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ABSTRACT: One of the attractive properties of artemisinins is their extremely fast-killing capability, quickly relieving malaria
symptoms. Nevertheless, the unique benefits of these medicines are now compromised by the prolonged parasite clearance
times and the increasing frequency of treatment failures, attributed to the increased tolerance of Plasmodium falciparum to
artemisinin. This emerging artemisinin resistance threatens to undermine the effectiveness of antimalarial combination
therapies. Herein, we describe the medicinal chemistry efforts focused on a cGMP-dependent protein kinase (PKG) inhibitor
scaffold, leading to the identification of novel chemical entities with very potent, similar to artemisinins, fast-killing potency
against asexual blood stages that cause disease, and activity against gametocyte activation that is required for transmission.
Furthermore, we confirm that selective PKG inhibitors have a slow speed of kill, while chemoproteomic analysis suggests for the
first time serine/arginine protein kinase 2 (SRPK2) targeting as a novel strategy for developing antimalarial compounds with
extremely fast-killing properties.

■ INTRODUCTION

Malaria, an infectious disease caused by parasites of the genus
Plasmodium (Plasmodium falciparum and Plasmodium vivax are
responsible for most of the clinical cases), is a major healthcare
challenge, especially in developing countries. According to the
2018 World Health Organization (WHO) global malaria
report, in 2017, there were an estimated 219 million cases of
malaria, an increase of about 8 million cases over 2015, with
deaths reaching 435 000, a number similar to the previous year.
It is clear that the steep decline in mortality and disease burden
observed between 2000 and 2015 has now been replaced by a
plateau. Even more disturbing is the fact that of these people,
more than two-thirds were children under 5 years of age and

expectant mothers.1 Malaria control programs are currently
focused on two pillars, namely, disease prevention by vector
control and disease treatment with artemisinin-combination
therapies (ACTs).2,3 Artemisinins (1, Chart 1) are extremely
fast-killing agents, quickly relieving malaria symptoms. Never-
theless, the unique properties of these medicines are
compromised by prolonged parasite clearance times and the
increasing frequency of treatment failures, attributed to the
increased tolerance of P. falciparum to artemisinin.4−7 These
emerging problems have started to raise concerns about the
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effectiveness of this widely administered class of antimalarial
drugs.8,9 As a consequence, the development of new bioactive
molecules endowed with novel mechanisms of action has
garnered the attention of both academia and industry.
However, the biggest challenge in developing medicines to
replace artemisinins is the identification of new chemical
entities displaying parasite killing kinetics as fast as
artemisinins. Such an achievement is a very tough and
demanding task, given that no compound, to the best of our
knowledge, with fast-killing properties similar to or better than

those of artemisinin derivatives (1 and artesunate, Chart 1) has
been reported in the literature thus far.
The cyclic GMP-activated serine−threonine protein kinase,

PKG, has been shown to play an essential role in all of the key
stages of the complex parasite life cycle, including blood stage
replication in the human host as well as gametogenesis and
ookinete motility in the mosquito vector.10−12 In addition, it
has been shown to be key for sporozoite motility, liver cell
invasion, and late liver stage development.13−15 In the blood
stages, PKG regulates the release of proteins from apical
organelles and the mobilization of calcium required for

Chart 1. Structures of Artemisinin-Based Drugs and Compounds with Potent Inhibitory Activity against PKG (2−6)

Scheme 1. Synthetic Procedure Followed for the Preparation of the Thiazole Derivatives 6−8 and 19−57a

aReagents and conditions: (i) LDA, THF, −78 °C to rt, (ii) SO2Cl2, CHCl3, 0 °C to rt, (iii) EtOH, reflux, (iv) Oxone, MeOH:H2O, rt, (v) NaH,
THF, rt or iPrOH, catalytic HCl/dioxane, 120 °C or DMSO, 100 °C (depending on amine’s basicity), (vi) Pd2(dba)3, XantPhos, t-BuOK, toluene,
reflux, (vii) LiOH·H2O, THF:EtOH:H2O, reflux.
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merozoite egress and invasion.10 Using phosphoproteomics,
PKG has also been shown to act as a crucial signaling hub in a
number of the malaria parasite’s core processes required for
egress and invasion.16 Thus, it can be inferred that targeting
PKG is a tractable and multifaceted strategy for malaria
intervention, and developing PKG inhibitors should be
considered as a component of a promising alternative approach
to combat malaria.
The in vivo proof of principle of using PKG inhibitors

against malaria has been established recently, where an
imidazopyridine PKG inhibitor (2, Chart 1) was able to
clear infection in the GSK P. falciparum humanized mouse
model and block transmission.17,18 The development of these
compounds was based on structure−activity relationship
(SAR) studies using the imidazopyridine compound 3
(Chart 1) as a lead. Compound 3 was originally developed
by Merck for the treatment of coccidiosis caused by Eimeria
infection,19 with compound 4 serving as the starting point.20

Thiazoles (e.g., compounds 5 and 6, Chart 1) constitute
another class of PKG inhibitors,21 identified in the context of
scaffold-hopping approaches conducted on the pyrrole
analogue 3 (Chart 1).20

Despite the very promising antimalarial potential of PKG
inhibitors, parasite reduction ratio (PRR) studies using the
most potent and selective imidazopyridine and thiazole
derivatives 2 (in a previous study)17 and 5 (in the context of
this study, Chart 1), respectively, clearly showed that both
analogues suffer from slow parasite killing kinetics. Mindful of
the aforementioned, the aim of this study was to refine those
structural determinants to provide the thiazole pharmacophore
with fast-killing activity through the application of molecular
diversity-oriented SAR and (bio)isosterism approaches.
Toward this end, state-of-the-art medicinal chemistry strategies
accompanied by cell-based assays and chemoproteomic
approaches were applied. The present research delineates the

optimization and the mode of action of a novel series of
thiazole derivatives endowed with fast-killing properties which
are similar to or slightly better than artesunate (Chart 1), the
best fast-killing drug available so far. It aspires at the same time
to create novel chemotype leads for further development, with
the ultimate goal of identifying novel fast-killing agents with
“druglike” properties against malaria.

■ RESULTS AND DISCUSSION

Chemistry. The reference compounds 2−5 were synthe-
sized according to previously published procedures.17−21 The
new thiazole derivatives designed were synthesized following
modified procedures described in the literature (scheme 1−3).
Special emphasis was placed on the development of routes that
are amenable to parallel synthesis for the exploration of
extended SAR studies. First, a library of 52 compounds (6−
57) with a molecular diversity at the 2-position of the
pyrimidine ring and 2-position of the core-thiazole ring were
made (Schemes 1 and 2). Starting from 4-methyl-2-
(methylthio/chloro)pyrimidines a1 and a2, deprotonation
followed by reaction with 4-fluoro-N-methoxy-N-methylbenza-
mide b gave the respective ketones c1 and c2, which upon α-
chlorination with sulfuryl chloride in chloroform afforded the
chlorides d1 and d2, respectively.22,23 Condensation of d1 and
d2 with either numerous different substituted thioamides or
thiourea in refluxing ethanol produced the corresponding 2-
substituted thiazoles of structure e, g, and j (Schemes 1 and
2).22,23 The thioether group of e1 was subsequently oxidized to
furnish derivatives of formula f (Scheme 1).22,23 An SNAr
reaction between f and different (hetero)aromatic or aliphatic
amines afforded the majority of the final compounds. Where
the SNAr reaction was found to be inefficient, a Buchwald-type
C-N palladium-catalyzed cross-coupling was performed using
the respective chlorides e2 (Scheme 1).24 A few derivatives

Scheme 2. Synthetic Procedure Followed for the Preparation of the Thiazole Derivatives 9−18a

aReagents and conditions: (i) EtOH, reflux, (ii) CuCl2, t-BuONO, CH3CN, rt, (iii) morpholine or pyrrolidine, THF, rt, (iv) m-CPBA, CH2Cl2, rt,
(v) 1-Boc-4-(4-aminophenyl)piperazine, TFA, iPrOH, reflux, (vi) TFA or 4 N HCl/dioxane, iPrOH, reflux, (vii) RCOCl or RSO2Cl, Et3N,
CH2Cl2, or HATU, DIPEA, DMF.
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(9−18) were synthesized by slightly modifying the afore-
mentioned synthetic procedure (Scheme 2).
Regarding the synthesis of analogues 58−60 (Scheme 3),

the 4-bromo-2-(4-piperidinyl)thiazole analogue l was initially
built from N-Boc-piperidinethioamide. Thiazole ring formation
followed by bromination at 5-position using NBS gave k,25

which subsequently afforded l under halogen-dance con-
ditions.26 A Suzuki cross-coupling reaction between l and the
substituted trifluoroborates produced analogues of formula m,
which upon iodination and Stille cross-coupling reactions
furnished n and o, respectively. A Buchwald cross-coupling24

between o and 4-amino-2-methylpyridine or 4-aminopyrimi-
dine followed by Boc-deprotection under acidic conditions

finally led to the final products 58−60. The isostere of the
thiazole derivative 28A, oxazole analogue 28B, was made
according to the synthetic procedure depicted in Scheme S1.

SAR Studies and Identification of Compounds with
Fast-Killing Properties. Our efforts toward developing novel
antimalarial compounds with potent fast-killing properties
were first focused on performing SAR exploration using
compound 621 as the starting point (Chart 1). The in vitro
inhibition of recombinant PKG activity as well as the
antiparasitic activity of each compound synthesized were
evaluated using a kinase inhibition assay and a cell-based P.
falciparum asexual blood stage growth inhibition assay,
respectively. In parallel, several compounds were subjected to

Scheme 3. Synthetic Route Used for the Preparation of the Thiazole Derivatives 58−60a

aReagents and conditions: (i) chloroacetaldehyde, acetone, reflux, (ii) NBS, DMF, rt, (iii) LDA, −78 °C to rt, (iv) Pd(OAc)2, XPhos or
cataCXiumA, CsCO3, THF:H2O or toluene:H2O, reflux, (v) NIS, catalytic CF3COOH, CH3CN, rt or I2, n-BuLi, THF, −78 °C to rt, (vi)
Pd(PPh3)4, CuI, DMF, 70 °C, (vii) Pd2(dba)3, XantPhos, t-BuOK, toluene, reflux, (viii) 4 M HCl/dioxane, dioxane, rt.

Table 1. SAR Studies Conducted at Position 2 of the Thiazole Ring (R) and Piperidine Ring (X)
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a preliminary characterization of the main physicochemical
parameters potentially affecting the “druglike” properties of a
bioactive molecule (lipophilicity, aqueous solubility, cytotox-
icity, cardiotoxicity, plasma protein binding, permeability, and
metabolic clearance). Our ultimate goal was to determine
those structural and molecular features conferring fast-acting
potency as well as favorable biopharmaceutical properties at
the same time, and to come up with a promising lead
compound that would be amenable to further optimization/
development.
The first structural part of compound 6 investigated was the

substitution at position 2 of the thiazole ring (Table 1). It
seems that the substitution at this position does not

significantly affect the inhibition of PKG activity since both
the unsubstituted amino derivatives 11−13 and other
structural motifs (7, 9, 14, 16−18) are well tolerated, with
the exception of the amide derivative 15. On the other hand, 2-
substitution plays a significant role in the antiplasmodial
activity exhibited in cells (Pf EC50) since the unsubstituted
analogues 11 and 12 are less potent compared to 7 and 6,
respectively. The pyrrolidine (10) and acetyl (14) derivatives
displayed similar cell potency, while other acetyl (15, 16) and
sulfonamide (17, 18) derivatives either did not improve or
abolished potency. It was also concluded from this SAR study
that the basic nitrogen of piperidine of reference compounds 6
and 7 is crucial for cell potency as decrease of its basicity

Table 2. SAR Studies Conducted at Position 2 of the Pyrimidine Ring of the Thiazole Scaffold (Aromatic Substitution, Ar)
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significantly reduced potency (8). Of note, the most potent
analogues of this library (7, 10, and 14) showed a very
promising metabolic stability (clearance in mouse, rat, and
human liver microsomes), permeability (artificial membrane
permeability, AMP), and cardiotoxicity (hERG inhibition)
profile, whereas their cytotoxicity liability was subject to
further optimization. In general, in the AMP permeability
assay, compounds with values >0.05 × 10−5 cm/s are
considered high permeable, between 0.01 and 0.05 × 10−5

moderate permeable, whereas <0.01 × 10−5 cm/s low
permeable.27

With the objective of improving both antiparasitic activity
and cytotoxicity, our interest then focused on investigating the
impact of the amino substitution of the pyrimidine ring of 6
and 7 on their biopharmaceutical profile. Toward this end, the
bulky and lipophilic 4-piperazinyl-phenyl ring was replaced
with heteroaromatic substituents endowed with molecular
diversity (Table 2). From the experimental data shown in
Table 2, it can be deduced that although all compounds tested
are very potent PKG inhibitors in vitro, the activity in cells is
strictly dependent on their electrostatic and shape/steric
complementarities. The most active compounds that emerged
were the pyrimidine and 2-methylpyridine derivatives 28A and
31, respectively. Notably, in the case of 28A, the number and
the position of nitrogen atoms in the heteroaromatic ring are of
paramount importance since the respective pyridine (25),
pyrazine (26), and pyridazine (27) analogues exhibited much
lower cell activity (Table 2). In addition, small substituents at
the pyrimidine ring (29, 30) did not favor an increase in
potency, while isosterism (different five-membered aromatic
rings, 19−23) was not applicable in this series, with the result
that 19−23 offered at least 10-fold decreased potency.
Moreover, in a scaffold-hopping attempt, the thiazole core
ring was replaced by its respective isostere oxazole (28B, Table
2). Interestingly, this modification in spite of the better
solubility achieved (226 μM), resulted in decreased PKG
inhibitory activity (IC50 = 89.1 nM), abolishing at the same
time the antiparasitic activity (EC50 > 5 μM). Regarding 31,
small substituents around the 2-methylpyridine ring (32, 34)
were not detrimental, without however offering any significant
improvement in potency. Finally, other (poly)substituted
pyridine derivatives (35−40) did not give the desired result.
After further evaluating the most potent analogues of this
library (28A and 31), it was found that the incorporation of
pyrimidine and 2-methylpyridine, besides increasing potency
(compared to reference compound 6), also delivered
molecules with very good solubility, permeability, and
metabolic stability, although at the expense of potent inhibition
against the cardiac ion channel hERG (IC50 values for 28A and
31 are 0.6 and 1.0 μM, respectively, Table 2). Moreover, the
cytotoxicity/cell activity safety windows of both analogues
were significantly improved (36 and 25 for compounds 28A
and 31, respectively, compared to 6.8 and 5.4 for the reference
compounds 6 and 7, respectively).
Another desirable pharmacological feature of this series

concerns their potential to act as transmission-blocking agents
(Tables 1 and 2). The capability of compounds to prevent
mature male and female gametocytes from activation and
progressing to extracellular gametes (both of which are
considered indicators of gametocyte functionality) was
estimated using specialized bioassays.28 The activation of
male gametocytes to differentiate into mature microgametes
was evaluated by measuring levels of exflagellation (extrusion

of rapidly waving flagellated microgametes from the infected
erythrocyte), whereas the activation of female gametocytes was
based on the specific expression of the Pfs25 protein at the
surface of the female gamete following activation. The potent
transmission-blocking effect exerted by the majority of the
compounds can likely be ascribed to the powerful specific PKG
inhibitory activity exhibited by the analogues tested. It has
been previously demonstrated that PKG is essential for
gametocyte activation and their transformation to gametes.12

31, being one of the most promising compounds of this series,
endowed with a balanced physicochemical and cell activity
profile, also potently inhibited the activation of both male and
female gametocytes with EC50 values of 0.30 and 0.40 μM,
respectively.
Notwithstanding the liability of inhibiting hERG, 28A and

31 were subsequently tested in terms of their fast-acting
properties in a parasite reduction ratio (PRR) study, using
artesunate (fast rate of killing), pyrimethamine (moderate rate
of killing), and atovaquone (slow rate of killing) for
comparison. Surprisingly, both compounds exhibited an
extremely fast-killing effect, displaying 87 and 93% clearance
of parasites in the first 24 h, respectively. As depicted in Figure
1, this effect is similar to or slightly better than artesunate
(Figure 1), the best fast-killing drug available so far.

Encouraged by the unprecedented fast-killing potency of 31,
which is accompanied by a favorable aqueous solubility,
permeability, and metabolic stability profile (Table 2), this
compound was initially tested for other (besides hERG)
secondary pharmacology-related liabilities (Table 3). It was
found that no agonistic or antagonistic activity was exerted
against several receptors and ion channels tested, while 31,
except for inhibiting acetylcholinesterase (IC50 = 0.40 μM), did
not exhibit any inhibitory activity against human monoamine
oxidase A (MAOA), phosphodiesterase, and organic anion
transport polypeptide OATP1B1 (Table 3).
Our approach then focused on the identification of a more

developable fast-killing agent, with similar or better antipar-
asitic activity in cells, and even further reduced cytotoxicity
and/or potency against hERG. Our strategy to this end was

Figure 1. PRR study with compounds 28A and 31. Artesunate (fast
rate of killing), pyrimethamine (moderate rate of killing), and
atovaquone (slow rate of killing) have also been included.
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based on the reduction of the numbers of aromatic rings of 31,
on the grounds that the more aromatic rings a compound has,
the more chance there is for this agent to exert toxicity. For
synthetic reasons, our efforts were first focused on replacing
the 2-methylpyridine heteroaromatic ring of 31 with a large
number of nonaromatic/aliphatic groups (Table 4). Com-
pound 5 (Chart 1) was included for comparison. According to
the data depicted in Table 4, these structural modifications
resulted in a great improvement of cytotoxicity (41−57),
which was however counterbalanced by the significant drop
(10- to 50-fold) in the antiplasmodial potency observed.
Although the permeability of all derivatives was maintained at

acceptable levels (Table 4, AMP values), none of the newly
synthesized compounds 41−57 displayed better activity than
5, 28A, and 31.
Additionally, PRR studies conducted with 5 clearly showed

that it is a slow-acting compound (Figure 2), rendering the
heteroaromatic substitution at this specific position of the
thiazole-pyrimidine scaffold a key player toward the identi-
fication of fast-killing antimalarial compounds.
After having experimentally confirmed that position 2 of the

pyrimidine ring is not amenable to aliphatic/nonaromatic
substitution, furnishing slow-acting analogues, a preliminary
exploration of position 4 of the thiazole ring was performed. By
use of similar fundamental design principles, the lipophilic
para-fluorophenyl group of 28A and 31 was replaced by the
smaller cyclopropyl group endowed with an sp2 character
(Table 5). Somewhat surprisingly, despite the outstanding
improvement in cytotoxicity noted by 58 (EC50 = 43.7 μM),
the antiplasmodial potency was decreased by 23-fold (EC50 =
3.45 μM) compared to 28A (EC50 = 0.15 μM). Intriguingly,
the same group preserved (compound 59, IC50 = 0.27 μM) the
antiparasitic activity of 31 (IC50 = 0.16 μM), attenuating at the
same time by 5-fold the hERG inhibitory activity and slightly
(2.5-fold) the cytotoxicity (Table 5). Compound 59 also
showed very good solubility, permeability, and metabolic
clearance properties (Table 5). Finally, the potency was
maintained (EC50 = 0.19 μM) and the cytotoxicity (EC50 = 20

Table 3. In Vitro Evaluation of Compound 31 Effect against
Other Enzymes, Ion Channels, and Receptors

protein activity (μM)

human monoamine oxidase A (MAOA) inhibitor IC50 > 100
β2 adrenoreceptor human agonist EC50 > 100
β2 adrenoreceptor human antagonist IC50 > 100
human PXR (NR1I2) agonist EC50 > 50
human KCNQ1/KCNE1 (Kv7.1/MinK) blocker IC50 > 25
human aryl hydrocarbon receptor (AhR) agonist EC50 > 50
organic anion transport polypeptide OATP1B1 inhibitor IC50 > 30
acetylcholinesterase (AChE) inhibitor IC50 = 0.40
phosphodiesterase 3A (PDE3A) inhibitor IC50 > 100
human CaV1.2 (L-type) calcium channel blocker IC50 > 30

Table 4. SAR Studies Conducted at Position 2 of the Pyrimidine Ring of the Thiazole Scaffold (Nonaromatic Substitution, R)
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μM, cytotoxicity/cell activity safety window = 105) was yet
further improved by substituting the 4-position of the thiazole
ring with the piperidinylmethyl group (compound 60, Table
5).
Furthermore, PRR studies using compounds 59 and 60

proved that both analogues are also endowed with potent fast-
killing properties (with 59 displaying a better fast-killing profile
than 60), exhibiting an effect similar to that of artesunate
(Figure 3).
Additional Target Identification by Chemoproteo-

mics. With the purpose of providing new insights into the
mechanism of action of this series and specifically to
investigate whether these potent fast-killing kinetics are
attributed to a PKG-selective or an off-target (other than
PKG) or a synergistic effect, assays utilizing the P. falciparum
PKG gatekeeper mutant line (T618Q, Table 6)17 followed by
chemoproteomic approaches were deployed. Initially, repre-
sentative thiazole derivatives (26, 28A, 31, 32) were evaluated

in the aforementioned transgenic cell line to determine
whether PfPKG is their primary target in the asexual blood
stages. In this transgenic cell line, the threonine residue at
position 618 of the PfPKG catalytic site, which functions as a
gatekeeper residue forming a small lipophilic pocket which is
essential for the binding of small molecule inhibitors in the
active site of the enzyme, has been replaced by the larger
glutamine residue. As a consequence, entry to this small

Figure 2. PRR study with compounds 5 and 28A. Artesunate (fast
rate of killing), pyrimethamine (moderate rate of killing), and
atovaquone (slow rate of killing) have also been included.

Table 5. Preliminary SAR Studies Conducted at Position 4 of the Thiazole Ring (R)

Figure 3. PRR study with compounds 59 and 60. Artesunate (fast
rate of killing), pyrimethamine (moderate rate of killing), and
atovaquone (slow rate of killing) have also been included.

Table 6. Inhibitory Activity of Representative Compounds
against Plasmodium falciparum WT and Transgenic PKG
T618Q Cell Lines at 48 and 72 h
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lipophilic pocket has been disrupted in the mutant line,
preventing inhibitor binding to the catalytic site of PKG.17,29

Compound 5, which has been demonstrated by previous
studies to exhibit high levels of potency against PKG in vitro
and a remarkable selectivity over other human kinases,21 was
also included for comparison.
The results presented in Table 6 show that the potent

inhibitory activity of 5 against parasite growth (EC50 = 110
nM) in the WT cell line at 72 h is significantly reduced (40-
fold) in the T618Q mutant line (at 72 h). These experimental
data strongly confirm that the potent antiparasitic activity in
cells for this derivative is attributed to its selective inhibitory
activity against PKG. Notably, the fact that 5 also exhibits a
significantly decreased activity in the WT cell line at 48 h
(EC50 = 1.02 μM) compared to 72 h (10-fold, Table 6)
substantiates the PRR studies performed with 5 (Figure 2),
classifying this analogue as a slow-acting agent. In particular,
the loss of activity of 5 in the P. falciparum PKG gatekeeper
mutant line (T618Q) at both 48 and 72 h (Table 6) further
demonstrates that selective PKG inhibition is accompanied by
the exhibition of slow parasite killing kinetics. In contrast, all of
the new thiazole derivatives tested exerted a similar effect in
both WT and mutant cell lines both at 48 and 72 h (Table 6),
a signature of off-target (other than PKG) activity conferring
the potent fast-killing properties of this series.
The above-mentioned results motivated us to investigate in

more detail the molecular mechanism through which this
powerful fast kill rate is exerted. Therefore, a chemoproteomic
approach (Kinobeads profiling) was applied to identify the
target(s) inhibited by one of the most potent derivatives of the
series developed (31, Table 2). Compound 50 (Table 4),
exhibiting an in vitro inhibitory potency against PKG (IC50 =
12.6 nM) comparable to 31, but a much weaker antiplasmodial
activity in cells (EC50 = 4.03 μM), was also included to have a
reliable monitoring framework in terms of the proteins whose
inhibition is accompanied by potent antiparasitic/antimalarial

activity and a fast-killing effect. In that way, any potential
misinterpretation of the results could be avoided. Kinobeads
represent a selection of immobilized promiscuous ATP-
competitive kinase inhibitors,30,31 to affinity capture potential
kinase target proteins from a P. falciparum protein extract.
Using this approach, the activity of the compounds against 54
endogenous P. falciparum kinases was analyzed (Figure 4a). To
explore additional potential kinase (Figure 4b) and nonkinase
targets (Table S1), the compounds were attached to a bead
matrix via their amine moiety and pull down assays were
performed. All of the experiments were performed either
without or with excess of 31 or 50 to identify target proteins
for which capture is competitively inhibited. Both compounds
were added in concentrations between 0.08 and 20 μM aiming
at establishing a competition-binding curve and determining a
half-maximal inhibitory concentration (IC50). The IC50 values
obtained in this kind of experiment are representative of target
affinity but are also affected by the target protein affinity for the
bead-immobilized ligands. The latter effect can be deduced by
determining the apparent dissociation constants (Kd

app), which
are largely nondependent on the bead ligand, thus representing
the depletion of the target proteins by the beads.32 The
proteins captured by the beads were finally quantified by using
isotope tagging of tryptic peptides and analyzed by LC-MS/
MS.32

Based on our pharmacological results, both 31 (Table 2)
and 50 (Table 4) are potent PKG inhibitors in vitro, but only
31 exhibits a strong effect in the P. falciparum growth
inhibition assay at 48 h. Consequently, proteins preferentially
binding to 31 and not to 50 are more likely to be potential
targets that could lead to fast killing of the parasites. Capture
experiments using Kinobeads showed that besides PKG, both
31 and 50 also inhibit calcium-dependent protein kinase 4
(CDPK4) with Kd

app values of 50 and 60 nM, respectively
(Figure 4). Both compounds were also shown to bind to
CDPK1 (Figure 4), with 31 exhibiting a much more potent

Figure 4. Chemoproteomics profiling of compounds 31 and 50. (a) Both compounds were profiled on Kinobeads, which represent a combination
of immobilized promiscuous ATP-competitive kinase inhibitors, in a P. falciparum protein extract. A total of 54 P. falciparum kinases were analyzed.
The concentration of the “free” compounds used for competition, compound 50 and compound 31, was between 0.08 and 20 μM over six samples.
(b) Compounds 50 and 31 were profiled with a bead matrix generated by immobilizing either compound 50 or compound 31 to beads, and
competed with the respective “free” analogue over six concentrations between 0.08 and 20 μM. The Heatmaps show the protein kinases affected by
any of the two compounds in two independent experiments, respectively. The values shown are apparent pKd values (blue: decreasing apparent pKd
values; white: no competition; gray: protein not identified).
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inhibitory activity than 50 (Kd
app = 0.05 μM and Kd

app = 2.1
μM for 31 and 50, respectively). The importance of CDPK1 in
the viability of P. falciparum during the erythrocytic and
sporozoite stages, as well as its regulating role in parasite
motility during egress and invasion in response to calcium
transitions have been particularly underlined elsewhere.33

Three additional proteins which showed competition by
both 31 and 50 were not considered as efficacy targets: (a)
zinc finger (CCCH type) protein (Table S1), as the apparent
Kd

app values were high (3.9 μM for 31 versus 12.6 μM for 50),
(b) glycogen synthase kinase 3 (GSK3, Figure 4) (Kd

app values
of 0.09 versus 5.3 μM for 31 and 50, respectively), and (c)
casein kinase 1 (CK1, Figure 4b) (Kd

app values of 0.15 versus
1.5 μM for 31 and 50, respectively), as a second PfPKG
inhibitor with activity against P. falciparum was tested and did
not show any activity against GSK3 and CK1 (data not
shown). As a follow-up to the above experiments, comparison
of 31 and 50 revealed a difference in binding to only one
protein, the serine/arginine protein kinase 2 (SRPK2 or CLK2,
Figure 4a). The Kd

app values of 31 and 50 for SRPK2 are 0.19
μM and >20 μM, respectively. Notably, when tested on the
immobilized compounds (Figure 4b), SRPK2 was found to not
bind to 50 attached to beads, which suggests no affinity for the
compound. In contrast, SRPK2 was found to bind to 31
attached to beads, with 31 strongly competing the protein with
an apparent Kd value of 0.05 μM.
Altogether, the results of our target identification experi-

ments suggest SRPK2 as a protein kinase target in which the
potent fast-killing properties of the most active derivatives
developed herein could be attributed to. Although we cannot
rule out a synergistic SRPK2/CDPK1,4/PKG effect, such a
scenario seems to be less likely due to the inhibitory effect also
displayed by 50 against CDPK1, CDPK4, and PKG. Therefore,
our study highlights for the first time SRPK2 targeting as a
tractable approach for the development of potential fast-killing
antimalarial drugs. Recent global kinomic and phospho-
proteomic analyses of the human malaria parasite P. falciparum
have emphasized the necessity of SRPK2 in parasite
proliferation during the erythrocytic asexual cycle.34,35 A
transcriptomic study by Hoeijmakers et al.36 indicates the
expression profile of SRPK2 (27−45 h post invasion) is more
extensive than that of PKG (32−45 h post invasion) in blood
stages, which supports the idea that inhibition of SRPK2 might
mediate the fast kill phenotype of compound 31 since it is
likely active against a greater proportion of the 48 h blood
stage cycle. We have previously assumed that the slow kill
phenotype of specific PKG inhibitors is due to the narrow
window of expression just prior to egress and invasion.
Previous work has implicated Plasmodium SRPKs (CLKs)
such as SRPK2 (CLK2) in the regulation of alternative splicing
of mRNA.37 CLK1 and CLK2 (both located in the nucleus)34

are orthologues of a yeast SR protein kinase Sky1p that
phosphorylates SR proteins which bind to RNA and play a key
role in RNA splicing. SR kinases phosphorylate SR proteins in
a serine/arginine-rich domain, thereby influencing their activity
and localization. CLK1−CLK4 have been shown to phosphor-
ylate SR protein orthologues34,38 and are expressed in blood
stages and gametocytes.38 It is therefore possible that
breakdown of the regulation of mRNA splicing by inhibition
of SRPK2 contribute significantly to the fast kill phenotype of
compound 31. There is a precedent for targeting SRPK/CLK
to treat disorders such as Duchenne muscular dystrophy39 and
Alzheimer’s disease40 either by disrupting alternative splicing

or by correcting the aberrant splicing observed in some
diseases.37 During the review process of the current article, an
interesting research paper was published, highlighting CLK3 as
a multistage cross-species malarial target, the inhibition of
which could offer both a prophylactic and transmission-
blocking effect.41

Collectively, starting from “hits” (4−6, Chart 1) acting
through a well-validated target (PKG) playing a crucial role in
all of the key stages of the complex parasite life cycle but
offering a low parasite killing rate, we were able to develop
novel powerful fast kill entities comparable to artemisinins by
refocusing on a kinase polypharmacology strategy. Whole
transcriptome and kinome screens suggest that Plasmodium
infection dramatically alters signaling networks within both the
circulation and hepatocytes.42−46 Recent evidence also
suggests that signaling alterations in infected cells may affect
the response of cells to extrinsic stimuli and provide new
targets for therapeutic intervention which are unique to
infected cells.47 Given that kinases are critical enzymes in cell
signaling, protein regulation, cellular transport, secretory
processes, and many other cellular pathways in malaria
transmission, infection, and spread, the development of
bioactive molecules targeting multiple kinases has the potential
to offer a superior effect compared to a single agent. In
addition, targeting simultaneously more than one parasite
component may limit the development of resistance to a single
therapeutic. The exploitation of the polypharmacology of
kinase inhibitors has already become a major focus for the
development of more efficient anticancer therapeutics and is
currently a relatively untapped resource for the repurposing of
drugs for use against malaria and other infectious diseases.48 In
addition, it has long been recognized that Plasmodium protein
kinases are attractive targets for antimalarial chemotherapy.49,50

The Plasmodium kinome is made up of between 6551 and 99
protein kinases,52 comprising a single PKG and a family of four
SRPK-like kinases (CLKs).53

■ CONCLUSIONS AND FUTURE PLANS

In this article, the development of powerful fast-acting agents
with killing rates similar to or better than artemisinins is
described, and the structural and molecular characteristics
providing such unique properties are highlighted. Compounds
31, 59, and 60 could be considered promising lead compounds
for further optimization in the search for identifying novel
antimalarial agents with new mechanisms of action and a
strong fast-killing profile which are missing from the
therapeutic arsenal against malaria. In parallel, the present
study confirms that selective PKG inhibition is accompanied
by low parasite killing rates, while it brings to light for the first
time the tractability of targeting SRPK2/PKG in developing
powerful fast-kill chemotypes with curative and transmission-
blocking properties against malaria. Our efforts are currently
being focused on further refinement of the structural features
of 31, 59, and 60, aiming at extracting a new generation of fast-
kill antimalarial chemical entities with an optimal develop-
ability profile. Elucidation of the involvement of SRPK2
inhibition in mediating the fast-kill phenotype of these
compounds is also underway and will utilize recombinant
expression and immunoprecipitation of the native kinase from
parasite extracts, as described elsewhere.38
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■ EXPERIMENTAL SECTION
General Chemistry Information. All starting materials were

purchased from commercial sources and used as received or
synthesized via literature procedures. Solvents were dried using a
commercial solvent purification system and stored under nitrogen. All
final compounds were characterized by 1H NMR spectroscopy and
LCMS. 1H NMR spectra were recorded on a Bruker Avance 400 MHz
spectrometer at 293 K. Purity was determined by HPLC (Acquity
UPLC BEH C18 1.7 μ 2.1 mm × 50 mm) at 35 °C. All compounds
tested present a purity >95%, except for a couple of derivatives that
presented a purity of >90%. Method: acetate NH4 25 mM + 10%
ACN at pH 6.6/ACN, 0−0.2 min 100:0; 0.2−1.0 min 10:90; 1.0−1.8
min 10:90; 1.8−2.0 min 100:0. Flow: 0.8 mL/min. The UV detection
wavelength was 254 and 210 nm. Positive-ion mass spectra (high-
resolution mass spectroscopy) was acquired using a QSTAR Elite (AB
Sciex Instruments) mass spectrometer, equipped with a turbospray
source, over a mass range of 250−700, with a scan time of 1 s. The
elemental composition was calculated using Analyst QS 2.0 software.
Compounds 5−8 were synthesized using previously described

procedures.21

Synthesis of Final Compounds 9 and 10. To a microwave vial
containing a magnetic stirring bar were added compounds of formula
i (0.38 mmol), 1-Boc-4-(4-aminophenyl)piperazine (116 mg, 0.42
mmol), iPrOH (4 mL), and trifluoroacetic acid (TFA, 44 μL, 0.57
mmol). The vial was capped and stirred in a Biotage microwave
reactor at 105 °C for 2 h. Additional TFA (44 μL, 0.57 mmol) was
added, and the reaction mixture further stirred in the microwave
reactor at 105 °C for 2 h to afford the Boc-protected analogues of 9
and 10. To the resulting crude mixtures were then added 4 N HCl in
dioxane (6 mL). The reaction mixtures were stirred at room
temperature for 3 h and concentrated under reduced pressure. The
crude materials were purified by semipreparative HPLC to furnish the
desired final products.
4-[4-(4-Fluorophenyl)-2-(morpholin-4-yl)-1,3-thiazol-5-yl]-N-[4-

(piperazin-1-yl)phenyl]pyrimidin-2-amine Trifluoroacetate (9). Or-
ange solid. Yield = 5%. 1H NMR (400 MHz, DMSO-d6) δ 9.40 (s,
1H), 8.69 (br s, 2H), 8.10 (d, J = 5.38 Hz, 1H), 7.61 (d, J = 9.10 Hz,
2H), 7.56 (dd, J = 5.57, 8.82 Hz, 2H), 7.30 (t, J = 8.92 Hz, 2H), 6.94
(d, J = 9.10 Hz, 2H), 6.23 (d, J = 5.38 Hz, 1H), 3.74 (t, J = 4.82 Hz,
4H), 3.51 (t, J = 4.80 Hz, 4H), 3.25 (s, 8H). MS: m/e 518 (MH+).
Purity was determined as >95% by HPLC (266 nm). Rt: 0.99 min
(Acquity UPLC BEH C18 1.7 μm, 3 mm × 50 mm, 0.1% formic acid
in water/0.1% formic acid in ACN).
4-[4-(4-Fluorophenyl)-2-(pyrrolidin-1-yl)-1,3-thiazol-5-yl]-N-[4-

(piperazin-1-yl)phenyl]pyrimidin-2-amine Trifluoroacetate (10).
Pale yellow solid. Yield = 3%. 1H NMR (400 MHz, DMSO-d6) δ
9.40 (s, 1H), 8.71 (br s, 2H), 8.05 (d, J = 5.48 Hz, 1H), 7.62 (d, J =
9.09 Hz, 2H), 7.55 (dd, J = 5.58, 8.80 Hz, 2H), 7.31 (t, J = 8.90 Hz,
2H), 6.94 (d, J = 9.13 Hz, 2H), 6.16 (d, J = 5.48 Hz, 1H), 3.47 (t, J =
6.20 Hz, 4H), 3.26 (s, 8H), 2.02 (t, J = 6.60 Hz, 4H). MS: m/e 502
(MH+). Purity was determined as >95% by HPLC (269 nm). Rt: 0.99
min (Acquity UPLC BEH C18 1.7 μm, 3 mm × 50 mm, 0.1% formic
acid in water/0.1% formic acid in ACN).
4-[2-Amino-4-(4-fluorophenyl)-1,3-thiazol-5-yl]-N-[4-(4-methyl-

piperazin-1-yl)phenyl]pyrimidin-2-amine Trifluoroacetate (11). To
a microwave vial containing a magnetic stirring bar were added
compound j (70 mg, 0.23 mmol), 4-(4-methylpiperazino)aniline (44
mg, 0.23 mmol), iPrOH (4 mL), and 4 N HCl in dioxane (57 μL,
0.23 mmol). The vial was capped and stirred in a Biotage microwave
reactor at 170 °C for 30 min. The reaction mixture was concentrated
under reduced pressure, and the crude material was purified by
semipreparative HPLC. Yellow/orange solid. Yield = 18%. 1H NMR
(400 MHz, DMSO-d6) δ 9.60 (br, 1H), 9.37 (s, 1H), 8.07 (d, J = 5.44
Hz, 1H), 7.70 (br s, 2H), 7.61 (d, J = 9.08 Hz, 2H), 7.55 (dd, J =
5.58, 8.80 Hz, 2H), 7.28 (t, J = 8.90 Hz, 2H), 6.93 (d, J = 9.14 Hz,
2H), 6.22 (d, J = 5.42 Hz, 1H), 3.73 (d, J = 13.34 Hz, 2H), 3.53 (d, J
= 12.20 Hz, 2H), 3.24−3.12 (m, 2H), 2.94−2.85 (m, 5H). MS: m/e
462 (MH+). Purity was determined as >95% by HPLC (288 nm). Rt:
0.90 min (Acquity UPLC BEH C18 1.7 μm, 3 mm × 50 mm, 0.1%
formic acid in water/0.1% formic acid in ACN).

4-[2-Amino-4-(4-fluorophenyl)-1,3-thiazol-5-yl]-N-[4-(piperazin-
1-yl)phenyl]pyrimidin-2-amine (12). To a round-bottom flask
containing a magnetic stirring bar were added compound j (1.0 g,
3.26 mmol), 1-Boc-4-(4-aminophenyl)piperazine (1.09 g, 3.91
mmol), iPrOH (20 mL), and trifluoroacetic acid (TFA, 0.30 mL,
3.91 mmol). The reaction mixture was stirred at 100 °C for 2 h.
Additional TFA (0.30 mL, 3.91 mmol) was added and the reaction
mixture was further stirred at 100 °C for 2 h, concentrated under
reduced pressure, diluted with EtOAc, and washed with saturated
NaHCO3 solution. The organic phase was dried over Na2SO4, filtered,
and concentrated under reduced pressure. The crude material was
purified on silica gel cartridge (0−100% EtOAc in cyclohexane) to
give the Boc-protected derivative of 12 (1.17 g, 66%) as a yellow
solid. 1H NMR (400 MHz, DMSO-d6) δ 9.26 (s, 1H), 8.05 (d, J =
5.36 Hz, 1H), 7.61−7.52 (m, 6H), 7.27 (t, J = 8.90 Hz, 2H), 6.87 (d,
J = 9.13 Hz, 2H), 6.20 (d, J = 5.36 Hz, 1H), 3.46 (t, J = 4.90 Hz, 4H),
3.00 (t, J = 5.09 Hz, 4H), 1.42 (s, 9H). MS: m/e 548 (MH+). To a
stirred solution of the Boc-protected carbamate (100 mg, 0.18 mmol)
in anhydrous 1,4-dioxane (8 mL) was added 4 N HCl in dioxane (8
mL). The reaction mixture was stirred at room temperature for 4 h,
concentrated and passed through an SCX-2 cartridge. The impurities
were first eluted using MeOH, and the desired product was
subsequently eluted using 7 N NH3 in MeOH solution. The resulting
solution was concentrated under reduced pressure, and the crude
material was purified by semipreparative HPLC. Bright yellow solid.
Yield = 40%. 1H NMR (400 MHz, DMSO-d6) δ 9.22 (s, 1H), 8.05 (d,
J = 5.34 Hz, 1H), 7.60−7.53 (m, 6H), 7.28 (t, J = 8.90 Hz, 2H), 6.84
(d, J = 9.05 Hz, 2H), 6.20 (d, J = 5.34 Hz, 1H), 5.76 (s, 1H), 3.01−
2.91 (m, 4H), 2.89−2.77 (m, 4H). MS: m/e 448 (MH+). Purity was
determined as >95% by HPLC (292 nm). Rt: 0.96 min (Acquity
UPLC BEH C18 1.7 μm, 3 mm × 50 mm, acetate NH4 25 mM + 10%
ACN at pH 6.6/ACN).

4-[2-Amino-4-(4-fluorophenyl)-1,3-thiazol-5-yl]-N-[4-(morpho-
lin-4-yl)phenyl]pyrimidin-2-amine (13). To a microwave vial
containing a magnetic stirring bar were added compound j (70 mg,
0.23 mmol), 4-morpholinoaniline (41 mg, 0.23 mmol), iPrOH (4
mL), and 4 N HCl in dioxane (57 μL, 0.23 mmol). The vial was
capped and stirred in a Biotage microwave reactor at 170 °C for 30
min. The reaction mixture was concentrated under reduced pressure
and purified by semipreparative HPLC. Pale brown solid. Yield = 4%.
1H NMR (400 MHz, DMSO-d6) δ 9.25 (s, 1H), 8.06 (d, J = 5.36 Hz,
1H), 7.61−7.53 (m, 6H), 7.28 (t, J = 8.92 Hz, 2H), 6.87 (d, J = 9.11
Hz, 2H), 6.21 (d, J = 5.35 Hz, 1H), 3.75 (t, J = 4.74 Hz, 4H), 3.04 (t,
J = 4.78 Hz, 4H). MS: m/e 449 (MH+). Purity was determined as
>95% by HPLC (296 nm). Rt: 1.13 min (Acquity UPLC BEH C18
1.7 μm, 3 mm × 50 mm, acetate NH4 25 mM + 10% ACN at pH 6.6/
ACN).

N-[4-(4-Fluorophenyl)-5-{2-[4-(piperazin-1-yl)anilino]pyrimidin-
4-yl}-1,3-thiazol-2-yl]acetamide Trifluoroacetate (14). To a stirred
solution of tert-butyl 4-[4-({4-[2-amino-4-(4-fluorophenyl)-1,3-thia-
zol-5-yl]pyrimidin-2-yl}amino)phenyl]piperazine-1-carboxylate (100
mg, 0.18 mmol) in anhydrous CH2Cl2 (10 mL) were added acetyl
chloride (9 μL, 0.13 mmol) and dry triethylamine (18 μL, 0.13
mmol). The reaction mixture was stirred at room temperature for 4 h
under N2 atmosphere. Additional acetyl chloride (3.9 μL, 0.055
mmol) and triethylamine (7.6 μL, 0.055 mmol) were added and the
mixture was further stirred at room temperature overnight and
concentrated under reduced pressure to give the crude BOC-
protected 14 (MS: m/e 590 (MH+)), which was dissolved in
anhydrous 1,4-dioxane (8 mL) and 4 N HCl in dioxane solution (8
mL). The mixture was stirred at room temperature for 4 h,
concentrated under reduced pressure, and the residue was purified
by semipreparative HPLC. Orange solid. Yield = 22%. 1H NMR (400
MHz, DMSO-d6) δ 12.44 (s, 1H), 9.50 (s, 1H), 8.67 (br s, 2H), 8.21
(d, J = 5.26 Hz, 1H), 7.64−7.58 (m, 4H), 7.31 (t, J = 8.90 Hz, 2H),
6.92 (d, J = 9.10 Hz, 2H), 6.40 (d, J = 5.26 Hz, 1H), 3.26 (br s, 8H),
2.20 (s, 3H). MS: m/e 490 (MH+). Purity was determined as >95%
by HPLC (258 nm). Rt: 0.95 min (Acquity UPLC BEH C18 1.7 μm,
3 mm × 50 mm, 0.1% formic acid in water/0.1% formic acid in
ACN).
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N-[4-(4-Fluorophenyl)-5-{2-[4-(piperazin-1-yl)anilino]pyrimidin-
4-yl}-1,3-thiazol-2-yl]cyclopropanecarboxamide Trifluoroacetate
(15). To a stirred solution of tert-butyl 4-[4-({4-[2-amino-4-(4-
fluorophenyl)-1,3-thiazol-5-yl]pyrimidin-2-yl}amino)phenyl]-
piperazine-1-carboxylate (80 mg, 0.15 mmol) in anhydrous CH2Cl2
(10 mL) were added cyclopropanecarbonyl chloride (13.2 μL, 0.15
mmol) and dry triethylamine (20.3 μL, 0.15 mmol). The reaction
mixture was stirred at room temperature for 18 h under N2
atmosphere. The reaction mixture was concentrated under reduced
pressure to give the Boc-protected carbamate of 15 (MS: m/e 616
(MH+) as a crude residue, which was dissolved in anhydrous 1,4-
dioxane (8 mL) and 4 N HCl in dioxane solution (8 mL). The
resulting mixture was stirred at room temperature for 4 h,
concentrated under reduced pressure, and the crude material was
purified by semipreparative HPLC. Bright yellow solid. Yield = 11%.
1H NMR (400 MHz, DMSO-d6) δ 8.67 (br s, 2H), 8.29 (d, J = 5.52
Hz, 1H), 7.77 (br s, 2H), 7.55 (dd, J = 5.60, 8.77 Hz, 2H), 7.29 (t, J =
8.89 Hz, 2H), 7.07 (d, J = 8.98 Hz, 2H), 6.99 (d, J = 9.02 Hz, 2H),
6.64 (d, J = 5.52 Hz, 1H), 3.36−3.34 (m, 4H), 3.27−3.21 (m, 4H),
1.97−1.91 (m, 1H), 0.94−0.90 (m, 2H), 0.88−0.82 (m, 2H). MS: m/
e 516 (MH+). Purity was determined as >95% by HPLC (254 nm).
Rt: 0.93 min (Acquity UPLC BEH C18 1.7 μm, 3 mm × 50 mm, 0.1%
formic acid in water/0.1% formic acid in ACN).
N-[4-(4-Fluorophenyl)-5-{2-[4-(piperazin-1-yl)anilino]pyrimidin-

4-yl}-1,3-thiazol-2-yl]-1-methylpiperidine-4-carboxamide Trifluor-
oacetate (16). To a stirred solution of 1-methylpiperidine-4-
carboxylic acid (13 mg, 0.09 mmol) in anhydrous DMF (10 mL)
under N2 atmosphere were added HATU (52 mg, 0.14 mmol),
DIPEA (48 μL, 0.27 mmol), and tert-butyl 4-[4-({4-[2-amino-4-(4-
fluorophenyl)-1,3-thiazol-5-yl]pyrimidin-2-yl}amino)phenyl]-
piperazine-1-carboxylate (50 mg, 0.09 mmol). The resulting mixture
was stirred at room temperature for 2 h and then heated at 60 °C for
72 h. In addition, 1-methylpiperidine-4-carboxylic acid (13 mg, 0.09
mmol), HATU (35 mg, 0.09 mmol), and DIPEA (32 μL, 0.18 mmol)
were added and the mixture was further stirred at 60 °C for 48 h.
LCMS showed product to starting material ratio as 1:1. Hence, NaH
(60% dispersion in mineral oil, 7.3 mg, 0.18 mmol) was added with
the mixture being stirred at room temperature for further 4 h. The
reaction mixture was diluted with water and extracted with EtOAc.
The combined organic extracts were dried over Na2SO4, filtered, and
concentrated under reduced pressure to give the Boc-protected 16 as
a pale brown solid (MS: m/e 673 (MH+)). This pale brown solid was
dissolved in 4 N HCl in dioxane (10 mL) and stirred at room
temperature for 4 h, concentrated under reduced pressure, and
purified by semipreparative HPLC. Orange solid. Yield = 17%. 1H
NMR (400 MHz, DMSO-d6) δ 12.63 (s, 1H), 9.48 (s, 1H), 9.43 (br,
1H), 8.73 (br s, 2H), 8.23 (d, J = 5.26 Hz, 1H), 7.62−7.57 (m, 4H),
7.31 (t, J = 8.89 Hz, 2H), 6.92 (d, J = 9.07 Hz, 2H), 6.42 (d, J = 5.24
Hz, 1H), 3.26 (s, 8H), 3.04−2.95 (m, 2H), 2.83−2.76 (m, 3H), 2.54
(s, 3H), 2.14−2.08 (m, 2H), 1.91−1.78 (m, 2H). MS: m/e 573
(MH+). Purity was determined as >95% by HPLC (260 nm). Rt: 0.86
min (Acquity UPLC BEH C18 1.7 μm, 3 mm × 50 mm, 0.1% formic
acid in water/0.1% formic acid in ACN).
N-[4-(4-Fluorophenyl)-5-{2-[4-(piperazin-1-yl)anilino]pyrimidin-

4-yl}-1,3-thiazol-2-yl]propane-1-sulfonamide Trifluoroacetate (17).
To a stirred solution of tert-butyl 4-[4-({4-[2-amino-4-(4-fluorophen-
yl)-1,3-thiazol-5-yl]pyrimidin-2-yl}amino)phenyl]piperazine-1-car-
boxylate (150 mg, 0.27 mmol) and Et3N (46 μL, 0.33 mmol) in
anhydrous CH2Cl2 (25 mL) at 0 °C under N2 atmosphere was added
1-propanesulfonyl chloride (32 μL, 0.28 mmol). The reaction mixture
was stirred at 0 °C for 30 min and then allowed to warm to room
temperature and stirred at room temperature for 5 h. In addition,
Et3N (46 μL, 0.33 mmol) was added and the mixture was stirred
under reflux for a further 2 h and concentrated under reduced
pressure to give the Boc-protected carbamate of 17 (160 mg) as a
yellow oil (MS: m/e 654 (MH+)). The oil was dissolved in anhydrous
1,4-dioxane (3 mL) and 4 N HCl in dioxane (7 mL), stirred at room
temperature for 4 h, and concentrated under reduced pressure. The
crude residue was purified by semipreparative HPLC. Orange solid.
Yield = 47%. 1H NMR (400 MHz, DMSO-d6) δ 13.08 (br s, 1H),

9.52 (s, 1H), 8.80 (br s, 2H), 8.16 (d, J = 5.32 Hz, 1H), 7.66 (dd, J =
5.40, 8.82 Hz, 2H), 7.59 (d, J = 9.12 Hz, 2H), 7.41 (t, J = 8.86 Hz,
2H), 6.92 (d, J = 9.12 Hz, 2H), 6.10 (d, J = 5.30 Hz, 1H), 3.25 (s,
8H), 3.06 (t, J = 7.59 Hz, 2H), 1.73 (sextet, J = 7.50 Hz, 2H), 0.99 (t,
J = 7.48 Hz, 3H). MS: m/e 554 (MH+). Purity was determined as
>95% by HPLC (274 nm). Rt: 0.85 min (Acquity UPLC BEH C18
1.7 μm, 3 mm × 50 mm, 0.1% formic acid in water/0.1% formic acid
in ACN).

N-[4-(4-Fluorophenyl)-5-{2-[4-(piperazin-1-yl)anilino]pyrimidin-
4-yl}-1,3-thiazol-2-yl]piperidine-4-sulfonamide Trifluoroacetate
(18). To a stirred solution of tert-butyl 4-[4-({4-[2-amino-4-(4-
fluorophenyl)-1,3-thiazol-5-yl]pyrimidin-2-yl}amino)phenyl]-
piperazine-1-carboxylate (80 mg, 0.15 mmol) in anhydrous CH2Cl2
(10 mL) were added 4-chlorosulfonyl-piperidine-1-carboxylic acid
tert-butyl ester (41 mg, 0.15 mmol) and dry triethylamine (20.3 μL,
0.15 mmol). The reaction mixture was stirred at room temperature for
18 h under N2 atmosphere. In addition, 4-chlorosulfonyl-piperidine-1-
carboxylic acid tert-butyl ester (41 mg, 0.15 mmol) and dry Et3N
(20.3 μL, 0.15 mmol) were added. The mixture was stirred under
reflux overnight, concentrated under reduced pressure, and purified
on silica gel cartridge (0−100% EtOAc in cyclohexane, then 0−20%
MeOH in EtOAc) to give the di-Boc-protected 18 (MS: m/e 795
(MH+) as a pale brown solid. This solid was subsequently dissolved in
anhydrous 1,4-dioxane (8 mL) and 4 N HCl in dioxane solution (8
mL), stirred at room temperature for 4 h, and concentrated under
reduced pressure. The crude residue was purified by semipreparative
HPLC. Burgundy solid. Yield = 42%. 1H NMR (400 MHz, DMSO-
d6) δ 13.26 (br s, 1H), 9.52 (s, 1H), 8.76 (br s, 3H), 8.46−8.31 (m,
1H), 8.18 (d, J = 5.28 Hz, 1H), 7.65 (dd, J = 5.40, 8.66 Hz, 2H), 7.59
(d, J = 9.02 Hz, 2H), 7.43 (t, J = 8.82 Hz, 2H), 6.92 (d, J = 9.06 Hz,
2H), 6.11 (d, J = 5.26 Hz, 1H), 3.41−3.38 (m, 2H), 3.33−3.29 (m,
1H), 3.26 (br s, 8H), 2.99−2.89 (m, 2H), 2.20−2.15 (m, 2H), 1.90−
1.79 (m, 2H). MS: m/e 595 (MH+). Purity was determined as >90%
by HPLC (274 nm). Rt: 0.83 min (Acquity UPLC BEH C18 1.7 μm,
3 mm × 50 mm, 0.1% formic acid in water/0.1% formic acid in
ACN).

General Procedure for the Removal of Ethyl Carbamate
Group: Synthesis of the Final Compounds 19−40. In a
microwave vial, the respective N-ethyl carbamate-protected deriva-
tives 61−82 (0.067 mmol), LiOH·H2O (0.042 mg, 1.01 mmol), THF
(1 mL), ethanol (1 mL), and water (1 mL) are added and the mixture
is stirred at 105 °C overnight. EtOAc (15 mL) and an aqueous
solution of NaOH (1 N, 5 mL) are added, the two phases are
separated, the aqueous phase is washed with EtOAc (5 mL), and the
combined organic phases are washed with brine (10 mL), dried over
Na2SO4, filtered, and concentrated under reduced pressure to afford
the desired compounds, which are purified by semipreparative HPLC
to afford pure materials.

N-(4-(4-(4-Fluorophenyl)-2-(piperidin-4-yl)thiazol-5-yl)-
pyrimidin-2-yl)-1,3,4-thiadiazol-2-amine (19). White solid. Yield =
60%. 1H NMR (400 MHz, DMSO-d6) δ 1.65 (br dd, J = 11.87, 3.54
Hz, 2H), 1.93−2.11 (m, 2H), 2.63 (td, J = 12.06, 2.15 Hz, 2H),
2.96−3.10 (m, 2H), 3.10−3.22 (m, 2H), 6.70 (d, J = 5.05 Hz, 1H),
7.15−7.42 (m, 2H), 7.57−7.76 (m, 2H), 8.49 (d, J = 5.05 Hz, 1H),
8.96−9.20 (m, 1H). MS: m/e 440 (MH+). Purity was determined as
94.4% by HPLC (280 nm). Rt: 0.90 min (Acquity UPLC BEH C18
1.7 μm, 3 mm × 50 mm, CH3COO

−NH4
+ 25 mM + 10% acetonitrile

at pH 6.6/acetonitrile).
N-(4-(4-(4-Fluorophenyl)-2-(piperidin-4-yl)thiazol-5-yl)-

pyrimidin-2-yl)-5-methyl-1,3,4-thiadiazol-2-amine (20). White
solid. Yield = 59%. 1H NMR (400 MHz, DMSO-d6) δ .65−1.79
(m, 2H), 2.07 (br d, J = 11.87 Hz, 2H), 2.60 (s, 3H), 2.71 (br t, J =
11.49 Hz, 2H), 3.12 (br d, J = 11.87 Hz, 2H), 3.16−3.40 (m, 2H),
6.73 (d, J = 5.31 Hz, 1H), 7.22−7.33 (m, 2H), 7.58−7.64 (m, 2H),
8.43 (s, 1H), 8.48 (d, J = 5.31 Hz, 1H). MS: m/e 454 (MH+). Purity
was determined as 98.8% by HPLC (281 nm). Rt: 0.91 min (Acquity
UPLC BEH C18 1.7 μm, 3 mm × 50 mm, CH3COO

−NH4+ 25 mM +
10% acetonitrile at pH 6.6/acetonitrile).

N-(4-(4-(4-Fluorophenyl)-2-(piperidin-4-yl)thiazol-5-yl)-
pyrimidin-2-yl)-4-methylthiazol-2-amine (21). Yellow solid. Yield =
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39%. 1H NMR (400 MHz, DMSO-d6) δ 1.20 (t, J = 7.07 Hz, 1H),
1.66 (br dd, J = 12.13, 3.54 Hz, 2H), 2.04 (br d, J = 10.36 Hz, 2H),
2.27 (d, J = 1.01 Hz, 3H), 2.65 (td, J = 11.87, 2.02 Hz, 2H), 2.94−
3.11 (m, 3H), 4.05−4.07 (m, 1H), 6.63 (d, J = 5.05 Hz, 1H), 6.72 (d,
J = 1.01 Hz, 1H), 7.27−7.34 (m, 2H), 7.59−7.65 (m, 2H), 8.44 (d, J
= 5.31 Hz, 1H). MS: m/e 454 (MH+). Purity was determined as
95.3% by HPLC (230 nm). Rt: 1.02 min (Acquity UPLC BEH C18
1.7 μm, 3 mm × 50 mm, CH3COO

−NH4
+ 25 mM + 10% acetonitrile

at pH 6.6/acetonitrile).
N-(4-(4-(4-Fluorophenyl)-2-(piperidin-4-yl)thiazol-5-yl)-

pyrimidin-2-yl)-3-methylisoxazol-5-amine (22). White solid. Yield =
57%. 1H NMR (400 MHz, DMSO-d6) δ 0.90−1.37 (m, 1H), 1.63
(qd, J = 11.96, 3.79 Hz, 2H), 1.94−2.08 (m, 2H), 2.11−2.21 (m, 3H),
2.55−2.68 (m, 2H), 3.03 (br d, J = 12.38 Hz, 2H), 3.09−3.18 (m,
1H), 5.90 (s, 1H), 6.75 (d, J = 5.05 Hz, 1H), 7.15−7.41 (m, 2H),
7.52−7.73 (m, 2H), 8.46 (d, J = 5.31 Hz, 1H). MS: m/e 437 (MH+).
Purity was determined as 95.3% by HPLC (279 nm). Rt: 0.97 min
(Acquity UPLC BEH C18 1.7 μm, 3 mm × 50 mm, CH3COO

−NH4
+

25 mM + 10% acetonitrile at pH 6.6/acetonitrile).
N-(1,5-Dimethyl-1H-pyrazol-3-yl)-4-(4-(4-fluorophenyl)-2-(piper-

idin-4-yl)thiazol-5-yl)pyrimidin-2-amine (23). Yellow solid. Yield =
33%. 1H NMR (400 MHz, DMSO-d6) δ 1.56−1.67 (m, 2H), 2.00 (br
d, J = 10.86 Hz, 2H), 2.21 (s, 3H), 2.53−2.70 (m, 3H), 2.99−3.23
(m, 3H), 3.61 (s, 3H), 6.23 (s, 1H), 6.47 (d, J = 5.31 Hz, 1H), 7.25−
7.31 (m, 2H), 7.57−7.62 (m, 2H), 8.27 (d, J = 5.05 Hz, 1H), 9.68 (s,
1 H). MS: m/e 450 (MH+). Purity was determined as 99.5% by
HPLC (241 nm). Rt: 0.96 min (Acquity UPLC BEH C18 1.7 μm, 3
mm × 50 mm, CH3COO

−NH4
+ 25 mM + 10% acetonitrile at pH

6.6/acetonitrile).
4-(4-(4-Fluorophenyl)-2-(piperidin-4-yl)thiazol-5-yl)-N-(1-(piperi-

din-4-yl)-1H-pyrazol-3-yl)pyrimidin-2-amine (24). Bright yellow
solid. Yield = 81%. 1H NMR (400 MHz, DMSO-d6) δ 9.64 (br s,
1H), 8.29 (d, J = 5.15 Hz, 1H), 7.82 (br s, 1H), 7.62 (dd, J = 5.62,
8.62 Hz, 2H), 7.56 (s, 1H), 7.31 (t, J = 8.88 Hz, 2H), 6.44 (br s, 1H),
4.24 (br s, 2H), 3.35−3.20 (m, 6H), 2.87 (dtd, J = 2.60, 12.58, 34.36
Hz, 4H), 2.21−2.15 (m, 2H), 2.10−2.01 (m, 2H), 1.95−1.77 (m,
4H). MS: m/e 505 (MH+). Purity was determined as >95% by HPLC
(279 nm). Rt: 0.66 min (Acquity UPLC BEH C18 1.7 μm, 3 mm ×
50 mm, 0.1% formic acid in water/0.1% formic acid in ACN).
4-(4-(4-Fluorophenyl)-2-(piperidin-4-yl)thiazol-5-yl)-N-(pyridin-

2-yl)pyrimidin-2-amine (25). White solid. Yield = 25%. 1H NMR
(400 MHz, DMSO-d6) δ 1.63 (qd, J = 12.04, 4.04 Hz, 2H), 1.95−
2.07 (m, 2H), 2.56−2.68 (m, 2H), 2.99−3.07 (m, 2H), 3.13 (tt, J =
11.62, 3.79 Hz, 2H), 6.66 (d, J = 5.31 Hz, 1H), 7.00 (ddd, J = 7.20,
4.93, 1.01 Hz, 1H), 7.22−7.36 (m, 2H), 7.62 (dd, J = 8.59, 5.56 Hz,
2H), 7.70 (ddd, J = 8.59, 7.20, 1.89 Hz, 1H), 8.04 (d, J = 8.59 Hz,
1H), 8.29 (dt, J = 4.80, 1.01 Hz, 1H), 8.36−8.47 (m, 1H), 9.86 (s, 1
H). MS: m/e 433 (MH+). Purity was determined as 97.3% by HPLC
(293 nm). Rt: 1.01 min (Acquity UPLC BEH C18 1.7 μm, 3 mm ×
50 mm, CH3COO

−NH4
+ 25 mM + 10% acetonitrile at pH 6.6/

acetonitrile).
4-(4-(4-Fluorophenyl)-2-(piperidin-4-yl)thiazol-5-yl)-N-(pyrazin-

2-yl)pyrimidin-2-amine (26). White solid. Yield = 28%. 1H NMR
(400 MHz, DMSO-d6) δ 1.18−1.35 (m, 1H), 1.62 (qd, J = 12.00,
3.92 Hz, 2H), 1.94−2.06 (m, 2H), 2.61 (td, J = 12.06, 2.15 Hz, 2H),
2.98−3.08 (m, 2H), 3.09−3.24 (m, 1H), 6.69 (d, J = 5.05 Hz, 1H),
7.24−7.37 (m, 2H), 7.59−7.67 (m, 2H), 8.25 (d, J = 2.53 Hz, 1H),
8.35 (dd, J = 2.53, 1.77 Hz, 1H), 8.45 (d, J = 5.30 Hz, 1H), 9.38 (d, J
= 1.52 Hz, 1H), 10.37 (br s, 1H). MS: m/e 434 (MH+). Purity was
determined as 96.1% by HPLC (271 nm). Rt: 0.95 min (Acquity
UPLC BEH C18 1.7 μm, 3 mm × 50 mm, CH3COO

−NH4
+ 25 mM +

10% acetonitrile at pH 6.6/acetonitrile).
N-(4-(4-(4-Fluorophenyl)-2-(piperidin-4-yl)thiazol-5-yl)-

pyrimidin-2-yl)pyridazin-3-amine (27). White solid. Yield = 34%. 1H
NMR (400 MHz, DMSO-d6) δ 1.13−1.29 (m, 1H), 1.59−1.80 (m,
2H), 2.03 (br d, J = 12.13 Hz, 2H), 2.59−2.71 (m, 2H), 3.01−3.08
(m, 2H), 3.15 (tt, J = 11.62, 3.79 Hz, 1H), 6.73 (d, J = 5.31 Hz, 1H),
7.29 (t, J = 8.84 Hz, 2H), 7.55−7.64 (m, 3H), 8.21 (dd, J = 9.09, 1.52
Hz, 1H), 8.46 (d, J = 5.30 Hz, 1H), 8.86 (dd, J = 4.55, 1.52 Hz, 1H),
10.59 (s, 1H). MS: m/e 434 (MH+). Purity was determined as 99.5%

by HPLC (271 nm). Rt: 0.87 min (Acquity UPLC BEH C18 1.7 μm,
3 mm × 50 mm, CH3COO

−NH4
+ 25 mM + 10% acetonitrile at pH

6.6/acetonitrile).
4-(4-(4-Fluorophenyl)-2-(piperidin-4-yl)thiazol-5-yl)-N-(pyrimi-

din-4-yl)pyrimidin-2-amine (28A). White solid. Yield = 24%. 1H
NMR (400 MHz, DMSO-d6) δ 1.18−1.36 (m, 1H), 1.64 (qd, J =
12.08, 3.92 Hz, 2H), 1.92−2.09 (m, 2H), 2.56−2.73 (m, 2H), 2.94−
3.08 (m, 2H), 3.11−3.19 (m, 1H), 6.81 (d, J = 5.31 Hz, 1H), 7.25−
7.34 (m, 2H), 7.58−7.67 (m, 2H), 7.99−8.05 (m, 1H), 8.51 (dd, J =
5.68, 1.89 Hz, 2H), 8.77−8.81 (m, 1H), 10.29−10.76 (m, 1H). MS:
m/e 434 (MH+). Purity was determined as 97.1% by HPLC (285
nm). Rt: 0.92 min (Acquity UPLC BEH C18 1.7 μm, 3 mm × 50 mm,
CH3COO

−NH4
+ 25 mM + 10% acetonitrile at pH 6.6/acetonitrile).

4-[4-(4-Fluorophenyl)-2-(piperidin-4-yl)-1,3-thiazol-5-yl]-N-(2-
methylpyrimidin-4-yl)pyrimidin-2-amine (29). Off-white solid. Yield
= 29%. 1H NMR (400 MHz, MeOH-d4) δ 8.43 (d, J = 5.27 Hz, 1H),
8.37 (d, J = 6.04 Hz, 1H), 8.08 (d, J = 6.04 Hz, 1H), 7.61 (dd, J =
5.38, 8.68 Hz, 2H), 7.24 (t, J = 8.70 Hz, 2H), 6.80 (d, J = 5.25 Hz,
1H), 3.43−3.36 (m, 3H), 3.04 (td, J = 2.80, 12.50 Hz, 2H), 2.58 (s,
3H), 2.33 (dd, J = 2.08, 13.43 Hz, 2H), 2.06−1.95 (m, 2H). MS: m/e
448 (MH+). Purity was determined as >95% by HPLC (293 nm). Rt:
0.68 min (Acquity UPLC BEH C18 1.7 μm, 3 mm × 50 mm, 0.1%
formic acid in water/0.1% formic acid in ACN).

N-(2-Ethoxypyrimidin-4-yl)-4-[4-(4-fluorophenyl)-2-(piperidin-4-
yl)-1,3-thiazol-5-yl]pyrimidin-2-amine Trifluoroacetate (30). Pale
yellow solid. Yield = 13%. 1H NMR (400 MHz, DMSO-d6) δ 10.50
(s, 1H), 8.65 (d, J = 7.60 Hz, 1H), 8.52 (d, J = 5.25 Hz, 1H), 8.38 (d,
J = 9.60 Hz, 1H), 8.30 (d, J = 5.79 Hz, 1H), 7.68 (d, J = 5.80 Hz, 1H),
7.62 (dd, J = 5.52, 8.82 Hz, 2H), 7.32 (t, J = 8.86 Hz, 2H), 6.80 (d, J
= 5.24 Hz, 1H), 4.33 (q, J = 7.06 Hz, 2H), 3.50−3.37 (m, 3H), 3.14−
3.02 (m, 2H), 2.28 (dd, J = 2.78, 14.20 Hz, 2H), 2.01−1.90 (m, 2H),
1.32 (t, J = 7.06 Hz, 3H). MS: m/e 478 (MH+). Purity was
determined as >95% by HPLC (292 nm). Rt: 0.86 min (Acquity
UPLC BEH C18 1.7 μm, 3 mm × 50 mm, 0.1% formic acid in water/
0.1% formic acid in ACN).

4-(4-(4-Fluorophenyl)-2-(piperidin-4-yl)thiazol-5-yl)-N-(2-meth-
ylpyridin-4-yl)pyrimidin-2-amine (31). White solid. Yield = 37%. 1H
NMR (400 MHz, DMSO-d6) δ 1.56−1.70 (m, 2H), 1.98−2.09 (m,
2H), 2.41 (s, 3H), 2.61 (td, J = 12.06, 2.40 Hz, 2H), 2.98−3.07 (m,
2H), 3.07−3.19 (m, 1H), 3.30 (s, 1H), 6.65 (d, J = 5.05 Hz, 1H),
7.31 (t, J = 8.84 Hz, 2H), 7.46 (dd, J = 5.81, 2.02 Hz, 1H), 7.56−7.73
(m, 3H), 8.20 (d, J = 5.81 Hz, 1H), 8.43 (d, J = 5.05 Hz, 1H), 10.10
(s, 1H). MS: m/e 447 (MH+). Purity was determined as 97.6% by
HPLC (287 nm). Rt: 0.95 min (Acquity UPLC BEH C18 1.7 μm, 3
mm × 50 mm, CH3COO

−NH4
+ 25 mM + 10% acetonitrile at pH

6.6/acetonitrile).
N-(2,6-Dimethylpyridin-4-yl)-4-(4-(4-fluorophenyl)-2-(piperidin-

4-yl)thiazol-5-yl)pyrimidin-2-amine (32). White solid. Yield = 37%.
1H NMR (400 MHz, DMSO-d6) δ 1.62 (dd, J = 12.00, 3.41 Hz, 2H),
2.03 (br d, J = 10.36 Hz, 2H), 2.36 (s, 6H), 2.62 (td, J = 12.06, 2.40
Hz, 2H), 2.97−3.09 (m, 2H), 3.09−3.18 (m, 1H), 3.30 (s, 1H), 6.62
(d, J = 5.31 Hz, 1H), 7.27−7.35 (m, 2H), 7.46 (s, 2H), 7.60−7.66
(m, 2H), 8.42 (d, J = 5.05 Hz, 1H), 10.03 (s, 1H). MS: m/e 461
(MH+). Purity was determined as 98.5% by HPLC (289 nm). Rt: 0.95
min (Acquity UPLC BEH C18 1.7 μm, 3 mm × 50 mm,
CH3COO

−NH4
+ 25 mM + 10% acetonitrile at pH 6.6/acetonitrile).

4-({4-[4-(4-Fluorophenyl)-2-(piperidin-4-yl)-1,3-thiazol-5-yl]-
pyrimidin-2-yl}amino)pyridin-2-ol Trifluoroacetate (33). Pale yellow
solid. Yield = 8%. 1H NMR (400 MHz, DMSO-d6) δ 11.23 (br s,
1H), 10.08 (s, 1H), 8.66 (d, J = 9.50 Hz, 1H), 8.46−8.38 (m, 2H),
7.63 (dd, J = 5.52, 8.82 Hz, 2H), 7.35−7.27 (m, 3H), 7.09 (d, J = 2.08
Hz, 1H), 6.66 (d, J = 5.24 Hz, 1H), 6.50 (dd, J = 2.07, 7.28 Hz, 1H),
3.50−3.37 (m, 3H), 3.12−3.03 (m, 2H), 2.27 (dd, J = 2.39, 14.13 Hz,
2H), 2.01−1.89 (m, 2H). MS: m/e 449 (MH+). Purity was
determined as >95% by HPLC (285 nm). Rt: 0.74 min (Acquity
UPLC BEH C18 1.7 μm, 3 mm × 50 mm, 0.1% formic acid in water/
0.1% formic acid in ACN).

4-[4-(4-Fluorophenyl)-2-(piperidin-4-yl)-1,3-thiazol-5-yl]-N-(2-
methoxy-6-methylpyridin-4-yl)pyrimidin-2-amine Trifluoroacetate
(34). Off-white solid. Yield = 30%. 1H NMR (400 MHz, DMSO-d6) δ
10.09 (s, 1H), 8.64 (br s, 1H), 8.43 (d, J = 5.24 Hz, 1H), 8.37 (br s,

Journal of Medicinal Chemistry Article

DOI: 10.1021/acs.jmedchem.9b01099
J. Med. Chem. 2019, 62, 9217−9235

9229

http://dx.doi.org/10.1021/acs.jmedchem.9b01099


1H), 7.63 (dd, J = 5.54, 8.80 Hz, 2H), 7.31 (t, J = 8.88 Hz, 2H), 7.18
(d, J = 1.13 Hz, 1H), 7.11 (s, 1H), 6.63 (d, J = 5.23 Hz, 1H), 3.80 (s,
3H), 3.49−3.37 (m, 3H), 3.12−3.09 (m, 2H), 2.33 (s, 3H), 2.27 (dd,
J = 2.80, 14.54 Hz, 2H), 2.00−1.89 (m, 2H). MS: m/e 477 (MH+).
Purity was determined as >95% by HPLC (297 nm). Rt: 0.69 min
(Acquity UPLC BEH C18 1.7 μm, 3 mm × 50 mm, 0.1% formic acid
in water/0.1% formic acid in ACN).
N-(5-Fluoro-6-methylpyridin-2-yl)-4-(4-(4-fluorophenyl)-2-(pi-

peridin-4-yl)thiazol-5-yl)pyrimidin-2-amine (35). White solid. Yield
= 26%. 1H NMR (400 MHz, DMSO-d6) δ 1.24 (s, 1H), 1.63 (br dd, J
= 11.87, 3.54 Hz, 2H), 2.01 (br d, J = 10.61 Hz, 2H), 2.38 (d, J = 2.78
Hz, 3H), 2.55−2.70 (m, 2H), 2.83−3.08 (m, 2H), 3.09−3.22 (m,
1H), 6.64 (d, J = 5.31 Hz, 1H), 7.25−7.33 (m, 2H), 7.53−7.64 (m,
3H), 7.87 (dd, J = 8.84, 3.28 Hz, 1H), 8.39 (d, J = 5.05 Hz, 1H), 9.87
(s, 1H). MS: m/e 465 (MH+). Purity was determined as 97.9% by
HPLC (241 nm). Rt: 1.11 min (Acquity UPLC BEH C18 1.7 μm, 3
mm × 50 mm, CH3COO

−NH4
+ 25 mM + 10% acetonitrile at pH

6.6/acetonitrile).
N-(4-Ethyl-5-fluoro-6-methylpyridin-2-yl)-4-(4-(4-fluorophenyl)-

2-(piperidin-4-yl)thiazol-5-yl)pyrimidin-2-amine (36). White solid.
Yield = 36%. 1H NMR (400 MHz, DMSO-d6) δ 1.24 (s, 1H), 1.28 (t,
J = 7.58 Hz, 3H), 1.72 (qd, J = 12.13, 3.79 Hz, 2H), 2.10 (br s, 2H),
2.37 (d, J = 3.03 Hz, 3H), 2.61−2.71 (m, 2H), 2.72−2.84 (m, 2H),
3.12−3.24 (m, 3H), 6.58 (d, J = 5.31 Hz, 1H), 7.31 (t, J = 8.84 Hz,
2H), 7.56−7.69 (m, 2H), 8.01 (d, J = 5.05 Hz, 1H), 8.38 (d, J = 5.05
Hz, 1H), 9.81 (s, 1H). MS: m/e 493 (MH+). Purity was determined
as 98.8% by HPLC (299 nm). Rt: 1.21 min (Acquity UPLC BEH C18
1.7 μm, 3 mm × 50 mm, CH3COO

−NH4
+ 25 mM + 10% acetonitrile

at pH 6.6/acetonitrile).
N-(4-Cyclopropyl-5-fluoro-6-methylpyridin-2-yl)-4-(4-(4-fluoro-

phenyl)-2-(piperidin-4-yl)thiazol-5-yl)pyrimidin-2-amine (37).
White solid. Yield = 36%. 1H NMR (400 MHz, DMSO-d6) δ 0.95
(dd, J = 4.93, 2.15 Hz, 2H), 1.19 (dd, J = 8.34, 2.27 Hz, 2H), 1.56−
1.71 (m, 2H), 1.99−2.09 (m, 2H), 2.10−2.21 (m, 1H), 2.37 (d, J =
3.03 Hz, 4H), 2.62 (br d, J = 2.02 Hz, 2H), 2.98−3.06 (m, 2H),
3.07−3.16 (m, 1H), 6.54 (d, J = 5.05 Hz, 1H), 7.31 (t, J = 8.84 Hz,
2H), 7.60−7.71 (m, 3H), 8.35 (d, J = 5.05 Hz, 1H), 9.74 (s, 1 H).
MS: m/e 505 (MH+). Purity was determined as 98.3% by HPLC (240
nm). Rt: 1.22 min (Acquity UPLC BEH C18 1.7 μm, 3 mm × 50 mm,
CH3COO

−NH4
+ 25 mM + 10% acetonitrile at pH 6.6/acetonitrile).

N-(4-Cyclobutyl-5-fluoro-6-methylpyridin-2-yl)-4-(4-(4-fluoro-
phenyl)-2-(piperidin-4-yl)thiazol-5-yl)pyrimidin-2-amine (38).
White solid. Yield = 34%. 1H NMR (400 MHz, DMSO-d6) δ
1.51−1.68 (m, 2H), 1.83−1.94 (m, 1H), 1.96−2.16 (m, 3H), 2.23−
2.44 (m, 8H), 2.59−2.69 (m, 2H), 3.03 (br d, J = 12.38 Hz, 2H),
3.07−3.18 (m, 1H), 3.68−3.83 (m, 1H), 6.56 (d, J = 5.05 Hz, 1H),
7.28−7.35 (m, 2H), 7.63 (br d, J = 3.03 Hz, 2H), 8.10 (d, J = 4.80 Hz,
1H), 8.37 (d, J = 5.31 Hz, 1H), 9.79 (s, 1H). MS: m/e 519 (MH+).
Purity was determined as 89.9% by HPLC (243 nm). Rt: 1.32 min
(Acquity UPLC BEH C18 1.7 μm, 3 mm × 50 mm, CH3COO

−NH4
+

25 mM + 10% acetonitrile at pH 6.6/acetonitrile).
4-[4-(4-Fluorophenyl)-2-(piperidin-4-yl)-1,3-thiazol-5-yl]-N-(pyri-

din-4-ylmethyl)pyrimidin-2-amine (39). Pale yellow solid. Yield =
37%. 1H NMR (400 MHz, CDCl3) δ 9.82 (br, 1H), 8.62 (d, J = 5.82
Hz, 2H), 8.15 (d, J = 5.24 Hz, 1H), 7.57 (dd, J = 5.38, 8.74 Hz, 2H),
7.37 (d, J = 5.34 Hz, 2H), 7.15 (t, J = 8.68 Hz, 2H), 6.47 (d, J = 5.24
Hz, 1H), 5.71 (br, 1H), 4.71 (d, J = 5.95 Hz, 2H), 3.62−3.55 (m,
2H), 3.39−3.31 (m, 1H), 3.17−3.10 (m, 2H), 2.41 (dd, J = 3.34,
14.06 Hz, 2H), 2.29−2.18 (m, 2H). MS: m/e 447 (MH+). Purity was
determined as >95% by HPLC (233 nm). Rt: 0.63 min (Acquity
UPLC BEH C18 1.7 μm, 3 mm × 50 mm, 0.1% formic acid in water/
0.1% formic acid in ACN).
2-({4-[4-(4-Fluorophenyl)-2-(piperidin-4-yl)-1,3-thiazol-5-yl]-

pyrimidin-2-yl}amino)-1-(pyridin-4-yl)ethanol (40). Pale yellow
solid. Yield = 16%. 1H NMR (400 MHz, DMSO-d6) δ 8.51 (d, J =
6.00 Hz, 2H), 8.15 (d, J = 5.12 Hz, 1H), 8.00 (br, 1H), 7.58 (dd, J =
5.56, 8.76 Hz, 2H), 7.35 (d, J = 6.00 Hz, 2H), 7.29 (t, J = 8.86 Hz,
2H), 6.29 (d, J = 4.96 Hz, 1H), 5.69 (br, 1H), 4.83−4.78 (m, 1H),
3.56−3.49 (m, 1H), 3.41−3.23 (m, 5H), 3.03−2.95 (m, 2H), 2.26−
2.17 (m, 2H), 1.94−1.82 (m, 2H). MS: m/e 477 (MH+). Purity was

determined as >95% by HPLC (236 nm). Rt: 0.87 min (Acquity
UPLC BEH C18 1.7 μm, 3 mm × 50 mm, acetate NH4 25 mM + 10%
ACN at pH 6.6/ACN).

General Procedure for the Removal of Ethyl Carbamate
Group: Synthesis of the Final Compounds 41−57. In a
microwave vial, the respective N-ethyl carbamate-protected deriva-
tives 83−99 (0.067 mmol), LiOH·H2O (0.042 mg, 1.01 mmol), THF
(1 mL), ethanol (1 mL), and water (1 mL) are added and the mixture
is stirred at 105 °C overnight. EtOAc (15 mL) and an aqueous
solution of NaOH (1 N, 5 mL) are added, the two phases are
separated, the aqueous phase is washed with EtOAc (5 mL), and the
combined organic phases are washed with brine (10 mL), dried over
Na2SO4, filtered, and concentrated under reduced pressure to afford
the desired compounds, which are purified by preparative HPLC to
afford pure materials.

4-[4-(4-Fluorophenyl)-2-(piperidin-4-yl)-1,3-thiazol-5-yl]-
pyrimidin-2-amine (41). Pale yellow solid. Yield = 16%. 1H NMR
(400 MHz, DMSO-d6) δ 8.08 (d, J = 5.18 Hz, 1H), 7.57 (dd, J = 5.54,
8.84 Hz, 2H), 7.28 (t, J = 8.90 Hz, 2H), 6.76 (s, 2H), 6.23 (d, J = 5.18
Hz, 1H), 4.40 (br, 1H), 3.16−3.06 (m, 3H), 2.68 (td, J = 2.39, 12.17
Hz, 2H), 2.03 (dd, J = 2.80, 12.96 Hz, 2H), 1.65 (ddd, J = 3.84, 12.02,
24.50 Hz, 2H). MS: m/e 356 (MH+). Purity was determined as >95%
by HPLC (228 nm). Rt: 0.68 min (Acquity UPLC BEH C18 1.7 μm,
3 mm × 50 mm, 0.1% formic acid in water/0.1% formic acid in
ACN).

2-({4-[4-(4-Fluorophenyl)-2-(piperidin-4-yl)-1,3-thiazol-5-yl]-
pyrimidin-2-yl}amino)ethanol (42). Pale yellow solid. Yield = 58%.
1H NMR (400 MHz, DMSO-d6) δ 8.13 (d, J = 5.12 Hz, 1H), 7.58
(dd, J = 5.56, 8.80 Hz, 2H), 7.29 (t, J = 8.88 Hz, 2H), 7.16 (t, J = 5.52
Hz, 1H), 6.77 (br, 1H), 6.26 (d, J = 4.92 Hz, 1H), 4.66 (br, 1H),
3.54−3.48 (m, 2H), 3.40−3.20 (m, 5H), 2.86 (td, J = 2.30, 12.24 Hz,
2H), 2.13 (dd, J = 2.36, 13.60 Hz, 2H), 1.78 (ddd, J = 3.70, 12.76,
25.06 Hz, 2H). MS: m/e 400 (MH+). Purity was determined as >95%
by HPLC (337 nm). Rt: 0.70 min (Acquity UPLC BEH C18 1.7 μm,
3 mm × 50 mm, 0.1% formic acid in water/0.1% formic acid in
ACN).

4-[4-(4-Fluorophenyl)-2-(piperidin-4-yl)-1,3-thiazol-5-yl]-N-(2-
methoxyethyl)pyrimidin-2-amine (43). Off-white solid. Yield = 73%.
1H NMR (400 MHz, DMSO-d6) δ 8.13 (d, J = 5.16 Hz, 1H), 7.57
(dd, J = 5.55, 8.84 Hz, 2H), 7.31−7.23 (m, 3H), 6.27 (br s, 1H),
3.45−3.39 (m, 3H), 3.34−3.27 (m, 2H), 3.26 (s, 3H), 3.12−3.00 (m,
3H), 2.61 (td, J = 2.34, 12.52 Hz, 2H), 2.00 (dd, J = 2.14, 13.14 Hz,
2H), 1.60 (ddd, J = 3.88, 12.16, 24.34 Hz, 2H). MS: m/e 414 (MH+).
Purity was determined as >95% by HPLC (295 nm). Rt: 0.79 min
(Acquity UPLC BEH C18 1.7 μm, 3 mm × 50 mm, 0.1% formic acid
in water/0.1% formic acid in ACN).

4-[4-(4-Fluorophenyl)-2-(piperidin-4-yl)-1,3-thiazol-5-yl]-N-(tet-
rahydrofuran-2-ylmethyl)pyrimidin-2-amine (44). Off-white solid.
Yield = 71%. 1H NMR (400 MHz, DMSO-d6) δ 8.13 (d, J = 5.15 Hz,
1H), 7.57 (dd, J = 5.56, 8.80 Hz, 2H), 7.30−7.24 (m, 3H), 6.27 (br s,
1H), 3.96 (t, J = 5.76 Hz, 1H), 3.79−3.73 (m, 1H), 3.64−3.58 (m,
1H), 3.27−3.16 (m, 2H), 3.12−2.98 (m, 3H), 2.59 (td, J = 2.26,
12.12 Hz, 2H), 1.99 (dd, J = 2.20, 12.56 Hz, 2H), 1.92−1.74 (m,
3H), 1.64−1.54 (m, 3H). MS: m/e 440 (MH+). Purity was
determined as >95% by HPLC (295 nm). Rt: 0.83 min (Acquity
UPLC BEH C18 1.7 μm, 3 mm × 50 mm, 0.1% formic acid in water/
0.1% formic acid in ACN).

N′-{4-[4-(4-Fluorophenyl)-2-(piperidin-4-yl)-1,3-thiazol-5-yl]-
pyrimidin-2-yl}-N,N-dimethylethane-1,2-diamine (45). Pale yellow
solid. Yield = 95%. 1H NMR (400 MHz, DMSO-d6) δ 8.13 (d, J =
5.08 Hz, 1H), 7.95 (br, 1H), 7.58 (dd, J = 5.54, 8.82 Hz, 2H), 7.29 (t,
J = 8.92 Hz, 2H), 7.09 (br, 1H), 6.26 (d, J = 5.08 Hz, 1H), 3.21−3.10
(m, 5H), 2.75 (td, J = 2.45, 12.24 Hz, 2H), 2.39 (t, J = 6.86 Hz, 2H),
2.17 (s, 6H), 2.09−2.05 (m, 2H), 1.70 (ddd, J = 4.16, 12.28, 24.66
Hz, 2H). MS: m/e 427 (MH+). Purity was determined as >95% by
HPLC (293 nm). Rt: 0.61 min (Acquity UPLC BEH C18 1.7 μm, 3
mm × 50 mm, 0.1% formic acid in water/0.1% formic acid in ACN).

1-Cyclopropyl-N′-{4-[4-(4-fluorophenyl)-2-(piperidin-4-yl)-1,3-
thiazol-5-yl]pyrimidin-2-yl}-N,N-dimethylethane-1,2-diamine (46).
Off-white solid. Yield = 66%. 1H NMR (400 MHz, DMSO-d6) δ 8.12
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(d, J = 5.00 Hz, 1H), 7.57 (dd, J = 5.56, 8.80 Hz, 2H), 7.28 (t, J =
8.90 Hz, 2H), 6.70 (br s, 1H), 6.26 (d, J = 3.70 Hz, 1H), 3.48−3.35
(m, 2H), 3.10−2.99 (m, 3H), 2.59 (td, J = 2.32, 12.16 Hz, 3H), 2.31
(s, 6H), 2.00−1.95 (m, 2H), 1.90−1.85 (m, 1H), 1.59 (ddd, J = 3.90,
12.12, 24.28 Hz, 2H), 0.78−0.68 (m, 1H), 0.58−0.50 (m, 1H), 0.41−
0.33 (m, 1H), 0.31−0.23 (m, 1H), 0.09−0.01 (m, 1H). MS: m/e 467
(MH+). Purity was determined as >95% by HPLC (294 nm). Rt: 0.64
min (Acquity UPLC BEH C18 1.7 μm, 3 mm × 50 mm, 0.1% formic
acid in water/0.1% formic acid in ACN).
4-[4-(4-Fluorophenyl)-2-(piperidin-4-yl)-1,3-thiazol-5-yl]-N-[2-

(pyrrolidin-1-yl)ethyl]pyrimidin-2-amine (47). Pale yellow solid.
Yield = 71%. 1H NMR (400 MHz, DMSO-d6) δ 8.29 (br, 1H),
8.17 (d, J = 5.14 Hz, 1H), 7.58 (d, J = 5.54, 8.82 Hz, 2H), 7.30 (t, J =
8.88 Hz, 3H), 6.32 (br s, 1H), 3.46−3.35 (m, 6H), 3.05 (td, J = 2.86,
12.60 Hz, 2H), 2.82 (br, 5H), 2.24 (dd, J = 2.62, 14.08 Hz, 2H),
1.97−1.86 (m, 2H), 1.81−1.74 (m, 4H). MS: m/e 453 (MH+). Purity
was determined as >95% by HPLC (293 nm). Rt: 0.62 min (Acquity
UPLC BEH C18 1.7 μm, 3 mm × 50 mm, 0.1% formic acid in water/
0.1% formic acid in ACN).
4-[4-(4-Fluorophenyl)-2-(piperidin-4-yl)-1,3-thiazol-5-yl]-N-[2-(4-

methylpiperazin-1-yl)ethyl]pyrimidin-2-amine (48). Sticky yellow
solid. Yield = 75%. 1H NMR (400 MHz, DMSO-d6) δ 8.14 (d, J =
5.08 Hz, 1H), 7.77 (br, 1H), 7.58 (dd, J = 5.54, 8.80 Hz, 2H), 7.29 (t,
J = 8.90 Hz, 2H), 7.11 (br, 1H), 6.27 (br s, 1H), 3.42−3.32 (m, 4H),
3.03 (td, J = 2.76, 12.50 Hz, 2H), 2.48−2.32 (m, 8H), 2.23 (dd, J =
2.52, 13.96 Hz, 2H), 2.19 (s, 3H), 1.96−1.85 (m, 5H). MS: m/e 482
(MH+). Purity was determined as >95% by HPLC (285 nm). Rt: 0.60
min (Acquity UPLC BEH C18 1.7 μm, 3 mm × 50 mm, 0.1% formic
acid in water/0.1% formic acid in ACN).
4-(4-(4-Fluorophenyl)-2-(piperidin-4-yl)thiazol-5-yl)-N-(2-

morpholinoethyl)pyrimidin-2-amine (49). White solid. Yield = 37%.
1H NMR (400 MHz, DMSO-d6) δ 1.51−1.69 (m, 2H), 1.95−2.05
(m, 2H), 2.37−2.42 (m, 4H), 2.45 (br t, J = 6.95 Hz, 3H), 2.62 (td, J
= 12.06, 2.40 Hz, 2H), 2.99−3.21 (m, 4H), 3.36−3.40 (m, 1H),
3.53−3.60 (m, 4H), 6.27 (br s, 1H), 7.12 (br s, 1H), 7.25−7.32 (m,
2H), 7.55−7.61 (m, 2H), 8.13 (d, J = 5.05 Hz, 1H). MS: m/e 469
(MH+). Purity was determined as 99.6% by HPLC (295 nm). Rt: 0.92
min (Acquity UPLC BEH C18 1.7 μm, 3 mm × 50 mm,
CH3COO

−NH4
+ 25 mM + 10% acetonitrile at pH 6.6/acetonitrile).

4-(4-(4-Fluorophenyl)-2-(piperidin-4-yl)thiazol-5-yl)-N-(2-
thiomorpholinoethyl)pyrimidin-2-amine (50). White solid. Yield =
31%. 1H NMR (400 MHz, DMSO-d6) δ 1.58 (dd, J = 12.00, 3.41 Hz,
2H), 1.99 (br d, J = 10.11 Hz, 2H), 2.48 (br s, 3H), 2.54−2.65 (m,
7H), 2.65−2.72 (m, 5H), 2.86−3.05 (m, 2H), 3.05−3.16 (m, 1H),
6.27 (br s, 1H), 7.10 (br s, 1H), 7.25−7.31 (m, 2H), 7.54−7.60 (m,
2H), 8.12 (d, J = 5.05 Hz, 1H). MS: m/e 485 (MH+). Purity was
determined as 100% by HPLC (236 nm). Rt: 1.00 min (Acquity
UPLC BEH C18 1.7 μm, 3 mm × 50 mm, CH3COO

−NH4
+ 25 mM +

10% acetonitrile at pH 6.6/acetonitrile).
trans-4-({4-[4-(4-Fluorophenyl)-2-(piperidin-4-yl)-1,3-thiazol-5-

yl]pyrimidin-2-yl}amino)cyclohexanol (51). Pale yellow solid. Yield
= 37%. 1H NMR (400 MHz, DMSO-d6) δ 8.85 (br, 1H), 8.14 (d, J =
5.13 Hz, 1H), 7.58 (dd, J = 5.55, 8.78 Hz, 2H), 7.29 (t, J = 8.88 Hz,
2H), 7.16 (d, J = 6.72 Hz, 1H), 6.29 (br, 1H), 4.54 (d, J = 4.27 Hz,
1H), 3.43−3.36 (m, 4H), 3.08−3.00 (m, 2H), 2.24 (dd, J = 2.37,
14.02 Hz, 2H), 2.01−1.90 (m, 2H), 1.84−1.81 (m, 4H), 1.33−1.10
(m, 5H). MS: m/e 454 (MH+). Purity was determined as >95% by
HPLC (236 nm). Rt: 0.90 min (Acquity UPLC BEH C18 1.7 μm, 3
mm × 50 mm, acetate NH4 25 mM + 10% ACN at pH 6.6/ACN).
4-[4-(4-Fluorophenyl)-2-(piperidin-4-yl)-1,3-thiazol-5-yl]-N-(1-

methylpyrrolidin-3-yl)pyrimidin-2-amine (52). Pale yellow sticky
solid. Yield = 20%. 1H NMR (400 MHz, CDCl3) δ 8.09 (d, J = 5.20
Hz, 1H), 7.58 (dd, J = 5.36, 8.72 Hz, 2H), 7.14 (t, J = 8.72 Hz, 2H),
6.37 (d, J = 5.24 Hz, 1H), 5.40 (d, J = 7.32 Hz, 1H), 4.56−4.49 (m,
1H), 3.25 (dt, J = 2.86, 12.34 Hz, 2H), 3.17 (tt, J = 3.80, 11.78 Hz,
1H), 2.88−2.76 (m, 4H), 2.60 (dd, J = 3.40, 9.66 Hz, 1H), 2.46−2.40
(m, 5H), 2.21−2.16 (m, 2H), 1.85−1.72 (m, 3H). MS: m/e 439
(MH+). Purity was determined as >95% by HPLC (234 nm). Rt: 0.62
min (Acquity UPLC BEH C18 1.7 μm, 3 mm × 50 mm, 0.1% formic
acid in water/0.1% formic acid in ACN).

4-[4-(4-Fluorophenyl)-2-(piperidin-4-yl)-1,3-thiazol-5-yl]-2-(pyr-
rolidin-1-yl)pyrimidine (53). Off-white solid. Yield = 58%. 1H NMR
(400 MHz, DMSO-d6) δ 8.19 (d, J = 5.16 Hz, 1H), 7.58 (dd, J = 5.56,
8.82 Hz, 2H), 7.28 (t, J = 8.90 Hz, 2H), 6.28 (d, J = 5.14 Hz, 1H),
3.49−3.40 (m, 4H), 3.12−2.98 (m, 3H), 2.59 (td, J = 2.30, 12.09 Hz,
2H), 1.99 (dd, J = 2.12, 12.34 Hz, 2H), 1.94−1.90 (m, 4H), 1.60
(ddd, J = 3.88, 12.12, 24.30 Hz, 2H). MS: m/e 410 (MH+). Purity was
determined as >95% by HPLC (239 nm). Rt: 0.88 min (Acquity
UPLC BEH C18 1.7 μm, 3 mm × 50 mm, 0.1% formic acid in water/
0.1% formic acid in ACN).

1-{4-[4-(4-Fluorophenyl)-2-(piperidin-4-yl)-1,3-thiazol-5-yl]-
pyrimidin-2-yl}pyrrolidin-3-ol (54). Off-white solid. Yield = 57%. 1H
NMR (400 MHz, DMSO-d6) δ 8.68 (d, J = 9.02 Hz, 1H), 8.39 (d, J =
9.32 Hz, 1H), 8.22 (d, J = 5.54 Hz, 1H), 7.61 (dd, J = 5.52, 8.80 Hz,
2H), 7.31 (t, J = 8.90 Hz, 2H), 6.36 (d, J = 5.54 Hz, 1H), 4.40 (br s,
1H), 3.62−3.52 (m, 3H), 3.45−3.38 (m, 4H), 3.11−3.02 (m, 2H),
2.25 (dd, J = 2.50, 14.24 Hz, 2H), 2.06−1.88 (m, 4H). MS: m/e 426
(MH+). Purity was determined as >95% by HPLC (239 nm). Rt: 0.73
min (Acquity UPLC BEH C18 1.7 μm, 3 mm × 50 mm, 0.1% formic
acid in water/0.1% formic acid in ACN).

2-[4-(Azetidin-1-yl)piperidin-1-yl]-4-[4-(4-fluorophenyl)-2-(piper-
idin-4-yl)-1,3-thiazol-5-yl]pyrimidine (55). Sticky yellow solid. Yield
= 79%. 1H NMR (400 MHz, DMSO-d6) δ 8.24 (d, J = 5.16 Hz, 1H),
7.57 (dd, J = 5.56, 8.84 Hz, 2H), 7.44 (br, 1H), 7.29 (t, J = 8.92 Hz,
2H), 6.34 (d, J = 5.12 Hz, 1H), 4.36−4.33 (m, 2H), 3.47−3.36 (m,
5H), 3.05 (td, J = 2.52, 12.45 Hz, 4H), 2.24 (dd, J = 3.08, 14.52 Hz,
2H), 2.10−2.04 (m, 2H), 1.98−1.87 (m, 4H), 1.76−1.71 (m, 2H),
1.24−1.08 (m, 3H). MS: m/e 479 (MH+). Purity was determined as
>90% by HPLC (296 nm). Rt: 0.67 min (Acquity UPLC BEH C18
1.7 μm, 3 mm × 50 mm, 0.1% formic acid in water/0.1% formic acid
in ACN).

4-(1-(4-(4-(4-Fluorophenyl)-2-(piperidin-4-yl)thiazol-5-yl)-
pyrimidin-2-yl)piperidin-4-yl)morpholine (56). White solid. Yield =
43%. 1H NMR (400 MHz, DMSO-d6) δ 1.16−1.36 (m, 2H), 1.60
(qd, J = 12.04, 4.04 Hz, 2H), 1.82 (br d, J = 10.61 Hz, 2H), 1.94−
2.04 (m, 2H), 2.47 (br s, 4H), 2.55−2.63 (m, 2H), 2.86 (br t, J =
11.49 Hz, 2H), 2.97−3.22 (m, 3H), 3.32 (br s, 2H), 3.53−3.60 (m,
4H), 4.56 (br d, J = 12.88 Hz, 2H), 6.31 (d, J = 5.05 Hz, 1H), 7.24−
7.32 (m, 2H), 7.53−7.61 (m, 2H), 8.21 (d, J = 5.31 Hz, 1H). MS: m/
e 509 (MH+). Purity was determined as 93.8% by HPLC (239 nm).
Rt: 1.00 min (Acquity UPLC BEH C18 1.7 μm, 3 mm × 50 mm,
CH3COO

−NH4
+ 25 mM + 10% acetonitrile at pH 6.6/acetonitrile).

4-((1-(4-(4-(4-Fluorophenyl)-2-(piperidin-4-yl)thiazol-5-yl)-
pyrimidin-2-yl)piperidin-4-yl)methyl)morpholine (57). White solid.
Yield = 31%.1H NMR (400 MHz, DMSO-d6) δ 0.95−1.14 (m, 2H),
1.59 (dd, J = 12.13, 3.54 Hz, 2H), 1.75 (br d, J = 13.14 Hz, 3H), 1.99
(br d, J = 10.36 Hz, 2H), 2.13 (d, J = 7.07 Hz, 2H), 2.27−2.38 (m,
4H), 2.54−2.65 (m, 3H), 2.71−2.91 (m, 2H), 2.96−3.05 (m, 1H),
2.97−3.05 (m, 1H), 3.05−3.17 (m, 1H), 3.57 (t, J = 4.42 Hz, 4H),
4.55 (br d, J = 13.14 Hz, 2H), 6.29 (d, J = 5.31 Hz, 1H), 7.24−7.31
(m, 2H), 7.54−7.59 (m, 2H), 8.20 (d, J = 5.05 Hz, 1H). MS: m/e 523
(MH+). Purity was determined as 100% by HPLC (240 nm). Rt: 1.10
min (Acquity UPLC BEH C18 1.7 μm, 3 mm × 50 mm,
CH3COO

−NH4
+ 25 mM + 10% acetonitrile at pH 6.6/acetonitrile).

Synthesis of Final Compounds 58−60. In a microwave vial
with a stirring bar, tert-butyl 4-(5-(2-chloropyrimidin-4-yl)-4-cyclo-
propylthiazol-2-yl)piperidine-1-carboxylate or tert-butyl 4-(5-(2-chlor-
opyrimidin-4-yl)-4-(piperidin-1-ylmethyl)thiazol-2-yl)piperidine-1-
carboxylate (o) (0.048 mmol), 4-aminopyrimidine or 2-methyl-4-
aminopyridine (0.059 mmol), Pd2(dba)3 (0.003 mmol), Xantphos
(0.005 mmol), and potassium tert-butoxide (0.095 mmol) are put and
air is removed under reduced pressure. Then, anhydrous and degassed
toluene (1.5 mL) is added and the reaction mixture is refluxed for 2 h
under nitrogen. The reaction is monitored by TLC. Toluene is
distilled off under reduced pressure, and the residue is purified on
silica gel cartridge eluted with EtOAc:iPrOH 95:5, affording the
desired compounds as yellow solids (72−88% yield), which were used
directly in the next step. The Boc-protected thiazole derivatives of the
previous step (0.042 mmol) dissolved in dry dioxane (0.6 mL) are
treated with 4 N HCl/dioxane (0.84 mmol), and the mixture is stirred
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at room temperature for 1.5 h, after which LCMS showed the
complete consumption of the starting material. Dioxane is distilled off,
the residue is washed with diethyl ether, and is dried in vacuum to
give the desired hydrochloride salt as a yellow solid.
4-(4-Cyclopropyl-2-(piperidin-4-yl)thiazol-5-yl)-N-(pyrimidin-4-

yl)pyrimidin-2-amine Hydrochloride (58). Yellow solid. Yield = 89%.
1H NMR (400 MHz, DMSO-d6) δ 0.99−1.15 (m, 4H), 1.91 (br d, J =
9.85 Hz, 2H), 2.18 (br d, J = 11.62 Hz, 2H), 2.85 (s, 1H), 3.02 (br d,
J = 10.61 Hz, 2H), 3.25−3.41 (m, 3H), 7.51 (d, J = 5.31 Hz, 1H),
8.32−8.40 (m, 1H), 8.69 (d, J = 6.57 Hz, 1H), 8.72 (d, J = 5.56 Hz,
1H), 8.96 (s, 2H), 11.25 (br s, 1H). MS: m/e (free base) 380 (MH+).
Purity was determined as 95.7% by HPLC (290 nm). Rt: 0.67 min
(Acquity UPLC BEH C18 1.7 μm, 3 mm × 50 mm, CH3COO

−NH4
+

25 mM + 10% acetonitrile at pH 6.6/acetonitrile).
4-(4-Cyclopropyl-2-(piperidin-4-yl)thiazol-5-yl)-N-(2-methylpyri-

din-4-yl)pyrimidin-2-amine Dihydrochloride (59). Yellow solid.
Yield = 90%.1H NMR (400 MHz, DMSO-d6) δ 1.02−1.15 (m,
4H), 1.93 (br d, J = 10.11 Hz, 2H), 2.18 (br d, J = 11.87 Hz, 2H),
2.61−2.67 (m, 3H), 3.02 (br d, J = 9.85 Hz, 2H), 3.27−3.43 (m, 5H),
7.62 (d, J = 5.31 Hz, 1H), 8.02 (br d, J = 6.06 Hz, 1H), 8.17 (br s,
1H), 8.51 (d, J = 7.07 Hz, 1H), 8.78 (d, J = 5.31 Hz, 1H), 8.99 (br s,
2H), 11.33 (s, 1H). MS: m/e (free base) 393 (MH+). Purity was
determined as 99.1% by HPLC (298 nm). Rt: 0.60 min (Acquity
UPLC BEH C18 1.7 μm, 3 mm × 50 mm, CH3COO

−NH4
+ 25 mM +

10% acetonitrile at pH 6.6/acetonitrile).
N-(2-Methylpyridin-4-yl)-4-(4-(piperidin-1-ylmethyl)-2-(piperi-

din-4-yl)thiazol-5-yl)pyrimidin-2-amine Trihydrochloride (60). Yel-
low solid. Yield = 80%. 1H NMR (400 MHz, DMSO-d6) δ 1.34−1.49
(m, 1H), 1.62−1.73 (m, 1H), 1.73−1.89 (m, 4H), 1.97−2.15 (m,
2H), 2.23−2.35 (m, 2H), 2.66 (s, 3H), 3.03−3.15 (m, 2H), 3.16−
3.27 (m, 2H), 3.43−3.53 (m, 4H), 3.57 (s, 2H), 4.91−5.03 (m, 2H),
7.52 (d, J = 5.31 Hz, 1H), 8.18−8.26 (m, 2H), 8.52 (d, J = 6.82 Hz,
1H), 8.84 (d, J = 5.31 Hz, 1H), 9.20−9.39 (m, 2H), 10.13−10.25 (m,
1H), 11.89 (br s, 1H). MS: m/e (free base) 450 (MH+). Purity was
determined as 96.5% by HPLC (299 nm). Rt: 0.47 min (Acquity
UPLC BEH C18 1.7 μm, 3 mm × 50 mm, CH3COO

−NH4
+ 25 mM +

10% acetonitrile at pH 6.6/acetonitrile).
In Vitro Whole Cell Drug Susceptibility Studies. Plasmodium

falciparum 3D7A and NF54 strains (from the Malaria Research and
Reference Reagent Resource Center MR4) were grown in complete
medium [RPMI 1640 (Sigma), 25 mM HEPES and NaHCO3)]
supplemented with 2 g/L D-sucrose, 0.3 g/L L-glutamine, and 0.150
mM hypoxanthine and with 5 g/L AlbuMAX II. Parasitized red blood
cells (RBC) with 3D7A P. falciparum strain, (0.5% parasitemia, 2%
hematocrit) in RPMI-1640, 5% AlbuMAX, and 5 μM hypoxanthine
were exposed to threefold serial dilutions of the compounds (nine
serial dilutions 5 μM as maximal concentration). After incubating the
plates for 24 h at 37 °C and 5% CO2/5%O2/90% N2, [3H]-
hypoxanthine (0.2 μCi to each well, from a stock solution of 3H-
hypoxanthine of 0.025 μCi/μL in RPMI-1640) was added and the
incubation of the plates was continued for another 24 h period.
Thereafter, parasites were harvested on a glass fiber filter, filters were
dried, and the incorporation of [3H]-hypoxanthine was determined
using melt-on scintillator sheets. A microbeta counter was used for
measuring radioactivity, while data normalization was performed by
incorporation of the positive control (compound-free parasitized red
blood cells). IC50 values were determined using Grafit 7 program.
In Vitro PKG Assay. The expression and purification of

recombinant PKG as well as the PKG inhibitory activity assay were
performed as previously described (see also the Supporting
Information).54

Male/Female Gametocyte Functional Viability Assay. (A)
Gametocyte production. Gametocyte cultures were produced as
previously described (see also the Supporting Information).28 (B)
Dual gamete formation assay. Gametocyte activation was triggered by
reduced temperature and the addition of ookinete medium containing
xanthurenic acid supplemented with the antibody anti-Pfs25-Cy3 at a
final concentration of 1/2000 (from 1 mg/mL stock). Plates were
analyzed to detect exflagellation centers. “Activated” cultures were
then incubated (protected from light) at 26 °C for 24 h (in a thermo

regulated incubator) to increase the fluorescent signal emitted by
female gametes. The plates were then analyzed to record female
activated gametes.28 (C) Measured parameters. The activation of
male gametes is based on light change detections provoked by flagella
movements causing movement of surrounding cells. A 10-frame video
was taken and subsequently analyzed to determine the changes in cell
position based on pixels change. The activation of female gametes was
based on the detection of fluorescent Cy3-Anti Pfs25 antibody (as
primary parameter), followed by selection of events according to their
size, roundness, and the intensity of the fluorescence (see also the
Supporting Information).55

In Vitro Parasite Reduction Ratio. In vitro PRR testing was
conducted as previously described.56 The limiting dilution technique
was used to quantify the number of parasites remaining viable after
drug treatment. P. falciparum strain 3D7A (Malaria Research and
Reference Reagent Resource Center, MR4, BEI Resources; Cat. No.
MRA-102) was treated with a 10 × EC50 (antiparasitic activity in
cells) drug concentration. Parasites were treated for 120 h. Parasite
samples were collected from the treated culture every 24 h (24, 48, 72,
96, and 120 h time points). The number of viable parasites was
determined by counting the number of wells with growth after 21 and
28 days, using [3H]-hypoxanthine incorporation (see also the
Supporting Information).

Chemoproteomics-Target Identification Experiments. Kino-
beads were prepared as described.31,32 Sepharose beads were
derivatized with 31 or 50 at a concentration of 1 mM as described.30

The chemoproteomic affinity capturing experiments were performed
as previously described.32 The experimental setup was such that 10
samples are measured in parallel (TMT 10-plex)57 to generate values
for the affinity of the beads to the bound proteins and to generate IC50
values in a single experiment. Apparent dissociation constants were
determined by taking into account the protein depletion by the
beads.32 Proteins were digested according to a modified single-pot
solid-phase sample preparation (SP3) protocol.58,59 Peptides were
labeled with isobaric mass tags (TMT10, Thermo Fisher Scientific,
Waltham, MA) using the 10-plex TMT reagents, enabling relative
quantification of 10 conditions in a single experiment.57,60 LC-MS/
MS measurements on Q Exactive Orbitrap or Orbitrap Fusion Lumos
mass spectrometers (Thermo Fisher Scientific) was performed as
described elsewhere.61 Analytical procedures and raw data tables for
the chemoproteomics experiments can be found in the Supporting
Information files 1 and 2, respectively.
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