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Main Summary: 
Whole genome sequencing should replace current molecular typing used routinely in clinical 

microbiology laboratories. Patient-to-patient spread of M. abscessus is not common. 

Environmental screening may provide a better understanding of acquisition of M. abscessus 

infections.  
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Abstract 

Background: 

Mycobacterium abscessus is an extensively drug resistant pathogen that causes pulmonary 

disease particularly in cystic fibrosis (CF) patients. Identifying direct patient-to-patient 

transmission of M. abscessus is critically important in directing infection control policy for 

the management of risk in CF patients. A variety of clinical labs have used molecular 

epidemiology to investigate transmission. However there is still conflicting evidence as to 

how M. abscessus is acquired and whether cross-transmission occurs. Recently labs have 

applied whole-genome sequencing (WGS) to investigate this further and in this study we 

investigate whether WGS can reliably identify cross-transmission in M. abscessus. 

Methods: 

We retrospectively sequenced the whole genomes of 145 M. abscessus isolates from 62 

patients seen at four hospitals in two countries over 16 years. 

Results: 

We have shown that a comparison of a fixed number of core single nucleotide variants 

(SNVs) alone cannot be used to infer cross-transmission in M. abscessus but does provide 

enough information to replace multiple existing molecular assays. We detected one episode of 

possible direct patient-to-patient transmission in a sibling pair. We found that patients 

acquired unique M. abscessus strains even after spending considerable time on the same 

wards with other M. abscessus positive patients.  

Conclusions: 

This novel analysis has demonstrated that the majority of patients in this study have not 

acquired M. abscessus through direct patient-patient transmission or a common reservoir. 

Tracking transmission using WGS will only realise its full potential with proper 

environmental screening as well as patient sampling. 

Keywords: Nontuberculous mycobacteria, whole-genome sequencing, transmission, cystic 

fibrosis, phylogenomics  
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Background 

Mycobacterium abscessus (recently renamed as Mycobacteroides abscessus) [1], is a group 

of three closely related subspecies M. abscessus subsp. abscessus, M. abscessus subsp. 

massiliense and M. abscessus subsp. bolletii [1,2]. These rapidly-growing, non-tuberculous 

mycobacteria cause chronic pulmonary disease, particularly in patients with cystic fibrosis 

(CF) and other chronic lung diseases. M. abscessus is an important pathogen that has 

emerged in the CF patient population and that has been associated with poor clinical 

outcomes, especially following lung transplantation [3–5]. This is due, at least in part, to the 

extensive antibiotic resistance that makes infections with this organism difficult to treat [2,6]. 

CF patients infected with M. abscessus are frequently not listed for transplant, therefore the 

acquisition of this pathogen is considered to be a serious complication in this group.  

 

The epidemiology of M. abscessus strains has been studied using Variable Nucleotide 

Tandem Repeats (VNTR) and Multi Locus Sequence Typing (MLST) [7]. The clustering of 

globally spread sequence types was confirmed with whole genome sequencing (WGS) and 

has provided greater resolution in how the various lineages are related as well as predicting 

possible transmission routes [8,9]. A dominant method of transmission of M. abscessus 

remains contested [10,11], with evidence for and against patient-to-patient transmission being 

the common route [8,12–14]. M. abscessus is ubiquitous in the environment with its niche 

hypothesised to be free-living amoeba [15,16], but due to the difficulties in isolating the 

organism, little has been done to track environment-to-patient acquisition. Confirmation of 

direct patient-to-patient transmission is important as it influences management of high-risk 

patients and it could increase the effectiveness of infection control interventions by directing 

the use of limited resources. 
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In this retrospective study we assessed utility of using WGS to characterise subspecies, 

antimicrobial resistance (AMR) profiles and typing of M. abscessus isolates.  We also wanted 

to utilise the data to investigate the scale of patient-to-patient transmission and whether 

identification of single nucleotide variants (SNVs) by WGS can confirm transmission. To do 

this we have sequenced the genomes of 145 M. abscessus clinical isolates from a well 

characterised cohort of 62 patients from four hospitals in two countries over 16 years.  
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Methods 

Patients and Samples collection 

We collected 33 M. abscessus isolates from 30 patients at Hospital de la Santa Creu I Sant 

Pau (bcn_hsp), Hospital Clínic (bcn_hcl) and Hospital Vall d’Hebron (bcn_hvh), Barcelona, 

Spain and 112 isolates from 32 patients from Great Ormond Street Hospital (GOSH), 

London, UK (Table 1). At GOSH, CF patients were screened for non-tuberculous 

mycobacterial (NTM) infection when attending clinics as part of their routine management. 

In addition to this, CF and other patients at all hospitals included in this study were screened 

for NTM infection when they presented with suggestive clinical symptoms or exacerbations. 

Demographic and patient location data were obtained from the patient administration system 

and microbiological data from the laboratory information management system using 

Structured Query Language (SQL) and Excel spreadsheets. Additional sources of information 

included CF and transplant databases. American Thoracic Society consensus guidelines were 

used to verify evidence of non-tubercuolous mycobacterial infection [17]. All 

investigations were performed in accordance with the Hospitals Research governance policies 

and procedures. 

 

DNA extraction, Whole-Genome Sequencing and Multi Locus Sequence Typing (MLST) 

Information on DNA extraction, whole-genome sequencing and MLST are included in 

Supplementary Methods. 

 

Read mapping and variant calling 

Sequenced reads for all samples were first mapped to M. abscessus subsp. abscessus ATCC 

19977 using BBMap v37.90 (Joint Genome Institute). Single nucleotide variants (SNVs) 

were called against the reference genome using freebayes v1.2.0 [19] and variants were 

filtered to only include those at sites with a mapping quality >30, a base quality >30, at least 
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five supporting reads, where the variant was present on at least two forward and reverse 

strand reads and  present at the 5’ and 3’ end of at least two  reads.  

 

Phylogenetic analysis 

Potential regions of recombination were identified from the consensus genome sequences 

using Gubbins v2.3.1 [20]. Regions within the genome with low coverage (< 5x) were 

masked on a per sample basis and regions with low coverage across 75% of samples were 

masked across the entire dataset. A maximum likelihood tree was inferred from all samples 

using RAxML v8.2.4 [21] using a GTRCAT model with 99 bootstraps. Sub-species were 

identified for each sample based on their position upon this tree. 

 

Separate sub-trees were also inferred for M. abscessus subsp. massilense sequences, as well 

as for M. abscessus subsp. abscessus ST-1 and ST-26 sequences. All samples in each sub-tree 

were mapped against a suitable reference. M. abscessus subsp. massilense str. GO 06 was 

used as the reference sequencing for study massilense sequences and the de novo assembly of 

the earliest ST-26 study sequence (ldn_gos_2_520) was used as a reference for other ST-26 

samples. M. abscessus subsp. abscessus ATCC 19977 was again used as the reference for ST-

1 sequences as it is the same sequence type. All sub-trees were generated using the same 

method outlined above, apart from ST-26 subtree, which did not use Gubbins but instead 

variants were filtered if 3 SNVs were found within a 100bp window.  

 

Sequence clusters 

Sequence clusters to infer possible transmission were generated using three different methods 

on each subtree. First we used a SNV threshold that was based on the upper bounds of all 

within patient diversity applied to complete linkage hierarchical clustering based on pairwise 

SNV matrix. Secondly we assigned clusters using the R package rPinecone as it incorporates 
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SNV thresholds and root-to-tip distances and so has been useful when applied to clonal 

populations [22]. Lastly we also used hierBAPS [23] to assign clusters, however due to the 

fact that all samples are included in the sequence clusters we found it was not appropriate for 

this study question. We made the assumption that any strains taken from different patients 

that were within sequence cluster constituted a possible transmission event. 

 

De novo assembly 

All samples underwent de novo assembly of bacterial genomes using SPAdes and pilon 

wrapped in the Unicycler v0.4.4 package [24]. Assembled contigs were annotated using 

prokka v1.13 [25] and comparison of the accessory genome was generated using roary 

v3.12.0 [26]. To generate a list of genes that could be used to differentiate isolates we filtered 

the annotated genes to remove coding sequences (CDS) greater than 8000 bp and less than 

250 bp, as well as those only present in a single sample and those present in every sample.  
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Results 

M. abscessus population distribution 

We obtained whole genome sequences for 145 M. abscessus isolates from 62 patients. Thirty-

three M. abscessus from Barcelona subdivided into 24 M. abscessus subsp. abscessus, two M. 

abscessus subsp. bolletii and seven M. abscessus subsp. massiliense. A hundred and twelve 

M. abscessus from UK subdivided into 78 M. abscessus subsp. abscessus, one M. abscessus 

subsp. bolletii and 33 M. abscessus subsp. massiliense. Sample MLST definitions, VNTR and 

AMR associated mutations are shown in supplementary table 1.  

 

Possible transmission within M. abscessus clusters 

To confirm possible transmission between patients we required their isolate genomes to be 

clustered together by two independent methods and epidemiological evidence that both 

patients were at the same hospital during the same time period. Using WGS data we inferred 

a phylogenetic tree from reference genome SNV matrix for all patients (Figure 1).  We 

observed two low variant clusters of isolates that corresponded to ST-1 and ST-26 Pasteur 

MLST profiles (VNTR II and I respectively), as well as other closely related M. abscessus 

subsp. massilense isolates between patients. We used a SNV matrix from mapping against a 

reference (M. abscessus subsp. abscessus ATCC19977), as well as hierBAPS and rPinecone 

to predict sequence clusters. The sequence clusters generated from the single reference SNV 

matrix provided no further information than the MLST profiles, and in many cases provided 

spurious findings with large groups of isolates clustered with no epidemiological link 

(Supplementary Figure 1). This included large sequence clusters relating to a single MLST 

type which included isolates from different hospitals and countries.  

Mapping to a single reference genome led to the inability of a single SNV cut-off, or model, 

to exclude unrelated isolates from sequence clusters because the number of pairwise SNV 

distances varied greatly between both subspecies and specific lineages (Figure 2). For 
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example, the pairwise median (interquartile range) SNV distance between just ST-1 isolates 

was 73 (62 – 81) compared to 29589 (27701 – 63703) for all M. abscessus subsp. abscessus 

isolates. The same differences were seen in M. abscessus subsp. massilense as well with a 

pairwise median (IQR) SNV distance between ST-23 and ST-48 isolates of 2084 (960 – 

7274) compared to 70545 (59947 – 71891) across all isolates from the subspecies. 

 

Sub-tree sequence clusters 

The variation in the scale of diversity within subspecies and sequence type hampered efforts 

to capture possible transmission events. In order to improve accuracy of sequence clustering, 

multiple sub-trees were made for closely related isolates using a more suitable reference 

sequence. We separated M. abscessus subsp. abscessus and M. abscessus subsp. massilense 

isolates, as well as further sub-trees for ST-1 (VNTR II), ST-26 (VNTR I) and ST-23/ST-48 

(VNTR III) isolates. We also integrated the presence of accessory genes when interrogating 

possible sequence clusters for transmission (Figures 3, 4 & 5). Sequence clusters were 

assigned for each sub-tree using both a single SNV threshold (Supplementary Figure 2) and 

rPinecone. Overall we found that predicting transmission from the sub-trees reduced the 

number of different patients clustered together from 46 to 19 and the number of possible 

sequence clusters suggesting patient-to-patient transmission from 11 to seven. 

A total of 18 sequence clusters (I – XVIII) were identified (listed in supplementary table 1), 

15 of these were within the sub-trees (I – XV), and seven clusters contained samples from 

more than one patient (IV, V, VI, VIII, XIV, XVI & XVII). We found no sequence clusters 

that contained samples from both the UK and Spain. We found no evidence of transmission 

between patients within ST-26. (Figure 3). Within ST-1, four clusters (IV, V, VI and VIII) 

containing samples from more than one patient were found. Three of these clusters (IV, V and 

VI) contained isolates from nine patients from multiple hospitals within Barcelona. Only two 

of these patients were in hospital during the same time period (cluster VI: bcn_hcl_009 and 
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bcn_hvh_30), but both were treated in different hospitals. Cluster VIII suggested transmission 

between two patients (ldn_gos_18 and ldn_gos_19) who were siblings with previously 

assumed either direct transmission or common reservoir (Figure 4) [13]. A single cluster 

(XIV) containing samples from two patients (ldn_gos_46 and ldn_gos_7) was found among 

ST-23 isolates. However, the two strains were isolated from samples taken nine years apart 

(Figure 5). Patient ldn_gos_7 was already positive for M. abscessus on first admission to 

Great Ormond Street Hospital (GOSH), and the two patients were present at the lung function 

lab within a month of each other on two occasions, but never in the same location at the same 

day, and never admitted to the same ward. 

All samples found within their respective clusters also contained similar accessory gene 

profiles with the median (IQR) shared percentage of accessory genes within a sequence 

cluster being 89% (79% – 94%) compared to 18% (12% - 37%) for isolates not in the same 

sequence cluster.  

For the 32 GOSH CF patients included in the study, 16 became infected with M. abscessus 

after their first visit to clinic (Table 1), however transmission confirmed by both WGS and 

epidemiological data could only be identified in one case (gos_19) thus suggesting a different 

route of acquisition for the rest of these patients. 

 

Discussion 

This study has shown that whole genome sequencing of M. abscessus isolates can determine 

sub-species, identify previously reported AMR associated mutations and provide common 

typing definitions in a single workflow. This single method can replace the multiple existing 

molecular assays used in clinical microbiology laboratories to provide the same information 

and could be used to predict novel resistance variants [27]. We used the WGS data to 

investigate the likelihood of cross-transmission and found 43 (69%) patients had unique 
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isolates that did not cluster with other patients. We identified seven sequence clusters from 

the remaining 19 patients but only one pair of patients (ldn_gos_18 and ldn_gos_19) had a 

plausible epidemiological link to support possible patient-to-patient transmission, as they 

were siblings. All other patients with genetically similar strains were either isolated in 

different countries, different hospitals or isolated from samples that were taken years apart, 

making direct transmission of these strains extremely unlikely. 

Every M. abscessus isolated from a GOSH patient was sequenced and so the dataset 

generated represents a complete picture of M. abscessus infection in this hospital, which is 

vital for inferring transmission. Most of these patients were only attending clinics at GOSH, 

therefore this study has captured all of their M. abscessus isolates and they are unlikely to 

have been in contact with M. abscessus positive patients at other hospitals (Table 1). 

Therefore, if direct patient-patient transmission was occurring frequently we would expect to 

see evidence of it here. In contrast to this we found that the majority of patients in this study 

had unique strains and the majority of sequence clusters were multiple isolates from the same 

patients. This study confirms previous findings that despite many M. abscessus negative 

patients spending considerable time on the same wards as patients with ongoing M. abscessus 

infections they did not subsequently acquire genetically similar isolates [13,14,28].  

We have therefore found that a fixed number of SNVs cannot be reliably used to infer cross-

transmission across all M. abscessus isolates as there seems to be irreconcilable differences in 

the substitution rate between both sub-species and dominant clones. These difficulties are 

similar to those seen in Legionella pneumophila outbreaks where the majority of cases can 

belong to only a few sequence types [26]. L. pneumophila can also display different scales of 

genetic diversity within different sequence or genotypes and so it is also recognised that a 

single SNV threshold cut-off will not provide sufficient discriminatory power [27]. When 

using WGS to infer relatedness in M. abscessus there has previously been an attempt to find 

an absolute threshold which can rule in or rule out strains into a transmission event. This has 
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previously been placed as below 25-30 SNVs [8,14,29,30]. From our findings we would 

advocate using a suitable genetically similar reference sequence when carrying out core 

genome SNV calling, especially for the dominant clones such as ST-1 and ST-26. There is a 

large amount of variation within the genomes of M. abscessus [31] and so the use of a single 

reference such as M. abscessus subsp. abscessus ATCC 19977 will mask many differences 

between strains and generate spurious clusters of genetically similar sequences. Where a 

suitable reference is not available we recommend using a high quality draft de-novo assembly 

of the first isolated sample to compare other isolates against as in the example of the ST-26 

samples in this study (Figure 3).  

In addition to core genome SNV analysis we have also found the integration of accessory 

genome information is a useful indicator of relatedness within M. abscessus isolates that can 

be used to further interrogate assigned sequence clusters. Generally there was good 

concordance between the proportion of putative genes shared and the SNV distance between 

two samples. This is helped by using a closely related reference sequences to map sequence 

reads against. We have seen in this study, and previously [32], diversity in the accessory 

genome profiles as well as in the number of SNPs and AMR associated mutations taken from 

multiple samples from the same patient on the same day. However we have always found 

inter-patient diversity to be greater than that seen within the same patient. This would suggest 

that any direct transmission between patients of even minority populations would still be 

identified by WGS and, taken together, the data suggests that person-to-person transmission 

of M. abscessus in paediatric patients in our institution is very uncommon. In this study we 

have an example of two patients with transmission predicted by genomic epidemiology 

(ldn_gos_7 and ldn_gos_46) that had attended a lung function laboratory on three occasions 

within a month of each other. In this case, the only way transmission could have occurred is if 

ldn_gos_7 who was already infected contaminated the environment and this then transmitted 

to ldn_gos_46. The predominant view [8] that human-to-human transmission occurs via 
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contamination of fomites by respiratory secretions could explain this, although no other 

instances of this appeared to have occurred, despite numerous other CF patients attending the 

unit over many years. What is harder to explain is that for this to be the case, the interval 

between exposure and culture positivity was nine years. It could be that M. abscessus remains 

present but undetectable by conventional methods for this time period, or intriguingly could 

cause latent infection, like what occurs with Mycobacterium tuberculosis. To the best of our 

knowledge, this has never been a demonstrated part of the pathogenesis of M. abscessus 

infection, and maybe worthy of further investigation. 

In agreement with previous studies we have found an international distribution of M. 

abscessus dominant clones [8]. We have found WGS to be useful to confirm whether 

different patient’s strains are unrelated, even within the dominant clones, but it has been far 

more difficult to reach definite conclusions about cross-transmission. Without environmental 

samples we cannot rule out the possibility of intermediate sources of infection and so WGS 

as a tool for tracking cross-transmission in M. abscessus will only realise its full potential 

with proper screening of environmental sources alongside longitudinal patient sampling. 
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Table 1: Study patient information. 

Patient Hospital Subspecies Sex Underlying condition Source of isolate Infection status 

at first contact 

Date of first 

isolate 

Date of first 

contact 

Date of first 

ward 

admission 

bcn_hcl_002 HCL abscessus M Cystic Fibrosis Lung Already Infected 30/12/13 30/12/13 30/12/13 

bcn_hcl_004 HCL abscessus F Bronchiectasis Lung Not infected 09/05/13 01/01/12 01/01/12 

bcn_hcl_005 HCL abscessus F None Lung Already Infected 01/08/14 01/08/14 01/08/14 

bcn_hcl_007 HCL abscessus M Liver Neoplasi Blood Not infected 10/09/14 2013 2013 

bcn_hcl_008 HCL massilense M None Lung Already Infected 30/06/14 30/06/14 30/06/14 

bcn_hcl_009 HCL abscessus F Bronchiectasis Lung Not infected 08/05/13 2008 2008 

bcn_hsp_011 HSP bolletii M None Lung Already Infected 01/12/00   

bcn_hsp_012 HSP abscessus F None Lung Already Infected 31/10/08 31/10/08 31/10/08 

bcn_hsp_014 HSP abscessus F None Lung Already Infected 30/01/01 30/01/01 30/01/01 

bcn_hsp_019 HSP abscessus M None Lung Already Infected 23/01/14 03/12/04 23/01/14 

bcn_hsp_021 HSP abscessus F Chronic bronchial infection Lung Not infected 24/04/15 02/02/14 02/02/14 

bcn_hsp_1 HSP abscessus F None Lung Already Infected 17/09/09 17/09/09 17/09/09 

bcn_hsp_2 HSP abscessus F None Lung Already Infected 24/03/09 24/03/09 24/03/09 

bcn_hsp_3 HSP abscessus F None Lung Already Infected 05/06/07 05/06/07 05/06/07 

bcn_hvh_030 HVH abscessus F Cystic Fibrosis Lung  09/01/12   

bcn_hvh_031 HVH abscessus F Cystic Fibrosis Lung  06/05/09   

bcn_hvh_033 HVH abscessus M Cystic Fibrosis Lung  15/07/13   

bcn_hvh_034 HVH massilense F Cystic Fibrosis Lung  23/01/09   

bcn_hvh_035 HVH abscessus F Cystic Fibrosis Lung  14/02/14   

bcn_hvh_036 HVH massilense M Cystic Fibrosis Lung  29/03/11   

bcn_hvh_037 HVH abscessus F Cystic Fibrosis Lung  30/01/13   

bcn_hvh_038 HVH abscessus F Cystic Fibrosis Lung  25/07/14   

bcn_hvh_039 HVH abscessus M Cystic Fibrosis Lung  22/01/07   

bcn_hvh_040 HVH massilense M Cystic Fibrosis Lung  04/09/09   

bcn_hvh_041 HVH bolletii F Lung transplant Lung  29/08/12   
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bcn_hvh_042 HVH massilense F Lung transplant Lung  18/04/12   

bcn_hvh_043 HVH abscessus M Lung transplant Lung  23/02/13   

bcn_hvh_045 HVH massilense M Lung transplant Lung  10/04/13   

bcn_hvh_046 HVH massilense M Lung transplant Lung  08/11/13   

bcn_hvh_047 HVH abscessus F Lung transplant Lung  28/03/13   

ldn_gos_1 GOSH bolletii F Cystic Fibrosis Lung Already Infected 29/06/2004 27/06/2004 27/06/2004 

ldn_gos_11 GOSH massilense F Cystic Fibrosis Lung Not infected 07/10/2008 09/06/1997 15/09/1998 

ldn_gos_14 GOSH massilense F Cystic Fibrosis Lung Already Infected 25/04/2005 24/04/2005 24/04/2005 

ldn_gos_15 GOSH abscessus F Cystic Fibrosis Lung Not infected 26/06/2006 29/08/1995 26/05/2003 

ldn_gos_17 GOSH abscessus M Cystic Fibrosis Lung Not infected 21/04/2009 04/07/1995 01/01/1997 

ldn_gos_18 GOSH abscessus M Cystic Fibrosis Lung Not infected 13/12/2004 27/02/2001 03/07/2002 

ldn_gos_19 GOSH abscessus F Cystic Fibrosis Lung Not infected 18/06/2007 16/04/1991 27/07/1994 

ldn_gos_2 GOSH abscessus F Cystic Fibrosis Lung Already Infected 18/08/2005 15/08/2005 15/08/2005 

ldn_gos_21 GOSH abscessus M Cystic Fibrosis Lung Not infected 28/10/2008 11/11/1996 20/10/1997 

ldn_gos_22 GOSH abscessus F Cystic Fibrosis Lung Not infected 08/05/2008 15/02/1994 05/01/1998 

ldn_gos_23 GOSH massilense F Cystic Fibrosis Lung Not infected 03/02/2009 17/06/2003 10/11/2006 

ldn_gos_24 GOSH abscessus F Cystic Fibrosis Lung Already Infected 30/03/2009 30/03/2009 30/03/2009 

ldn_gos_27 GOSH abscessus F Cystic Fibrosis Lung Not infected 16/10/2010 07/05/2003 07/05/2003 

ldn_gos_28 GOSH massilense F Cystic Fibrosis Lung Already Infected 06/06/2011 06/06/2011 06/06/2011 

ldn_gos_3 GOSH abscessus F Cystic Fibrosis Lung Already Infected 05/09/2005 04/09/2005 04/09/2005 

ldn_gos_30 GOSH abscessus F Cystic Fibrosis Lung Not infected 28/06/2012 11/11/1997 13/01/1999 

ldn_gos_32 GOSH abscessus F Cystic Fibrosis Lung Already Infected 08/11/2010 08/11/2010 08/11/2010 

ldn_gos_35 GOSH abscessus F Cystic Fibrosis Lung Not infected 21/10/2013 05/08/2000 05/08/2000 

ldn_gos_36 GOSH abscessus F CNS Tumour Faeces Not infected 11/01/2014 10/10/2013 N/A 

ldn_gos_37 GOSH abscessus M Cystic Fibrosis Lung Not infected 20/02/2014 01/10/2013 28/10/2013 

ldn_gos_38 GOSH massilense M Cystic Fibrosis Lung Already Infected 31/07/2014 28/04/2014 28/04/2014 

ldn_gos_39 GOSH massilense F Cystic Fibrosis Lung Already Infected 29/09/2014 29/09/2014 29/09/2014 

ldn_gos_40 GOSH abscessus F Cystic Fibrosis Lung Already Infected 29/03/2015 16/02/2015 16/02/2015 

ldn_gos_41 GOSH abscessus M Cystic Fibrosis Lung Already Infected 02/06/2015 01/06/2015 01/06/2015 

ldn_gos_42 GOSH abscessus M SCID Lung Not infected 30/07/2015 27/09/2002  
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ldn_gos_43 GOSH abscessus M Cystic Fibrosis Lung Not infected 03/08/2015 02/11/1999 25/02/2001 

ldn_gos_44 GOSH massilense F Cystic Fibrosis Lung Already Infected 27/10/2015 26/10/2015 26/10/2015 

ldn_gos_45 GOSH abscessus M Cystic Fibrosis Lung Already Infected 26/02/2016 05/01/2015 05/01/2015 

ldn_gos_46 GOSH massilense F Cystic Fibrosis Lung Not infected 09/01/2017 10/11/2004 10/11/2004 

ldn_gos_7 GOSH massilense F Cystic Fibrosis Lung Already Infected 17/12/2007 17/12/2007 17/12/2007 

ldn_gos_8 GOSH abscessus M Cystic Fibrosis Lung Not infected 29/06/2007 17/06/1997 17/06/1998 

ldn_gos_9 GOSH abscessus F Cystic Fibrosis Lung Not infected 04/12/2007 20/08/2007 10/06/2008 

 

Abbreviations: HCL, Hospital Clínic; HSP, Hospital de la Santa Creu I Sant Pau; HVH, Hospital Vall d’Hebron; GOSH, Great Ormond Street Hospital   
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Figure legends 

 

Figure 1. Maximum likelihood single nucleotide variant (SNV) tree using only the 

earliest isolated sample from all 62 patients. SNVs were identified from mapping reads to 

ATCC19977 M. abscessus subsp. abscessus reference genome. Sample names are highlighted 

in colour based on what hospital they were isolated from: Great Ormond Street Hospital, 

London, UK, Hospital Clínic, Barcelona, Spain, Hospital de la Santa Creu i Sant Pau, 

Barcelona, Spain, and Hospital Vall d’Hebron, Barcelona, Spain. The scale bar represents the 

number of single nucleotide variants and node bootstrap scores below are shown if below 75.  

 

Figure 2. Frequency of pairwise single nucleotide variant (SNV) distances between all 

isolates. SNVs were identified from mapping sequence reads to M. abscessus subsp. 

abscessus ATCC19977. The full plot includes all samples while the bottom subsidiary plot 

only includes isolates that have a pairwise difference between zero and 1000 SNVs. 

 

Figure 3. Maximum likelihood single nucleotide variant (SNV) tree for all ST-26 

isolates. SNVs were identified from mapping reads to a de-novo assembled study isolate 

genome (ldn_gos_2_520). Samples are highlighted based on inclusion in sequence clusters. 

The tree is annotated with the presence (black) and absence (white) of accessory genes as 

well as the presence of AMR associated genes and mutations. This included presence of a 

functional erm(41) gene conferring inducible resistance to macrolides, presence of two rrl 

mutations conferring high level macrolide resistance and the presence of mutation in rrs 

conferring high level amikacin resistance. The scale bar represents the number of single 

nucleotide variants and node bootstrap scores below are shown if below 75. 
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Figure 4. Maximum likelihood single nucleotide variant (SNV) tree for all ST-1 isolates. 

SNVs were identified from mapping reads to M. abscessus subsp. abscessus ATCC19977. 

Samples are highlighted based on inclusion in sequence clusters. The tree is annotated with 

the presence (black) and absence (white) of accessory genes as well as the presence of AMR 

associated genes and mutations. This included presence of a functional erm(41) gene 

conferring inducible resistance to macrolides, presence of two rrl mutations conferring high 

level macrolide resistance and the presence of mutation in rrs conferring high level amikacin 

resistance. The scale bar represents the number of single nucleotide variants and node 

bootstrap scores below are shown if below 75. 

 

Figure 5. Maximum likelihood single nucleotide variant (SNV) tree for all ST-23 and 

ST-48 isolates. SNVs were identified from mapping reads to M. abscessus subsp. massilense 

GO 06. Samples are highlighted based on inclusion in sequence clusters. The tree is 

annotated with the presence (black) and absence (white) of accessory genes as well as the 

presence of AMR associated genes and mutations. This included presence of a functional 

erm(41) gene conferring inducible resistance to macrolides, presence of two rrl mutations 

conferring high level macrolide resistance and the presence of mutation in rrs conferring high 

level amikacin resistance. The scale bar represents the number of single nucleotide variants 

and node bootstrap scores below are shown if below 75. 
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