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SUMMARY
In cancer epidemiology using population-based data, regression models for the excess mortality hazard is
a useful method to estimate cancer survival and to describe the association between prognosis factors and
excess mortality. This method requires expected mortality rates from general population life tables: each
cancer patient is assigned an expected (background) mortality rate obtained from the life tables, typically
at least according to their age and sex, from the population they belong to. However, those life tables
may be insufficiently stratified, as some characteristics such as deprivation, ethnicity, and comorbidities,
are not available in the life tables for a number of countries. This may affect the background mortality
rate allocated to each patient, and it has been shown that not including relevant information for assigning
an expected mortality rate to each patient induces a bias in the estimation of the regression parameters
of the excess hazard model. We propose two parametric corrections in excess hazard regression models,
including a single-parameter or a random effect (frailty), to account for possible mismatches in the life
table and thus misspecification of the background mortality rate. In an extensive simulation study, the
good statistical performance of the proposed approach is demonstrated, and we illustrate their use on real
population-based data of lung cancer patients. We present conditions and limitations of these methods,
and provide some recommendations for their use in practice.
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2 F. J. RUBIO AND OTHERS

1. NET SURVIVAL AND EXCESS MORTALITY HAZARD MODEL

Survival analysis after the diagnosis of cancer is an active research area in cancer epidemiology and a pri-
mary interest of many countries. The three typical frameworks adopted to model cancer survival data are:
(i) the overall survival setting (where overall or all-cause mortality is studied), (ii) the cause-specific set-
ting (where the cause of death is known), and (iii) the relative survival setting. The overall survival setting
is not the optimal choice for cancer epidemiology when the main interest is on comparing two or more
populations (e.g. two countries, two periods in the same country, two groups with different deprivation
levels within the same country and at the same period, and etcetera), since it is affected by other causes
of mortality, which may differ for the populations of interest. In practice, the cause of death is typically
unavailable or, in the absence of a standardised protocol, not reliable. Thus, the cause-specific setting may
not be a reasonable choice either. The relative survival setting (Pohar-Perme and others, 2016) represents
a useful alternative, where the mortality hazard associated to other causes is approximated by the general
population hazard hP (·; z), which is typically obtained from life tables based on the available sociodemo-
graphic characteristics z (e.g. sex, region and deprivation level) in addition to age and year. The general
population hazard is also referred to as the “expected hazard” and the “background mortality rate”. While
defined in a hypothetical world, where patients could only die from the cancer under study, net survival
(the main object of interest in the relative survival setting) represents a useful way of reporting and com-
paring the probability of survival of cancer patients since this quantity is not affected by differences in
expected mortality (due to other causes) between populations. The basic idea behind net survival consists
of decomposing the hazard function associated to an individual, ho(t;x), as the sum of the hazard associ-
ated to the disease of interest (e.g. a specific cancer), hE(t;x), and the hazard associated to other causes
in the population of interest, hOther(t; z). The hazard associated to other causes is approximated with the
general population hazard hP (t; z), assuming that the contribution in the general population hazard of a
specific cancer type is small compared to all other causes of death. This is:

ho(t;x) = hP (A+ t; y + t; z) + hE(t;x), (1.1)

where x and z are vectors of covariates, and z typically corresponds to a subset of covariates of x. The
variables “A” and “y” represent the age at diagnosis and the year of diagnosis, respectively, thus A + t
and y + t represent the age and the year at time t after diagnosis. This model is also known as excess
hazard model (Esteve and others, 1990). The net survival is defined as the survival function associated
to the excess hazard function hE(·;x). Estimation of the net survival function has been largely studied
from parametric, semiparametric, and nonparametric perspectives (see Remontet and others, 2007, Po-
har Perme and others, 2009, Perme and others, 2012, and Rubio and others, 2018).

In practice, a limitation of quantities derived in the relative survival setting (Perme and others, 2012),
such as the excess hazard, is that patients need to be matched to groups of the general population sharing
the available characteristics z in order to obtain the background mortality rates hP (·; z) from the life
tables. The number of available characteristics z varies for different countries, and there exist certain
characteristics that are not available at the population level that may affect the background mortality rates
such as deprivation, ethnicity, drug use (tobacco, alcohol, and etcetera), comorbidities, among others. For
instance, it has been shown that deprivation levels are associated with life expectancy in some populations
(Woods and others, 2005). Thus, if life tables are obtained without a proper stratification of deprivation
levels, this will imply that two individuals with different deprivation levels (e.g. most affluent vs. most
deprived), but sharing other socio-demographic characteristics, will be assigned the same background
mortality. We will refer to the case when the life table is not sufficiently stratified as a “mismatch in the
life table”. This mismatch may also apply to other characteristics (e.g. smoking status), thus potentially
impacting the comparison ability of the net survival measure (Pavlič and Pohar-Perme, 2018). Moreover,
Dickman and others (1998) and Grafféo and others (2012) showed that not including relevant information
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for matching the mortality rates of patients induces a bias in the estimation of the parameters in net survival
models (even for other variables than those included in the life tables). Concerns about the implications
of this kind of mismatches in the life tables have recently been discussed in Pavlič and Pohar-Perme
(2018) and Bower and others (2018). Thus, it is desirable to produce models that can capture possible
mismatching information in the background mortality rates associated to each patient, and that allow the
assessment of the impact of this mismatch.

In this work, we study an existing model for correcting the background mortality using a single cor-
rection parameter (Cheuvart and Ryan, 1991), and extend it to a general hazard structure for excess hazard
regression models (Rubio and others, 2018). We also propose a correction model using a random effect
(instead of a single parameter). For each of these models, we study the properties of maximum likelihood
estimation of the corresponding parameters. We assess the performance of this inferential procedure in an
extensive simulation study. We apply and compare these methods using a lung cancer data example. We
conclude with some practical advice and summarise the conditions and limitations of these methods, as
well as potential directions for further research.

2. CORRECTIONS OF THE BACKGROUND MORTALITY IN EXCESS HAZARD REGRESSION

In this section, we present two parametric corrections that can account for mismatches in the life table.
The first one corresponds to the single parameter correction proposed by Cheuvart and Ryan (1991). The
second one corresponds to our proposal, which assumes that the correction to the background mortality
is random and can be modelled with a parametric distribution. Next, we present a brief summary of these
methods, as well as some of their properties and limitations.

2.1 Single parameter correction: Cheuvart and Ryan’s approach

In the context of clinical trials, Cheuvart and Ryan (1991) proposed an extension of model (1.1) in which
they allowed for a constant correction on the population hazard: the overall hazard after t years of follow-
up for a patient who entered the trial at age A in year y and with covariates x was assumed to be

hCo (t;x) = γhP (A+ t; y + t; z) + hE(t;x), (2.2)

where γ > 0 is an unknown parameter differentiating the competing mortality of eligible patients from
that of the general population. Cheuvart and Ryan (1991) employ the proportional excess hazard model
hE(t;x) = hE,0(t; η) exp(z>β), where hE,0(·; η) is the baseline excess hazard with parameter η, β
is a vector of regression parameters, including the effects of treatment and other prognostic factors. In
the context of clinical trials, the correction parameter can be reasonably assumed to be the same for
all individuals since the population entering the trials is selected based on their characteristics (usually
patients without comorbid conditions, and etcetera).

Model (2.2) can be rewritten in terms of the cumulative hazard and the survival functions as follows

HC
o (t;x, γ) = γ[HP (A+ t; y + t; z)−HP (A; y; z)] +HE(t;x), (2.3)
SCo (t;x, γ) = exp{−γ[HP (A+ t; y + t; z)−HP (A; y; z)]} exp [−HE(t;x)] , (2.4)

where HP and HE are the cumulative hazard functions obtained from hP and hE , respectively.
In principle, model (2.2) can also be used to account for mismatched life tables, as the correction

is made on the population hazard. The basic assumption behind this model is that the true competing
mortality is proportional to the mortality of the population obtained from the life tables, and the correction
is the same for all individuals. Expression (2.3) also indicates that the information used for estimating the
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additional correction parameter γ comes from the differences in the cumulative hazard HP (A + t; y +
t; z)−HP (A; y; z), which are not used in the estimation of the classical model (1.1).

2.2 Frailty correction for the population hazard

One limitation of model (2.2) is that the correction γ, made on the population hazard, is assumed to be
constant across all the individuals. This assumption may not be realistic in population studies, where the
diversity of unavailable sociodemographic characteristics used to obtain the life tables may induce a non-
constant mismatch. Thus, instead of assuming that γ is constant in model (2.2), we assume that γ is a
positive continuous random variable. This implies that the correction factor γ is allowed to vary across
the different individuals. More specifically, consider the conditional hazard model

h̃o(t | γ;x) = γhP (A+ t; y + t; z) + hE(t;x), (2.5)
γ ∼ G.

where G is an arbitrary absolutely continuous cumulative distribution function with support on R+. The
conditional overall survival function is given by

S̃o(t | x, γ) = exp{−γ[HP (A+ t; y + t; z)−HP (A; y; z)]} exp [−HE(t;x)] ,

γ ∼ G.

Then, after integrating out the frailty γ with respect to the distribution G (see Appendix), the individual
marginal overall survival function can be written as

S̃o(t;x) = exp{−HE(t;x)}LG{HP (A+ t; y + t; z)−HP (A; y; z)}, (2.6)

where LG{s} =
∫∞
0
e−srdG(r) denotes the Laplace transform of G evaluated at time s. Next, we con-

sider a specific choice for the distribution G: a Gamma distribution. This choice allows for obtaining
a closed-form expression of the marginal survival function, in addition to its appealing flexibility and
interpretability of parameters.

Gamma Frailty

Consider the conditional hazard model (2.5) and suppose that γ ∼ Ga(µ, b), where Ga(µ, b) denotes a
Gamma distribution with mean parameter µ > 0, scale parameter b > 0, and probability density function

g(r;µ, b) =
r
µ
b−1

Γ
(
µ
b

)
b
µ
b

exp
(
−r
b

)
. Then, it follows that

1. The marginal individual survival function is given by

S̃o(t;x) =
exp {−HE(t;x)}

{1 + b [HP (A+ t; y + t; z)−HP (A; y; z)]}
µ
b

. (2.7)

2. The marginal individual hazard function is given by

h̃o(t;x) =
µhP (A+ t; y + t; z)

1 + b [HP (A+ t; y + t; z)−HP (A; y; z)]
+ hE(t;x). (2.8)
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Expression (2.8) provides a nice interpretation of our approach since the observed hazard can be seen
as a model with a correction function ω1(t, z;µ, b) =

µ

1 + b [HP (A+ t; y + t; z)−HP (A; y; z)]
, which

is identifiable and provides a functional form that involves the mean correction, the scale or spread of
the correction, and the differences on the population cumulative hazards. Another property of the cor-
rection function is that limb→0 ω1(t, z;µ, b) = µ, which indicates that the correction model (2.2) is a
limit case. This property, however, does not imply that the correction parameter in (2.2) represents the
mean correction when b > 0, as shown in our simulations. We can also observe that if two patients have
the same sociodemographic characteristics (or virtually the same) but different survival times, then the
corresponding value of the weight ω1 will differ since the corresponding differences in the cumulative
hazards HP (A + t; y + t; z) − HP (A; y; z) will be different. This, intuitively, suggests that the more
extreme the survival time t of a patient is (either too small or too large), compared to other patients with
the same sociodemographic characteristics, the more likely this patient has been assigned the incorrect
mortality rate from the life table. This approach implicitly assumes that the excess hazard model hE(t;x)
is correctly specified and includes all important prognosis factors (see Discussion). It also indicates that
the information about the parameters of the frailty distribution is provided by the variability in the ob-
served survival times of similar individuals regarding their sociodemographic characteristics and tumour
prognosis factors. This suggests the need for a certain amount of observations for groups of patients with
similar characteristics.

2.3 Hazard structure and baseline hazard

For models (1.1), (2.2), and (2.8), we adopt the general excess hazard model (GH) proposed in Rubio and
others (2018):

hGH
E (t;xi) = h0

(
t exp(x>i β1)

)
exp(x>i β2), (2.9)

HGH
E (t;xi) = H0

(
t exp(x>i β1)

)
exp(−x>i β1 + x>i β2).

where h0(·) is the baseline hazard. This hazard structure contains, as particular cases, the proportional
hazards (PH) model when β1 = 0, the accelerated hazards (AH) model when β2 = 0, the accelerated
failure time (AFT) model when β1 = β2, as well as combinations of these for β1 6= β2 6= 0. Thus, this
structure covers the most popular hazard structures used in the literature, allowing also to capture time-
dependent effects through β1 (i.e. effects which are not assumed to be constant over the whole follow-up
period, such as the effects estimated in PH models). For an extensive discussion on the properties of this
GH structure, we refer the reader to Rubio and others (2018).

The baseline hazard in (2.9) will be modelled using the Exponentiated Weibull (EW) distribution. The
Exponentiated Weibull distribution contains three positive parameters (κ, θ, α) (shape, scale, and power),
and the corresponding hazard function can capture some basic shapes: increasing, decreasing, unimodal
(up-then-down), bathtub (down-then-up) and constant. The Exponentiated Weibull density and cumulative
distribution functions with shape, scale, and power parameters (κ, θ, α) are given, respectively, by:

fEW (t) = α
κ

θ

(
t

θ

)κ−1 [
1− exp

{
−
(
t

θ

)κ}]α−1
exp

{
−
(
t

θ

)κ}
,

FEW (t) =

[
1− exp

{
−
(
t

θ

)κ}]α
.

Thus, the combination of the GH structure with the choice of the EW baseline hazards can capture a
variety of hazard structures, time-dependent effects (through the parameters in β1), and baseline hazard

Page 5 of 20 Biostatistics



6 F. J. RUBIO AND OTHERS

shapes, while allowing for a parsimonious implementation of all the proposed models (Rubio and others,
2018).

3. INFERENCE

3.1 The classical model

Let ti > 0, i = 1, . . . , n, be the sample of times to event from a population of cancer patients, with
covariates xi ∈ Rp, and vital status indicators δi (1-death, 0-censored).

For the classical model (1.1), we will rely on the maximum likelihood estimation method, which has
been shown to have good inferential properties with the hazard structure detailed in (2.9) (Rubio and
others, 2018). With this model, the likelihood is defined as:

M1. Classical model (1.1):

L(ψ; Data) =

n∏
i=1

ho(ti;xi)
δiSo(ti;xi)

∝
n∏
i=1

{hP (Ai + ti; yi + ti, zi) + hE(ti;xi)}δi exp {−HE(ti;xi)} ,

where ψ represent the parameters of the excess hazard model. In our case, ψ = (κ, θ, α, β1, β2). Notice
that here for model (1.1), we omit the expected survival from the likelihood, as this quantity does not
depend on parameters.

3.2 The models with correction of the background mortality

For the models of interest, (2.2) and (2.8), we will estimate the parameters using the maximum likelihood
method. The corresponding likelihood functions are presented below for the single-parameter correction
model (2.2) and the frailty correction model (2.8)

M2. Single-parameter correction model (2.2):

LC(ψC ; Data) =
n∏
i=1

{γhP (Ai + ti; yi + ti; zi) + hE(ti;xi)}δi exp {−HE(ti;xi)}

× exp{−[HP (Ai + ti; yi + ti; zi)−HP (Ai; yi; zi)]}γ ,

where ψC = (γ,ψ).
M3. Frailty correction model (2.8):

LF (ψF ; Data) =
n∏
i=1

{
µhP (Ai + ti; yi + ti; zi)

1 + b [HP (Ai + ti; yi + ti; zi)−HP (Ai; yi; zi)]
+ hE(ti;xi)

}δi
× exp {−HE(ti;xi)}
{1 + b [HP (Ai + ti; yi + ti; zi)−HP (Ai; yi; zi)]}

µ
b

,

where ψF = (µ, b,ψ).
These likelihood functions can be maximised using standard optimisation routines from the R software

(e.g. ‘nlminb’ or ‘optim’). In order to select between models M1–M3, we use the Akaike Information
Criterion (AIC), as these models are estimated using the maximum likelihood method.
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3.3 Choice of initial points for the optimisation process

For the optimisation process, we consider a two-step algorithm. In the first step, we initialise the search
at the initial values: ψ(0) = (κ(0), θ(0), α(0), β

(0)
1 , β

(0)
2 ), where κ(0) = 1, θ(0) = 1, α(0) = 2, β(0)

1 =

β
(0)
2 = 0, and then move from these initial values using one cycle of a coordinate descend algorithm

(CDA), coupled with the R command ‘nlminb’ on each step of the CDA (see Wright, 2015 for more de-
tails on the CDA). The CDA is an algorithm which successively maximises an objective function along
coordinate directions. In our case, we first obtain a new value of the first parameter, κ(1), after max-
imising the objective function with respect to κ, while setting the other parameter values at their initial
values. Then, we maximise again the objective function, obtained by setting this time the initial values to
(κ(1), θ(0), α(0), β

(0)
1 , β

(0)
2 ) to get θ(1). We repeat the same process for all other parameters to finally get a

vector (κ(1), θ(1), α(1), β
(1)
1 , β

(1)
2 ). In the second step, we utilise the values obtained with the CDA as new

initial values in a general purpose optimisation algorithm (e.g. ‘nlminb’ or ‘optim’ from the R software),
in order to obtain the MLE ψ̂.

For model M2, we use the initial values (γ, ψ̂), with γ = 1.2, while for model M3, we employ the
initial values (µ, b, ψ̂), with µ = 1.2, and b = 0.1. In practice, we recommend running the optimisation
process at several initial points in order to ensure that the global maximum of the likelihood is reached.

4. SIMULATION STUDIES

In this section, we present a simulation study where we assess the impact of mismatches in the population
hazard on the estimation of the excess hazard, as well as the performance of the proposed correction
models (M2-M3). The true values of the parameters are chosen in order to produce scenarios that resemble
cancer population studies concerning an aggressive type of cancer (relatively low 5-year net survival, see
Appendix Table 1), such as lung cancer, similar to the simulations presented in Rubio and others (2018).
An additional extensive simulation scenario resembling a less aggressive type of cancer (such as colon
cancer, see Appendix Table 2) is presented in the Appendix (Simulation design II).

4.1 Data Generation

Briefly, in the Simulation Design I, we simulated N = 1000 data sets of size n = 5000, 10000, assum-
ing the additive hazard decomposition given in (1.1). The variable “age” was simulated as a continuous
variable using a mixture of uniform distributions with 0.25 probability on (30, 65), 0.35 probability on
(65, 75), and 0.40 probability on (75, 85) years old. The binary variables “sex” and “W” were both sim-
ulated from a binomial distribution with probability 0.5 (the binary variable “W” could be viewed as
“treatment”, or “comorbidity”, or “stage” (early and late)). In all scenarios, we simulated the “other-
causes” time to event using the UK life tables based on “age” and “sex” (assuming that all patients were
diagnosed on the same year). The time to event from the excess hazard (cancer death time) was gener-
ated using the inverse transform method, assuming effects of the 3 variables “age”, “sex” and “W” and
an Exponentiated Weibull distribution. We assumed either (i) only administrative censoring at TC = 5
years, which induced approximately 25% censoring in all cases, or (ii) an additional independent random
censoring (drop-out) using an exponential distribution with rate parameter r, inducing approximately 30%
censoring in these cases. Given the GH structure (2.9) adopted for the simulation, all variables affect the
time scale (i.e. time-dependent effects) as well as the hazard scale (i.e. changing the level of the hazard).
We refer the reader to Rubio and others (2018) for a more detailed discussion on the interpretation of the
GH structure.

We consider 4 scenarios that represent mismatches in the life tables: (i) No mismatch, where the data
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are generated from model (1.1); (ii) Moderate mismatch, where the data are generated from the hazard
model (2.5) with γ ∼ Ga(1.2, 0.02); (iii) Severe mismatch, where the data are generated from the hazard
model (2.5) with γ ∼ Ga(1.875, 0.075); and (iv) Wide mismatch, where the data are generated from the
hazard model (2.5) with γ ∼ Ga(6.5, 10) (see Figure 1). In all of these scenarios we fit models M1–M3.
We also consider selecting between models M1–M3 using AIC, in order to identify the model favoured
by the data. The estimates of the parameters of the excess hazard model selected using AIC are reported,
and this model is referred to as model M4. For model M4, we report the estimated correction parameter c
associated to the selected model. This is, ĉ = 1 if AIC selects model M1, ĉ = γ̂ if AIC selects model M2,
and ĉ = µ̂ if AIC selects model M3. We report coverage of the asymptotic normal confidence intervals in
all the scenarios.

[Fig. 1 about here.]

4.2 Simulation Results

For illustration, Table 1 and Figure 2 show the results for the scenario with n = 5000, 30% of censoring
and a Wide mismatch (iv). The results of the remaining scenarios are shown in the Appendix, as well as the
results with sample size of n = 10000 and the simulation design II with a higher net survival. As expected,
we observe that when there is Severe and Wide mismatch (iii)–(iv), the model without correction (M1)
will lead to biased parameters estimates, as well as poor coverage (Table 1, Figure 2, Appendix Tables
5, 8, 9 and Appendix Figures 4, 7, 8). This is reflected in the MLEs of the model parameters as well
as on the fitted excess hazards. The bias of the parameter estimates and the poor coverages of M1 are
more pronounced in the simulation design II with high net survival (Appendix Tables 12, 13, 16, 17 and
Appendix Figures 11, 12, 15, 16). In scenarios (i) and (ii) with No or Moderate mismatch, the fitted
correction models M2 and M3 are centred around the true generating model, although they exhibit (as
expected) a slightly larger variability compared to model M1 (Appendix Tables 3, 4, 6, 7, 10, 11, 14, 15,
and Appendix Figures 2, 3, 5, 6, 9, 10, 13, 14). In scenario (iii) with Severe mismatch, the fitted correction
models M2 and M3 properly correct the mismatch as these models are centred around the true generating
model, with the cost of higher variability. The parameters estimated with model M1 are biased with a very
low coverage (Appendix Tables 5, 8, 12, 16 and Appendix Figures 4, 7, 11, 15). In scenario (iv) with Wide
mismatch, the fitted models M1 and M2 are biased and far from the true generating model. On the other
hand, model M3 can capture this mismatch and reduce the bias properly (Table 1, Figure 2, Appendix
Tables 9, 13, 17 and Appendix Figures 8, 12, 16). The models selected with AIC (M4) are also centred
around the true generating model in all scenarios. In cases with no mismatch or moderate mismatch, we
observe that the bias on the estimates is small, the coverage is close to 95%, and all models tend to be
relatively close to the true generating model. In those cases, the AIC tends to favour model M1. Table
18 in the Appendix shows the proportion of selected models using AIC. Overall, we can see that M3 is
favoured in scenario (iv) with Wide mismatch. In the scenario (iii) with Severe mismatch, the proportion
of selected models depends on the contribution of the excess hazard compared to the population hazard.
In general, selecting the models using AIC or another model selection tool is advised in order to identify
the need for correcting the population hazard. The simulation study results obtained with N = 10000 per
sample were very similar to the ones obtained with N = 5000.

[Table 1 about here.]

[Fig. 2 about here.]
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5. APPLICATION: LUNG CANCER DATA

We now analyse a dataset obtained from population-based national cancer registry of Non-Small Cell
Lung Cancer (NSCLC) patients diagnosed in 2012 in England. For deriving information on stage at di-
agnosis and presence of comorbidities at the time of diagnosis, we linked these data to administrative
data (Hospital Episode Statistics -HES- and the Lung Cancer Audit data -LUCADA-) and then applied
specific algorithms (Benitez-Majano and others, 2016; Maringe and others, 2017). We used a 6-year pe-
riod up to 6 months before diagnosis to retrieve information on comorbidity. We checked for the presence
of cardiovascular comorbidity (at least one of: Myocardial infarction, Congestive heart failure, Periph-
eral vascular disease, and Cerebrovascular disease) and Chronic Obstructive Pulmonary Disease (COPD).
We measured deprivation using the Income Domain from the 2010 England Indices of Multiple De-
privation, defined at the Lower Super Output Area level (mean population 1500). The Income Domain
measures the proportion of the population in an area experiencing deprivation related to low income,
and ranges from 1% to 75% in our data (https://www.gov.uk/government/statistics/
english-indices-of-deprivation-2010). Follow-up was assessed on the 31st of December
2015, at which time patients alive were censored (so the maximum follow-up was 4 years). We restricted
our analysis to men with no missing data. We observed n = 15688 patients with complete cases among
which no = 13603 died before the 31st of December 2015, and 17 patients were lost to follow-up (cen-
sored before the 31st of December 2015). The median follow-up among patients censored was 3.45 years,
mainly because of administrative censoring. The 25%, 50% and 75% quantiles of the patients’ age at di-
agnosis was 65.8, 73.0, 80.0 while the mean was 72.5. Among the patients, 2210 were diagnosed at Stage
I, 1502 at Stage II, 3679 at Stage III, and 8297 at Stage IV. Finally, 3224 patients were classified with a
cardiovascular comorbidity and 3154 with a chronic obstructive pulmonary disease.

We applied models M1–M3 to estimate the excess mortality hazard using deprivation-specific life ta-
bles (detailed by sex, age, year and Government Office Region in addition to the deprivation quintile).
Consequently, we are implicitly assuming that the variables age, sex, deprivation, tumour stage, and co-
morbidity accurately explain the excess hazard in NSCLC patients. The regression parameter estimates
for the excess hazard models M1–M3, as well as the correction parameters (for models M2–M3), are
reported in Table 2. For illustrating the results, the excess mortality hazard and the corresponding Net
Survival for two pre-defined subgroups of patients are depicted in Figure 3.

In Table 2, between the three models (M1, M2 and M3), the AIC favours model M3 (i.e. the frailty
correction model). Differences on β estimates (regression coefficients) between M1 and M3 are substan-
tial. For example the protective effect of Stage I cancer (compared to being diagnosed with a Stage IV
cancer) is even higher when accounting for mismatched life tables. This interpretation follows by noticing
that the two parameters associated with Stage I are negative (see Rubio and others, 2018 for details on
those hazard-structure models and their interpretation). The impact of the presence of a comorbidity is
higher in M3 compared to M1 and M2. Thus, correcting the population life table for unobserved predict-
ing variables of background mortality seems to be quite relevant in this example. An unobserved variable
which certainly affects the population mortality hazard here is smoking status. We observe that the frailty
distribution, used for correcting the population mortality in M3, cumulates 23% of the probability mass
below 1, and 77% above 1. That is, the value 1 represents the 23% quantile of the fitted Gamma frailty
distribution with scale parameter 9.83 and mean 6.54. These values are in fact related to the proportion
of smokers (roughly 80%, which would, in principle, require a correction higher than 1) for England lung
cancer patients (Ellis and others, 2014), which provides an intuitive interpretation of the frailty distribu-
tion parameters. This interpretation, of course, has to be taken only at an intuitive level since the correction
induced with the frailty model M3 is not interpretable in terms of a single missing characteristic, but it
represents a combination of missing characteristics such as drug use (most likely tobacco in this case), the
presence of comorbidities among other lifestyle related diseases and its impact on the general population
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mortality, and etcetera.
In order to evaluate the effect of not having deprivation-specific life tables, we have also fitted excess

hazard models using life tables without the deprivation variable (i.e. national life tables). The results
obtained with the deprivation-specific life tables and those obtained with the national life tables (excluding
deprivation) are very similar (see section 5, Table 19, in the Appendix), which is due to the high lethality of
lung cancer (inducing negligible differences of population mortality between deprivation groups). Figure
1 in the Appendix shows the net survival curves obtained for the whole population with models M1–M3
as well as the non-parametric Pohar-Perme estimator (Perme and others, 2012). We observe that model
M1 and the Pohar-Perme estimator are virtually the same, which indicates that M1 can properly capture
time-dependent effects (Rubio and others, 2018), an assumption made for the correction models. Model
M2 produces a net survival curve which is consistently above that obtained with M1. The net survival
curve obtained with M3 is above all others, which is explained by the fact that most of the probability
mass (77% ) of the frailty correction is above 1. We compared estimates of the excess mortality hazard
and the corresponding net survival for two subgroups of patients (Figure 3). For stage-IV patients, the
differences between each model is almost not visible (upper panels), while the difference between models
M1–M3 could be more clearly seen in stage II patients subgroup (lower panels).

[Table 2 about here.]

6. DISCUSSION

6.1 Summary of findings

Using the general hazard structure in Rubio and others (2018), we have proposed excess hazard regres-
sion models that can account for mismatches in the life tables induced by the unavailability of information
on relevant population characteristics. The correction models based on a frailty distribution account for
non-specific mismatches in the life table, in the sense that the correction is not associated to the lack of
known specific variables for constructing the life tables, but to the effect of potentially several unavail-
able characteristics, which is allowed to be different for each patient. This is the main difference with
Cheuvart’s model (2.2), which we used here for comparison purpose even though this model was mainly
developed in the context of a randomised clinical trial when a selection bias of the patient population is
expected. Thus, Cheuvart’s model assumes the same constant correction parameter for all patients, which
is the main difference with our proposed frailty correction models used in population-based cancer reg-
istry data. We have shown that the proposed frailty correction models are able to properly identify and
correct these mismatches in several simulation scenarios, provided that the sample size is large enough
(5000 or more). Not accounting for mismatched life tables in the relative survival setting may lead to
inappropriate net survival comparisons between populations. The need for relatively large samples in or-
der to identify mismatches in the life tables is unsurprising, as there may be several reasons why general
population life tables are not fit for our cancer patient population (drug use, lifestyle related diseases, de-
privation, ethnicity, and etcetera), and only a large enough sample would guarantee that the data contains
enough information to adjust for the unavailability of those variables. Intuitively, the information about
these correction parameters is provided by the sample of differences of the population cumulative hazards
HP (Ai + ti; zi)−HP (Ai; zi). The implicit assumptions behind the proposed correction model M3 (2.8)
are:

(i) The set of covariates x includes the relevant cancer-specific variables. Thus, all missing information
(if any) is produced from a mismatch of the population mortality rate.

(ii) The model hE(t;x) is properly specified. This is, the fitted excess hazard model is flexible enough
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to approximate the excess hazard.

Assumption (i) reflects the fact that the model was constructed to only capture mismatches in the life ta-
bles, since the correction parameter only affects the population mortality hazard. For instance, in our lung
cancer data example, we assume that the excess hazard is accurately explained by age, sex, deprivation,
tumour stage, and comorbidity. However, a potential risk factor that is not included there is the smok-
ing status, which is not available at the population level in England. This risk factor might affect both
the background mortality hazard (because of diseases or complications associated with smoking) and the
cancer-related mortality hazard, in the case that patients continue smoking after the diagnosis of cancer.
Indeed, smoking is a driver of lung cancer incidence, but its impact on cancer-related mortality hazard
may not be that clear because comorbidity conditions already accounts (at least partially) to smoking-
related complications. Thus, the main interest of including smoking status in the predictor variables of the
cancer-related mortality hazard would be for patients who continue smoking after the diagnosis of cancer,
and it would certainly be interesting to explore the effect of including this variable in the model once it be-
comes available. Assumption (ii) is important since model misspecification can also affect the correction
made on the population hazard. If a covariate which appears in z and x is wrongly modelled in hE(t;x)
(e.g. not accounting for time-dependent effects), this may also affect the correction. In principle, this is
not an onerous condition since one would usually aim at properly modelling the excess hazard, which is
typically the main function of interest. Moreover, recent developments in the use of splines and paramet-
ric models (Royston and Parmar, 2002; Giorgi and others, 2003; Nelson and others, 2007; Remontet and
others, 2007; Charvat and others, 2016; Remontet and others, 2018; Rubio and others, 2018) allow for
a tractable inclusion of nonlinear and time-dependent effects in excess hazard models. We also assume
that there is enough heterogeneity about the unobserved variables of interest. For instance, if we want to
assess the impact of mismatched life tables in terms of deprivation, we assume that the sample contains
large enough numbers of individuals with different deprivation levels. The amount of data required to
accurately estimate the parameters of the correction models has been explored through a simulation study.
Certainly, we would not recommend trying to correct for mismatches in the life tables in samples con-
taining substantially fewer than 5000 observations, or with high censoring rates (e.g. higher than 50%).
Overall, we have found that model M3 is a good option for accounting for mismatches in the life tables,
provided a large enough sample. Its use however is not automatic, and should be analysed on a case by
case basis. Comparing the results between corrected (M3) and uncorrected (M1) models, as well as the
nonparametric Pohar-Perme estimator, is advisable in practice, in addition to the use of expert knowledge
from clinicians or epidemiologists in order to understand and explain the source of the mismatches.

6.2 Other models in the literature: shared and correlated frailty models

Zahl (1997) describes two extensions of long-term excess hazards models, where the main goal is to
account for an increased risk of dying of other diseases in patients with certain cancers. The first extension
consists of a shared frailty model in which a random effect (frailty) is multiplied by the population hazard
and the excess hazard as follows:

hSo (t;x | γ) = [hP (A+ t; y + t, z) + hE(t;x)]γ, (6.10)

where γ ∼ G, and G is a distribution with positive support, typically chosen to be a Gamma distribution
with unknown shape and scale parameters. Perhaps unsurprisingly, the induced model is non-identifiable
unless the random effect has unit mean. Given that the Gamma distribution is asymmetric, the assumption
of unit mean implies that P(γ 6 1) > P(γ > 1), which may not be a reasonable assumption in some
scenarios since this implies that there is a higher probability of requiring a shrinking correction to the
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population hazard (γ 6 1) than an increasing one (γ > 1). For a general framework of frailty hazard
models we refer the reader to Aalen and others (2008).

Zahl (1997) proposed a correlated frailty model, by using frailties on both the population hazard and
the excess hazard:

hZo (t;x | γ1, γ2) = hP (A+ t; y + t, z)γ1 + hE(t;x)γ2, (6.11)

where (γ1, γ2) ∼ G2, and G2 is a bivariate distribution with support on the positive quadrant. Intuitively,
it is difficult (if at all feasible) to obtain information about the factors affecting the population hazard and
the excess hazard (which is typically a flexible parametric model), and the dependencies between them,
simultaneously. In fact, Zahl (1997) found that the maximum likelihood estimators of the parameters
of model (6.11) do not exist, suggestive of identifiability issues of this model. Zahl (1997) proposed a
number of restrictions of the parameter space (to a compact set) in order to alleviate these estimation
issues. However, even after those restrictions, the MLE was on the boundary of the restricted parameter
space, which suggests remaining lack of identifiability.

6.3 Further research

From the results of our simulation study, we have observed a larger variability in the estimators of addi-
tional parameters corresponding to the correction of the background mortality hazard. In order to reduce
this variability, penalised maximum likelihood estimation methods could be used to shrink the correction
parameter (i.e. for M2 or for M3) towards the value 1. This will be explored in future research.

From the simulation study, the coverage proportions of the additional parameter correcting the life
table were lower than the nominal value. Using a robust estimator of the variance for this additional
parameter may be an option to reach a better coverage, as may be calculating profile likelihood intervals.

Another extension of model (2.2) consists of modelling the correction parameters γ and µ in terms of
a set of covariates, say w. A related approach has recently been studied in Touraine and others (2019).
Possible limitations include the inferential challenges in estimating q > 2 (the dimension of w) when the
sample size is not large enough. In addition, the assumption of proportional population hazards is often
too restrictive in the cancer survival field. In practice, one natural question is whether the Gamma frailty
distribution is flexible enough to model the random correction. Using maximum likelihood estimation
implies that the estimators of the parameters of the frailty distribution will converge to the values that
minimise the distance (in fact, the Kullback-Leibler divergence) to the true generating model. Section
6, Appendix Tables 20–21 and Appendix Figures 17–18, shows a simulated example where the random
correction is simulated from a lognormal distribution (instead of Gamma). This example indicates that
model M3 has a good performance even if the random corrections are not generated from a Gamma
distribution, but as long as the Gamma distribution can approximate the shape of the true generating
distribution. A possible extension consists of using a more flexible frailty distribution with a tractable
Laplace transform, in order to obtain tractable expressions for the hazard and cumulative hazard functions.
An attractive option is the power variance function (PVF) family of distributions (Aalen and others, 2008),
which contains three parameters instead of two. This, of course, complicates the estimation process.

SOFTWARE

Software in the form of R code, together with a sample input data set and complete documentation is avail-
able under request, and an R Markdown document entitled “Simulation design I: Excess hazard models for
insufficiently stratified life tables” is available on the website http://www.rpubs.com/FJRubio/
FGH and the GitHub repository https://github.com/FJRubio67/ExcessHazardModels.
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Fig. 1. Frailty distributions used in the simulation.
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FIGURES 17

Design I: γ ∼ Ga(6.5, 10)
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Fig. 2. Scenario with wide mismatch: γ ∼ Ga(6.5, 10). Models M1–M4 from top to bottom. Mean of the fitted excess
hazards (dashed lines), compared to the true generating excess hazard (continuous lines), and 1000 sample-specific
fitted excess hazards (grey lines) for n = 5000 and 30% censoring. Panels from left to right correspond to two sets
of values for the covariates (age, sex, comorbidity)=(70, 0, 0), (70, 0, 1), respectively.
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Fig. 3. Illustration for lung cancer patients: Excess mortality hazard (left panels) and the corresponding net survival
(right panels) for men aged 70 years at diagnosis, with Income Deprivation score equals to 0.1 (i.e. least deprived),
without Cardiovascular comorbidity nor COPD, and with stage IV cancer at diagnosis (upper panels) or stage II
cancer at diagnosis (lower panels). M1=solid grey lines, M2=dot-dashed black lines, M3=long-dashed black lines

Page 18 of 20Biostatistics



TABLES 19

Design I: γ ∼ Ga(6.5, 10)

Model Parameter MMLE mMLE ESD Mean Std Error RMSE Coverage

M1

σ (1.75) 1.212 1.214 0.228 0.218 0.584 0.464
κ (0.6) 0.592 0.593 0.046 0.045 0.047 0.934
α (2.5) 2.365 2.315 0.328 0.308 0.355 0.887
β11 (0.1) 0.119 0.118 0.012 0.012 0.023 0.700
β12 (0.1) 0.409 0.405 0.214 0.220 0.376 0.711
β13 (0.1) -0.034 -0.030 0.233 0.221 0.268 0.902
β21 (0.05) 0.065 0.065 0.002 0.002 0.015 0.000
β22 (0.2) 0.296 0.296 0.047 0.045 0.107 0.449
β23 (0.25) 0.161 0.159 0.047 0.046 0.101 0.484

M2

σ (1.75) 1.284 1.308 0.232 0.243 0.520 0.741
κ (0.6) 0.625 0.635 0.060 0.065 0.065 0.845
α (2.5) 2.199 2.106 0.412 0.402 0.510 0.689
β11 (0.1) 0.119 0.118 0.012 0.013 0.023 0.715
β12 (0.1) 0.411 0.406 0.215 0.223 0.378 0.717
β13 (0.1) -0.011 -0.001 0.225 0.225 0.251 0.928
β21 (0.05) 0.066 0.067 0.003 0.003 0.017 0.004
β22 (0.2) 0.308 0.309 0.046 0.047 0.117 0.352
β23 (0.25) 0.155 0.152 0.044 0.045 0.105 0.412
γ (6.5) 0.453 0.001 0.652 0.549 6.082 0.846

M3

σ (1.75) 1.406 1.323 0.745 0.721 0.820 0.978
κ (0.6) 0.543 0.546 0.127 0.122 0.139 0.966
α (2.5) 4.082 2.992 7.019 3.070 7.192 0.970
β11 (0.1) 0.099 0.099 0.028 0.024 0.028 0.913
β12 (0.1) 0.121 0.134 0.340 0.339 0.340 0.959
β13 (0.1) 0.089 0.103 0.354 0.326 0.354 0.950
β21 (0.05) 0.048 0.049 0.009 0.009 0.010 0.948
β22 (0.2) 0.187 0.198 0.089 0.089 0.090 0.954
β23 (0.25) 0.262 0.251 0.087 0.085 0.087 0.949
b (10) 13.060 9.072 12.247 10.379 12.618 0.847
µ (6.5) 7.010 7.134 1.839 1.727 1.908 0.853

M4

σ (1.75) 1.367 1.274 0.733 0.686 0.826 0.920
κ (0.6) 0.540 0.546 0.122 0.117 0.136 0.968
α (2.5) 3.992 2.978 6.479 2.694 6.645 0.960
β11 (0.1) 0.100 0.100 0.028 0.023 0.028 0.895
β12 (0.1) 0.139 0.151 0.341 0.328 0.343 0.938
β13 (0.1) 0.082 0.092 0.350 0.317 0.350 0.945
β21 (0.05) 0.049 0.049 0.010 0.008 0.010 0.859
β22 (0.2) 0.194 0.203 0.092 0.086 0.093 0.904
β23 (0.25) 0.257 0.248 0.089 0.082 0.089 0.907
c (6.5) 6.709 7.137 2.470 – 2.477 –

Table 1. Simulation results for the scenario GH with (σ, κ, α) = (1.75, 0.6, 2.5), β1 = (0.1, 0.1, 0.1), β2 = (0.05, 0.2, 0.25),
n = 5000, and wide mismatch γ ∼ Ga(6.5, 10). Mean of the MLEs (MMLE), median of the MLEs (mMLE), empirical standard
deviation (ESD), mean (estimated) standard error, root-mean-square error (RMSE), and coverage proportions (Coverage).
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M1 M2 M3
b – – 9.83 (3.03)

γ | µ – 2.7 (0.21) 6.54 (0.91)
θ 0.05 (0.01) 0.03 (0.01) 0.03 (0.01)
κ 0.38 (0.01) 0.35 (0.01) 0.34 (0.01)
α 4.64 (0.34) 5.64 (0.48) 5.92 (0.58)

Age-t 0.29 (0.04) 0.29 (0.04) 0.16 (0.05)
Dep-t 0.11 (0.04) 0.12 (0.04) 0.09 (0.04)

Stage 1-t -2.66 (0.25) -2.17 (0.32) -5.4 (1.4)
Stage 2-t -2.2 (0.2) -2 (0.22) -2.69 (0.35)
Stage 3-t -1.66 (0.11) -1.57 (0.11) -1.75 (0.13)

CV-t 0.31 (0.11) 0.31 (0.11) 0.42 (0.11)
COPD-t 0.13 (0.11) 0.08 (0.12) 0.37 (0.14)

Age 0.27 (0.01) 0.23 (0.02) 0.16 (0.02)
Dep 0.06 (0.01) 0.06 (0.01) 0.04 (0.01)

Stage 1 -2.84 (0.06) -3.13 (0.1) -3.53 (0.36)
Stage 2 -2.16 (0.06) -2.32 (0.07) -2.65 (0.1)
Stage 3 -1.23 (0.03) -1.27 (0.04) -1.36 (0.04)

CV 0.24 (0.04) 0.26 (0.04) 0.3 (0.04)
COPD 0.19 (0.04) 0.17 (0.04) 0.25 (0.05)

AIC 20304.69 20241.27 20213.41

Table 2. Regression parameter estimates (standard errors) using models M1–M3, with their corresponding AIC on the
men lung cancer dataset. Note: The time- dependent effects are indicated with -t. For model M2, γ is estimated, while
µ is estimated for model M3. Age=Age at diagnosis (centred at 70, and divided by 10), Dep=Income Deprivation
Score (centred at 0.1, and divided by 10), CV=CardioVascular comorbidity, COPD=Chronic Obstructive Pulmonary
Disease, AIC=Akaike Information Criteria (best model indicated in bold font).
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