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ABSTRACT  

Background  

The potential of multi-shell diffusion imaging to produce accurate brain connectivity metrics 

able to unravel key pathophysiological processes in multiple sclerosis (MS) has scarcely 

been investigated.  

Objective 

To test, in patients with a clinically isolated syndrome (CIS), whether multi-shell imaging-

derived connectivity metrics can differentiate patients from controls; correlate with clinical 

measures; and perform better than metrics obtained with conventional single-shell protocols.   

Methods  

Nineteen patients within 3 months from the CIS and 12 healthy controls underwent 

anatomical and 53-direction multi-shell diffusion-weighted 3T images. Patients were 

cognitively assessed. Voxel-wise fibre orientation distribution functions were estimated and 

used to obtain network metrics. These were also calculated using a conventional single-shell 

diffusion protocol. Through linear regression, we obtained effect sizes and standardised 

regression coefficients.  

Results 

Patients had lower mean nodal strength (p=0.003) and greater network modularity than 

controls (p=0.045). Greater modularity was associated with worse cognitive performance in 

patients, even after accounting for lesion load (p=0.002). Multi-shell-derived metrics 

outperformed single-shell-derived ones.  

Conclusions  

Connectivity-based nodal strength and network modularity are abnormal in the CIS. 

Furthermore, the increased network modularity observed in patients, indicating 

microstructural damage, is clinically relevant. Connectivity analyses based on multi-shell 

imaging can detect potentially relevant network changes in early MS. 
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INTRODUCTION 

Performing high-quality tractography is crucial for understanding key pathophysiological 

aspects of neurological conditions. Early fibre tracking methods were based on the diffusion 

tensor (DT) model of the diffusion-weighted (DW) signal.1 Such approaches have well-

described limitations especially in regions containing multiple fibre populations, such as the 

corona radiata, where a single tensor cannot adequately describe complex fibre orientation 

distribution functions (fODFs). In these areas, drops in tissue DT-derived fractional 

anisotropy (FA)2 may be erroneously interpreted as termination of the underlying white 

matter (WM) tract. Several strategies have been proposed to overcome the limitations of the 

single tensor model and recover more complex fibre configurations that could be used to 

inform probabilistic tractography. One of these is to perform tractography based on 

fODFs obtained using constrained spherical deconvolution (CSD).3, 4 CSD recovers the 

fODF by performing a single-kernel deconvolution of the measured DW signals with non-

negativity constraints.  

 

The CSD algorithm was originally designed for single-shell DW imaging acquisitions.5, 6 

However, as multi-shell acquisitions are becoming more common,7 a refined approach 

known as multi-shell multi-tissue (MSMT)-CSD has been proposed to optimally deal with 

multi-shell data sets.8-10 This method accounts for partial volume effects, thus enabling the 

estimation of fODF in multiple tissues within the same voxel.11 This leads to a better 

estimation of the fODFs and tract reconstruction especially in voxels containing a mixture of 

different tissue types, such as WM, grey matter (GM) and/or cerebrospinal fluid (CSF).8  

 

In neurological diseases, WM pathology may contribute to adverse partial volume effects, 

which can further confound the tissue segmentation within voxels. In multiple sclerosis (MS), 

for example, WM voxels may include demyelinating lesions, whose diffusion properties differ 

from those of the WM outside the lesions.12, 13 Tractography has been extensively applied to 

MS to understand the pathogenic mechanisms of the disease.14 However, the application of 
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multi-shell acquisition schemes for brain tractography aiming at the study brain connectivity 

in patients with MS has been scarcely explored.15 Additionally, no studies have used multi-

shell diffusion data for brain tractography in patients with a first demyelinating attack, for 

whom the discovery of novel disease biomarkers is of the utmost importance.   

 

In this study we used a multi-shell acquisition and, in particular, the MSMT-CSD algorithm, 

to study brain connectivity in patients with a first demyelinating attack suggestive of MS or 

clinically isolated syndrome (CIS). We aimed to: (1) investigate the ability of connectivity 

metrics obtained with a multi-shell multi-tissue approach to differentiate between patients 

and controls; (2) assess, in patients, which multi-shell multi-tissue connectivity metric best 

correlated with clinical measures. To complete the analysis we (3) indirectly compared the 

multi-shell findings to the results obtained with a single-shell data set, i.e. a simpler 

acquisition scheme that has been extensively used in the past by several groups.16 

 

MATERIALS AND METHODS 

Subjects 

We included patients consecutively attending an MS clinic within three months of their CIS 

(i.e. within three months of symptom onset). We also included a group of age-matched 

healthy controls (HCs). All participants underwent an MRI scan at study baseline. Patients 

were assessed on two cognitive measures, the Paced Auditory Serial Addition Test (PASAT) 

and the Symbol Digit Modalities test (SDMT). Of note, all our participants had been recruited 

for a different project17 and this is a retrospective analysis of prospectively acquired data. 

The study was approved by the local Ethics Committee. All participants provided informed 

written consent.  

 

MRI acquisition & pre-processing  

The scans employed in this study were part of a previous multi-parameter clinical study.17 All 

scans were performed using a 3T Achieva system (Philips Medical Systems, Best, 
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Netherlands) with a 32-channel head coil. The scanner maximum gradient strength was 65 

mT m–1.  

 

The following MR images were acquired for all subjects:  

 Anatomical inversion-prepared 3D T1-weighted turbo field echo (resolution = 1x1x1 

mm3, TE/TR: 3.2/7.0 ms, TI: 836.46 ms);  

 Axial PD-/T2-weigted turbo spin echo (resolution = 1x1x3 mm3; TE1/TE2/TR 

=15/85/3500 ms);  

 Clinically-feasible multi-shell DW (resolution = 2.5x2.5x2.5 mm3; TE/TR = 82 ms/12s; 

53 directions: b=300 s/mm2 (8 directions), b=711 s/mm2 (15 directions), b=2000 

s/mm2 (30 directions); 7 b=0 s/mm2 images; number of slices=60; SENSE factor=2; 

duration=25 minutes).  

 

In patients, an experienced rater (SC) used the PD-/T2-weighted images to manually outline 

T2-hyperintense WM lesions using a semi-automated edge-dissection tool (JIM v6.0, 

Xinapse systems, Aldwincle, UK, http://www.xinapse.com). A pseudo-T1-weighted image 

was computed from the subtraction of the PD and T2 images. Then the pseudo-T1-weighted 

images were used to compute the transformation with the 3D T1-weighted images 

implementing a symmetric registration approach using NiftyReg software package 

(http://niftyreg.sf.net). Therefore, the obtained transformations were applied to the T2-

weighted lesion masks to move them from native space to 3D T1-weighted space. The 3D 

T1-weighted images were filled using a non-local patch-match lesion filling algorithm18 and 

parcellated using the Geodesic Information Flows (GIF) method v2.0,19 freely available at 

NiftyWeb platform (http://cmictig.cs.ucl.ac.uk/niftyweb/).20  

 

For co-registering 3D T1-weighted and DW images, we first performed eddy current 

correction using FSL21 to the DW images. Subsequently, a geometric distortion correction of 

the DW images was carried out, using BrainSuite v.15b. For this step, the original (non 

http://www.xinapse.com/
http://cmictig.cs.ucl.ac.uk/niftyweb/)
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lesion-filled) 3D T1-weighted images were initially co-registered to the mean b=0 images 

using a constrained non-rigid registration algorithm based on mutual-information; afterwards, 

the actual correction took place. All undistorted DW data as well as their final alignment with 

anatomical 3D T1-weighted data were visually inspected for quality control checking. 

 

Finally, the lesions identified in the PD/T2-weighted space were warped to each subject’s 

DWI space, as this allowed the individual characterisation of microstructural properties at the 

level of normal-appearing white matter (NAWM) and lesional white matter by appropriately 

defined masks.  

 

Voxel-wise fibre orientation distribution functions and signal fractions 

Using the original multi-shell dataset, a multi-shell multi-tissue constrained spherical 

deconvolution was used to recover the fibre orientation distribution function (fODF) within 

each voxel.8 Additionally, in order to assess the benefits of multi-shell approaches as 

compared to more conventional, single-shell, acquisition schemes, the DW images obtained 

with the highest b-value (i.e. b=2000 s/mm2, 30 directions) were extracted. With this single-

shell dataset we also obtained the fODFs but here we used a CSD algorithm able to solve 

the problem of crossing fibres but unable to identify multiple tissues within the voxel (i.e. 

‘single-shell single-tissue’ algorithm).5, 6  

 

For the multi-shell dataset only, we calculated the within-voxel ‘signal fractions’ of the three 

tissues identified by the multi-tissue CSD algorithm, i.e. anisotropic tissue; isotropic tissue 1 

and isotropic tissue 2. More specifically, we followed these steps:  

1. We estimated, within the same voxel, as many fODFs as tissues were identified (three);  

2. Then, since the volume under the function fODF is known to be proportional to the actual 

volume of the tissue to which the fODF belongs, we estimated the signal fractions for each 

one of the tissues within the same voxel, for each subject, as a proxy for volume fractions. 
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3. Finally, in order to have, for each voxel, a sum of fractions that added to 1, the signal 

fractions estimated in the previous step were normalised. 

 

After the initial quality control checking (through visual inspection) of all the original DW data 

and their alignment with the anatomical 3D T1 data, all the data were considered to be of 

good quality. Also by visual inspection, the multi-shell multi-tissue algorithm showed a 

reduced number of fODF spurious peaks compared to the single-tissue algorithm in white 

matter areas that are characterised by a bundle of fibres with a similar orientation (e.g. 

corpus callosum) (Figure 1). Additionally, the signal fraction maps showed that the multi-

shell multi-tissue algorithm successfully differentiated the different types of brain tissue 

(Figure 2A), including within-lesion tissue heterogeneity (Figure 2B).  

 

Whole-brain connectomes 

All steps (CSD; tractography; voxel-wise metrics calculation) were performed using MRtrix3 

(v.10/2016)22. Using the previously computed fODFs, we performed a whole-brain 

streamlines tractography with an anatomically-constrained probabilistic algorithm (iFOD2).23 

We propagated 108 streamlines (default option), using as seeds the GM areas parcellated 

with the Geodesic Information Flows (GIF) pipeline,19 which were then considered as the 

network nodes, and using known criteria for streamline termination (default option).24 

Afterwards, for each pair of nodes, the number of streamlines successfully connecting them 

was re-computed with the SIFT2 algorithm.25 This is a dynamic seeding mechanism that 

ensures that the final number of streamlines connecting each pair of nodes is re-weighted 

according to the cross-sectional area of the white matter tract, estimated from the fODF 

obtained in the previous steps. Afterwards, we built structural connectomes considering, as 

network nodes, the GM parcels defined according to the GIF segmentation.19 The re-

weighted numbers of streamlines were considered as the network edges.  

 

Network metrics  
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We used the Matlab Brain Connectivity Toolbox (https://sites.google.com/site/bctnet/) to 

estimate the following network metrics for weighted graphs26 for each subject, which were 

then standardised: 

 

Nodal connectivity metrics 

They reflect the strength with which the network nodes, which here represent the cortical 

GM areas, are connected. They include the mean nodal strength, which is the average, 

across all nodes, of the sum of the strength of each node (i.e. the total number of 

streamlines emerging from that node) of a network; and the mean clustering coefficient, 

which reflects the connectivity among the neighbours of a given node. In MS, a decrease in 

nodal connectivity metrics may be seen in the context of WM tract damage due to 

inflammatory-demyelinating lesions.  

 

Metrics of nodal distance  

The metrics of nodal distance reflect how well any two nodes in the network are connected. 

They include: mean shortest path, which reflects the number of intermediate connections 

between any two pairs of nodes of the network; and global and local efficiency, which are 

mathematically related to the mean shortest path. Smaller values of mean shortest path 

imply more efficient information transfer between nodes, while global and local efficiency 

reflect ability of the network to integrate information globally and locally, respectively. In the 

MS brain, longer mean shortest paths, and therefore worse global and/or local efficiencies, 

may be seen when there is damage in WM tracts that are crucial to keep the number of 

intermediate connections between any two GM areas to the minimum. 

 

Metric of network structure 

This includes the modularity coefficient, which describes how well a network can be 

subdivided into ‘modules’ or groups of nodes highly correlated among each other. In MS, 

abnormally high modularity coefficients may indicate the presence of lesions or WM atrophy 

https://sites.google.com/site/bctnet/
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that cause an artificial partition of the network into a number of relatively isolated 

communities containing highly inter-connected GM regions.  

 

Figure 3 illustrates with mock examples how network metrics may vary in patients with 

inflammatory-demyelinating lesions.   

 

Statistical analysis 

Linear regression models were built to assess the differences between groups in network 

metrics. In these models, the network metric was considered as the dependent variable and 

the binary variable ‘group’ (patient or control) was considered as the main independent 

variable. In order to (indirectly) compare the ability of the multi-shell metrics to differentiate 

between patients and controls with that of the single-shell metrics (reference), we obtained 

the effect size for each network metric from these regression models. The greater the effect 

size in absolute value, the higher the ability of the metric to differentiate between groups. A 

positive effect size for a given metric indicated higher values of that metric in patients than in 

controls, whereas a negative effect size indicated the opposite. All models were adjusted for 

age, gender and lesion load. Controls were assigned a lesion load equal to zero, as 

previously done.27 Statistical significance was considered when p<0.05.  

 

To assess the relationship between the multi-shell network metrics that were abnormal in 

MS patients and clinical measures, we built linear regression models where the clinical 

measure (one at a time) was the dependent variable and the network metric (one at a time) 

was the main explanatory variable. For all these analyses, we used the number of correct 

answers in the relevant cognitive test as the clinical variable. Similar models were built with 

network metrics obtained with single-shell data. All models were adjusted for age, gender 

and lesion load. In order to (indirectly) compare regression coefficients from models with 

multi-shell vs. single-shell data, standardised regression coefficients were computed. 
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Therefore, a greater (in absolute value) standardised regression coefficient indicates a 

stronger association between the network metric and the clinical metric.  

 

All the analyses were performed with Stata 14.2 (Copyright 1985-2015 StataCorp LLC). 

 

Data availability  

The data sets and models generated during the current study are available from the 

corresponding author on reasonable request. 

 

RESULTS 

Descriptive statistics 

Nineteen patients and 12 HCs were included. Table 1 shows full details on demographical, 

clinical and MRI data. All patients were assessed within 3 months of their first demyelinating 

attack, which consisted of optic neuritis in 17 of them and of acute myelitis in the remaining 

two. The MRI scan showed white matter lesions in 13 out of the 19 patients and did not 

show any pathological lesions in any of the HCs. In patients, the mean lesion load among 

those who had lesions was 4.13 mL (range: 0.026 to 14.69 mL).  

 

Differences between patients and controls in network metrics  

Patients had significantly lower mean nodal strength than HCs, even adjusting for age, 

gender and lesion load (60.46 103 (standard deviation, SD: 4.97 103) streamlines vs. 

66.68 103 (SD: 4.33 103) streamlines, p=0.003). Modularity coefficient was higher in 

patients than controls (p=0.045), but statistical significance was lost after adjusting for lesion 

load. For the only metric that showed differences between patients and controls after 

adjusting for confounders, i.e. the mean nodal strength, the effect size was greater (in 

absolute value) when computed with the multi-shell approach than when computed with the 

single-shell approach (Table 2).   
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Association between network metrics and cognitive measures  

Among the network metrics that showed significant differences between patients and 

controls, the modularity coefficient was significantly associated with cognitive performance 

and, in particular, with the SDMT: greater modularity coefficient values were associated with 

worse SDMT performance (p=0.002), even adjusting for age, gender and lesion load. Of 

note, the association between modularity coefficient and the SDMT score was observed for 

both multi-shell and single-shell connectivity metrics, although the standardised regression 

coefficient was greater (in absolute value) for the multi-shell metric (Table 3).  

 

DISCUSSION  

In this study, we explored for the first time the potential of a clinically-feasible multi-shell 

acquisition to study brain connectivity in patients with CIS, which is the first demyelinating 

attack suggestive of MS. After adjusting for age, gender and lesion load, patients with CIS 

had significantly lower mean nodal strength than controls at the time of the CIS. This 

suggests an overall reduction of WM connections between GM regions at a global level, that 

is, a decreased number of WM tracts in the context of neurodegeneration. Whereas lower 

mean nodal strength in patients with MS and after a CIS than in controls has already been 

reported in the literature,28 our study is the first one that uses a multi-shell acquisition 

scheme, which has the potential to provide invaluable information on tissue microstructure. 

The fact that these results are obtained after adjusting for lesion load implies that the 

information that connectivity metrics provide are largely independent of the extent of the 

most visible form of brain damage. We observed that the ability of the mean nodal strength 

to differentiate patients from controls was superior to WM or GM fractions. Therefore, 

connectivity metrics would seem more sensitive to tissue damage than more conventional 

imaging measures. Previous studies focusing on the role of connectivity metrics in patients 

with RRMS and SPMS have also reported lower nodal connectivity in these MS phenotypes 

than controls.29-31 Importantly, these studies have also reported other network abnormalities, 
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such as decreased global efficiency, reflecting the greater WM damage in more advanced 

stages of the disease.29-31   

 

We also found that greater values of modularity coefficient were associated with worse 

cognitive function. Notably, such association could be observed even after adjusting for 

lesion load, although patients had only shown greater modularity coefficient values in 

unadjusted models, which did not take into account lesion volume. We speculate that the 

presence of macroscopic and microscopic areas of inflammation and demyelination may 

cause a partition of the brain into different sets of nodes highly connected among 

themselves but isolated from the other nodes of the network, supporting the idea that the 

long-distance connections are those that are lost first.32 Then, differences in modularity 

coefficient would be mainly explained by differences in visible, macroscopic lesions, 

whereas the WM damage secondary to lesions, possibly exceeding the original lesional area 

through trans-synaptic degeneration,27, 33 would be responsible for clinical dysfunction. This 

would explain the relative independence of modularity coefficient from lesion volume when 

predicting cognitive performance.  

 

In our study, a number of metrics were not affected by the disease. Network metrics are 

mathematically related and, in MS, their abnormalities appear as a consequence of 

pathologic processes that are also highly related, e.g. inflammation and demyelination, and 

WM atrophy. Therefore, it may be surprising that we only observed abnormalities in some 

metrics but not all of them. On the other hand, each network metric reflects a different 

aspect of the network organisation and their sensitivity to brain structural changes is not the 

same for all of them. Whereas we found in patients a significant decrease in nodal strength 

and a (weak) increase in modularity coefficient, no differences were observed in distance 

metrics, indicating a quite preserved network efficiency despite the presence of lesions. This 

would be in line with a recent study carried in patients with established MS which has shown 

evidence of the robustness of the brain network against the WM damage derived from 
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visible inflammation.30 Additionally, the small spatial extent of lesion load of our CIS patients 

may have played a role in the preservation of network efficiency, as hinted in our synthetic 

example (Figure 3).”  

 

Finally, the metrics obtained with a multi-shell acquisition scheme appeared superior to 

those obtained with a single-shell scheme in terms of sensitivity to subtle disease. The effect 

size of mean nodal strength obtained with a multi-shell scheme was greater (in absolute 

size) than that obtained with a single-shell data set. Additionally, the standardised regression 

coefficient describing the relationship between greater modularity coefficient and worse 

cognitive function was greater (in absolute value) when the modularity coefficient was 

obtained with a multi-shell scheme. This is probably explained by the ability of the multi-shell 

protocol to detect the different signal/volume fractions within the voxel, as opposed to single-

shell protocols. Interestingly, such fractions showed partial volume contrasts even within 

lesions, bringing to light the unique potential of multi-shell schemes to allow a deep 

phenotyping of the microstructural changes occurring in MS. However, the differences 

between single-shell and multi-shell results might have also been explained by the fact that 

the single-shell connectivity analyses were carried out with a sub-set of the original multi-

shell DW data. This implies that the two schemes had not been matched for acquisition time 

and that the b-value for the single-shell dataset had not been optimised for connectivity 

studies. On the other hand, the single-shell scheme used only DW data with relatively high 

angular resolution (b=2000 s/mm2), unlike the multi-shell scheme, which contained data with 

high (b=2000 s/mm2) and low (b = 711 s/mm2 and b=300 s/mm2) angular resolution. 

Therefore, while the presence of multiple b-values enables the detection of partial volume 

effects within a voxel, the low angular resolution of b = 711 s/mm2 and b = 300 s/mm2 may 

have reduced the precision of the fibre orientation estimation in the multi-shell multi-tissue 

approach. Ultimately, this may have led to a lower-than-expected performance of the multi-

tissue algorithm. Of note, our study did not intend to perform an exhaustive comparative 

analysis of the metrics obtained with the two schemes, and the reported comparisons thus 
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need to be taken with caution. Future studies with larger cohorts and focusing on the 

comparison between multi-shell and single-shell schemes with the same acquisition time 

and with optimised b-values for the single-shell acquisition, generally below 2000 s/mm2, are 

therefore warranted.  

 

Among the potential limitations of this study we should mention that the acquisition protocol 

was originally designed to support fitting of multi-compartment models, such as neurite 

orientation dispersion and density imaging (NODDI)34, 35. However, it is important to notice 

that acquisitions that support NODDI-like analyses are being increasingly adopted in clinical 

studies36 and phase 2 trials,37 and it is therefore relevant to assess the potential of similar 

acquisition protocols for connectivity analysis. Secondly, our sample size was quite small. 

Further investigations exploiting rich acquisition set-ups such as the “MASSIVE” data set 

(http://www.massive-data.org)38 are mandatory to generalise current results and confirm the 

benefits of multi-shell acquisitions with respect to single-shell ones in early MS. Finally, our 

patient population was a cohort of people who had suffered a first demyelinating attack of 

the CNS, which means the presence of white matter inflammatory lesions was still relatively 

mild. Thus, it is possible that in patients with established MS, with higher lesion loads and 

therefore higher numbers of WM voxels affected by partial volume, more evident differences 

between multi-shell and single-shell schemes can be observed.  

 

In conclusion, we provide definite evidence of the potential of multi-shell acquisitions to 

study brain connectivity in patients with a first demyelinating attack suggestive of MS. Multi-

shell acquisitions can effectively produce metrics that differentiate patients at very early 

stages of MS from HCs and metrics that correlate with cognitive function beyond the 

presence of macroscopic inflammatory damage. Our results encourage the use of multi-shell 

DW datasets, if possible, to produce connectivity metrics in early MS, even if the original 

purpose of the multi-shell acquisition was not the study of brain connectivity. Connectivity 

metrics derived from multi-shell acquisitions appear as potential biomarkers in early MS and, 

http://www.massive-data.org/
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because of their high sensitivity to pathology, can help understand the complex processes 

underlying clinical progression in this devastating condition.  
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Table 1. Clinical, demographical and MRI data  

 
  

Patients 

(N=19) 

HCs 

(N=12) 

Patients vs. 
HCs,  

p-value 

Age in years, mean (SD) 36 (8.86) 34.67 (7.58) 0.670 

Gender, no. females 9 8 0.293 

PASATa, mean (SD) 47.53 (9.21) - - 

SDMTa, mean (SD) 59.53 (8.14) - - 

No. patients with WM 
lesions 

13 - - 

Lesion load in mL, mean 
(range) 

4.13 (0 to 14.69) - - 

White matter fraction (SD) 0.29 (0.02) 0.29 (0.02) 0.943c 

Grey matter fraction (SD) 0.50 (0.04) 0.49 (0.02) 0.957c 

Mean nodal strength in 
streamlines, mean (SD) 60.46  103 (4.97  103) 66.68  103 (4.33  103) 0.003c 

Mean clustering 
coefficientb, mean (SD) 2.53  10-3 (0.63  10-3) 2.87  10-3 (0.75  10-3) 0.385c 

Mean shortest pathb, mean 
(SD) 0.93  10-3 (0.51  10-3) 2.83  10-3 (5.41  10-3) 0.216c 

Global efficiencyb, mean 
(SD) 41.62  10-3 (8.01  10-3) 46.20  10-3 (10.22  10-3) 0.329c 

Mean local efficiencyb, 
mean (SD) 5.43  10-3 (1.28  10-3) 6.17  10-3 (1.56  10-3) 0.348c 

Modularity coefficientb, 
mean (SD) 521.12  10-3 (22.01  10-3) 501.08  10-3 (31.46  10-3) 0.146c 

  
Table 1 (footnote). a: metric values expressed in number of correct answers; b: metric 
values expressed in dimensionless units; c: models adjusted for age, gender and lesion 
load. All connectivity metrics shown were obtained using the multi-shell data set. 
Abbreviations: 95% CI: 95% confidence interval; DW: diffusion-weighted; ES: effect size; 
HCs: healthy controls; SD: standard deviation.   
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Table 2. Effect sizes (95% CI) for all network metrics, adjusted for age, gender and T2 
lesion load 

 
   

Multi-tissue DW protocol 
ES (95% CI) 

 
Single-tissue DW sub-protocol 

ES (95% CI) 

Mean nodal 
strength 

-1.146 (-1.917 to -0.357), p=0.004 -0.980 (-1.738 to -0.207), p=0.013 

Mean clustering 
coefficient  

-0.315 (-1.040 to 0.415), p=0.400 -0.729 (-1.470 to 0.023), p=0.058 

Mean shortest 
path  

-0.456 (-1.201 to 0.297), p=0.237 -0.060 (-0.790 to 0.672), p=0.874 

Global 
efficiency 

-0.355 (-1.080 to 0.377), p=0.344 -0.484 (-1.213 to 0.253), p=0.200 

Mean local 
efficiency 

-0.341 (-1.066 to 0.390), p=0.363 -0.698 (-1.437 to 0.052), p=0.068 

Modularity 
coefficient 

0.533 (-0.207 to 1.264), p=0.159 0.534 (-0.206 to 1.265), p=0.159 

  
Table 2 (footnote). Abbreviations: 95% CI: 95% confidence interval; DW: diffusion-weighted; 
ES: effect size (expressed in dimensionless units); HCs: healthy controls.  
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Table 3. Association between connectivity metrics and cognitive measures, adjusted 
for age, gender and T2 lesion load 

 
 Multi-tissue DW protocol 

RC (95% CI), p-value 

 

[sRC] 

Single-tissue DW sub-protocol  

RC (95% CI), p-value 

 

[sRC] 

 PASATa SDMTa PASATa SDMTa 

Mean nodal 
strength in 
streamlines 

2.518 (-3.099 to 8.135), 
p=0.353     

 

[sRC=0.243] 

1.969 (-3.014 to 
6.952), p=0.411 

 

[sRC=0.215] 

2.757 (-2.717 to 
8.230), p=0.298     

 

[sRC=0.278] 

-1.120 (-6.097 to 
3.856), p=0.637 

 

[sRC=-0.128] 

Mean 
clustering 
coefficientb  

3.519 (-1.990 to 9.027), 
p=0.192     

 

[sRC=0.350] 

1.466 (-3.632 to 
6.565), p=0.547     

 

[sRC=0.165] 

2.082 (-3.290 to 
7.455), p=0.420     

 

[sRC=0.209] 

1.145 (-3.658 to 
5.948), p=0.617     

 

[sRC=0.130] 

Mean 
shortest 
pathb  

-0.090 (-43.912 to 
43.733), p=0.997     

 

[sRC=-0.001] 

-24.788 (-51.245 to 
1.669), p=0.064     

 

[sRC=-0.502] 

-0.147 (-7.144 to 
6.850), p=0.964     

 

[sRC=-0.019] 

-3.024 (-8.391 to 
2.342), p=0.245     

 

[sRC=-0.463] 

Global 
efficiencyb 

2.869 (-2.637 to 8.375), 
p=0.283     

 

[sRC=0.276] 

1.041 (-3.985 to 
6.067), p=0.664     

 

[sRC=0.113] 

1.536 (-3.561 to 
6.633), p=0.528     

 

[sRC=0.162] 

0.836 (-3.695 to 
5.367), p=0.698     

 

[sRC=0.099] 

Mean local 
efficiencyb 

3.604 (-1.941 to 9.148), 
p=0.185     

 

[sRC=0.352] 

1.286 (-3.873 to 
6.446), p=0.601     

 

[sRC=0.142] 

2.055 (-3.262 to 
7.372), p=0.421     

 

[sRC=0.207] 

0.951 (-3.815 to 
5.717), p=0.675     

 

[sRC=0.108] 

Modularity 
coefficientb 

2.729 (-3.376 to 8.833), 
p=0.354     

 

[sRC=0.238] 

-6.823 (-10.762 to -
2.884), p=0.002     

 

[sRC=-0.673] 

-0.772 (-5.688 to 
4.145), p=0.741     

 

[sRC=-0.084] 

-4.631 (-8.075 to -
1.188), p=0.012     

 

[sRC=-0.570] 

  
Table 3 (footnote) The figures within each cell represent, in order: regression coefficient, 
95% confidence interval, p-value and standardised regression coefficient. a: number of 
correct answers; b: dimensionless units. Abbreviations: 95% CI: 95% confidence interval; 
DW: diffusion-weighted; RC: regression coefficient, expressed in ‘number of correct 
answers/network unit’; sRC: standardised regression coefficient, expressed in dimensionless 
units.   
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Figure legends 
 
Figure 1. Estimated fODF in the corpus callosum in a patient  
 
Figure 1 caption.  
As part of the initial qualitative assessment, we looked at the number of peaks at a white 
matter lesion at the boundaries of the corpus callosum, where it is known there are fibres 
with a similar orientation. Panel A shows a coronal view of a T1-weighted image of a patient 
with a (T1-hypointense) lesion in the confluence of the corpus callosum and the corticospinal 
tract; B-C: voxel-wise fibre orientation distribution function (fODF) mapping inside the lesion 
(lesion mask overlaid), obtained with the single-shell single-tissue (B) and multi-shell multi-
tissue (C) algorithms; D-E: fODF within a lesional voxel belonging to WM tissue known to 
have only one fibre population, for each algorithm; whereas E (multi-shell multi-tissue 
algorithm) shows no spurious peaks, these are observed in D (single-shell single-tissue). 
The reduced size of the fODF in E reflects the partial volume effects within the lesion.  
 
 
Figure 2. Maps of the voxel-wise diffusion-defined volume fractions obtained with the 
multi-shell multi-tissue algorithm 
 
Figure 2 caption. 
This figure shows the maps of voxel-wise volume fractions of the tissues defined based on 
their diffusion properties. As can be seen in panel A, the multi-shell multi-tissue algorithm 
successfully differentiated the different types of brain tissue: normal-appearing white matter 
(i.e. anisotropic tissue), cerebrospinal fluid (i.e. isotropic tissue 1) and grey matter (isotropic 
tissue 2). White matter lesions (panel B) were mainly captured by the isotropic tissue 2 and 
partly by the anisotropic tissue.  

 
 
Figure 3. Illustration of possible hypothetical scenarios of network disruption due to 
MS lesions 
 
Figure 3. caption.  
This figure illustrates, with synthetic examples, how network metrics can change in the 
context of inflammatory-demyelinating lesions, represented as pink ovoidal shapes drawn 
over mock brain networks. Patient examples aim to show two opposite scenarios. In the first 
patient example there is a large lesion severely affecting an important WM tract which 
connects two of the most relevant nodes of the network. In the second patient example there 
are multiple lesions affecting several WM tracts. The lesion burden and the total damage in 
the WM aim to be the same in the two examples. For all three scenarios, connectivity 
matrices have been obtained and network metrics have been computed using the freely 
available Brain Connectivity Toolbox in MATLAB. Both patient examples show the same 
decrease in mean nodal strength. In the first patient example, network efficiency is quite 
preserved despite the severe damage to an important WM tract. Instead, modularity 
coefficient is increased with respect to the healthy control example. In the second patient 
example, network efficiency is much lower than that in the control example but instead the 
modularity coefficient is preserved. Abbreviations: GE: global efficiency; MC: modularity 
coefficient; MCC: mean clustering coefficient; MLE: mean local efficiency; MNS: mean nodal 
strength; MSP: mean shortest path. 
 
 


