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Abstract

Background

The human hippocampus comprises a number of interconnected histologically and function-

ally distinct subfields, which may be differentially influenced by cerebral pathology. Auto-

mated techniques are now available that estimate hippocampal subfield volumes using in

vivo structural MRI data. To date, research investigating the influence of cerebral β-amyloid

deposition—one of the earliest hypothesised changes in the pathophysiological continuum

of Alzheimer’s disease—on hippocampal subfield volumes in cognitively normal older indi-

viduals, has been limited.

Methods

Using cross-sectional data from 408 cognitively normal individuals born in mainland Britain

(age range at time of assessment = 69.2–71.9 years) who underwent cognitive assessment,
18F-Florbetapir PET and structural MRI on the same 3 Tesla PET/MR unit (spatial resolution

1.1 x 1.1 x 1.1. mm), we investigated the influences of β-amyloid status, age at scan, and

global white matter hyperintensity volume on: CA1, CA2/3, CA4, dentate gyrus, presubicu-

lum and subiculum volumes, adjusting for sex and total intracranial volume.

Results

Compared to β-amyloid negative participants (n = 334), β-amyloid positive participants (n =

74) had lower volume of the presubiculum (3.4% smaller, p = 0.012). Despite an age range

at scanning of just 2.7 years, older age at time of scanning was associated with lower CA1
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(p = 0.007), CA4 (p = 0.004), dentate gyrus (p = 0.002), and subiculum (p = 0.035) volumes.

There was no evidence that white matter hyperintensity volume was associated with any

subfield volumes.

Conclusion

These data provide evidence of differential associations in cognitively normal older adults

between hippocampal subfield volumes and β-amyloid deposition and, increasing age at

time of scan. The relatively selective effect of lower presubiculum volume in the β-amyloid

positive group potentially suggest that the presubiculum may be an area of early and rela-

tively specific volume loss in the pathophysiological continuum of Alzheimer’s disease.

Future work using higher resolution imaging will be key to exploring these findings further.

Introduction

Hippocampal atrophy is a characteristic feature of Alzheimer’s disease (AD) and also occurs to

a lesser extent in ageing [1–8]. The hippocampus comprises interconnected histologically and

functionally distinct subfields and delineation of these subfields from structural magnetic reso-

nance imaging (MRI) has the capacity to provide new insights into mechanisms of disease [9].

There is evidence suggesting hippocampal subfields may be differentially influenced by AD,

vascular disease, and ageing [10–25] and have the potential to be more specific biomarkers of

neurodegeneration in ageing populations. However, to date, research investigating the rela-

tionships between cerebral β-amyloid deposition and the volume of individual hippocampal

subfields in cognitively normal older individuals has been limited. In a small sample (n = 74),

Hsu and colleagues reported β-amyloid associated decreases in not only total hippocampal vol-

ume, but also the subiculum and pre-subiculum [26]. The segmentation algorithm utilized in

this study has been shown to be vulnerable to mislabelling [27] and there is a requirement for

studies with larger sample sizes and more up to date hippocampal subfield segmentation meth-

odology to further investigate this relationship.

We report a cross-sectional analysis of a large sample of individuals all born in mainland

Britain in the same week of March 1946 who underwent cognitive assessment, 18F-Florbetapir

positron emission tomography (PET) and structural MRI aged 69.2–71.9 years. Utilizing an

updated version of Freesurfer’s hippocampal subfield segmentation tool based on a computa-

tional atlas using ex vivo, ultra-high resolution MRI, the objective of this analysis was to inves-

tigate the hypothesis that individual hippocampal subfield volumes are differentially associated

with β-amyloid deposition, age at time of scan and global white matter hyperintensity volume

(WMHV–a surrogate marker of cerebral small vessel disease).

Materials and methods

Participants

Data were analysed from individuals who participated in Insight-46, a neuroscience sub-study

of the MRC National Survey of Health and Development (NSHD). The NSHD originally com-

prised 5362 individuals all born in mainland Britain in one week of March 1946 [28–30].

Insight-46 recruited 502 participants to a single-site study involving detailed clinical and

neuropsychological assessment, MRI and 18F-florbetapir PET imaging [31,32] conducted over

a 2.7 year period. Ethical approval was granted by the National Research Ethics Service
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Committee London (reference 14/LO/1173). All participants provided written informed con-

sent. Exclusions from the analysis were: failure to complete scan (n = 31); PET acquisition fail-

ure (n = 8); failure of WMHV segmentation (n = 4); movement artefact felt to impact

reliability of hippocampal subfield segmentation (n = 3); and participants with evidence of

dementia, MCI, major neurological or psychiatric disorder (n = 48).

Clinical assessment

As part of Insight-46 Each participant underwent a history of cognitive impairment, major

neurological or psychiatric illness. Participant cognitive concern was defined as self-report of

memory or cognitive difficulties more than others the same age, or if they felt they would seek

medical attention regarding cognitive difficulties. An informant history regarding each partici-

pant’s cognitive functioning was acquired using the AD8 questionnaire [33,34]. Informant

cognitive concern was defined as an AD8 score� 2.

Cognitive testing included: the Mini-Mental State Examination (MMSE) [35]; the digit-

symbol substitution test [36]; logical memory delayed recall [37]; matrix reasoning [38]; and

the 12-item Face-Name test [31,39].

Participants were defined as having mild cognitive impairment (MCI) if there was evidence

of significant cognitive concerns from the participant or the informant AND objective evi-

dence of an amnestic (sample specific logical memory delayed recall score cut-off� 1.5 stan-

dard deviations below the mean) or non-amnestic cognitive deficit (sample specific digit-

symbol substitution score cut-off� 1.5 standard deviations below the mean), AND there was

no evidence of dementia. Logical memory delayed recall and digit-symbol substitution were

selected for this as they both exhibited a normal distribution.

Florbetapir-PET

Concurrent acquisition of PET and MRI was performed on the same Siemens Biograph mMR

3 Tesla PET/MRI scanner. Static PET images representing uptake during a 10-minute period

approximately 50 minutes after injection of approximately 370 megabecquerels of 18F-florbeta-

pir were reconstructed using a thorughly validated pseudo-CT attenuation correction method

[40]. The post-uptake images were then rigidly registered to the structural MRI data using a

symmetric block matching technique [41]. A previously defined cortical grey matter composite

(composed of frontal, temporal, parietal, and cingulate regions [42–46]) was selected as the

primary region of interest to assess β-amyloid burden. All voxels in the image were then nor-

malised to a reference region to produce a Standard Uptake Value Ratio (SUVR) image. The

reference region selected was a mask of subcortical white matter, eroded one time to avoid par-

tial volume effects. The advantages of the subcortical white matter as a reference region are

that it is a relatively uniform tissue type and has less risk of corruption from other tissues com-

pared to other commonly used reference regions (e.g. the cerebellum). Furthermore, SUVR

values derived from a white matter reference region have also been shown to correlate better

with gold standard arterial sampling based dynamic measurements of tracer uptake compared

to SUVR values derived using other widely used reference regions (e.g. the cerebellum)[47].

Gaussian mixture models were used to fit the data and obtain a threshold for β-amyloid posi-

tivity. Mixture models with one, two, and three gaussians, were tested, with the best model

selected using Bayesian Information Criteria. The best fit for the composite cortical grey mat-

ter region of interest was two gaussians. The 99th percentile SUVR value of the Gaussian repre-

senting the β-amyloid negative population was selected as the cut-point (0.6104) for β-amyloid

positivity,
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Structural MRI

MRI sequences included: three-dimensional T1-weighted MPRAGE images (voxel size

1.1x1.1x1.1 mm3 isotropic; TE/TR = 2.92/2000, total time = 5 minutes 6 seconds) and three-

dimensional FLAIR images using an IR-SPACE acquisition scheme (voxel size 1.1 x1.1x1.1

mm3 isotropic; TE/TR = 402/5000, total time = 6 minutes 27 seconds) [31].

All MRI data were preprocessed for gradwarp and image inhomogeneity [48,49]. Further-

more, all MRI data underwent a detailed quality control process by trained assessor to ensure

there was adequate coverage and absence of motion artefact. T1 scans were also assessed for

blurring, image wrap-around and contrast problems, and FLAIR for adequate CSF suppres-

sion [31].

Hippocampal subfield segmentation was performed using Freesurfer version 6.0; an algo-

rithm based on a computational atlas using ex vivo, ultra-high resolution MRI that segments

T1-weighted MRI data to the following subfields: CA1, CA2/3, CA4, fimbria, the hippocampal

fissure, presubiculum, subiculum, hippocampal tail, parasubiculum, the molecular and granule

cell layers of the dentate gyrus (referred to as the “dentate gyrus’ for the remainder of the arti-

cle), the molecular layer and the hippocampal amygdala transition area (HATA) [9]. Visual

inspection of each participant’s hippocampal subfield segmentation and corresponding

T1-weighted structural MRI data was performed to ensure each segmentation conformed to

the hippocampus and there were no clear and obvious errors. This was performed with the

caveat that the that precise visualisation of the boundaries that define the distinct hippocampal

subfields at the spatial resolution used in this study is challenging [50]. The following regions

were excluded prior to the analysis: the hippocampal fissure (a thin CSF layer rather than a

hippocampal substructure per se), the molecular layer (a thin white matter layer, which is at

risk of partial volume effects), the fimbria (small volume white matter region, also at risk of

partial volume effect), the parasubiculum and HATA (both of which have volumes <100 μl

and may be more prone to noise), and the hippocampal tail (which is not a histologically dis-

tinct region, but instead represents a conglomeration of CA1-4 and dentate gyrus) [9]. The

hippocampal subfield segmentation and corresponding T1-weighted structural images for

each participant were visually inspected to exclude major errors. For each subfield investigated

a total was calculated by summing the left and right hemisphere volumes.

Bayesian Model Selection (BaMoS) [51], an automated segmentation tool that uses

T1-weighted and FLAIR MRI data, was used to generate a global estimate of WMHV.

Total intracranial volume (TIV) was calculated from the T1-weighted images using statisti-

cal parametric mapping 12 software [52].

Statistical approach

Two-sample t-tests, or where there was a material departure from a normal distribution, Wil-

coxon rank sum tests, were used to compare continuous clinical and cognitive characteristics

between β-amyloid positive and negative groups. Logistic regression models were used to com-

pare categorical variables between β-amyloid positive and negative groups. Spearman’s corre-

lation coefficients were used to assess unadjusted relationships between age at time of

scanning and continuous variables. Wilcoxon rank sum tests were used to test associations

between age at scanning and categorical variables.

Linear regression models with robust standard errors were used to test the hypothesis that

individual hippocampal subfield volumes (dependent variables) are associated with: β-amyloid

status, age at time of scan and global WMHV (predictor variables of interest), with additional

adjustment for sex and TIV [52]. Following linear regression analysis, mean differences in sub-

field volumes between β-amyloid positive and negative participants were expressed as a

Hippocampal subfield volumes - Insight 46
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percentage of the mean total volume of the respective subfield in the β-amyloid negative popu-

lation. The β-coefficient for age at scan (i.e. estimated difference in volume per year) was

expressed as a percentage of the mean total volume of the respective subfield across the whole

sample.

A threshold for statistical significance of p<0.05 was utilized throughout the analysis.

Results

Sample characterisation

As individuals were born in the same week, differences in age within the sample were due to

the date of assessment and were therefore narrow: median = 70.7 years; range = 69.2–71.9

years. There were no statistically significant differences between β-amyloid positive and nega-

tive individuals in the age, WMHV, sex, TIV, logical memory, digit-symbol substitution scores

and the 12-item Face-Name test. Matrix reasoning scores were lower in the β-amyloid positive

group compared to the β-amyloid negative group (p = 0.037). There was a non-significant

trend for lower MMSE scores in the β-amyloid positive group compared to the β-amyloid neg-

ative group (p = 0.063). As would be expected [53], APOE genotype strongly predicted Aβ-sta-

tus, with �4 carriers being 5.22 times more likely to be β-amyloid positive. Age at time of scan

was not associated with sex, TIV, or performance on any neuropsychological tests. There was

evidence of a positive association between older age at time of scan and WMHV (p = 0.013)

(Table 1).

Influence of β-amyloid deposition

Compared to β-amyloid negative participants (n = 334), β-amyloid positive participants

(n = 74) had lower presubiculum volume (3.4% smaller relative to the mean volume in the β-

amyloid negative population, p = 0.012) independent of age at time of scan, global WMHV,

sex and TIV (Table 2). β-amyloid-associated differences in CA1 (1.3%), CA2/3 (0.4%), CA4

(0.1%), dentate gyrus (0.3%) and subiculum (1.8%) volumes were directionally consistent but

not significant (Table 2), while there was evidence of lower total hippocampal volume in the β-

amyloid positive participants at trend level of significance only (1.6% smaller p = 0.075)

(Table 2).

To explore asymmetry, post-hoc analysis examining the left and right hemispheres sepa-

rately in the presubiculum was performed and revealed similar β-amyloid-associated differ-

ences in both the left (3.6% decrease, p = 0.023) and right presubiculum (3.3% decrease,

p = 0.02). To explore whether the association observed between β-amyloid and presubiculum

volume was driven by cognitively impaired individuals not captured by the MCI diagnostic

criteria used to characterise the sample, a post-hoc regression analysis between presubiculum

volume and the 12-item Face-Name test (i.e. a test of episodic memory not used in the diag-

nostic formulation in this study) was performed. There was no evidence that 12-item Face-

Name test performance predicted presubiculum volume (p = 0.82), nor was there evidence of

an interaction between 12-item Face-Name test performance and β-amyloid status in terms of

its effect on presubiculum volume (p = 0.30).

Influence of age at time of scanning

Older age at time of scan was associated with smaller volumes of CA1 (1.9%/year, p = 0.007),

CA4 (1.7%/year, p = 0.004), dentate gyrus (2.0%/year, p = 0.002), subiculum (1.6%/year,

p = 0.035) and total hippocampus (1.5%/year, p = 0.012) independent of β-amyloid status,

global WMHV, sex and TIV. There was a non-significant trend for a negative association in
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CA2/3 (1.4%/year, p = 0.086); while presubiculum volume was not significantly associated

with age at time of scan (Fig 1 and Table 3).

To explore whether any associations specifically observed between age at time of scan and

hippocampal subfield volumes might be explained by bias in recruitment order, analyses

incorporating a wider range of co-variates that had been shown to predict recruitment in pre-

vious Insight-46 analyses (socioeconomic position, educational attainment, and childhood

cognitive ability [32]) were also performed and made no material difference to the statistically

significant results obtained (Table 4).

Socioeconomic position dichotomized into manual or non-manual based on occupation at

53 years (or earlier if missing) [56]

Influence of WMHV

There was no evidence that WMHV predicted any hippocampal subfield volumes (Table 3).

Discussion

Few studies have explored the extent to which cerebral β-amyloid deposition are associated

with hippocampal subfield volume in cognitively normal older adults. In a large sample of

Table 1. Sample characterisation–unadjusted relationships between clinical, demographic and cognitive outcomes with β-amyloid positivity and age at time of

scan.

β-amyloid negative

(n = 334)

β-amyloid positive

(n = 74)

β-amyloid negative vs positive Association with age (n = 408)

Age, years, median (IQR) 70.7 (1.2) 70.7 (1.1) p = 0.66a -

Male sex, n (%) 166 (49.7%) 40 (54.1%) OR 0.84; p = 0.5c Δ = -0.05;

p = 0.48a

MMSE, median (IQR)

Maximum score = 30

30 (1) 29 (1) p = 0.063a ρ = 0.0065;

p = 0.9b

Logical memory score,

mean (SD)

Maximum score = 25

11.7 (3.6) 11.3 (3.7) p = 0.33d ρ = 0.018;

p = 0.72b

Digit-symbol substitution score,

mean (SD)

Maximum score = 93

48.8 (10.1) 46.9 (9.7) p = 0.14d ρ = -0.014;

p = 0.78b

Matrix reasoning, median (IQR)

Maximum score = 32

26 (4) 25 (4) p = 0.037a ρ = -0.073;

p = 0.14b

12-item Face-Name test, median (IQR)

Maximum score = 96

66 (28) 68 (27) p = 0.29a ρ = -0.063;

p = 0.21b

APOE ε4 carrier, n (%)

(missing data: n = 2)

76 (22.9%) 45 (60.8%) OR 5.22; p<0.0001c p = 0.49a

TIV, mls, mean (SD) 1426 (133) 1451 (128) p = 0.14d ρ = 0.025;

p = 0.61b

WMHV, mls, median (IQR) 2.85 (4.84) 3.30 (4.97) p = 0.48a ρ = 0.12;

p = 0.013b

aWilcoxon rank sum test
bSpearman’s rank correlation
clogistic regression
dt-test

Δ = mean difference; IQR = interquartile range; MMSE = mini-mental state examination; OR = odds ratio; ρ = Spearman’s rho; SD = standard deviation;

SUVR = standard uptake value ratio; TIV = total intracranial volume; WMHV = white matter hyperintensity volume (mls).

https://doi.org/10.1371/journal.pone.0224030.t001
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cognitively normal older individuals aged 69.2–71.9 years, we show differential associations

between hippocampal subfield volumes β-amyloid deposition, and age at time of scan.

β-amyloid positive individuals had lower presubiculum volumes compared to β-amyloid

negative individuals. Importantly, this was independent of age, sex, TIV and WMHV (a surro-

gate marker of cerebral small vessel disease [51]).

Table 2. Independent influence of amyloid positivity on individual hippocampal subfield volumes in cognitively normal Insight-46 participants (n = 408) using lin-

ear regression models with robust standard errors (co- variates = age at scan, WMHV, sex and TIV).

β-amyloid

negative

(n = 334)

β-amyloid

positive

(n = 74)

Absolute mean difference between β-amyloid negative

and positive (95% CI)

%mean difference between β-amyloid

negative and positive p

CA1 1196 (141) 1195 (111) -15.4

(-38.6, 7.9)

1.3% 0.19

CA2/3 406 (53) 410 (47) -1.5

(-12.3, 9.3)

0.4% 0.78

CA4 482 (50) 487 (44) -0.6

(-10.4, 9.3)

0.1% 0.91

Dentate

gyrus

554 (60) 558 (53) -1.8

(-13.5, 10.0)

0.3% 0.77

Presubiculum 582 (68) 568 (67) -19.9

(-35.4, -4.5)

3.4% 0.012�

Subiculum 832 (100) 827 (86) -15.0

(-34.4, 4.5)

1.8% 0.13

Total volume 6515 (659) 6487 (526) -101.3

(-213.0, 10.3)

1.6% 0.075

CA = Cornu ammonis; TIV = total intracranial volume; WHMV = white matter hyperintensity volume

�p<0.05

https://doi.org/10.1371/journal.pone.0224030.t002

Fig 1. Age is associated with lower CA1 (panel A), CA4 (panel B), dentate gyrus (panel C) and subiculum (panel D)

volume in cognitively normal older adults following adjustment for sex, TIV, amyloid status and WMHV. Dashed

lines represent 95% confidence intervals, TIV = total intracranial volume; WMHV = white matter hyperintensity

volume.

https://doi.org/10.1371/journal.pone.0224030.g001
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Table 3. Independent influence of age at time of scan and WMHV on individual hippocampal subfield volumes in cognitively normal Insight-46 participants

(n = 408) using linear regression models with robust standard errors (co- variates = β-amyloid status, sex and TIV). Unstandardised β-coefficient for age represents

mean subfield volume difference in μl per year. Unstandardised β-coefficient for WMHV represents mean subfield volume difference in μl per ml of WMHV.

Total volume,

μl (SD)

Increasing age at time of scan (μl/

year)

% difference in volume per one year of age WMHV (μl/ml)

β-coefficient

(95% CI)

p β-coefficient

(95% CI)

p

CA1 1196 (136) -23.0

(-39.8, -6.3)

0.007� 1.9% -0.59

(-2.35, 1.17)

0.51

CA2/3 407 (52) -5.7

(-12.1, 0.8)

0.086 1.4% 0.06

(-0.62, 0.74)

0.86

CA4 483 (49) -8.4

(-14.0, -2.7)

0.004� 1.7% -0.13

(-0.8, 0.54)

0.7

Dentate gyrus 555 (59) -11.1

(-17.9, -4.2)

0.002� 2.0% -0.35

(-1.17, 0.47)

0.4

Presubiculum 580 (68) -5.9

(-14.6, 2.8)

0.18 1.0% -0.2

(-1.24, 0.84)

0.71

Subiculum 831 (98) -13.5

(-25.9, -1.0)

0.035� 1.6% -0.7

(-2.17, 0.77)

0.35

Tail 1047 (133) -4.9

(-23.9, 14.1)

0.61 1.5% -0.07

(-2.21, 2.21)

0.95

Total volume 6510 (637) -99.6

(-176.9, -22.3)

0.012� 1.9% -3.13

(-11.67, 5.42)

0.47

CA = Cornu ammonis; TIV = total intracranial volume; WHMV = white matter hyperintensity volume

�p<0.05

https://doi.org/10.1371/journal.pone.0224030.t003

Table 4. Additional adjustment for wide range of potential confounders that could be related to recruitment order makes no material difference to associations

observed between hippocampal subfield volumes and age at time of scan.

Increasing age (μl/year)

Co-variates = sex, TIV, β-amyloid status, and WMHV

Increasing age (μl/year)

Co-variates = sex, TIV, β-amyloid status, WMHV,

socioeconomic position, education, childhood cognition

β-coefficient

(95% CI)

p β-coefficient

(95% CI)

p

CA1 -23.0

(-39.8, -6.3)

0.007� -23.1

(-40.0, -6.2)

0.008�

CA2/3 -5.7

(-12.1, 0.8)

0.086 -6.0

(-12.5, 0.6)

0.074

CA4 -8.4

(-14.0, -2.7)

0.004� -8.7

(-14.4, -3.0)

0.003�

Dentate gyrus -11.1

(-17.9, -4.2)

0.002� -11.2

(-18.2, -4.4)

0.001�

Presubiculum -5.9

(-14.6, 2.8)

0.18 -6.4

(-15.1, 2.2)

0.15

Subiculum -13.5

(-25.9, -1.0)

0.035� -13.8

(-26.3–1.4)

0.03�

Total volume -99.6

(-176.9, -22.3)

0.012� -99.1

(-176.1, -22.2)

0.012�

CA = Cornu ammonis; TIV = total intracranial volume; WHMV = white matter hyperintensity volume

�p<0.05. Childhood cognitive function was measured at age 8 (or age 11 or 15 if this was missing) as the sum of scores of four tests of verbal and non-verbal ability

standardised into a z-score [54]. Educational attainment was dichotomized into those with advanced (e.g. ‘A level’) or higher (e.g. university) qualifications, versus those

below this level [55].

https://doi.org/10.1371/journal.pone.0224030.t004
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Research into hippocampal subfield volumes in pre-clinical populations previously has

been limited. Hsu and colleagues reported β-amyloid associated decreases in the subiculum

and pre-subiculum in a small sample of cognitively normal individuals (n = 74) [26], the pat-

tern of which is broadly consistent with the findings presented in this analysis. However, the

magnitude of these volume differences was much greater (approximately 10–12% compared to

3–4% in Insight 46). A number of factors including smaller sample size and wide age range

(with a trend for the β-amyloid positive to be older) as well recruitment via convenience sam-

pling in the previous study may account for these discrepancies. Furthermore, Hsu and col-

leagues utilized a previous version of Freesurfer’s hippocampal subfield segmentation

algorithm, which has been shown to be vulnerable to mislabelling [27].

Although studies across the pathophysiological continuum of AD suggest that atrophy of

the presubiculum may be one of the earliest hippocampal anatomical markers of AD [15,20],

no other studies to date, have demonstrated lower presubiculum volumes in relative isolation

in β-amyloid positive cognitively normal individuals. Although the effect size was small, it was

consistent across cerebral hemispheres suggesting both that this is a symmetrical effect, and

also is unlikely to be the result of a type I error.

Although there was a trend for lower total hippocampal volume in our study, this did not

attain a 5% level of significance. Previous cross-sectional studies focusing on total hippocampal

volume alone have reported evidence of reduced baseline hippocampal volume associated with

cerebral β-amyloid deposition in cognitively normal older individuals [20,57–62], whereas

others have not [63,64]. Many studies reporting detectable differences in hippocampal volume

include participants who are much older than the age range tested in this study and conse-

quently are likely to be further along the pathophysiological continuum of AD and to have

undergone greater levels of neuronal loss. Our data potentially suggest that individual hippo-

campal subfields may decrease in volume at an earlier stage of the pathophysiological contin-

uum of AD before significant total hippocampal volume loss is detectable.

We also found that several different hippocampal regions–namely CA1, CA4, dentate gyrus

and the subiculum–had a negative association with increasing age at time of scan. Previous

work using a range of techniques has identified similar findings with age-associated volume

loss in CA1 and the dentate gyrus [65]; CA1, dentate gyrus and CA4 [18]; subiculum and den-

tate gyrus [66]; CA1 and CA2 [67]. In addition to biological ageing effects, it is also possible

that the age-related observations in this study might reflect differences in the characteristics of

participants based on the order of recruitment. However, supplementary analyses incorporat-

ing a wide range of confounders that may influence study recruitment [32] made no difference

to the associations observed between hippocampal subfield volumes and age at time of scan. It

is unlikely technical factors (e.g. scanner drift), would explain the results given the lack of a

relationship between age at time of scan and TIV (a morphometric measurement that would

be expected to stay relatively stable across the age range studied). Additionally, the magnitude

of the association between hippocampal subfields and age at time of scan were not dissimilar

to estimated rates of change in hippocampal volume derived from studies where healthy older

adults have been scanned multiple times over a short time interval [8].

Notably, the presubiculum was not associated with age at time of scan, even at a trend level,

suggesting the β-amyloid associated effect of lower presubiculum volume observed in the β-

amyloid positive group is unlikely to be related to ageing effects. Furthermore, neuropathologi-

cal data suggests that the presubiculum is a site of large, evenly distributed “lake-like” β-amy-

loid deposits [68,69] in AD, but devoid of neurofibrillary tau deposition [69,70]. This might

explain both the relatively selective β-amyloid associated volume difference in the presubicu-

lum, as well as the relative sparing of an association with age at time of scan which has been
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hypothesised to underpinned by primary age-related tauopathy a process thought to be inde-

pendent of β-amyloid deposition [71,72].

Previous studies have shown that WMHV and cerebrovascular disease are important deter-

minants of hippocampal atrophy in older adults [22,73]. However, we found no evidence that

WMHV was associated with hippocampal subfield volumes. This may suggest that, at least in

cognitively normal individuals aged approximately 70 years old, vascular disease burden as

estimated by WMHV does not significantly influence cross-sectional hippocampal volume.

One significant limitation of this study is the spatial resolution (1.1 mm x 1.1 m x 1.1 m)

provided by the volumetric structural T1-weighted MRI acquisition protocol utilized, as at this

resolution boundaries important for subfield demarcation are not entirely visible and the

computational atlas based on high resolution ex vivo data, relies on prior encoded information

to provide volumetric estimates of individual hippocampal subfields [9]. It is clear that higher

resolution imaging studies [14,18,74,75] are an important are of research. In particular, large

scale comparison of results from hippocampal subfield segmentation protocols derived from

widely used image acquisition protocols, such as the ones provided by this study, with higher

resolution, but less widely implemented, imaging protocols are required. Another limitation of

the study is the lack of a biomarker of neurofibrillary tangle deposition. A recent study of 88

individuals with a family history of AD investigating hippocampal sub-region volumes found

those with abnormal CSF β-amyloid, but normal CSF tau had increased right subiculum vol-

umes, whilst abnormal CSF β-amyloid and abnormal CSF tau was associated with decreased

right subiculum volume [21] suggesting the presence of tau deposition is important for hippo-

campal atrophy and has selective effects on certain subfields. Future studies of hippocampal

subfields employing tau PET imaging [76,77] will be of interest, particularly as tau is likely to

influence hippocampal structure in both an β-amyloid dependent [77] and independent man-

ner [71,72]. In addition, formal correction for multiple comparisons was not performed in this

analysis, although efforts were made to constrain the analysis to total subfield volumes (sum of

left and right) in the first instance and excluded subfields that were likely to be unreliable. Fur-

thermore, to what extent hippocampal subfields are truly independent, and therefore to what

extent it is valid to apply such techniques is unclear [16]. Finally, the cross-sectional nature of

this study is a further limitation and confirmation with longitudinal data, including investiga-

tion of how hippocampal subfield volumes associate with changes on neuropsychological test-

ing performance over time, will be required [78].

In summary, we present evidence for differential associations between hippocampal sub-

field volumes and β-amyloid deposition and, increasing age at time of scan and highlight the

potential for hippocampal subfield volumes to provide insights into ageing and preclinical AD.

Future work focusing on hippocampal subfield morphometry, particularly utilising higher res-

olution imaging is an important area of future research.
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