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Brief Summary: We describe the isolation of vaccine-like poliovirus in sewage samples using 20 

concentration methods followed by cell culture infection and next generation sequencing. 21 

Using this approach, we rapidly obtained whole-genome sequences of polio and non-polio 22 

enterovirus strains present in mixtures. 23 
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ABSTRACT 26 

Background: 27 

Environmental surveillance (ES) is a sensitive method for detecting human enterovirus 28 

(HEV) circulation and it is used worldwide to support global polio eradication. We describe a 29 

novel ES approach using next generation sequencing (NGS) to identify HEVs in sewage 30 

samples taken in London, UK, from June-2016 to May-2017.    31 

Methods and Results: 32 

Two different sewage concentration methods were used: a two-phase aqueous separation 33 

system and size-exclusion by filtration and centrifugation, in combination with virus isolation 34 

in cell cultures and NGS. Type 1 and 3 vaccine-like poliovirus (PV) strains were detected in 35 

samples from September 2016 and January 2017. NGS analysis allowed us to rapidly obtain 36 

whole-genome sequences of polio and non-polio HEV strains. As many as six virus strains 37 

from different HEV serotypes were identified in a single cell culture flask. PV isolates 38 

contained only a small number of mutations from vaccine strains commonly seen in early 39 

isolates from vaccinees.  40 

Conclusions: 41 

Our ES setup has high sensitivity for polio and non-polio HEV detection generating nearly 42 

whole-genome sequence information. Such ES systems provide critical information to assist 43 

the polio eradication endgame and contribute to improve our understanding of HEV 44 

circulation patterns in humans.  45 

 46 

 47 

 48 

 49 
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INTRODUCTION 51 

The Global Polio Eradication Initiative (GPEI) has been very successful in reducing PV 52 

circulation in humans to the brink of global extinction [1]. However, some areas in 53 

Afghanistan and Pakistan remain where PV transmission has never been eliminated and type 54 

1 wild PV (WPV1) and type 2 circulating vaccine-derived PV (cVDPV2) are still being 55 

transmitted from person to person. In addition, as of July 2017, PV transmission still occurs 56 

in some areas of the Middle East and Africa where there are severe difficulties in accessing 57 

children for vaccination.  WPV1 was last detected in Nigeria in September 2016 and recent 58 

cVDPV2 outbreaks have been reported in Syria and DR Congo [2, 3].  59 

As only a small proportion of infections by PV cause paralytic disease, the 60 

establishment of efficient and sensitive surveillance systems to guide public health 61 

interventions has been essential in ensuring the GPEI success. The GPEI mostly relies on 62 

acute flaccid paralysis (AFP) surveillance which is monitored by strict quality performance 63 

indicators [4, 5]. A WHO global polio laboratory network of more than 140 laboratories 64 

exists where stool samples from AFP cases are processed and analysed for the presence of 65 

PV.  In addition, several countries have successfully conducted ES for PV for many years. 66 

Virus genotypes of isolates found in sewage samples from Egypt, Nigeria, India, Afghanistan 67 

and Pakistan closely matched those found in stool samples from AFP cases which has helped 68 

tracing the elimination of wild PV in some areas [6-9]. This approach has also been used to 69 

monitor the disappearance of vaccine virus after vaccination campaigns in countries such as 70 

Cuba, New Zealand and Japan [10-12]. Furthermore, widespread circulation of WPV1 71 

imported from Pakistan, in the absence of reported paralytic cases, was identified in Israel in 72 

2013 as the virus was found in sewage samples across the country clearly suggesting that PV 73 

can circulate for long periods of time undetected in countries using IPV, even in those with 74 

high vaccination coverage such as Israel [13, 14]. Thus, ES is seen as a powerful tool to 75 
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support the GPEI endgame helping to identify any remaining PV transmission. With this in 76 

mind, a pilot study was set up to analyse sewage samples from London for the presence of 77 

PV. The last polio case due to wild PV in the UK was reported in 1982, but the country 78 

switched to the exclusive use of IPV in 2004 and has frequent population exchanges with 79 

areas where PV is still circulating and/or OPV is being used routinely. We concentrated 80 

sewage samples using two different methods and added them to cell cultures susceptible for 81 

HEV infection. HEV isolates were then characterised by nucleotide sequencing. Nucleotide 82 

sequence information of HEV clinical and environmental isolates is limited, often restricted 83 

to HEV species-specific real-time PCR positive/negative results and/or short genomic 84 

sequences that can help identifying the HEV serotype but have limited use for detailed 85 

phylogenetic analysis. NGS metagenomics and target-specific techniques have recently been 86 

described by us and others to obtain nucleotide sequences of HEV strains present in stool, 87 

sewage and cell culture samples [15-21]. A novel approach using NGS analysis is described 88 

here to quickly obtain nearly whole-genome sequences of polio and non-polio HEVs present 89 

in cell cultures infected with sewage concentrates. This approach has the power to detect 90 

known HEVs as well as divergent strains and novel serotypes providing information that 91 

should assist with tracing the source and transmission of HEVs, including PV, in human 92 

populations. 93 

 94 

MATERIALS AND METHODS 95 

Sample collection 96 

One litre composite sewage samples were collected during a 24-hour period once monthly at 97 

Beckton Sewage Treatment Works in London (UK), currently treating the waste of 3.5 98 

million people. Samples were transported to the laboratory on the same day and processed 99 
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within one day of arrival. A total of twelve samples were collected from June 2016 to May 100 

2017.  101 

 102 

Sample processing 103 

Raw sewage samples were processed by two different methods previously described: two-104 

phase (TP) aqueous separation system  [22] and concentration by filtration and centrifugation 105 

(FC) using Centriprep® YM-50 centrifugal concentration devices (Merck) [23].  106 

 107 

Cell lines and Virus Isolation 108 

Virus isolation in cell cultures was performed according to WHO recommendations [24]. 109 

Rhabdomyosarcoma (RD) and mouse L20B cells expressing the human PV receptor were 110 

used as detailed in the Supplementary Data section 111 

 112 

Intratypic differentiation (ITD) of PV isolates by real-time RT-PCR (rRT-PCR) assays. 113 

Conventional PV ITD rRT-PCR was performed using a PV diagnostic rRT-PCR kit provided 114 

by the US CDC using a Rotorgene Q (Qiagen) platform and following kit instructions [25].  115 

 116 

Nucleotide sequence analysis of the VP1 coding region of PV isolates. 117 

RT-PCR fragments containing the VP1 coding region were generated from purified viral 118 

RNAs by one-step RT-PCR using a SuperScript III (Invitrogen) system and primers Y7 (5′-119 

GGGTTTGTGTCAGCCTGTAATGA-3′) and Q8 (5′-AAGAGGTCTCTRTTCCACAT-3′) 120 

[25]. Amplified products were purified using QIAquick Gel Extraction Kit (Qiagen,) and 121 

sequenced by Sanger using an ABI Prism 3130 genetic analyser (Applied Biosystems).  122 

 123 

Preparation of RT-PCR templates for NGS analysis 124 
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Whole-genome PV RT-PCR fragments were amplified from purified RNAs from infected 125 

cells by one-step RT-PCR as described [20]. In addition, RT-PCR products were also 126 

generated by Sequence-Independent Single-Primer amplification (SISPA) of purified RNAs 127 

as described elsewhere [18, 19, 26]. Two primer sets were used to generate two different 128 

dsDNA templates from each sample. Details of primers used and amplification conditions are 129 

provided in the Supplementary Data section. 130 

 131 

Generation of sequencing libraries and quality trimming of NGS reads  132 

Sequencing libraries were prepared using Nextera XT reagents and sequenced on a MiSeq 133 

using a 2 x 301 paired-end v3 Flow Cell and manufacturer’s protocols (Illumina). Raw 134 

sequence data were imported into Geneious R10 software (Biomatters) and sequence files 135 

processed using a custom workflow. Parameters used for quality trimming of NGS reads are 136 

available in the Supplementary Data section. Raw fastq files are available from NCBI’s 137 

Sequence Read Archive (SRA) under project code PRJNA417977. 138 

 139 

Generation of polio and non-polio HEV sequence contigs from NGS data by reference-140 

guided or de novo assembly of filtered NGS reads 141 

The filtered reads were mapped to a set of HEV sequences using a curated HEV sequence 142 

database and contig sequences were generated.  Filtered reads were then iteratively 143 

reassembled to consensus sequences from the longest contigs with an aim to build whole-144 

genome contig sequences. Final consensus sequences were obtained by assigning the most 145 

common nucleotide sequence at each nucleotide position. The filtered reads were also 146 

independently assembled de novo using similar assembly conditions. Whole-genome contig 147 

sequences were generated following the same analysis workflow as above. As a result, we 148 

obtained nearly whole-genome nucleotide sequences for various HEV strains in each sample, 149 
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including various PV strains. Results using the two different assembly approaches were 150 

almost identical. Manual analyses for visualizing and quantifying assembly results were 151 

performed throughout the process. Full details regarding settings used for genome assembly 152 

are provided in the Supplementary Data section. Consensus nucleotide sequences are 153 

available from DDBJ/EMBL/GenBank with accession numbers MG451802 to MG451811 154 

 155 

Phylogenetic analysis of polio and non-polio HEV isolates  156 

The closest virus relatives to the London sewage HEV isolates were identified using the 157 

RIVM and BLAST online sequence analysis tools [27, 28] and HEV serotypes were assigned 158 

on the basis of their VP1 sequence. Whole genome PV sequences were aligned to type 1 159 

Sabin PV AY184219 or type 3 Sabin PV AY184221 reference genome sequences using the 160 

program ClustalW (within Geneious) to identify mutations and/or recombination events. Any 161 

PV3/PV1 recombinant genomic structure was confirmed by  independently mapping filtered 162 

reads to the PV1 and PV3 Sabin reference sequences mentioned above, with a minimum 50 163 

base overlap, minimum overlap identity of 95%, maximum 5% mismatches per read and both 164 

end pair reads mapping. Percentages of maximum coverage were calculated. Mapped reads 165 

against each reference were combined in a graph for each NGS product.  166 

 167 

RESULTS 168 

Concentration of sewage samples and virus isolation in cell cultures 169 

Twelve samples from London sewage were analysed. 500 ml and 120 ml of raw sewage from 170 

each sample were used for the TP and FC methods, respectively. Typically, 10 ml and 4 ml 171 

were obtained using each of the concentration procedures, which means approximate 172 

concentration factors of 50 and 30 times, respectively. Aliquot samples of sewage 173 

concentrates were used to infect RD and L20B cells. Sewage concentrates from all 12 174 
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samples produced cytopathic effect (CPE) in RD cells after 3-4 days. Only two samples, from 175 

September 2016 and January 2017, produced CPE in L20B cells. As shown in Table 1, 176 

concentrates from both sewage samples, obtained with both concentration methods produced 177 

CPE in L20B cells but only in a proportion of flasks, 5 out of 10 flasks with concentrates 178 

from September 2016 and 2 out of 12 flasks with concentrates from January 2017.  179 

 180 

Typing of PV isolates by ITD rRT-PCR and VP1 sequencing 181 

PV strains present in L20B cell cultures showing CPE were initially characterized by ITD 182 

rRT-PCR. As shown in Table 1, all PV isolates from September 2016 were identified as PV3 183 

and Sabin (vaccine)-Like (SL). The sewage sample from January 2017 produced both PV1 184 

and PV3 isolates. The TP-RD isolate from January 2017 was characterised as a PV3-SL 185 

strain while the FC-L20B1 isolate was found to be a PV1-SL strain. The PV serotype and SL 186 

classification were confirmed by nucleotide sequencing of the VP1 coding region. PV 187 

isolates showed very few VP1 mutations from Sabin references (Table 1). 188 

 189 

Genetic characterization of PV isolates by NGS 190 

The genomes of the seven selected PV isolates were further characterized by high resolution 191 

sequencing. Whole-genome PV RT-PCR products were obtained and analysed by NGS. 192 

Consensus sequences for each of the PV isolates were generated by de novo assembly. As 193 

shown in Table 2, all five isolates from September 2016 were confirmed as PV3-SL by NGS 194 

analysis, very closely related to the Sabin 3 vaccine strain and containing reversions at known 195 

Sabin 3 attenuation sites, nucleotide 472 in the 5’NCR and nucleotide 2493 coding for capsid 196 

amino acid VP1-6. Few additional nucleotide differences from Sabin 3 were found in the PV 197 

isolates, all showing unique sequences. The TP-RD PV isolate from the 2017 sample was 198 

also a PV3-SL strain and also contained reversions at nucleotides 472 and 2493. However, 199 
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the whole-genome consensus sequence of this 2017 isolate revealed a type 3/type 1 PV 200 

recombinant structure with a crossover point between nucleotides 4904 and 4914. As shown 201 

in Fig. 1, NGS reads from this isolate mapped to both Sabin 1 and Sabin 3 reference 202 

sequences in different regions of the genome. This finding was reproducible using the 203 

random PCR sequencing approach discussed in next section (Fig. 1). Finally, the 2017 L20B 204 

isolate from the FC concentrate was confirmed as PV1, very closely related to the Sabin 1 205 

vaccine strain, with only one nucleotide change from the vaccine strain.  The VP1 sequences 206 

of all PV isolates determined by NGS analysis were identical to those obtained by the Sanger 207 

method  208 

 209 

Sequence analysis of HEV mixtures found in RD cells 210 

RT-PCR products generated using random primers were also analysed by NGS with an aim 211 

to sequence any other HEV strain that might be present in the infected RD cell cultures. We 212 

first analysed virus control samples (Reference strains Enterovirus 20 JV-1, Echovirus 7 213 

Wallace, Coxsackievirus B5 Faulkner and PV Sabin 1), to test and optimize our ability to 214 

detect and identify HEV mixtures. NGS reads were filtered and analysed as described in 215 

Materials and Methods. Nucleotide sequences obtained from RA01 and M13 random RT-216 

PCR products from these reference strains were almost identical except in the extreme ends 217 

where sequence coverage was low. These extreme regions were discarded from the final 218 

consensus sequence assigned to the virus. As shown in Fig. 2A, the results showed excellent 219 

coverage across most of the genome for all viruses and nearly whole-genome sequences 220 

(≥95% of the genome) were obtained for all four reference virus strains in both single and 221 

mixed samples. Sequences in these single and mixed samples were identical and highly 222 

similar (>99.8%) to the corresponding Genebank Sanger sequences (Table 3).  223 



 

9 
 

The same analytical process was followed for TP-RD isolates from the two London 224 

sewage samples. Six and four different HEV strains were identified in the September 2016 225 

and January 2017 samples, respectively, including PV3 strains found in both samples. Results 226 

are shown in Fig. 2 and Table 3. Again, nearly whole-genome sequences (>90% of genome) 227 

were obtained for all virus strains identified in both samples and nucleotide sequences 228 

determined by either RA01 or M13 primers were almost identical. The relative proportions of 229 

sequence reads mapping to each of the different HEV strains identified in each sample are 230 

shown in Fig. 3. There were some differences in the results for the September 2016 sample in 231 

that Echovirus 3 sequence reads were the most prevalent in sequences from the M13 RT-PCR 232 

while Coxsackievirus B3 reads showed the highest proportion when the RA01 RT-PCR 233 

product was analysed. These differences likely reflect some degree of bias in the 234 

amplification of viral genomes from some strains using different primer sets. Echovirus 7 was 235 

the most prevalent strain in the 2017 RD culture with > 92% of reads mapping to this strain. 236 

The proportion of sequence reads mapping to PV sequences was relative low, with only 237 

6.28% and 0.76% of the total number of reads mapping to PV3 sequences for the September 238 

2016 and January 2017 samples, respectively. The closest virus relatives to the London 239 

sewage non-polio HEV isolates were identified by BLAST analysis of VP1 sequences. VP1 240 

genetic similarities to related non-polio HEV strains ranged between 87.4% to 96.9 % for 241 

nucleotides and 97.9% to 100% for amino acid sequences, confirming the HEV serotype 242 

assignment (Table 3). Two different Echovirus 7 strains were found in the September 2016 243 

sewage sample with 83.4% and 98.2% nucleotide and amino acid sequence identity between 244 

them across the whole genome, respectively.  245 

 246 

DISCUSSION 247 
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All twelve sewage samples from London (UK), tested as part of a pilot ES study, were 248 

positive for HEVs and two of them contained PV.  Type 1 and 3 vaccine-like PV isolates 249 

were found in samples taken in September 2016 and January 2017. Both concentration 250 

methods used resulted in PV isolation and we found the FC method to be simpler, quicker, 251 

less technically demanding and free from bacterial contamination as compared to the TP 252 

separation system used in most WHO laboratories. Finding PV in these samples was rather 253 

unexpected as the UK has exclusively used IPV for polio immunisation since 2004 [29]. 254 

However, vaccine-like PVs have occasionally been found in environmental samples collected 255 

in countries using only IPV, presumably imported by people coming from countries where 256 

OPV is still used [30]. The London sewage sampling site serves areas that include large 257 

migrant groups from countries where there is still OPV use.  258 

Nearly whole-genome viral sequences were rapidly generated by NGS analysis of 259 

RT-PCR products obtained using random or PV-specific primers. Five different vaccine-like 260 

PV3 strains were identified in the 2016 sewage sample, all containing few mutations from 261 

PV3 Sabin vaccine strain. These included reversions at attenuation mutations at nucleotides 262 

472 in domain V of the 5’NCR, with a role in protein translation, and 2493 coding for amino 263 

acid VP1-6 and possibly involved in virus particle stability [31, 32]. A different PV3 strain 264 

was found in the 2017 sewage sample also containing few mutations from Sabin 3 and the 265 

two reversion mutations mentioned above. This 2017 PV3 isolate had a PV3/PV1 266 

recombinant genomic structure with a crossover point locating in the region coding for non-267 

structural protein 2C.  In addition, a PV1 vaccine-like isolate with a single mutation from the 268 

Sabin 1 vaccine strain was also found in the sewage sample from 2017. The fact that all PV 269 

isolates from sewage contained a very low number of mutations from the Sabin vaccine 270 

strains indicates a very short period of replication/transmission in humans, from several days 271 
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to few weeks after vaccination, with these PV strains possibly having been excreted by just 272 

one or few recent vaccinees and/or their immediate contacts.   273 

It is striking that significant sequence differences were found between virus isolates 274 

found in the same sewage sample, including the presence of unique PV3 genetic variants in 275 

the sample from September 2016 and a PV1 strain together with a PV3/PV1 recombinant 276 

virus in the sample from January 2017. This is likely due to PV being in very low 277 

concentration in sewage leading to a strong sampling effect that is reflected when using 278 

different aliquots of concentrate to infect different cell culture flasks. This is in agreement 279 

with the fact that only a proportion of L20B cell culture flasks incubated with sewage 280 

concentrates showed CPE. Indeed, complex virus mixtures are commonly found in sewage 281 

samples, with parallel cell culture flasks infected with aliquots of the same sewage 282 

concentrate producing very different results. This might include PV in different homotypic 283 

and/or heterotypic mixtures often in combination with non-polio HEVs [6]. Furthermore, it is 284 

not at all unexpected that vaccinees excrete virus mixtures containing mixed serotype and 285 

recombinant variants [20, 33]. PV3/PV1 recombinant strains similar to the 2017 isolate found 286 

in this study are commonly found in stool samples from vaccinees taken soon after 287 

vaccination in combination with other non-recombinant and recombinant variants from all 288 

serotypes present in the OPV vaccine [33, 34].  289 

Considering that there is no OPV use in the UK and this sewage site covers a 290 

population of more than 3.5 million people, we conclude that our ES set up is sensitive 291 

enough to detect low concentrations of PV. In this context, it is expected that, should 292 

transmission of WPV1 or cVDPV2 occur in the UK following importation, it would be 293 

readily detected using our system. Importantly, no such PV isolates were detected in the 294 

London samples. It is also reassuring that no PV2 vaccine sequences were detected in any of 295 

the PV isolates identified since the type 2 component was removed from OPV in August 296 
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2016. The results shown here are compatible with the viruses found being derived from 297 

vaccinees that received type 1 and 3 bOPV.  298 

It is also expected that several non-polio HEV strains would be present in sewage 299 

concentrates, and hence in RD cultures from them, reflecting their circulation in human 300 

populations. Using NGS analysis we found 5 and 3 non-polio HEV strains of different 301 

serotypes, in addition to PV, in the London sewage samples from September 2016 and 302 

January 2017, respectively. A recent report, also using NGS, described the presence of 303 

Coxsackievirus B1, B3 and B5 strains in single RD cultures from sewage samples in Pakistan 304 

[17]. All non-polio HEV strains found in the 2016 and 2017 London samples correspond to 305 

species B HEV serotypes, a common finding that, rather than reflecting the actual prevalence 306 

of HEV serotypes in human populations, might be a consequence of the high sensitivity of 307 

RD cells for infection with species B HEVs [35]. Virus strains from all four HEV species can 308 

infect RD cells as shown by the analysis of stool extracts from AFP cases [36]. However, the 309 

complex HEV composition in sewage means that species B HEVs would likely outcompete 310 

viruses from other species when growing on RD cells. Indeed, some studies have shown that 311 

HEV strains from all four species A, B, C and D are frequently found in stool and sewage 312 

samples [7, 30, 37, 38]. Identifying them has required the use of several cell culture systems 313 

and/or sequencing RT-PCR products from multiple PCR reactions or from a large number of 314 

cDNA clones. Our NGS approach can reveal the presence of several non-polio HEV strains 315 

in a single cell culture system providing nearly whole-genome nucleotide sequence 316 

information of each of them. 317 

PV strains are known to replicate efficiently on RD cells but RD infected cultures 318 

from the two London samples were found to contain only a low proportion of PV relative to 319 

other species B non-polio HEV strains. This observation highlights the relevance of using 320 

L20B cells to increase the sensitivity for PV detection in clinical and environmental samples. 321 



 

13 
 

Several studies have described the microbiome in stool and sewage samples but information 322 

on HEV content is very limited. Our results show the great value of using NGS technology 323 

for HEV surveillance, particularly for PV, as it can detect low concentrations of PV possibly 324 

excreted by one or few individuals and can quickly provide whole-genome genetic 325 

information including evidence for recombination events. Identifying genetic features that 326 

link PV isolates is essential to establish temporal and geographical relationships between 327 

them that help tracing virus transmission. Previous work in our laboratory using NGS for the 328 

analysis of both vaccine products and isolates from vaccinees has shown that these methods 329 

can also accurately identify PV strains in homotypic and heterotypic mixtures [18, 20], a 330 

critical feature that will help identifying wild PV and cVDPV strains in a background of 331 

OPV.  The use of NGS methods for HEV identification and characterisation represents a 332 

major step forward in HEV molecular diagnosis and will greatly contribute to improve our 333 

knowledge on HEV circulation patterns in human populations and their association with 334 

human disease. 335 

 336 
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Figure legends 347 

Figure 1. Coverage of Sabin PV 1 and 3 genomes following RT-PCR and sequencing by 348 

NGS of the TP-RD PV isolate from the January 2017 sewage sample. Filtered reads from 349 

(A) PV-specific, (B) M13-random or (C) RA01-random RT-PCR products obtained from 350 

RNA purified from infected cells were independently mapped against type 1 Sabin PV 351 

AY184219 (red line) or type 3 Sabin PV AY184221 (blue line) reference genome sequences. 352 

Mapped reads against each reference were combined in the graph for each NGS product. 353 

Percentages of maximum coverage are reported. The results were identical for all RT-PCR 354 

products and identified a type 3/type 1 PV recombinant with a crossover point between 355 

nucleotides 4904 and 4914.  356 

 357 

Figure 2. Genome coverage of HEV genomes following RT-PCR and sequencing by 358 

NGS of TP-RD isolates from sewage samples. Filtered reads from the virus control mixture 359 

(A, B), sewage sample from September 2016 (C, D) and sewage sample from January 2017 360 

(E, F) were mapped to the respective final HEV consensus sequences identified by de novo 361 

assembly. Results obtained with NGS reads generated with M13-random (A, C, E) and 362 

RA01-random  (B, D, F) RT-PCR products are shown. The number of sequence reads at each 363 

nucleotide position is shown for each HEV strain. The results show excellent coverage across 364 

most of the genome for all viruses. 365 

  366 

Figure 3. Percentage of filtered reads mapping to VP1 sequences.  Filtered reads from the 367 

virus control mixture (A, B), sewage sample from September 2016 (C, D) and sewage sample 368 

from January 2017 (E, F) were mapped to VP1 consensus sequences of each of the HEV 369 

strains identified by de novo assembly. Results for M13-random (A, C, E) and RA01-random 370 

(B, D, F) RT-PCR products are shown. Percentages of total reads mapping to each of the 371 
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HEV VP1 sequences are indicated. No HEV isolates were identified in any of the negative 372 

controls analysed. The results show that the proportion of PV sequences found in infected RD 373 

cells was low, particularly in the sample from January 2017. 374 

  375 
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