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This tutorial provides a step-by-step guide to performing
cost-effectiveness analysis using a multi-state modeling
approach. Alongside the tutorial, we provide easy-to-use
functions in the statistics package R. We argue that this
multi-state modeling approach using a package such as R
has advantages over approaches where models are built
in a spreadsheet package. In particular, using a syntax-
based approach means there is a written record of
what was done and the calculations are transparent.
Reproducing the analysis is straightforward as the syntax
just needs to be run again. The approach can be thought
of as an alternative way to build a Markov decision-analy-
tic model, which also has the option to use a state-arrival
extended approach. In the state-arrival extended multi-
state model, a covariate that represents patients’ history

is included, allowing the Markov property to be tested. We
illustrate the building of multi-state survival models,
making predictions from the models and assessing fits.
We then proceed to perform a cost-effectiveness analysis,
including deterministic and probabilistic sensitivity anal-
yses. Finally, we show how to create 2 common methods
of visualizing the results—namely, cost-effectiveness
planes and cost-effectiveness acceptability curves. The
analysis is implemented entirely within R. It is based on
adaptions to functions in the existing R package mstate
to accommodate parametric multi-state modeling that
facilitates extrapolation of survival curves. Key words:
Markov models; cost-effectiveness analysis; probabilistic
sensitivity analysis; survival analysis. (Med Decis
Making 2017;37:340–352)

Markov decision-analytic models1–3 are a
widely used modeling approach in cost-

effectiveness analysis4 and are typically built in
spreadsheet-based packages or commercial packages
such as TreeAge.5 Spreadsheets, especially Microsoft
Excel, have the advantage of being familiar, widely
available, simple to use, and easy to share with
others. However, the calculations are often over sev-
eral (linked) sheets rather than being contained
together on one page. It can be hard to keep track of
modifications to the model and the resulting output
when cells are changed, especially if altered acci-
dently. In addition, each time a parameter is chan-
ged, the previous analysis is lost, so retaining a full
record of the analysis requires multiple workbooks
to be kept.

This article demonstrates how a cost-effective-
ness analysis can be carried out within a multi-state
modeling survival analysis framework using the sta-
tistical software R,6 which is freely available under
the GNU General Public Licence. As suggested
by others,7 using a script-based approach with
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statistical software, rather than a spreadsheet-based
package, has many advantages when carrying out
cost-effectiveness analysis. First, calculations are
transparent, with the coding script providing a writ-
ten record of what was done. Second, it is simple to
reproduce the analysis—the lines of code just need
to be run again. Third, potential errors are easier to
spot as code can be interactively debugged line by
line to identify the problem. Last, flexible graphics
facilities are available within R. Cost-effectiveness
analysis using multi-state modeling in R has been
introduced elsewhere.8 This article builds on this
and illustrates how the Markov property can be
empirically tested by using a ‘‘state-arrival extended’’
multi-state model. A state-arrival extended multi-
state model includes a covariate representing
patients’ histories such as time in the previous state.
The significance, statistically and clinically, of the
covariate can help in deciding whether the Markov
assumption is reasonable and therefore the approach
to take for the analysis.

The aims of this tutorial article are 1) to intro-
duce the ‘‘state-arrival extended’’ multi-state model
as a tool to test the Markov property and 2) to pro-
vide a step-by-step guide to how multi-state model-
ing can be used for carrying out a cost-effectiveness
analysis, including discounting of costs/benefits
and deterministic and probabilistic sensitivity anal-
yses. The R code is written in the form of functions
so that those unfamiliar with R code can still use
them. All that needs to be changed are the custo-
mizable arguments given to the functions, such as
the number of transitions and covariate information,
the discount rate, and the time horizon. The func-
tions are based on adaptions to the existing R pack-
age mstate.9 It is assumed that individual patient
data are available from the trial/study and that the
times of transitions are known exactly. It is still pos-
sible to use the approach when individual patient
data are not available; this scenario will be briefly
considered in the Discussion.

DECISION-ANALYTIC MODELING EXPRESSED
IN THE MULTI-STATE MODEL SURVIVAL
ANALYSIS FRAMEWORK

Multi-state modeling builds survival regression
models for each of the transitions. Survival times
are treated as continuous variables, rather than
being measured in discrete cycles as is usually the
case in decision-analytic modeling. Therefore, the
arrows normally seen in a model diagram that leave

and reenter a state—to indicate patients who
remain in that state for the length of a cycle—are
not applicable.

Two ways to treat time in multi-state modeling
are the clock-forward and clock-reset approach.10

With the clock-forward approach, time is measured
from the initial state, whereas with the clock-reset
approach, every time a patient reaches a new state,
the clock is set back to zero, thereby only measuring
time in the current (new) state. The clock-forward
approach is a Markov model because the property
that movement from the present state does not
depend on history is inherent. The timescale of the
clock-reset approach does depend on history, and
models fitted using this approach are referred to as
semi-Markov rather than Markov.10

One way of testing whether the Markov property
is violated is to include in the model a covariate
representing history. Such models have been
termed state-arrival extended multi-state models.
They are described in Putter and others10 as a
model of an ‘‘i ! j transition hazard that depends
on the time of arrival at state i.’’ Inclusion of a cov-
ariate for the time in the previous state, or any func-
tion thereof, could therefore aid the decision of
whether the Markov assumption is reasonable. We
use a Markov state-arrival extended model to help
inform this decision. We then proceed to use a
semi-Markov approach for all our modeling because
the Markov property is not thought to hold.

Figure 1 shows an algorithm that can be used to
perform health economic modeling in a multi-state
modeling survival analysis framework. All of the
functions included in Figure 1 are adaptions writ-
ten by the authors to the functions already available
in the mstate package in R. They are all available
from www.gla.ac.uk/hehta/reports/cwilliams. In the
steps detailed below, any words in Courier New
font, other than mstate, probtrans, or mssample,
refer to one of the adapted functions.

An explanation of each of the steps is given as
follows.

Step 1: Deciding Whether to Accept the Markov
Property

Building a Cox Markov state-arrival extended
multi-state model can aid the decision of whether
the Markov assumption is reasonable or not. Such
models are Cox in the usual semi-parametric sense
that the baseline hazard does not follow a specified
distribution, and Markov in the sense that time is
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measured from the initial state for every transition.
The state-arrival extended aspect of the modeling of
a particular transition could, for example, include a
covariate for time spent in the immediate previous
state. A statistically significant covariate effect
would then provide evidence that the Markov prop-
erty does not hold. However, if the effect is small
such that it is not of practical importance, then the
analysis could safely proceed as if the Markov prop-
erty did hold.

Step 2: Building Parametric Multi-state Models

Many models contemplate death as an absorbing
state (i.e., a state from which a transition to another
state is not possible). If the period of follow-up of the
study is such that for every patient, his or her whole
lifetime since entry into the study is represented,
then the functions in mstate, which are based on
Cox semi-parametric proportional hazards models,
can be used without further modification. Similarly,

Figure 1 Algorithm for health economic modeling using a multi-state modeling framework.
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where there is an absorbing state other than death
observed for every patient, the functions in mstate
remain appropriate. From now on, it is thus assumed,
with no loss of generality, that death is the sole
absorbing state in the models.

Often death is not observed for every patient due to
limitations of follow-up. When this is the case and the
analysis has a lifetime horizon, extrapolation of sur-
vival is required, as recommended by the UK National
Institute for Health and Care Excellence (NICE)
Decision Support Unit.11 This is necessary because
the cost-effectiveness calculations need an estimate of
mean survival. A popular choice to achieve the neces-
sary extrapolation is to assume a parametric distribu-
tion when modeling the hazards. The modelparam
function allows the user to fit either a Markov or semi-
Markov model to a transition with a choice of several
standard parametric distributions: notably the expo-
nential, Weibull, Gompertz, lognormal, log-logistic,
and generalized gamma. This function, as well as the
Markov and semiMarkov function introduced in the
next step, also accommodates state-arrival extended
models due to the customizable covariate arguments.

Step 3: Calculating State Occupancy Probabilities

The Markov and semiMarkov functions adapt
the functionality already available in the mstate
package in R to accommodate hazards from a range
of different distributions. They both build models
that assume the desired distribution for the hazards,
similar to step 2, although now models for every
transition are included. The cumulative hazards for
each transition are then combined in such a way that
they can then be used by the appropriate functions
in mstate to calculate state occupancy probabilities.
The Markov function uses the probtrans function
in mstate to calculate probabilities encoding exact
Markov prediction formulas, similar to the Markov
traces used in spreadsheet-based approaches. The
semiMarkov function instead calculates probabil-
ities using the mssample function, which simulates
all relevant paths (all possible transition journeys)
through the multi-state model.12 The functions have
several customizable arguments, such as distribution
for each transition, the number of transitions,
number of covariates, values of covariates evaluated
in each transition, and time horizon.

Step 4: Visual Assessment of Fits

Visual assessments of fits can help in choosing
the distribution to use for each transition. A balance

between a good fit to the observed data and the nec-
essary extrapolation to the time horizon is desirable.
This can be assessed by plotting the observed pro-
portion in a given state alongside the predicted
probability of being in that state from the model(s)
over the observed period of the trial and then again
extended to the target time horizon.

The visualMarkov and visualsemiMarkov
functions plot, for Markov and semi-Markov models,
respectively, the predicted probability of being in a
given state over time using different distributions
alongside the observed proportion in that state over
time. The functions can also accommodate compari-
sons of observed proportions v. predictions of not
reaching an absorbing state (i.e., ‘‘1 – probability’’ of
reaching an absorbing state). Other forms of assess-
ment of model fit such as the Akaike information cri-
terion (AIC)13 are popular. However, they only
provide information about the fit to the observed
data, while often discounting for some measure of
model complexity and not on how reasonable the
extrapolation looks. When assessing model fit, it is
advisable to consider several different aspects, allow-
ing the observed fit and extrapolation to be jointly
assessed. When faced with a competing risks sce-
nario while modeling transition hazards, however,
such AIC calculations are not appropriate and there-
fore visual assessment can be the only option.

Step 5: Estimating Life Years and Quality-Adjusted
Life Years

The mean life years in a particular state for a par-
ticular treatment can be calculated using the
meanLY function. The mean life years gained from a
treatment for that particular state can then be
obtained by calculating the difference in mean life
years between the 2 treatments. When each state
has a fixed utility, the mean quality-adjusted life
years (QALYs) can easily be derived by multiplying
the mean life years by the utility weight.

Step 6: Estimating Incremental Costs
and Cost-Effectiveness

An R function is not provided for this step as it is
very data dependent. However, the R commands for
the illustration later in the article are available from
www.gla.ac.uk/hehta/reports/cwilliams.

Step 7: Structural/One-Way Sensitivity Analysis

One-way sensitivity analysis can be achieved by
repeated analyses, modifying arguments in the
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Markov and/or semiMarkov functions each time or
by varying the costs. However, caution is advised
when using such an approach because parameters
are only changed one at a time in isolation.14

Step 8: Uncertainty in the Survival Regression
Model Parameters

The function PSAprob produces state occupancy
probabilities for each draw. It starts by building the
base-case model for each transition. The correlation
between the parameters in the model is then taken
into account by using the Cholesky decomposition
to provide correlated draws from a multivariate
normal distribution.15 The vector of correlated vari-
ables contains draws of the relevant parameters of
the model used to create cumulative hazards under-
pinning state occupancy probabilities.

Step 9: Estimating Life Years and QALYs

The PSAmeanLY function calculates the mean
life years in a particular state for a particular treat-
ment for each draw and then computes the mean
across sampled draws. The PSAQALY function cal-
culates the mean QALYs in a particular state for a
particular treatment for each draw. The overall
mean can be then obtained by taking the mean of
the result.

Step 10: Estimating Incremental Costs and
Cost-Effectiveness

Cost parameters are usually also considered in
probabilistic sensitivity analyses.4 While no R func-
tion is provided here due to this step being very
data dependent, the R commands for the illustration
later in the article available from http://www.gla.ac
.uk/hehta/reports/cwilliams include this step.

Step 11: Visualizing Results I: Cost-Effectiveness
Plane

The incremental (discounted) QALY needed for a
plot of the cost-effectiveness plane4 can be obtained
using repeated evaluations of the PSAQALY func-
tion. To obtain the incremental QALY, first the
QALY for each treatment group should be calcu-
lated. This can be achieved by using the PSAQALY
function for each relevant state/treatment group
combination. The QALYs for each relevant state for
the treatment of interest should then be added

together, with the corresponding information for the
control treatment subtracted from the result. The
CEplane function can then be used to plot a cost-
effectiveness plane.

Step 12: Visualizing Results II: Cost-Effectiveness
Acceptability Curve

The total (discounted) QALY for each treatment
arm needed for a plot of the cost-effectiveness
acceptability curve16 can be obtained using repeated
evaluations of the PSAQALY function. PSAQALY can
be applied for each relevant state/treatment combi-
nation with the evaluations for each treatment
group then added together. The CEAC function can
then be used to plot a cost-effectiveness acceptabil-
ity curve.

ILLUSTRATIVE EXAMPLE

Data Set Used for Illustration

The data used in this article are based on a trial
comparing rituximab in combination with fludara-
bine and cyclophosphamide (RFC) v. fludarabine
and cyclophosphamide alone (FC) for the first-line
treatment of chronic lymphocytic leukemia (CLL-
8).17 It was the main source of data used by the
manufacturer in their submission to NICE in the
United Kingdom for the specific technology apprai-
sal TA174.18,19 The trial reported the outcomes of
progression-free survival and overall survival for
each patient, allowing focus to be on 3 states
(progression-free, progression, and death) and the
transitions between them. There were 403 patients
in the RFC arm and 407 patients in the FC arm.
There were 106 progressions, 23 deaths after pro-
gression, and 21 deaths without progression among
those in the RFC arm. In the FC arm, there were 148
progressions, 27 deaths after progression, and 26
deaths without progression. Patients were in the
trial for up to 4 years, and not all were observed to
the end of their lives. This meant extrapolation of
survival was necessary to obtain a representation of
the whole duration of life since entry into the trial.
It was estimated that only 1.3% of the cohort would
survive beyond 15 years19(p109) and therefore a time
horizon of 15 years was used. The published
Kaplan-Meier curves in the manufacturer’s report19

were digitized using Enguage20 to generate the data
for the analysis.
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Transitions Modeled and Initial Modeling

The state transition model is illustrated in Figure 2.
The Web page http://www.gla.ac.uk/hehta/reports/

cwilliams includes the syntax with the R commands
used for all the analysis in this example.

The analysis began by considering whether the
proportional hazards (PH) assumption was reason-
able for each transition, to determine whether it was
appropriate to consider PH models. Figure 3 shows
a log-log plot for treatment, the only covariate under
consideration, for each of the respective transitions.

It can be seen in each of the plots (Figure 3a–c)
that the lines were reasonably parallel, with any
crossing of the lines due to the lack of a treatment
effect rather than any major violation of the PH
assumption.

Figure 4 shows a cumulative hazard v. time plot
for treatment in each of the respective transitions.

The progression ! death plot (Figure 4c)
reflected the lack of a treatment effect. The other
plots (Figure 4a,b) showed lines that diverged, indi-
cating considering a distribution that facilitates
increasing hazards would be appropriate.

Since there was no suggestion of a severe viola-
tion of the PH assumption from Figure 3 or 4, pro-
portional hazards models were considered for the
analysis.

To help decide whether the Markov property
held, a Cox Markov state-arrival extended model for
progression ! death was initially fitted. Table 1
shows the results of fitting this model.

The time spent progression-free was found to
have a statistically significant association with
death after progression (P = 0.008). The hazard ratio
point estimate and 95% confidence interval were
below 1, indicating that the longer the time spent
progression-free, the lower the risk of death after
reaching the progression state. For each increase
of 1 year in the progression-free state, the hazard of
death reduced by 58.7%. The point estimate of
58.7% equates to, for those in the FC treatment arm
who spent 1 year in the progression-free state, an
absolute risk of death of 72.9% at 4 years after
reaching the progression state. The corresponding
figure for those in the FC arm who spent 2 years in
the progression-free state was 41.7%. The equiva-
lent figures for the RFC arm were 86.9% and 56.8%.
The effect of time in the previous state was of a size
likely to be of practical importance, both in relative
and absolute terms. Therefore, there was evidence
to suggest the Markov property did not hold, indi-
cating that a semi-Markov model would be more
appropriate on this occasion.

Base-Case Analysis

Parametric semi-Markov models were then fitted
to allow both a relaxation of the Markov assumption
and extrapolation of survival. The choice of distri-
bution for each transition was considered. The
progression ! death transition was considered
first because it did not involve a competing risk
scenario.

Figure 5 shows, over the trial observation period,
the observed and predicted proportion of deaths
after progression using 6 different candidate distri-
butions. For brevity, only the RFC treatment arm is
shown. It can be seen that the predictions were rea-
sonably similar. The lowest AIC value was seen for
the log-logistic distribution, suggesting that it pro-
vided the best fit of the candidate distributions,
although there was little to choose between the dis-
tributions (Table 2).

The time horizon of the model was 15 years.
Therefore, in addition to comparing the fit over the
period of the observed data, interest was also in
assessing how the survival estimates extend out to
15 years. Figure 6 shows observed v. predicted
probabilities over 15 years. The Weibull, Gompertz,
and exponential distributions all appeared to repre-
sent a time horizon of 15 years in the sense that the
probability of death was close to 1 by 15 years.

Figure 2 Transition diagram for multi-state model showing the

3 transitions: 1) progression-free to progression, 2) progression-

free to death, and 3) progression to death.
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After inspecting the plots for the other group (not
shown), a Gompertz distribution appeared to be a
reasonable distribution to use for this transition.
Consideration of the distributions to use for the pro-
gression-free ! progression and progression-free !
death transitions is contained in Appendix 1 as
online supplementary material. These 2 transitions
involved competing risks, and because AIC statis-
tics are not appropriate when modeling transition
hazards in a competing risks scenario, the choice of
distributions to use was based on visual assessment
of the plots alone. The Gompertz and generalized
gamma distributions appeared to provide a reason-
able fit for the progression-free ! progression and
progression-free ! death transitions, respectively,
over the trial observation and extrapolation period.

Table 3 shows the mean costs used with the
multi-state modeling approach.

Most of the mean costs were not related to the
time spent in relevant health states. However, cost
of supportive care while progression-free, cost of
supportive care while in progression, and cost of
second-line and subsequent therapy while in pro-
gression were all associated with time spent in rele-
vant states. Therefore, the mean life years in the
appropriate states from the multi-state model were
used in the calculation of these costs. All other
costs were taken from the original manufacturer’s
submission.19(pp127–31)

Figure 3 Log-log plots for each transition. FC, fludarabine
and cyclophosphamide; RFC, rituximab, fludarabine, and

cyclophosphamide.

Table 2 Akaike Information Criterion (AIC)
Statistics from Modeling Progression! Death

Distribution AIC

Exponential 224.3
Log-logistic 223.5
Weibull 224.9
Lognormal 224.7
Gompertz 226.3
Generalized gamma 225.8

Table 1 Results of a Cox Markov State-Arrival
Extended Model

Hazard Ratio (95% CI) P Value

Treatment 1.555 (0.874, 2.766) 0.133
Time spent

progression-free
0.413 (0.215, 0.794) 0.008
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The cost per life year or QALY gained, commonly
known as the incremental cost-effectiveness ratio
(ICER), was then calculated. Table 4 shows the

Figure 4 Cumulative hazard plots for each transition. FC, fludar-
abine and cyclophosphamide; RFC, rituximab, fludarabine, and

cyclophosphamide.

Figure 5 Observed and predicted proportions for progression !
death: trial observation period (RFC treatment only). KM, Kaplan-
Meier; RFC, rituximab, fludarabine, and cyclophosphamide.

Figure 6 Observed and predicted proportions for progression !
death: extrapolation to 15 years (RFC treatment only). KM, Kaplan-

Meier; RFC, rituximab, fludarabine, and cyclophosphamide.
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results of the base-case analysis in terms of the
mean life years in each state, the mean QALYs in
each state, the mean costs, the cost per life year
gained, and that per QALY gained. Utilities of 0.8
and 0.6 were assumed for progression-free and pro-
gression, respectively.21

An increment of mean life years (QALYs) while
progression-free was found of 0.74 (0.59). However,

a relatively large decrement of mean life years
(QALYs) of 20.53 (20.32) was found while in pro-
gression. Therefore, the benefits overall of mean life
years gained of 0.21 and mean QALYs gained of
0.28 were relatively small. This led to a cost per
QALY gained of close to £38,000, in excess of the
£30,000 willingness-to-pay threshold commonly
used in the United Kingdom, and therefore the
treatment was deemed not cost-effective.

Structural/One-Way Sensitivity Analyses

Table 5 details the base-case assumptions and
one-way sensitivity analyses. A more comprehen-
sive sensitivity analysis specifically considering the
distributions used for each transition is contained
in Appendix 2 as online supplementary material.

It is not always appropriate to assume that the
treatment effect observed within the trial persisted
beyond that period. Therefore, as part of the sensi-
tivity analysis, we consider an alternative assump-
tion whereby the treatment effect no longer persists
in the unobserved period. It can be seen from Table
5 that there was some uncertainty with regard to the
cost-effectiveness, especially if a willingness-to-pay
threshold of £30,000 per QALY gained was used.
When the gap between the utilities was widened,
the cost per QALY gained was £25,808. In all other
analyses, there was no change in the conclusion
that the treatment was not cost-effective.

Table 3 Assumptions Used for Mean Costs

RFC FC Incremental

Mean cost of PFS £18,693 £6,769 £11,924
Costs of rituximaba £10,113 £0 £10,113
Administration costs of rituximabb £1224 £0 £1224
Cost of fludarabinea £2776 £2790 2£14
Administration costs of fludarabineb £1109 £1115 2£6
Costs of cyclophosphamidea £21 £22 £0
Administration costs of cyclophosphamideb £1109 £1115 2£6
Cost of supportive care in PFSb £1109 £860 £249
Cost of bone marrow transplantationb £592 £360 £231
Cost of blood transfusionsc £640 £507 £133
Mean cost of progression £7224 £8740 2£1516
Cost of supportive care in progressionb £2537 £3069 2£532
Cost of second-line and subsequent therapya £4687 £5671 2£984
Mean total cost £25,917 £15,508 £10,408

FC, fludarabine and cyclophosphamide; PFS, progression-free survival; RFC, rituximab, fludarabine, and cyclophosphamide.
aSource: British National Formulary 56. http://www.medicinescomplete.com/mc/bnf/current/
bSource: Department of Health. NHS reference costs 2006/2007. http://webarchive.nationalarchives.gov.uk/20130107105354/http://www.dh.gov.uk/
en/Publicationsandstatistics/Publications/PublicationsPolicyAndGuidance/DH_082571
cSources: Agrawal S, Davidson N, Walker M, et al. Assessing the total costs of blood delivery to hospital oncology and haematology patients. Curr
Med Res Opin. 2006;22(10):1903–9. Curtis L. Unit costs of health and social care. Personal Social Services Research Unit, Kent, United Kingdom; 2007.

Table 4 Base-Case Analysis Results

RFC FC Incremental

Mean life years 5.82 5.60 0.21
Mean life years

progression-free
3.30 2.56 0.74

Mean life years in
progression

2.52 3.04 20.53

Mean QALYs 4.15 3.87 0.28
Mean QALYs

progression-free
2.64 2.05 0.59

Mean QALYs in
progression

1.51 1.83 20.32

Mean total cost £25,917 £15,508 £10,408
Cost per life

year gained
£48,772

Cost per QALY
gained

£37,665

FC, fludarabine and cyclophosphamide; QALY, quality-adjusted life
year; RFC, rituximab, fludarabine, and cyclophosphamide.
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Probabilistic Sensitivity Analysis

Each cost parameter involved in the manufactur-
er’s probabilistic sensitivity analysis was assumed
to follow a Beta Pert distribution.22 For the pur-
poses of this illustration, we used the same distri-
butions. However, analysts are free to consider a
range of different distributions, as appropriate,
with their own studies. Table 6 shows the mean
base-case estimates together with the ranges used
to generate the distributions. The particular Beta
Pert distribution chosen for the cost of monthly
supportive care and second-line and subsequent
therapy while in progression was dependent on
the mean life years in progression. All other

distribution parameters values were as presented
by the manufacturer.19(pp137–8)

Figure 7 shows the cost-effectiveness plane in this
illustration. The probabilistic sensitivity analysis
involved 1000 draws with 10% excluded due to com-
putational difficulties related to differences in cumula-
tive hazards between consecutive time points that
were greater than 1. All draws resulted in the treatment
of interest being more costly, and therefore the north-
west and northeast quadrants are shown. The cost-
effectiveness acceptability curve is shown in Figure 8.
It can be seen in Figure 8 that, given a maximum will-
ingness to pay of £100,000 per quality-adjusted life
year gained, the probability that the treatment was
cost-effective compared with the control was 0.60.

Table 5 Structural/One-Way Sensitivity Analyses

Base Case Assumption Sensitivity Analysis Cost per QALY Gained

Base case £37,665
Time horizon of 15 years Time horizon extended to 20 years £39,946
Observed treatment effects persist

to the end of the time horizon
Treatment effect no longer persists in extrapolation £85,132

Utilities: PFS = 0.8; progressed = 0.6 Utilities: PFS = 0.9; progressed = 0.5 £25,808
Utilities: PFS = 0.8; progressed = 0.6 Utilities: PFS = 0.75; progressed = 0.65 £48,897
Oral administration of FC IV infusion of FC = actual dose from trial £34,632
Oral administration of FC IV infusion of FC = recommended dose £37,088
Adverse event costs excluded Inclusion of adverse event costs £37,966

Monthly supportive care cost increase by 50% £37,153
Monthly supportive care cost decrease by 50% £38,177
Drug administration cost upper quartile £41,903
Drug administration cost lower quartile £34,828

FC, fludarabine and cyclophosphamide; IV, intravenous; PFS, progression-free survival; QALY, quality-adjusted life year.

Table 6 Beta Pert Distributions Used in Probabilistic Sensitivity Analysis for Cost Parameters

Costs Base Case Minimum Maximum

Monthly supportive care cost while in PFSa £28 £14 £42
Monthly supportive care and second-line and subsequent

therapy cost while in progressiona
£218.65 £109.32 £327.97

Administration—deliver exclusively oral chemotherapya £280 £174 £482
Administration—deliver complex chemotherapy, including

prolonged infusional treatment at first attendancea
£430 £210 £795

Bone marrow transplanta £47,565.05 £34,318.25 £54,646.47
Blood transfusionb £289.73 £173.84 £405.62
1 Unit of blood £161.11 £96.67 £225.26

PFS, progression-free survival.
aSource: Department of Health. NHS reference costs 2006/2007. http://webarchive.nationalarchives.gov.uk/20130107105354/http://www.dh.gov.uk/
en/Publicationsandstatistics/Publications/PublicationsPolicyAndGuidance/DH_082571
bSource: Agrawal S, Davidson N, Walker M, et al. Assessing the total costs of blood delivery to hospital oncology and haematology patients. Curr Med
Res Opin. 2006;22(10):1903–9.
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DISCUSSION

This article has introduced the state-arrival
extended multi-state model and highlighted its
potential as a tool to formally test the Markov prop-
erty. We demonstrated its use in aiding the decision
as to whether the Markovian assumption was rea-
sonable, through the inclusion of a covariate repre-
senting patients’ history. In our illustration, the
Markov property was not thought to be reasonable,
and therefore the test result helped direct us to a
semi-Markov, rather than Markov, approach to
modeling.

The article has also provided a step-by-step guide
to carrying out cost-effectiveness analysis in a
multi-state modeling survival analysis framework
and has provided R functions to build (state-arrival
extended) Markov and semi-Markov models, calcu-
late state occupancy probabilities and base-case
mean life years/QALYs, and perform a full probabil-
istic sensitivity analysis. The particular illustration
involved modeling each transition with treatment
as the only covariate considered. This was because
the individual patient-level data could not to be
shared for the tutorial. However, the functions all
have customizable arguments to allow the user to
adapt the analysis to her or his data and require-
ments. For example, the model could include
several covariates, have a different number of

transitions, be based on different distributions for
each transition, or have a different time horizon.
When individual patient-level data are available
from a trial or other study, we recommend making
full use of the data. Incorporating all relevant pre-
dictors should be considered, provided the number
of patients experiencing transitions was of suffi-
cient size, and should lead to improved predictions
of transition probabilities.

The existing functions in the mstate package in
R can be adapted to accommodate any cumulative
hazards chosen by the user. This tutorial has
involved adapting Cox regression models to allow
hazards to follow parametric distributions. A deter-
ministic sensitivity analysis varying the treatment
effect in the extrapolation period from that observed
during the trial is also demonstrated. Piecewise
modeling could be accommodated similarly by
varying the hazards in different time periods within
the observed and/or extrapolated section. Other
approaches such as mixture modeling and splines
could also be incorporated.

In using state-arrival extended models specifi-
cally to test the Markov property, we have used the
effect of a covariate for time in the previous state to
help decide whether the property held. A balance
needs to be struck between the hypothesis testing
results (assessment of a P value), which are influ-
enced by sample size, and consideration of the prac-
tical importance of the effect size. With a large

Figure 7 Cost-effectiveness plane. QALY, quality-adjusted life
year; WTP, willingness to pay.

Figure 8 Cost-effectiveness acceptability curve.
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sample size, a statistically significant effect size
could be too small to be of relevance, and therefore
the analyst may wish to proceed as if the Markov
property held. Conversely, with a small sample,
there may not be evidence of statistical significance,
but the effect size may be of practical importance,
and therefore the analyst may decide that the
Markov property is not reasonable.

Proportional hazard models have been involved
in the modeling of transition hazards. Before con-
sidering such models, it is important to check that
the PH assumption was reasonable for each of the
covariates in the model. This illustration has
involved the eyeballing of log-log and cumulative
hazard v. time plots. We also recommend the use of
the Grambsch-Therneau test for a more objective
assessment of the PH assumption. If proportional
hazards are not met, it is still possible to conduct an
analysis. Options include fitting accelerated failure
models or, with covariates that did not satisfy the
PH requirement, fitting separate models for each
level of a covariate, using time-dependent covari-
ates or including an interaction with time.

When data at the individual patient level are not
available, data can be obtained by digitizing pub-
lished Kaplan-Meier curves, using, for example, the
software Enguage,20 as in this illustration.
Alternatively, Guyot and others23 have produced an
algorithm that can be used to approximately recon-
struct the data from a published Kaplan-Meier
curve so that analysis can still take place. However,
regardless of the method, there would need to be
enough survival curves to represent all event times
of interest. For instance, for the model illustrated in
this article, a Kaplan-Meier estimate of overall sur-
vival, progression-free survival, and postprogres-
sion survival would be needed. With the data
generated, Cox regression or parametric survival
regression models could be fitted as if the actual
patient data were available. Reconstructing the data
from Kaplan-Meier survival curves can, however,
limit the analysis to the ‘‘clock-reset’’ semi-Markov
approach. When using the semi-Markov approach,
the data used for the modeling of progression !
death can be approximated from the postprogres-
sion Kaplan-Meier survival curve. However, this is
not the case for the Markov approach. Because time
is measured from the initial state in every transition
in a Markov model, the modeling of progression !
death requires knowledge—from the start of the
study—of the time to progression and (possibly cen-
sored) time to death for each patient.

If individual patient-level data are not available,
and survival curves are not comprehensive enough
to approximate the data accurately enough, it may
still be possible to undertake some analysis. If sur-
vival regression models are required, parameter esti-
mates from previously published models can be
used. If results of a semi-parametric Cox regression
model are available, then cumulative hazards at
each time point of interest can be derived and used
with the built-in functions in mstate to create the
state occupancy probabilities required. This, how-
ever, requires an estimate of the baseline hazard or
survival. It also requires that the data used to create
the model span the time horizon of interest. If para-
meter estimates from a parametric survival regres-
sion model are available, then these can be used as
arguments in the functions with a noipd suffix on
the dedicated Web page. It may be more appropriate
to inform the inputs (i.e., cumulative hazards)
needed for a transition from clinical information
such as background mortality rate. The functions on
the Web page with a noipd suffix also allow back-
ground mortality rates to be used for this purpose.

This particular illustration was used primarily to
demonstrate an application of the method rather
than to focus on the results of the cost-effectiveness
analysis. In this example, clinical information was
used to determine the time horizon. More generally
a commonsense approach is needed to decide on
the time horizon and the extrapolation to that point,
particularly when there is uncertainty surrounding
the cost-effectiveness in the unobserved period as
in this case. External information such as registry
data and/or expert opinion can be used to help pro-
vide extrapolation that is sensible.24,25

The state-arrival extended approach demon-
strated in this article to test the Markov property
required individual patient-level data in the sense
that knowledge of (some function of) time in the
previous state was necessary. If analysts wish to use
a state-arrival extended approach, we recommend
careful consideration of the covariate used to ensure
it is clinically relevant.

In the probabilistic sensitivity analysis, we
excluded 10% of the 1000 draws, due to computa-
tional difficulties related to differences in cumula-
tive hazards between consecutive time points that
were greater than 1. Therefore, bias may have been
introduced. Including more time points at which to
evaluate the transition probabilities would have rec-
tified this. However, this was beyond the scope of
this illustration. We believe the problem related to
the cumulative hazards was primarily due to the
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shape and scale parameters in the Gompertz distri-
butions used and that other distributions would not
exhibit the problem to the same extent.

Although health economic modeling in spread-
sheet packages has its advantages, we consider this
multi-state modeling approach an attractive alterna-
tive worth considering. We hope this article, and
the accompanying functions, will encourage health
economists to use this approach.
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