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Abstract 

Obesity correlates with hematological malignances including leukemias, but risk of specific 

leukemia subtypes like Acute Promyelocytic Leukemia and underlying molecular 

mechanisms are poorly understood. 

We explored multiple datasets for correlation between leukemia, Body Mass Index and 

molecular features. In a population-based study (n=5.2 million), we correlated Body Mass 

Index with promyelocytic, other acute myeloid, lymphoid or other leukemias. In cross-

sectional studies, we tested body mass index deviation in promyelocytic leukemia trial 

cohorts from what expected based on national surveys. We interrogated The Cancer Genome 

Atlas for transcriptional signatures and mutations enriched in promyelocytic leukemia and/or 

obesity and confirmed correlation between body mass and FLT3 mutations in promyelocytic 

leukemia cohorts by logistic regression. 

In the population-based study, Hazard Ratio per 5 kg/m2 increase was: promyelocytic 

leukemia 1.44 (95% CI 1.0-2.08); non-promyelocytic acute myeloid leukemias 1.17 (1.10-

1.26); lymphoid leukemias 1.04 (1.0-1.09); other 1.10 (1.04-1.15). In cross-sectional studies, 

body mass deviated significantly from expected (Italy p<0.001, Spain p=0.011, USA 

p<0.001). Promyelocytic leukemia showed upregulation of polyunsaturated fatty acid 

metabolism genes. Oddds of FLT3 mutations were higher in obese acute myeloid leukemias 

(Odds Ratio=2.4, p=0.007), whether promyelocytic or not, a correlation confirmed in the 

pooled promyelocytic leukemia cohorts (OR 1.22, 1.05-1.43 per 5 kg/m2). 

These results strengthen the evidence for obesity as a bona fide risk factor for myeloid 

leukemias and in particular APL. FLT3 mutations and polyunsaturated fatty acid metabolism 

may play a previously underappreciated role in obesity-associated leukemogenesis. 
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Introduction 

The aetiology of Acute Myeloid Leukemia (AML) remains poorly understood. Genetic 

predisposition or clear exposure to environmental mutagenic agents (smoking, benzene, 

radiation, prior chemotherapy) can be demonstrated only in a minority of cases 1. Age is an 

independent risk factor, probably linked to progressive mutation accumulation and clonal 

stem cell expansion accompanying aging 2. Though obesity has recently emerged as a 

prominent risk factor for a variety of solid tumors3, its impact on hematological neoplasms is 

comparatively less studied. A moderate but consistently positive correlation between body 

mass index (BMI) ad  incidence of leukemias has been identified in observational studies4–6. 

Yet, none of the collected evidence has been considered sufficiently strong to consider obesity 

as a bona fide risk factor for AML 3,7. Most studies did not distinguish between 

myeloid/lymphoid and acute/chronic forms, nor between genetic subtypes within each form. 

AML is recognized as a highly heterogeneous disease with genetically diverse subtypes 8. 

Subtypes have radically different outcomes and, similarly, their risk may be differentially 

affected by environmental factors. Identification of subtype-specific risk associations, 

however, is made difficult by their rarity.   

A genetic subset of AML, Acute Promyelocytic Leukemia (APL), is characterized by a 

specific chromomal translocation (t15;17), homogeneous biology and response to clinical 

agents All-Trans Retinoic Acid (ATRA) and Arsenic Trioxide, which have rendered it the 

most curable form of AML to date9. We previously demonstrated that the risk of relapse after 

ATRA/Idarubicin is significantly increased in overweight/obese APL patients10. In the present 

report, we investigated the association of overweight/obesity with risk of developing APL and 

other leukemias. We describe the results of multiple studies across four Western populations 
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with significantly different dietary regimens and prevalence of obesity. The studies were 

concordant in demonstrating increased risk of developing APL in overweight/obesity 

subjects. In an effort to generate mechanistic hypotheses to explain this relationship, we 

analyzed transcriptomic and mutational data from the AML project in The Cancer Genome 

Atlas (TCGA)11 and identified alterations selectively associated with obesity and/or APL 

which may be involved in obesity-associated leukemogenesis.  

Methods 

Detailed methods are provided as supplementary material 

UK population-based study: data collection and statistical methods 

Methods for the UK population study were described in depth previously 6. The study was 

approved by the London School of Hygiene and Tropical Medicine Ethics Committee. To 

identify outcomes of specific leukaemia sub-types, CPRD clinical records were searched for 

codes relating to specific leukemia subgroups. We controlled for multiple covariates at time 

of the BMI record(s): age, smoking status,; alcohol use, previous diabetes diagnosis, index of 

multiple deprivation, calendar period, and stratified by sex.. We excluded people with missing 

smoking (49 206/5.24 million [0.9%]) and alcohol status (394 196/5.24 million [7.5%]. All 

CIs are presented at the 95% level.  

Cross-sectional studies: data collection and statistical methods 

APL cases from Spain were extracted from the PETHEMA database to include 414 cases 

diagnosed between 1998 and 2012. APL cases from Italy were 134 adult patients treated with 

AIDA protocol included in the previously described cohort 10.  APL cases from USA included 

the entire cohort of the published AML TCGA project 11 (n=20) plus 22 additional APL cases, 

unselected for any clinical variable, diagnosed at Washington University (Expanded TCGA 

cohort). For all case cohorts, BMI was measured at the time of diagnosis. 
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Data collection was approved by the Research Ethics Board of each participating institution, 

as referenced 11–14. Data source for expected BMI in the local population are described in the 

supplementary methods.  

Expression data analysis 

Expression data (RPKM matrix) were downloaded from the AML TCGA data portal. 11. The 

Quantitative Set Analysis for Gene Expression method as implemented in the quSAGE 

package 15 in the R programming language (v 3.2.3) was used to conduct supervised gene set 

enrichment analysis. We focused on the KEGG collection as it is enriched for metabolism-

associated gene annotations16.  

Mutational data analysis 

For the analysis in the TCGA data, mutational data were retrieved from the TCGA AML 

paper11 and AML driver genes (restricted to those with at least 2 mutations in the dataset) 

were downloaded from IntOgen 17.  

For the analysis of the retrospective cohort, FLT3 Internal Tandem Duplication (ITD) 

mutational data were provided by the referring centers.  

Role of the funding source 

Funding sources had no role in study design, collection, analysis, and interpretation of data; 

report writing nor decision to submit the paper for publication 

Results 

Population-based cohort study in the UK 

Overall characteristics of the 5.24 million UK adults included in this study have been 

described previously6. 5.833 subjects with a diagnosis of "leukemia" over the observational 

time were included in the present analysis. These events were further classified in the 
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following groups: "APL" (n=26), "non APL-AML" (n=1.012), lymphoid leukemias ("LL"; 

n=2.823) and "other" (n=1.972). Median time lapse between BMI measurement and diagnosis 

was similar across subgroups (APL: 1,810 days; AML: 2,280 days; LL: 1,928 days; other: 

1,894 days). 

We fit BMI as a three-knot cubic spline and as a linear term. There was no evidence of non-

linearity (p=0.94), suggesting that the relationship was best described by the linear model. 

After adjusting for covariates, per each 5 kg/m2 increase we obtained hazard ratios (HR) of 

1.44 for APL (95% confidence interval (CI) 1.0-2.08), 1.17 for non APL-AML (95% CI 1.10-

1.26), 1.04 for LL (95% CI 1.0-1.09) and 1.10 for other leukemias (95% CI 1.04-1.15) 

(Figure 1 and Table 1). Stratification by gender suggested a stronger effect for male gender in 

APL (HR 1.82, 95% CI 1.10- 3.00 vs female HR 1.19, 95%CI 0.67-1.98), although the 

sample size becomes very small (n=13 each). Together, these results suggest that higher BMI 

is associated with increased risk of all sub-types of leukemia, particularly APL. 

Cross-sectional studies in Italian, Spanish and USA trial cohorts 

Though APL showed the strongest association with higher BMI in the cohort analysis  

described above, results were not conclusive due to the small number of cases identified 

(n=26) and the consequently wide confidence intervals. To strengthen the evidence, we 

carried out retrospective case-control studies using cohorts of APL patients from national 

registries of clinical trials from Spain (PETHEMA) and Italy (GIMEMA) and patients from 

the USA-based AML genome sequencing study (the AML TCGA cohort with 22 additional 

cases characterized at Washington University-St Louis). In all three groups, APL diagnosis 

was established using gold standard diagnostic procedures.  

Demographic characteristics of the three case cohorts (Italy n=134, Spain n=414 and USA 

n=42) are described in Table 2. Gender (female 53.0%, 55.2%, 50% respectively) and age 

(median of 45, 45 and 47 respectively) were similarly represented. Information on ethnicity 
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was unavailable for the Spanish and Italian cohorts, whereas white, black and hispanic 

ethnicities were represented in the USA cohort. 

To generate control groups for comparison, we obtained anthropometric data from 

epidemiological surveys of the general population in the different countries. As the 

prevalence of obesity has increased dramatically in most countries in the last decades 

(especially USA), we obtained data that were as close as possible to the median year of 

diagnosis (2002 for Italy, 2003 for Spain, 2007 for USA) (Table 3 and Methods).  

In all three cohorts, there was strong evidence that the observed BMI distribution for cases 

across WHO BMI classes was different from that expected under the null hypothesis of no 

association (Italy p<0.001, Spain p=0.011, USA p<0.001; Table 3) in gender-, age- and 

ethnicity- (for USA) matched controls. In particular, in all 3 datasets, there were more cases  

than expected in the higher BMI groups, irrespective of gender in all cohorts apart from 

Spain, in which significance was not reached for males (p=0.130), despite a similar trend 

(Table 3). 

Correlation of TCGA transcriptomics data with BMI and AML subtype 

The availability of the TCGA dataset prompted us to search for signatures that could suggest 

a mechanistic rationale for the association between APL and obesity. We interrogated 

available AML transcriptomes with supervised gene set enrichment analysis using quSage 15. 

Focusing on the KEGG gene set collection, APL was associated with increased activity of 13 

and decreased activity of 64 out of 186 gene sets (figure 2A, table 4 and supplementary table 

S1). Intriguingly, among significantly upregulated gene sets we found pathways associated 

with the metabolism of long-chain unsaturated fatty acids (linoleic and arachidonic), which 

are precursors of eicosanoids mediating inflammation-associated cancers18. Also noticeable 

was the APL-associated upregulation of Insulin and Insulin-like Growth Factor (IGF1) 

receptors, but not leptin receptor (figure 2B); insulin signaling-associated pathways were also 
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specifically upregulated in obese vs non-obese APL patients ("type II diabetes mellitus" and 

"insulin signaling", supplementary table S1). 

No pathway was significantly enriched in obese vs non-obese patients among non-M3 cases. 

Correlation of mutational data data with BMI 

We then asked whether obesity is associated with specific driver mutations in AML in the 

TCGA cohort. Out of 23 established driver genes mutated at least twice in the cohort, 

mutations in FLT3 were positively associated with obesity (33/88 obese vs 22/110 non-obese, 

p=0.007, Odds Ratio=2.4, False Discovery Rate (FDR)= 0.16, figure 3 and supplementary 

table S3). When we analysed the two main classes of FLT3 mutations separately (Tyrosine 

Kinase Domain, TKD and Internal Tandem Duplication, ITD), the association held 

statistically significant for ITD (24/88 obese vs 14/110 non-obese, p=0.01, Odds Ratio=2.6) 

but not for TKD (9/88 obese vs 8/110 non-obese, p=0.6). In APL, where all FLT3 mutations 

were ITD, the correlation remained statistically significant (6/12 obese vs 0/8 non-obese, 

p=0.04). In non-APL AMLs, with 32 ITD and 17 TKD, overall FLT3 mutations were still 

significantly enriched in obese patients ((27/49 obese vs 22/102 non-obese, Odds Ratio=2, 

p=0.04) but not when analysed separately (p=0.11 for ITD and 0.44 for TKD).  

We then attempted to validate this finding in the APL cohorts, for which data on FLT3ITD 

(table 5). In the pooled analysis (163 mutated patients / 569 total), OR of having a FLT3 ITD 

was 1.22 (95% CI 1.05-1.43) per each 5 kg/m2 increase. In the individual cohorts, results 

were significant in the Italian (30/114 mutated,  OR 2.35, 95% CI 1.25-4.42) and USA (14/41 

mutated, OR 1.44, 95% CI 0.93-2.24) cohorts, but not in the Spanish (119/414 mutated, OR 

1.09, 95% CI 0.89-1.33).  

Discussion 

In this work we provide substantial evidence for an association between elevated BMI and 

risk of developing AML. The risk was particularly high with the APL subtype,  with an 
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estimated 44% HR increase per each 5 kg/m2. This was qualitatively confirmed by comparing 

expected vs observed BMI distributions in APL cohorts across three western countries (US, 

Spain and Italy) with different obesity prevalence and dietary habits. Additionally, we provide 

hypothesis-generating evidence for molecular mechanisms underlying such association, in 

particular the possible involvement of pro-inflammatory fatty acid metabolism and mutations 

of the tyrosin kinase FLT3. 

Our epidemiological results expand a growing body of literature identifying 

overweight/obesity as a bona fide risk factor for leukemias. The most recent meta-analysis 

reported an adjusted relative risk of 1.14 (95% CI, 1.04–1.26, P�=�0.008) for acute myeloid 

leukemias overall5. Despite increasing evidence, the notion of obesity as a risk factor for 

leukemia remains widely overlooked7. Among the highly heterogeneous AML subtypes, APL 

is the most clinically and biologically coherent. We and others previously showed that in 

APL, but not in other AMLs, an elevated BMI significantly affects outcome 10,19. This is also 

in line with the few retrospective studies that have assessed APL as a separate disease entity 

20,21. No study had addressed this question prospectively, a task made difficult by the rarity of 

the disease but made possible in our case by the very large study population (5.2 million). The 

largest prospective study to date (EPIC), which revealed a statistically significant higher risk 

only in female AMLs, but not in other gender and biological subgroups4, was based on a 

relatively small number of incident cases, only 671 out of 375,021 participants over 11.5 

years of median follow-up. The use of orthogonal epidemiological approaches is a strength of 

the study, as it attempts to mitigate some weaknesses of each design. Registry-based studies 

have little patient selection bias, providing results that are more comparable to real-life 

scenarios. However, the quality of case identification is likely to be sub-optimal; erroneous 

assignment of APL to the general AML ICD code might "deplete" incident cases and further 

reduce statistical power. Case-control studies in the context of clinical trials, on the other 
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hand, offer the advantage of gold-standard diagnosis but might be affected by significant 

patient selection biases. This may have counter-selected obese patients in the present study, 

since the correlated comorbidities may be associated with limited access to clinical trials. 

Another limitation of the study is that we could not provide the same degree of geographical 

homogeneity for control subjects in the case-control studies. This may be particularly relevant 

for the US, known to have ample state-specific differences in BMI distribution. However, this 

variation is mainly due to demographic parameters22, such as age, sex and race, and is 

therefore at least partly accounted for in our multivariate analysis. We also note that our USA 

APL cohort includes a single patient of hispanic ethnicity. Hispanics are considered at higher 

incidence of APL, although some large studies based on Surveillance, Epidemiology, and 

End Results (SEER) data dispute this commonly held conclusion 23  

Understanding the molecular mechanism causing increased cancer risk in obese subjects is 

crucial for adequate nutritional prevention, given the sustained rise of obesity worldwide, 

particularly in emerging economies. The possibility to match transcriptional and mutational 

profiles from TCGA to patient clinical and BMI data provided an opportunity to generate 

hypotheses grounded on actual data. However, extracting biological significance from large 

molecular datasets remains challenging. Shifting analytical focus from single genes to gene 

sets or pathways may allow to capture signals even when the changes affecting individual 

genes are minimal, provided they are coherent. The gene set-based method we employed here 

for transcriptional analysis does not assume equal variances, resulting in improved sensitivity 

and specificity over similar competing methods15. Our main finding is the upregulation of 

several genes involved in the metabolism of pro-inflammatory ω-6 polyunsaturated fatty acids 

(PUFA, linoleic and arachidonic) in APL. These molecules are increased in the plasma of 

metabolically impaired subjects, including the obese24, and may lead to elevated production of 

derivative molecules with multiple effects in signaling and inflammation, enhancing 
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leukemogenesis through several independent  mechanisms: direct growth promotion, 

generation of genotoxic oxidative stress, immune modulation18,25 and generation of 

endogenous agonists for Peroxisome proliferator-activated receptors (PPAR)26. PPARs are 

known insulin sensitizers 27 and their transcriptional targets are upregulated in APL 

(Supplementary Table S2); APL expressed higher levels of insulin and IGF1 receptors and its 

growth may thus be favoured by the increased insulin/IGF1 levels in obese subjects3,28. 

Elevated generation of PUFA-derived eicosanoids by APL cells may also explain the 

association between obesity and ATRA differentiation syndrome (DS) 10, as eicosanoids 

strongly promote leukocyte adhesion and chemokine release in the lungs 29.  

Finally, the association between FLT3 mutations and a higher BMI, although unconfirmed in 

the larger Spanish cohort, is an intriguing finding that we think deserves additional research. 

FLT3 mutations are associated with specific metabolic dependencies which may be 

differentially affected by the systemic nutritional state30. It cannot be entirely ruled out that 

geographical differences in dietary composition may account for the discrepancies in the 

association between BMI and APL risk (weakest in Spain) and FLT3 mutations (null in 

Spain). Consistent with this highly speculative view, a recent EPIC substudy revealed marked 

differences in nutritional patterns between European nations. Despite sharing a theoretical 

propensity for "Mediterranean" diets, Italy and Spain were highly polarized especially in 

terms of average polyunsaturated fatty acid consumption (3 vs 38% of the participants in the 

highest quintile) 31.  

In conclusion, based on evidence provided here, we propose to include obesity among 

environmental factors increasing risk for myeloid neoplasms and in particular APL. 

Additional studies with experimental models will clarify the molecular determinants of this 

relationship and test whether and how specific nutritional components like PUFAs can 
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determine specific mutational and transcriptional alterations able to influence teh natural 

history of the disease. 
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Tables 
 
Table 1. Hazard ratios from the UK population study 

Disease  No. of events  Adjusted HR (per 5kg/m2 increase in BMI) 95% CI 

APL 26 1.44 1.00, 2.08 

AML 1012 1.17 1.10, 1.26  

LL 2823 1.04 1.00, 1.09 
Other 1972 1.10 1.04, 1.15 
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Table 2. Description of the cross-sectional cohorts 

  Italy Spain USA 

  No. 134 No. 414 No. 42 

Age 18 - 35 46 (34.3) 113 (27.3) 13 (31.0) 

 36 - 50 34 (25.4) 145 (35.0) 12 (28.6) 

 51 - 65 40 (29.9) 102 (24.6) 11 (26.2) 

 > 65 14 (10.4) 54 (13.0) 6 (14.3) 

 Median (IQR) 45 (31-57) 45 (34-57) 47 (33-60) 

Gender Male 63 (47.0) 227 (54.8) 21 (50.0) 

 Female 71 (53.0) 187 (45.2) 21 (50.0) 

Year of diagnosis Median (range) 2002 (1997-2010) 2003 (1996-2012) 2007 (2001-2011) 

Race White - - 36 (85.7) 

 Black - - 5 (11.9) 

 Hispanic - - 1 (2.4) 

BMI Median (IQR) 26 (23-28) 26 (23-29) 34 (28-39) 

 

IQR: Interquartile range 
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Table 3. Observed BMI distribution in APL cases and expected BMI distribution in 

general population (percentages in brackets) 

  All Males Females 

Italy BMI Obs Expa P-val Obs Expc P-val Obs Expdc P-val 

 <25.0 48 (35.8) 
77.8 

(58.0) 
<0.001 16 (25.4) 

29.0 

(46.0) 
<0.001 32 (45.1) 

48.8 

(68.7) 
<0.001 

 
25.0-

29.9 
71 (53.0) 

44.8 

(33.4) 
 42 (66.7) 

28.0 

(44.5) 
 29 (40.8) 

16.8 

(23.6) 
 

 >=30.0 15 (11.2) 11.4 (8.5)  5 (7.9) 6.0 (9.5)  10 (14.1) 5.5 (7.7)  

 Total 134 134  63 63  71 71  

Spain BMI Obs Expa P-val Obs Expc P-val Obs Expdc P-val 

 <25.0 
172 

(41.5) 

189.9 

(45.9) 
0.011 79 (34.8) 

85.0 

(37.4) 
0.130 93 (49.7) 

104.9 

(56.1) 
0.033 

 
25.0-

29.9 

156 

(37.7) 

158.1 

(38.2) 
 99 (43.6) 

103.2 

(45.5) 
 57 (30.5) 

55.9 

(29.4) 
 

 >=30.0 86 (20.8) 
66.0 

(15.9) 
 49 (21.6) 

38.8 

(17.1) 
 37 (19.8) 

27.2 

(14.6) 
 

 Total 414 414  227 227  187 187  

USA BMI Obs Expb P-val Obs Expc P-val Obs Expdd P-val 

 <25.0 2 (4.8) 
12.8 

(30.6) 
<0.001 1 (4.8) 5.3 (25.4) 0.002 1 (4.8) 7.5 (35.7) 0.003 

 
25.0-

29.9 
13 (31.0) 

13.7 

(32.6) 
 5 (23.8) 7.9 (37.7)  8 (38.1) 5.8 (27.6)  

 
30.0-

34.9 
12 (28.6) 8.6 (20.5)  9 (42.9) 4.8 (23.0)  3 (14.3) 3.8 (18.0)  

 >=35.0 15 (35.7) 6.9 (16.3)  6 (28.6) 2.9 (13.9)  9 (42.9) 3.9 (18.8)  

 Total 42 42  21 21  21 21  

Expected frequencies were obtained from the BMI distribution in the general population of 

the area of the APL cases, period of APL diagnosis and in addition: aage class and sex; bage 

class, sex and race; cage class; dage class and race.  
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Table 4. Significantly upregulated KEGG pathways in APL vs AML in TCGA 

pathway.name log.fold.cha

nge 

p.Value FDR 

KEGG_RENIN_ANGIOTENSIN_SYSTEM 0.6503 0.0023 0.0093 

KEGG_LINOLEIC_ACID_METABOLISM 0.6381 0.0002 0.0010 

KEGG_GLYCOSAMINOGLYCAN_BIOSYNTHESIS_

HEPARAN_SULFATE 

0.4217 0.0000 0.0000 

KEGG_GLYCOSPHINGOLIPID_BIOSYNTHESIS_LA

CTO_AND_NEOLACTO_SERIES 

0.3391 0.0003 0.0017 

KEGG_ALANINE_ASPARTATE_AND_GLUTAMAT

E_METABOLISM 

0.3258 0.0009 0.0039 

KEGG_ARACHIDONIC_ACID_METABOLISM 0.3221 0.0037 0.0130 

KEGG_GLYCOSAMINOGLYCAN_DEGRADATION 0.3208 0.0000 0.0001 

KEGG_HISTIDINE_METABOLISM 0.2996 0.0044 0.0148 

KEGG_ARGININE_AND_PROLINE_METABOLISM 0.2582 0.0001 0.0008 

KEGG_LIMONENE_AND_PINENE_DEGRADATION 0.1662 0.0087 0.0250 

KEGG_CARDIAC_MUSCLE_CONTRACTION 0.1475 0.0084 0.0245 

KEGG_PROTEIN_EXPORT 0.1439 0.0066 0.0204 

KEGG_PATHWAYS_IN_CANCER 0.1346 0.0169 0.0428 
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Table 5. Logistic regression of BMI and FLT3 ITD mutations 

BMI All 3 cohorts 
163/569a 

ITALY 
30/114a 

SPAIN 
119/414a 

USA 
14/41a 

 OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) 
     

5 unit increase 1.22 (1.05-1.43) 2.35 (1.25-
4.42) 

1.09 (0.89-
1.33) 

1.44 (0.93-
2.24) 

     
≥ 25 vs <25b - 4.40 (1.63-

11.9) 
1.15 (0.75-

1.78) 
- 

≥ 30 vs <30b - - - 6.46 (1.21-
34.5) 

 
a Mutations / All patients; b Given the small number of obese patients in Italy and Spain, we compared 
overweight/obese patients versus normal weight patients (i.e. BMI ≥ 25 vs <25). Given the small number of 
normal weight patients in USA, we compared obese patients versus non-obese patients (i.e. BMI ≥ 30 vs <30).  

 

Figure Legends 
 
Fig 1: relationship between BMI and log-hazard ratio (HR) for leukemias in the UK population. (A) APL;  

(B) other AMLs; (C) lymphoid leukemias; (D) all leukemias. Mean (dark line) ± 95% confidence intervals 

(shaded area) is plotted. 

Fig 2: Differential activities of KEGG pathways and insulin/leptin receptors in the M3 vs non M3 quSage 

comparison in the TCGA. (A) Activity score with 95% CI of 186 KEGG gene sets; significant gene sets are 

color-coded in red (if upregulated) or green (if downregulated) (B) Insulin/IGF1 receptor pathway and leptin 

receptors. Mean ± 95% confidence interval are plotted 

Fig 3. Association between obesity and FLT3 mutations. (A) Bubble plot representing odds ratio vs -logP 

value of any mutation in 23 driver genes in the TCGA AML cohort. FLT3 (in red) is the only gene with False 

Discovery Rate < 0.25. Bubble size reflects the number of obese patients with a mutation. Data are tabulated in 

supplementary table S3 

 









Supplementary methods 

UK population-based study: data collection and statistical methods 

Methods for the UK population study were described in depth previously 1. The study was approved by the London School of Hygiene and 

Tropical Medicine Ethics Committee.  Briefly, data were collected from the UK Clinical Practice Research Datalink (CPRD), which contains 

computerised primary-care records from general practitioners who use the Vision IT system and have agreed at the practice level to participate 

(covering about 9% of the UK population). The CPRD dataset is representative of the UK population in terms of age, sex, ethnicity and BMI 

when compared with census data 2,3 Study entry began 12 months after registration and we assigned BMI records as exposure only 12 months 

after their recording, to guard against reverse causality (ie, BMI being affected by undiagnosed cancer). We included all people aged 16 years or 

older with BMI and subsequent eligible follow-up time. BMI was recorded as per local general practice. Individuals with any record of cancer 

before study entry were excluded. BMI records and diagnosis collected between years 1987-2012	were	included	in	the	analysis.	To identify 

outcomes of specific leukaemia sub-types, CPRD clinical records were searched for codes relating to: AML (ICD-10 codes: C92.0, C92.5, 

C92.6, C93.0, C94.0, C95.0); APL (ICD-10 code C92.4); LL (ICD-10 code C91); and any other leukaemias that were not specifically coded 

("other").  

Subjects were followed-up from study entry until the earliest of: first cancer diagnoses (any site), death, transfer out of CPRD, or last data 

collection of the practice. To relate BMI to risk of each type of leukaemia, we fitted Cox regression models with attained age as the underlying 



timescale. We fitted fully adjusted models, with BMI as a continuous linear term to estimate the average effect of a 5 kg/m² increase in BMI on 

leukaemia risk. We also fitted a model including BMI as a 3-knot spline in case of non-linearity in the relationship with leukaemia risk; we 

tested for evidence of non-linearity by conducting a likelihood ratio test comparing nested models with and without the non-linear terms in the 

spline basis. We controlled for the following covariates at time of the BMI record(s): age (three-knot restricted cubic spline to allow for non-

linearity); smoking status (never smoker, current smoker, ex-smoker); alcohol use (non-drinker, current drinker [light, moderate, heavy, 

unknown], ex-drinker); previous diabetes diagnosis; index of multiple deprivation (in quintiles, a measure of socioeconomic status); calendar 

period (<1989, 1990–94, 1995–99, 2000–04, 2005–09, ≥2010); and stratified by sex. We excluded people with missing smoking (49 206/5.24 

million [0.9%]) and alcohol status (394 196/5.24 million [7.5%]. All CIs are presented at the 95% level.  

Cross-sectional studies: data collection and statistical methods 

APL cases from Spain were extracted from the PETHEMA database to include 414 cases diagnosed between 1998 and 2012. APL cases from 

Italy were 134 adult patients treated with AIDA protocol included in the previously described cohort 4.  APL cases from USA included the entire 

cohort of the published AML TCGA project 5 (n=20) plus 22 additional APL cases, unselected for any clinical variable, diagnosed at 

Washington University (Expanded TCGA cohort). For all case cohorts, BMI was measured at the time of diagnosis. Data collection was 

approved by the Research Ethics Board of each participating institution, as referenced 5–8 

We compared the distribution of BMI observed in the three APL case cohorts to the distribution of BMI expected in the general population of 



the same countries. Specifically, to calculate the expected distribution of BMI in Italy we used data from the Italian National Institute of 

Statistics 9 and we selected the area of Lazio, where the APL cases were diagnosed, in the years 2000-2010. For Spain, we used data from the 

Eurostat 10 and we selected the general population of Spain in the year 2008, the only year available. For both Italy and Spain, the expected BMI 

distribution was calculated using the available age- and sex- specific BMI distribution of the general population classified in 3 categories (<25; 

25-29.9; ≥30). For USA we used the 2009-2010 data from the American National Health and Nutrition Examination Survey 11. The expected 

BMI distribution was calculated using the available race-, age- and sex- specific BMI distribution of the general population classified in 4 

categories (<25; 25-29.9; 30.0-34.9; ≥35). 

The global null hypothesis that the observed counts did not differ from the expected ones across the BMI categories was tested in a null Poisson 

regression model, where the observed counts were considered as dependent variable and the expected counts as the offset. We included in the 

model BMI as an ordinal variable to test the log-linear relationship between BMI and the observed to expected ratio (i.e. to test for linear trend). 

The Pearson's chi-square goodness of fit test p-value was reported. 

Expression data analysis 

Expression data (RPKM matrix) were downloaded from the AML TCGA data portal. Cases with available RNAseq, BMI and FAB classification 

data (177/200) were used in the present study. Cases were classified by FAB in "APL" (FAB="M3") and "non-APL" (FAB ≠ "M3") and by BMI 

in "obese" (BMI ≥ 30) and "non-obese" (BMI < 30). Genes with < 0.2 RPKM in at least 75% of patients were removed 5. The Quantitative Set 



Analysis for Gene Expression method as implemented in the quSAGE package 12 in the R programming language (v 3.2.3) was used to conduct 

supervised gene set enrichment analysis. For each expressed gene, the quSAGE algorithm calculates a probability density function (PDF) of 

differential expression between two groups of samples. For each gene set, it then calculates "activity", ie the mean difference in log-

expression of individual genes included in a gene set. Gene sets with False Discovery Rate (FDR) < 0.05 were considered significant. We 

focused on the KEGG and CGP gene set collections, downladed from MSigDB (http://software.broadinstitute.org/gsea/msigdb/). The CGP 

collection was used to confirm enrichment of previously identified APL-specific gene signatures 13 (supplementary table S2). We focused on the 

KEGG collection as it is enriched for metabolism-associated gene annotations14. The script to generate the present results is available upon 

request.  

Mutational data analysis 

For the analysis in the TCGA data, mutational data were retrieved from the TCGA AML paper5 and AML driver genes were downloaded from 

IntOgen 15. For each gene, different mutations were conflated so that gene status in each patient was either "mutated" or "wild type". For each 

gene we then calculated the number of mutated or wild-type patients in the obese or non-obese groups, and calculated Odds Ratios (OR), 95% 

confidence intervals (CI) and p-values by Fisher's test with Benjamini-Hochberg correction. Only genes with >1 mutation in the dataset were 

considered, using the fdsm package in R. 



For the analysis of the retrospective cohort, FLT3 Internal Tandem Duplication (ITD) mutational data were provided by the referring centers. 

Logistic regression was employed to calculate ORs with 95% CI. 
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Table	S1.	quSage	activity	scores	of	KEGG	gene	sets.	Only	gene	sets	with	FDR	<	0.05	in	at	least	one	comparison	are	shown		
	 M3vsNonM3.KEGG		 ObVSNorm_All.KEGG		 ObVSNorm_M3.KEGG		 ObVSNorm_nonM3.K	EGG		

pathway.name		
	
log.fold.c	
hange		

	
p.V	
alue		

	
FD	R		
		

log.fold.c	
hange		

	
p.V	
alue		

	 	
FD	R		

log.fold.c	
hange		

	
p.V	
alue		

	 	
FD	R		

log.fold.c	
hange		

	
p.V	
alue		

	 	
FD	R		

KEGG_RENIN_ANGIOTENSIN_SYSTEM		 0.6503		 0.0	
023		

0.0	
09	3		 -0.0187		 0.8	

880		
0.9	
85	9		 -0.2661		 0.5	

992		
0.6	
94	3		 -0.0294		 0.8	

297		
0.9	
90	1		

KEGG_LINOLEIC_ACID_METABOLISM		 	
0.6381		

	
0.0	
002		

	
0.0	
01	0		

0.0537		
	
0.6	
317		

	 	
0.9	
85	9		

0.1104		
	
0.6	
912		

	 	
0.7	
60	7		

0.0136		
	
0.9	
083		

	 	
0.9	
90	1		

KEGG_GLYCOSAMINOGLYCAN_BIOSYN	
THESIS_HEPARAN_SULFATE		 0.4217		 0.0	

000		
	
0.0	
00	0		

0.1973		 0.0	
022		

0.4	
09	8		 0.2753		 0.1	

104		
0.2	
23	3		 0.1680		 0.0	

122		
0.9	
90	1		

KEGG_GLYCOSPHINGOLIPID_BIOSYNT	
HESIS_LACTO_AND_NEOLACTO_SERIES		 0.3391		 0.0	

003		
0.0	
01	7		 0.0490		 0.4	

612		
0.9	
85	9		 0.0944		 0.5	

590		
0.6	
64	1		 0.0264		 0.7	

106		
0.9	
90	1		

KEGG_ALANINE_ASPARTATE_AND_GL	
UTAMATE_METABOLISM		 0.3258		 0.0	

009		
0.0	
03	9		 0.0366		 0.5	

529		
0.9	
85	9		 0.2905		 0.1	

212		
0.2	
37	2		 -0.0065		 0.9	

168		
0.9	
90	1		

KEGG_ARACHIDONIC_ACID_METABOLI	SM		 	
0.3221		

	
0.0	
037		

	
0.0	
13	0		

0.0907		
	
0.2	
234		

	 	
0.9	
85	9		

0.0785		
	
0.6	
402		

	 	
0.7	
26	4		

0.0751		
	
0.3	
437		

	 	
0.9	
90	1		

	
KEGG_GLYCOSAMINOGLYCAN_DEGRA	DATION		 0.3208		 0.0	

000		
0.0	
00		 0.1114		 0.0	

519		
0.9	
85		 -0.0164		 0.9	

407		
0.9	
50		 0.1077		 0.0	

707		
0.9	
90		

	 		 		
	
1		
		

	 		
9		
	 		

	 		
9		
	 		

	 		
1		
	 		

KEGG_HISTIDINE_METABOLISM		 0.2996		 0.0	
044		

0.0	
14	8		 0.0633		 0.3	

112		
0.9	
85	9		 0.1274		 0.4	

197		
0.5	
47	5		 0.0410		 0.5	

403		
0.9	
90	1		

KEGG_ARGININE_AND_PROLINE_META	BOLISM		 0.2582		
		

0.0	
001		
		

	
0.0	
00	8		
		

-0.0136		
0.7	
768		
		

0.9	
85	9		
	 		

0.1283		
0.2	
240		
		

0.3	
65	5		
	 		

-0.0421		
0.4	
087		
		

0.9	
90	1		
	 		

KEGG_LIMONENE_AND_PINENE_DEGR	ADATION		 0.1662		 0.0	
087		

0.0	
25	0		 0.0088		 0.8	

790		
0.9	
85	9		 0.0364		 0.7	

788		
0.8	
13	8		 -0.0030		 0.9	

581		
0.9	
90	1		

KEGG_CARDIAC_MUSCLE_CONTRACTIO	N		 	
0.1475		

	
0.0	

	
0.0	 0.0321		 	

0.4	
	 	
0.9	 0.1541		 	

0.0	
	 	
0.1	 0.0120		 	

0.7	
	 	
0.9	



084		 24	5		 163		 85	9		 864		 98	5		 777		 90	1		

KEGG_PROTEIN_EXPORT		 0.1439		 0.0	
066		

	
0.0	
20	4		

-0.0374		 0.2	
974		

0.9	
85	9		 0.1933		 0.0	

958		
0.2	
03	1		 -0.0688		 0.0	

632		
0.9	
90	1		

KEGG_PATHWAYS_IN_CANCER		 	
0.1346		

	
0.0	
169		

	
0.0	
42	8		

0.0002		
	
0.9	
991		

	 	
0.9	
99	1		

0.2432		
	
0.0	
112		

	 	
0.0	
92	2		

-0.0316		
	
0.4	
585		

	 	
0.9	
90	1		

KEGG_UBIQUITIN_MEDIATED_PROTEO	LYSIS		 -0.0801		 0.0	
163		

0.0	
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128		
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492		
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-0.0866		

	
0.0	
187		

	
0.0	
46	3		

-0.0124		
	
0.6	
339		

	 	
0.9	
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0.0	
993		
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07	4		

-0.0213		
	
0.4	
381		
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170		
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165		
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112		
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807		
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KEGG_RNA_DEGRADATION		 	
-0.1018		

	
0.0	
146		
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39	5		
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004		
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021		
0.0	
08	5		 -0.0054		 0.8	

847		
0.9	
85	9		 0.1395		 0.3	

371		
0.4	
86	0		 -0.0109		 0.7	

775		
0.9	
90	1		

KEGG_PENTOSE_PHOSPHATE_PATHW	AY		 	
-0.1698		

	
0.0	
029		

	
0.0	
10	5		

-0.0559		
	
0.1	
519		

	 	
0.9	
85	9		

-0.0887		
	
0.2	
304		

	 	
0.3	
72	6		

-0.0438		
	
0.2	
926		

	 	
0.9	
90	1		

KEGG_PATHOGENIC_ESCHERICHIA_CO	LI_INFECTION		 -0.1747		 0.0	
028		

	
0.0	
10	5		

0.0001		 0.9	
983		

0.9	
99	1		 0.2391		 0.0	

248		
0.1	
03	4		 -0.0145		 0.7	

640		
0.9	
90	1		

KEGG_WNT_SIGNALING_PATHWAY		 	
-0.1798		

	
0.0	
003		

	
0.0	
01	8		

-0.0202		
	
0.5	
735		

	 	
0.9	
85	9		

0.2704		
	
0.0	
049		

	 	
0.0	
79	8		

-0.0399		
	
0.2	
867		

	 	
0.9	
90	1		

KEGG_MELANOGENESIS		 -0.1822		 0.0	
101		

0.0	
28	5		 0.0017		 0.9	

737		
0.9	
99	1		 0.2365		 0.0	

708		
0.1	
72	8		 -0.0120		 0.8	

199		
0.9	
90	1		

KEGG_ENDOMETRIAL_CANCER		 	
-0.1884		

	
0.0	
002		

	
0.0	
01	1		

0.0121		
	
0.7	
239		

	 	
0.9	
85	9		

0.1965		
	
0.0	
107		

	 	
0.0	
92	2		

0.0039		
	
0.9	
124		

	 	
0.9	
90	1		

KEGG_MISMATCH_REPAIR		 -0.1993		 0.0	
191		

0.0	
46	8		 -0.0195		 0.7	

019		
0.9	
85	9		 0.3508		 0.0	

325		
0.1	
08	0		 -0.0461		 0.3	

817		
0.9	
90	1		

KEGG_RIBOFLAVIN_METABOLISM		 -0.2067		 0.0	
027		

	
0.0	
10	2		

-0.0038		 0.9	
237		

0.9	
87	4		 0.0432		 0.6	

998		
0.7	
65	7		 0.0027		 0.9	

527		
0.9	
90	1		

KEGG_DNA_REPLICATION		 	
-0.2114		

	
0.0	
206		

	
0.0	
49	6		

-0.0159		
	
0.7	
776		

	 	
0.9	
85	9		

0.2973		
	
0.0	
941		

	 	
0.2	
03	1		

-0.0361		
	
0.5	
441		

	 	
0.9	
90	1		

KEGG_JAK_STAT_SIGNALING_PATHWA	Y		 	 	 	 0.0150		 	 	 	 0.2723		 	 	 	 0.0008		 	 	 	



-0.2119		 0.0	
084		

0.0	
24	5		

0.7	
826		

0.9	
85	9		

0.0	
166		

0.1	
01	5		

0.9	
909		

0.9	
91	8		

KEGG_DORSO_VENTRAL_AXIS_FORMA	TION		 	
-0.2122		

	
0.0	
045		

	
0.0	
14	9		

0.0181		
	
0.7	
070		

	 	
0.9	
85	9		

0.2959		
	
0.0	
227		

	 	
0.1	
03	4		

0.0018		
	
0.9	
728		

	 	
0.9	
91	8		

KEGG_INOSITOL_PHOSPHATE_METAB	OLISM		 	
-0.2128		

	
0.0	
000		

	
0.0	
00	2		

-0.0010		
	
0.9	
730		

	 	
0.9	
99	1		

0.1404		
	
0.0	
113		

	 	
0.0	
92	2		

-0.0037		
	
0.9	
133		

	 	
0.9	
90	1		

KEGG_EPITHELIAL_CELL_SIGNALING_I	
N_HELICOBACTER_PYLORI_INFECTION		

	
-0.2133		

	
0.0	
000		

	
0.0	
00	1		

0.0413		
	
0.2	
478		

	 	
0.9	
85	9		

0.1706		
	
0.0	
797		

	 	
0.1	
85	3		

0.0403		
	
0.2	
762		

	 	
0.9	
90	1		

KEGG_RIG_I_LIKE_RECEPTOR_SIGNALI	NG_PATHWAY		 -0.2148		 0.0	
006		

0.0	
02	7		 0.0316		 0.3	

340		
0.9	
85	9		 0.1770		 0.1	

163		
0.2	
32	5		 0.0289		 0.3	

786		
0.9	
90	1		

KEGG_LONG_TERM_DEPRESSION		 -0.2202		 0.0	
068		

0.0	
20	7		 -0.0218		 0.6	

805		
0.9	
85	9		 0.1495		 0.0	

884		
0.2	
00	5		 -0.0272		 0.6	

329		
0.9	
90	1		

KEGG_BETA_ALANINE_METABOLISM		 	
-0.2380		

	
0.0	
059		

	
0.0	
19	0		

-0.0296		
	
0.5	
572		

	 	
0.9	
85	9		

0.1582		
	
0.4	
291		

	 	
0.5	
50	4		

-0.0358		
	
0.4	
898		

	 	
0.9	
90	1		

	
KEGG_FRUCTOSE_AND_MANNOSE_ME	TABOLISM		
		

-0.2433		 0.0	
000		

0.0	
00		 -0.0113		 0.7	

895		
0.9	
85		 0.1312		 0.0	

715		
0.1	
72		 -0.0124		 0.7	

805		
0.9	
90		

	 		 		
	
1		
		

	 		
9		
	 		

	 		
8		
	 		

	 		
1		
	 		

KEGG_DRUG_METABOLISM_OTHER_EN	ZYMES		 -0.2535		 0.0	
082		

0.0	
24	5		 0.0270		 0.6	

671		
0.9	
85	9		 -0.1247		 0.5	

606		
0.6	
64	1		 0.0563		 0.3	

928		
0.9	
90	1		

KEGG_O_GLYCAN_BIOSYNTHESIS		 -0.2725		
		

0.0	
103		
		

	
0.0	
28	6		
		

0.0280		
0.6	
628		
		

0.9	
85	9		
	 		

0.4616		
0.0	
169		
		

0.1	
01	5		
	 		

-0.0006		
0.9	
918		
		

0.9	
91	8		
	 		

KEGG_CALCIUM_SIGNALING_PATHWA	Y		 -0.2771		 0.0	
001		

0.0	
00	4		 -0.0054		 0.9	

034		
0.9	
85	9		 0.2483		 0.0	

677		
0.1	
70	2		 -0.0159		 0.7	

335		
0.9	
90	1		

KEGG_VALINE_LEUCINE_AND_ISOLEUC	
INE_BIOSYNTHESIS		

	
-0.2834		

	
0.0	
044		

	
0.0	
14	8		

0.0075		
	
0.8	
942		

	 	
0.9	
85	9		

0.2955		
	
0.1	
340		

	 	
0.2	
51	8		

-0.0060		
	
0.9	
138		

	 	
0.9	
90	1		

KEGG_NOD_LIKE_RECEPTOR_SIGNALIN	G_PATHWAY		 -0.2899		 0.0	
002		

	
0.0	
01	0		

0.0682		 0.1	
886		

0.9	
85	9		 0.2244		 0.0	

358		
0.1	
12	8		 0.0688		 0.2	

078		
0.9	
90	1		



KEGG_CYTOSOLIC_DNA_SENSING_PAT	HWAY		 	
-0.3003		

	
0.0	
000		

	
0.0	
00	1		

0.0227		
	
0.5	
065		

	 	
0.9	
85	9		

0.1045		
	
0.3	
320		

	 	
0.4	
86	0		

0.0310		
	
0.3	
465		

	 	
0.9	
90	1		

KEGG_B_CELL_RECEPTOR_SIGNALING_	PATHWAY		 -0.3036		 0.0	
000		

0.0	
00	0		 0.0131		 0.7	

092		
0.9	
85	9		 0.2192		 0.0	

125		
0.0	
92	2		 0.0090		 0.7	

968		
0.9	
90	1		

KEGG_ERBB_SIGNALING_PATHWAY		 	
-0.3255		

	
0.0	
000		

	
0.0	
00	0		

0.0105		
	
0.7	
342		

	 	
0.9	
85	9		

0.2496		
	
0.0	
011		

	 	
0.0	
40	2		

0.0043		
	
0.8	
823		

	 	
0.9	
90	1		

KEGG_GLYCEROLIPID_METABOLISM		 -0.3303		 0.0	
001		

0.0	
00	4		 -0.0405		 0.4	

091		
0.9	
85	9		 0.2382		 0.0	

564		
0.1	
53	3		 -0.0509		 0.3	

134		
0.9	
90	1		

KEGG_FC_GAMMA_R_MEDIATED_PHAG	OCYTOSIS		 -0.3306		 0.0	
000		

	
0.0	
00	0		

-0.0166		 0.7	
137		

0.9	
85	9		 0.1495		 0.0	

525		
0.1	
50	3		 -0.0154		 0.7	

414		
0.9	
90	1		

KEGG_SPHINGOLIPID_METABOLISM		 	
-0.3680		

	
0.0	
000		

	
0.0	
00	0		

0.0174		
	
0.6	
685		

	 	
0.9	
85	9		

0.3152		
	
0.0	
416		

	 	
0.1	
24	8		

0.0076		
	
0.8	
462		

	 	
0.9	
90	1		

KEGG_RETINOL_METABOLISM		 	
-0.3804		

	
0.0	
029		

	
0.0	
10	5		

0.0302		
	
0.7	
095		

	 	
0.9	
85	9		

0.0697		
	
0.7	
325		

	 	
0.7	
92	1		

0.0472		
	
0.5	
811		

	 	
0.9	
90	1		

KEGG_GAP_JUNCTION		 	
-0.4063		

	
0.0	
000		

	
0.0	
00	1		

-0.0223		
	
0.6	
911		

	 	
0.9	
85	9		

0.3313		
	
0.0	
358		

	 	
0.1	
12	8		

-0.0360		
	
0.5	
254		

	 	
0.9	
90	1		

KEGG_CELL_ADHESION_MOLECULES_C	AMS		 	
-0.4328		

	
0.0	
008		

	
0.0	
03	5		

0.0313		
	
0.7	
135		

	 	
0.9	
85	9		

0.5266		
	
0.0	
280		

	 	
0.1	
03	4		

0.0053		
	
0.9	
546		

	 	
0.9	
90	1		

KEGG_NON_HOMOLOGOUS_END_JOINI	NG		 	
-0.4837		

	
0.0	
005		

	
0.0	
02	6		

0.0143		
	
0.8	
625		

	 	
0.9	
85	9		

0.4767		
	
0.0	
342		

	 	
0.1	
11	5		

-0.0058		
	
0.9	
434		

	 	
0.9	
90	1		

KEGG_TOLL_LIKE_RECEPTOR_SIGNALI	NG_PATHWAY		 -0.4982		 0.0	
000		

0.0	
00	0		 0.0443		 0.4	

457		
0.9	
85	9		 0.3124		 0.0	

205		
0.1	
03	4		 0.0448		 0.4	

386		
0.9	
90	1		

KEGG_OLFACTORY_TRANSDUCTION		 -0.5325		 0.0	
062		

0.0	
19	7		 0.1045		 0.4	

100		
0.9	
85	9		 0.1150		 0.7	

770		
0.8	
13	8		 0.1333		 0.3	

200		
0.9	
90	1		

KEGG_CHEMOKINE_SIGNALING_PATH	WAY		 	
-0.5333		

	
0.0	
000		

	
0.0	
00	0		

-0.0104		
	
0.8	
722		

	 	
0.9	
85	9		

0.1242		
	
0.4	
531		

	 	
0.5	
69	4		

0.0050		
	
0.9	
422		

	 	
0.9	
90	1		

	
KEGG_PENTOSE_AND_GLUCURONATE_	
INTERCONVERSIONS		

-0.6093		 0.0	
010		

0.0	
04		 0.0156		 0.8	

942		
0.9	
85		 -0.1942		 0.5	

218		
0.6	
32		 0.0700		 0.5	

586		
0.9	
90		



		

	 		 		
	
2		
		

	 		
9		
	 		

	 		
0		
	 		

	 		
1		
	 		

KEGG_BIOSYNTHESIS_OF_UNSATURAT	
ED_FATTY_ACIDS		 -0.6717		 0.0	

000		
0.0	
00	0		 -0.0434		 0.5	

171		
0.9	
85	9		 0.4095		 0.0	

304		
0.1	
06	2		 -0.0528		 0.4	

121		
0.9	
90	1		

KEGG_VIRAL_MYOCARDITIS		 -0.6738		
		

0.0	
000		
		

	
0.0	
00	0		
		

-0.0105		
0.8	
928		
		

0.9	
85	9		
	 		

0.3705		
0.0	
201		
		

0.1	
03	4		
	 		

-0.0122		
0.8	
761		
		

0.9	
90	1		
	 		

KEGG_ANTIGEN_PROCESSING_AND_PR	ESENTATION		 -0.6982		 0.0	
000		

0.0	
00	0		 0.0580		 0.5	

438		
0.9	
85	9		 0.4852		 0.0	

123		
0.0	
92	2		 0.0535		 0.5	

840		
0.9	
90	1		

KEGG_SYSTEMIC_LUPUS_ERYTHEMAT	OSUS		 	
-0.7637		

	
0.0	
000		

	
0.0	
00	1		

0.0663		
	
0.5	
374		

	 	
0.9	
85	9		

0.1498		
	
0.6	
639		

	 	
0.7	
48	4		

0.1000		
	
0.3	
574		

	 	
0.9	
90	1		

KEGG_LEISHMANIA_INFECTION		 -0.7943		 0.0	
000		

	
0.0	
00	0		

0.0247		 0.7	
869		

0.9	
85	9		 0.2493		 0.1	

456		
0.2	
66	7		 0.0455		 0.6	

214		
0.9	
90	1		

KEGG_PRIMARY_BILE_ACID_BIOSYNTH	ESIS		 	
-0.8093		

	
0.0	
000		

	
0.0	
00	0		

-0.0140		
	
0.8	
994		

	 	
0.9	
85	9		

0.0694		
	
0.8	
325		

	 	
0.8	
50	8		

0.0216		
	
0.8	
437		

	 	
0.9	
90	1		

KEGG_GRAFT_VERSUS_HOST_DISEASE		 -0.9436		 0.0	
000		

0.0	
00	1		 0.1202		 0.3	

917		
0.9	
85	9		 0.7427		 0.0	

248		
0.1	
03	4		 0.1099		 0.4	

481		
0.9	
90	1		

KEGG_TYPE_I_DIABETES_MELLITUS		 	
-0.9923		

	
0.0	
000		

	
0.0	
00	0		

0.0923		
	
0.4	
402		

	 	
0.9	
85	9		

0.5909		
	
0.0	
210		

	 	
0.1	
03	4		

0.0968		
	
0.4	
174		

	 	
0.9	
90	1		

KEGG_ASTHMA		 -0.9993		 0.0	
000		

0.0	
00	0		 0.0057		 0.9	

727		
0.9	
99	1		 0.4580		 0.2	

233		
0.3	
65	5		 0.0146		 0.9	

282		
0.9	
90	1		

KEGG_ALLOGRAFT_REJECTION		 -1.0462		 0.0	
000		

	
0.0	
00	0		

0.1173		 0.4	
038		

0.9	
85	9		 0.6057		 0.0	

569		
0.1	
53	3		 0.1261		 0.3	

788		
0.9	
90	1		

KEGG_AUTOIMMUNE_THYROID_DISEA	SE		 	
-1.0623		

	
0.0	
000		

	
0.0	
00	0		

0.0830		
	
0.5	
357		

	 	
0.9	
85	9		

0.6382		
	
0.0	
408		

	 	
0.1	
24	3		

0.0856		
	
0.5	
274		

	 	
0.9	
90	1		

KEGG_INTESTINAL_IMMUNE_NETWOR	
K_FOR_IGA_PRODUCTION		

	
-1.2645		

	
0.0	
000		

	
0.0	
00	0		

-0.0217		
	
0.8	
626		

	 	
0.9	
85	9		

0.4684		
	
0.1	
186		

	 	
0.2	
34	6		

-0.0023		
	
0.9	
859		

	 	
0.9	
91	8		

KEGG_PANTOTHENATE_AND_COA_BIO	SYNTHESIS		 	 	 	 -0.0035		 	 	 	 0.4184		 	 	 	 0.0268		 	 	 	



-1.3380		
		

0.0	
000		
		

0.0	
00	0		
		

0.9	
670		
		

0.9	
99	1		
	 		

0.0	
275		
		

0.1	
03	4		
	 		

0.7	
322		
		

0.9	
90	1		
	 		

Table	S2.	quSage	activity	scores	of	previously	idntified	APL-associated	signature	and	PPARG	transcriptional	targets		
	 	 	

M3vsNonM3.KEGG		 ObVSNorm_All.KEGG		 ObVSNorm_M3.KEGG		 	 	
ObVSNorm_nonM3.KEG	G		

pathway.name		 log.fold.ch	
ange		

p.Va	
lue		 FDR		 log.fold.ch	

ange		
p.Va	
lue		 FDR		 log.fold.ch	

ange		
p.Va	
lue		 FDR		 log.fold.ch	ange		 p.Va	

lue		 FDR		

CASORELLI_ACUTE_PROMYEL	
OCYTIC_LEUKEMIA_DN		 -0.4517		 0.00	

00		
0.0	
000		 -0.0506		 0.29	

15		
0.9	
995		 0.3199		 0.01	

53		
0.0	
972		 -0.0637		 0.16	90		 0.8	948		

CASORELLI_ACUTE_PROMYEL	
OCYTIC_LEUKEMIA_UP		 0.7557		 0.00	

00		
0.0	
000		 0.1166		 0.01	

92		
0.9	
995		 0.1573		 0.10	

24		
0.2	
172		 0.0723		 0.07	55		 0.8	948		

LI_ADIPOGENESIS_BY_ACTIVA	TED_PPARG		 1.0578		 0.00	
00		

0.0	
000		 -0.0871		 0.47	

97		
0.9	
995		 -0.1286		 0.68	

90		
0.7	
617		 -0.1412		 0.24	97		 0.8	968		

WANG_CLASSIC_ADIPOGENIC_	
TARGETS_OF_PPARG		
		

	
0.6578		

	
0.00	
00		

	 	
0.0	
000		

0.0057		
	
0.94	
87		

	
0.9	
995		

-0.1266		 0.28	
91		

	
0.4	
158		

-0.0167		 0.84	42		 	 	
0.9	787		

	
	
Table	S3.	Mutation	prevalences	in	obese	("OB")	and	non-obese	("NW")	patients	in	the	TCGA	dataset		

ID		 OB_MUT		 NW_MU	T		 OB_WT		 NW_WT		 	
OR		 CI_inf		 CI_sup		 fisher		 mLogPva	l		 FDR		 Sum_Mut		

FLT3		 33		 22		 55		 88		 	
2.4000		 1.2706		 4.5335		 0.0070		 4.9636		 0.1607		 55		

NPM1		 23		 30		 65		
	 	
80		
	 		

0.9436		
	
0.5005		
		

	
1.7791		
		

	
0.8732		
		

	
0.1355		
		

	
1		
		

	
53		
		

DNMT3A		 20		 29		 68		 81		 0.8215		 0.4269		 1.5808		 0.6206		 0.4771		 1		 49		

IDH2		 9		 11		 79		 99		 	
1.0253		 0.4049		 2.5967		 1.0000		 0.0000		 1		 20		

IDH1		 10		 9		 78		
	 	
101		
	 		

1.4387		
	
0.5577		
		

	
3.7119		
		

	
0.4757		
		

	
0.7430		
		

	
1		
		

	
19		
		

RUNX1		 7		 12		 81		 98		 0.7058		 0.2655		 1.8758		 0.6287		 0.4642		 1		 19		

TET2		 7		
		

10		
		

81		 100		 	
0.8642		 0.3150		 2.3712		 0.8052		 0.2167		 1		 17		

TP53		 6		 10		 82		 100		 0.7317		 0.2552		 2.0981		 0.6100		 0.4943		 1		 16		



NRAS		 7		 8		 81		 	 	
102		 1.1019		 	

0.3835		
	
3.1660		

	
1.0000		

	
0.0000		

	
1		

	
15		

CEBPA		 6		
		

6		
		

82		 	 	
104		 1.2683		 	

0.3944		
	
4.0783		

	
0.7689		

	
0.2628		

	
1		

	
12		

WT1		 6		 6		 82		 104		 1.2683		 0.3944		 4.0783		 0.7689		 0.2628		 1		 12		

PTPN11		 4		
		

5		
		

84		 	 	
105		 1.0000		 	

0.2604		
	
3.8410		

	
1.0000		

	
0.0000		

	
1		

	
9		

KIT		 5		 3		 83		 107		 2.1486		 0.4991		 9.2497		 0.4703		 0.7544		 1		 8		

KRAS		 	
3		

	
5		 85		 105		

	 		
0.7412		 0.1722		

		
3.1903		
		

0.7348		
		

0.3081		
		

1		
		

8		
		

U2AF1		 2		 6		 86		 104		 0.4031		 0.0793		 2.0483		 0.3037		 1.1916		 1		 8		

STAG2		 	
2		

	
5		 86		 105		 0.4884		 0.0924		 2.5799		 0.4654		 0.7649		 1		 7		

PHF6		 	
1		

	
5		 87		 105		 0.2414		 0.0277		 2.1051		 0.2291		 1.4735		 1		 6		

ASXL1		 2		 3		 86		 107		 	
0.8295		 0.1355		 5.0763		 1.0000		 0.0000		 1		 5		

RAD21		 1		 4		 87		
	 	
106		
	 		

0.3046		
	
0.0334		
		

	
2.7754		
		

	
0.3843		
		

	
0.9564		
		

	
1		
		

	
5		
		

KDM6A		 2		 2		 86		 108		 1.2558		 0.1733		 9.0985		 1.0000		 0.0000		 1		 4		

DIS3		 1		 2		 87		 108		
	
0.6207		
		

0.0554		 6.9593		 1.0000		 0.0000		 1		 3		

EZH2		 0		 3		 88		 107		 0.0000		 0.0000		 NA		 0.2555		 1.3645		 1		 3		

SUZ12		 0		 3		 88		 	 	
107		

0.0000		
		

	
0.0000		

	
NA		

	
0.2555		

	
1.3645		

	
1		

	
3		

	


