.09	3.4097
$35-$	5.88	3.19	3.519
$40-$	5.04	3.41	3.7617
$45-$	4.27	3.60	3.9713
$50-$	3.55	4.02	4.4346
$55-$	2.86	4.35	4.7985
$60-$	2.20	4.82	5.3171
$65-$	1.59	4.96	5.4715
$70-$	1.03	4.75	5.2399
$75-$.57	3.95	1.3574
$80+$.31	4.04	4.4567

Assuming the total cleatla are 1756 anc total mopulation 100,000 . Then, the total remorten deaths $=1432.6326$ anc the reported death rate $=14.326 \%$ s

Using aqe grouns from 5 to 60, and least squure fit be yet:

```
1
CDR*}=15.76%%\mathrm{ and }x=20.55%
```

Since the life table survivors in single years retween age 0 and 5 and the lirth rate are supplied in Coale a Demeny (1966), we are in a position to estimate N_{O} and N_{1} more nrecisely than it is usually possible. The hirth rate is equivalent to $N_{0}=3.756 \% N_{1}$ is estimated using the stable formula: $N_{1}=$ birth rate. exp(-r). $1_{1} / 1_{0}=3.168 \%$

The detailed calculations for estimating v_{i} is given in Table (5.5).

Talile (5.5)

age	N	$Y_{i}=\frac{\mathrm{N}_{y}}{\mathrm{P}_{Y}}$	P_{i}	$\frac{Y_{i}-.020}{.01576} P_{1}=n_{i}^{C}$	D_{1}^{r}	$v_{i}=D_{i}^{C}-D_{i}^{r}$
0	3.756	. 03756	100	111.421	100	11.421
1	3.158	. 03278	96.63	73.353	74.594	3.774

To calculate 0 :
$0=\left(\frac{v_{i}}{u}+n_{i}^{r}-D_{m}^{r}\right) /\left(v_{i}+D_{i}^{r}-n_{m}^{x}\right)$
$0($ using agge $O)=\frac{114.21+35.9844}{11.421+35.9844}=3.16$
$0($ using age 1$)=\frac{37.74+10.5705}{3.77 f_{2}+10.5705}=3.3 \%$.

Thus, once ${ }^{\prime \prime} y$, x ard $l l$ are estionted accurately, the methor? ferforms very well and a gnod estimate of o is availatile.

It is our purnose not to check the effect of deviations in the value of r and N_{y} on the method.

In the previous calculations the value of x was taken erual to . Da? but the estimate of r was .02055. Using this estimate and reneating the calculations in Table (5.6) we get:
$v_{0}=7.93, v_{1}=.402$
and, 0 (using $\left.v_{0}\right)=2.62$ and $0\left(u s i n g v_{1}\right)=1.32$.

Thus a small change in r affects the value of σ.

In actual anolications, it is unlikely the exact values of Nond are availatle. The ace distrihution for age groun $0-1$ is usually supriled. In case the aqe distribution for ace groun l-5 is not available in single years the [roportion of persons aced 1 needs to be estiriated using more complicated techniques since it is knomn beforehand that the age distribution between $0-5$ does not follow a linear decline. Sunnose the proportions of persons between $\Omega-1$ and $1-2$ are available, then an estimate of persons agea 1 may be taken as: ($1 \mathrm{~T}_{0-}+\mathrm{I}_{1-}$)/2 which is an overestimate of proportions aged 1. An illustration of ti:e effect of overestimating :! 1 on tre entimate of c in this apnlication is giver as follows:

Using the single yoars life takle survivors $\left(l_{1}, 1_{2} \ldots\right)$ the mroportion between age $1-2=$ birth rate $e^{-r(1.5)}\left(1_{1}+1_{2}\right) / 2=3.079$. v_{1} ray he calculatec as:

age	N_{Y}	r_{i}	$\frac{y_{1}-0.020}{.01576} r_{i}=0_{i}^{c}$	D_{i}^{r}	v_{1}
1	3.224	96.63	81.941	71.584	7.357

and finally $0=4.69$.

5.3.3 Numexical Apolication (3)

Erass (1976) applied the growth balance mothod to vital recistration and census statistics for Iraq. It was noticed that the points at higher ages were quite close to linearity; those at younger ages were erratic and displayed a peculiar curvature upwards at the lower end of the graph. Erass suspected different underregistration of deaths at young affes (up to 30 years).

Ignoring the unturn of the lower noints, the estimate of f was reachec? as 1.88 and lised to inflate the reported deathe over the rance for which the correction was taken as applicatle.

To allo: for differential underregistration at younc aces, the sare nrevious adjustrent was extended to ages cver 5. It ras mointed out that since mortality over 5 vas so low, little overall error r"as ennected ky this adjustment. To estirate the deaths corresponcinc tc ages less than 5, tine south set of Coale $\&$ Demeny model life table was Lised. Level 14 rortality was estimated to corresnond to a nopulation with the Irac age distrikution and the adjustec death rates over age 10. The ajjusted cruse death rate For the Irag age distribution was then estimated as $15.5 \approx \varangle$ Erass cormented that this rate is sornewhat lower: than expecter.

Tise acjustment procedure - to allow for the differertial underrenistration is aphlied ufing the same data for Irac. Tahle (5.6) presents the original data for Irag.

Table (5.6) Data for Irart 1960-70, females

age groun	number (thousands)	deaths (thousands)
$0-4$	766.7	2.13
$5-9$	$603 . n$.36
$10-14$	491.2	.34
$15-13$	343.4	.31
$20-29$	531.4	.74
$30-39$	459.2	.87
$40-49$	315.5	.95
$50-59$	227.6	1.02
$60-69$	155.8	3.00

aje group	number (thnusands)	deaths (t?ousands)
$70-70$	75.9	
81 over	$21 . n$	4.76

* remenduced fron Erass (197:), table 6.

Usinct the mints corresponding to ages over 30 :
$\frac{1}{1-u}=1.883 \quad u=.4689$
$C D R^{-}=.0063 \quad r=.0262$

The detailed calculations for estimatinc o are presented in Takle (5.7).

Tarle (5.7) The detailed calculations for estimating o

age (Y) (1)	y_{y}^{x} (2)	(3)	$\frac{m_{y}}{p_{y}-2 / c o n}$ (4)	$v_{y}=(4) \cdot F_{y}-D_{y}^{r}$	0
5	. 8404	.8ก80	2.5873	1.2497	2.02
10	. 8139	. 6567	2.18 .03	. 8017	2.00
15	. 7884	. 5300	2.2634	. 3134	1.91
20	. 7653	. 4480	1.9017	. 2880	1.70

Thus $0 \simeq 2$.

The adjusted death rate, assuming the unciprregistration under acje 30 is twice the underregistration over age $30=20$ \%

In view of the previous discussion and the near constancy of 0 , the adjusted death rate seems much more reasonable than the reporterl rate of 3.35%

Note that, assuming the underregistration over age 5 is the same as the underrecistration over ace 30 , the adjusted death rate $=149 \%$ This is quite close to the estimate provided by brass.
 In Appendix (i) we proved that:
$\frac{N}{P}=r+\cos \cdot \frac{D^{r}}{\frac{y}{P}} \quad y>m$
$\operatorname{CDR}^{2}=\operatorname{CDR} K(u, 0)$
and
$\frac{D_{y}^{r}}{F_{y}}=\frac{D_{y}}{P_{y} \cdot K(1,0)}-v_{y} \quad y<m$
where
$K(u, 0)=1-\frac{u(0-1)^{\sum} \sum_{x=0}^{T} d_{x}}{(1-u) \sum_{x=0}^{i} d_{x}}$
$v_{y}=\frac{u(0-1) \sum_{x=y}^{m} d_{x}}{k(u, 0)(1-u) \sum_{x=0}^{M} d_{x}}$

If $\sigma>1$ (higher under-registration of young ages),
then, $K(u, 0)<1$ and $v_{i}=+v e$.

Thus: CDR^{-}< CDP. and
$\frac{D_{y}^{r}}{P_{y}}$ for $y<m$ is less than: $\frac{\frac{N_{y}}{P_{y}}-r}{C D R^{2}}=\frac{D_{y}}{P_{y} \cdot K(u, o)}$.

If $0<1$. the opposite occurs.

Grapl (5.1) illustrates the effect of this sirinle tyne of differential underrecistration.
"isrepnrting of age, as will he shown in Charster (5), tends to result in sets nf noints that deviate in toth directions of the true line. This type of differcntial under-resistratinn results in a line corresponding to old agos with a different slope than the true line, and a set of moints corresmonding to young ages clevjating to only one side of this reported line.

Graph (5.1) Effect of differential under-registration

(a) higher under-reqistration of young actes

(h) hichor uncer-registration of old açes
x : sets of moints for $y<m$

It is of interest to illustrate the effect of a more conplex type of underregistration on the yranh of the sets of points $\frac{N y}{p}$ and $\frac{D}{P} y$. Let us consider the effect of under-reqistration that is high corresnonding to young ages, decilnes till it reaches its minimum corresponding to midale ages and then increases again till it reaches the same level as young açes. More snecifically, starting vith the sare age and death distribution utilized in application (5.3.1) and subjecting the death distribution to the pronortionate under-registration given in Table (5.8), the resulting noints

Craph (5.2) Effect of differential under registration (more complex tyoe of uncier-registration)

$\frac{\mathrm{N}}{\mathrm{P}_{\mathrm{y}}}$ and $\frac{\mathrm{D}_{v}^{r}}{\mathrm{~F}_{y}}$ are il Jimatrated in graph (5.2) oith the line drawn in case there var no differential under-reristration.

Tahle (5. 8) The proporticnate under-roqistration corresnonding to different age grouns

aqe	promotionate under-recistretion
$0-$.10
$1-$.35
$5-$.30
$10-$.25
$15-$.20
$20-$.15
$25-$.10
$30-$.30
$35-$.10
$40-$.10
$45-$.10
$52-$.15
$55-$.20
$60-$.25
$65-$.25
$70-$.30
$75-$.35
$80+$.40

5.5 DISCUSSION

The method intronuced to estimate the death rate when there are tro different under-registration helps to correct one of the main errors asscciated with the data of developing countries. The several estimates of o supnly a cross check. If the under-registration is the same for all ages, no error is introduced by using this method as owill he equal to 1 as a result of $v=0$.

Also, there is no need to kno:f esactly the ages sufferinc from differtential under-rerjistration. For example, if the researcher assumes a hicgher underregistration under age 5 while tre data suffer from a higher uncer-refistration under acge lonly. Theoretically, the value of o corresnonding to age 1 should equal 1 as a result of $v_{1}=0$, the value of o corresponding to age o will he hirther than 1 tut o sifll te uncer-estimater in this case due to using the rifference $\left(D_{O}^{Y}-D_{5}^{r}\right)$ instend of uring ($D_{o}^{r}-D_{1}^{r}$) in calculating 0 . Using the data in numerical application (5.3.2) where actual CDR $=17.56 \%$ and $C D R^{*}=15.76 \%$ sumpose the researcher assumes that the diEferent underregistration occurs in acte group o-l (in fact it occurs for ages under 5). and that young uncler-rogistration is 3 times as the general under-registration, in this case $K(u, 0)=.932$ and the estimated $C D R=16.244$. The difference Letween 16.244 and 17.56 results from the failure to realize that the differential under-registration occurs under age 5 rather than under age 1.

The magnitude and sic̣n of v_{i} inclicates the degree and tyo of differential under-registration, in case v_{i} crival to zero age groun i suffer from the same general uncer reqistration, the bigger $\left|v_{i}\right|$ the rore different the under-registration of ace croup i from the aeneral under-registration. Fiso, if v_{i} is positive age groun i suffers fron higher under-registration while if v_{i} is negative ade group i suffer from lower under-registration than the general under-registration.

Fron the previous apolications, several disadvartages of the method are pointed sut. First, the estimate of 0 is c!uite sensitive to the values of
 lead to a big difference in the estimate of o and conseguently in the estimate of $K(u, 0)$. Consicierinc the quality of data in developing countries it is quite unlikely that the estimate of $C D R^{*}, r$ and/or N_{y} are precise enough to vicld a very accurate estimate of $K(u, 0)$ Thus, only an approximate estimate of the differential undermegistration is obtained. It has heen
rointed out that (thencetically) the sets of moints $\frac{n y}{P_{y}}, \frac{D_{y}^{x}}{P}$ corresponding to young age grouns ッiti disferent uncer-registration deviate frow tre line straicht*anc thus ray holn to irentify these age crouns. In some nractical application, this icientification nay nrove iffficult.

For practical applications on actual data for develoning countries the following sters are suggested to correct for hicher under-registration of deaths of young nges:

- apoly the crevth binlance retlod startirg iron age 5 on either the nronortions to calculate nep 2 or the numbers to calculate u. Find the missing parameter using the relation:

- calculate io and $N_{1}, H_{0}=$ hirt: zate while $N_{1} \simeq 1$ (nronortion aged $(0-1)+$ proportion açec $(1-2)$. If the hirtr rate is of ountful accuracy we may only depend on $:_{1}$. Calculate v_{0} and $v_{1} ;$ if $-2 \leqslant v_{i} \leqslant 2$ for $i=0$, 1 , then v_{i} is alrost zero and we ray conclude that there is no differsntial under-registration at young afes. The range -2 to 2 is allowed to cover for the deficiencies in the data resulting from açe errors, doviation fro:stability ... etc.
- assure a differential under-registyation under age 5 and calculate o using the relation:
$0=\left\{\frac{v_{1}}{u}+\left(D_{1}^{r}-D_{5}^{r}\right)\right\} /\left(v_{1}+\left(D_{i}^{r}-D_{5}^{r}\right)\right) . \quad 1=1$.

Actually, two tynes of errors are nrohably oresent, first N_{1} is likely to be overestinated resulting in an over-estimate of v_{1} and consequently of 0 on the other land the higher under-reçistration is probably for ages younger than 5 and $\left(D_{1}^{I}-D_{m}^{Y}\right)$ is overestimated resulting in an underestimate
of 0 . Thus the two errors are different in directions and may offset each other.

5.6 MAC:AITLDE: OF THE EPROR UUL TO DIFFLRETVITL URDTR-RLEISTRRAIO:

The value of $k(u, \sigma)$ is not only affected by the magnitude of o and u but alco ky the sl ine of the death djetxibution. To get an idea of the magnitude of the effect of differential under-registration for young ages on the estimate of the crude death rate, values of $\mathcal{K}(u, 0)$ corresponding to different values of 0 and u and different stable age distributions are given in Tatle (5.9).

The stahle distrifutions are Coale \& Demeny (l956) stable distrihutions, model west, $r=15$, makes level 9 and 15 corresnonaing to $C D R 25.48$ and 15.43 and $e_{0} 37.301$ and 51..831.

Tahle (5. 5) Values of $K(u, 0)$ corresponding to soecified values of a and u
level (9) differential under-reaistratior fron age 0-l

u	1	2	3	4	5	6	7	8	9
.1	1	.963	.927	.890	.854	.817	.781	.745	.708
.2	1	.918	.836	.754					
.3	1	.859	.719						
.4	1	.781							
.5	1								
\vdots	\vdots								
.9	1								

differential under-registration from 0-5

| 11 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| .1 | 1 | .947 | .855 | .843 | .790 | .738 | .686 | .634 | .581 |
| .2 | 1 | .982 | .764 | .647 | | | | | |
| .3 | 1 | .798 | .596 | | | | | | |
| .4 | 1 | .686 | | | | | | | |
| .5 | 1 | | | | | | | | |
| \vdots | \vdots | | | | | | | | |
| .9 | 1 | | | | | | | | |

level (15) differential uncer-registration frer ace 0-l

.	1	2	3	4	5	5	7	8	9
.1	1	.975	.951	.927	.903	.878	.854	.830	.806
.2	1	.945	.890	.836					
.3	1	.906	.812						
.4	1	.854							
.5	1								
\vdots	\vdots								
.3	1								

aifferential under-registration from age $0-5$

| .0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| .1 | 1 | .966 | .932 | .898 | .864 | .831 | .797 | .763 | .729 |
| .2 | 1 | .924 | .848 | .772 | | | | | |
| .3 | 1 | .869 | .739 | | | | | | |
| .4 | 1 | .797 | | | | | | | |
| .5 | 1 | | | | | | | | |
| . | \vdots | 1 | | | | | | | |

CRAPPTTR VI
EFEECT OF AGE IISREPORT OM
THE CRO T: BALNICE METI:OD
G. 1 JNTRODUCTION

Ane deta of develonina countries are greatly distorter. They suffer from traditinnal sources of ermor sucin as heaping, rounding and vagueness, also from errors relating to the specific nonulation culturns. Pesnonses recrarcinc certain ares are affected hy the social prastife accorded to that agn or hy laws and practises such as aqe for school attencance, voting, rilitary service anc! marriage.

Age errnxs are not always easy to detect and ray he difficult to measure. Cne source of error in the develoning countries is simply ignorance of age: this makes the nrohlen of detecting likely age errors even more difficult. By araphing the data and comparinc with mathematically sroothed series or other accurate data or stahle models, one may te able to identify certain natterns of age misrencrting. The main danger in annlying this procedure 15 in irmosing an unrealistic model on the deta Rnt thus nistaking inherent features as errors.

Several methods for estimating סernogranhic measures for developinc countries depend on the relation between two age distributions. Age misreport distorts this relation and introduces a bias in the estimate. It is valuable if an indication of the magnitude of this tias can be presented.

Special attention is directed to the effect of age risreporting on the growth balance method of estimation. An advantage of the method is that it is only affected by the net transfer from ore age group to the other so we may disregard the fdentity of individuals and allow for the offsetting effects of reporting into and out of a given age. On the other hand, a disadvantage may be due to the possibility of different errors associated with the statement of age for the deceased and the living which complicates the analysis of the bias introduced by age misreport.
finy nrocedure for calculating the range of this bies makes use of a model of anp error; it is our purmose to introduce a qeneral model for age reporting. The range of likely kias introduced in Brass estimate is shown using simulation rocedure, \because rich allots for a complicated and realistic rodel of age rencrtira. Finally, the frmortant cuestion recardino the effect of graduatinc the data hefore annling erass rethod is dealt vith.

6.2 A PODEI FOR FAEE REPGETING

The two main reasons for age misrenort in develoning countries are ignorance of ade and/or bias asscciated with this age. The persons aged m may ke divicled into two classes; the first includes everyone who knows his age corrcctly while the seconc incluces those ignorant of thoir age. Ihe first claes may be suncivicicc to $a_{1 x}$ ind $a_{2 x}$; where $a_{1 x}$ includes those knowing their age and not hiased in their rerorting of this are, and a $2 x$ those knowing their age and rsased in their report. Similarly, the second class is divided to $a_{3 x}$ and $a_{4 x}$; where $a_{3 x}$ includes those not knowing their age and not hiased, and finally $a_{4 x}$ includes those not knoving their age but biased.

The nodel for age reworting may he given by:

In other words, if a person knows his age and is not hiased against this age or towards a neighbouring age he will state his age correctly. If he is biased the reported açe denends on the kind of bias prevailing. If he
dons not know his açe kut is not biased, he will attennt to state his ace correctly, the deviation between the remorted and actual age is siriply a random crror. Firelly, if a nerson does not know his ace but is hizeed against or towards a certain aso - which is usually in the neightourhond of his actuaj age - he will either avoic or remort this age as his actual age.

Instean of dealing with exact age x we will consider single years acte group x, where x denotes the agn hetween $x-1 /$ and $x+1$.

For a full description of this model, the distrilution of $a_{j x}$ er x_{x} and $E I_{x}$ has to re specified. A discussion of the general characteristics of these distributions Iollovs.

6.2.1 The Distrilution of the Different Grouns

$a_{1 x}$ and $a_{2 x}$ include all those who know their age. Fre younger the are the closer the inciGent of birth and the more likely the age is knovn it is expected that the protability of beirc in groun $a_{2 x}$ and $a_{2 x}$ is a decreasing function of age. For older anes, $a_{1 x}$ and $a_{2 x}$ may be related to the educated percentages in age group x, or ary other indicator of this education available.

Biases against or towards certain ages prevail in different communities accoraing to their specific cultures and social custors. It is more likely that a smaller percentage of the educated are affected ry these customs. In other words, the proportion in $a_{2 x}$ constitute a smaller percentage of group $a_{1 x}$ and $a_{2 x}$ than does the pronortion in $a_{4 x}$ with respect to groun $a_{3 x}$ and $a_{4 x}$.

Apart from the nrevious guidelines, the assignment of values for the probabilities of being in the different groups is nore or less arbitrary.

6.2.2 The Distritution of the Rancom Error

'the general form of the distritution may ton given by

$$
\begin{aligned}
f\left(\Omega r_{x}\right) & =\frac{1}{R_{x}} \frac{\left(0 r_{x}+s_{x}\right)}{\left(s_{x}-g_{x}\right)} & & -s_{x}<d r_{x}<-c \\
& =\frac{1}{R_{x}} & & -c_{x}<e r_{x}<g_{x} \\
& =\frac{1}{n_{x}} \frac{\left(s_{x}-e r_{x}\right)}{\left(s_{x}-G_{x}\right)} & & q_{x}<e r_{x}<s_{x}
\end{aligned}
$$

Where $R_{x}=s_{x}+\sigma_{x}$.
$E\left(e r_{x}\right)=0$ and $\operatorname{var}\left(\operatorname{er}_{x}\right)=\frac{\pi^{2}+s_{x}^{2}}{6}$.

The parameters of the distribution (f_{x}, ${ }^{5} x^{\prime}$) ray be set arbitrary; but thev neen to satisfy the following reifuirements to ke realistic:

- though a person may not ?now his age, there is an unger linit for the s_{x} imposed ky several ractors, such as: apmearance, social status, tyoe of for... etc. For example, a person aneci 40 is unlikely to state ins age as 10. It is more likely that s_{x}, for $x=40$ ranges tetrieen 5 ans 15.
- The older the nerson the higher is the upner limit of lis deviation (the nigher the values of s_{x}).

$$
s_{x} \geqslant s_{7} \quad x \geqslant z
$$

$$
x-s_{x} \geqslant z-s_{z}
$$

$$
\text { and } 2+s_{x} \geqslant 2+s_{z}
$$

for examnle, if the lower limit for a ferson ajer 40 is to state his age as $20\left(s_{10}=20\right)$; it is logical that tre lo:fer limit for a person acfed 50 can not be less than 20 and most probadly it is hioher than 20 .

6.2.3 Distribution of BI

Though there are several tynes of bias prevailing in developing countries, such as: digit preference, concentration of woren in the middle of the renroduction period, overstatement of age for old people... etc.; these biases are basically the same. They show attraction to some ages and avoidance of others. One tyme of bias is illustrated Mere, others will. te discussed later.

Conslone two ages x ard z such thet x in an are wherf there is a bias against and z a hias towaras. Persons agef x may either increase or decrease theix age hy 1 to a years, if this is done lififormally (other matterns of change ray he assured) a nossitile rodel rivy ?e:
$f\left(L I_{X}\right)=\frac{1}{2(a-1)}$
$-A<D I_{x}<-1$
$1<R I_{x}<a$
$\mathrm{E}\left(\mathrm{HI} \mathrm{X}_{\mathrm{x}}\right)=0$
otherwise.

Persons aged around z will refort their aqe as z, thus:

```
\(P_{\mathbf{r}}\left\{B I_{w}=z-w\right\}=1\)
```


6. 3 ESTINATIIF TUF MAGNITUDE OF ERROR IN THF GROMTE ENLANICE ESTIPMTF USIT:G EIMULETTON PROCENUQF:

To estimate the magnitude of crror in the qrowth halance eatimate due to misreport of age, the gencral model presented in section 2 of this chapter
is used. Two cases are considerect, the first when both the age and death distribution are suhjected to the sare tyne of error; the sccond then the error in the death distribution is different from the error in the molation are aistribution.

For each case, ve vill discuss the values assifned to the parancters of the error diatrirutions, the procedurc used in sfrulating the reported age distribution, the results of several computer amplications on different age distributions and the likely effect of age error on Brass estimate of the death rate, aiven the nattern of age error considered.
6.3.1 The Sarie Yind of Error in the Fonulation and Death Distribution 6.3.1.1 Values assinnect to the narameters of the error distribution

- The probabilities of being in different qrouns:
the values of the different probablittes are set arhitrary as follows:

$$
\begin{array}{rlr}
n\left(a_{1 x}+a_{2 x}\right) & =70 \% & x<5 \\
& =50 \% & x>5 \\
p\left(a_{2 x}\right) & =30 \% n\left(a_{1 x}+a_{2 x}\right) \\
p\left(a_{3 x}+a_{4 x}\right) & =30 \% & x<5 \\
& =50 \% & x>5 \\
p\left(a_{4 x}\right) & =40 \% p\left(a_{3 x}+a_{4 x}\right)
\end{array}
$$

Then:
$p\left(a x_{1}\right)=.49$
$p\left(a_{2 x}\right)=.21$
$p\left(a_{3 x}\right)=.18$
$p\left(a_{4 x}\right)=.12$
$p(a)=.35$
$p\left(a_{2 x}\right)=.15$
for $x>5$
$p\left(a_{3 x}\right)=.30$
$p\left(a_{4 x}\right)=.20$

Thus for ages over 5 it is assumed that 65% of the populations are influenced by some kind of error in reporting their ages.

- Bias error:

Types of rias studied under this mindel are twofold. The first, generally described as digit rreference, stovs itsel三 as reaping on diqits terminating with: $0,5,8,2,6$ and $4 ;$ which of course irnly shunning from ages terminating with $3,7,1$ and 9. The second kias that characterizes most develoning countries is a general movement on the age cale; we will consider the rovenent from aqe 11-10 to ages 20-29 (this rovement is clear In ferale age diatributions for African societies) and ti:e moverent from ages 51-5? to ages fir-fy.

Digit prefercnce:
If x is a preferred end digit, persons whese age ends with x states it correctly, unless they are affected by another error. Persons whose ace ends with a digit different from x, states their age correctly or ending with another digit according to the following probabilities.
rovement out of age 1 and 9 are stronger than movement out of 3 and 7 as they are close to one of the most preferred end digits.

If $f(x / y)$ denotes the probability of moving from an age ending in y to the closest age ending in x, the different orobabilities may be given as:

```
f(0/1)=.55
f(1/1)=.20
f(2/1)=.25
f(2/3)=.25
f(3/3)=.35
f(4/3)=.25
f(5/3)=.15
f(6/7) =. . 25
f(7/7)=.35
f(8/7) = . 25
f(5/7)=.30
f(8/9) = . 25
f(9/9) = . 20
f(0/9) = . 55
```

General movement on the age scale
General noverent on the ato ccalo:
A person aged between 11-19 or 51-59 affectad hy this liar will move un the age scale fror 1 to 10 yoars uniformally, thus:

```
F(EI_x = y) = \frac{1}{9}
```

also,
$p\left(R I_{x}=y\right)=\frac{1}{9} \quad 1<y<10$ and $51<x<59$.
where $p\left(1 I_{x}=y\right)$ denotes the probabllity a rerson aged x will acd y years
to his age.
Finglly, a person aged 11-19 or 51-59 is suhjected to either of the
previous biases (digit preference, movenent un the age scale) with equal
probability. Thus, a rardor nuriner decicies first. which the of bias a jerson is suljected th an: another numer reflects the value of tiis bias.

- Rancom error:

The sane randoni orror distrihution introducen in sectinn (2) is used here cxcent for age $n-1$, thus:

$$
\begin{array}{rlrl}
f\left(e r_{x}\right) & =\frac{1}{R_{x}} \frac{\left.e r_{x}+s_{x}\right)}{\left(s_{x}-\sigma_{x}\right)} & & -s_{x}<e r_{x}<-o_{x} \\
& =\frac{1}{R_{x}} & -\tau_{x}<e_{x}<G_{x} & \text { for all } x>1 \\
& =\frac{1}{R_{x}} \frac{\left(r_{x}-e_{x}\right)}{\left(b_{x}-a_{x}\right)} & g_{x}<e r_{x}<s_{x}
\end{array}
$$

$$
r_{x}=s_{x}+g_{x}
$$

$$
\text { for } 0<x<1
$$

$$
f\left(c r_{x}\right)=\frac{1}{R_{x}} \quad-q_{x}<e r_{x}<\tau_{x}
$$

$$
=\frac{\left(s_{x}-e r_{x}\right)}{R_{x}\left(s_{x}-s_{x}\right)} \quad g_{x}<e r_{x}<s_{x}
$$

$$
r_{x}=\frac{s_{x}+3 g x}{2}
$$

The values of the cifferent parareters $\left(q_{x}, s_{x}\right)$ are illustrated in the folloring granh.

Graph (6.0) Distribution of er for different x

age $0-1$

6.3.1.2 The nrocecure used in simulating the renorted age distribution

 In this simulation the reported age is a stochastic variable. It depends on a random number crawn from any of the ciistrifutions specified earlier, accordirg to the groun discussed. For examole, for a person in troup a $3 x$. a rancom number gerneater from the distrilution of er specifies the value of er requireci to calculate the reported are as: the actual age + er $x^{\text {. }}$iethods for directly generating random numbers from farticular distributions are not usually available, rut they exist for generating random number from uniform dietributions. This number may te transforned to the reduired seruence using the relation: $F(e x)=R N$, where $F(e r)$ is the cumulative function of the error distribution and pis is the random nurner drawn from a uniform distrirution (0,1). Once an expression for the inverse cumulative distrihution function is availahle, the error may in earily calculateo.

Starting sith single years age grons, stable morilation anc death distributhon anc usinc re total population of 100,000 ofith the ressignec probarilities for teing in different grouns. The numbers in each single year age group and eaci grous is ohtainer. Fach individual in each aroun is subjected to the approprtate error. The simulated number in each sincle year age croup is summed over all four groups and the renorted dictrihution ohtained in single years. The equivalent 5 yoars age erours are readily calculated and the growth halance metrod is apnlied to hoth stahle and simulated data.

6.3.1.3 ㄹ.esults

Apolying the previous nroceclure twice on three staile distributions corresponding to model west, males with growth rate $x=15$ and mortality level 6, 9 and 12.

The computer results of one application is illustrated in Table (1) of Appendix (b). Graph (6.1) and (6.2) represent the actual and simulated
age distributions in single vears and 5 years are groun respectively.

Graoh (6.3) represents the averace nercentoge frnale age distribution of 30 sets of census or survey data of varlous rfican countries and the stahle moiel fitted to this averaqe. This data are pxtracted from a study of the United lations on age error in African data. (ilnited Nations, 1975).

The similarity betwcen the characteristics of age mis-statements in African countries and in the simulated data is anparent.

Finally, the actual death rate calculated hy dividing the total deaths over the total ponulation - and the estimated death rate - calculated by applytng the frowth balance method on the simulated age distrikutions - are given in Table (6.2).

Table (6.2) Summary of the Results

actual CDR	Peported (simulated)			
	formula (f.)		formula (E)	
	apolication (1)	application (2)	application (1)	annlication (2)
33.25	32.96	37.68	30.36	34.17
25.44	26.88	27.63	25.47	24.94
19.60	21.13	20.25	19.20	18.87

From the previous table, we note that the average deviation in tre estimate of the death rate is within 1 to 2% and the maximum deviation is around 4%.

Graph (6.4) represents the line passing through the points corresponding to actunl death rate 33.85% and the sets of points formed using the simulated data of the first application and both formula (N) and (B).

```
Graph (6.1) The actual and simulated age distrihution in single years
```


aṛe dist.rilutien

Graph (6.4) Effect of age risrenort (sare error in agc and ceath
distribution $D y^{/ F} y$ N
N

$$
D^{\prime} / F^{\prime} y
$$

Formula (A)

6.3.2 Ditferent irror in the Ponulation and Death Distritution

since tre responsibility of renorting the age of the decensed lies with another person, it is more likely that the pronortion who do not know their age is higher in the death distribution than in the oopulation age distribution. The random deviation between the actual age and the reportec arfe is prohably hicher in the death distribution. Fias affecting the population age distrilution is likely to be different fror the wies affecting the death distritution. In the absence of informotion te confirm this, the hias error is lent thm seme for loth the norulation and death aistrihution.

Values assigned to the parameters of the error distribution - which affect the ponulation + is kept as in the rrevious anplication. For the death distrilution, the following values are used.

6.3.2.1 Values assicrner to the warameters of the frror distribution

- The nro'varilitins cf seirg in different crouns:
$p\left(a_{1 x}+a_{2 x}\right)=70 \% \quad x<5$
$=39 \mathrm{x} \quad \mathrm{x}>5$
$p\left(a_{2 x}\right) \quad=30 \% n\left(a_{1 x}+a_{2 x}\right)$
$p\left(a_{3 x}+a_{4 x}\right)=30 \% \quad x<5$
$p\left(a_{4 x}\right)=40 \xi n\left(a_{3 x}+a_{4 x}\right)$
then:
$f\left(a_{1 x}\right)=.49$
$p\left(a_{2 x}\right)=.21$
for $x<5$
$I\left(a_{3 x}\right)=.18$
$p\left(a_{4 x}\right)=.12$
$p\left(a 1 x^{\prime}\right)=.23$
$p\left(a_{2 x}\right)=.09$

```
for: x > 5
```

$p\left(a_{3 x}\right)=.42$.
$n\left(\mathrm{a}_{4 \mathrm{~K}}\right)=.28$

- Hias error

The sanie type of bias considered in the first case is considered here.

- Rancion crror

The same distrihution of random error apnlied in the first case is used here, except that the value of t?e parameter sis increased by 2 for all ages greater or equal 1. Thus, implying a higger random exror.

6.3.2.2 Results

Anplying the nrevious procedure tilice on three atatle distributions corresponcilng to moiel vest, males with groith rate $=15$ anci mortality levels 6 , 9 and 12. Ihr computer results of one appliontior is illustrated in Table (2) of Annendix (B).

The actual death rate - calculated by dividing the total deaths over the total population - and the estimated death rate - calcuiated by applying the growth halance method on the renorted age distributions a are given in Table $(6,4)$.

Table 6.4 Surrary of the Fesults

actual CDR	Reported (simulated)			
	formula (A)		formula (b)	
	application (1)	anolication (2)	apolication (3)	apnlication (4)
33.85	36.54	35.91	32.00	32.00
25.44	24.32	25.74	21.48	22.36
19.69	19.35	19.52	17.67	17.68

Granh (6.5) Effect of ace misrenort (different error in age and

$$
\begin{aligned}
& 3 \\
& \text { (1) }
\end{aligned}
$$

Tanle (6.2) and (6.4) show that - whether the population distrihution and the death distribution stare the same kind of errer or not - the average deviation in lirass estimate, uncier our model of age reporting, is within 1 to 2\% and the maximur deviation arounc 4%

Graph (0.5) renresents the line nassing through the points corresponding to actual death rate 33.85% and tio sets of mints formed using the sirulated ciata of the first aprlication and hoth formula (A) and (B).

6. 4 FPFECF OF GPADUAMTON ON TJE CПO: TY FNMANCE ESTIFATE

Several methols are avallakile for graduating ade distrihutions to make them conform to certain patterns; on the assurnelon that the deviatinns from these natterns are duc to error. Any attempt for grafuation must he precceded by a detailed analysis of the historical demographic hackaround of the population under study, so that peculiarities of the data which have historical foundations are not treated as error.

The growtl: ralance method of estiration depends on the relation hetween the nopulation and the death distribution. Age misrenortirg affects this relation. Cxaduation max helo to offset the kias-caused by age misrepnrting In the growth balance estimate. On the other hanc. it is possinle that graduation distorts the undexlying relation retween tre population and the death distrihution. It is important to know if sroothing the data results In an improvement of the estimate in general or if it is a source of a further bias.

The previous question ma; be easily answered by considering the simulated data - resulting from several computer mpolicationa of the previous model and mpplying the growth halance method of estimation on this data firat and on the data after graduation. A comparison hetween the actual death rate, the entimated rate using the simulated data and the estimated uning
the graclunted data nrovilies the ansver.

Since the data to ke nraduated nre hypothetical, there is no historical Eactors requiring snfcial attention and groduation becomes a simnje exercise. Conhisticated technirjues of graduation are more anmopriate to annlication on data of hinis ruality and thus t:o of the simnler methods of graduation are used tere; rainly: Muadratic graduation and another technique deviser ty Hrass. First, a trinf account of these rethods is given, then the results are irtroduced in Table (6.5).

- Duadratic graduation

Excent at very younc or old ares, it is assumed that the data is a quadratic function over a lirited ane range. The data reruired is the nuriters in three consecutive age groups of lennth 10 each. Thref sets of coefficients are provided, to merrit snlits of the youncest, micide and oldest of the three groups into five yoar groups. For oach set, three coefficients are given. The number of persons in the first, middle and lost of the age qrouns respectively arc multinlied by these coefiicients and the resulting proctucts are finally added to construct the first five year açe froup, the second Group is reached ry substraction. 'I'he midde groun is chosen as the one to split whenever this is possifle.

Table (6.5)* Nạe snlitting coefficionts
coefficient to calculate the nopulation from the younger side of an age groun to the middle of the age group given three consecutive age grouns of equal length

to calculate part of the								
younqest age group coefficients of			midelle age croup coefficients of			oldest age rroup , coefficient.s of		
youncest age groun	```middle age group```	oldest age sroun	youncest age grou!	midcle age group	oldest age group	youngest age group	middle age group	oldest age aroup
. 6875	-. 25	. 0625	. 0625	5	-.0625	-. OG25	. 25	.3125
sources Corrier \& Eiohcraft (1971)								

- frass technique for gracination:

The proportions ielow various nges are calculated, the logits of these proportions are assumen to form a straight line when nlotted against the logits of the mronortions under the same ages of an anmonriate reference ponulation. nnce a line if fitten to the data, the fitted nointr on this line corresmonda to the logit of the rraduater data. Fy reversing the logits, the pronertion under any arge is oltained and the graduated prosortione in ago frouns thay te reachnef $\because \because$ surstraction. The reference ponulation ured is Firass stancarr? life tahle (Irass, la7l).

Table (5.6$)$ Lffect of oraduation on the estirnte of tre crude deatr rate

the method of fit used is least sciuare using 15 age grouns.

From takie $(6,6)$ it. is clear that graduation does not always improve the estimate and is likrly to distort it consiclerably.

It may be argued that the use of frass standard as our reference population
is one of the reasons for this distortion, since the actual data correspond
to a stable population affected by west mortality pattern. Table (6.7)
presents the actual stable ponulation anc deat? distributions with the simulatel distributions (affected by are error) and also, the gracunted data using the stable distributions as the reference population. rrough, in this case the craduetion does imnrove the simuleted data, the crude death rate calculatod using the graidatod data and Erass method is still distorted as illustrated in Table (6.8). Thus graduation is not recor-mended EcEore anolying Erass method for ertimating rortality.

Table (6.7) The stable, simulated and graduated ropulation and death distritutions

age	stable		sirulated		greciuated	
	population	deatrs	sopliation	dcaths	statle distribution	
					nopulatjon	ceaths
0	13.63	39.1.1	14.15	$3 n .28$	18.15	39.42
5-	11.37	2.37	$11 . ?$	2.82	11.61	2.81
10-	10.78	1. 130	9.2	1.72	10.39	1.85
15-	9.3	2. 1.5	8.62	2.6	$\bigcirc .41$	2.1
20-	8.82	3.14	11.27	3.10	8.49	3.07
25-	7.89	3.10	8.31	3.14	7.65	3.03
30-	7.02	3.17	7.29	3.07	6.88	3.10
35-	6.21	3.33	5.96	3.48	6.14	3.26
40-	5.43	3.62	5.56	4.72	5.46	3.53
45-	4.68	3.35	4.39	3.44	4.78	3.77
50-	3.05	4. 33	4.01	5.04	4.11	4.26
55-	3.24	4.70	3.07	4.45	3.43	4.62
60-	2.53	5.24	2.5	5.09	2.74	5.20
65-	1.85	5.41	1.78	4.59	2.05	5.39
70-	1.21	5.18	1.24	4.6.2	1.38 *	5.24
75-	.67	4.32	.71	3.89	.79	4.40
80-	. 36	4.30	.65	5.46	. 45	4.55

Table (6.9$)$ Actual and estimated death rate using Erass method

actual	Lstimated*			
		statin data	simulateci	graduated
	formula (A	12.91	18.65	22.38
	formula (E)	19.21	17.60	22.02

*rethod of fit, least scuare usinc 15 age troups

THE IFCT PMTIIMD OF FIT

7.1 IEMROLUCTIM:

Several rethods are availiwle for fitting strairkt lines. ohese methods diffar not only in their underlyine assumptions but also in the effort and time they renuire. It is our nurmse to discuss scme of these rethods anc suggest which $j s$ likol: to yfeld a surerior ertimate of the death rate in most cases.

The prohlem of fitting straight lines has been treated by many authors; the procedure suggested depencls on the priori assunntions of the distribution law of error and whether one or koth variables are suhject to error and also on the criteria used for deternining the hest fit. Releting these assumotions to our special application is not atternted since our underlying distribution of error is not clear due to the many different combinations of factors likely to affect the rclation between $\frac{N_{y}}{P_{y}}$ ani $\frac{D_{y}}{P_{y}}$. Thus, though the theoretical kasis for anolying any of these methods may be questionahle, the justification for suggesting them is simply the accuracy of the estimate they provide.

The methoris discussed in this part are by no means exhaustive but they renresent a selection of the more farious ones:

1. :ials method.
2. Partlett method.
3. Ireast-souare method.
4. Vieighted least-square method.
5. Anscombe nethod.
6. Biweight regression method (Tukey).

After a brief presentation of these methoas, numerical applications on several types of data are given and the best method suggested and discussed.

7.2 BPIEF PRESENTATIOA OE TUF RUVHODS

7.2.1 Wal flethod

Let us consider two sets of randor variables: $x_{1}, x_{2}, x_{3}, \ldots x_{11}$; $v_{1}, Y_{2}, Y_{3}, \ldots Y_{t}$ such that tre relation hetwren tre true values is aiven by: $Y=$ intercent + slone X.

Gald deals with the case when both varfables X and Y are subject to errors. Under the assumptions that the errors in the x variables have the same distribution and are uncorrelated, the errors in the Y variahles have the san:e distribution and are uncorrclated, and also, the errors in the x and y are uncorrelatnd; a consistent estimate of the slone is given by dividing the data into tio groups and drawing a line through the averages of these two groups, tius:

where H is the total number of ohservations andi m is close to $\frac{N}{2}$.
$\hat{\text { intercopt }}=\overline{\mathbf{Y}}-\hat{\text { lone }} \overline{\mathbf{X}}$
where $\bar{Y}=\frac{\sum_{i=1}^{M} Y_{i}}{M}$ and $\bar{X}=\frac{\sum_{i=1}^{M} x_{i}}{M}$

7.2.2 Eartlett Method

Bartlett method is a modification of hald's method with the same underlying assumptions. This modification appears in the use of three groups instead of two for estimating the slope. Thus, the number of observations M is divided into three groups - such that the equal number K 2 in the two extreme groups is chosen as near $\frac{M}{3}$ as possible - and the estimate of the
slone aiven by:

n $へ$
intercept $=\bar{\gamma}-$ slone \bar{x}.

7.2.3 Least-feruare fethon

Let us consider the case when: $y_{i}=$ intercent + slone $x_{i}+Z_{i}$. The leant square method minimizes the sur: of scuares of deviations of the observed Y fron the estimateci $y\left(\sum_{i}\left(y_{1}-i n t e r c e n t-s l n o e x_{i}\right)^{2}\right)$. mhe metrod is appromrtate when the deviation law l:as a spmetrical form and when it is assumed that tive scatter of the observations about the recression curve Is tion sanie at ajl -rinte.

Tl:e assurntion of norrality of tin ervor - urually arscciated with this method - is only recuired winen confidence lipits and tests of significance aro usec.
$\hat{\operatorname{siode}}=\frac{\sum_{i=1}^{n}\left(y_{1}-\bar{X}\right)(x-\bar{x})}{\Gamma(x-\bar{X})^{2}}$
$\hat{\text { intercept }}=\bar{Y}-\hat{\operatorname{siope}} \bar{X}$
$\dot{\bar{Y}}=\frac{\Sigma y_{1}}{v}, \bar{X}=\frac{\Sigma x_{1}}{M}$.

7.2.4 Weirhted Least-Scuare :!ethod

For casen when the scatter of error is different for different points: in other words, when the variances of the y_{1} satisfy the relationahini
$\sigma_{i}^{2}=\sigma^{2} / V_{i} \quad i=1,2, \ldots!$

Tre estimate of the slone that minimizes the weighted sum of sçuares is calculated as:
$\hat{\sin }=\frac{r v_{i}\left(x_{i}-\bar{Y}\right)\left(\varkappa_{i}-\bar{Y}\right)}{\Sigma v_{i}\left(x_{i}-\overline{y_{i}}\right)^{2}}$
\uparrow
intercept $=\bar{Y}-$ slope \bar{X}
where $\overline{\mathrm{X}}$ and $\overline{\mathrm{Y}}$ denote tlie weighted means, i.e.:
$\overline{\mathrm{Y}}=\frac{\Gamma \cdot v_{i} y_{i}}{\Sigma \cdot v_{i}}$ and $\bar{x}=\frac{\Sigma v_{i} x_{i}}{\Sigma v_{i}}$
$v_{i} \alpha \frac{1}{\sigma_{i}}$.

7.2.5 Anscorbe jetricd

This metion has the sare principle as the weighted least square. It deals with the situation when the dietrirution of error is riore skew than symetrical (with the same dispersion). It allows aiso for the possibility that sore errors in the observations may be due to a nistake, which results in some points that ought to be neglected (since their variarility are different from the uncierlying variahility of the phenomena). Thus, this method modifies the least square procedure to allow for a lone tailed distrifution of error of good observations and for the possible occurrence of bad orservations.

The objective function minimized by Anscombe is:
$\Sigma_{1}\left(y_{1}-u_{i}^{\prime}\right)^{2}+\Sigma_{2} x_{1}\left(2\left|y_{1}-u_{i}^{\prime}\right|-k_{1}\right)+\Sigma_{3} k_{1}\left(2 K_{2}-k_{1}\right)$.
where: $u_{i}=i n t e r c e n t+\operatorname{slone} x_{i}, K_{1}$ and r_{2} are chosen numbers, Σ_{1} denotes surmation over the values of i such that $\left|y_{1}-u_{i}\right| \leqslant K_{1}, r_{2}$ denotes summation over the values of i such that $K_{1} \leqslant\left|Y_{i}-u_{i}\right| \leqslant k_{2}, r_{3}$ denotes sumation over the renaining values such that $\left|y_{i}-u_{i}\right|>k_{2}$.

In other words, $\because=$ rinimize the weiçrted sum of sruares:

โ. $V_{i}\left(3_{i}-u_{i}\right)^{2}$, where the weights satisfy:

$$
v_{i}=1 \quad 1 f\left|y_{i}-\hat{u}_{i}\right| \leqslant x_{1}
$$

$$
v_{i}=k_{1} /\left|\xi_{i}-\hat{u}_{i}\right| \quad i \tilde{k_{1}}<\left|y_{1}-\hat{u}_{i}\right|<k_{2}
$$

$$
v_{i}=0 \quad \text { if }\left|y_{i}-\hat{u}_{i}\right|>r_{2}
$$

where $\hat{u}_{i}=\hat{i n t e r c e p t}+\hat{\operatorname{siore}} \hat{x}_{i}$.

Values of Y_{1} may le crosen in the neiahbourrood of twice the standard deviation of the error distribution and K_{2} around 3 or A times as large as K_{1}.

Cenerally, this procenure recuives a nurter of iterations, unless we are able to assign the ohservations correctly to the surmation at the outset. In application, we took the initial values for v_{i} for the first third of observations equal to 1 , for the second third equal to f_{1} and for the last third equal to zero. Fe iterated until there is ift.tle change in the estimates of the intercept and slope recomputing the weights each time.

7.2.6 Biweight Rerression l'ethod (Tukey)

Hoth weighted least squares and Anscombe methods require an estimate of welghts supplied hy the researcherg on the other hand. Tukey procedure
uses weichts denenclent on the residual in the previous iteration. Ir:us, if $\hat{\Sigma}_{i}=\frac{y_{i}-\hat{y}_{i}(\mathrm{~K})}{h s_{i}}$: where h is a numerical constant, s_{i} a measure of soread of the resicluals left by the $f^{\text {th }}$ fit and $\hat{y}_{i}\left({ }_{i}\right)$ is the fitted value for y_{i} at the $x^{t h}$ sten, then: $v_{i}=\left(1-E_{i}^{2}\right)^{?}$, a good choice for h is 6 ance for s_{k} is median $\left|y_{i}-\hat{y}_{i}(k)\right|$. In application, we took some initial values for $v_{i}-v_{i}=1-v e$ iterated until trore is little change in the estirates of the intercent and slone, recomputing the wefghts each time.

7.3 P:UPERICAL APDLICATIONS ON SEYFRAL TYPFS OF DATA

The first tyre of data considernd is statle dato. These data satisfy all the requirements for apnlying frass method, mainly ntahility and no error intronuced through age misreport or difeerential under-registration. The only senurce of exrer that apmear is due to our proceciure for ertirating N X when using formula (N) and of estimating F anc D_{y}^{*} winn using formula (F).

The estimate of the cimpersion of tre error gresments ro orobler in tris case since the actual crowth rato (r) and death rate (Con) are availahle.
 weichtod least scuare it was essured that the disnersion is erual in the first, seconc and last third of the ofservations. For the other metheds it was assumed equal all over the age span.

Tatle (7.1) shows the results of several anplirations on age and death distributions given in Coale \& Demeny (1966), model wost, males, corresponding to various mortality levels and growth rates.

From Tatle (7.1) it is clear that all the methois nerform well when using formula (B), while only, wald, Eartlett, Ieast square methods using 10 ohservationn and wejghted least square method perform well when using formula (A).
 renllati-n riven in rinale R Mreenv (lesp) anci the estinintad drati rate lifince the irrith balance nethod and several methods of fit aprlima oll totl: fornula (f) ara foztula (f)

ACTUAL UEATH RATE .U5078G

	11	FUPIIILA (f)	
WALD	15	. $064 \% 01$. 950165
VALO	1.1	. 053480	. 450376
OAKTLETT	15	.065631	
OARTLETT	10	. 057370	
LEAST STIJRAP.	15	. 167628	- 05 Sn51
Lrast snujare	911	. 0531808	. 050376
WFIGIITET L.S.	$1:$	- 060255	- A5n3ヵo
AMS C:CHBE	95	. $067678^{(1)}$	$\cos ^{n} 051^{(2)}$
Ans iotre	9.	- 067088 (3)	(4)
TIIKEY	15	. 069977	.050342

(1) - HUHRER OF STERS TILL CUIVERGENCEE A
 (3) * HIMOLR OF ST:RS TILL RUMVERGENCEA33J (4) *illinif nf StigS TILL ruIVERGENCFZ 2

ACTUAL DEATH RATE , OGTSON

METMOD OF Fit	i1		
WALI	15	. 550 n:2b	. 0660808
MALO	11	. 046 RAF	. 047163
gartiett	95	. 050539	. 04×1864
MANTLETT	96	. 946 :803	. 047174
LIAST STllahe	15	. 9579 ? 5	. 040.324
LFAS S SUNAEF	70	- W4Ariab	. 04713%
MESGIITEN L.S.	9.5	- A878.6	. 047059
	-5	. -5:13. ${ }^{\text {(}}$	$\begin{equation*} .4160734 \tag{2} \end{equation*}$
'			- (4)
flikiy	7.		. 646756

(2) *HUHABR OF ST:RS TILL ROHVERGEHCE: ?


```
'rahl: i7.1) (contibuice')
```

ACTUAL DEATH RATE ABTCUC

HETMON OF ETT	11	FORIILA（a）	FORMILA（B）
	9%	.038041	． 037033
UALi	919	－ 036 conto	． 037.28
BAHTLETT	95	． 03 ¢194	－ 036007
BAhtlett	15	． 036 Coti	． 63 3531
LEAST STUAKE	ij	． 03056	． 036377
LEAST SRUARE．	95	． 0367308	． 637345
WFIGHTED L．S．	95	． 037605	．037225
ANSCUHUE	15	．030066（1）	． $033377^{(2)}$
TIIKEY	1.5	． 0408805	． 036588

（1）सी川IBIR OF STEFS TILL CGTVERGENCEA
 （3）＊HMIRER OF STEPS TILL COHVFRGEMCEE 31 （ 6 ）wid COHVEPGEHCE TILL BOU GTERS

AGTUAL DEATH BAPE ，GBGTON

｜HETHMD WFFIT	11	FURIIILA（A）	rorlila（R）
UALI	15	． 0393 ¢	－ 3 ¢いつ
WALI	10	． 03 त944	－ 03 S441
BARTLETT	15	．035304	．A3030
BAHTLETT	71.	－A28974	． 030.55
LEAST STIIARF	$1:$	－0393ar	． 02^{n} i 41
LFAST STUARE	$1: 1$	．030136	． 030456
HEITITEO L．S．	9.5	－ 0305 c	．03．782
			$20.341^{(2)}$
Anscombe	1.1	(3)	（4）
TIREY	75	． 039581	． 020374

（2）＊HUHRLR OF STIRS TILL ROUVERGCHCFE ？
（3）＊Hllinc MF STERS TILL rigIVERTENCTM ；

MCTUAL UFATH RATE D：BASO

METHİD OF Fit	1	F）保！	
WALI	15	． 018825	． 117752
WALD	1.	． 0178.44	． 017950
BAMTLETT	15	． 0180.1	． 617729
BAKTLETT	18	． 01780	． 017954
LEAST ŞUAKE	15	． 01815	． 917652
LEAST SRUARE	70	． 09733	． 917956
WESGHTED L．S．	15	． 017005	－ 117721
		（1）	$9762^{(2)}$
Alls Cohut	15	. 0i703!	． 017652
TUK1：Y	1.5	． 118161	． 917385
（？）＊HUMREK OT STCDS （3）＊HLBIER OT STEPS		TILC roIVVERFICNCE	
		TILL ACO	Rrincra

ACTUAL UERTH הATE ．ה1545n

＇IIFTHOD GIF Fit	11	F（JRリMLA（．）	PORMILA（A）
い人L＂	9.5	． 015385	． 9559.6
walo	10	． 495268	． 1975.745
BARTLETT	is	． 015.304	． $095 \mathrm{Sa1}$
anktlett	io	－W1538	． 015 550
LEAST STHARE．	15	． 015492	． 615153
LFAST STl／ARP．	10	． 19.585	． A 15 516
，IFIWTED L．	$1:$	． 015359	． $4153 ?$ ？
		015301 ${ }^{\text {（1）}}$	(2)
	15	－ $0153 \mathrm{B1}$（3）	$\text { . } 01 \text { i9 53 }$
TIIKty	$\rightarrow 5$	．1915418	． $014.917^{(4)}$

（2）＊HUIIAER OF STIRS TILL，roPIVERGFHCT＝ （3）\＃HUMBLR OF STEPS TILL COUVRRGIVCFE 3

AGTUAL DEATH FATE ．013？90

HETHIT GF FIT	N	FURIILA（A）	FORHMLA（ 0 ）
WйT	15	－ 1139 ¢	0131 （0）
WALI	10	．0：1．3971	．013223
BAMTLET	9	． 01.3 ； 8	． 013087
AAHTLET	10	． 01.105	． 013 l 2 ？
LEAST STUARE．	1.	． 013234	． 09304%
leas：	11	． 01.315	． 013 3．10
UEIGHTED L．S．	15	． 013989	． 013192
ANSCOITEE	\bigcirc	． $113122^{\text {（1）}}$	$31147^{(2)}$
TUx＇tiy	15	． $013359^{(3)}$	． $018.992^{\text {（ ）}}$
（9）＊WIIIRER OF STENS TILL CUIIVERGEMEEE （3）＊HO（：NIVVFRGEIICE TILL 400 STERG （ム）\＃IUHILLR OF STIFS TILL COIVERGLNCE：			

ACTHAL DEATH RATE ．09943n

	N	Purtilla（i）	PORTULT（n）
す̇alit	75	－ 019398	． A 112 Cl
WAL！	9	． 011322	． $\mathrm{A19}$ ． 59
BALTLETT	15	． 11931	． 419 25
BARTLETT	9	． 19396	． 1919 Jヵ6
LEAST STUARE	95	． 119.38	． 019 2aci
LEAST STUANT	96	． 919315	． 119350
Mrililled l．S．	15	． 191930	． 911337
			（2．）
AlIS Ofl18	15	． 9111312	． 917206
		（3）	－${ }^{\text {（b）}}$
TIKEY	15	． 011389	． 019067

 （3）＊HIMBER OT STEPS TILL，rollvfagrincra

The justification for this is very sjmpln. In formula (B) the error introduced hy our neocedure for estirating $P_{\underset{y}{*}}$ and D_{y}^{*} is very minory thus the ohservations lif on a straight line and any metiod of fit should nexforn well in this iceal case. In formula (A) the error introduced by our nrocedure for estiriAting :y $1=$ tic only corresnonding to old actes and especially wen the death rate is high (the decline in the acie distaitution is not ifnear). Any method neglecting ohservations corresnonding to old ages nexform well.

Neighted least scouare mothod 1 fis the only method that was ahle to remedy the error introduced by our procedure and result in a plausible estinate for the death rate (note that the disnersion of error increases with age). Roth Anscombe and Tukey methods in spite of their comslicated structure तid not perform well.

From the rrevinus remarks our sugcestions is to reject both Anscorbe and Tuley methods and choose one of the followinn metiods: :ald fusing 10 obeervations), lartlett (usinc 10 ohservatinns), Least square (using 10 observations) or weighted loant socuare.

A recommendation for using either Vald or karthett methods with only 10 observations is expected, since they are the eirplest in application. But, it should be pointed out that the previcus applicatiens are under iceal circurstances when no deviation fron the assurntion exist. Actual data are affected hy ace misresort, micration and a change in mortality and fertility. For example, even if it is exnected that certain exror may affect old açes it may lef true that chances in Eertility or mictation or açe miareport have altered the age distrihution for young ages and data corresnonding to old ages are more representative of tha magnitude of the death rate. Thus before a final recommendation for a certain method, more applications on representativa data should be attempted.

The moriel of age nrror introduced in Chapter (f) mrovides us with a vast source of informatinn. First, stahle data wefore subjectinc it to ane error, then simulated data affected her ife error, al so ernduated data bsing Frass and ruatratic eraduation. Tr confirm the nrevinus conclusion for rejecting foth fesconbe and Tukey rethode and to heln choose the bent method of fit, all the provicus methods arp aonlied on several sets of data (each set corrrises: stable, rerorted and graduated data) anr? the results are riven in Table (7.2).

Table (7.2) confirm our concluston for the inaderfacy of Anscombe and Tukey nrocelure in apolying the growth balance methos: for example, the estimates of the rraduated data (Erass technique) in the first set using Anscorbe and Tukeg are qiven by: $36.7 \% \% 35.78,36.7 \%$ and 11.78 instead of 33.85 .

The metho? that performs well in mort cases is the welohted least square method; for example, considering the graduated data of the first set and comparing the estimates of the death rates usira inls method (10 observations), Partlett metrod (lo observations) and the weighted least scuare we get:
actual death rate $=33.85 \%$

methodestimat (\bar{A}) or	estimated death rate using either formula (A) or (E) in several runs			
Eald	29.72	24.58	37.12	32.95
Fartlett	30.39	24.76	30.04	37.89
P. Least square	32.18	34.80	33.77	31.42

Thus, as a general recommendation, sophisticated techniques of fitting the straight line are not accented and the weighted least square method is suggested. It should be emphasized that one method cannot be expected

[^2]ACTJAL REATH RATE OBJBSO
stablet bata

Hith	M	PUPTIILA（ $:$ ）	FПR！IILA（B）
WALずす	95	． 035932	． 03 5ijan
＂JAL＂	10	． 433.54	． 033601
BARTLETT	75	． 635288	． 033611
BAKTLETT	96	． 05.5146	－ 3 3？${ }^{\text {a }}$
LEAST STIJARE	15	． 0361183	． 033549
LEAET STRI位E	76	． 033344	． 033682
WEJGITED L．S．	9：5	． 033090	． 033681
AHSCOMUF	15	．436（18）${ }^{\text {（1）}}$	$033549^{(2)}$
		（35．89 3	（4）
TIIKI： y	15	． 355381	． 03 3．418

（4）＊HO Comergenci：ribl hore itffs

PEPGRTED DATA：si＇Ijlaten）

METMON WF Fit	II		rondlun（7）
गALD	15	．nड ABFi	．0396n2
UALU	71	． $13: 274$	． 03 7il 8
BAKTETT	？	， 035 man	． 03919
AARTLETT	？ 3	．036．íl	． 037840
LEAST SOUARE．	！ 5	． 033226	－ 03 ก783
I．CAST SOUAAE	$9:$	．6334in	． 036214
WFllillen L．r．	15	． 0325.30	． 031.974
		（1）	（2）
Allscumbe		．0332（03）	． 03 ก783（4）
Tlkt：	1%	．035631	．A3nafis

（3）＋Hlllỉfenf STf：C＇TILL POPVERCIIICF：

（ßAUHATE NATI（BRASS TECHHIQIE）

HFTHOD CFET	11	FnRMा丁口и）	$F \overline{R M T L A(B) ~}$
＇VAL＂	97	． 0333954	． 3 3807
WAL！	19	． $42^{19} 723$	． 024533
BARTI，FTT	\cdots	． 033574	．034074
BAN＇I．ETT	75	．030394	． 426768
LEA：S SRUAHF，	75	－ 0360179	．035651
LEAST SQUARE	78	． 3 3niフ！	． 029.552
WEIGHYED L．S．	95	－ 03.183	． 934 3a？
AHSCIITHE	9%	．03670，${ }^{\text {a }}$	． $035730^{(2)}$
FUKF．\％	9 ！	．030756 ${ }^{\text {：3）}}$	．06：740 ${ }^{(4)}$

（1）＊HMHBER OF STRES TILL ROMVERGENCTE 4 （2）＊HUIBLE OF STIES TILL．COHVERFENCR： （3）A H C CHERGENCE TILL GのA FTEPS
（4）－H1O CULEPGENCE TILL BON GTEPS

GRADUATEN DATM（IHADRATIC FDRIHIIA）

METHOD OF FIT	11	FURHIIIA（，）	FORI＇ILA（ ${ }^{\text {a }}$
UALD	15	． 03540	－ 3^{4} ？ 14
UALC	71	． 037174	． 032752
CARTI．FTT	9	． 0360.39	－ 0 39n的
BAKTLETT	1 ！	． 388 C 5	． 47.395
LFASST SMJARE	$?$	． 033.310	－ $2^{\text {nn } 29}$
LIAST SnUARE	$7{ }^{7}$	－6351n）	． 434365
Writillten l．，S．	15	－3：775	． 3391421
ANSCOHIIE	1 \％	1．3587；	（2）
Anscunne	1.	－タ3アn73	（4）
TUKEY	95	． 031 nis	．ה2074
（3）＋110 CUNI：RGEURE TILL AGM STEFS			
（4）\＃H0 Cohiarce	1r，：	till bon it	

ACTHN OT:ATH RNTE. 03.5461
staile unta

HFYHUN IFFET	11	(FORIIIIA (1)	TORMILA(B)
WALV	1.5	- 13.5873	. 625179
WAL?	10	. 02.519	. 025.141
BAHTLETT	15	. 02.591 .1	.025170
OARTLFTT	10	.025005	. 025.378
LEAST SQUARE	15	. 62639	. 025135
LEAST SqUART	111	. त25903	. 125.374
WEIGITEN L.S.	19	.025362	- 025 S.05
AHSCOMBE	95	- 0 26:10 $0^{(1)}$.025135 ${ }^{\text {(2) }}$
TUKPY	9.5	.02イロ73	. 02505%

(7.) * HUMBLR NF STIFS TILL COH:ERRCHCFa ?

(4) *iJUBER Of STEFS TILL POHVERFINCFE \boldsymbol{T}

GEPORITG NATA: FI?IILATPA)

HrT"Un OI FIT	11		FOrMILA(B)
"IAL"	15	- 4 ?554\%	. 626.786
UAL"	$1: 1$	-925981	. 02.5391
BARTIETT	$\because!$	- 036:90	- 026370
BARTLFTT	9.1	. 0271.78	-923?30
LEACST STllanf	15	- $\begin{gathered}\text { 2R674 }\end{gathered}$. 024663
Lfasit square	9.1	. 2553 ml	- 0 26176
HEDTHTEN L.S.	9.	. 025 7ro	. 424578
ANSCOHIIE	15	. 4 266079 ${ }^{\text {(1) }}$	$. \dot{210603^{(2)}}$
	1.	(1266tig 3$)$.920(163 (i)
Tlikey	17	.025:18	.924113
(2) -iluildit Mr	Stres	TILl roolvfer	GENCTE \quad :
(¢) -iflimik C	Stres	till rutiver	frincran

PRADUATE: DATA (BRASS TECHHIGHE)

MF.THID MI FIT	11		FORMTLA(1)
WALD	7	-4? 349	. 02748
WALO	91	. 1245009	.029.345
AARTLFTT	15	. 02758	- 02 \%?89
nAETLETT	: ${ }^{\text {a }}$.0.5975	-0293n3
LEASY STUARE	ij	- 429 プis	. 027365
LEAST ST.JARE	76	. 025261	-100??
WFIGllten L.S.	95	.025001 (1)	- 02 n221
AlISCIHIEE	95	. 029703	. 020300
THKEY	: 5	.029370 ${ }^{\text {(3) }}$	$029177^{(4)}$
			, 2

(4)*HUAMLP nf STERG IILL COHVERPENCE: 1 ?
(IRADIATER DATACU:IADRATIC FORIHILA)

HETHON UFFIT	"	FORI'I.A(A)	FOPM1LLA (8)
WALO	9.5	. 025866	. 025910
WAL"	9	. 02769%	. 0248300
BARTLETT	15	- 526667	. 025109
OARTLETT	1:	. 923320	. 028 n - 2
LEA:T STUART	9!	. 026828	. 025290
LCASE STJJAFE	96	. 226387	. 025927
UEIGIlTEN L.S.	9.5	-02657's ${ }^{\text {(1) }}$. 025218
ANSCOHB:	$1!$	$\text { . } 26828$. $025347^{(4)}$
TUKEY	1.5	. 4 26731	. 024342

PFTHOD OF FIT	11	FORTIILA(i)	
"तीL"	75	. 917 त29	. 019590
WAL"	1 \%	. 0198.80	. 019677
BARTLETT	15	. 019350	. 917407
BAKTLETT	16	. 110120	- 0176 ? 3
LFAST SqJake	15	. a $^{\text {anozó }}$	- 117463
LEAST STUANE	75	. 1191865	. 917620
WEITHTED L.S.	7	. 199503	. 019603
ANSCITHE	9 !	.02तn2 $0^{\text {(1) }}$. $1174683^{(2)}$
TIIK:Y	: 5	. $020105^{(3)}$. 19 ? $22^{(4)}$

(१) नमीingen of STins TILL COTVERGEHCEE 3 (2) * AUABER TF STLP: TILL COIVERGENCTE ?

MEPORTED DATA: SIMIMATRD)

\|iETHIN तf Fi	11	FПती! ${ }^{\text {a }}$	FORIMLA (
11禹曲	9.5	. 193876	.018325
UAL"	9.	. 19776	. 019695
GAKTLET	15	. 013712	. 918007
BANTLETT	96	. 129602	- 227.545
LPAST SQJAKE	9%	. 018653	. 917606
LFASY SGllakt	i	- 919710	. $02037{ }^{\circ}$
WEJIITED L.S.	95	. 913689	. 0181 ? 7
A 15 S:0148E	15	. 013653	.017606 ${ }^{(2)}$
TIIS:CY	15	. $1186.59^{\circ 3}$. 017340^{84}
	STI:	riti roiver	Mr.ncta 3
	STr:	TILI. roilver	GfiNCTE 3
	STE	TILL CIJ:IVE	Rfincrim 10
	STi:	TILL riollv	Richcr: 3

（HADHATER DATA（BRASS TFCHNIQHE）

BIZADUATED DATAC•IIADRATIC FORIIILA：

METHOD MF FIT	H	「0RMILA（A）	SORA！LA（n）
＂1AL＂	15	． 118379	.918265
HALI	11	－021409	． 018927
BANTLETT	15	.019078	． 095174
ПAHTLETT	1 ！	． 022083	．02．765
LFAST S（1）AKE	1 \％	.018613	． 017576
LFAST इTJARE	－	－ 02045	． 026294
W［！illteo L．	1 \％	． 11855	． 013454
ANS COHHEIE	9.5	． $013645^{\text {（1）}}$	$.097576^{(2)}$
TUK＇Y	15	． $113468^{(3)}$	$:^{1917693}$
	ST．	T1L．romy	F．NCTE 3
（ 7 ）＊idUlInkit n r	5Tri	TILL POJVF	RIFACF： 3
	STr．f	TILL CUHYER	Princta
（4）＊llllini．f n r	5TIf	TJLL CUIVER	ricincra 1：

ACTUAL DEATI RATE NaCSMO

STABLE DATA

HETHID OF FIT	1	FORMULA（A）	FORMIILA（ ${ }^{\text {（ })}$
WALn	1.1	．010\％．75	．910465
リAGD	70	． 01 （524	．010548
OAKTLETT	95	． 010.97	． 01 1655
OAHTLETT	18	． 110.516	． 010551
LEAST SOIJARF：	75	．190599	－ 1010 ¢
LFAST SQUANT	911	． 010505	． $61 \begin{aligned} & \text { 1455 }\end{aligned}$
WEISHTED L．S．	15	． 010507	． 10.579
ANSCuMaE	15	$.010548^{(1)}$	（2） $.010825$
TUKFY	15	． 01 （568 ${ }^{\text {（3）}}$	． $110.186^{(4)}$
	STris	TTLL POIIVER	RG［HCE：A 1
	ST：FS	TILL ruIVVR	Rrincra
（3）iflllala nr	5イ：mj	YILL CIIVER	RficNCTa 1
（4）+11 llniom	STI．FS	TILL PUPIVER	RGENC「』

HEPORTED DATA：SIHULATED）

M：¢TIn of 1 IT	11	Fणrllita（a）	
जAL＂	15	． 11 di 0	ब1त？63
UALO	1 ¢	． 110005	．010934
BARTLETT	15	． 11054	， 01 n？00
AARTLETT	16	． 011900	． 017342
LFAST STIJARE	19	． 11759	． 01.3045
LFAST SOUARE	96	． 110851	． 019 9月4
WFIJIHTED L．S．	95	010ヶ5 ${ }^{3}$	． 01 －918
AnStollue	9.	$010534^{(9)}$	
Anstorn	1.	(3)	（i）
turify	95	． 017682	． 009985
	57	T1L！GDIv	Gr．hCEa
	Ster	rili．coiv	rir．ncra
（F）－HNHOCR OF	STEP	5 THL couver	G：IIC：
	ST：0	rill ruliver	gEICE：

to ferform vell ir all actual applications. Plotting the sets of renorted points with the line formed using any methor of fit, or even with the different lines iorred using different rethocs, is incisgensible kefore the fitted slope is accentec as on estimate of the acjusted death rate.

7.4 niscussion

In all the previous aoxlications the actual growth and cieath rate vere known. Thus, the cispersion of error (and consequently the weights) were easily calculated. It is our purnose now to show that the weighted least square method perforrs equally well when the diseersion is not known and the weiohts arp estinated from thw data.

Two estimates are proposen. The first is to divide the roints into 3 egual groups; the sur of serlare of the differences letween the y moints and the mean of the Y noints of each grous ds used for estinating tre veights, thus:
$v_{i}: V_{j}: V_{k:}=$

 $\frac{1}{\Sigma=\frac{2 M}{3}+1\left(y_{s}-\frac{\Sigma}{r=\frac{2 x i}{3}+1}\right.} \frac{\left.y_{r}\right)^{2}}{\frac{N i}{3}}$
$1=1,2, \ldots, \frac{M}{3}, y=\frac{p}{3}+1, \ldots, \frac{2 M}{3}$ and $k=\frac{2 r i}{3}+1, \ldots, \mu$.

The second uses the sum of squares of first differences hetween the consecutive y noints in each grouns as an indication of the weights, thus:

$i=1,2, \ldots, \frac{\pi}{3}, j=\frac{N}{3}+1, \ldots, \frac{2 N}{3}$ and $k=\frac{2 r}{3}+1, \ldots, \cdots$.

Tahle (7.3) shons the actual and estimated denth rates for statile and simulated data usinc the veinhted least square metho? where the wichts are calculater using the mean of tive y points.

Talile (7.4) shows the actual and notimated death rates for stable and simulated data uring the weightec? least sçuare rethod were the weights are calculated using the first. differences.

From both matle (7.3) and (7.4) we conclude that the reichted least scuare is still rocommended even when the veights are estiratoi from the data. It should Le rointed out that, in some applications, rere complex methods for estimating the veinhts mar he required, these methers will probahly Involve sorie iteration.

[^3]Tatle (7.3) (continued)
Simulated data

ACTUAL DCGTH IATE .63385

ACTUAL UIATH: I.ATE . ©PS449

ACTUAL DEATH KATE .V99GJ7

ACTUAL DEATK KATE . 96535

rable (7.4) The actual and ertimated death rates for different stalifi and sjriulated data using the weiehted least square fit where the weights are calculated using the first differences

Staile data
ncruft dr forr rintr .OEO77n

$\cdots \mathrm{CHM}$?	Priplinal (A)	ronnum. (m)
WI.ICITED L.E.	25	- 0 O2\%F2	.950928

MITHOD OF FIT	11		FOW'ITA (1)
	15	. .47961	. 047004

ソrun! Or E゙T	11	FOMSULA (N)	ERPM 12.
VEIGITED T..S.	1. 5	.037003	.037118

Tabie (7.4) (continun)
sirulated data

ACTVAI. DFATH RATE OS3NSO

TETHOD OF ITT	11	「णRT:ULA(A)	FणरापापA(E)]
VEIGHTFE L.S.	15	.032204	. 428488

ACTUAL DEATH RATE , OZSK4 4

	$1 i$	Iीहाप! (A)	FU甘तlita (i)
WEIGITEGL.S.	15	. 024040	.022324

ACTVAI. VRATH GATE .O99691

HETAON OF	11		F(jRHIJ, A(5)
UFIfiltid L,	1\%	099123	017497

3.1. In:TponucTita:

In the nrevinus chasters, the effecte of denartures fror the underivine assumntions of the aroisth halance rethod wnye studied. Also, certain practical considerations about the formulae and the rethod of fit ured were djscussed. linch deviation from the kasic assumtion was treated senarately anc adjurting nrocedures were sucoested accordinçly.

In actual data, several doviations occur, anc the effect of the irtexaction of these factors is guite irnortant in the aralysis. It is the purmose of thin chanter to illustrate the previous conclusions and apsly the growth halance rethod under rore realistic circumstarcer.

Two tynes of data are considered; the first h:nothetscal data affected hy mortalfty decline, diEferentinl under-recistration, ane error and a mirgation rovement. rite second using actual data of a developine countre.

8.2 ADILICNTID: ON: HVPDTHFICRI DATA

Mortality decline, differfntial uncier-renistration of deaths anc are errors are common features in the data of develonina countrins. In the third chapter, a renresentative and flexible pattern of mortalitr decline was reached using the rociel logit system with rozareters α ans B; where p was fixed and a decreased as to achieve a speciffed increase in e, This pattern of mortality decline is used with the model of age crror presented in Chanter six anc an assumption of higher uncier-registration for deaths at young aces.

The micaration factor is slightly more complicated. For some countries, international migration may he assumed nenlicible, for others in or out migration is considerable. Data on the prenortions of rierants from the total posulation and theix age and sex cornosition are not gererally availahle for developing countries and are exnected to show a great deal
of diversity. Threr cases are considered wth the data affected by mortality decline, aqe erfor and differential under-recietration: the first when no mifration occur, the second when out rigration is coninant and finally whon in ricreation is dominant.

8.2.1 Detailpd Procedure ane? Iata Used

Starting rith a single sear stakle ropulation, corresennding to an frerirsic crowt rate $=$. Rl? and an unereving nattern of nortality rased on the logit sy'stem ancl the stanclard rodel life tahle (Erass, 1971) sith pardreters $x=.1$ and $\beta=.7$. The initial narameters of this ponulation are as follows: $C D P=.025, C 4 P=.035$ anc $e_{0}=39$. The fertilits scholule used is basoct on model fertility, yatetern for the United Nations.

This monulation is nrofected in fingle year nerinds, witl: constant fertility and declining mortality anc a tyre os migration movement. vortality is assumed to declinf throuzt a decrposc in x equivalent to an approxirate yearly increase in $\epsilon_{0}=.5$. Mon out mioration is dominont. it is assmmed to constitute a fixed proportion of the nowulntion at the end of each year; these mronortions are estimated uning the deta in mble (4.3). Vhen in migration is dominant, it is assumed to constitute a fixed numper at the end of each year; this numher is calculated usinc tre same proportions as out migrants and the initial nonulation hefore rortality chance.

The projected single years ponulation aqe distribution - after 10 and 20 years of declining mortality and migration - is surjected to age error. The corresponding death distribution is subjected first to an under-registration of deaths aged $0-5$ hy 50% and under-registration of deaths over 5 by lo\%.

8.2.2 Results

The results after 10 yeaxs of projection are nresenterl in the folloving section. The corresponding results after 20 years of projection are presented
in Ansentix (c). Zise conclusinns הrawn are the sare for hoth scts of resuits.
A. Iffect of cleviations from staizility

In rable (S.1), the actunl death rate (total actual ceaths/total ponulation) for the projected dinta after 10 years of mortality and micration - are fresented with the death rate estirates $य 3 i n g$ the growth falance procedure and three different. methods of fit.

Graph (3.1), (8.2) and (8.3) repxesents the set of projected noints for
 the three rethods of fit.

Takle (8.1) 'ihe actual and estirtated death rate after 10 years of mortelity eecline and nirration

Netual CDR	OLt migration .021	: :o riigration .071	$\begin{gathered} \text { In mimration } \\ .021 \end{gathered}$
ESTIPAATED CDE			
Formula	(A) (B)	(A) (E)	(A) (F)
method of fit			
Least smuare	.021 .022	.021 .021	.021 .020
Weighted least sfuare	.012 .010	.020 .021	. 026.026
Wald	.021 .021	.021 .021	.022 .021

From Tanle (8.1), it is clear that the pattern of mortality decline conaidered hardly affect the estinate of the death rate. Out and in migration considerably affect the estimate of the crude death rate when the weighted least souare method is used.

The eorrespondinc rrapis are cuite helpcul in exnlaining why the wejghted least square entirente is sn strongly affecter. The points corresmending to micide arces play a vital role in tie estimate of the slonc when tref.r.s. fit is usef. Thesc roints - As rreviously statod in chanter 4 - efther form a tules or a can when in or cut migraticn affects the data, and the estimatas is inflateri or coflated occordincly.

Thus, ofen micration ilays a vitel role in the country studied, less ennhasie should to placed on the points corrosondin": to micide argee and the grant may he uspe to chonse the annonriAte methct. Nlso, even when ricration is noglicible, the granh is relpful in surgesting the ammorriate methoi; for examnle from granh (8.2) it is clear that using formula (\cap) and the ".i.S. fit results in an under-cestirate of the crude death rate. R. Effect of doviations from etahility, differential undm-reaistration In Falle (8.2), the actual death rate (total actial cieatios/tctal nopulation) and the renorted death rate (total uncer-rofistered deatis/total momiation) and the estimated death rate using the renortec data, affecter ky agn error and under-registratien, after 10 ynars of rovtality decline and rigration are presented.

Craph (8.4), (8.5) and (8.6) re:resents the sets of reported points for poth formula (A) and (B) and the lines drawn using the three methods of fit.

From Talle (8.2), we note that the effect of ace error and differential under-registration on the estimate of the cruce death rate differ according to the formula and the method of fit used.

[^4]Granh (6.4) iortality e?celfore, out mioration, differmetinl Linder-reginiration, and

[^5]

Δ lenst sinure fit

- meighted lnast sfunarn
z जnld

Table (3.2) The actual, reported and estimated death rate, after 10 years of mortality decline and migration, for data affected by differential under-registration and age error

used. The renson for this excention was discussed in the nrevious section.

The importance of the graph in choosing the aporopriate riethod of fit is still apparent, even though the renorted points do not form a straight line but are distributed in hoth directions of this line.
C. The adfustment procedures

In Chapters (4) and (5) two adjustment procedures were presented to allow for the effect of migration and cifferential under-registration. Each procedure was applied separately using data fre fron other sources of errors. It is our purnose to test these two procedures on the data affected by mortality decline, migration, differential under-registration and age error.

Table (8.3) presents the actual and reported death rates and the estimated death rate using the adjustment procedure for the effect of migration. The data on the proportions of the total population to the population in case

mondation yy age rrouns assuminn in and out rifratior anc tho correnpondireg nuvers in case of no rigration.

Granh ($\cap .7$) anci $(8, f)$ renremont the adjuster sots of noints for the effect of out and in mioratier and the lines dravo usinc tre thref -ethods ef fit.

Thtle (8.3) The actual, repertes and acjuste. ceath rate for the effect of riçration, after 10 years of martalit: decline anif rifration, for data affected hy differential under-reçistration and age errox

From Tahle (8.3), we conclide that the adjustront proceuure for the effect of migration is acceptalle and not very sensitive to nge errors and deviations from assumptions. Also, the improverents in the ảjusted sets of ooints given in Graph (8.7). (8.8) as commared to (8.4) and (6.6) is noticcatile.

Graph (8.7) adjustment for out migration

rahle ($\varepsilon .4$) presents the estimated proportionate uncler-reaistration when the adjustrent procedure for differential under-registration is used with the adjusted death rate given in rable (6.3) and the crude birth rate. liote that in estimating the under-reaistration for ages 0-5 no allowance is made for the effect of mictration on the birth rate and tre Frornrtions of deaths between ages n and 5 .

Table ($(.4)$ The estimated pronortionate under-registration for different ages

	Out migration	no mingation	In micration		
nges	$0-5$	$5+$	$0-5$	$5+$	$0-5$

From inlile (8.4) a strong indication of the nature of diffexential under-reçistration and its magnitude is provided. Nevertheless, the results of this procedure should he cautiously accented as it is possible to overestimate the under-registration of deaths. Also, countries affected by under-recistration of deaths are more likely affected by under-registration of births, which in turn affects this procedure. It should he pointed out that, in many applications, corrections for child deaths may be made using other procedures.

Q. 3 ARPLICATION ON ACTUAL DATA

This scction contains application of the halance growth on actual datn.

The data considered are for Suinea 1954-55. Whe analysis is divided into three rarts; the first discusses the nature and characteristics of the dift and the genezal tnchnimer used, the second ie a cetailed study of the riata, and finally the tilire nart cortains several crose checi:s and assensment of the results.

E.3.1 Dota anc reneral mechnimuss ised

The data analysed are from a somnle inquiry covering ruinea (1954-55). This is the first large scale inculr: condweted is African territorjes formerly administered by France, and is no of the lergest ones held.

The ardilable ciata for the estination of rortality are of two kinds; current wich are olvaince? from muestions ahollt deaths in the last year by age of deceased and retroenective consisting of reports hy mothers, divicad ly acge groun, on ti:e total number of cliildren forn to ther: anc those still alfve at the time of the survey. Foth current and retrospective data are given separately fer males arce ferales and also for the four different recions of the country: Cuinea "aritirin, fouta Djallon, unper Guinea and Forest.

It should he nointed cut that the use of 'cieaths in nast year' reflects an important anplication of the crowth halarce method.

Though the data collection was through enumerators who attempted to check that the questions are understood and the answers reasonable; the data still suffer from several deficioncies associated with age. The age distribution ty single years is reproduced in Graph (8.9). It shows an uncommon shunning from sọes ending with O and 5 ; this 1.5 explained by the emphasis in training the ennmerators against the reneral tendency of the population to round their ages with numbers ending with 0 and 5 which prohahly created a counter reaction to these digits. Another feature of
the age distribution is the marked deficit in those aged 1 and 2 for both sexes. A Einal remark is the anporent deficiency of females aced 10 to 15 as compared to the neighbouring age groups.

Graph (8.9) The age distribution by single years
(frepi (i.9) The age cistritution y single years

the aqe distribution is the marked deficit in those aned 1 and 2 for both sexes. Λ final remark is the anoarent deficiency of females aged 10 to 15 as comnared to tive netghtouring age groups.

Granh (8.9) The are distribution hy sinele years

This tyon of age error affectinc the ace clistribution is stmiler to the hins alreacly considered in the model discussed in Chapter (6). Fictually Instead of heaninc on certain digits we rave shunning from tren but there is no reason for the overall effect to he oifferent.

The data used in the following analysis are civen in setails in Tarles (1), (2) enci (3) of Apnendix (d).

The nrocedure of analysis aprlied is descrined as follo:s:

- The data corresponding to the two sexcs are not civided into different regions to offsct the effect of internal micration. The effect of changes in mortality and fertility and of international rigration on the estimate of the deat! rate is assumed sriall ana is disregareer.
- The three mrevious methods of fit are anolier to the unracuated data; the data not defined by are are nerlected. The granh is used to chonse the ancropriate methoc.
- To study the reqistration of deaths uncier aţe 5, dete for single years arc zeruifen. rhough tine data are avaljanle, it in oriment that they are quite distorted. Since the riethoc suggester in Crapter (5) is sensitive to deviations in the true number, its dixect use on this data is not recommended. Fortunatelv, the nurber of births are available and may he used to check for the under-registration of deaths unier one year old. This numher was ohtained Erom questions ahout births in the past year hy açe of mothex, and has keen tested in a senarate stud; conjucted by frass et al (19fB). This study showed that there is m rish moseinility of overreportinc; of live 'intiss in the nrecening year anef surcested adjustrent factors for the ovor-reportinc of births in the four reqions as follors:

```
Guinea "aritime
```

 Fouta Djallon
 Uprex Cuinea
Vorest
.77
. 82
.92

These factors are accepted and tie adjusted hixths are uced to chec: for the uncifx-registration under ace 1.

- Cnce the under-recistration for arges $0-1$ and aces over 5 are accepted, it ramains to chect the uncor-registration for ages $1-4$. Since ve already rejected the data for single yrars, ancther rerocedura stould te used. The relation letween tre deaths ir infancy anc at one to four years is not sufficiently strono to enable us to estiniate one from the other. Nevertheless, if we aqree that the registration fron $1-4$ years old is in the range of the undex-registration witiin 0-1 ans 5t - which is not unlikely - the problem moy he simoler. The relation betiveen $4_{1} \mathrm{P}_{1}$ to $1 \mathrm{D}_{0}$ - denoting the nrobalility of surviving from ane 1 to 4 and 0 to 1 respectively - under the assumption that the reristration fror l-A is eithrer the sane as ages over 5 or as ages from $0-1$ is compered to the relation in the general standard life table introduced My Brass. (Erass, 1971). The value of $4^{\text {PJ }}$ which conform more closely with this standard is accepted as correct. The relations of rrok:abilities of dying to the specific rates usec are:
 of dying and specific death rates respectively.
- Eince the procecure adonted involve an arisitrary elerient., the corrections suggested are terted kefore beinc accopted. The results reached usinc each sex separately are compared to the reaultg reachec if the method is applied to the data of both sexns. Mso, the estimates reached are checred ac̣ainst other estimates calculated hy different analysis of the data.

8.3.2 Detailed Studies of the Deta

a) males

In Table (8.5), the reported death rate and the estimated death rate using the reportad data for males are presented, fraph (8.10) represents the sets of reported points for both formula (n) and (B) and the lines drawn using the three methods of fit.

Graph (8.1د) Guinen, raler,

Tahle (8.5) The ropnrtch and ostimated denth rates for Guinea, males, 1951-55

reported CDR .0455		
ESTIUS.TED CDR		
methorl of fit	Fornula (A)	Formula (E)
Least scuare	.0378	. 0345
Veightec least square	. 0353	. 0348
Valc	. 0401	. 0379

From Table (R.5), there $i s$ a strong indication of over-registration of deaths. To choose the apmronriate methor, the cranh is consulted. The points corresmonilng to Formula (A) are rore linear than those corresponding to Formula (E). This may he exnlainer by age error, such that consecutive ruinguenial age groups are overstated and understated respectively. For cxamole, the male nroportinns in açer: 20-, 15-, 20-, 25-, $30-$ and $35-39$ are remorted as: .068, .094, .091, .099, . 367 and .072. Formula (B) is more sensitive to this tyme of age errcr since it uses the proportions in each ade croun diroctly (${ }_{y}$), while Fontula (A) uses an averaging mrocess $\left(N_{y}=\left(h_{y}+r_{y+n}\right) / 2 n\right)$. Using Formula (A), the fitted line using least scuare method sfems moxe arrronrinte.

To check for differential under-refistration, the ajjustment procedure is apnlied using least sauare method and Formula (\wedge) anci the adjusted crude hirth rates

The under-regintration frori ages $0-1 \simeq 0 . n$
The uncer-rfogistration for ages $5 t=-.20$

To check for the registration of deaths frori 1-4:
the rolation $\frac{4^{0} 1}{1^{\circ} 0}$ under reveral assumptions.

Cencral Etanciarc	Assurention (1) que recistration from l-a the sarn as 5t (over-refistration 20\%)	Fssumbtion (2) Fr p rectstratirn from 1-c thr sare as 0-1 (:ic erxor)
1. ORS:	1.091	1.052

Thus. we acongt there is no error in stating the deatris at aces C-1 while the deaths nver age I are over-registered ty $2 n$.
b) ferales

In Tahle (8.6), the reported death rate anc the estimites ceath rate using the reported data for fomales are presented. Granh (8.11) rooresents the sets of renorted moints for both tormula (r) and (i) and the lines drawn using the three methoc!s of fit.

Tahle (8.6) Thn renorted and ertimuted deatr rate for riuinea, feriales 1954-55

reported COR	.0389	
Fethod of fit	Formula (P)	Formula (B)
Least scuare	.0353	.0357
Fielgnted lnast square	.0437	.0376
Nald	.0374	.0353

All the previous methods, excent weighter least square using For-ula (A), suc̣gest over-registration of deaths.

Graph (B.1l) Guinea, ferales

$$
0 \text { observed points } \quad \Delta \text { loast squ-re }
$$

+ Nei~hted least squarez ald

females than males; this complicates tio choice of the nomropriate rethod. Bevertheless, corresnonding to Formula (A), Viald method rrovides an average fit; Wile for Tomula (E), the wighted least soluare seens appropriate for older anes. Since roth methods yield the saree results, fald method using Formiala (A) is chosen.

To check for differential under-registration, the adjustrent procedure is applied.

The under-registration for aces $0-1=-.10$
The uncicr-registration for açes $5+==.0$ s

To chect for the registration of deaths from 1-4: the rplation $A_{1}^{n} / 10$ under several assumition.

General Stanclard	Tissurntion (1) The renistration from 1-4 the same as 5t (over-regintration 4:)	Bssurntion (2) The reas stration from 1-4 tre sare as $0-1$ (cver-reŋistration 10\%)
1.045	1.023	1.033

Thus we accept that the cicatles from D-4 are cover-registered ly loz While the remaining deaths are over-reciaterfe? iry 47.
c) lotil sexes

In rable (8.7), the reported deatl rate and the estirated death rate using the renorted data for hoth sexes are presented. Graph (9.12) represents the sets of reported points for roth formula (A) and (B) and the lines drawn using the three methods of fit.

Table (8.7) The remorted and entimeted denth rate for cuinea, rath scxes 1251-55

reyorted cos	.0471	
FEMIMOTLD CDI:		
rnethon of: fit	Enrrula (a)	Forrula (5)
iseast smlsare	.037	.035
*"elritec lenst smuare	.037	. 037
r'ald	.038	. 036

There is a strong inclication of over-registration of deatis, fremh (3.12) suggests the use of least sonare or "elghtec lenst scuare and Forrula (A). To cbeck for iifferential uncler-reaistration:
uncer-recistration for açes $0.1=0.0$
under-registration for ages $5+=-.11$

To check for tip recistration of rlenths frem j-d:
the relation $4{ }^{\mathrm{n}} / 1 / \mathrm{Fo}$ unnine snveral assumntions.

General stancard	r.ssuription (1) The redistration frori 1-4 the same as $5+$ (over-registration 148)	issumption (2) The renistration fror. $1-1$ the same as $0-1$ (ivo exror)	Assurntion (3) The registration from $1-4$ as averace from O-1 and 5+ (over-reciritration 7\%)
1.064	1.072	1.046	1.nf

Ihus, we accept thet the deaths Erom C-1 are remorted correctly, from 1-4 over-registered by 73 and over 5 over-xegistered ry 143.

0.3.3 Assessment of the Results

This section is an attempt to check the validity of the corrections
introduced in the mrevious narts.

In view of the fact that the roported points for males and hoth sexen exhibitec more linearity tlan those for females and that hoth data suggestect no error in reporting young deaths, one is suspicious of the estimated over-seqistration of frrale draths aged $0-1$. F.lso, the relation retween the nrobabilities of dying for males and ferales assuming correct roportirg is 1.2 , the corresponding relation in the male and female standard is 1.2 while the relation under the assumntion of over-rfoistration of female young daaths is 1.4 . Thus, it seens more likely that female deaths from ages $0-5$ are renorted correctly.

The sumgested proportionate under-registration for different aces and sexes are summarimed in Table (3.8).

Fable (8,9) The estinated nronortionate under-refintration for different actes and sexes

age	males	Eemales	both sexes
$0-1$	0.0	0.0	0.0
$1-4$	-.20	0.0	-.07
$5+$	-.20	-.04	-.14

A comparison hetween our suggested corrections and the results reached using a different procedure is very helpful. If hoth measures are sinilar, more welrht in attoched to the corrections suggested. In an earlier analysis of data for Guinea presented in Erass et al (1968), the retrospective reports of the proportions of children dead ry age of mother were used to estimate the life table survivors at different ages. At the time of this analysis only provisional data were available. The following is an extract from the conclusions reacheds 'In ruinen and its regions
thn differentials hetween renorted current and retrosnective childhood mortalit" are relatively small. Extrenely hich current death rates heyond chilritooi rere recorsed, narticularlif at anos in to 30 years, where the level is Ear ahove that for any other area. Tie pattern is reflected in the hirl values of B oivtafnei wen lifc talles from the rodel syster are fitter to the ohscrations. In the analysis of fertility it was shem that. the P/F ratice for ruirea sere lon and the conclusion drawn that the birthe recorden were for a longex pexiod ti:an the grocecding year. There seers a strong mossihility that o similar lenethonirg of the reference perici also occurreo in the remortire ef deathe but that it was offset, for younc chijdren at loast, $: y$ missions. Dther evicence for such an effect exists.'

APPENDIX (A)

A. 1 DEFINITIONS

M: total number of age groups.
$d_{i}: \quad$ actual number of deaths in age group $i . \quad i=1,2, \ldots, M$.
$u: \quad$ proportionate under-registration in age groups m to $M(0 \leqslant u<1)$. $u=$ (under-registered deaths/actual deaths).
ou: proportionate under-registration in the remaining age groups (1 to m).
m: number of age groups experiencing under-report ou.
N_{y} : actual and reported population proportion per year of age around the point y.
P_{y} : actual and reported population proportion over age y .
D_{y}^{r} : reported proportion of deaths over age y (reported deaths over age $y / t o t a l$ reported deaths for all ages).
D_{y} : actual proportion of deaths bejond age y.
$Y_{y}: \quad N_{y} / P_{y}$
$x_{y}^{r}: \quad D_{y}^{r} / P_{y}$.
$r:$
growth rate.
CDR: actual death rate.
$x y=\quad D_{y} / P y$

A. 2 RESULTS

In section (4) we will prove that:

For $1 \geqslant m$:

1. $Y_{i}=r+C D R^{*} \cdot X_{1}^{2}$

where

CDR $^{*}=\operatorname{CDR.K(u,~o)~}$

$$
\begin{aligned}
& k(u, 0)=1-\frac{u(0-1) \sum_{x=1}^{m} d_{x}}{(1-u) \sum_{x=1}^{M} d_{x}} \\
&=1-\frac{u(0-1)}{(1-u)+(1-0 u) \frac{D_{m}^{r}}{1-D_{m}^{r}}}
\end{aligned}
$$

Also,

2. $u=1-\frac{\text { Total reported deaths }}{\mathrm{CDR}^{2} \text {. Total population }}$

For $i<m$:

3. $v_{i}=\frac{\left(D_{i}^{r}-D_{m}^{r}\right) u(0-1)}{(1-o u)}$

Also,
4. $v_{i}=\frac{Y_{i}-r}{C_{D R}} P_{i}-D_{i}^{r}$.

A. 3 METHOD

Using the reported population and deaths for age groups m to $M, C D R^{\prime}, r$ and u are estimated using (1) and (2).

Using relation (3) and (4) 0 is estimated as:
$0=\left\{\frac{v_{i}}{u}+\left(D_{i}^{r}-D_{m}^{r}\right)\right\} \frac{1}{\left(D_{i}^{r}-D_{m}^{r}+v_{i}\right)}$.

Finally, the reported deaths are adjusted using u and o, thus:
$C D R=\left(\frac{\text { Reported deaths from } 1 \text { to } m}{(1-o u)}+\frac{\text { Reported deaths from } m \text { to } 14 / \text { total population }}{(1-u)}\right.$
or
$\operatorname{CDR}=\operatorname{CDR} / K(u, 0)$.

A. 4 PROOF

For $i>m:$

1. $D_{i}=\frac{\sum_{x=i}^{M} d_{x}}{\sum_{x=1}^{M} d_{x}}=\frac{\sum_{x=i}^{M} d_{x}(1-u)}{\sum_{x=1}^{M} d_{x}(1-u)}$.
$D_{i}^{r}=\frac{\sum_{x=i}^{M} d_{x}(1-u)}{\sum_{x=1}^{m} d_{x}(1-o u)+\sum_{x=m}^{M} d_{x}(1-u)}$

then
$D_{i}^{r}=\frac{\sum_{x=i}^{M} d_{x}(1-u)}{\sum_{x=1}^{M} d_{x}(1-u)+u(1-0) \sum_{x=1}^{m} d_{x}}$
dividing the nominator and denominator by $\sum_{x=1}^{M} d_{x}^{(1-u)}$ and using (a.1) we get:

Thus,
$D_{i}^{\tilde{i}}=D_{i} / K(u, 0)$
(a.2)
where
$K(u, 0)=1-\frac{u(0-1) \sum_{x=1}^{m} d_{x}}{(1-u) \sum_{x=1}^{d_{x}} d_{x}}$
but
$x_{i}^{r}=\frac{D_{i}^{r}}{P_{i}}$
then
$x_{i}^{r}=\frac{D_{i}}{K(u, o) P_{i}}=\frac{X_{i}}{K(u, o)}$ (a.3)
since
$\mathbf{Y}_{\mathbf{i}}=\mathbf{r}+\operatorname{CDR}_{\mathbf{D}} \mathbf{X}_{\mathbf{i}}$
using (a.3)
$Y_{i}=r+\operatorname{CDR} \cdot K(u, 0) \cdot X_{i}^{r}$.

Finally,
$Y_{i}=r+C D R^{*} \cdot X_{i}^{r}$
where $\operatorname{CDR}^{*}=\operatorname{CDR}, K(u, 0)$
$K(u, 0)=1-\frac{u(0-1) \sum_{x=1}^{d_{x}}}{(1-u) \sum_{x=1}^{n} d_{x}}$.

To show that $K(u, 0)$ may be re-expressed in terms of the reported deaths as:
$K(u, 0)=1-\frac{u(0-1)}{(1-u)+(1-0 u)\left(\frac{D^{2}}{1-D_{m}^{2}}\right)}$

$$
\begin{aligned}
& \text { since } K(u, 0)=1-\frac{u(0-1) \sum_{x=1}^{m} d_{x}}{(1-u) \sum_{x=1}^{M} d_{x}} \\
& =1-\frac{u(0-1) \sum_{x=1}^{m} d_{x}}{(1-u)\left[\sum_{x=1}^{m} d_{x}+\sum_{x=m}^{1} d_{x}\right]} \\
& =1-\frac{u(0-1)}{(1-u)\left[1+\frac{\sum_{x=m}^{M} d_{x}}{\sum_{x=1}^{m} d_{x}}\right]} \\
& =1-\frac{u(o-1)}{(1-u)\left[1+\frac{(1-o u)}{(1-u)}, \frac{\sum_{x=m}^{M} d_{x}(1-u)}{\sum_{x=1}^{m} d_{x}(1-o u)}\right]}
\end{aligned}
$$

and

$$
K(u, 0)=1-\frac{u(0-1)}{(1-u)+(1-o u) \frac{D_{m}^{r}}{1-D_{m}^{r}}}
$$

This completes the proof of (A.1).
2. Using the reported number of deaths for ages over m, and the relation (2.3)
$\frac{n^{n}}{P_{y}}=r+f \frac{d_{y}^{r}}{P_{y}}$
where f is the ratio of the true deaths over age m to the reported deaths over age m.

Thus, $f=\frac{\text { true deaths over age } m}{\text { true deaths over age } m \text { - under-registered deaths }} \begin{gathered}\text { over age } m\end{gathered}$

$$
f=\frac{1}{1-u}
$$

since
$Y_{i}=r+\operatorname{cDR}^{*} \cdot x_{i}^{r}$.

Then
$\frac{C D R^{*} \text { (total population) }}{(\text { total reported deaths) }}=\frac{1}{1-u}$
and
$u=1-\frac{\text { total reported deaths }}{\text { CDR }^{*} \text {.total population }}$.

For $i<m:$
For $1<m: \sum_{x=i}^{m} d_{x}(1-0 u)+\sum_{x=m}^{M} d_{x}(1-u)$
3. $D_{i}^{r}=\frac{x=i}{\sum_{x=1}^{m} d_{x}(1-0 u)+\sum_{x=m}^{x=m} d_{x}(1-u)}$
(a.4)

$$
\begin{aligned}
D_{i}^{r} & =\frac{\sum_{x=i}^{m} d_{x}(1-u+u-o u)+\sum_{x=m}^{M} d_{x}(1-u)}{\sum_{x=1}^{M} d_{x}(1-u+u-o u)+\sum_{x=m}^{M} d_{x}(1-u)} \\
& =\frac{\sum_{x=i}^{M} d_{x}(1-u)-u(0-1) \sum_{x=1}^{m} d_{x}}{d_{x}(1-u)-u(0-1) \sum_{x=1}^{m} d_{x}}
\end{aligned}
$$

dividing the nominator and denominator by (1-u) $\sum_{x=1}^{M} d_{x}$ * we get:

$$
D_{i}^{r}=\frac{D_{i}-\frac{u(0-1) \sum_{x=i}^{m} d_{x}^{M}}{(1-u) \sum_{x=1}^{M} d_{x}}}{1-\frac{u(0-1) \sum_{x=1}^{m} d_{x}}{(1-u) \sum_{x=1}^{M} d_{x}}}
$$

$v_{i}^{r}=\frac{D_{i}}{K(u, 0)}-v_{i}$

Thus

$$
v_{i}=\frac{u(0-1) \sum_{x=i}^{m} i^{d} x}{k(u, 0)(1-u) \sum_{x=1}^{M} d_{x}}
$$

$$
\begin{equation*}
v_{i}=\frac{D_{i}}{K(u, 0)}-v_{i}^{r} \tag{a.6}
\end{equation*}
$$

Rewriting (a.5)

Multiplying the nominator and denominator by $\frac{(1-u) \sum_{x=1}^{M} d_{x}^{d}}{u(0-1) \sum_{x=1}^{m} d_{x}}$, we get

(a.7)
but
$\frac{\sum_{x=i}^{m} d_{x}(1-o u)}{\sum_{x=1}^{m} d_{x}(1-o u)}=\frac{\left[\sum_{x=i}^{m} d_{x}(1-o u)+\sum_{x=m}^{M} d_{x}(1-u)\right]-\sum_{x=m}^{M} d_{x}(1-u)}{\left[\sum_{x=1}^{m} d_{x}(1-o u)+\sum_{x=m}^{M} d_{x}(1-u)\right]-\sum_{x=m}^{M} d_{x}(1-u)}$

$$
=\frac{D_{i}^{r}-D_{m}^{r}}{1-D_{m}^{r}}
$$

substituting in (a.7)

$$
v_{i}=\frac{\frac{D_{i}^{r}-D_{m}^{r}}{1-D_{m}^{r}}}{\frac{(1-u)}{u(o-1)}\left\{1+\frac{(1-o u) D_{m}^{r}}{(1-u)\left(1-D_{m}^{r}\right)}\right\}-1}
$$

$$
\begin{aligned}
&=\frac{\left(D_{i}^{r}-D_{m}^{r}\right)}{(1-u)\left(1-D_{m}^{r}\right)} \\
& u(0-1) \\
& \text { and finally, } \\
& v_{i}=\frac{(1-0 u) D_{m}^{r}}{u(0-1)}-\left(1-D_{m}^{r}\right) \\
&(1-0 u)
\end{aligned}
$$

4. From (a.6)

$$
\begin{aligned}
& v_{i}=\frac{D_{i}}{K(u, 0)}-D_{i}^{r} \\
& \left(\frac{Y_{i}-r}{C D R}\right)=\left(\frac{\left(Y_{i}-r\right)}{C D R . K(u, 0)}\right)=\frac{x_{i}}{K(0, u)}=\frac{D_{i}}{P_{i} \cdot K(0, u)}
\end{aligned}
$$

then

$$
\frac{D_{i}}{K(0, u)}=\left(\frac{Y_{i}-r}{C D R^{2}}\right) \cdot P_{i}
$$

and

$$
v_{i}=\frac{Y_{i}-r}{C D R} P_{i}-D_{i}^{r}
$$

NOIAnIIylsto ヨov

－ق7ex yavop upnxo
diloषg 394 女母3．379ils

してZ
'iable (r.l) (continued)

昭 DEATH OISTRI日UTIOI

Table (p.1) (continuei)

Tolle (F.l) (continume)

Five year age group

DEATH DISTRIBUTIOI

Tinlie (r.j) (continuect)

FORHIULA (A)

FORHULA (B)

(נ) stahle distrihution: corrosanding to redel west, pales, mortality level 6 , arowth rate $=153$ aiven in coale \& berony (lnfe)
(2) fanclom dintribution: the rosulting distrtbution when the rodel ef frror is annliect to the statile distritution

Ta!le (r.?) g?:re nfect of are crror - ther then nonulation and deatr: diatilintion are mibiect th different are prone - on the are are death chatirilution and en the entirate of the crude clratr rate.
SINGLE YEAR AGE GROUR

AGE OISTRISUTIOH

Tenle (1.2) (continuer)

Table (E.2) (enntiruod)

FIVE YEAP AGE GRIUP

- $3385: 2$
jahln (r.2) (contimued)

FORIHLA (A)

FORIIULA (B)

(1) statle distribution: cormesnendine to redel west, rales, mortality level f, growth rate $=15 \%$ elven in Cole \& Rereny (106G).
(2) random distrikution: the verulting distribution when the model of error is annlied to the stable distribution.

Table (C.1) The actual and estimated death rate after 20 years of mortality decline and migration

	Out migration	No migration	In migration
Actual CDR	.019	.018	.017

ESTIMATED CDR

Formula	(A)	(B)	(A)	(B)	(A)	(B)
Method of fit						
Least square	.018	.019	.018	.018	.018	.017
Weighted least square	.007	.005	.016	.016	.023	.025
Wald	.015	.017	.018	.013	.020	.019

Graph (C.1)
Changing mortality and out migration

Graph' (C.2) Changing mortality and no migration

Table (C.2) The actual, reported and estimated death rate, after 20 years of mortality decline and migration, for data affected by differential under-registration and age error

	Out migration	io migration	In migration
Actual CDR Reported CDR	.019	.018	.017

ESTIMATED CDR

Formula	(A)	(B)	(A)	(B)	(A)	(B)
Method of fit						
Least square	.016	.017	.016	.015	.016	.015
Weighted least square	.006	.008	.013	.013	.018	.015
Wald	.013	.014	.015	.015	.017	.016

Graph (C.4) Mortality decline, out migration, differential under-registration and age error

Graph (C.5) Mortality decline, no migration, differential

Table (C.3)
The actual, reported and adjusted death rate for the effect of migration, after 20 years of mortality decline and migration, for data affected by differential under-registration and age error.

	Out migration	In migration
Actual CDR	.019	.017
Reported CDR	.015	.012

ADJUSTED CDR

Formula	(A)	(B)
Method of fit		
Least square	.018	.016
Heighted least square	.015	.013
Wald	.017	.015

Graph (C.7) Adjustment for out migration

Graph (C.B) Adjustment for in migration
D_{y} / P_{y}

Table (C.4) The estimated proportionate under-registration for different ages

	Out migration	No migration	In migration			
Ages	$0-5$	$5+$	$0-5$	$5+$	$0-5$	$5+$
Actual under-registration	.50	.10	.50	.10	.50	.10

ESTIMATED UNDER-REGISTRATION

Method of fit						
Least square	.52	.19	.67	.16	.70	.18
Weighted least square	.33	.05	.59	.04	.64	.02
Wald	.38	.13	.61	.12	.65	.11

Table (D.1) Number of males and females population

Age	Males	Females	Total
O-	63131	66180	129311
1-	29683	23082	58755
2-	37321	37334	74655
$3-$	528 ¢9	53567	206436
4-	49839	49649	99488
5-9	210647	195734	406381
10-	115037	91773	205810
15-	101113	127309	229022
20-	74841	123892	198733
25-	85766	133706	219472
$30-$	63973	90858	154831
35-	77743	99272	176015
40-	59008	63027	122035
45-	58219	59762	117981
50-	38529	34840	73369
55-	37596	30883	68484
60-	21997	19406	41463
65-	20213	17951	38164
70-	10741	10629	21370
75-	7782	6176	13958
$80+$	6764	5049	11813
N.D.	486	1167	1653
TOTAL	1223298	1346911	2570219

Table (D.2)\% Number of males and females deaths

Age	thales	Females	Total
O-	18526	15823	34349
1-	2619	1347	3956
2-	3049	2651	5700
3-	2931	2807	5738
$4-$	1521	1712	3233
5-9	3292	2542	5834
10-	1480	1979	3459
15-	2601	2756	5357
20-	1812	2161	3973
25-	1849	3038	4937
30-	1516	2243	3759
35-	1842	2327	4159
40-	1639	1589	3228
45-	1761	1746	3507
50-	1455	1113	2508
55-	1582	1355	2937
60-	1484	1258	2752
65-	1496	1332	2828
70-	1080	1236	2316
75-	1050	640	1690
$80+$	1227	734	1961
N.D.	5	10	25
TOTAL	55808	52449	103158

* Source: "Etudes demographiques par sondage en Guinee 1954-55, Resultats definitifs - 1" reproduced from table 3.23.1.

Table (D.3)*: Number of males and females live births in the last twelve months for different regions

Guinee	:laritime	Fouta Djallon		Yante Guinee		Guinee Forestiere	
N	F	K	F	$:$	F	\therefore	F
14530	15090	30572	30467	10065	9735	24262	24037

ts\% Source: "Etude demorraphiques pare sondage en Guiree 1954-55, Resultats definitifs - $1^{\prime \prime}$ reproduced from table 3.21.1.

MEFHRTESER
 fortility fer the effoctr of mortality decline. Fon. Stucies.. 3). 1. lres.
 tive nireaternth and turertinth centurins. Institute of Irtoznatinnaj

 Intir irevica, Dernorngtiy, 6, 3, 2??.

PACAVARATAMPA, K.e. (lo(R) mir eictificance of differences in petterpe of mortality for "onulnticen profections. Dorcerraniy, 5, 1, isf.
 ance famfly nlarntar, a varld vieve Trntrioz.
 date on ornhantocd. Fnnulation etudier. 31, ?. 107.

IDURAFOT:-ISICIAT, T. (19玉7) Utiliration de la notion etable nour resurer In rostalite nt la foconolite ces nomulations den nays sous
 Concreas de stechihnjr., $36,2,94$.
 rater. Afrlcan seminar on vital statystics. fidis fhaha: iU.i!. Fennmic Comeinsien fier nfrice.

FRASE, \because (1971) On the scale ot rartalitr. ir hjolnaicil asnects of

 (Arridect version nullisherl in Ponulation lulletin of the United jations kcenorjc and recial Cefice in Eeirut, no. 4 (January 1973). n.9.)
 vital reçistration records. \because orking paner for vileson meeting. Unpuklishec.

PRSSE, ". (1975) lothodn for entimiting fertility and rortality from limitec anc defective clata. Laroratorien for ponulation Etatistics, an cccasional plibilcation, The University of Incth Carolina at Chapel Hifll.

1phse, F. (1976) Indsrect methods nf estinating mortality illustrated by anplication to iicdle last and lootl? African data. Ponulation rulletin of the United liations Economic Cormission for fostern Asia, nos. 10 anci 11., Joxclan.
 and porditur, \AA. anc! vati DE raLLE, $1:$ (126,R) The deroeranhy of tropicaj. Africa. Princeton Univeralty Press, frinceton, He, Jersey.

LPACs, N. and IILLE, K. (1973) l.ntirating adult mortality from orn!ianhood. International Ionulation Conference, Ljege, 1973, 3, 111.
 norulietion c!aracterjetics cilven cinat e t one. Jom. Studian, 12. 2. 100.

 Etučare, 12, 3, 317.

CITROM and cianth rater anc tioe nitent of recistration. Tournel of the Areryenn retatirtical isscoctation, 44, 101.

COILE, A.J. (1956) The effect of chances in fertolity and fertilit: or ace cormosition. "ijubant "onerial Funt nuarterl", 34, 79.
 cuasi statile ace distrikutions. Tr Emeroing Fechnicues in Prnulethr

 monlatians. frinceten linivereity trees, :'rimeeton, New Ter:e\%.
 The frierican lenanic invie\%, ar, 3n5.

 re destalilization. Vermeramy, ?, xc3.
 Arat erurerims nf the iodiale last: a surve: of present frforration. smoromanly, 2, lan.
 to Chinere date (lo7n) in orcer to of tatn hasic indices on rortality. linrling maner for uresce expert orcun reetirg or mortality. linnutilistect.
 Taiwar, tradition and cl,ance. fry. !tudtea, 16, 3, 219.
 Failun: a casc study of the dercoranhe transition. The feprican Journal off Enciology, 75, 1C.

GIILE, V. (19A9) The deronraphic history of the :!nrthern European countries in the 18th century. lon. Stuales, 2, 2, 12 .
conorin, L. λ. (1967) on the age sex corponition of the ponulation trat would result from given fertility and roxtality condition*. Denonranhy, 4, 1. 423.
 in tinn Caritiman. Dntmaraply, 5, 2, 874.
1.IEI., ?.1. (1075) Irrlirect rethocs of estiratine aclult rortality. Fh. D. Fhesis from liniversity of Lencon, idencen echoci of Fiyolene and Trnnical "codicine.
 data. F"ne Unjurerfi-i of Chicaco lyros, Chicann.

 fintunrsitaires de France.

 anci avoldance in the ase statioticn of rome recent fixtcan connuses: sore natterns anc correlates. International statifatical Revico4, 41, 165.
IMrimoniut, $I: K$ ($12(0)$ on the cimendence $r f$ are structure on a seruence of mortalf.ty and fertility. nemnciramy, ©. 3, 287.
 in the 1573 consuri of the pepulation of colombia. prp Index, 42, 3, 377
 nagarctors. Dlemoctanhy, 11, 1, 1.19.
 toillmefor fational nemilations. Serimar srone, ldeg Vort ane? I.encon.
Slipynck, f.e. anc: rtyrne, t. f. (1073) Fine romands anc materials of ciemociranty. U.E. lurean of the Censur, Varnington, D.C.
EMONTMR, G.T. (1055) A centurg of intmenctifral mortality trends. Fart I. Fon. Ptudicr, 9, 3, 2A.
sromijoz, G.J. (1056) s century of internstinnal rortality troncis. gazt II. lop. ©twelies, J O, 1, 17.
 "mmetal Finc, x:xiv, ?, 178.
 MExica, roview and intarpretation. Pon. Eturins, 19, 2, 117.
 Cairo Derocrophic fontre, Ser inar or rextalitu trancin and citferentiale in sore Frah and rfyican countries.
 Nev: Yort.
UHITID NATIONE (1955) Age and sex potterns of mortelity: model life tainleg for uncerdevnlonme ecuntrine (Ponlilntinn etudies nn. 22) sin.. sorl.
INITED l:ATrnNE (1956) :iethoc's for mpulation projections by sex anc? ace. "nnmal JJI, sm\%eñ Serips n, Pomulation studies, no. 25 , Nev York.
 (\cdot ith erocial reference to the situation ane? recent trencs n roctalit.: in tile vorlel liew York.
 (concitione anc trmes of fiestilifty in tie ferid) fen Yorb.

Wither :ifntrye (loc 7) "cthocn fcr estiratinetastc comerramhic reasures frer incerilete ciata. len. ©tueime, no. 47, "anual 4, ion" York.

 :ntions inciel Jife Taller.
 Nfrican monulation stucties serife, no. 2. Acicis finnoa.
 distributions in illiterate nopulatiore. Arerican journals of cenciolnतy.
 Deronran!?!, 5, 2, 855.
veu nof fille (lg5e) Irrors in ace roncot.int in statieticall: uriersinvelomnct countrifs. Fon. Etuction, 13, \therefore, jri.
 in netiretinct dorecoranlijc rensurne for ira? countring. Farer nresentrei at the annung mactinn ef then Nrevicns ettatintical Asccolaticu. Fort Collins.
 Maninirtyation renfrale des nerviene cin ln Fiearce p'outrem"ny.

[^0]: ${ }^{1}$ each poriod denoties a 5 year interval'

[^1]: Exarining the resulta of gattern (l.a) anc (l, N), ve note that as exnerted - higeer devjation in tive estirate anocar in the latter.

[^2]:
 formila（A）and［orm＇］f（E），corrosmonding to different sotes of glata．

[^3]: $\frac{\lambda_{4}}{f}$

[^4]: Generally, when differential under-registration exists, the death distribution method provides a mininum correction for the data. The only exception occurred when out migration was dominant and the W.L.S. method of fit was

[^5]: (1) ropnited senta of points

 - Jenst nquare fit
 noighted leant sfunro

