- 1 Pathotyping the Zoonotic Pathogen Streptococcus suis: Novel Genetic Markers to
- 2 Differentiate Invasive Disease-Associated Isolates from Non-Disease Associated
- 3 Isolates from England and Wales.
- 4
- 5 Thomas M. Wileman, ^a# Lucy A. Weinert, ^a Kate J. Howell, ^{a*} Jinhong Wang, ^a
- Sarah E. Peters, ^a Susanna M. Williamson, ^b Jerry M. Wells, ^c Andrew N. Rycroft,^d 6
- 7 Brendan W. Wren,^e Duncan J. Maskell, ^a and Alexander W. Tucker, ^{a#} on behalf of
- 8 the BRaDP1T Consortium
- 9
- 10 ^aDepartment of Veterinary Medicine, University of Cambridge, Cambridge, UK
- 11 ^bAnimal and Plant Health Agency (APHA), Bury St Edmunds, UK
- 12 ^cHost-Microbe Interactomics, Department of Animal Sciences, Wageningen
- 13 Univeristy, Wageningen, the Netherlands
- ^dThe Royal Veterinary College, Hawkshead Campus, Hatfield, United Kingdom 14

Downloaded from http://jcm.asm.org/ on June 11, 2019 by guest

- 15 ^eFaculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical
- 16 Medicine, London, UK
- 17 Running Head: Pathotyping S. suis Isolates from Pigs on UK Farms
- 18 #Address correspondence to Thomas M. Wileman, tmw37@cam.ac.uk;
- 19 Alexander W. Tucker, awt1000@cam.ac.uk.
- 20 *Present address: Kate J. Howell, Department of Paediatrics, Addenbrooke's
- 21 Hospital, Cambridge, United Kingdom.

22 Abstract [limit: 250 words; word count: 248]

23 Streptococcus suis is one of the most important zoonotic bacterial pathogens of 24 pigs causing significant economic losses to the global swine industry. *S. suis* is 25 also a very successful coloniser of mucosal surfaces and commensal strains can 26 be found in almost all pig populations worldwide, making detection of the *S. suis* 27 species in asymptomatic carrier herds of little practical value in predicting the 28 likelihood of future clinical relevance. The value of future molecular tools for 29 surveillance and preventative health management lies in the detection of strains 30 that genetically have increased potential to cause disease in presently healthy 31 animals. Here we describe the use of genome-wide association studies to identify 32 genetic markers associated with the observed clinical phenotypes i) invasive 33 disease or ii) asymptomatic carriage on the palatine tonsils of pigs on UK farms. 34 Subsequently we designed a multiplex-PCR to target three genetic markers that differentiated 115 S. suis isolates into disease-associated and non-disease 35 36 associated groups; performing with a sensitivity of 0.91, specificity of 0.79, 37 negative predictive value of 0.91, and positive predictive value of 0.79 in 38 comparison to observed clinical phenotypes. We describe evaluation of our 39 pathotyping tool, using an out-of-sample collection of 50 previously 40 uncharacterised *S. suis* isolates, in comparison to existing methods used to 41 characterise and subtype *S. suis* isolates. In doing so, we show our pathotyping 42 approach to be a competitive method to characterise *S. suis* isolates recovered 43 from pigs on UK farms, and one that can easily be updated to incorporate global 44 strain collections.

MOL

45 Introduction

46	Streptococcus suis (S. suis) is one of the most important bacterial pathogens of
47	pigs causing significant economic losses to the swine industry worldwide (1).
48	The infectious agent is responsible for a wide range of clinical manifestations,
49	including septicaemia with sudden death, meningitis, endocarditis, arthritis, and
50	pneumonia amongst other diseases (2). <i>S. suis</i> is also a zoonotic pathogen
51	associated with exposure to pigs or pork-derived products (3). Although cases in
52	Europe are infrequently reported, in recent years the surveillance and number of
53	reported human infections has increased substantially in Southeast Asia (4-9).
54	Importantly, <i>S. suis</i> is not only an invasive pathogen but also a very
55	successful coloniser of mucosal surfaces (10). In fact, the upper respiratory tract
56	of pigs, in particular the palatine tonsils, is considered to be both the natural
57	habitat of <i>S. suis</i> and a principal route of invasion; although the bacterium can
58	also be recovered from the gastrointestinal and genital tracts (2). Colonisation of
59	adult pigs is common in almost all pig populations sampled, meaning that
60	transfer of <i>S. suis</i> from sow to piglet during parturition and suckling is an
61	important route of transmission (10).
62	Several methods exist to investigate strain diversity and identify
63	phylogenetic groups of <i>S. suis</i> . Simple biochemical tests cannot always
64	differentiate S. suis from S. suis-like strains when performed on cultured isolates
65	recovered from diseased animals, and to date remain of little practical use in
66	differentiating invasive disease-associated strains from asymptomatic
67	commensal-like strains both of which may contribute sub-clinically to the
68	respiratory microflora of colonised pigs (1). Other existing methods used to
69	characterise and subtype <i>S. suis</i> as part of epidemiological studies have recently

its limitations often requiring either large amounts of sample DNA, which is
labour intensive and cumbersome, or high levels of technical competence making
the comparison of results between laboratories difficult.
To date, serotyping remains the most widely used method to subtype
S. suis isolates and is an important part of the routine diagnostic procedure (2,
12). A total of 35 serotypes have been described for <i>S. suis</i> based on differences
in the capsular polysaccharide antigens, but since their original descriptions
evidence now exists for the reclassification of a number of serotypes as other
Streptococcus species meaning current opinion considers there to be just 29
"true" <i>S. suis</i> serotypes (namely 1-19, 21, 23-25, 27-31, and 1/2) (13). Serotype 2
predominates among clinical cases of disease in most countries, although
serovars 1-9, 14 & 1/2 have all been documented as being of clinical importance
in certain geographical locales (14-18). As a result, serotyping has been used as a
proxy for predicting the virulence potential of <i>S. suis</i> isolates. However, the use of
serotyping alone as a predictor of virulence has the limitation that strains of the

Downloaded from http://jcm.asm.org/ on June 11, 2019 by guest

77 in the capsular polysaccharide antigens, but since their origin scriptions 78 evidence now exists for the reclassification of a number of se es as other 79 Streptococcus species meaning current opinion considers the be just 29 80 "true" S. suis serotypes (namely 1-19, 21, 23-25, 27-31, and 1 3). Serotype 2 81 predominates among clinical cases of disease in most country though 82 serovars 1-9, 14 & 1/2 have all been documented as being of al importance 83 in certain geographical locales (14-18). As a result, serotypin been used as a 84 proxy for predicting the virulence potential of S. suis isolates. ever, the use of 85 serotyping alone as a predictor of virulence has the limitation that strains of the 86 same serotype can vary substantially in virulence (19, 20). 87 Given the limitations of serotyping to reliably predict virulence potential 88 of S. suis strains other markers have been investigated. A wide range of homologs 89 of bacterial virulence factors and virulence-associated factors found in other 90 Gram-positive organisms has been shown to affect the virulence of S. suis strains 91 through targeted mutagenesis studies (21-23). However, clear association with 92 specific roles in the onset and development of disease has not been found for 93 many proposed factors (24, 25). Despite this, the 'virulence-associated markers'

been the subject of a comprehensive review by Xia et al. (11). Each approach has

94 (rather than virulence factors *per se*) extracellular protein factor (EF, encoded by

70

71

72

73

74

75

76

95	the <i>epf</i> gene) (26) and muramidase-released protein (MRP, encoded by the <i>mrp</i>
96	gene) (27), as well as, the thiol-activated toxin hemolysin, suilysin (SLY, encoded
97	by the <i>sly</i> gene) (28, 29) have been extensively used to predict the virulence
98	potential of <i>S. suis</i> strains in certain mainly European countries, particularly for
99	strains of serotype 2 (17, 24, 30). Unfortunately, genotyping of <i>epf, mrp</i> , and/or
100	<i>sly</i> also fails to provide clear classification of a <i>S. suis</i> isolate as virulent (or not)
101	because isogenic mutants devoid of such factors have been found to be as
102	virulent as their respective parental strains, emphasising the importance of their
103	consideration as virulence associated markers rather than true virulence factors
104	per se (31).
105	Advances in sequencing technologies now allow whole-genome
106	sequencing (WGS) of multiple strains of the same species, including <i>S. suis</i> (32-
107	36). This explosion in the amount of detailed genetic information has allowed
108	Bayesian analysis of population structure and the investigation of <i>S. suis</i>
109	recombination rates, revealing enormous species diversity and significant
110	genomic differences between <i>S. suis</i> isolates responsible for systemic disease in
111	pigs when compared to non-clinical isolates recovered from the upper
112	respiratory tract (35). Indeed, in 2015 Weinert et al. proposed loss of protein-
113	encoding sequences had led to a smaller systemic disease-associated genome
114	with increased virulence potential and an overrepresentation of genes encoding
115	previously reported virulence-factors associated with <i>S. suis</i> (35).
116	Minimum core genome (MCG) sequence typing is a recently described
117	typing scheme that also takes advantage of the increase in available <i>S. suis</i> WGS
118	data, using population genetics-based sub-divisions for strain identification and
119	typing (33, 37). MCG sequence typing exploits advances in next-generation

Journal of Clinical Microbiology

120

121	identify and type <i>S. suis</i> isolates into "MCG groups" that can later be associated
122	with clinical phenotypes. In fact, during its design, MCG group 1 was reported as
123	being assigned to all highly virulent isolates tested and associated with the
124	greatest occurrence of previously reported virulence genes (33). However, MCG
125	sequence typing like multilocus sequence typing (MLST), also described for
126	<i>S. suis</i> (38), is difficult to apply to routine diagnostic testing and can sometimes
127	lack the discriminatory power to differentiate bacterial strains into virulent and
128	avirulent sub-populations, limiting its usefulness in epidemiological studies.
129	The aim of this study was to design and then evaluate a pathotyping tool
130	to predict the virulence potential of <i>S. suis</i> isolates using genome-wide
131	association studies, a so-far unexploited method for the identification of <i>S. suis</i>
132	virulence-associated markers. The statistical power to allow the identification of
133	robust associations between genotype and phenotypes including virulence in
134	many different bacterial species is now possible due to the rapid increases in the
135	availability of detailed WGS data (39, 40). Here we have combined WGS data
136	with high-quality clinical metadata in order to identify genetic markers in the
137	<i>S. suis</i> accessory genome (i.e. genes absent from one or more isolates or unique
138	to a given isolate) associated with i) invasive disease or ii) asymptomatic
139	carriage on the palatine tonsils of pigs on UK farms. Subsequently, we designed a
140	multiplex-PCR (mPCR) to target three genetic markers that differentiated 115
141	<i>S. suis</i> isolates into i) invasive disease-associated and ii) non-disease associated
142	groups. We also describe evaluation of our pathotyping tool (generalised linear
143	model and mPCR), using an out-of-sample collection of 50 previously
144	uncharacterised <i>S. suis</i> isolates, in comparison to existing methods used to

sequencing to identify novel regions of the core-genome that can be used to

- 145 characterise and subtype *S. suis* isolates. In doing so, we show our approach to be
- 146 a competitive method to subtype *S. suis* isolates recovered from pigs on UK
- 147 farms, and one that can easily be updated to incorporate global strain collections.
- 148

Journal of Clinical <u>Microbio</u>logy

149 Materials and Methods

1	50	Bacterial isolates. Two groups of <i>S. suis</i> isolates were used in this study a) a
1	51	training collection of 115 isolates and b) an out-of-sample test collection of 50
1	52	previously uncharacterised isolates. The original training collection was used
1	53	to identify genetic markers which could differentiate <i>S. suis</i> isolates into i)
1	54	invasive disease-associated and ii) non-disease associated phenotypic groups.
1	55	The 'training' collection consisted of laboratory reference strain P1/7
1	.56	(NC_012925) originally recovered from an ante-mortem blood culture from a pig
1	.57	that died with meningitis in the United Kingdom (32, 41). The other 114 isolates
1	.58	of the training collection were a subset recovered from pigs on farms in England
1	.59	and Wales during routine diagnostic investigations at the Animal Health and
1	.60	Veterinary Laboratories Agency (AHVLA; now the Animal and Plant Health
1	.61	Agency, APHA) in 2010, and contribute to a larger collection previously
1	.62	described in 2015 by Weinert et al. (35). Well-defined phenotypic metadata were
1	.63	available based on which each isolate was categorised as being associated with
1	.64	invasive <i>S. suis</i> disease (n=53; recovered from systemic sites in the presence of
1	.65	clinical signs (arthritis, meningitis, septicaemia) and/or gross pathology
1	.66	consistent with <i>S. suis</i> infection) or as being non-disease associated (n=62;
1	.67	recovered from the tonsil or trachea-bronchus of pigs without any typical signs
1	.68	of streptococcal disease but diagnosed with disease unrelated to <i>S. suis,</i> such as
1	.69	enteric disease). The out-of-sample test collection was used to evaluate our
1	.70	pathotyping tool. Out-of-sample forecasting is a common approach used to
1	.71	evaluate the performance of binary diagnostic tests. To avoid reducing statistical
1	72	power, rather than split the training collection, an additional out-of-sample 'test'
1	73	collection was put together consisting of 23 invasive disease-associated

175 S. suis disease at the APHA during 2013) and 27 non-disease associated isolates 176 (recovered from material scraped from the palatine tonsils of pigs exhibiting no 177 signs of *S. suis* disease on farms in England and Wales between June 2013 and 178 May 2014). Site of recovery, ante-, and post-mortem findings of all isolates 179 described in this study are summarised in Table S1. 180 Identification of genetic markers associated with observed clinical 181 phenotype. Genetic markers to pathotype S. suis were identified using positive 182 detection data of putative protein-encoding sequences making up the S. suis 183 accessory-genome (i.e. genes absent from one or more isolates or unique to a 184 given isolate). The accessory genome was taken from Weinert *et al.* (35). Briefly, 185 de novo assemblies of Illumina fastq reads were produced, protein-encoding 186 genes were then identified and used in MCL clustering to find orthologue groups, 187 which were manually checked. Two complementary genome-wide association 188 studies i) the univariate Chi-squared test for independence and ii) the 189 multivariate Discriminant Analysis of Principal Components (DAPC) were 190 combined to define a preliminary list of genetic markers associated with the 191 observed clinical phenotypes i) invasive disease or ii) asymptomatic carriage on 192 the palatine tonsils of pigs. The Chi-squared test for independence, implemented 193 in the R package: *stats* (42), was used to compare the observed positive 194 detection of protein-encoding sequences with expected frequencies, in doing so 195 calculating a test statistic that if greater than the critical value was reason 196 enough to reject the null hypothesis of independence (p-value <0.05). Bonferroni 197 adjustment (α/n) was used to control for family-wise error associated with

Downloaded from http://jcm.asm.org/ on June 11, 2019 by guest

(recovered from systemic, non-respiratory locations of pigs diagnosed with

174

ournal of Clinical Microbioloav 198

multiple sampling.

199	DAPC (43, 44), implemented in the R package: <i>adegenet</i> (45, 46), was
200	used to identify genetic differences between pre-defined phenotypic groups. The
201	total amount of original variation retained in the DAPC model affected which
202	genetic markers contributed most to the separation of genetic structures. As a
203	result, four independent DAPC analyses were performed retaining 60, 70, 80 or
204	90% of the original genetic variation, and the 1% of ranked genetic markers
205	contributing most to the discrimination of pre-defined phenotypic groups was
206	then analysed and genetic markers consistently output by two or more DAPC
207	analyses taken forward as candidates for pathotyping <i>S. suis</i> .
208	Analysis of the distribution of previously reported virulence factors
209	associated with <i>S. suis</i> disease. Protein-encoding sequences present in P1/7,
210	taken from the list of previously published virulence and virulence-associated
211	factors complied as part of a comprehensive review by Fittipaldi et al. (24), were
212	extracted from GenBank (Table S2). P1/7 protein-encoding sequences were used
213	as tBLASTn queries against a bespoke BLAST database consisting of the draft
214	genome assemblies of all isolates described in this study. Amino acid level
215	matches to >80% of >80% of the total length of each translated protein-encoding
216	sequence were considered hits.
217	Selection of genetic markers to pathotype S. suis. Logistic regression
218	analysis in the form of a generalised linear model (GLM) with backwards-
219	stepwise selection using penalised likelihood ratio tests, implemented in the R
220	package: <i>logistf</i> (47), was used to identify the fewest statistically significant (<i>p</i> -
221	value <0.05) markers to differentiate <i>S. suis</i> isolates into pre-defined i) invasive
222	disease-associated and ii) non-disease associated groups. A receiver operating
223	characteristic (ROC) curve, implemented in the R package: ROCR (48), was used

224

225	false positive rate (1-specificity) in comparison to the observed clinical
226	phenotype (considered to be the 'gold-standard' in this study), and a cutoff
227	threshold selected to convert the real-valued output (fitted values) of the logistic
228	regression (probability of causing invasive disease) into a binary class decision:
229	invasive disease-associated (1)/non-disease associated (0). As no cutoff was
230	optimal according to all possible performance criteria, cutoff choice involved a
231	trade-off between different performance metrics where low false negative rate
232	(1-sensitivity, analogous to Type II error) was chosen as the most valuable
233	performance metric for pathotyping <i>S. suis</i> , with a view to establish and then
234	maintain a pig population free of invasive disease-associated strains.
235	All statistical analyses were performed using the standard R environment
236	for statistical computing and graphs (version 3.1.1) (49).
237	Identification of <i>S. suis</i> -species specific genetic markers. We designed
237 238	Identification of <i>S. suis</i> -species specific genetic markers. We designed a mPCR to target genetic markers associated with observed clinical phenotype,
237 238 239	Identification of <i>S. suis</i> -species specific genetic markers. We designed a mPCR to target genetic markers associated with observed clinical phenotype, along with a <i>S. suis</i> species-specific marker as a positive control. The most
237 238 239 240	Identification of <i>S. suis</i> -species specific genetic markers. We designed a mPCR to target genetic markers associated with observed clinical phenotype, along with a <i>S. suis</i> species-specific marker as a positive control. The most conserved protein-encoding sequences of the <i>S. suis</i> core-genome (i.e. present in
237 238 239 240 241	Identification of <i>S. suis</i> -species specific genetic markers. We designed a mPCR to target genetic markers associated with observed clinical phenotype, along with a <i>S. suis</i> species-specific marker as a positive control. The most conserved protein-encoding sequences of the <i>S. suis</i> core-genome (i.e. present in all isolates) were used to select a species-specific marker to complement the
237 238 239 240 241 242	Identification of <i>S. suis</i> -species specific genetic markers. We designed a mPCR to target genetic markers associated with observed clinical phenotype, along with a <i>S. suis</i> species-specific marker as a positive control. The most conserved protein-encoding sequences of the <i>S. suis</i> core-genome (i.e. present in all isolates) were used to select a species-specific marker to complement the pathotyping markers. To do this, all annotated protein-encoding sequences of
237 238 239 240 241 242 243	Identification of <i>S. suis</i> -species specific genetic markers. We designed a mPCR to target genetic markers associated with observed clinical phenotype, along with a <i>S. suis</i> species-specific marker as a positive control. The most conserved protein-encoding sequences of the <i>S. suis</i> core-genome (i.e. present in all isolates) were used to select a species-specific marker to complement the pathotyping markers. To do this, all annotated protein-encoding sequences of <i>S. suis</i> strain P1/7 were used as BLASTn queries against a bespoke BLAST
237 238 239 240 241 242 243 244	Identification of <i>S. suis</i> -species specific genetic markers. We designed a mPCR to target genetic markers associated with observed clinical phenotype, along with a <i>S. suis</i> species-specific marker as a positive control. The most conserved protein-encoding sequences of the <i>S. suis</i> core-genome (i.e. present in all isolates) were used to select a species-specific marker to complement the pathotyping markers. To do this, all annotated protein-encoding sequences of <i>S. suis</i> strain P1/7 were used as BLASTn queries against a bespoke BLAST database of all <i>de novo</i> assemblies and known <i>S. suis</i> complete genome
237 238 239 240 241 242 243 244 244	Identification of <i>S. suis</i> -species specific genetic markers. We designed a mPCR to target genetic markers associated with observed clinical phenotype, along with a <i>S. suis</i> species-specific marker as a positive control. The most conserved protein-encoding sequences of the <i>S. suis</i> core-genome (i.e. present in all isolates) were used to select a species-specific marker to complement the pathotyping markers. To do this, all annotated protein-encoding sequences of <i>S. suis</i> strain P1/7 were used as BLASTn queries against a bespoke BLAST database of all <i>de novo</i> assemblies and known <i>S. suis</i> complete genome sequences. Protein-encoding sequences with identities >95% across >80% of the
237 238 239 240 241 242 243 244 245 246	Identification of <i>S. suis</i> -species specific genetic markers. We designed a mPCR to target genetic markers associated with observed clinical phenotype, along with a <i>S. suis</i> species-specific marker as a positive control. The most conserved protein-encoding sequences of the <i>S. suis</i> core-genome (i.e. present in all isolates) were used to select a species-specific marker to complement the pathotyping markers. To do this, all annotated protein-encoding sequences of <i>S. suis</i> strain P1/7 were used as BLASTn queries against a bespoke BLAST database of all <i>de novo</i> assemblies and known <i>S. suis</i> complete genome sequences. Protein-encoding sequences with identities >95% across >80% of the total length of each query sequence were then used to query the NCBI non-
237 238 239 240 241 242 243 244 245 244 245 246 247	Identification of <i>S. suis</i> -species specific genetic markers. We designed a mPCR to target genetic markers associated with observed clinical phenotype, along with a <i>S. suis</i> species-specific marker as a positive control. The most conserved protein-encoding sequences of the <i>S. suis</i> core-genome (i.e. present in all isolates) were used to select a species-specific marker to complement the pathotyping markers. To do this, all annotated protein-encoding sequences of <i>S. suis</i> strain P1/7 were used as BLASTn queries against a bespoke BLAST database of all <i>de novo</i> assemblies and known <i>S. suis</i> complete genome sequences. Protein-encoding sequences with identities >95% across >80% of the total length of each query sequence were then used to query the NCBI non- redundant (nr) database to identify matches only to <i>S. suis</i> .

to visualise the GLM performance metrics true positive rate (sensitivity) and

248

249

250	All mPCR primers were designed to target conserved regions within the protein-
251	encoding sequence of genetic markers (as opposed to flanking regions) and are
252	summarised in Table 1. Primers were designed to have similar physical
253	characteristics, enabling simultaneous amplification under the same thermal
254	cycling conditions and in multiplex reactions. Primer length (21-30 bp), GC
255	content (40-60%), melting temperature (>68 $^\circ$ C if possible, but at least 60 $^\circ$ C),
256	and expected amplicon size (100-1000 bp) were based on the manufacturer's
257	recommendations for primer design using the Multiplex PCR <i>Plus</i> kit (Qiagen).
258	Consistency between the positive detection of genetic markers and primer
259	matches was investigated using BLASTn. Prior to ordering, all primers were
260	queried against the NCBI nr nucleotide database to check for non-S. suis DNA
261	matches. Primers were synthesised by Sigma-Aldrich (Haverhill, United
262	Kingdom) and delivered in solution (TE buffer; 10 mM Tris-Cl, 1 mM EDTA [pH
263	8.0]) at a stock concentration of 100 μM ; primers were used at a working stock
264	concentration of 20 μ M.
265	All mPCRs were performed using the Multiplex PCR Plus Kit (Qiagen), and
266	unless otherwise stated contained the same reagents except for template DNA.
267	The reaction mixture (50 $\mu l)$ for each mPCR consisted of 25 μl 2x Multiplex PCR
268	Master Mix, 5 μl 10x CoralLoad Dye, 10 μl RNase-free water, 0.2 μM (final
269	concentration) of each primer, and 10 ng template DNA. The three-step thermal
270	cycling program for all reactions was as follows: 95 $^\circ C$ for 5 min, followed by 35
271	cycles of (denaturation) 95 $^\circ$ C for 30 s, (annealing) 66 $^\circ$ C for 90 s, and (extension)

Multiplex-PCR and detection of PCR amplicons. The online software,

primer3 version 4.0.0 (http://primer3.ut.ee) was used to design mPCR primers.

MOU

272 72 °C for 90 s; with a final extension of 68 °C for 10 min using a T100 Thermal
273 Cycler (Bio-Rad).

274 PCR products were analysed by gel electrophoresis using 2% (wt/vol) 275 UltraPure Agarose (Invitrogen) gels made with 1x TBE buffer, and contained 1x 276 SYBR Safe DNA gel stain (Invitrogen). Running time was 60 min at a constant 277 100 V. Results were visualised using a GelDoc imager (BioRad). Where 278 appropriate, mPCR products were purified using the QIAquick PCR Purification 279 Kit (Qiagen) as per the manufacturer's instructions and Sanger sequenced using 280 the Source Bioscience Lifesciences sequencing service. Returned sequencing data 281 was aligned with reference sequences of the target protein-encoding sequence 282 using CodonCode Aligner software (CodonCode Corporation). 283 The approximate limit of detection of the mPCR was estimated from 10-284 fold serial dilutions of *S. suis* genomic DNA of known concentration. DNA 285 extracted from four isolates of the training collection representing invasive 286 disease-associated (SS002 and SS004) and non-disease associated (LSS011 and 287 LSS027) phenotypes/genotypes was mixed in equal quantities so that templates 288 for each mPCR amplicon would be present in all reactions. A series of 10-fold 289 dilutions were then performed to create mPCR templates of decreasing 290 concentration. The limit of detection was considered to be the lowest 291 concentration of template DNA from which all predicted mPCR amplicons, after 292 35 thermal cycles, were easily visible under UV transillumination. 293 To evaluate the specificity of the mPCR assay for S. suis, field isolates of 294 Streptococcaceae commonly recovered from the upper respiratory tract of pigs 295 on farms in England and Wales were used as a panel of negative controls. The 296 collection included isolates of *Streptococcus aallolvticus*, *Streptococcus orisratti*,

321

297 Streptococcus pneumoniae, and Streptococcus uberis, sourced from BBSRC
298 research project: BB/L003902/1. In addition, commensal Pasteurellaceae
299 including Actinobacillus indolicus, Actinobacillus minor, Actinobacillus porcinus,
300 and Haemophilus parasuis (Nagasaki and SW140) were also included, as well as
301 DNA from an Alcaligenaceae isolate of Bordetella bronchiseptica RB50
302 (NC_002927) (50).
303 Comparison of our pathotyping tool to existing methods used to

subtype disease-associated isolates of *S. suis.* To compare our pathotyping
tool (GLM and mPCR) to published methods used to subtype disease-associated
isolates of *S. suis*, the molecular serotype, virulence-associated gene (*epf, mrp,*and *sly*) profile, MLST, and MCG sequence type were all determined *in silico*. For
comparison of our pathotyping tool against each existing method the original
training collection was used to 'train' a model that was then applied to the outof-sample 'test' collection.

Downloaded from http://jcm.asm.org/ on June 11, 2019 by guest

311 Traditional serotyping (by capillary precipitation) data was unavailable 312 for all *S. suis* isolates described in this study, therefore, molecular 'serotyping' 313 was performed using an adaptation (for in silico use) of the mPCR assays 314 described by Liu *et al.* (51). Primer sequences were used as BLASTn queries and 315 nucleotide level matches to >95% of the total length of each primer sequence 316 were considered hits. The distance between hits was compared to reported PCR 317 amplicon sizes. Isolates that could not be assigned to one of the 35 (1-34 & 1/2)318 originally described *S. suis* serotypes were deemed non-serotypable (NT). 319 Differentiation of molecular 'serotypes' 1 from 14 and 2 from 1/2 was performed 320 using the published method described by Athey et al. (52). All isolates, in

particular those deemed to be NT, were confirmed to be *S. suis* using a

Journal of Clinica

322

323 sequence homology (53). 324 Virulence-associated gene profiling was performed using an adaptation 325 (for in silico use) of the method described by Silva et al. (54). Again mPCR and 326 singleplex-PCR primer sequences were used as BLASTn queries and nucleotide 327 level matches to >95% to the total length of each primer sequence were 328 considered hits. The distance between hits compared to reported PCR amplicon 329 sizes. Logistic regression (as described above) using the prevalence of *epf*, *mrp*, 330 and/or *sly* as the GLM explanatory variables was used to classify all isolates as i) 331 invasive disease-associated or ii) non-disease associated. 332 MLST was performed using the online software MLST version 2.0 333 (http://cge.cbs.dtu.dk) (55). 334 MCG sequence typing was performed using an adaptation (for *in silico* 335 use) of the method described by Zheng et al. (37). Multiplex-PCR primer 336 sequences were used as BLASTn queries and nucleotide level matches to >95% 337 of the total length of each primer sequence were considered hits. The distance 338 between hits compared to reported mPCR amplicon sizes. Nucleotide sequences 339 between primer sequence matches were then extracted, aligned against the MCG 340 typing reference strain GZ1 (GenBank: CP000837), and the 10 SNPs of interest 341 called allowing isolates to be assigned to one of the seven reported MCG groups 342 for *S. suis*. 343 McNemar's Chi-squared Test for Count Data, implemented in the R 344 package: stats (42), was used to test for statistically significant differences in the 345 sensitivities and specificities of two binary diagnostic tests in a paired study. The 346 Weighted Generalised Score Statistic for Comparison of Predictive Values as

combination of i) biochemical profile (API 20 Strep), ii) MLST data, and iii) recN

- 347 proposed by Kosinski (56), implemented in the R package: *DTComPair* (57), was
- 348 used to test for significant differences in (negative and positive) predictive
- 349 values of two binary diagnostic tests.

350 Results

351	Design of a pathotyping tool for S. suis. Genetic markers to pathotype S. suis
352	were identified using positive detection data of 7261 putative protein-encoding
353	sequences making up the <i>S. suis</i> accessory-genome (35). To do this, the output of
354	two complementary genome-wide association studies were combined to define a
355	preliminary list of 497 genetic markers associated with the observed clinical
356	phenotypes i) invasive disease or ii) asymptomatic carriage on the palatine
357	tonsils of pigs. A multistep process was used to reduce the preliminary list to a
358	number suitable for logistic regression analysis, retaining genetic markers only if
359	i) positively detected in >50% of invasive disease-associated and <50% of non-
360	disease associated isolates (and vice versa <50% of invasive disease-associated
361	and <50% of non-disease associated isolates; n=88 remaining), ii) protein-
362	encoding sequence length was >500 bp (based on the manufacturer's
363	recommendations for primer design using the Qiagen Multiplex PCR Plus kit;
364	n=44 remaining), and iii) not predicted to be a mobile genetic element, such as a
365	phage gene, integrase or transposon (based on Prokka annotations; n=14
366	remaining). A GLM with backwards-stepwise selection using penalised likelihood
367	ratio tests was then used for the final selection of genetic markers, two
368	associated with invasive disease and one associated with asymptomatic carriage
369	(Table 1). A receiver operating characteristic (ROC) curve was used to visualise
370	the GLM performance metrics true positive rate (sensitivity) and false positive
371	rate (1-specificity), and select the cutoff threshold of 0.43 to be used to convert
372	the real-valued output (fitted values) of the GLM into a binary class decision:
373	invasive disease-associated/non-disease associated (Table S1). In comparison to
374	the observed clinical metadata, considered the 'gold-standard' in this study, our

Journal of Clinical Microbiology

375	three genetic markers subtyped the 115 S. suis isolates of the training collection
376	with a sensitivity of 0.91, specificity of 0.79, negative predictive value of 0.91,
377	and positive predictive value of 0.79 (Table S3(a)).
378	At present, WGS is not readily available for routine surveillance studies in
379	veterinary diagnostics laboratories, therefore, we designed a mPCR to target the
380	three genetic markers selected to pathotype <i>S. suis</i> . In addition to genetic
381	markers selected to differentiate <i>S. suis</i> isolates into i) invasive disease-
382	associated and ii) non-disease associated groups, we also incorporated a <i>S. suis</i>
383	species-specific marker into our mPCR assay. To do this, we first identified the
384	most conserved protein-encoding sequences contributing to the S. suis core
385	genome (i.e. present in all isolates) and selected SSU0577 as a novel <i>S. suis</i>
386	species-specific marker, that had a minimum nucleotide sequence identity of
387	98.15% across the total length of the 918 bp protein-encoding sequence.
388	Evaluation of our pathotyping mPCR with the original training
389	collection. Figure 1 shows an example of the mPCR amplicon patterns after gel
389 390	collection. Figure 1 shows an example of the mPCR amplicon patterns after gel electrophoresis on a 2% (wt/vol) agarose gel and photographed under UV
389 390 391	collection. Figure 1 shows an example of the mPCR amplicon patterns after gel electrophoresis on a 2% (wt/vol) agarose gel and photographed under UV transillumination. Amplicons of size 722 bp correspond to the <i>S. suis</i> species-
389 390 391 392	collection. Figure 1 shows an example of the mPCR amplicon patterns after gelelectrophoresis on a 2% (wt/vol) agarose gel and photographed under UVtransillumination. Amplicons of size 722 bp correspond to the S. suis species-specific marker (SSU0577), and were produced by all isolates of the training
389 390 391 392 393	collection. Figure 1 shows an example of the mPCR amplicon patterns after gelelectrophoresis on a 2% (wt/vol) agarose gel and photographed under UVtransillumination. Amplicons of size 722 bp correspond to the S. suis species-specific marker (SSU0577), and were produced by all isolates of the trainingcollection irrespective of invasive disease-associated/non-disease associated
389 390 391 392 393 394	collection. Figure 1 shows an example of the mPCR amplicon patterns after gelelectrophoresis on a 2% (wt/vol) agarose gel and photographed under UVtransillumination. Amplicons of size 722 bp correspond to the S. suis species-specific marker (SSU0577), and were produced by all isolates of the trainingcollection irrespective of invasive disease-associated/non-disease associatedphenotype or genotype. Other amplicons, of size 211 bp and 347 bp correspond
389 390 391 392 393 394 395	collection. Figure 1 shows an example of the mPCR amplicon patterns after gelelectrophoresis on a 2% (wt/vol) agarose gel and photographed under UVtransillumination. Amplicons of size 722 bp correspond to the S. suis species-specific marker (SSU0577), and were produced by all isolates of the trainingcollection irrespective of invasive disease-associated/non-disease associatedphenotype or genotype. Other amplicons, of size 211 bp and 347 bp correspondto the invasive disease-associated markers SSU0207 and SSU1589 respectively,
389 390 391 392 393 394 395 396	collection. Figure 1 shows an example of the mPCR amplicon patterns after gelelectrophoresis on a 2% (wt/vol) agarose gel and photographed under UVtransillumination. Amplicons of size 722 bp correspond to the S. suis species-specific marker (SSU0577), and were produced by all isolates of the trainingcollection irrespective of invasive disease-associated/non-disease associatedphenotype or genotype. Other amplicons, of size 211 bp and 347 bp correspondto the invasive disease-associated markers SSU0207 and SSU1589 respectively,and amplicons of size 892 bp correspond to the non-disease associated marker
389 390 391 392 393 394 395 396 397	collection. Figure 1 shows an example of the mPCR amplicon patterns after gelelectrophoresis on a 2% (wt/vol) agarose gel and photographed under UVtransillumination. Amplicons of size 722 bp correspond to the S. suis species-specific marker (SSU0577), and were produced by all isolates of the trainingcollection irrespective of invasive disease-associated/non-disease associatedphenotype or genotype. Other amplicons, of size 211 bp and 347 bp correspondto the invasive disease-associated markers SSU0207 and SSU1589 respectively,and amplicons of size 892 bp correspond to the non-disease associated markerSSUST30534.

of detection was estimated from 10-fold serial dilutions of S. suis genomic DNA of

Downloaded from http://jcm.asm.org/ on June 11, 2019 by guest

Journal of Clinical Microbiology 399

400	known concentration. The limit of detection was estimated to be \sim 0.0001 ng of
401	S. suis genomic DNA (equivalent to \sim 45 genome copies), the lowest
402	concentration of template DNA from which all predicted mPCR amplicons, after
403	35 thermal cycles, were easily visible under UV transillumination (data not
404	shown).
405	To evaluate the specificity of our mPCR for <i>S. suis,</i> field isolates of
406	Streptococcaceae, Pasteurellaceae, and Alcaligenaceae commonly recovered
407	from the upper respiratory tract of pigs on farms in England and Wales were
408	used as a panel of negative controls. No mPCR amplicons, after 35 thermal cycles
409	and gel electrophoresis, were visible under UV transillumination for any of the
410	panel of ten negative controls (data not shown).
411	Evaluation of our pathotyping tool with an out-of-sample collection.
412	Further evaluation of our pathotyping tool (GLM and mPCR) was done using an
413	out-of-sample test collection of 50 previously uncharacterised (genetically)
414	S. suis isolates (23 invasive disease-associated and 27 non-disease associated).
415	Template DNA extracted from each of the 50 isolates produced the 722 bp mPCR
416	amplicon corresponding to the <i>S. suis</i> species-specific marker SSU0577. For each
417	isolate, the presence/absence of mPCR amplicons was then input into the GLM
418	and the cutoff threshold of 0.43 applied to the fitted-values to generate the
419	binary classification decision. Table 2(a) summarises the classification of the out-
420	of-sample test collection isolates in comparison to the observed clinical
421	metadata, resulting in a sensitivity of 0.83, specificity of 1.00, negative predictive
422	value of 0.87, and positive predictive value of 1.00.
423	Comparison of our pathotyping tool to existing methods used to
424	subtype disease-associated isolates of S. suis. To compare our pathotyping

425

Journal of Clinical Microbiology

426	isolates, the serotypes most frequently recovered from diseased pigs (1-9, 14 $\&$
427	1/2) were considered a marker of disease association and all other serotypes
428	considered markers of non-disease association. Table 2(b) summarises the
429	classification of the out-of-sample test collection isolates in comparison to the
430	observed clinical metadata, and shows the use of molecular serotypes 1-9, 14 $\&$
431	1/2 to predict disease-association performed with a sensitivity of 0.87 (n=3 type
432	II errors), not statistically different from our new mPCR pathotyping tool
433	(McNemar's Chi-squared test for count data <i>p</i> -value = 0.31731). Other
434	performance metrics for the molecular serotype-based approach were a
435	significantly worse positive predictive value of 0.77 (weighted generalised score
436	statistic for comparison of predictive values <i>p</i> -value = 0.01149) and a
437	significantly worse specificity of 0.78 (n=8 type I errors, McNemar's Chi-squared
438	test for count data p -value = 0.01431); no statistically significant difference in
439	negative predictive value was observed (weighted generalised score statistic for
440	comparison of predictive values <i>p</i> -value = 0.90553).
441	To compare our pathotyping tool to the use of <i>epf, mrp</i> and/or <i>sly</i> for the
442	identification of virulent <i>S. suis</i> strains, first a GLM was fitted to the prevalence
443	data of these virulence-associated genes in the original 'training' collection of
444	S. suis isolates and, using the same selection criteria as previously described for
445	the pathotyping markers, a ROC curve used to select the cutoff of 0.12 to convert
446	the GLM fitted values into a binary class decision. The predict function,
447	implemented in the R package: <i>logistf</i> (47), was then used to generate fitted
448	values for the isolates in the out-of-sample test collection (Table S1). Table 2(c)
449	summarises the classification of the out-of-sample test collection isolates as

tool to the use of serotype as a proxy to predict the virulence potential of *S. suis*

450	invasive disease-associated/non-disease associated based on the positive
451	detection of <i>epf</i> , <i>mrp</i> and/or <i>sly</i> in comparison to the observed clinical
452	phenotype. The combined virulence-associated markers performed with a
453	sensitivity of 0.96 (n=1 type II errors), again not statistically different from our
454	new mPCR pathotyping tool (<i>p</i> -value = 0.08326). Other performance metrics for
455	the virulence-associated genotyping approach were a significantly worse
456	positive predictive value of 0.46 (<i>p</i> -value = 2.97708e ⁻⁷ ; incidentally performing
457	no better than chance (Exact binomial test <i>p</i> -value = 1)), and a significantly
458	worse specificity of 0.04 (p -value = 3.41417e ⁻⁷). The negative predictive value
459	was calculated to be 0.50, worse but not a statistically significant difference (p-
460	value = 0.07853).
461	We compared our pathotyping tool to the use of the King et al. MLST
462	scheme (38) as a proxy to predict the virulence potential of <i>S. suis</i> isolates.
463	Sequence type (ST) 1 was assigned to 70% of disease-associated isolates and 3%
464	of non-disease associated isolates of the training collection (Table S1). As ST1 is
465	mostly associated with disease in both pigs and humans in Europe (12) we used
466	assignment to ST1 as a binary classifier to indicate disease-association in
467	comparison to the observed clinical metadata. Table 2(d) summarises the
468	classification of the out-of-sample test collection isolates as invasive disease-
469	associated/non-disease associated based on the assignment toST1 in
470	comparison to the observed clinical phenotype. Assignment to ST1 performed
471	with a sensitivity of 0.70 (n=7 type II errors), worse in comparison to our
472	pathotyping tool but not a statistically significant difference (<i>p</i> -value = 0.08326).
473	The negative predictive value was calculated to be 0.79, again worse but not a
474	statistically significant difference (<i>p</i> -value = 0.08294). Other performance

477 Finally, we compared our pathotyping tool to the use of the Zheng *et al.* 478 MCG typing scheme (33, 37), one of the most recent typing schemes that exploits 479 advances in next-generation sequencing to identify virulent S. suis strains. MCG 480 group 1 was assigned to 77% of disease-associated isolates and 3% of non-481 disease associated isolates of the training collection (Table S1). Together with 482 the report of MCG group 1 being assigned to all highly virulent isolates tested 483 during design of the typing scheme (33), we used assignment to MCG group 1 as 484 a binary classifier to indicate disease-association; performance in comparison to 485 the observed clinical metadata is summarised in Table 2(e). Assignment to MCG 486 group 1 performed with a sensitivity of 0.78 (n=5 type II errors), again worse in 487 comparison to our pathotyping tool but not a statistically significant difference 488 (*p*-value = 0.31731). The negative predictive value was calculated to be 0.84, also 489 worse but not a statistically significant difference (*p*-value = 0.31725). Other 490 performance metrics (specificity and positive predictive value) were found to be 491 identical in comparison to our pathotyping tool.

Downloaded from http://jcm.asm.org/ on June 11, 2019 by guest

493 Discussion

494	We have described the design of a pathotyping tool (GLM and mPCR) exploiting
495	the identification of genetic markers in the S. suis accessory-genome (i.e. genes
496	absent from one or more isolates or unique to a given isolate) associated with
497	the observed clinical phenotypes i) invasive disease or ii) asymptomatic carriage
498	on the palatine tonsils of pigs on UK farms. Initial analyses of the original
499	training collection were unable to identify any single genetic marker of invasive
500	disease prevalent in >95% of invasive disease-associated isolates and not
501	positively identifiable in <5% of non-disease associated isolates. Furthermore,
502	we found over half (n=40) of published putative "virulence-factors", extracted
503	from the previous comprehensive review by Fittipaldi et al. (24) and present in
504	P1.7, did not show a strong relationship with observed clinical phenotype as they
505	were either i) positively detected in the <i>S. suis</i> core-genome (i.e. prevalent in all
506	isolates; n=38) or ii) not detected by our methods in any of the 115 isolates of
507	the training collection (n=2; data not shown). The reason for this is unclear,
508	although could be an effect of previous studies being limited to small numbers of
509	isolates often restricted to serotype 2 (58), and of varied and inconsistent animal
510	models between research groups (25).
511	To avoid restricting our analyses to previously published reports and not
512	taking full advantage of the statistical power of our WGS data set, we used two
513	complementary genome-wide association studies and then logistic regression
514	analysis for the final selection of genetic markers to pathotype <i>S. suis</i> . Using

- 515 logistic regression analysis also allowed for the possibility that multiple genetic
- 516 markers might best describe the *S. suis* pathotype. Our pathotyping markers
- 517 assigned the 115 *S. suis* isolates of the original training collection to phenotypic

520	disease causing isolates. A specificity of 0.79 i.e. the proportion of isolates
521	recovered from the upper respiratory tract of pigs without any typical signs of
522	S. suis infection and predicted to be non-disease associated isolates. A negative
523	predictive value of 0.91 i.e. the proportion of isolates predicted to be non-disease
524	associated that were actually recovered from the upper respiratory tract of pigs
525	without any typical signs of <i>S. suis</i> infection. As well as, a positive predictive
526	value of 0.79 i.e. the proportion of isolates predicted to be associated with
527	invasive disease that were actually recovered from a systemic site.
528	An important caveat of our pathotyping tool design is consideration of the
529	observed clinical phenotype associated with each isolate as the 'gold standard' to
530	characterise <i>S. suis</i> isolates as disease-associated or non-disease associated. In
531	the absence of an agreed superior approach, clinical metadata was used to assign
532	S. suis isolates to one of two phenotypic groups and it is acknowledged that such
533	an approach is not perfect as not all additional factors can be accounted for, such
534	as host-immune status, concurrent infections, or environmental conditions that
535	could influence the susceptibility of a host to <i>S. suis</i> -associated disease. Indeed,
536	reports of <i>in vivo</i> challenge studies can be readily found in the <i>S. suis</i> literature,
537	although most describe data limited to a small number of isolates, often
538	restricted to serotype 2 (58), and under very different conditions making the
539	extrapolation of findings difficult to interpret. An ideal standard would require
540	an agreed panel of isolates for which a series of consistently controlled
541	experimental infection challenge studies had been undertaken using pigs of
542	identical immune status and genetics. However, in order for this to happen

groups (disease-associated/non-disease associated) with a sensitivity of 0.91 i.e.

the proportion of isolates recovered from systemic sites and predicted to be

518

519

543 experts in the field must first agree on a suitable model and set of well-defined544 criteria to score virulence (25, 59, 60).

545 Another important caveat of our pathotyping tool design is the source of 546 S. suis isolates of the original training collection that were deemed to be non-547 disease associated. While all efforts were made to accurately define invasive 548 disease-associated and non-disease associated phenotypic groups it should be 549 acknowledged that non-disease associated isolates of the original training 550 collection were recovered from routine submissions to the APHA in 2010 and 551 that these pigs were not healthy, even though they did not show signs of typical 552 streptococcal disease; instead clinical features were consistent with different 553 non-infectious diseases or disease caused by other non-*S. suis* infectious agents. 554 Indeed, 13 isolates of the original training collection deemed to be non-disease 555 associated by phenotype were predicted by our pathotyping tool to have the 556 potential to cause invasive disease. These 13 type I errors (or 'false' positives) in 557 comparison to the observed clinical metadata could in fact be true predictions 558 and examples of *S. suis* strains with the potential to cause invasive disease being 559 carried in the upper respiratory tract of pigs on UK farms. Therefore, it is 560 possible that the mortality of these 13 pigs was due to clones of isolates 561 recovered from the palatine tonsils or trachea-bronchus yet was not identified as 562 so due to a concurrent or opportunistic infection presenting a more obvious 563 phenotype, such as diarrhoea. Such an observation is supported by evidence in 564 the literature reporting that virulent strains of S. suis can be isolated from the 565 tonsils of pigs without obvious streptococcal disease (61, 62), which is likely to 566 represent carriage of invasive disease-causing stains by pigs that have mounted 567 an effective immune response.

Downloaded from http://jcm.asm.org/ on June 11, 2019 by guest

568	We deemed the false negative rate (1-sensitivity) to be the most valuable
569	performance metric for a <i>S. suis</i> pathotyping tool in order to establish and
570	maintain a pig population free of invasive disease-associated <i>S. suis</i> strains.
571	During out-of-sample testing the false negative rate of 0.17 corresponded to four
572	false negatives (or type II errors), where non-disease associated pathotyping tool
573	predictions were made for isolates linked with invasive disease clinical
574	metadata. It is interesting to speculate at the reasons for such observations.
575	Often <i>S. suis</i> strains are described as opportunistic or secondary pathogens that
576	without a weakened host immune status (due to stress or concurrent infection)
577	would normally be carried asymptomatically, contributing to the normal oral
578	microflora of pigs. This may be the explanation for the differences observed
579	between our pathotyping tool prediction and the observed clinical phenotype,
580	again emphasising the fallibility of the phenotype assigned when it is based on
581	field sampling without carefully controlled infection challenge data.
582	Comparison to published methods revealed our molecular pathotyping
583	tool to be a competitive method to subtype <i>S. suis</i> isolates, even though the
584	necessarily small number of clinically phenotyped isolates in the out-of-sample
585	collection limited the statistical power of the comparison. Comparing the
586	commonly used performance metrics sensitivity, specificity, negative predictive
587	value, and positive predictive value we found the use of i) serotypes 1-9, 14 &
588	1/2, ii) a GLM based on the positive detection of virulence-associated markers
589	<i>epf, mrp</i> and/or <i>sly</i> , iii) assignment to MLST 1, and iv) assignment to MCG group
590	1 performed with statistically similar sensitivities in comparison to our
591	pathotyping tool. However, the trade off for high sensitivities was significantly
592	worse specificities and negative predictive values when using serotypes 1-9, 14

595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

593

594

Accepted Manuscript Posted Online

against markers such as *recN*. At present the role in pathogenesis of our newly defined pathotyping markers is unknown. Based on predicted biological functions (Table 1) we speculate that marker SSU0207, predicted to be a copper exporting ATPase, might allow S. suis to avoid copper toxicity inside phagocytes as copper homeostasis has been shown to be important in many bacterial species (63-65). The marker SSU1589 is annotated as a Type I restriction-modification (RM) system S protein in *S. suis* strain P1/7. Ubiquitous among prokaryotes, Type I RM 611 systems are large multifunctional protein complexes thought to defend host 612 bacterium from foreign DNA borne by bacteriophages, and have recently been 613 described in P1/7 and *S. suis* strains isolated in the Netherlands (66, 67). 614 Considered primitive immune systems in bacteria, it has been proposed that the 615 range of functions RM systems may have should be expanded to include 616 stabilising mobile genetic elements or gene regulation, potentially providing 617 evolutionary fitness advantages and virulence under certain conditions (68).

& 1/2 or the virulence-associated markers: *epf, mrp* and/or *sly*, in certain cases

performing no better than chance (p-value = 1) in comparison to our pathotyping

tool. Over all, the performance of our pathotyping tool was at least statistically

similar and competitive with, and in some cases, better than previously

described methods for assessing the clinical significance of *S. suis* isolates.

Similarly, performance of our newly proposed *S. suis* species-specific marker

(SSU0577) was encouraging. An important part of our pathotyping tool, due to

the presence of *S. suis*-like organisms such as *Streptococcus orisratti* in the pig

upper respiratory tract, we acknowledge that the specificity of SSU0577 for

S. suis and not S. suis-like organisms needs to be extended and studied further

linical	оġУ
fC	<u>io</u>
<u>a</u>	²
Journ	Mic

618	Indeed, the proposed role in protection against foreign DNA may merely be a
619	coincidental benefit of these functions (69). In fact, a Type I RM system in
620	Streptococcus pneumoniae which can undergo genetic recombination with
621	truncated variants of the same gene to generate alternative variants with
622	different methylation specificities could control global changes in gene
623	expression (70). In <i>Streptococcus pneumoniae</i> there is a selection for variants of
624	this genetic switching <i>in vivo</i> , indicating a role in systemic disease.
625	Our third genetic marker (SSUST30534), a putative sugar ABC
626	transporter, was positively associated with the non-disease associated
627	phenotype (asymptomatic commensal-like carriage). The practical application of
628	the genetic marker positively associated with asymptomatic carriage might not
629	be immediately obvious but its statistical significance in the GLM is noteworthy.
630	Indeed, gene loss (of so-called 'antivirulence genes') in the evolution of bacterial
631	pathogens from non-pathogenic commensal strains could be a mechanism of fine
632	tuning pathogen genomes for maximal fitness in new host environments; in
633	short when regulation of invasion, replication and transmission processes is
634	altered, virulence can emerge (71). Indeed, genome reduction via gene loss and
635	pseudogenisation associated with enhanced pathogenicity has been described in
636	other bacteria, such as <i>Rickettsia</i> spp., <i>Shigella</i> spp. and <i>Yersinia</i> spp. (71).
637	Genome reduction through the loss of genes, potentially interfering with host
638	infection, has also been proposed in <i>S. suis</i> (35). Therefore, as the elimination of
639	the genetic marker associated with asymptomatic carriage from the GLM could
640	not be done without a statistically significant loss of fit it was retained and its
641	usefulness evaluated.

642	In conclusion, we foresee a useful clinical application of our pathotyping
643	tool in preventative programs aimed at monitoring the health status of pigs and
644	identification of subclinical carriers of invasive disease-associated S. suis strains
645	in the upper respiratory tract. Our approach can easily be updated to incorporate
646	global strain collections (such as, from North America and Southeast Asia) to
647	identify geographically-dependent phenotypes. This could contribute to a lower
648	prevalence of disease attributed to <i>S. suis</i> among pig populations and
649	consequently a reduction in the usage of antibiotics in the swine industry, as well
650	as a reduction in zoonotic transmission of this pathogen through improved
651	surveillance of pig populations.

652

653 Acknowledgements

654	We acknowledge Dr Trevelyan J. McKinley for helpful conversations and
655	assistance with statistical analyses. We also thank Dr Andrew Preston for the
656	genomic DNA of Bordetella bronchiseptica reference strain RB50, and Brian Hunt
657	and Jon Rogers of the APHA for the collection of <i>S. suis</i> isolates.
658	This work was supported by a Biotechnology and Biological Sciences Research
659	Council (BBSRC) Knowledge Transfer Network CASE studentship co-funded by
660	Zoetis (previously Pfizer Animal Health UK) and with significant contribution
661	from BQP Ltd (Award Reference: BB/L502479/1). Funding bodies provided
662	scholarship support but had no part in study design, data collection, analysis and
663	interpretation of data or in writing the manuscript. AWT is supported by a
664	BBSRC Longer and Larger (LoLa) grant (Award Reference: BB/G019274/1).
665	LAW is supported by a Dorothy Hodgkin Fellowship funded by the Royal Society
666	(Grant Number: DH140195) and a Sir Henry Dale Fellowship co-funded by the
667	Royal Society and Wellcome Trust (Grant Number: 109385/Z/15/Z).
668	Members of the Bacterial Respiratory Diseases of Pigs-1 Technology (BRaDP1T)
669	Consortium include: (Imperial College London) Janine T. Bossé, Paul R. Langford,
670	Yanwen Li; (London School of Hygiene & Tropical Medicine) Jon Cuccui, Vanessa
671	S. Terra, Brendan W. Wren; (The Royal Veterinary College) Jessica Beddow,
672	Gareth A. Maglennon, Andrew N. Rycroft; (University of Cambridge) Roy R.
673	Chaudhuri, Duncan J. Maskell, Sarah E. Peters, Alexander W. Tucker, Jinhong
674	Wang, and Lucy A. Weinert.

Downloaded from http://jcm.asm.org/ on June 11, 2019 by guest

675

676 **References**

677	1.	Staats JJ, Feder I, Okwumabua O, Chengappa MM. 1997. Streptococcus
678		suis: past and present. Vet Res Commun 21: 381-407.
679	2.	Gottschalk M. 2012. Streptococcosis, p 841-855. In Zimmerman J,
680		Karriker L, Ramirez A, Schwartz K, Stevenson G (ed), Diseases of Swine,
681		Tenth Edition ed. John Wiley & Sons, Inc.
682	3.	Dutkiewicz J, Zajac V, Sroka J, Wasinski B, Cisak E, Sawczyn A, Kloc A,
683		Wojcik-Fatla A. 2018. Streptococcus suis: a re-emerging pathogen
684		associated with occupational exposure to pigs or pork products. Part II -
685		Pathogenesis. Ann Agric Environ Med 25: 186-203.
686	4.	Perch B, Kristjansen P, Skadhauge K. 1968. Group R streptococci
687		pathogenic for man. Two cases of meningitis and one fatal case of sepsis.
688		Acta Pathol Microbiol Scand 74: 69-76.
689	5.	Gottschalk M, Xu J, Calzas C, Segura M. 2010. Streptococcus suis: a new
690		emerging or an old neglected zoonotic pathogen? Future Microbiol 5: 371-
691		391.
692	6.	Mai NT, Hoa NT, Nga TV, Linh le D, Chau TT, Sinh DX, Phu NH, Chuong
693		LV, Diep TS, Campbell J, Nghia HD, Minh TN, Chau NV, de Jong MD,
694		Chinh NT, Hien TT, Farrar J, Schultsz C. 2008. Streptococcus suis
695		meningitis in adults in Vietnam. Clin Infect Dis 46: 659-667.
696	7.	Hoa NT, Chieu TT, Nghia HD, Mai NT, Anh PH, Wolbers M, Baker S,
697		Campbell JI, Chau NV, Hien TT, Farrar J, Schultsz C. 2011. The
698		antimicrobial resistance patterns and associated determinants in
699		Streptococcus suis isolated from humans in southern Vietnam, 1997-
700		2008. BMC Infect Dis 11: 6.

Journal of Clinical Microbiology

701	8.	Praphasiri P, Owusu JT, Thammathitiwat S, Ditsungnoen D,
702		Boonmongkon P, Sangwichian O, Prasert K, Srihapanya S, Sornwong
703		K, Kerdsin A, Dejsirilert S, Baggett HC, Olsen SJ. 2015. Streptococcus
704		suis infection in hospitalized patients, Nakhon Phanom Province,
705		Thailand. Emerg Infect Dis 21: 345-348.
706	9.	Chen FL, Hsueh PR, Ou TY, Hsieh TC, Lee WS. 2016. A cluster of
707		Streptococcus suis meningitis in a family who traveled to Taiwan from
708		Southern Vietnam. J Microbiol Immunol Infect 49: 468-469.
709	10.	Clifton-Hadley FA, Alexander TJ. 1980. The carrier site and carrier rate
710		of Streptococcus suis type II in pigs. Vet Rec 107: 40-41.
711	11.	Xia X, Wang X, Wei X, Jiang J, Hu J. 2018. Methods for the detection and
712		characterization of Streptococcus suis: from conventional bacterial
713		culture methods to immunosensors. Antonie Van Leeuwenhoek
714		doi:10.1007/s10482-018-1116-7.
715	12.	Goyette-Desjardins G, Auger J-P, Xu J, Segura M, Gottschalk M. 2014.
716		Streptococcus suis, an important pig pathogen and emerging zoonotic
717		agent—an update on the worldwide distribution based on serotyping and
718		sequence typing. Emerging Microbes & Infections 3: e45.
719	13.	Kerdsin A, Akeda Y, Hatrongjit R, Detchawna U, Sekizaki T, Hamada
720		S, Gottschalk M, Oishi K. 2014. Streptococcus suis serotyping by a new
721		multiplex PCR. J Med Microbiol 63:824-830.
722	14.	Fittipaldi N, Fuller TE, Teel JF, Wilson TL, Wolfram TJ, Lowery DE,
723		Gottschalk M. 2009. Serotype distribution and production of
724		muramidase-released protein, extracellular factor and suilysin by field

725		strains of Streptococcus suis isolated in the United States. Vet Microbiol
726		139: 310-317.
727	15.	Messier S, Lacouture S, Gottschalk M, Groupe de Recherche sur les
728		Maladies Infectieuses d, Porc, Centre de Recherche en Infectiologie
729		P. 2008. Distribution of Streptococcus suis capsular types from 2001 to
730		2007. Can Vet J 49: 461-462.
731	16.	Heath PJ, Hunt BW. 2001. Streptococcus suis serotypes 3 to 28
732		associated with disease in pigs. Veterinary Record 148: 207-208.
733	17.	Wisselink HJ, Smith HE, Stockhofe-Zurwieden N, Peperkamp K, Vecht
734		U. 2000. Distribution of capsular types and production of muramidase-
735		released protein (MRP) and extracellular factor (EF) of Streptococcus suis
736		strains isolated from diseased pigs in seven European countries. Vet
737		Microbiol 74: 237-248.
738	18.	Perch B, Pedersen KB, Henrichsen J. 1983. Serology of capsulated
739		streptococci pathogenic for pigs: six new serotypes of Streptococcus suis.
740		J Clin Microbiol 17: 993-996.
741	19.	Vecht U, Arends JP, Vandermolen EJ, Vanleengoed LAMG. 1989.
742		Differences in Virulence between 2 Strains of Streptococcus-Suis Type-II
743		after Experimentally Induced Infection of Newborn Germ-Free Pigs.
744		American Journal of Veterinary Research 50: 1037-1043.
745	20.	Vecht U, Wisselink HJ, van Dijk JE, Smith HE. 1992. Virulence of
746		Streptococcus suis type 2 strains in newborn germfree pigs depends on
747		phenotype. Infect Immun 60: 550-556.

748	21.	Si Y, Yuan F, Chang H, Liu X, Li H, Cai K, Xu Z, Huang Q, Bei W, Chen H.
749		2009. Contribution of glutamine synthetase to the virulence of
750		Streptococcus suis serotype 2. Vet Microbiol 139: 80-88.
751	22.	Baums CG, Kaim U, Fulde M, Ramachandran G, Goethe R, Valentin-
752		Weigand P. 2006. Identification of a novel virulence determinant with
753		serum opacification activity in Streptococcus suis. Infect Immun 74:6154-
754		6162.
755	23.	Zhang H, Fan H, Lu C. 2010. Identification of a novel virulence-related
756		gene in Streptococcus suis type 2 strains. Curr Microbiol 61: 494-499.
757	24.	Fittipaldi N, Segura M, Grenier D, Gottschalk M. 2012. Virulence factors
758		involved in the pathogenesis of the infection caused by the swine
759		pathogen and zoonotic agent Streptococcus suis. Future Microbiol 7:259-
760		279.
761	25.	Segura M, Fittipaldi N, Calzas C, Gottschalk M. 2017. Critical
762		Streptococcus suis Virulence Factors: Are They All Really Critical? Trends
763		Microbiol 25: 585-599.
764	26.	Smith HE, Reek FH, Vecht U, Gielkens AL, Smits MA. 1993. Repeats in
765		an extracellular protein of weakly pathogenic strains of Streptococcus
766		suis type 2 are absent in pathogenic strains. Infect Immun 61: 3318-3326.
767	27.	Vecht U, Wisselink HJ, Jellema ML, Smith HE. 1991. Identification of
768		Two Proteins Associated with Virulence of Streptococcus suis Type 2.
769		Infection and Immunity 59: 3156-3162.
770	28.	Jacobs AA, Loeffen PL, van den Berg AJ, Storm PK. 1994. Identification,
771		purification, and characterization of a thiol-activated hemolysin (suilysin)
772		of Streptococcus suis. Infect Immun 62: 1742-1748.

773	29.	Jacobs AAC, Vandenberg AJG, Baars JC, Nielsen B, Johannsen LW.
774		1995. Production of Suilysin, the Thiol-Activated Hemolysin of
775		Streptococcus-Suis, by Field Isolates from Diseased Pigs. Veterinary
776		Record 137: 295-296.
777	30.	Gottschalk M, Lebrun A, Wisselink H, Dubreuil JD, Smith H, Vecht U.
778		1998. Production of virulence-related proteins by Canadian strains of
779		Streptococcus suis capsular type 2. Can J Vet Res 62: 75-79.
780	31.	Smith HE, Vecht U, Wisselink HJ, Stockhofe-Zurwieden N, Biermann
781		Y, Smits MA. 1996. Mutants of Streptococcus suis types 1 and 2 impaired
782		in expression of muramidase-released protein and extracellular protein
783		induce disease in newborn germfree pigs. Infect Immun 64: 4409-4412.
784	32.	Holden MT, Hauser H, Sanders M, Ngo TH, Cherevach I, Cronin A,
785		Goodhead I, Mungall K, Quail MA, Price C, Rabbinowitsch E, Sharp S,
786		Croucher NJ, Chieu TB, Mai NT, Diep TS, Chinh NT, Kehoe M, Leigh JA,
787		Ward PN, Dowson CG, Whatmore AM, Chanter N, Iversen P,
788		Gottschalk M, Slater JD, Smith HE, Spratt BG, Xu J, Ye C, Bentley S,
789		Barrell BG, Schultsz C, Maskell DJ, Parkhill J. 2009. Rapid evolution of
790		virulence and drug resistance in the emerging zoonotic pathogen
791		Streptococcus suis. PLoS One 4: e6072.
792	33.	Chen C, Zhang W, Zheng H, Lan R, Wang H, Du P, Bai X, Ji S, Meng Q,
793		Jin D, Liu K, Jing H, Ye C, Gao GF, Wang L, Gottschalk M, Xu J. 2013.
794		Minimum core genome sequence typing of bacterial pathogens: a unified
795		approach for clinical and public health microbiology. J Clin Microbiol

797	34.	Athey TB, Auger JP, Teatero S, Dumesnil A, Takamatsu D,
798		Wasserscheid J, Dewar K, Gottschalk M, Fittipaldi N. 2015. Complex
799		Population Structure and Virulence Differences among Serotype 2
800		Streptococcus suis Strains Belonging to Sequence Type 28. PLoS One
801		10: e0137760.
802	35.	Weinert LA, Chaudhuri RR, Wang J, Peters SE, Corander J, Jombart T,
803		Baig A, Howell KJ, Vehkala M, Valimaki N, Harris D, Chieu TT, Van
804		Vinh Chau N, Campbell J, Schultsz C, Parkhill J, Bentley SD, Langford
805		PR, Rycroft AN, Wren BW, Farrar J, Baker S, Hoa NT, Holden MT,
806		Tucker AW, Maskell DJ, Consortium BRT. 2015. Genomic signatures of
807		human and animal disease in the zoonotic pathogen Streptococcus suis.
808		Nat Commun 6: 6740.
809	36.	Athey TB, Teatero S, Takamatsu D, Wasserscheid J, Dewar K,
810		Gottschalk M, Fittipaldi N. 2016. Population Structure and Antimicrobial
811		Resistance Profiles of Streptococcus suis Serotype 2 Sequence Type 25
812		Strains. PLoS One 11: e0150908.
813	37.	Zheng H, Ji S, Lan R, Liu Z, Bai X, Zhang W, Gottschalk M, Xu J. 2014.
814		Population analysis of Streptococcus suis isolates from slaughtered swine
815		by use of minimum core genome sequence typing. J Clin Microbiol
816		52: 3568-3572.
817	38.	King SJ, Leigh JA, Heath PJ, Luque I, Tarradas C, Dowson CG,
818		Whatmore AM. 2002. Development of a Multilocus Sequence Typing
819		Scheme for the Pig Pathogen Streptococcus suis: Identification of Virulent
820		Clones and Potential Capsular Serotype Exchange. Journal of Clinical
821		Microbiology 40: 3671-3680.

822	39.	Falush D, Bowden R. 2006. Genome-wide association mapping in
823		bacteria? Trends Microbiol 14: 353-355.
824	40.	Read TD, Massey RC. 2014. Characterizing the genetic basis of bacterial
825		phenotypes using genome-wide association studies: a new direction for
826		bacteriology. Genome Med 6: 109.
827	41.	Clifton-Hadley FA. 1981. Studies of Streptococcus suis type 2 infection in
828		pigs: University of Cambridge.
829	42.	Team RDC. 2008. R: A language and environment for statistical
830		computing. R Foundation for Statistical Computing.
831	43.	Jombart T, Pontier D, Dufour AB. 2009. Genetic markers in the
832		playground of multivariate analysis. Heredity (Edinb) 102: 330-341.
833	44.	Jombart T, Devillard S, Balloux F. 2010. Discriminant analysis of
834		principal components: a new method for the analysis of genetically
835		structured populations. Bmc Genetics 11 .
836	45.	Jombart T. 2008. adegenet: a R package for the multivariate analysis of
837		genetic markers. Bioinformatics 24: 1403-1405.
838	46.	Jombart T, Ahmed I. 2011. adegenet 1.3-1: new tools for the analysis of
839		genome-wide SNP data. Bioinformatics 27: 3070-3071.
840	47.	Heinze G, Ploner M, Dunkler D, Southworth H. 2013. logistf: Firth's
841		bias reduced logistic regression.
842	48.	Sing T, Sander O, Beerenwinkel N, Lengauer T. 2005. ROCR: visualizing
843		classifier performance in R. Bioinformatics 21: 3940-3941.
844	49.	R Core Team. 2013. R: A language and environment for statistical
845		computing.

846	50.	Parkhill J, Sebaihia M, Preston A, Murphy LD, Thomson N, Harris DE,
847		Holden MT, Churcher CM, Bentley SD, Mungall KL, Cerdeno-Tarraga
848		AM, Temple L, James K, Harris B, Quail MA, Achtman M, Atkin R,
849		Baker S, Basham D, Bason N, Cherevach I, Chillingworth T, Collins M,
850		Cronin A, Davis P, Doggett J, Feltwell T, Goble A, Hamlin N, Hauser H,
851		Holroyd S, Jagels K, Leather S, Moule S, Norberczak H, O'Neil S,
852		Ormond D, Price C, Rabbinowitsch E, Rutter S, Sanders M, Saunders
853		D, Seeger K, Sharp S, Simmonds M, Skelton J, Squares R, Squares S,
854		Stevens K, Unwin L, et al. 2003. Comparative analysis of the genome
855		sequences of Bordetella pertussis, Bordetella parapertussis and
856		Bordetella bronchiseptica. Nat Genet 35: 32-40.
857	51.	Liu Z, Zheng H, Gottschalk M, Bai X, Lan R, Ji S, Liu H, Xu J. 2013.
858		Development of multiplex PCR assays for the identification of the 33
859		serotypes of Streptococcus suis. PLoS One 8: e72070.
860	52.	Athey TB, Teatero S, Lacouture S, Takamatsu D, Gottschalk M,
861		Fittipaldi N. 2016. Determining Streptococcus suis serotype from short-
862		read whole-genome sequencing data. BMC Microbiol 16: 162.
863	53.	Ishida S, Tien le HT, Osawa R, Tohya M, Nomoto R, Kawamura Y,
864		Takahashi T, Kikuchi N, Kikuchi K, Sekizaki T. 2014. Development of
865		an appropriate PCR system for the reclassification of Streptococcus suis. J
866		Microbiol Methods 107: 66-70.
867	54.	Silva LM, Baums CG, Rehm T, Wisselink HJ, Goethe R, Valentin-
868		Weigand P. 2006. Virulence-associated gene profiling of Streptococcus
869		suis isolates by PCR. Vet Microbiol 115: 117-127.

870	55.	Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL,
871		Jelsbak L, Sicheritz-Ponten T, Ussery DW, Aarestrup FM, Lund O.
872		2012. Multilocus sequence typing of total-genome-sequenced bacteria. J
873		Clin Microbiol 50: 1355-1361.
874	56.	Kosinski AS. 2013. A weighted generalized score statistic for comparison
875		of predictive values of diagnostic tests. Stat Med 32: 964-977.
876	57.	Stock C, Hielscher T. 2014. DTComPair: comparison of binary diagnostic
877		tests in a paired study design. http://CRAN.R-
878		project.org/package=DTComPair. Accessed
879	58.	Gottschalk M, Segura M. 2000. The pathogenesis of the meningitis
880		caused by Streptococcus suis: the unresolved questions. Vet Microbiol
881		76: 259-272.
882	59.	Segura M, Zheng H, de Greeff A, Gao GF, Grenier D, Jiang Y, Lu C,
883		Maskell D, Oishi K, Okura M, Osawa R, Schultsz C, Schwerk C, Sekizaki
884		T, Smith H, Srimanote P, Takamatsu D, Tang J, Tenenbaum T,
885		Tharavichitkul P, Hoa NT, Valentin-Weigand P, Wells JM, Wertheim
886		H, Zhu B, Gottschalk M, Xu J. 2014. Latest developments on
887		Streptococcus suis: an emerging zoonotic pathogen: part 1. Future
888		Microbiol 9: 441-444.
889	60.	Segura M, Zheng H, Greeff A, Gao GF, Grenier D, Jiang Y, Lu C, Maskell
890		D, Oishi K, Okura M, Osawa R, Schultsz C, Schwerk C, Sekizaki T,
891		Smith H, Srimanote P, Takamatsu D, Tang J, Tenenbaum T,
892		Tharavichitkul P, Hoa NT, Valentin-Weigand P, Wells JM, Wertheim
893		H, Zhu B, Xu J, Gottschalk M. 2014. Latest developments on

894		Streptococcus suis: an emerging zoonotic pathogen: part 2. Future
895		Microbiol 9: 587-591.
896	61.	Marois C, Bougeard S, Gottschalk M, Kobisch M. 2004. Multiplex PCR
897		assay for detection of Streptococcus suis species and serotypes 2 and $1/2$
898		in tonsils of live and dead pigs. J Clin Microbiol 42: 3169-3175.
899	62.	Marois C, Le Devendec L, Gottschalk M, Kobisch M. 2007. Detection
900		and molecular typing of Streptococcus suis in tonsils from live pigs in
901		France. Can J Vet Res 71: 14-22.
902	63.	Samanovic MI, Ding C, Thiele DJ, Darwin KH. 2012. Copper in microbial
903		pathogenesis: meddling with the metal. Cell Host Microbe 11: 106-115.
904	64.	Fu Y, Tsui HC, Bruce KE, Sham LT, Higgins KA, Lisher JP, Kazmierczak
905		KM, Maroney MJ, Dann CE, 3rd, Winkler ME, Giedroc DP. 2013. A new
906		structural paradigm in copper resistance in Streptococcus pneumoniae.
907		Nat Chem Biol 9: 177-183.
908	65.	Ladomersky E, Petris MJ. 2015. Copper tolerance and virulence in
909		bacteria. Metallomics 7: 957-964.
910	66.	Willemse N, Schultsz C. 2016. Distribution of Type I Restriction-
911		Modification Systems in Streptococcus suis: An Outlook. Pathogens 5.
912	67.	Willemse N, Howell KJ, Weinert LA, Heuvelink A, Pannekoek Y,
913		Wagenaar JA, Smith HE, van der Ende A, Schultsz C. 2016. An emerging
914		zoonotic clone in the Netherlands provides clues to virulence and
915		zoonotic potential of Streptococcus suis. Sci Rep 6: 28984.
916	68.	Vasu K, Nagaraja V. 2013. Diverse functions of restriction-modification
917		systems in addition to cellular defense. Microbiol Mol Biol Rev 77: 53-72.

91	8 69	Blow MJ, Clark TA, Daum CG, Deutschbauer AM, Fomenkov A, Fries R,
91	.9	Froula J, Kang DD, Malmstrom RR, Morgan RD, Posfai J, Singh K, Visel
92	20	A, Wetmore K, Zhao Z, Rubin EM, Korlach J, Pennacchio LA, Roberts
92	21	RJ. 2016. The Epigenomic Landscape of Prokaryotes. PLoS Genet
92	22	12: e1005854.
92	23 70	Manso AS, Chai MH, Atack JM, Furi L, De Ste Croix M, Haigh R,
92	24	Trappetti C, Ogunniyi AD, Shewell LK, Boitano M, Clark TA, Korlach J,
92	25	Blades M, Mirkes E, Gorban AN, Paton JC, Jennings MP, Oggioni MR.
92	26	2014. A random six-phase switch regulates pneumococcal virulence via
92	27	global epigenetic changes. Nat Commun 5: 5055.
92	28 71	Merhej V, Georgiades K, Raoult D. 2013. Postgenomic analysis of
92	29	bacterial pathogens repertoire reveals genome reduction rather than
93	0	virulence factors. Brief Funct Genomics 12: 291-304.
93	1	

932	Figure 1. Agarose gel showing the expected amplicon sizes of our
933	three genetic markers with the <i>Streptococcus suis</i> -specific marker from 14
934	isolates of the training collection. Agarose gel containing multiplex-PCR
935	amplicons produced from genomic DNA of eight invasive disease-associated, and
936	six non-disease associated isolates of <i>S. suis</i> recovered from pigs on farms in
937	England and Wales. PCR amplicons were electrophoresed on a 2% (wt/vol)
938	agarose gel containing 1x SYBR Safe DNA gel stain for 60 minutes at a constant
939	100 V and photographed under UV transillumination. Multiplex-PCR amplicon
940	patterns matched anticipated amplicon patterns based on <i>in silico</i> analyses for all
941	isolates described in this study. Isolate names are indicated above lanes. Lane M
942	contains 1x Bioline HyperLadder 100 bp Plus DNA ladder with sizes indicated on
943	the left (bp). Multiplex-PCR amplicon sizes are indicated on the right (bp).
944	

945	Table 1. Multiplex-PCR primer details. Multiplex-PCR primers were
946	designed using the online software primer3 (version 4.0.0, http://primer3.ut.ee)
947	and designed to target conserved regions within the protein-encoding sequence
948	of genetic markers (as opposed to flanking regions). Primers were designed to
949	have similar physical characteristics, enabling simultaneous amplification under
950	the same thermal cycling conditions and in multiplex reactions. GenBank
951	identifier prefixes "SSU" and "SSUST3" correspond to <i>Streptococcus suis</i> P1/7
952	(NC_012925) (32) and Streptococcus suis ST3 (NC_015433) (71) respectively.
953	

Primer name	Primer sequence (5' - 3')	Marker of	Multiplex-PCR	Predicted biological function
			amplicon size (bp)	(Interpro)
SSU0207_0735F	TTACAAGAACAGGGCAAGACAGTCGCC	Disease-association	211	Copper exporting ATPase 1
SSU0207_0945R	GCTGCTTTATATCTGGGTGTTCGTTG			
SSU1589_0460F	CCTTTAATGCAGGGGACAAAAGTGAGCTC	Disease-association	347	Type I restriction-modification (RM)
SSU1589_0806R	CCCATAATCTTACAGTTAACTTCCTTGC			system S protein
SSUST30534_0368F	ATCCCCTCCCAATAAAAGATTTTGGATGC	Non-disease association	892	Putative sugar ABC transporter
SSUST30534_1259R	TTTTCGAGCTCTCCATACACTGCTTCTG			-
SSU0577_0086F	CAGGTAGTTTGGGCTTAGCTTCATCAGG	Streptococcus suis sp.	722	Sporulation regulator (WhiA)
SSU0577_0807R	TGGATGCTGAATTCGCAACTGGGCAATC			

954

955	Table 2. Contingency tables used to calculate the performance
956	metrics summarising the classification of <i>Streptococcus suis</i> isolates in the
957	out-of-sample test collection (n=50). Contingency tables used to calculate and
958	summarise the performance metrics of two binary diagnostic tests. Each table
959	compares the observed clinical phenotype (considered the 'gold-standard' in this
960	study) to the use of the a) newly described pathotyping markers, b) serotypes: 1-
961	9 and 1/2, c) Virulence-associated markers: <i>epf, mrp,</i> and/or <i>sly,</i> d) Multilocus
962	sequence type (MLST): 1, and e) assignment to Minimum Core Genome (MCG)
963	sequence type: 1 as markers of invasive disease.

964 a)

		Phen	Phenotype		
	50	23	27		
	Total population	Phenotype positive	Phenotype negative		
	19	19	0	1.00	0.00
CR	mPCR positive	True positive	False positive	Positive predictive rate	False discovery rate
mP(31	4	27	0.13	0.87
	mPCR negative	False negative	True negative	False omission rate	Negative predictive rate
		0.83	0.00	0.90	
		True positive rate	False positive rate	F_1 score	
		0.17	1.00		
		False negative rate	True negative rate		

Downloaded from http://jcm.asm.org/ on June 11, 2019 by guest

965

966

b)

		Phen	otype		
	50	23	27		
	Total population	Phenotype positive	Phenotype negative		
/2	26	20	6	0.77	0.23
9, 14 & 1/	Positive	True positive	False positive	Positive predictive rate	False discovery rate
pe: 1-	24	3	21	0.13	0.88
Seroty	Negative	False negative	True negative	False omission rate	Negative predictive rate
		0.87	0.22	0.82	
		True positive rate	False positive rate	F_1 score	
		0.13	0.78		
		False negative rate	True negative rate		

967

968

c)

		Phen	otype		
	50	23	27		
	Total population	Phenotype positive	Phenotype negative		
V	48	22	26	0.46	0.54
associated f, mrp & s <u>l</u>	Positive	True positive	False positive	Positive predictive rate	False discovery rate
nce-a	2	1	1	0.50	0.50
Virulen markers	Negative	False negative	True negative	False omission rate	Negative predictive rate
		0.96	0.96	0.62	
		True positive rate	False positive rate	F_1 score	
		0.04	0.04		
		False negative rate	True negative rate		

969

970

d)

			Phen	otype		
		50	23	27		
		Total population	Phenotype positive	Phenotype negative		
		16	16	0	1.00	0.00
Sequence	e: 1	Positive	True positive	False positive	Positive predictive rate	False discovery rate
SILUO	Typ	34	7	27	0.21	0.79
Multi		Negative	False negative	True negative	False omission rate	Negative predictive rate
			0.70	0.00	0.82	
			True positive rate	False positive rate	F1 score	
			0.30	1.00		
			False negative rate	True negative rate		

971

972

e)

		Phen	otype		
	50	23	27		
	Total population	Phenotype positive	Phenotype negative		
e	18	18	0	1.00	0.00
ore Genom p: 1	Positive	True positive	False positive	Positive predictive rate	False discovery rate
m Cc grou	32	5	27	0.16	0.84
Minimu	Negative	False negative	True negative	False omission rate	Negative predictive rate
		0.78	0.00	0.	
		True positive rate	False positive rate	F_1 score	
		0.22	1.00		
		False negative rate	True negative rate		

973

Primer name	Primer sequence (5' - 3')	Marker of	Multiplex-PCR	Predicted biological function
			amplicon size (bp)	(Interpro)
SSU0207_0735F	TTACAAGAACAGGGCAAGACAGTCGCC	Disease-association	211	Copper exporting ATPase 1
SSU0207_0945R	GCTGCTTTATAATCTGGGTGTTTCGTTG			
SSU1589_0460F	CCTTTAATGCAGGGGACAAAAGTGAGCTC	Disease-association	347	Type I restriction-modification (RM)
SSU1589_0806R	CCCATAATCTTACAGTTAACTTCCTTGC			system S protein
SSUST30534_0368F	ATCCCCTCCCAATAAAAGATTTFGGATGC	Non-disease association	892	Putative sugar ABC transporter
SSUST30534_1259R	TTTTCGAGCTCTCCATACACTGCTTCTG			
SSU0577_0086F	CAGGTAGTTTGGGCTTAGCTTCATCAGG	Streptococcus suis sp.	722	Sporulation regulator (WhiA)
SSU0577_0807R	TGGATGCTGAATTCGCAACTGGGCAATC			

JCM

Table 2. Contingency tables used to calculate the performance metrics summarising the classification of *Streptococcus suis* isolates in the out-of-sample test collection (n=50). Contingency tables used to calculate and summarise the performance metrics of two binary diagnostic tests. Each table compares the observed clinical phenotype (considered the 'gold-standard' in this study) to the use of the **a**) newly described pathotyping markers, **b**) serotypes: 1-9 and 1/2, **c**) Virulence-associated markers: *epf, mrp*, and/or *sly*, **d**) Multilocus sequence type (MLST): 1, and **e**) assignment to Minimum Core Genome (MCG) sequence type: 1 as markers of invasive disease.

a)

		Phen	otype		
	50	23	27		
	Total population	Phenotype positive	Phenotype negative		
	19	19	0	1.00	0.00
К	mPCR positive	True positive	False positive	Positive predictive rate	False discovery rate
mP	31	4	27	0.13	0.87
	mPCR negative	False negative	True negative	False omission rate	Negative predictive rate
		0.83	0.00	0.90	
		True positive rate	False positive rate	F_1 score	
		0.17	1.00		
		False negative rate	True negative rate		

Downloaded from http://jcm.asm.org/ on June 11, 2019 by guest

		Phen	otype		
	50	23	27		
	Total population	Phenotype positive	Phenotype negative		
5	26	20	6	0.77	0.23
9, 14 & 1/	Positive	True positive	False positive	Positive predictive rate	False discovery rate
e: 1.	24	3	21	0.13	0.88
Serotyp	Negative	False negative	True negative	False omission rate	Negative predictive rate
		0.87	0.22	0.82	
		True positive rate	False positive rate	F_1 score	
		0.13	0.78		
		False negative rate	True negative rate		

c)

b)

			Phen	otype		
		50	23	27		
		Total population	Phenotype positive	Phenotype negative		
	~ ~	48	22	26	0.46	0.54
associated	f, mrp & sl	Positive	True positive	False positive	Positive predictive rate	False discovery rate
nce-:	s: ep	2	1	1	0.50	0.50
Virule	markeı	Negative	False negative	True negative	False omission rate	Negative predictive rate
-		•	0.96	0.96	0.62	
			True positive rate	False positive rate	F_1 score	
			0.04	0.04		
			False negative rate	True negative rate		

Downloaded from http://jcm.asm.org/ on June 11, 2019 by guest

			Phen	otype		
		50	23	27		
		Total population	Phenotype positive	Phenotype negative		
Γ		16	16	0	1.00	0.00
	Sequence e: 1	Positive	True positive	False positive	Positive predictive rate	False discovery rate
	ocus Typ	34	7	27	0.21	0.79
	Multil	Negative	False negative	True negative	False omission rate	Negative predictive rate
		•	0.70	0.00	0.82	
			True positive rate	False positive rate	F_1 score	
			0.30	1.00		
			False negative rate	True negative rate		

e)

d)

			Phen	otype		
		50	23	27		
		Total population	Phenotype positive	Phenotype negative		
в		18	18	0	1.00	0.00
ore Genom	р: 1	Positive	True positive	False positive	Positive predictive rate	False discovery rate
im Co	grou	32	5	27	0.16	0.84
Minimu		Negative	False negative	True negative	False omission rate	Negative predictive rate
			0.78	0.00	0.	
			True positive rate	False positive rate	F_1 score	
			0.22	1.00		
			False negative rate	True negative rate		