
 1 

Clinical relevance of cortical network dynamics in early primary progressive MS 

 

C. Tur1, B. Kanber2, A. Eshaghi1,3, D.R. Altmann1,4, Z. Khaleeli1, F. Prados1,2, S. 

Ourselin2,5, A.J. Thompson1,6, C.A.M. Gandini Wheeler-Kingshott1,7,8, A.T. Toosy1, O. 

Ciccarelli1,6 

 

1 Queen Square MS Centre, UCL Institute of Neurology, University College of London 

(UCL), London WC1B 5EH, UK 

2 Department of Medical Physics and Biomedical Engineering. Centre for Medical 

Image Computing (CMIC), UCL, London WC1E 7JE, UK 

3 Department of Computer Science. Centre for Medical Image Computing (CMIC), 

UCL, London WC1E 7JE, UK 

4 Medical Statistics Department, London School of Hygiene and Tropical Medicine, 

University of London, London, UK 

5 School of Biomedical Engineering & Imaging Sciences. Faculty of Life Sciences and 

Medicine. King’s College London. St Thomas’ Hospital, 4th floor Lambeth Wing 

London, SE1 7EH 

6 National Institute for Health Research University College London Hospitals 

Biomedical Research Centre  

7 Brain MRI 3T Research Center, C. Mondino National Neurological Institute, Pavia, 

Italy 

8 Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy 

 

 

 



 2 

Corresponding author: Carmen Tur, MD, MSc, PhD 

Corresponding author’s address: Dept. of Neuroinflammation. UCL Institute of 

Neurology. UCL. 1st floor, Russell Square House. 10-12 Russell Square. London 

WC1B 5EH, UK 

Corresponding author’s phone and fax: +44 2031087446 

Corresponding author’s e-mail address: c.tur@ucl.ac.uk   

 

Email addresses of the rest of the coauthors:  

b.kanber@ucl.ac.uk  

arman.eshaghi@me.com    

Daniel.Altmann@lshtm.ac.uk  

z.khaleeli@nhs.net  

f.carrasco@ucl.ac.uk  

s.ourselin@ucl.ac.uk  

alan.thompson@ucl.ac.uk  

c.wheeler-kingshott@ucl.ac.uk  

a.toosy@ucl.ac.uk  

o.ciccarelli@ucl.ac.uk  

 

     

  

mailto:c.tur@ucl.ac.uk
mailto:b.kanber@ucl.ac.uk
mailto:arman.eshaghi@me.com
mailto:Daniel.Altmann@lshtm.ac.uk
mailto:z.khaleeli@nhs.net
mailto:f.carrasco@ucl.ac.uk
mailto:s.ourselin@ucl.ac.uk
mailto:alan.thompson@ucl.ac.uk
mailto:c.wheeler-kingshott@ucl.ac.uk
mailto:a.toosy@ucl.ac.uk
mailto:o.ciccarelli@ucl.ac.uk


 3 

ABSTRACT  

Background 

Structural cortical networks (SCNs) reflect the covariance between the cortical 

thickness of different brain regions, which may share common functions and a common 

developmental evolution. SCNs appear abnormal in neurodegenerative conditions such 

as Alzheimer’s and Parkinson’s diseases, but have never been assessed in primary 

progressive multiple sclerosis (PPMS).  

Objective 

To test whether SCNs are abnormal in early PPMS and change over five years, and 

correlate with disability worsening.  

Methods 

Twenty-nine PPMS patients and 13 healthy controls underwent clinical and brain MRI 

assessments for five years. Baseline and five-year follow-up cortical thickness values 

were obtained and used to build correlation matrices, considered as weighted graphs to 

obtain network metrics. Bootstrap-based statistics assessed SCN differences between 

patients and controls and between patients with fast and slow progression.  

Results 

At baseline, patients showed features of lower connectivity (p=0.02) and efficiency 

(p<0.001) than controls. Over five years, patients, especially those with fastest clinical 

progression, showed significant changes suggesting an increase in network 

connectivity (p<0.001) and efficiency (p<0.02), not observed in controls.  

 

Conclusion 
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SCNs are abnormal in early PPMS. Longitudinal SCN changes demonstrated a switch 

from low- to high-efficiency networks especially among fast progressors, indicating 

their clinical relevance.  

 

194/200 

 

Key words: Primary progressive multiple sclerosis, structural covariance networks, 

cortical thickness, grey matter damage, robust statistical methods, bootstrapping.  
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INTRODUCTION  

In primary progressive multiple sclerosis (PPMS), grey matter (GM) damage occurs 

from the earliest stages of the condition1-4 and is associated with greater risk of 

disability accumulation.1-3 Whole brain GM volume loss is commonly used as marker 

of GM damage in PPMS.5 However, the strength of the correlation between GM 

damage and clinical deterioration in PPMS is only moderate. A possible explanation 

for that could be that the techniques used to assess GM volume loss are frequently based 

on averaged values over the whole brain, failing to capture the spatial variability of GM 

volume loss. Instead, innovative approaches such as covariance network analysis 

applied to cortical thickness data can account for the complexity of the spatial 

distribution of such GM damage, providing new insights into the pathogenic 

mechanisms underlying disability progression.6   

 

Covariance networks allow the assessment of the interdependencies across variables of 

a system –generally a biological system, e.g. the brain GM volume– on a specific 

outcome. Moreover, they do so in a straightforward fashion, through the use of graph 

theory principles. In the brain, covariance networks have been successfully applied to 

cortical thickness data, where they are called structural cortical networks (SCNs).7 

SCNs are based on the covariance of GM thickness of different regions, being therefore 

able to capture important aspects of the spatial complexity of GM data. SCNs use the 

correlations between the GM thickness of the different areas as the main predictors of 

the clinical outcome and can potentially provide complementary information to more 

conventional analysis methods of structural data. Additionally, it has been shown that 

cortical areas with similar thickness or volumes share common functions and a common 

developmental evolution.7  
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In the healthy brain, SCNs have proved to behave as small-world networks, where 

transmission of information across the nodes of the network is done fast and efficiently 

thanks to a particularly small mean length of the shortest path, also known as mean 

shortest path,6, 8 an estimate of the shortest distance between any pair of nodes in the 

network.9 Thus, healthy SCNs can be considered as high efficiency networks. In 

neurodegenerative conditions such as MS, SCNs show disruptive patterns early in the 

disease course,10-13 leading to suboptimal topological organisations.14, 15 However, the 

behaviour of SCNs in progressive MS has never been assessed.  

 

Here we tested the hypotheses that there are abnormalities in SCNs in PPMS patients 

when compared with controls and that the main characteristics of the SCNs, such as 

mean shortest path, local and global efficiency and nodal connectivity, significantly 

change over five years of follow-up. To understand whether SCNs changes reflect 

mechanisms that contribute to disability, the differences in SCNs characteristics 

between patients who showed a rapid worsening of disability and those who showed a 

slow worsening of disability were investigated.  

 

METHODS 

Subjects  

All subjects included in this study belong to a prospectively followed-up cohort of 44 

patients with a diagnosis of early PPMS (i.e. and less than five years from symptom 

onset) and 20 healthy controls (HCs). The clinical and demographic features of this 

cohort have been previously reported.1, 16-18 Because of the nature of this study, where 

covariance networks were obtained with cortical thickness values and where such 
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networks had to have the same size at baseline and at follow-up to be comparable, we 

excluded 15 patients and seven HCs who had missed two or three time points. Patients 

with only one time point missing were included and the missing value was imputed 

using simple linear regression, as explained below.  

   

All patients were clinically assessed using the Expanded Disability Status Scale 

(EDSS)19 at baseline, and at 12, 24, 36 and 60 months, as reported elsewhere.1, 16-18 An 

EDSS increase over the five-year follow-up period greater than 0.2 points/year (which 

was the median in the whole PPMS group) was considered as fast progression. We also 

included a group of healthy controls (HCs). All participants underwent MRI scans at 

all time points.  

 

The study was approved by the local Ethics Committee and all participants provided 

informed written consent. 

 

MRI analysis 

All MRI scans were performed with a 1.5 T GE Signa Echospeed MRI (Milwaukee, 

WI) scanner. The scanner maximum gradient strength was 33 mT m-1.  

 

Acquisition of brain structural scans 

For all subjects and for the purpose of this study, the following images at baseline and 

five-year follow-up were analysed: axial oblique, proton-density (PD), dual echo, fast 

spin echo images were acquired, as previously described;1, 16-18 axial three-dimensional 

fast prepared spoiled gradient recall (3D-FSPGR, 3D T1-weighted) (resolution: 
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1.71.71.5mm3). In April 2004 there was a scanner upgrade, which was taken into 

account in all subsequent analyses (see statistical analysis section).  

 

We manually outlined T2 hyperintense WM lesions on the PD-weighted images using 

the semi-automated edge finding tool in JIM (JIM v6.0, Xinapse systems, Aldwincle, 

UK, http://www.xinapse.com). We co-registered PD-weighted lesion masks to the 3D-

T1 images using a pseudo-T1 image generated by subtracting the PD from the T2-

weighted image.20 We transformed lesion masks from native space to 3DT1 space and 

the 3DT1 images were filled using a non-local patch match lesion filling technique.21  

 

Measurement of cortical thickness  

We calculated cortical thicknesses for 68 bilateral brain cortical areas using the 

FreeSurfer version 5.3 longitudinal stream.22-24 Briefly, this included skull-stripping, 

intensity normalisation, non-linear registration to Talairach space, segmentation, 

estimation of brain surfaces, and surface parcellation. We visually assessed the final 

segmentation, and re-ran the pipeline after manual correction in cases of incorrect 

surface estimation. We performed an unbiased longitudinal image analysis creating a 

symmetric within-subject template.25 Afterwards, in order to increase reliability and 

statistical power all the steps were re-initialised for each time point using the common 

information.22 We extracted cortical thickness values for each cortical parcellation 

according to Desikan-Killiany atlas.24 

 

Structural covariance network analysis 

Construction of weighted structural covariance networks 

We built SCNs for all subjects, at baseline and five-year follow-up, as follows:  

http://www.xinapse.com)/
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1) Networks were built using the same number of subjects at both time points. Thus, 

any missing values in cortical thickness data at five-year follow-up were imputed, for 

each subject, applying a single imputation technique that used simple linear regression, 

where the values at the remaining time points were used to estimate the slope and hence 

the missing point. To minimise the introduction of bias, such single imputation 

technique was only applied if patients had missed, at most, one visit.   

2) Any variability in the cortical thickness data related to lesion load, age or gender, for 

all subjects and time points, was removed regressing at once cortical thickness data 

over lesion load at baseline, mean cortical thickness at baseline, age and gender. 

Additionally, a variable indicating whether the images had been acquired before or after 

the upgrade (April 2004) was also included as a covariate. Controls were assigned a 

lesion load equal to zero mL, as previously done.13, 26 In subsequent steps, we used the 

residuals of these regression models as the new, adjusted, cortical thickness values.7  

3) For each group and time point, i.e. all PPMS patients, HCs, PPMS patients with fast 

disability worsening and PPMS with slow worsening, at baseline and five-year follow-

up, pairwise Pearson’s correlation matrices using adjusted cortical thickness values 

were obtained using MATLAB (The MathWorks, Inc., Natick, Massachusetts, USA).  

4) We obtained correlation matrices with the absolute value of Pearson’s correlation 

coefficients, which corresponded to weighted networks that reflected the strength of the 

association regardless of its sign.7  

 

Obtaining network topological metrics 

Each weighted matrix was considered as the numerical representation of a network with 

68 nodes (i.e. 68 cortical areas) and edges that indicated the strength of the connection 

between two cortical areas. Thus, we obtained network topological metrics for each 
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network, i.e. for each group and time point, using the freely available Brain 

Connectivity Toolbox9 (https://sites.google.com/site/bctnet/) in MATLAB (The 

MathWorks, Inc., Natick, Massachusetts, USA). These metrics were:  

1. Mean nodal strength, the average, across all nodes, of the nodal strength, defined as 

the sum of the correlation coefficients of the edges emerging from a given node. A node 

with a high strength indicates that the node is very well connected and a network with 

high mean nodal strength indicates a very well connected network. In this context, 

highly connected networks indicate a high degree of similarity across cortical regions.   

2. Nodal clustering coefficient, which reflects the connectivity among the neighbours 

of a given node and can be understood as the probability that each two nodes that are 

connected to a given node are also connected among themselves. Therefore, the mean 

clustering coefficient is the average clustering coefficient across all nodes of the 

network.27 In this context, a network with a high mean clustering coefficient would 

indicate that cortical regions have, in general, strong similarities regarding cortical 

thickness with neighbouring regions (in the network).  

3. Mean shortest path (or characteristic path length, L), the average of the shortest path 

lengths between all pairs of nodes in the network.9 Smaller values of mean shortest path 

infer more efficient information transfer between nodes and greater information 

integration within the network.28  

4. Global efficiency, the reciprocal of the harmonic mean of the shortest path lengths of 

the entire network.28  

5. Local efficiency, the reciprocal of the harmonic mean of the shortest path lengths of 

the subgraph (i.e. subnetwork) defined by the neighbours of a given node.28 Mean local 

efficiency is the across-node average of local efficiency values of the nodes of the 

https://sites.google.com/site/bctnet/
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network.9 Higher global and local efficiency values indicate greater ability to integrate 

information, globally and locally, respectively.  

6. Modularity coefficient, which describes how well a network can be subdivided into 

groups of nodes (i.e. modules) highly correlated with each other.   

  

Statistical analysis  

Descriptive and structural imaging data analyses 

We report descriptive statistics as mean (standard deviation [SD]) or median (range), 

depending on the nature of the variable. Changes in mean cortical thickness over five 

years were assessed using linear mixed-effects models. The dependent variable was 

‘cortical thickness’ and the main explanatory variables were ‘time’, a ‘categorical group 

indicator’: patient/control, and an interaction term: ‘time X group indicator’, which 

assessed differences in the rates of change in cortical thickness between groups. All 

models were adjusted for age, gender, lesion load at baseline (HCs were assigned lesion 

load equal to zero) and upgrade status (i.e. before or after the scanner upgrade). In 

patients only, changes in lesion load over five years were assessed using similar linear 

mixed-effects models. The dependent variable was ‘lesion load’ and the main 

explanatory variable was ‘time’. When patients with fast and slow progression were 

compared, an interaction term: ‘time X group indicator’ was also included as a 

covariate. Mixed-effects models allowed for three hierarchical levels: cortical thickness 

measurements at each time point, cortical area and subject. These models were run 

using all available data: baseline, 12, 24, 36 and 60 months, as explained in the 

Supplementary methods. All the above described statistical analyses were carried out 

with Stata 14.2 (Copyright 1985-2015 StataCorp LLC). 
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SCN analysis in all PPMS patients and HCs 

Given that all network parameters were obtained at the network level, i.e. we had a 

value for each network, classical statistical approaches could not be used to compute 

the 95% confidence intervals (95% CI) of the metric values at baseline and their 

changes over time. We used, instead, a bootstrap-based approach which has been 

previously applied13 and is described in detail in the Supplementary methods.  

 

SCN analysis in PPMS patients with fast and slow progression 

The same steps described above were also applied to assess the 95% CIs of baseline, 

follow-up and change values for the network metrics in the groups of PPMS patients 

with fast and with slow progression.  

 

Data availability  

The models and data sets that have been generated during the current study are 

available, on reasonable request, from the corresponding author. 

 

RESULTS 

For this study, we included 29 patients (11 female) and 13 healthy controls (HCs). 

During the five-year follow-up, 13 patients were classified as showing fast disability 

progression and the remaining 16 slow progression. Patients had a greater decrease in 

cortical thickness over time than HCs (p<0.001), whereas no differences were seen 

between fast and slow progressors (Table 1).  

 

Structural cortical network analysis 

All PPMS patients vs HCs 



 13 

At baseline, patients showed lower mean nodal strength (p=0.02) and longer mean 

shortest path (p<0.001) of their SCNs when compared to controls (Table 2; Figure 1). 

No differences were observed in other network metrics.  

 

During the five years of follow-up, patients showed a significantly greater decrease in 

mean shortest path, denoting a more efficient network, than HCs (p=0.03). Patients also 

showed a significant increase in mean nodal strength (p<0.001) and mean clustering 

coefficient (p=0.01), which was not observed in HCs (Table 3; Figure 2).  

 

When analysing regional changes in metrics that admit a node-level analysis, i.e. 

clustering coefficient and local efficiency, the most prominent changes in the SCN of 

patients with PPMS appeared in the post- and pre-central gyri and the entorhinal cortex. 

This regional pattern was not clearly observed in HCs’ network (Figure 3).  

 

PPMS  patients with fast vs slow progression 

At baseline, fast progressors showed a significantly shorter mean shortest path than 

slow progressors: 3.14 vs. 3.63 (p=0.04), indicating higher network efficiency (Table 

4; Figure 4).  

 

Over the five-year follow-up period, fast progressors showed a significant increase in 

mean nodal strength and mean clustering coefficient (p=0.02 and p=0.03, respectively), 

whereas slow progressors only showed changes in the nodal strength. Yet the 

differences between patient groups in the rates of change in these metrics did not reach 

statistical significance. Fast progressors also showed significant changes in all nodal 

distance metrics indicating a progressive increase in network efficiency over time: 
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mean shortest path decreased (p<0.001) and global and local efficiency increased 

(p=0.02 for both). Slow progressors, instead, only showed a decrease in mean shortest 

path (p=0.01) (Table 5; Figure 5).  

 

A visual inspection of the changes in the SCN parameters that admit a node-level 

analysis, the most prominent changes in fast progressors mirrored the regional pattern 

of changes observed in the whole PPMS cohort. Instead, changes in slow progressors 

did not show any clear regional predominance (Figure 3).  

 

DISCUSSION 

In this longitudinal study, we describe, for the first time, the dynamics of SCNs in 

progressive MS. Our finding of an overall lower connectivity and efficiency of the 

patients’ network as compared to the controls’ network is in line with previous studies, 

which showed that cortical networks were disrupted in established MS.10, 11, 15 In our 

study, as in He et al.’s study, we used cortical thickness data adjusted for lesion load 

and mean cortical thickness at baseline. Thus, although possible confounding effects 

derived from early brain damage had already been removed before obtaining our 

correlation matrices, we could still see a less efficient network in patients than in 

controls. As pointed out by He et al. (2009), these findings reflect a disrupted 

harmonisation of cortical thickness among brain cortical regions in our patients. 

Interestingly, neither at baseline nor at follow-up did patients and controls significantly 

differ in terms of mean cortical thickness. This means that SCN analysis is likely to 

have detected morphological changes not seen using conventional mean-based cortical 

thickness metrics.15  
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When temporal network dynamics were analysed, all patients’ networks showed a 

significant increase in both connectivity and efficiency metrics, which was not observed 

in the controls’ network. This phenomenon was also –and especially– observed in the 

network of patients with the fastest progression, whereas slow progressors’ network 

only showed minimal changes. Importantly, the hints of different behaviour between 

fast and slow progressors happened in the absence of significant differences between 

groups in the rates of change in cortical thickness over time, highlighting the fact that 

cortical thickness and cortical network analyses provide at least partly independent 

pieces of information. Additionally, when patients with fast and slow progression were 

compared, the fast progressors’ network showed overall higher connectivity and 

efficiency values than the slow progressors’ network at both baseline and five-year 

follow-up, in line with the observed longitudinal changes. However, this finding would 

be in apparent contradiction with the overall lower connectivity and efficiency of 

patients’ network when compared to the controls’ one and suggests a biphasic 

behaviour of the SCNs in patients: an initial efficiency loss would be followed by a 

gain in efficiency. Thus, whereas the initial stages of cortical atrophy may cause the 

initial disorganisation among cortical thickness of different brain regions leading to a 

less efficient network, the latest stages of atrophy may imply increasing 

homogenisation of cortical thickness across areas, leading to increased cortical network 

connectivity and efficiency.  

 

Longitudinal changes observed in network topological properties in patients could be 

considered as network fingerprints in progressive MS. These changes describe a 

shortening of the mean shortest paths in the whole network and the local subnetworks 

formed of each cortical area and its neighbouring areas. Neighbourhood in the context 
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of SCNs is determined by the presence of a statistical correlation between the cortical 

thickness of each pair of areas. Therefore, an increase in local efficiency would reflect 

an increased correlation among the cortical thickness of those areas that were already 

highly correlated. Conversely an increase in global efficiency would reflect a general 

strengthening in the correlations between the cortical thickness of each pair of areas, 

independently of whether they had already shown a high correlation or not, in line with 

the observed increase in network connectivity. Whether these changes are supporting a 

preservation of function or are actually maladaptive is a challenging question that is 

still unresolved in the context of connectivity analysis. 

 

In our study, the increase in connectivity and local efficiency did not occur 

homogeneously throughout the whole brain. It mainly occurred in the post- and pre-

central gyri, the sites for primary sensory and motor cortices, respectively, and also the 

entorhinal cortex, a medial temporal region largely involved in memory networks, as 

shown in Figure 3. Therefore, it could be possible that the clinical relevance of such 

abnormal cortical network changes was in fact related to the location of the regional 

changes in network connectivity. Damage in these regions has been repeatedly 

observed in neurodegenerative conditions.29, 30 A recent post-mortem study showed 

extensive fibrinogen deposition in the motor cortex of people with progressive MS, 

which was not present in the healthy control cortex and which correlated with the 

degree of neurodegeneration.30 Moreover, these regions have also been considered as 

hubs, i.e. highly connected areas or nodes, in networks defined through diffusion-

weighted MRI techniques.31 Therefore, they may be especially vulnerable to damage 

in neurodegenerative conditions.  
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Our study has some limitations, in particular  the relatively small sample size, especially 

in the control group. On the other hand, the homogeneity of this unique cohort, i.e. 

PPMS patients evaluated within five years of disease onset, the long follow-up and our 

robust statistical approach offset the impact of the small sample size. Yet our statistical 

approach was not primarily designed to address the problem of small sample size but 

to ensure unbiased statistical inferences, given the group-level nature of network 

metrics. The small sample size in the control group might have contributed to the lack 

of significant changes over time in controls. However, the size of the healthy control 

group was similar to the size of both patient groups, i.e. those with fast and with slow 

progression, and the fast progressors did show significant changes over time despite the 

small numbers. Thus, it is unlikely that the smaller size of the control group was 

responsible for the lack of significant changes over time observed in this group. 

Nonetheless, future studies with larger cohorts are necessary to confirm our findings. 

 

Another potential limitation is that possible confounders were not always equally 

distributed across groups. Although we built our SCNs using cortical thickness values 

adjusting for covariates, it might be possible that some confounding effect of these 

variables remained after the adjustment. Additionally, to predict the missing cortical 

thickness values we assumed that cortical thickness dynamics over time varied in a 

linear fashion and the presence of non-linear behaviours of our cortical thickness values 

over time were not explored, given the relatively small sample size of our cohort. Future 

studies with larger cohorts using more complex models to impute missing cortical 

thickness data and to further minimise the effect of potential confounders are warranted.  
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Finally, in our study we did not include deep GM regions to compute our networks. 

Nonetheless, it is possible that deep GM plays a major role in the complex biological 

system defined by the brain GM, especially in MS patients,2 and its inclusion in future 

SCN studies in progressive MS should be considered.  

 

In conclusion, we present results of the first longitudinal cortical network analysis in 

primary progressive MS, revealing aspects of cortical atrophy dynamics beyond data  

obtained from the conventional analysis of cortical thickness. In particular, we found 

lower connectivity and efficiency in PPMS patients’ networks as compared to controls. 

For the first time we demonstrate an increase in connectivity and efficiency in patients 

with progressive MS over time, suggesting that SCN dynamics may have a biphasic 

behaviour. These changes, which were not observed in healthy controls, were driven 

by changes in patients with faster clinical deterioration over time, possibly reflecting 

their clinical relevance.  
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Table 1. Demographic, clinical and neuroimaging data at baseline and over time 

Variable All PPMS 

N=29 

Healthy 

controls 

N=13 

PPMS 

vs HCs, 

p-value 

(*) 

PPMS with 

fast 

progression 

N=13 

PPMS with 

slow 

progression 

N=16 

Fast vs slow 

progressors, 

p-value (*) 

Demographic data 

Age at 

study 

onset 

[years], 

mean 

(SD) 

46.241 

(10.077) 

34.083 

(6.640) 
p<0.001 

43.462 

(0.445) 

48.5  

(9.494) 
p=0.1853 

Gender, 

no. 

females 

(%) 

11 (38%) 5 (38%) p=0.823 5 (38%) 6 (38%) p=0.958 

EDSS score 

Baseline 

score, 

median 

(range) 

4.0 

(3.5 to 6.5) 
- - 

4.0 

(3.5 to 6.5) 

4.0 

(3.5 to 6.5) 
p=0.862 

five-year 

score, 

median 

(range) 

6.25 

(2.0 to 8.0) 
- - 

6.5 

(5.5 to 8.0) 

4.0 

(2.0 to 7.0) 
p<0.001 

Yearly 

rate of 

change 

(95% CI), 

p-value 

0.221 (0.121 

to 0.320), 

p<0.001 

- - 

0.438 

(0.329 to 

0.547), 

p<0.001 

0.048 

(-0.047 to 

0.144), 

p=0.324 

p<0.001 

Cortical thickness [mm] 

Baseline 

mean 

(SD)  

2.549  

(0.189) 

2.514 

(0.125) 
p=0.517 

2.543  

(0.157) 

2.553  

(0.159) 
p=0.820 

five-year 

mean 

(SD)  

2.500  

(0.190) 

2.504 

(0.126) 
p=0.940 

2.489  

(0.158) 

2.499  

(0.160) 
p=0.821 

Yearly 

rate of 

change 

(95% CI), 

p-value  

-0.010 

(-0.012 to -

0.008), 

p<0.001 

-0.002 

(-0.005 to 

0.0004), 

p=0.102 

p<0.001 

-0.011  

(-0.013 to -

0.008), 

p<0.001 

-0.011  

(-0.013 to 

-0.009), 

p<0.001 

p=0.994 

T2 lesion volume [mL] 

Baseline 

mean 

(SD) 

20.114 

(15.948) 
- - 

18.597 

(17.911) 

19.549 

(20.155) 
p=0.889 

five-year 

mean 

(SD) 

35.475 

(35.019) 
- - 

45.186 

(31.299) 

22.403 

(32.519) 
p=0.025 

Yearly 

rate of 

change 

(95% CI), 

p-value 

2.533 (0.563 

to 4.503), 

p=0.012 

- - 

5.318 

(2.241 to 

8.395), 

p=0.001 

0.571(-2.213 

to 3.354), 

p=0.688 
p=0.006 

 
Table 1 (footnote). (*) Adjusted for age, gender and lesion load at baseline. Abbreviations: CI: 

confidence interval; EDSS: Expanded Disability Status Scale; HCs: healthy controls; N: number of 

subjects; PPMS: primary progressive multiple sclerosis; SD: standard deviation.    
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Table 2. Estimated baseline and five-year follow-up values of network 

parameters in PPMS patients and controls  
 

 
Table 2 (footnote). Comparison between PPMS patients and HCs was made looking at the 95% CIs. 

Significant p-values are indicated in bold. Abbreviations: CI: confidence interval; HCs: healthy controls; 

PPMS: primary progressive multiple sclerosis.   

 
  

 PPMS patients (all) HCs 
Patients vs HCs, 

estimated p-value  

1. Measures of nodal connectivity  

Mean nodal strength, estimated value (bootstrap-based 95% CI)  

Baseline  

Follow-up  

11.642 (10.087 to 13.832) 

17.757 (13.819 to 22.199) 

16.741 (13.255 to 21.421) 

21.122 (17.106 to 28.412) 
0.02 

0.40 

Mean clustering coefficient, estimated value (bootstrap-based 95% CI)  

Baseline  

Follow-up  

0.1798 (0.156 to 0.210) 

0.2482 (0.205 to 0.304) 

0.221 (0.178 to 0.282) 

0.282 (0.232 to 0.388) 

0.20 

0.50 

 

2.  Measures of nodal distance 

 

Mean shortest path, estimated value (bootstrap-based 95% CI)  

Baseline  

Follow-up  

4.554 (4.192 to 4.893) 

3.495 (3.129 to 3.938) 

3.2828 (2.951 to 3.625) 

2.8596 (2.482 to 3.169) 
<0.001 

0.02 

Global efficiency, estimated value (bootstrap-based 95% CI)  

Baseline  

Follow-up  

0.309 (0.274 to 0.345) 

0.369 (0.330 to 0.414) 

0.3596 (0.314 to 0.414) 

0.4093 (0.364 to 0.491) 

0.10 

0.25 

Mean local efficiency, estimated value (bootstrap-based 95% CI)  

Baseline  

Follow-up  

0.213 (0.187 to 0.245) 

0.278 (0.237 to 0.331) 

0.2566 (0.214 to 0.315) 

0.3151 (0.266 to 0.413) 

0.20 

0.40 

 

3.  Measures of network organisation 

 

Modularity coefficient (bootstrap-based 95% CI)  

Baseline 

Follow-up 

0.095 (0.082 to 0.111) 

0.098 (0.073 to 0.118) 

0.097 (0.082 to 0.119) 

0.100 (0.072 to 0.123) 

0.90 

0.90 
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Table 3. Five-year changes in SCN parameters, in PPMS patients and HCs 
 

 

Table 3 (footnote). Comparison between PPMS patients and HCs was made looking at the 95% CIs. 

Significant p-values are indicated in bold. Abbreviations: CI: confidence interval; HCs: healthy controls; 

PPMS: primary progressive multiple sclerosis 

 
  

 PPMS patients (all) HCs 
Patients vs HCs, 

estimated p-value  

1. Measures of nodal connectivity  

Mean nodal strength, estimated value (bootstrap-based 95% CI), p-

value 

 

Estimated 

change  

6.116 (1.938 to 9.847), 

p<0.001 

4.381 (-0.075 to 10.450),  

p=0.06 
0.70 

Mean clustering coefficient, estimated value (bootstrap-based 95% CI), 

p-value 

 

Estimated 

change  

0.0684 (0.020 to 0.125), 

p=0.01 

0.061 (-0.003 to 0.153),  

p=0.06 
0.90 

 

2.  Measures of nodal distance 

 

Mean shortest path, estimated value (bootstrap-based 95% CI), p-value  

Estimated 

change  

-1.059 (-1.431 to -

0.578), p<0.001 

-0.423 (-0.754 to -0.149) 

p<0.001 
0.03 

Global efficiency, estimated value (bootstrap-based 95% CI), p-value  

Estimated 

change  

0.060 (0.011 to 0.115), 

p=0.02 

0.050 (-0.006 to 0.121), 

p=0.10 
0.90 

Mean local efficiency, estimated value (bootstrap-based 95% CI), p-

value 

 

Estimated 

change  

0.066 (0.018 to 0.119), 

p=0.01 

0.058 (-0.003 to 0.144),  

p=0.07 
0.90 

 

3.  Measure of network organisation 

 

Modularity coefficient (bootstrap-based 95% CI), p-value  

Estimated 

change  

0.002 (-0.024 to 0.025), 

p=0.90 

0.002 (-0.039 to 0.027),  

p=0.95 
>0.99 
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Table 4. Estimated baseline and five-year follow-up values of SCN parameters in 

PPMS patients with fast and slow progression  

 

 
 
Table 4 (footnote). Significant p-values are indicated in bold. Abbreviations: CI: confidence interval; 
PPMS: primary progressive multiple sclerosis.  

 
  

 
Patients with fast 

progression 

Patients with slow  

progression 

Patients with fast vs slow 

progression, estimated p-

value  

1. Measures of nodal connectivity  

Mean nodal strength, estimated value (bootstrap-based 95% CI)  

Baseline  

Follow-

up  

17.831 (14.869 to 22.819) 

24.586 (18.892 to 32.238) 

15.076 (12.480 to 18.933) 

17.977 (14.741 to 23.207) 

0.30 

0.10 

Mean clustering coefficient, estimated value (bootstrap-based 

95% CI) 

 

Baseline  

Follow-

up  

0.234 (0.195 to 0.299) 

0.327 (0.251 to 0.440) 

0.234 (0.207 to 0.278) 

0.243 (0.208 to 0.309) 

>0.99 

0.20 

 

2.  Measures of nodal distance 

 

Mean shortest path, estimated value (bootstrap-based 95% CI)  

Baseline  

Follow-

up  

3.136 (2.803 to 3.418) 

2.588 (2.230 to 2.951) 

3.631 (3.275 to 3.989) 

3.2589 (2.890 to 3.598) 
0.04 

0.02 

Global efficiency, estimated value (bootstrap-based 95% CI)  

Baseline  

Follow-

up  

0.372 (0.331 to 0.428) 

0.451 (0.388 to 0.542) 

0.384 (0.352 to 0.425) 

0.381 (0.344 to 0.436) 

0.70 

0.20 

Mean local efficiency, estimated value (bootstrap-based 95% CI)  

Baseline  

Follow-

up  

0.270 (0.230 to 0.333) 

0.359 (0.287 to 0.466) 

0.273 (0.245 to 0.317) 

0.278 (0.243 to 0.341) 

0.99 

0.10 

 

3.  Measures of network organisation 

 

Modularity coefficient, estimated value  (bootstrap-based 95% 

CI) 

 

Baseline 

Follow-

up 

0.091 (0.075 to 0.112) 

0.084 (0.052 to 0.108) 

0.092 (0.077 to 0.110) 

0.110 (0.092 to 0.128) 

0.99 

0.10 
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Table 5. Five-year changes in SCN parameters, in PPMS patients with fast and 

slow progression  
 

 

 

Table 5 (footnote). Significant p-values are indicated in bold. Abbreviations: CI: confidence interval; 

HCs: healthy controls; PPMS: primary progressive multiple sclerosis.   

 
 
  

 
Patients with fast 

progression 

Patients with slow  

progression 

Patients with fast vs slow 

progression, estimated p-value  

1. Measures of nodal connectivity  

Mean nodal strength, estimated value (bootstrap-based 95% CI), p-

value 

 

Estimated 

change  

6.755 (0.501 to 12.756), 

p=0.02 

2.901 (0.213 to 6.936), 

p=0.04 
0.40 

Mean clustering coefficient, estimated value (bootstrap-based 95% 

CI), p-value 

   

Estimated 

change  

0.093 (0.007 to 0.184),  

p=0.03 

0.009 (-0.029 to 0.06), 

p=0.80 
0.20 

 

2.  Measures of nodal distance 

 

Mean shortest path, estimated value (bootstrap-based 95% CI), p-

value 

 

Estimated 

change  

-0.548 (-0.843 to -0.179), 

p<0.001 

-0.383 (-0.661 to -0.163), 

p<0.001 
0.60 

Global efficiency, estimated value (bootstrap-based 95% CI), p-

value 

 

Estimated 

change  

0.079 (0.010 to 0.147),  

p=0.02 

-0.003 (-0.039 to 0.044), 

p=0.90 
0.06 

Mean local efficiency, estimated value (bootstrap-based 95% CI), p-

value 

 

Estimated 

change  

0.089 (0.008 to 0.172),  

p=0.02 

0.0054 (-0.0320 to 

0.0582), p=0.9 
0.10 

 

3.  Measures of network organisation 

 

Modularity coefficient (bootstrap-based 95% CI), p-value  

Estimated 

change  

-0.008 (-0.037 to 0.020),  

p=0.7 

0.019 (-0.006 to 0.038), 

p=0.15 
0.20 
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Figure legends 

 

Figure 1. Network parameters at baseline in all PPMS patients and HCs 

 

Figure 1. (Figure legend) This figure shows the point estimates for the baseline values 

of network parameters (thick vertical lines, in red for PPMS and black for HCs) and the 

bootstrap-based 95% CIs for those values, for all PPMS patients and HCs (thin vertical 

lines, in red for PPMS and black for HCs). The blue-purple histograms reflect the 

bootstrap distribution in PPMS patients, whereas the green histograms reflect the 

bootstrap distribution in HCs. Please look at the main text for more details. 

Abbreviations: CI: Confidence Interval; HCs: healthy controls; PPMS: primary 

progressive multiple sclerosis.     
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Figure 2. Five-year changes in network parameters in all PPMS patients and HCs 

 

Figure 2. (Figure legend) This figure shows the point estimates for the five-year 

changes in network parameters (thick vertical lines, in red for PPMS and black for HCs) 

and the bootstrap-based 95% CIs for those changes, for all PPMS patients and HCs 

(thin vertical lines, in red for PPMS and black for HCs). The blue-purple histograms 

reflect the bootstrap distribution in PPMS patients, whereas the green histograms reflect 

the bootstrap distribution in HCs. Please look at the main text for more details. 

Abbreviations: CI: Confidence Interval; HCs: healthy controls; PPMS: primary 

progressive multiple sclerosis.    

 

  



 30 

Figure 3. Five-year changes in clustering coefficient and local efficiency in all 

groups 

 

Figure 3. (Figure legend) This figure shows the five-year changes in clustering 

coefficient and local efficiency for all four networks. A: all-PPMS network; B: HC 

network; C: fast-PPMS network; D: slow-PPMS network. As can be seen, all changes 

ranged from -0.11 to 0.11. Patients with fast clinical progression showed the greatest 

(positive) change in both clustering coefficient and local efficiency. Abbreviations: 

HCs: healthy controls; PPMS: primary progressive multiple sclerosis.    
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Figure 4. Network parameters at baseline in PPMS patients with fast and slow 

progression  

 

Figure 4. (Figure legend) This figure shows the point estimates for the baseline values 

of network parameters (thick vertical lines, in red and black, for patients with fast and 

slow progression, respectively) and the bootstrap-based 95% CIs for those values, for 

PPMS patients with fast and slow progression (thin vertical lines, in red and black, for 

patients with fast and slow progression, respectively). The blue-purple histograms 

reflect the bootstrap distribution in PPMS patients, whereas the green histograms reflect 

the bootstrap distribution in HCs. Please look at the main text for more details. 

Abbreviations: CI: Confidence Interval; PPMS: primary progressive multiple sclerosis.    
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Figure 5. Five-year changes in network parameters in PPMS patients with fast 

and slow progression  

 

Figure 5. (Figure legend) This figure shows the point estimates for the five-year 

changes in network parameters (thick vertical lines, in red and black, for patients with 

fast and slow progression, respectively) and the bootstrap-based 95% CIs for those 

changes, for PPMS patients with fast and slow progression (thin vertical lines, in red 

and black, for patients with fast and slow progression, respectively). The blue-purple 

histograms reflect the bootstrap distribution in PPMS patients, whereas the green 

histograms reflect the bootstrap distribution in HCs. Please look at the main text for 

more details. Abbreviations: CI: Confidence Interval; PPMS: primary progressive 

multiple sclerosis. 

 

 


