1 Article type: Research

2

- 3 Title: Whole genome sequencing *Mycobacterium tuberculosis* directly from sputum
- 4 identifies more genetic diversity than sequencing from culture
- 5
- 6 Authors:

Camus Nimmo ^{1,2}	c.nimmo.04@cantab.net
Liam P. Shaw ^{3,4}	
Ronan Doyle ¹	
Rachel Williams ¹	
Kayleen Brien ²	
Carrie Burgess ¹	
Judith Breuer ¹	
Francois Balloux ³	
Alexander S. Pym ²	

- 8 1. Division of Infection and Immunity, University College London, London WC1E 6BT,
- 9 UK
- 10 2. Africa Health Research Institute, Durban, South Africa
- 11 3. UCL Genetics Institute, University College London, London WC1E 6BT, UK
- 12 4. Nuffield Department of Clinical Medicine, Oxford University, Oxford OX3 7BN, UK

13

14 Abstract

15

16 Background

17	Repeated culture reduces within-sample <i>Mycobacterium tuberculosis</i> genetic diversity due
18	to selection of clones suited to growth in culture and/or random loss of lineages, but it is
19	not known to what extent omitting the culture step altogether alters genetic diversity. We
20	compared <i>M. tuberculosis</i> whole genome sequences generated from 39 paired clinical
21	samples. In one sample DNA was extracted directly from sputum then enriched with
22	custom-designed SureSelect (Agilent) oligonucleotide baits and in the other it was extracted
23	from mycobacterial growth indicator tube culture.
24	
25	Results
26	DNA directly sequenced from sputum showed significantly more within-sample diversity
27	than that from mycobacterial growth incubator tube culture. This was demonstrated by
28	more variants present as heterozygous alleles (HAs) where both a variant and wild type
29	allele were present within a given sample (p<0.001) and greater within-sample Shannon
30	diversity (p<0.001). Seven genes with high within-sample diversity have previously been
31	identified as targets for positive selection, highlighting their potential role in adaptation to
32	survival within the host and under drug pressure. Resistance associated variants present as
33	HAs occurred in six patients, and in four cases may have provided a genotypic explanation
34	for phenotypic resistance.

35

36 Conclusions

- 37 Culture-free *M. tuberculosis* whole genome sequencing detects more within-sample
- 38 diversity and may allow detection of mycobacteria that are not actively replicating.

- 40 Key words: Mycobacterium tuberculosis; drug-resistant tuberculosis; whole genome
- 41 sequencing; sputum; within-patient diversity; heteroresistance

42 Background

43

44	International efforts to reduce tuberculosis (TB) infections and mortality over the last two
45	decades have only been partially successful. In 2017, 10 million people developed TB and it
46	has overtaken HIV as the infectious disease responsible for the most deaths worldwide(1,
47	2). Drug resistance is a major concern with a steady rise in the number of reported cases
48	globally and rapid increases in some areas(1). Patients with Mycobacterium tuberculosis
49	resistant to the first line drugs rifampicin and isoniazid are classed as having multidrug-
50	resistant (MDR) TB and usually treated with a standardised second-line drug regimen for at
51	least nine months, which is also used for rifampicin monoresistance(3, 4). With the
52	emergence of resistance to fluoroquinolones and aminoglycosides (extensively drug-
53	resistant [XDR] TB) there is an increasing need for individualised therapy based on drug
54	susceptibility testing (DST). Individualised therapy ensures patients are treated with
55	sufficient active drugs which can prevent selection of additional resistance, improve
56	treatment outcomes and reduce duration of infectiousness(5-8).
57	
58	Traditionally, phenotypic culture-based DST was used to identify drug resistance but this is
59	being replaced by rapid genetic tests that detect specific drug resistance conferring
60	mutations. Next generation whole genome sequencing (WGS) of <i>M. tuberculosis</i> is being
61	increasingly used in research and clinical settings to comprehensively identify all drug
62	resistance associated mutations(9). <i>M. tuberculosis</i> has a conserved genome with little
63	genetic diversity between strains(10), but more detailed analysis of individual patient
64	samples with WGS has identified genetically separate bacterial subpopulations in sequential
65	sputum samples(11-15) and across different anatomical sites(16). This within-patient

diversity can occur as a result of mixed infection with genetically distinct strains or within-host evolution of a single infecting strain(17).

68

69	Bacterial subpopulations can be detected in clinical samples after sequencing reads are
70	mapped to a reference genome where multiple base calls are detected at a single genomic
71	site. These heterozygous alleles (HAs) at sites associated with drug resistance (resistance
72	associated variants, RAVs) may reflect heteroresistance, where a fraction of the total
73	bacterial population is drug susceptible while the remainder is resistant(18). Identification
74	of genetic diversity within clinical samples is important as it may improve detection of RAVs
75	over currently available genetic tests and consensus-level WGS(18). Identifying RAVs could
76	improve individualised therapy, prevent acquired resistance(12), and give insight into
77	bacterial adaptation to the host.
78	
79	<i>M. tuberculosis</i> WGS is usually performed on cultured isolates to obtain sufficient purified
80	mycobacterial DNA. However, the culture process can change the population structure from
81	that of the original sample due to genetic drift (random loss of lineages) and/or the
82	selection of subpopulations more suited to growth in culture(19-21), and repeated
83	subculture leads to loss of genetic diversity and heteroresistance(22). Additionally, in the
84	normal course of <i>M. tuberculosis</i> infection, some bacteria exist as viable non-culturable
85	persister organisms that are hypothesised to cause the high relapse rate seen following
86	treatment of insufficient duration(23). These organisms are likely to be missed by any
87	sequencing method reliant on culture.

89	WGS directly from sputum without enrichment is challenging(24). It has recently been
90	improved by depleting human DNA during DNA extraction(25). We have previously reported
91	the use of oligonucleotide enrichment technology SureSelect (Agilent, CA, USA) to sequence
92	<i>M. tuberculosis</i> DNA directly from sputum(26) and demonstrated its utility in determining a
93	rapid genetic drug resistance profile(27, 28).
94	
95	It remains unclear to what extent WGS of cultured <i>M. tuberculosis</i> samples underestimates
96	the genetic diversity of the population in sputum samples. One previous study of 16 patients
97	did not identify increased genetic diversity in <i>M. tuberculosis</i> DNA sequenced directly from
98	sputum compared to DNA from culture(25), whereas another study of mostly drug
99	susceptible patients showed sequencing directly from sputum identified a slight excess of
100	HAs relative to culture(27). Here we reanalyse heterozygous alleles (HAs) present in that
101	study(27) in addition to newly collected samples from patients with MDR-TB, use a more
102	sensitive analysis to measure overall within-sample genetic diversity and further explore the
103	genomic location of the additional diversity identified.
104	
105	Results
106	
107	Patient Characteristics and Drug Susceptibility Testing
108	
109	Whole genome sequences were obtained for 39 patients from both mycobacterial growth
110	indicator tube (MGIT) culture and direct sputum sequencing. The patients were
111	predominantly of black African ethnicity (80%) and 50% were HIV positive (Table 1). First-

112 line phenotypic drug susceptibility testing (DST) results identified 22 patients with MDR-TB

113	and two with rifampicin monoresistance. In addition there were three isoniazid
114	monoresistant patients and ethambutol resistance was detected in 8 patients. Second-line
115	phenotypic DST was performed for patients with rifampicin-resistant or MDR-TB and
116	identified one case of kanamycin resistance (Table 2).
117	
118	We observed greater median coverage depth in sputum-derived sequences than MGIT
119	sequences (164.3 vs 136.6, p=0.068). A genotypic susceptibility profile was determined by
120	evaluating MGIT WGS for consensus-level RAVs using a modified version of a publicly
121	available list(29). Genotypic RAVs predicted all rifampicin phenotypic resistance and >90% of
122	isoniazid phenotypic resistance. Ethambutol genotypic RAVs were poorly predictive of
123	phenotypic resistance in line with findings from other studies(30) (Table 2). The patient with
124	kanamycin phenotypic resistance was correctly identified by an <i>rrs</i> a1401g RAV. No full
125	phenotypic fluoroquinolone phenotypic resistance was identified, but several colonies from
126	patient F1013 did grow in the presence of ofloxacin (although not enough to be classified as
127	resistant). The consensus sequences from this patient harboured a gyrB E501D mutation
128	which is believed to confer resistance to moxifloxacin but not other fluoroquinolones, which
129	may explain the borderline phenotypic DST result(31).
130	

131 Genetic Diversity

132

To compare consensus sequences from sputum and MGIT, a WGS consensus sequence-level
maximum likelihood phylogenetic tree was constructed (Supplementary Material: Figure 1).
Four previously sequenced strains from KwaZulu-Natal were included(32). As expected, all
paired sequences were closely related, with a mean difference of 1.30 (range 0-9) single

137	nucleotide polymorphisms (SNPs). Samples from patients F1066 and F1067 were closely
138	related with only one consensus-level SNP separating all four consensus sequences. There
139	was no obvious epidemiological link between these patients (although this study was not
140	designed to collect comprehensive epidemiological information) and they lived 20km apart
141	in Durban. However, both patients were admitted contemporaneously to an MDR
142	treatment facility and sampled on the same day. DNA extraction and sequencing occurred
143	on different runs so the close genetic linkage may represent direct transmission within a
144	hospital setting, a community transmission chain or an unlikely cross-contamination during
145	sample collection.
146	
147	Having established congruence between sputum and MGIT sequences at the consensus
148	level we then compared genetic diversity by DNA source. We first defined a threshold for
149	calling variants present as heterozygous alleles (HAs) in our entire dataset by using a range
150	of minimum read count frequencies as described in the methods (Figure 1). Below a
151	minimum of five supporting reads there was an exponential increase in the number of HAs
152	identified, which may be indicative of the inclusion of sequencing errors. To reduce this risk,
153	we used a threshold of a minimum of five supporting reads.
154	
155	Genetic diversity may occur because of within-host evolution or mixed infection. To identify
156	mixed infection we used a molecular barcode(33) to scan all HAs for a panel of 413
157	phylogenetic SNPs that can resolve <i>M. tuberculosis</i> into one of seven lineages and 55 sub-
158	lineages. We found three phylogenetic SNPs among the HAs. In all cases the heterozygous
159	phylogenetic SNP originated from the same sublineage as other SNPs present at 100%

160 frequency, and there were no cases of HAs indicating the presence of more than one lineage

161	or sublineage. This suggests that the genetic diversity identified is mostly or exclusively due
162	to within-host evolution, although there remains a small possibility that mixed infections
163	with two strains from the same sub-lineage could have occurred.
164	
165	As a first step to comparing diversity between sputum and MGIT sequenced samples we
166	looked at the location of genetic diversity within the <i>M. tuberculosis</i> genome. Variants were
167	called in the MGIT and sputum sequences for each patient and classified as present in MGIT
168	only, sputum only or shared (present in both). HAs were widely dispersed across the
169	genome at similar sites in both sputum and MGIT samples but some genes had multiple HAs
170	(Table 3). The highest genetic diversity was found in the ribosomal RNA (rRNA) genes (<i>rrs</i>
171	and <i>rrl</i>) with 358 HAs, of which 98.6% were only found in sputum-derived sequences.
172	
173	As rRNA contains regions that are highly conserved across bacteria, it was considered a
174	possibility that SureSelect baits targeting rRNA genes were capturing both <i>M. tuberculosis</i>
175	and other bacterial species. To evaluate this, metagenomic assignment was performed on
176	all reads. Sampling reads not assigned to <i>M. tuberculosis</i> (i.e. presumed contaminants from
177	other bacteria) and performing a BLAST search against <i>M. tuberculosis</i> 16S and 23S rRNA
178	genes indicated that a sizeable proportion of these reads from directly sequenced sputum
179	had a BLAST hit of at least 30 bases (median 11% v 0% of equivalent reads from MGIT
180	sequencing, p<0.001, Supplementary Material: Figure 2). The taxonomic assignment of
181	these reads were indeed typical of genera composing the oral flora, with a high
182	representation of Actinomyces, Fusobacterium, Prevotella, and Streptococcus
183	(Supplementary Material: Figure 3).

184

185	This supported the hypothesis that the baits may enrich rRNA from other organisms so rRNA
186	genes were excluded from further analysis. The difference in diversity between sputum and
187	MGIT sequences can be explained by the selective nature of MGIT media which will enrich
188	<i>M. tuberculosis</i> sequences. Importantly the frequency of HAs in other highly diverse genes
189	between sequencing strategies was more balanced (Table 3). Pertinently seven of these
190	genes (Rv1319c(34), lppB(35), Rv2082(35), ppsA(34, 36), ponA1(36), lppA(37), and pks12(35,
191	36)) with high numbers of HAs have been previously identified as highly diverse in
192	comparative genomic studies suggesting the detected HAs are not artefactual. The
193	frequencies at which HAs in these genes were present in MGIT and sputum is shown in
194	Supplementary Material Figure 4.
195	
196	After confirming the absence of mixed infections and removing rRNA gene sequences we
197	compared the frequency of HAs in sputum and MGIT. There were 2048 variants across the
198	dataset that were present as a HA in either MGIT, sputum or both sequences (Table 4).
199	Variants present in both MGIT and sputum derived sequences were more likely to be
200	present as a HA in the sputum-derived sequence (3.2% v 1.9%, p<0.0001). Of the other
201	variants present as HAs, 821 were unique to direct sputum sequencing and 153 were unique
202	to MGIT sequencing (Table 4). Variants found only in sputum were more likely to be
203	heterozygous than those found only in MGIT or in both (p<0.0001). The distribution of HAs
204	by patient is shown in Figure 2A. HAs found only by one modality were more likely to be
205	SNPs than shared HAs, where the majority were insertions or deletions. The ratio of non-
206	synonymous to synonymous HAs was similar for those that were shared or MGIT only, but
207	was lower for sputum only HAs. Frameshift mutations were most prevalent among shared
208	HAs (Table 4).

2	2	\sim
2	υ	9

210	To confirm our findings of increased diversity in sputum we calculated mean within-sample
211	diversity (H), excluding rRNA genes and repeat regions (see methods). The mean diversity
212	was significantly greater in sputum than MGIT-derived sequences (Figure 2B: 0.116 ± 0.078 v
213	0.054 ± 0.026 , mean $H_{sputum}/H_{MGIT} = 2.66$, p=3.0 x 10 ⁻⁵).
214	
215	Genetic diversity in drug resistance genes
216	
217	HAs in drug resistance-associated regions, including promoters and intergenic regions, were
218	individually assessed. Five of the 39 patients had RAVs present as HAs in at least one gene,
219	which are shown in Table 5. F1002 had three compensatory mutations in <i>rpoC</i> present at
220	HAs in both sequences. F1007 had high-level phenotypic isoniazid resistance despite wild
221	type katG and inhA genes, but did have two ahpC promoter variants present as HAs. Neither
222	of these variants are reported frequently but both have been previously associated with
223	resistance in limited numbers of samples(38). As described above F1066 and F1067 were
224	highly related with only one consensus SNP difference between all four sequences. Both had
225	phenotypic high level isoniazid resistance with no consensus-level <i>katG</i> or <i>inhA</i> mutation,
226	but had frameshift <i>katG</i> mutations present as HAs which have the potential to cause
227	resistance(39). F1066 and RF021 had <i>Rv1979c</i> and <i>pncA</i> mutations respectively at low
228	frequency in sputum only which have the potential to confer phenotypic resistance to
229	clofazimine (<i>Rv1979c</i>) and pyrazinamide (<i>pncA</i>), although no phenotypic testing was
230	performed for these drugs.

231

232 Discussion

233

234	In this study we whole genome sequenced DNA from sputum and MGIT culture in paired
235	samples from 39 patients and compared within-patient genetic diversity of the bacterial
236	genome identified from each source. All paired sequences were closely related at the
237	consensus level, and WGS predicted phenotypic drug susceptibility with over 90% sensitivity
238	and specificity for rifampicin and isoniazid in line with published data(40).
239	
240	The understanding of within-patient <i>M. tuberculosis</i> genetic diversity is becoming
241	increasingly important as the detection of rare variants has been shown to improve the
242	correlation between phenotypic and genotypic drug resistance profiles(18) and can identify
243	emerging drug resistance(11, 12). Here we have demonstrated that significantly more
244	genetic diversity is identified by WGS performed directly from enriched sputum than MGIT
245	culture. Not including a culture step avoids the introduction of bias towards culture-adapted
246	subpopulations and the impact of random chance and is also likely to incorporate DNA from
247	viable non-culturable mycobacteria. A reduction in genetic diversity has previously been
248	shown with sequential <i>M. tuberculosis</i> subculture(19, 22), but was not confirmed by a study
249	performing WGS directly from sputum(25). However, the 16 paired sputum and MGIT
250	samples compared by Votintseva(25) had a minimum of 5x coverage compared to a
251	minimum 40x coverage in this study, and were likely to contain less genetic material as they
252	were surplus clinical rather than dedicated research samples.
253	

We found that the rRNA genes have high levels of diversity in sputum samples, but believe this is due to non-mycobacterial DNA hybridising to the capture baits — a conclusion borne

256	out by the taxonomic assignment of reads aligning to these genes in common oral bacteria.
257	We therefore exclude these from further analysis, and recommend others using enrichment
258	from sputum do similarly. We use two methods to evaluate within-sample <i>M. tuberculosis</i>
259	genetic diversity. First, we demonstrate increased diversity when sequencing directly from
260	sputum with significantly more unique heterozygous alleles (HAs) than sequencing from
261	MGIT culture. We also observed significantly higher genetic diversity in sputum-derived
262	sequences by comparing the Shannon diversity of variable sites across pairs of samples.
263	
264	Many of the genes with high levels of within-sample diversity are also reported to be targets

for convergent evolution, independently accumulating similar mutations on a global scale.

266 This implies that diversity seen on a macroevolutionary scale has a basis in microevolution,

and reinforces the importance of accurately characterising the biological function of these

268 genes and their products to aid the identification of new therapeutic targets. Two-thirds of

the patients with MDR-TB had already been treated for drug-sensitive TB, and the diversity

identified in sputum samples may therefore represent early adaptation to drug pressure.

271 Importantly, as direct sputum sequencing does not rely on live mycobacteria, DNA from

recently killed *M. tuberculosis* is likely to also be sequenced, meaning that recent genomic

273 mutations are likely to be represented as HAs.

274

In four patients, RAVs present as HAs provided a likely genotypic basis for otherwise
unexplained phenotypic resistance. Given the small total number of resistance mutations in
this study, the excess of heterozygous known RAVs in directly sequenced sputum is not
statistically significant. However the presence of heterozygous RAVs in both MGIT and
sputum sequences reinforces the biological importance of these mutations.

2	o	n
2	ð	υ

200	
281	A limitation of this study is that it can be difficult to distinguish low frequency variants from
282	sequencing error. Ideally low frequency variants could be confirmed by resequencing the
283	same DNA samples. To reduce the risk of sequencing errors yet still identify genetic diversity
284	we used the lowest minimum read threshold at which the number of HAs remained stable.
285	Also, it is reassuring that of all fixed and heterozygous variants called, more than 93% were
286	identified from both DNA sources.
287	
288	Conclusions
289	
290	Directly sequencing <i>M. tuberculosis</i> from sputum is able to identify more genetic diversity
291	than sequencing from culture. Understanding within-patient genetic diversity is important
292	to understand bacterial adaptation to drug treatment and the acquisition of drug resistance.
293	It also has potential to identify low frequency RAVs that may further enhance genotypic-
294	phenotypic drug resistance correlation.
295	
296	Methods
297	
298	Patient enrolment
299	Adult patients presenting with a new diagnosis of sputum culture-positive TB were included
300	in the study. Patients were recruited in London, UK (n=15) and Durban, South Africa (n=24).
301	All patients recruited in Durban were Xpert MTB/RIF (Cepheid, CA, USA) positive for
302	rifampicin resistance. Two sputum samples were collected prior to initiating treatment, with

- 303 one inoculated into mycobacterial growth indicator tube (MGIT) culture (BD, NJ, USA) and
- 304 the other used for direct DNA extraction.
- 305
- 306 Ethics, Consent and Permissions
- 307
- 308 All patients gave written informed consent to participate in the study. Ethical approval for
- 309 the London study was granted by NHS National Research Ethics Service East Midlands-
- Nottingham 1 (reference 15/EM/0091). Ethical approval for the Durban study was granted
- 311 by University of KwaZulu-Natal Biomedical Research Ethics Committee (reference
- 312 BE022/13).

313

314 Microbiology

- 315 MGIT samples were incubated in a BACTEC MGIT 960 (BD, NJ, USA) until flagging positive.
- 316 Phenotypic DST data for London samples were those provided to treating hospitals by Public
- 317 Health England. Phenotypic DST for Durban samples was performed using the solid agar

318 proportion method (Supplementary Material: Methods).

319

320 DNA extraction and sequencing

- Positive MGIT tubes were centrifuged at 16,000g for 15 minutes and the supernatant
- 322 removed. Cells were resuspended in phosphate-buffered saline before undergoing heat
- killing at 95°C for 1 hour followed by centrifugation at 16,000g for 15 minutes. The
- 324 supernatant was removed and the sample resuspended in 1mL sterile saline (0.9% w/v). The
- 325 wash step was repeated. DNA was extracted with mechanical ribolysis before purification

326 with DiaSorin Liaison Ixt (DiaSorin, Italy) or CTAB(41). NEBNext Ultra II DNA (Ne	ew England
---	------------

- 327 Biolabs, MA, USA) was used for DNA library preparation.
- 328
- 329 Sputum samples for direct sequencing were similarly heat killed processed as for MGIT
- samples. DNA extraction was performed with mechanical ribolysis followed by purification
- using DiaSorin Liaison Ixt (DiaSorin, Italy) or DNeasy blood & tissue kit (Qiagen,
- 332 Germany)(41). Target enrichment was performed using SureSelect with a custom-designed
- bait set providing coverage of the entire *M. tuberculosis* genome as described
- 334 previously(27). Batches of 48 multiplexed samples were sequenced on a NextSeq (Illumina,
- 335 CA, USA).

336

337 Bioinformatic analysis

- Bioinformatic analysis was performed with CLC Genomics Workbench v11.0 (Qiagen,
- 339 Germany). DNA sequence reads were aligned to an H37Rv reference genome as detailed in

340 the Supplementary Material Methods section (GenBank accession NC_000962.3). All

341 samples had minimum 98% 1x reference genome coverage and mean coverage depth 40x

- 342 across the genome. Variants falling within or near hypervariable elements were excluded
- 343 (Supplementary Material: Table 1). A consensus sequence was extracted and used to
- 344 determine the genotypic drug susceptibility profile. To construct the maximum likelihood
- 345 phylogenetic tree, variants were called against the reference genome using VarScan v2.3.9
- 346 (Supplementary Material: Methods).

347

For the initial analysis of genetic diversity, variants were included if supported by ≥2 reads,
with ≥1 forward and reverse read. The minimum supporting read threshold was increased in

350	a stepwise fashion from 2 to 20. Further analyses were performed on variant tracks where
351	variants were supported \geq 5 supporting reads including \geq 1 forward and reverse read.
352	
353	To compare diversity between paired samples, we first mapped reads to the reference
354	genome using bwa mem v0.7.12(42). After verifying all samples had adequate coverage with
355	qualimap(43) (mean \pm standard deviation coverage at 10x: 98.0 \pm 1.8%) and realigning
356	indels, variants were called with HaplotypeCaller in GATK v3.3.0(44) (Supplementary
357	Material: Methods). The gvcf files were combined for each pair of samples with
358	CombineGVCFs in GATK then screened to remove sites in variable regions and rRNA genes
359	with vcfintersect in vcflib, resulting in 39 paired gvcf files containing allele depths at variable
360	positions for diversity analysis.
361	
362	Metagenomic assignment
363	Sequencing reads were classified using Kraken v0.10.6(45) against a custom Kraken
364	database previously constructed from all available RefSeq genomes for bacteria, archaea,
365	viruses, protozoa, and fungi, as well as all RefSeq plasmids (as of September 19 th 2017) and
366	three human genome reference sequences(46). The size of the final database after shrinking
367	was 193 Gb, covering 38,190 distinct NCBI taxonomic IDs.
368	
369	To assess the proportion of contaminating reads that could generate spurious diversity
370	when manned to M. tuberculasic ribosomal gapos, we randomly subsampled 100 reads
	when mapped to <i>W. tuberculosis</i> hoosonal genes, we randomly subsampled 100 reads

372 v2.2.28(47) against rRNA genes from the H37Rv reference genome. We only analysed hits of

at least 30 bases.

374

375 Statistics

376 Statistical analyses were performed with Prism v7.0 (Graphpad, CA, USA). The number of

- 377 HAs in paired samples were compared using a two-tailed Wilcoxon matched-pairs signed
- 378 rank test. Numbers of HAs found between groups were compared with chi-squared.

379

380 Within-sample diversity (H) was calculated using Shannon diversity from the allele

frequencies (p). The Shannon index (H_n) expresses the positional entropy at each position

382 (*n*), with the mean positional entropy (*H*) indicating greater within-sample diversity:

$$H = \sum_{n} H_{n} = \sum_{n} \sum_{i \in \{A,C,G,T\}} p_{n,i} \log (p_{n,i})$$

To make a fair comparison for each pair of samples, after removing indels, sites were

included if they contained a variant in at least one and had a depth coverage \geq 30 in both.

- We found that the depth coverage cutoff had no qualitative effect on the conclusions. The
- difference in mean within-sample diversity depending on DNA source was compared with a
- 387 two-tailed Wilcoxon matched-pairs signed rank test.

388

389 Abbreviations

DST	drug susceptibility testing
НА	heterozygous allele
MDR-TB	multidrug resistant-tuberculosis
MGIT	mycobacterial growth indicator tube

RAV	resistance-associated variant
rRNA	ribosomal RNA
SNP	single nucleotide polymorphism
ТВ	tuberculosis
WGS	whole genome sequencing

391

392

394 Declarations

395

396 Ethics approval and consent to participate

- 397 All patients gave written informed consent to participate in the study. Ethical approval for
- 398 the London study was granted by NHS National Research Ethics Service East Midlands-
- 399 Nottingham 1 (reference 15/EM/0091). Ethical approval for the Durban study was granted
- 400 by University of KwaZulu-Natal Biomedical Research Ethics Committee (reference
- 401 BE022/13).
- 402

403 **Consent for publication**

- 404 Not applicable
- 405

406 Availability of data and materials

- 407 Original fastq files are available at NCBI Sequence Read Archive with BioProject reference
- 408 PRJNA486713: https://www.ncbi.nlm.nih.gov/bioproject/PRJNA486713/
- 409

410 **Competing interests**

- 411 The authors declare that they have no competing interests.
- 412

413 Funding

- 414 Camus Nimmo is funded by a Wellcome Trust Research Training Fellowship reference
- 415 203583/Z/16/Z. This work was additionally funded by National Institute for Health Research
- via the UCLH/UCL Biomedical Research Centre (grant number BRC/176/III/JB/101350) and
- 417 the PATHSEEK European Union's Seventh Programme for research and technological

- 418 development (grant number 304875). The funding bodies had no input on study design,
- 419 analysis, data interpretation or manuscript writing.
- 420
- 421 Authors' contributions
- 422 Study conception: JB, ASP
- 423 Data collection: CB, KB
- 424 Analysis and interpretation: CN, LPS, RD, RW
- 425 Drafting of manuscript: CN, LPS
- 426 Revision of manuscript: FB, JB, ASP
- 427 Final approval of manuscript: CN, LPS, RD, RW, KB, CB, JB, FB, ASP
- 428

429 Acknowledgements

- 430 The authors would like to thank Sashen Moodley, Ashentha Govender and Colin Chetty in
- 431 the Microbiology Core, Africa Health Research Institute.

432 Tables

433

	Count / mean	Range/percentage
Age	36.7	22 – 64
Male sex	23/37	59.0%
Ethnicity		
Asian	3/35	8.6%
Black African	28/35	80.0%
Caucasian	4/35	11.4%
HIV positive	19/38	50.0%
CD4 count (median)	296.5*	17 – 707
On antiretroviral therapy at time of diagnosis	8/19**	42.1%

434

435 Table 1. Baseline patient characteristics for 39 patients (or as otherwise specified where

436 data were missing). *Data missing for 1 patient.

438

Drug	Resistance by	Resistance by	Genotypic DST	Genotypic DST
Diug	phenotypic DST	genotypic DST	sensitivity	specificity
First-line drugs				
Rifampicin	24/37 (64.9%)	24/39	24/24 (100%)*	24/24 (100%)
Isoniazid	25/37 (67.6%)	24/39	23/25 (92.0%)	23/24 (95.8%)
Ethambutol	8/37 (21.6%)	17/39	8/8 (100%)	8/17 (47.1%)
Second-line drug	S			
Ofloxacin	0/24 (0.0%)	1/24	N/A	0/1 (0%)**
Kanamycin	1/24 (4.2%)	1/24	1/1 (100%)	1/1 (100%)

439

440 Table 2. Phenotypic and genotypic drug susceptibility testing (DST) results and sensitivity 441 and specificity of genotypic DST relative to phenotypic DST. Phenotypic DST available for 442 first-line drugs for 37 of the 39 patients, and for second-line drugs for 24 patients who 443 demonstrated rifampicin drug resistance. *In two directly-sequenced sputum samples 444 rifampicin RAVs were missed due to low coverage, although they were identified in the 445 corresponding MGIT sample. **This sample had <1% of colonies grow in the presence of 446 ofloxacin, so is categorised as sensitive but may have low-level or heteroresistance to 447 fluoroquinolones (see main text).

	Heterozygous Allele Count			Gene		
		MGIT	Sputum		length	Hypothesised gene
Gene	Shared	only	only	Total	(base pairs)	function
rrs	2	3	180	185	3138	23S rRNA
rrl	0	0	173	173	1537	16S rRNA
						Metabolism and
Rv1319c	70	1	24	95	1608	respiration
ІррВ	7	6	10	23	663	Surface lipoprotein
Rv2561	21	0	0	21	294	Unknown function
Rv3424c	1	1	19	21	363	Unknown function
Rv2082	16	1	2	19	2166	Unknown function
						GGPP synthetase
ppsA	7	0	11	18	1059	(lipid synthesis)
Rv1435c	3	9	6	18	609	Secreted protein
ponA1	5	3	9	17	2037	Cell wall biosynthesis
						Metabolism and
Rv2277c	2	0	15	17	906	respiration
vapC31	5	0	12	17	429	Possible toxin
Rv2823c	5	2	9	16	2430	Unknown function
ІррА	1	3	11	15	660	Surface lipoprotein
						MPM synthesis (lipid
pks12	5	5	4	14	12456	metabolism)

449

450 Table 3. Genes with the most heterozygous alleles (HAs) identified across the entire dataset.

452

	Shared variants	MGIT only variants	Sputum only variants	Total		
All variants vs H37Rv (fixed or heterozygous)						
Total variants	33 153 1162 1217		1217	35532		
Variant	s vs H37Rv present as he	terozygous allele	rs (HAs) only			
Total variants present as	MGIT 645 (1.9%)	152 (12 2%)	921 (67 69/)	2048 (E 8%)		
HAs (% of total variants)	Sputum 1074 (3.2%)	133 (13.2%)	821 (07.5%)	2048 (5.8%)		
Median HAs per sample	21	3	15	40		
Variant type (% all HAs)						
SNP	500 (46.6%)	127 (83.0%)	708 (86.2%)	1335 (65.2%)		
MNP	12 (1.1%)	1 (0.7%)	24 (2.9%)	37 (1.8%)		
Insertion	303 (28.2%)	8 (5.2%)	31 (3.8%)	342 (16.7%)		
Deletion	259 (24.1%)	16 (10.5%)	57 (6.9%)	332 (16.2%)		
Replacement	0 (0.0%)	1 (0.7%)	1 (0.1%)	2 (0.1%)		
Coding change (% all HAs)						
Non-synonymous	395 (36.8%)	79 (51.6%)	318 (38.7%)	792 (38.7%)		
Synonymous	159 (14.8%)	32 (20.9%)	171 (20.8%)	362 (17.7%)		
Intergenic	520 (48.4%)	42 (27.5%)	332 (40.4%)	894 (43.7%)		
Non-synon/synon ratio	2.48	2.47	1.86	2.19		
Stop codon (% of all non-	4 (1.0%)	1 (1 3%)	9 (2.8%)	14 (1 8%)		
synonymous HAs)	. (1.070)	1 (1.070)	5 (2.070)	14 (1.0%)		
Frameshift (% of all non-	185 (46.8%)	19 (24,1%)	47 (14.8%)	251 (31.7%)		
synonymous HAs)		10 (2111/0)	., (21.070)			

- 454 Table 4. Variants identified in MGIT derived, sputum derived, or both sequences from paired
- 455 samples. Values given represent totals for the 39 paired samples. SNP = single nucleotide
- 456 polymorphism; MNP = multi-nucleotide polymorphism.

458

Patient	Phenotypic	Frequency		Description	
ID	resistance	Mutation	(MGIT/sputum)	Description	
F1002	Rifampicin	rpoB S450L	100%/100%	High confidence resistance mutation	
F1002	Rifampicin	<i>rpoC</i> G332R(48)	82.6%/21.7%	Putative compensatory	
F1002	Rifampicin	<i>rpoC</i> L516P(48)	12.7%/7.7%	mutations	
F1002	Rifampicin	<i>rpoC</i> P1040S(49)	21.7%/12.3%		
F1007	Isoniazid (high)	ahpC c-52t(38)	60.0%/50.7%	Rare, have been	
F1007	Isoniazid (high)	ahpC g-48a(38)	28.6%/30.3%	associated with resistance	
F1061	Rifampicin	<i>гроВ</i> Н445D	16.1%/0.0%*	High confidence resistance mutation	
F1061	Rifampicin	rpoB \$450W	84.4%/0.0%*	High confidence resistance mutation	
F1066	Isoniazid (high)	katG N218fs	0.0%/6.9%		
F1066	Clofazimine – not tested	<i>Rv1979c</i> G376D	0.0%/0.5%	Possible resistance mutations. not	
F1067	Isoniazid (high)	katG N218fs	10.7%/7.6%	previously described	
RF021	Pyrazinamide – testing failed	pncA Q122H	0%/2.5%		

- 460 Table 5. Resistance-associated variants present as heterozygous alleles (HAs). *These
- 461 mutations were also present in sputum but due to low coverage of the area (3 and 4 reads
- 462 respectively) variant calling criteria were not met.
- 463
- 464

465 Figure legends

466

467	Figure 1.	Variation in total	number of heterozygous	alleles (HAs) identified across all 39
	0		10	1	/

- 468 patients in sequences generated from sputum and MGIT depending on minimum supporting
- read count threshold. Direct sputum samples indicated by red squares, MGIT samples blue
- 470 circles.

471

- 472 Figure 2. (A) Number of heterozygous alleles (HAs) found in directly sequenced sputum only
- 473 (sputum), MGIT (MGIT) only or in both samples (shared) by patient. (B) Mean Shannon
- 474 diversity at variable positions across pairs of samples (H) as calculated for MGIT and
- 475 sputum-derived sequences. Size of point indicates number of variable positions considered
- 476 (see Methods).

478 References

480	1.	ilobal Tuberculosis Report 2018. Geneva: World Health Organization: 2018 2018.

- 481 2. Murray CJ, Ortblad KF, Guinovart C, Lim SS, Wolock TM, Roberts DA, et al. Global,
- 482 regional, and national incidence and mortality for HIV, tuberculosis, and malaria during
- 483 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet.
- 484 2014;384(9947):1005-70.
- 485 3. Dheda K, Gumbo T, Maartens G, Dooley KE, McNerney R, Murray M, et al. The
- 486 epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-
- resistant, extensively drug-resistant, and incurable tuberculosis. Lancet Respir Med. 2017.
- 488 4. WHO treatment guidelines for drug-resistant tuberculosis. World Health
- 489 Organization; 2016.
- 490 5. Trauner A, Liu Q, Via LE, Liu X, Ruan X, Liang L, et al. The within-host population
- 491 dynamics of Mycobacterium tuberculosis vary with treatment efficacy. Genome Biol.
- 492 2017;18(1):71.
- 493 6. Olaru ID, Lange C, Heyckendorf J. Personalized medicine for patients with MDR-TB. J
- 494 Antimicrob Chemother. 2016;71(4):852-5.
- 495 7. Pasipanodya JG, McIlleron H, Burger A, Wash PA, Smith P, Gumbo T. Serum drug
- 496 concentrations predictive of pulmonary tuberculosis outcomes. J Infect Dis.
- 497 2013;208(9):1464-73.
- 498 8. Cegielski JP, Kurbatova E, van der Walt M, Brand J, Ershova J, Tupasi T, et al.
- 499 Multidrug-Resistant Tuberculosis Treatment Outcomes in Relation to Treatment and Initial
- 500 Versus Acquired Second-Line Drug Resistance. Clin Infect Dis. 2016;62(4):418-30.

- 501 9. Satta G, Lipman M, Smith GP, Arnold C, Kon OM, McHugh TD. Mycobacterium
- 502 tuberculosis and whole-genome sequencing: how close are we to unleashing its full
- 503 potential? Clin Microbiol Infect. 2017.
- 504 10. Sreevatsan S, Pan X, Stockbauer KE, Connell ND, Kreiswirth BN, Whittam TS, et al.
- 505 Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex
- 506 indicates evolutionarily recent global dissemination. Proceedings of the National Academy
- of Sciences of the United States of America. 1997;94(18):9869-74.
- 508 11. Sun G, Luo T, Yang C, Dong X, Li J, Zhu Y, et al. Dynamic population changes in
- 509 Mycobacterium tuberculosis during acquisition and fixation of drug resistance in patients. J
- 510 Infect Dis. 2012;206(11):1724-33.
- 511 12. Merker M, Kohl TA, Roetzer A, Truebe L, Richter E, Rüsch-Gerdes S, et al. Whole
- 512 genome sequencing reveals complex evolution patterns of multidrug-resistant
- 513 Mycobacterium tuberculosis Beijing strains in patients. PLoS One. 2013;8(12):e82551.
- 514 13. Operario DJ, Koeppel AF, Turner SD, Bao Y, Pholwat S, Banu S, et al. Prevalence and
- 515 extent of heteroresistance by next generation sequencing of multidrug-resistant
- 516 tuberculosis. PLoS One. 2017;12(5):e0176522.
- 517 14. Black PA, de Vos M, Louw GE, van der Merwe RG, Dippenaar A, Streicher EM, et al.
- 518 Whole genome sequencing reveals genomic heterogeneity and antibiotic purification in
- 519 Mycobacterium tuberculosis isolates. BMC Genomics. 2015;16(1):857.
- 520 15. Eldholm V, Norheim G, von der Lippe B, Kinander W, Dahle UR, Caugant DA, et al.
- 521 Evolution of extensively drug-resistant Mycobacterium tuberculosis from a susceptible
- 522 ancestor in a single patient. Genome Biol. 2014;15(11):490.

	523	16.	Lieberman TD	, Wilson D	, Misra R	, Xiong LL	, Moodley	/ P	, Cohen T	, et al.	Genomi
--	-----	-----	--------------	------------	-----------	------------	-----------	-----	-----------	----------	--------

- 524 diversity in autopsy samples reveals within-host dissemination of HIV-associated
- 525 Mycobacterium tuberculosis. Nat Med. 2016;22(12):1470-4.
- 526 17. Ford C, Yusim K, Ioerger T, Feng S, Chase M, Greene M, et al. Mycobacterium
- 527 tuberculosis--heterogeneity revealed through whole genome sequencing. Tuberculosis
- 528 (Edinb). 2012;92(3):194-201.
- 529 18. Metcalfe JZ, Streicher E, Theron G, Colman RE, Allender C, Lemmer D, et al. Cryptic
- 530 Micro-heteroresistance Explains M. tuberculosis Phenotypic Resistance. Am J Respir Crit
- 531 Care Med. 2017.
- 532 19. Depledge DP, Palser AL, Watson SJ, Lai IY, Gray ER, Grant P, et al. Specific capture
- and whole-genome sequencing of viruses from clinical samples. PLoS One.
- 534 2011;6(11):e27805.
- 535 20. Hanekom M, Streicher EM, Van de Berg D, Cox H, McDermid C, Bosman M, et al.
- 536 Population structure of mixed Mycobacterium tuberculosis infection is strain genotype and
- 537 culture medium dependent. PLoS One. 2013;8(7):e70178.
- 538 21. Martin A, Herranz M, Ruiz Serrano MJ, Bouza E, Garcia de Viedma D. The clonal
- 539 composition of Mycobacterium tuberculosis in clinical specimens could be modified by
- 540 culture. Tuberculosis (Edinb). 2010;90(3):201-7.
- 541 22. Metcalfe JZ, Streicher E, Theron G, Colman RE, Penaloza R, Allender C, et al.
- 542 Mycobacterium tuberculosis subculture results in loss of potentially clinically relevant
- 543 heteroresistance. Antimicrob Agents Chemother. 2017.
- 544 23. Mukamolova GV, Turapov O, Malkin J, Woltmann G, Barer MR. Resuscitation-
- 545 promoting factors reveal an occult population of tubercle Bacilli in Sputum. Am J Respir Crit
- 546 Care Med. 2010;181(2):174-80.

	547	24.	Doughty EL, Se	rgeant MJ, Adetifa	I, Antonio M, Pallen	MJ. Culture-indep	pendent
--	-----	-----	----------------	--------------------	----------------------	-------------------	---------

- 548 detection and characterisation of Mycobacterium tuberculosis and M. africanum in sputum
- samples using shotgun metagenomics on a benchtop sequencer. PeerJ. 2014;2:e585.
- 550 25. Votintseva AA, Bradley P, Pankhurst L, Del Ojo Elias C, Loose M, Nilgiriwala K, et al.
- 551 Same-day diagnostic and surveillance data for tuberculosis via whole genome sequencing of
- 552 direct respiratory samples. J Clin Microbiol. 2017.
- 553 26. Brown AC, Bryant JM, Einer-Jensen K, Holdstock J, Houniet DT, Chan JZ, et al. Rapid
- 554 Whole-Genome Sequencing of Mycobacterium tuberculosis Isolates Directly from Clinical
- 555 Samples. J Clin Microbiol. 2015;53(7):2230-7.
- 556 27. Doyle RM, Burgess C, Williams R, Gorton R, Booth H, Brown J, et al. Direct whole
- 557 genome sequencing of sputum accurately identifies drug resistant Mycobacterium

tuberculosis faster than MGIT culture sequencing. J Clin Microbiol. 2018.

- 559 28. Nimmo C, Doyle R, Burgess C, Williams R, Gorton R, McHugh TD, et al. Rapid
- 560 identification of a Mycobacterium tuberculosis full genetic drug resistance profile through
- whole genome sequencing directly from sputum. Int J Infect Dis. 2017;62:44-6.
- 562 29. Coll F, McNerney R, Preston MD, Guerra-Assunção JA, Warry A, Hill-Cawthorne G, et
- al. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences.
- 564 Genome Med. 2015;7(1):51.
- 565 30. Walker TM, Kohl TA, Omar SV, Hedge J, Del Ojo Elias C, Bradley P, et al. Whole-
- 566 genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and
- resistance: a retrospective cohort study. Lancet Infect Dis. 2015;15(10):1193-202.
- 568 31. Malik S, Willby M, Sikes D, Tsodikov OV, Posey JE. New insights into fluoroquinolone
- resistance in Mycobacterium tuberculosis: functional genetic analysis of gyrA and gyrB
- 570 mutations. PLoS One. 2012;7(6):e39754.

- 571 32. Cohen KA, Abeel T, Manson McGuire A, Desjardins CA, Munsamy V, Shea TP, et al.
- 572 Evolution of Extensively Drug-Resistant Tuberculosis over Four Decades: Whole Genome
- 573 Sequencing and Dating Analysis of Mycobacterium tuberculosis Isolates from KwaZulu-
- 574 Natal. PLoS Med. 2015;12(9):e1001880.
- 575 33. Coll F, McNerney R, Guerra-Assuncao JA, Glynn JR, Perdigao J, Viveiros M, et al. A
- 576 robust SNP barcode for typing Mycobacterium tuberculosis complex strains. Nat Commun.
- 577 2014;5:4812.
- 578 34. Gonzalo X, Drobniewski F. Is there a place for beta-lactams in the treatment of
- 579 multidrug-resistant/extensively drug-resistant tuberculosis? Synergy between meropenem
- and amoxicillin/clavulanate. J Antimicrob Chemother. 2013;68(2):366-9.
- 581 35. Grandjean L, Gilman RH, Iwamoto T, Koser CU, Coronel J, Zimic M, et al. Convergent
- evolution and topologically disruptive polymorphisms among multidrug-resistant
- 583 tuberculosis in Peru. PLoS One. 2017;12(12):e0189838.
- 584 36. Farhat MR, Shapiro BJ, Kieser KJ, Sultana R, Jacobson KR, Victor TC, et al. Genomic
- 585 analysis identifies targets of convergent positive selection in drug-resistant Mycobacterium
- 586 tuberculosis. Nat Genet. 2013;45(10):1183-9.
- 587 37. Phelan JE, Coll F, Bergval I, Anthony RM, Warren R, Sampson SL, et al. Recombination
- 588 in pe/ppe genes contributes to genetic variation in Mycobacterium tuberculosis lineages.
- 589 BMC Genomics. 2016;17:151.
- 590 38. Ruesen C, Riza AL, Florescu A, Chaidir L, Editoiu C, Aalders N, et al. Linking minimum
- 591 inhibitory concentrations to whole genome sequence-predicted drug resistance in
- 592 Mycobacterium tuberculosis strains from Romania. Sci Rep. 2018;8(1):9676.

- 593 39. Heym B, Alzari PM, Honore N, Cole ST. Missense mutations in the catalase-
- 594 peroxidase gene, katG, are associated with isoniazid resistance in Mycobacterium
- tuberculosis. Mol Microbiol. 1995;15(2):235-45.
- 596 40. Coll F, Phelan J, Hill-Cawthorne GA, Nair MB, Mallard K, Ali S, et al. Genome-wide
- 597 analysis of multi- and extensively drug-resistant Mycobacterium tuberculosis. Nat Genet.
- 598 2018;50(2):307-16.
- 599 41. Larsen MH, Biermann K, Tandberg S, Hsu T, Jacobs WR. Genetic Manipulation of
- 600 Mycobacterium tuberculosis. Curr Protoc Microbiol. 2007;Chapter 10:Unit 10A.2.
- 42. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler
- 602 transform. Bioinformatics. 2009;25(14):1754-60.
- 43. Garcia-Alcalde F, Okonechnikov K, Carbonell J, Cruz LM, Gotz S, Tarazona S, et al.
- 604 Qualimap: evaluating next-generation sequencing alignment data. Bioinformatics.
- 605 2012;28(20):2678-9.
- 606 44. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The
- 607 Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA
- 608 sequencing data. Genome Res. 2010;20(9):1297-303.
- 609 45. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using
- 610 exact alignments. Genome Biol. 2014;15(3):R46.
- 46. Lassalle F, Spagnoletti M, Fumagalli M, Shaw L, Dyble M, Walker C, et al. Oral
- 612 microbiomes from hunter-gatherers and traditional farmers reveal shifts in commensal
- balance and pathogen load linked to diet. Mol Ecol. 2018;27(1):182-95.
- 614 47. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+:
- architecture and applications. BMC Bioinformatics. 2009;10:421.

- 616 48. Yang C, Luo T, Shen X, Wu J, Gan M, Xu P, et al. Transmission of multidrug-resistant
- 617 Mycobacterium tuberculosis in Shanghai, China: a retrospective observational study using
- 618 whole-genome sequencing and epidemiological investigation. Lancet Infect Dis.
- 619 2017;17(3):275-84.
- 620 49. Eldholm V, Monteserin J, Rieux A, Lopez B, Sobkowiak B, Ritacco V, et al. Four
- 621 decades of transmission of a multidrug-resistant Mycobacterium tuberculosis outbreak
- 622 strain. Nat Commun. 2015;6:7119.

Patient ID

