"THERMAL COMPORT SERSATIONS AND PHYSIOLOGICAL REACTIONS IN RELATION TO VARIATIONS IN INDOOR CLIMATE."

THESIS

presented for the

DEGREE

Little was able to be to the property of the bearing

s will have succeed book before the encoura-

AND RESIDENCE OF STREET

of Starting the Suffactions of the startings

DOCTOR OF PHILOSOPHY

in the Faculty of Medicine (non clinical)

by

P.F. TAYLOR, B.Sc. (London)

From the Department of Applied Physiology, London School of Rygiene and Tropical Medicine, University of London,

JULY, 1952

The test waste they be the expension day to the expension of

on the finite of the self-the section and the self-the section of the section of the section of the section of

enter has been a company of the second property of the second property of the second

contrary the everywhite a series reported a series of the series of the series of the product of the series of the

experienced to a suit of solution the amount is executed the

IMAGING SERVICES NORTH

Boston Spa, Wetherby West Yorkshire, LS23 7BQ www.bl.uk

BEST COPY AVAILABLE.

VARIABLE PRINT QUALITY

ABSTRACT OF THESIS

"THERMAL COMPORT SEMBATIONS AND PHYSIOLOGICAL REACTIONS IN RELATION TO VARIATIONS IN INDOOR CLIMATE."

The present study formed part of a programme of research on requirements for comfort and health in houses of modern design.

It is particularly concerned with the changes in air temperature and humidity which may arise in dual purpose living rooms during the performance of family clothes washing, the physiological effects of such changes on the eccupants and the definition of the measures necessary for the control of room climate and the prevention of thermal discomfort, excessive fatigue and heat stress.

In view of the widespread use of gas wash beilers in houses and the fact that such appliances are commonly installed without flues for the removal of excess heat and the products of gas embustion to the outside air it was decided to carry out full-scale experiments in a room of modern type specially constructed for such studies.

The early part of this investigation dealt with the development of physical methods for the rapid assessment of changes in room climate and the application of those methods to studying the build up and decay of temperature and humidity in rooms when a gas wash boiler is operated according to common practice. Data obtained indicated that a minimum air change rate of approximately 18,000 cubic feet per hour, namely 18 room air changes are necessary for the maintenance of a confortable working atmosphere in a room of 1,000 cubic feet capacity whilst demestic washing operations are in progress.

These experiments were followed by a physiological and physical user-test study in which techniques were developed and used to assess the circulatory changes and subjective reactions of a number of housewives who participated as working and control subjects. The results reinfered the findings of the preliminary physical investigation.

Finally, a series of controlled experiments were conducted on a number of subjects in an air conditioned room to test the validity of the correlation between the physiological indices employed in these user-test experiments to assess thermal stress, namely, the Grampton Index, the forehead skin conductivity and the subjective thermal sensations of heat, moisture and freshness with the environmental thermal conditions. The effect of the performance of susquiar work on the changes in these indices was also determined. The findings lent full substantiation to the conclusions drawn from the user-test experiments in kitchen living rooms.

Attention is drawn to the preliminary findings of a field survey in which the demostic routines adopted by a number of housewives were studied.

推出事

最高等

皇皇帝

46 8 60

Sec. 15.

35.00

GRAN

传动地

多位·安

20.50

A 10 0

拉本等

20 70 00

450

植态机

电影化

2000年6

622

4

CONTRACTS

									Page
INTRODUCTION				600	***	000			1
CHAPTER I									
The Developme	nt of a	Tech	dque :	for the	Rapid				
assesment of	room o	lima to		600			***		7
Introduction	***	***	***	***	900	900		2 A 17	7
Experimental	Methods		***			***			9
Calibration o	of Wet a	nd Dr	y Bulb	Elemen	ats	***		200	16
Summary	***	400		***		800		电影电	50
The Effect of on Temperatur	re and H	umidi	by Dis	tributi	Lora				
and control d	luring t	he op	eration	n of a	CAB	4.7%	4.0	6.5	-
wash beiler	944	***	000	***	***	000	000		51
Experimental D	lethods		****	***	***		***	W. T.	22
Results		***	***	***	***	***		456	25
Conclusions			***		•••	***	000		52
Summary ***			***	***	4+4	***	***	418	57
User-Test Exp	partment	Sees :	440	444	***	444	400	12.5	59
Introduction	***	***	***	***	***	***	***		59
Experimental	Methods			***		***	***		60
Results	800	***	***	***	***	***	***		68
Complusions	***	***	***	***			***		70
Discussion	***	***	•••	***	***	***	***		80
Summarye *** CHAPTER IV	***	***	***	***	***	***	***		88
The Full-Seal	to User-	Test	Experi	ment.	***	***			90
Experimental	Methods	000	***	***	***	***	***		91
Results.		***	***	***	***	***	***		96
Discussion .		***	***	***	***	***	***		227
Summayee.	***	966	***	***	***		***		122

cont i multiplica. No									Page
Changes in								1.34	
Sensations Changes in	Errof mone	ental '	Tenner	ature	and Hu	midit	1000		124
Introducti						***	***		124
Experiment	al Nethod	0.00	000					• 1.1	125
Remults .	** ***	***	***						128
Conclusion		100		***		***	***		151
Summary	*** ***	B 5 0	886	***	0.0.0	***	**	***	154
DISCUSSION		***		***		***	**	***	156
SUBCHARY	·****	***	***	***	***				163
ACKNOWLEDGMENT	0 0 0 Comp	***		***			***	***	365
BIBLIOGRAPHY .	1959 1981		200	***	***	***	**	***	1.66
APPENDIX	of the				***	***	**	***	169
EA. Statist	of the Ra	troring	mtn De	esoribe	d in	44.4			
28. Method I		for Set	inati	ng ili na	dng D	a ba			5/10
	analysis ed in Cha							***	242
Miles Relie	Asiativa Revision			857 454 5		11.		THE RESERVE	
May 244									
	. AND PORTS		200.	160 v 164	44.	999 189		33	
718x Cx7x		Asimila Asim 13	Sittle All	14 15 80:00	St	1.4.9		额	
STATES ATA	calcifornia								
Mgs Jula	 Magama	physical in	g the	手列放發	68 -				
	OF PERSON	unt cutof	Depart	one Hall	200	1.4			

STORES OF SERVICE REPORT OF SERVICE

The Particle of the State of the Conference of the State of the Sta

with the skylvant liver talk dispares, on a con-

ROWLING COURTS DIE AANTERSTERS

Face Sele

PROA BUDG

FIGURAS

190 - 190 - 1900	A STATE OF THE STATE OF THE STATE OF	Facing	TARA
CHAPTER I	The contract they are so as as as as		
Pige lele	Thermocouples switching circuit	9	
Fig. 1.2.	Apparatus for the measurement of		
Phys Dale	Remidiky	11	i
Fig. 1.3	Calibration of the Apparatus: Dry Bulb Element	16	
Fig. Lalie	Calibration of the Apparatus:		
Plate Julia	Wey Bulb Bloment	17	
CHAPTER IX	Control from the Control of the Cont		
Fig. 2.1.	Plan of Experimental Kitchen	22	
Plan 3060	Living Room		
Fig. 2.2.	Diagram showing position of the Extractor Fan and Findows	1	
	Relative to the Working Space	23	,
Fig. 2.3.	Position of gas wash boller	- 17 Y	
	relative to the sink, hopper and essement windows and Position I	21	4
Fig. 2also	Net bulb Imperature Increases at Position Ic	e= 28	,
Fig. 2.5.	Relative Rusidity Increases at Position Io	85	9
Miss hale	사는 마시아마시아 보면 있다면 하다는 것이 없는 것이 없는데 하는데 가장 하는데	***	
Fig. 2.6.	Wet Bulb Temperature Increases at Position II2		5
Fig. 2.7.	Relative humidity increases	等等	
Mga liaks	The state of the s	. 34	5
CHAPTER III	carter madelug operations men tho carter mades in (e) covered by 900		
Fig. 3.1.		3.9	
Ziga brisa	to the Working Spaces	6	L
Fig. 3a2a	Diagram showing the Aspiration of the Not and Dryb Bulb Elements	** 6	5
Pig. 3.3.	Diagram showing the Area Covered by the Mell Themseylle in Relation to Points tested for Skin Conductivity.	6	5

CHAPTER III (Gentd.)

Fig. 3.4	Apparatus for the Assessment of	
Sign Date		
F1g. 3.5	The Physical Assassment: Wet Bulb Temperature Increases at	
8 1 1	Position I2 and POSITION II2 68	79
F15. 3.6.	to Net Bulb Temperature and Runidity changes for the Different Phases of Activity. Subject A. Ventilation	1.00
	Car (4) 2 2 Care and a class of the contract o	30.00°C
F1.5. 3.7.	to Wet Bulb Temperature and Humidity changes for the Different Phases of	223
Carlo Marie Control	Activity. Subject A. Ventilation controlled 71	
Pig. 3.8.	to Not Bulb Temperature and Epwidity	7.195
Page, Fall	changes for the Different phases of activity. Subject 8. Ventilation arranged by subjects 72	
P15. 3.9	heathers only indicted by the deliverence and	230
	Activity. Subject B. Ventilation controlled 72	25%
CHAPTER IV		
Fig. 4.1	. Experimental Procedure. The Assessment of the Grampton Index, Room Climate and Forehead Skin Conductivity	
Pige He2	. Trends in Grampton Index, Gonfort Sensations and Wet Bulb Temperature during washing operations when the wentilation is (a) arranged by the	
a service tracted	subject and (b) controlled. SUBJECT A 97	
FAS- 4-3-	Trends in Grampton Index, Confort Sensations and Wet Bulb Temperature during washing operations when the ventilation is (a) arranged by the	
	subject and (b) controlled. SUBJECT B 98	

CHAPTER IV (Contd.)

Fig. Italia	Trends in Crampton Index, Comfort Sensations and Wet Bulb Temperature during weehing operations when the
todow stiepte	wentilation is (a) arranged by the subject and (b) controlled. SUBJECT C 99
CONTRACTOR OF	the result completely on it seeming by an inclusive
	Sensations and Wet Bulb Temperature
	ventilation is (a) arranged by the subject and (b) controlled. SUBJECT D 100
Fire lube	Absolute humidity increases at
suring laterays	Position Ig 113
CHAPTER VA	offers these maders of the Seelly these cally week
	The Crampton Index and corrected effective temperature. Regression
pasty and Manag	lines for 6 subjects 135
	Crampton Indox, forehead skin conductivity and subjective themsal
	sensations related to the environmental temperature for Subject Ne. 4 138
elitarias, eligaç	the the filters the resilient pay making our affective recommendation
FAE4 2424	The correlation between the Crampton Index and Surveyed Thermal Sensations of heat and meisture for Subject No. 4
Stole for a letter	en mulan se a Sivien essa kitsens mise, sceves a such
prepare se may	laterand of polices stadion, statistical tel lane, attache com-

the special or confidence explicationers while . Bookboxies work, honester and

profesionation give rise to encourage physical profesion personal and

emblered we sense three and when sompted with plants, and the precise to

of anthurthm of their par in deckars and billips, buy authorizing

tiffert later destroit if they protected to but it

Introduction

Throughout life man is subjected to variations in outdoor and indoor climate which influence physiological processes and evoke sensations of thermal comfort or discomfort, or fatigue.

problems of comfort and health in dwellings are not only consorned with the determination and maintenance of indeer climatic conditions which satisfy physiological and psychological requirements during leisure hours, but must also include the central of environmental factors which affect those members of the family whose daily work centres in the home. Thus in the case of the mother with a family of young children, such recurring activities as the preparation of meals and the washing, drying and ironing of clothes create problems of indoor climate control which are to a large extent independent of the cutdoor climate, although at times the weather may assist or hinder performance.

When operations of this type have to be carried out in small rooms, such as a kitchen annex or a living room kitchen which serves a dual purpose in many houses of modern design, changes in room climate may rapidly develop owing to the heat and noisture imparted to the air by the cooking or washing appliances used. Excessive heat, hunidity and condensation give rise to adverse physiological reactions and subjective sensations and when soupled with odours, and the products of combustion of coal gas in cookers and boilers, may materially affect home comfort if they penetrate to other parts of the house.

and own the effect of the projector of heads plants. In sell-then they

should then return of them 200 to 300 one for of atp remont pur minute

with the changes in room elimate due to washing operations and their physiological of receipts of the compensation of the compensations and their physiological effects on the compensations.

The extensive surveys which have been carried out in industry have demonstrated the relationship between the thermal characteristics of the environment of work, physiological reactions, subjective sensations, accident incidence and output, but as yet it appears that research of this type has not been fully extended to the home environment. However, 8.C. Hite and J.L. Bray⁽¹⁾(1956) at Purdue University, carried out a research programme for the American Gas Association upon the problem of home humidity control. The objects of their research were to determine the various sources of water vapour and the relative importance of each within the home, and possible methods of moisture control.

In their investigations the living habits of the average American family of four were studied. They were able to show that as much as 55 lbs. of water vapour were liberated on a wash day. They studied not only the intermittent, but also the constant sources of moisture. elethes washing and drying, cooking, floor mopping, the human contribution and even the effect of the presence of house plants. In addition they showed that rates of from 150 to 300 cu. ft. of air removal per minute

sufficed to provide effective moisture control when the ventilating system was placed in the immediate vicinity of the domestic appliances used.

W.T. Miller and F.H. Morse⁽²⁾ (1950) also working at Purdue
University, have published a bulletin discussing the sources of
moisture in homes, the decage and maintenance cost that severe moisture
problems cause, together with some recommendations for solving these
problems. Their studies were undertaken because many complaints had
been made by residents in Indiana who were spending thousands of dollars
each year because of excessive moisture in their houses.

reactions of the individuels whose demestic responsibilities require them to work under changing conditions of temperature and hunidity which stimulate physiological reactions and give rise to sensations of thermal discomfort. Subjective sensations of heat, moisture and freshness and physiological reactions, such as sweating and circulatory changes while working under such conditions should provide a scientific basis for determining the nature and extent of the control of heat and moisture necessary to neet requirements for comfort and health in the home.

That the need for the special control of heat and hunidity in kitchens has been realised is evident from the fact that in Post War Building Studies No. 19⁽³⁾ drawn up by the Heating and Ventilating Generates of the Building Research Board and the subsequent Codes of Practice (4) (5) the following recommendations for kitchen elimate were made:

rations for the case of the persistent for equal texture, eaching and

- (1) Temperature. A minimum equivalent temperature of 60°F.

 No upper limit is stated for comfort and physiological

 well-being whilst cooking on weshing is in progress.
- (ii) Humidity. Adequate ventilation, preferably controllable, should be provided to keep the humidity below 70% at all times.
- (iii) Ventilation. Philst cooking for not more than six persons
 is in operation a minimum air change rate of 2,000 cubic
 feet of air per hour is recommended. It is further
 suggested that solid fuel flues should be provided in all
 kitchens to reduce the penetration of odours and steam to
 other parts of the house.

Then planning the present investigation it was decided that in
the first instance it was necessary to survey the methods available for
the assessment of the physical characteristics of room climate and
determine experimental techniques which could be carried out without
interfering with the routine performance of specific demestic tasks
by the working subjects. It was also essential to review the techniques
which had been used for assessing the physiological reactions of working
and resting subjects to changes in the thermal environment and select
those appropriate for the purpose of the investigation bearing in mind
that these should involve minimum distraction or disturbance to the
subjects.

Having regard to the fact that the ultimate objective of the study was the establishment of a scientific basis for formulating recommendations for the use of the provisions for ventilation, cooking and

washing which are installed in houses of modern design, it was clearly essential that the experimental work must be carried out in rooms of the type and size approved by housing authorities. Fortunately three rooms of the type required were available at the Field Test Unit of the Building Research Station, and it was decided to use the centre room, Fig.21, for the experiments as it was a living room kitchen in which washing and cooking appliances were already installed.

It was accordingly planned to carry out the progresse of research in the following stages:

- (i) Physical. The investigation of methods for the rapid assessment of thermal changes in the room climate, air temperature, humidity, mean temperature of surroundings, air movement and ventilation.
- (11) Filet experiments with working subjects to determine appropriate techniques for the assessment of their physiological reactions and subjective thermal sensations during the performance of specified denestic tasks. These pilet studies would include the use of physical methods determined in Stage (1).
- (iii) Full scale User-Test experiments with working and control (resting) subjects to determine the relationship between changes in room climate and the physiological reactions and subjective thermal consations of the subjects.
- (iv) Laboratory experiments in an air conditioned room with temperature and humidity controlled at various levels in order to test the validity of the correlation between physiological reactions, subjective sensations and the changes in room climate, indicated by the findings of (iii).

(v) Field survey in houses and flats to collect data of the changes in room climate which occur during washing and cooking operations.

physical states. Before a story of variotics in the climic de to decrease examples and described and district of a subjective thereof commuteur and palated district descriptions and descriptions and the subjective thereof commuteur and descript and development or approximate residence and impattly and according to a subject of the sub

Deek detaridateless the such difficult to page wases where the usemi mattenda commen bu untileped. Limited news and the negocity for militar smalltage at reserve between allest main the was of the allest participation. This improvement has been which mad in sent-remarkable mindist bre in manifolds for marratum the vertical can heriacomial Administration of temperatures and bondations in a small rare of Altrians. The consists noticed of the course, bestem of the included all notices to ache un is also not sufficie vienes it is especial to related: undictorial the entries and there are in the commission. Final contentation the period of the property of the property of the following of the collection of the tariation of alcoholas basicaballor of our alcoholase maissist maissis. feet the feet appoints of relative healthis out to a frankley in tions tenders in , but more foregretants and solutions to well courtable westerness be extillenties and some time south to cityent for then be track emilified was thing can be an larg on 30 sinches, filme it was communal in this ginty to be thin to meening product than one in continuous to be and the a which the branches were glossly use authorize and

The development of a technique for the rapid

Introduction

The preliminary phase of this investigation was of a purely physical nature. Before a study of variations in room climate due to demestic operations and changes in subjective thermal sensations and related physiological reactions could be undertaken, it was essential to design and develop apparatus which would rapidly and accurately measure the changes in temperature and humidity that occurred.

Such determinations are made difficult in many cases where the usual methods cannot be employed. Limited space and the necessity for taking readings at remote corners eliminate the use of the eline psychrometer. This instrument has been widely used in environmental studies but is unsuitable for assessing the vertical and horizontal distribution of temperatures and humidities in a small room or kitchen. The sampling method of the Assasan, because of the turbulent air motion it sets up is also not suitable where it is essential to maintain undisturbed the existent conditions of air movement. Small scale hair thermo-hydrographs and instruments functioning on the principle of the wariation of electrical conductivity of certain hyproscopic materials for the measurement of relative hundlity may be used to advantage in some instances, but such instruments are subject to unfavourable variations in calibration and some time must be allowed for them to reach equilibrium. This can be as long as 30 minutes. Since it was essential in this study to be able to measure sudden changes in environmental conditions these instruments were elearly not suitable and furthermore a separate element would be necessary in the case of the latter technique for the determination of the dry bulb temperature.

Therefore, the problem was to develop a remote reading method for measuring rapidly both the wet and dry bulb temperatures from robust and easily reproducible elements situated at several points in a room. Such a system would have to be linked to a single measuring unit and therefore the possibilities of using a number of thermocouples connected through a reference junction and a selector switch to a potentiometer was considered.

In 1989, E. Griffiths, J.R. Vickery and N.E. Rolmes (6) used a psychrometer consisting of thirty-three wet and dry copper-constantan thermocouple junctions connected in series as a remote reading method of observing the humidities obtaining in cold water storage holds on board ship. N. Okada (7) (1931) and J.R. Lanning (8) (1932) have also used thermocouple circuits for the assessment of hunidity distributions in enclosures. However, more recently, F. Pasquill(9)(1919) developed a technique for assessing the wet and dry bulb temperatures in a study of humidity profiles above the ground in certain agricultrual experiments. The elements had to be rebust for field work and such a requirement prohibited the use of the fine thermocouple wire. Consequently he used 28 gauge copper-constantan wire. It has been shown (R.W. Powell(10) (1936)) that the need for forced ventilation of the wet thermocouple is increased as the dismeter of the wire used is increased and that errors in the wet bulb temperature of the order of +0.60F. are introduced by using the still air wet bulb depression for wires of this dismeter.

THERMOCOUPLE SWITCHING CIRCUIT.

FIG. L.l.

In order to achieve sufficient aspiration of the elements they were placed inside cylinders of small diameters. By this method an air velocity of at least 2 meters per second past the themocouples, which was needed to give a maximum depression, was obtained with little displacement of the ambient air.

Therefore it was decided to adopt such a technique to minimuse the air displacement due to sampling for surveying changes in room temperature and humidity.

commission to be large to a Experimental Methods was a second on a second

(a) Thermocouple circuit and stand calibrations when the the

copper-constantan thermosouples were used. The terminals of the potentionster were of copper which necessitated copper leads to eliminate spurious sources of s.m.f. If pairs of wires, excluding copper were to be used in a system containing R thermosouples, then (N + 1) reference junctions would be necessary. However, with copper as one material component of the thermosouples only one reference junction is necessary. irrespective of the number of elements required.

constants wires soldered into a brass "pot", emerging from which was a single sometantan wire which formed a reference junction in melting ice with a copper wire. This lead, through a potentiometer terminated at the central pole of a six-way switch. The six copper leads Beaving the switch were silver-soldered to six points on one side of a twelve point plug. Soldered to the remaining six points were the six constants.

wires from the brass "pot". This part of the circuit, which included the potentiometer and reference junction was contained in a box measuring 212" x 10" x 12". In this way the apparatus was portable.

To the other side of the plug were soldered six copper and six constants wires which formed the measuring thermocouples. In all, four such plugs were made up, two with six foot leads and two with twelve foot leads. The two elements were silver soldered together to give a strong junction.

Calibration. It was found necessary to anneal the couples by immersion overnight in boiling water and this procedure was repeated on several consecutive days before consistant calibrations were obtained. The couples were calibrated in circuit with the reference junction in melting ice and the measuring thermocouples immersed in a thermos flask centaining water, the temperature of which together with that of the reference junction was determined by standard immersion mercury-in-glass thermometers. Thermo electric e.m.f's. were recorded at 5°P. intervals from 32°F. to 107°F. for all twenty four couples.

The calibration was linear over the useful temperature range of 1,00°F. to 90°F., the therme electric c.m.f. being 0.022 millivelts per °F.

Sensitivity. No movement of the galvanemeter needle of the petentionater could be detected by eye for a movement of the fine variable resistance equivalent to 0.0025 millivelts in either direction. Thus each reading of temperature was subject to an error of 10.1°F.

A necessary precaution, which involved a delay of from one to two minutes was necessary each time a different plug of six couples was inserted in the circuit. This was to ensure that if a temperature

FIG. 1.2

Apparatus for the Measurement of Environmental temperature and hundrity.

for all practical purposes, approached zero, thus eliminating a possible spurious source of electromotive force prior to taking a series of six readings.

(b) The Wet and Dry Bulb Elements.

A method was evolved incorporating the main principle of Pascuill's method but which made use of ready made, easily available and robust components. It consisted essentially of a rigidly supported whirling hygremeter with a thermocouple attached to the bulb of the D.B. thermometer and a second thermocouple inserted to a depth of I can-(greater than 50 times the wire diameter) between the bulb and the wetted wick of the W.B. thermometer. The elements were placed as near the plane of the elliptical orifices, which measured 2 cm. by 0.5 cm., of a glass Y-shaped tube, (dismeter 0.75 om.), which through a length of rubber tubing was linked to an electrically operated Assmann psychrometer the fan of which provided the necessary aspiration of the elements. This was a relatively simple method for the remote assessment of wet and dry bulb temperatures with the advantage that in the possible event of a failure during an experiment of the thermocouple circuit, the observer could resort to measuring the temperatures from the normal small thermomoters of the whirling hyprometer. Further tests showed that sufficient ventilation could be achieved by the fan of the Assmann psychrometer for the simultaneous aspiration of three such elements. The couples were electrically insulated by the application at the junction of a dilute solution of nicol label varnish and acetons. The reservoir provided

for distilled water and the normal type wicks supplied with whirling hygrometers were used and in this way the wet elements could be kept moist without attention for at least eight hours.

The Emissivity of the Dry Bulb Element. A solution of acetone and nicel label varnish was used as an insulator because a very thin layer could be applied and in this way, its application did not materially add to the thermal capacity of the thermocouples. However, it was necessary, when use was to be made of the insulated couples for the measurement of dry bulb air temperatures to ascertain the effect on the surface emissivity. This was done in the following way.

Two thermocouples, both silver soldered, one insulated and the other bare but highly polished were suspended together with a silvered globe and silvered kata thermemeters approximately three feet from and exposed to the radiation from a two kilowatt heater. In this way, the intensity of radiation to which the thermocouples were exposed was at least equal to that to which they would be exposed in experiments in kitchen climate studies.

After half an hour, when the globe and silvered readings were seen to be steady, 10 observations of the two thermocouple e.m.f's., the globe and the cilvered thermometer readings were taken and the air velocity was computed from the cooling times of the kata thermometer.

The radiation gain by the globe thermometer (Hr) is given by

Hr = E S (Tel - Tel) B.T.U./eq. ft./hr.

271。179天

To can be calculated from the convection less - radiation gain equilibrium equation for the globe thermometer:-

R = emissivity of the globe surface = 0.95

S # Stefan's constant on the Parenheit scale = 1.73 x 10-9
(Fishenden and Saunders, 1932, p.12).

To = The mean temperature of the surroundings) Absolute tempera-) tures on the Tg = The temperature of the globe) Farenheit scale.

tg = The temperature of the globe)

on the Farenheit scale.

mertane ententies of the shortening of the ententies are

v = The mir velocity in feet per minute.

Results

Thermosoup	le readings	Globs	Silvered
Insulated couple m.v.	Silvered couple m.v.	es' which oppositions	
0.870	0.875	83.1	71.8
0.865	0.875	83.2	11.9
0.875	0.870	63.8	900 72.9 Separation
0.875	0.860	63.2	75.60 73.38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.870	0.870	83.2 6	1 at 3 73.9 to 12 and 1 and
0,880	0.870	83.2	71.9
0.870	0.870	83.2	cir 71.9 % in the
0.870	0.865	10 to 18342 Life	2071.9 a mana 400.00
0.870	0.860	83.2	71.9
0.880	0.875	83.3	71.9
0.8785 271.8°F	0.869 971.7°F	83.2°F	71.9°F Hean

In water at a temperature approximately equal to that of the air in the above test and it was found that it was not necessary to apply any correction to the above observed differences.

The difference between the means of the thermocouple readings was 0.0035 with a standard error 0.0024 (t = 1.18). Not Significant. Using the above equations Ts = 89.2°F. and Nr = 6.43 8.T.U./eq.ft./hr. Therefore with the mean temperature of the surrounds exceeding that of the air by 17.3°F. It was shown that no significant increase in the surface emissivity of the thermocouples was caused as a result of the addition of the thin layer of insulation.

hat wire anemometer the element of which was 2 cms. long and 0.2 cms. in width. It had been calibrated over the range 0 to 5 ft./sec. but was not sensitive to changes in air velocity above the upper limit. Since it had been found that at least three elements could be ventilated simultaneously without introducing an error in the wet bulb depression the air velocity past the elements under such conditions was ascertained, using the lengths of rubber tabing which would be used in physical and user test studies.

The hot wire element was introduced into the air stream in the plane of the thermomenter relative to the orifice. Readings were taken with the element on each side of the thermometer in this plane.

Results.

Ten readings were taken on each side of the thermometer which gave a mean value of 174 ft./minute for the velocity of the air stream

entering the orifice. Pasquill found that for 28 gauge copper constantan thermocouples the acceptable minimum was 394 ft./sec. and Hilput(11), using 40 gauge manganin-constantan thermocouples found that an air velocity of 39.4 ft./min. was sufficient to produce a maximum wet bulb depression.

Displacement of Room Air Due to Aspiration. It will be remembered that an essential requirement of apparatus for the rapid assessment of environmental thermal changes in small rooms was that the aspiration did not produce turbulence or a marked displacement of the ambient air. By suspending the Assmann psychrometer outside the experimental room the possibilities of turbulent air notion are eliminated.

The displacement of room air due to the simultaneous aspiration of three elements was measured by means of an accurate Siebe Gorman air. flow meter. It was found that in 2 minutes (the time necessary for full aspiration and reading of the potentiometer) 41.60 litres of room air were displaced. The volume of the room in which the apparatus would principally be used was 32017 litres (1130.51; cu.ft.). Using the figure of 1 room air change per hour, being approximately the minimum value with no fire and windows, hoppers and doors closed, it can be seen that the ratio of air displaced by the aspiration during 2 minutes to that by natural ventilation during the same time is

$$\frac{41.6 \times 30}{32017} = 0.039.$$

If eight sets of readings were to be taken every hour the volume of air displaced in this way would amount to only 1% of the total volume displaced by natural ventilation. This figure is inversely proportional

FIG 1.3.

physically and physiologically it can be considered negligible.

Calibration of the Blements. The method adopted to assess the accuracy of the readings given by the elements used and constructed as described in the previous section, consisted essentially of a careful calibration of one element against a standard method followed by a comparison of the calibrated element with the remaining five made up and used in exactly the same manner.

The initial calibration was carried out in an air conditioned cubicle. The routine experimental procedure was to compare the readings of the elements with those of a whirling hygrometer used in the conventional way. The Assmann psychrometer, used for aspirating the elements, was placed outside the cubicle to exclude the turbulent air movement it caused from the experimental room. The ranges of temperatures and humidities employed for the calibration adequately covered those which would be encountered in studies of kitchen climate, namely 50°F. to 85°F. dry bulb temperature, hQC to 9% relative humidity (the obtainable maximum).

Between observations the air was constantly stirred by an electric fun which was switched off whilst readings were being taken in order to reduce to a minimum extraneous causes of air movement. A two kilowatt electric heater was also used in the experimental room to similate a source of radiation approximating to that of a coal fire.

^{*}Details of the Air Conditioned Cubicle are given in Chapter 5.

F28 2410

Readings of the thermoelectric s.m.f's were followed, for each comparison, immediately by readings of the wet and dry hulb temperatures of the whirling hyprometer used conventionally, and pairs of readings were repeated until steady values were obtained. This procedure was repeated at 35 different wet bulb and 29 different dry bulb temperatures which covered the complete range of temperatures and humidities stated above. The thermometers of the whirling hyprometer were calibrated against the thermoecuples by immersion in water over the range of temperatures above. Before the calibration curves for the two instruments were plotted, the thermometer readings were corrected accordingly.

Figures 1.3 and 1.4 are calibration curves for the dry bulb and wet bulb temperatures respectively. It will be seen that there are no systematic errors. Deviations from the line could be accounted for by experimental errors.

Further comparison of this instrument with five others, which was checked from time to time during experimental use, was carried out in one of the rooms at the Field Test Unit. Each instrument was checked separately against the pro-calibrated one at about six points over the range of temperature and humidity specified above. All the instruments checked in this way showed no systematic errors.

Thus a method for the rapid assessment of changes in air temperatures and humidity, comparable in accuracy to that of an instrument which has been widely used in thermal environmental studies was available. It was a method which would not interfere with the routine performance of specific demestic tasks by working subjects.

Use of Thermometers for the Measurement of W.B. Temperature.

The recommended rate of aspiration for the wet bulb of a whirling hygremeter is 600 ft. per minute (12), i.e. 3.05 metres per second. Therefore for the reduced rate of aspiration of 17h ft. per minute (0.88 metres/sec.) a correction must be applied to obtain a correct value for the wet bulb depression.

An approximate correction can be applied as follows:
The fundamental psychrometric formula is:

$$m_2\left(\frac{p_W-p}{p}\right) = m_1\frac{p_2}{p} (e-t_W)$$

where pw & p are the saturation and actual vapour pressures at tw

P = Barometric pressure

L = Latent heat of water at tw

r = Specific gravity of aqueous vapour compared with air

Sp z Specific heat of air at constant pressure

m; 2 Mass of air which is cooled from t to tw in unit time

m2 = mass of air saturated in unit time at temperature tw The formula is generally written:

$$\frac{pw-p}{p}$$
 = A (t - tw), where A = $\frac{Sp}{Lr} \cdot \frac{m_1}{m_2}$

At high velocities it is evident that $m_1 = m_2$ (13) and the formulae

$$\frac{pw-p}{p} = A(t-tw)$$
, where $A = 0.0006l$; can be used.

If one neglects the radiation effect for velocities below that at which m1 = m2 the temperature of the wet bulb falls until the diffusion of heat to the bulb from the warmer incident air balances the heat loss by evaporation due to the diffusion of water vapour from

the bulb into the air stream. Dimensional analysis (13) of this transfer of heat gives:

$$\frac{D^{2}-P}{P} = \frac{dP}{dr} \left(+ - tr \right) f\left(\frac{q_{2}^{2}}{r} \right)$$

v z velocity of air atream

1 2.a linear dimension of the bulb

k = Kinematic viscosity.

For velocities less than 3.05 metres per second therefore the wet bulb depression depends upon the velocity of the air letress and the dimensions of the wet element. Above this velocity $f(\frac{v}{k})$ is constant.

Therefore the type fally equipated set bels responsively, contains

P.S. Skinner (11) has investigated the variation of wet bulb depression with rate of aspiration. Although the size of the thermometer bulb used was not disclosed the variation of $f(\frac{V_1}{K})$ between 3 and 1, metres per second was only 3%. These results showed

$$f(\frac{\sqrt{\lambda}}{k}) = 3 \text{ notres/sec.}$$

Therefore to sorrest for the reduced air speed the psychrometer formula should be

$$\frac{pw - p}{p} = \frac{0.0006l_1 \times .62}{.5}$$
 (% -tw)

So the existencian amount to epitionally protest the number the necessity therefore

economics in his community of the first of the Approximate which has been visited

their entertaint territorial entertaine

would be residence trade to accept the acceptance

This is very close to the value of 0.0008 advocated for use with instruments exposed to "light winds" (Kays & Laby. Physical & Chemical Constants, p. 40). Although this is rather a vague definition it does suggest that the error in using the figure 0.00079 for correcting the wet bulb depression would be small.

Therefore the true fully aspirated wet bulb temperature, assuming sero error for the dry bulb reading can be obtained from:

considerate was no construerable wind new he made of a superiorial real

where T1 = observed D.B. temperature

Ruppary

- 1. The construction of apparatus for the rapid measurement of changes of temperature and humidity at several points in a room has been described.
- 2. Bearing in mind that these measurements would be taken whilst demestic operations were in progress a remote reading method was employed.
- 3. 32 gauge copper-constantan thermocouples were attached to the wet and dry bulb elements of suspended whirling hygrometers and the aspiration of the couples was achieved through lengths of rubber tubing by the fan of an Assmann psychrometer.
- 4. The apparatus was calibrated against a whirling hygrometer used in the conventional manner.
- 5. The calibration showed no systematic errors: The accuracy therefore appeared to be comparable with that of an instrument which has been widely used in environmental thermal studies.

CHAPTER II

The Effect of Different Ventilating Methods on Temperature and Aumidity Distribution and Control during the Operation of a Gas Wash Boiler.

It is well known that marked changes in room climate occur in kitchens or kitchen living rooms as a result of the housewife performing a weekly family wash. These changes in temperature and humidity can be considerable when use is made of a demestic gas wash boiler which is one of the most common appliances in use at the present time.

These marked environmental changes in temperature and humidity in the kitchen occur while the housewife is exerting a good deal of muscular effort which increases her body heat production. Hence it is important that these climatic changes should be as small as possible in order to increase the comfort and efficiency of the housewife and, at the same time, reduce the fatigue resulting from this particular demestic task.

The purpose therefore of this series of experiments, being a purely physical study, was to examine the effect of different ventilation rates and methods upon the distribution of temperature and humidity when a standard gas wash boiler was alight for a period of 75 minutes. This period of time was chosen as the rate and duration of gas consumption corresponded approximately with user practice.

Experimental Methods

I. These studies were conducted entirely in one of the experimental rooms at the Thatched Barn Field Test Unit, Boreham Wood, Berts. Three full size kitchen living rooms, II, ft. x 12 ft. x 8 ft. as specified in approved designs were constructed inside a standard Ministry of Works hut. A complete plan of these rooms is shown in Fig. 2.1. These rooms were made available to the department under the Extra-Mural Research Contract with the Ministry of Works. They were an essential requirement for a scientific investigation of thermal comfort in relation to the heating and ventilation of dwellings, and the effect of weather conditions, which comprised the whole research programme of which the experiments described in this thesis formed an integral part. No. 2 Room, being a kitchen living room of the modern convertible flat type afforded the best opportunity of studying this particular problem.

The gas wash boiler was located near the sink (see Fig. 2.2 & 2.5). The build up and decay of temperature and humidity resulting from the gas wash beiler being lit from t = 30 to t = 105 mins was measured at 6 points in the room at 15 minute intervals from t = 0 to t = 195 mins and then half hourly until the final reading at t = 255 mins. The six points were:

(a) In the	(a) Stand I In the "working space"		(b)	The	Stand II remote corner			
POS 12	6º 6º	level	POS	xx,		69	6"	level
POS 12	170 Ou	level	ros	II2		140	O ^{rs}	level
POS 13	6ª	level	POS	II3			6n	level

(see fig. 2.1)

POSITION OF FAN AND WINDOWS RELATIVE TO THE WORKING SPACE.

32 gauge copper/constantan thermocouples were attached to the wet and dry bulbs of suspended whirling hygrometers thus providing a remote reading method for wet bulb and dry bulb temperatures.

Aspiration of 3 instruments simultaneously was achieved by lengths of rubber tubing linked to the fan of an external Assmann psychrometer in the manner described in the previous chapter.

The ventilation arrangements involved two levels (presence and absence) of 3 factors namely:-

- 1. Coal fire, refuelled at a standard rate of 3/hlb. every thr. All air duots and registers closed.
- 2. The right hand hopper window.
- 3. A 9" x 9" fixed grill A.C. extractor fan, 1320 r.p.m., air delivery 300 cu. ft./min. located as shown in fig. 2.2. The 8 treatment combinations consisted of all combinations of

There were is replications of each treatment combination making 32 experiments in all, designed as a simple factorial experiment to eliminate as far as possible any variation between days. For the purpose of comparing the main effects and interactions of these

F70. 2.3

Position of gas wash belier relative to the sink, hopper and easement vindows and Position Ze factors I have taken as the variables or treatment figures

$$\sum_{t=0}^{t=255} (T-T_0), \sum_{t=0}^{t=255} (T-T_0) \text{ and } \sum_{t=0}^{t=255} (H-R_0) \text{ where}$$

T, Tl & H = D.B. & W.B. temperatures and relative humidity respectively

at any particular time.

To, To & Ho = D.B. & W.B. temperatures and relative humidity at t = o.

The temperatures and humidities at the 4 ft. levels (FOS I2 & II2) will have the most important bearing on the physiological and subjective reactions in later studies. Therefore it was decided not to introduce positions as another variable in the analysis but to treat each one separately with particular emphasis on these two important positions.

The volume of gas combusted and the quantity of water evaporated from the wash boiler were measured on each occasion, together with a record of the external weather conditions.

Finally, experiments were carried out to determine the number of room air changes per hour for the four treatments which did not include the exhaust fan. The purpose of these experiments was to ascertain if a relationship could be established between the build up and decay of relative humidity and the over-all air change rate for the room.

The explose of expectations of (the ent fire) were electrone after the bosto water chosed that embirables to be entactable by secure

Results

A. Mid Lavel. Working Space. Position Ig.

1. Dry Bulb Temperature.

Treatment (1) was that in which all three factors were absent, i.e. Control Treatment.

and the state of t

he that they were without at the new

Table 2.1.

Treatment	(1)	Repes	1 t 1 o n	<u>s</u> (1,)	Troctment. Totals.	Treatment Means.
1	124.5	134.44	156.0	158.5	573.4s	143.35
h	123.0	120.6	121.2	1304	485.2	121.3
P	152.6	167.5	146.8	11,8,6	615.5	153.87
Fh	118.7	93.4	132.5	108.0	452.6	113.15
£	77.6	lils.7	79.9	87.9	290.1	72.52
M	69.7	57.2	8ء،ارا	67.7	239.4	59.85
Pf	276.4	209.3	201.2*	222.5*	باه 809	202.35
FM	99•0	149.1	101.9	123.9	1,73.9	118.47
BLOCK TOTALS	941.5	966.2	984.3	1047.5	3939•5	GRAND TOTAL

Each figure in columns (1), (2), (3) and (4) is $\sum_{t=0}^{t=255}$

can physically be interpreted as (n-1) times the mean excess temperature above the initial temperature to, where n is the number of observations carried out during each experiment. In this case n=16.

*The series of experiments Ff (Fan and fire) were abandoned after two tests which showed this combination to be undesirable for reasons which are given below. There was a decrease in atmospheric pressure in the room due to the extraction of approximately 300 cm. ft. of air per minute by the fan in addition to that extracted initially by the pull of the coal fire. This displaced air could not be replaced by leakage through cracks round the window easings and door edges. The result was that some replacement of the air exhausted by the fan was effected by air flow down the flue against the pull of the fire. This caused the early development of a smoky hase in the room which would make conditions impossible for clothes washing. Subsequent experiments have shown that such a condition is not fully remedied by the inclusion of an 8" x 5" air brick at the lowest level vertically below the fen grill.

Therefore, there were no experimental treatment figures for Ff under columns (3) and (4). These values were estimated as described in Appendix 2 B.

Analysis of Variance (see footnote)

		D.F.	Sum of Squares.	Mean Square	Variance
Blocks Treetments	F Fh fh Ff Ffh OH	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	769.04 18692.28 18807.09 1,038.75 3079.16 570.37 17511.95 1379.13 5576.14	256.34 12692.22 10207.09 4030.75 3079.16 570.37 17311.95 1379.43 293.49	0.873 li3.2l;** (~) 62.0l;** (+) 13.76* (~) 10.li9* (~) 1.9l; (*) 58.99** (+) l;.70* (~)

The two estimated values cause a reduction in the error degrees of freedom from 21 to 19.

- se Significant at O.M.
 - * Significant at 1.0%
 - +Significant at 5.0%

8.D. of the difference between two treatment means = (293.49 (2 + 2)) = 12.11

The three main effects all uppear to be significant, the hopper and the fan in equaing a reduction in dry bulb temperature increases, whilst the fire, as expected produced a significant increase. The three interactions involving the fire were significant, Fh and Ffh producing a reduction and, again as expected, Ff an increase above the increases resulting from the control treatment (1). Table 2.3 shows the mean values of the average increases in the dry bulb temperatures for all the treatments. They are derived from the figures in the final column of Table 2.1 divided by 15.

Mean D.B. temperature Increases throughout the experimental period.

Treatment	Fire not lit	Fire lit
1	9•55	20,26
h	8.09	7.54
1 2	4.63	13.49
fh .	3,99	7.90

5.D. of the difference = 12.11 = 0.80

FIG Relie

a result of particular interest is that a significant reduction was produced by Fb (treatment mean 7.51.0F) by virtue of the significant interaction between these two factors. Further, when the fire was lit the hopper was the most important factor in the reduction of the build up of dry bulb air temperature at the 4 ft. level in the working space.

2. Wet Bulb Temperature.

	. 1	Table pos:	Treatment	Treatment		
Treatments	2	8	3	L _k	Totals	moons
(2)	136.1	21,341	165.8	250als	595.7	118.9
h	332 els	131.3	112.8	151.7	507.3	126.8
F	11,8.6	MBali	266.8	2494	635.2	155.8
g	85.5	Shali	70.9	Pliets	305.2	76.3
hP	96,02	232.6	70.1	108.9	LiOLing	302.2
hf	63.5	70.6	32.8	72.5	238.4	59.6
FE	11,0.5	159.9	34,7-440	154084	6026	150.6
Ffh	81.1	9342	117.6	60.1	330.3	95.1
BLOCK TOTALS	881.2	932.8	886.3	949.2	3649.5 GRA	ND TOTAL.

Table 2.5
Analysis of Variance

	Degrees of Freedom	Sums of Squares	Houn Equare
Rlooks Trootments RRROR TOTAL	3 1 1 1 1 1 29 29	1,16,26 10000,82 3967,17 21,06,1,1, 11119,1,1, 2,51, 0521,91 35,01, 5501,51, 1,2777,56	138.75 10800.82° (=) 5967.17°*(+) 2106.144° (=) 11119.144° (=) 2.94; (=) 8524.91° (+) 35.04; (=) 289.71

^{*} Significant at 3% level * Significant at 0.1% level.

The standard deviation of the difference between 2 treatment means : (289.71 (2 + 2)) = 11.94

The 3 main effects all appear to be significant. Factors f and h produced significant reductions in the W.B. temperature increases whilst factor F as expected produced a significant increase above the increases resulting from the ventilation derived from the absence of all factors. However, since 2 of the interactions, F with h and F with f were also significant the data had to be examined in more detail. Subdividing the treatments into two groups, all those irrestments with F being separated from the remainder we obtain the following table. From this table we see that in the absence of the Fire (F) the fam (f) produced the most significant effect. Its effect however was lost when the fire was lit. The difference between f and fh treatment means was not significant.

Table 2.6

Mean Increases in Wet Pulb Temperature.

	202	Fire	not lit	Fire lit
28865	h h	1	9.92 8.46	10,26 6,74
	fh		5.08 3.97	6.3h

Standard deviation of the difference = 11.94 = 0.790;

However, when the fire was on the hopper appeared the most important single factor in reducing the build up of temperature.

Furthermore the interaction of F with h was significant. The hopper

had a slight but barely significant effect when the fire was not lit.

3. Relative Hunidity Laborators in Dallator Daries Laborators

Table 2.7

Treatments		pet 2	1 1 1 0	n s	e de la composition della comp	Treatment Totals.	Treatment Means.
(1) h F f f h fh FF Ffh	72 94; 7 74; -100 3 -94 109	84, 12, 54, 73, -94, 97, -45,	97 100 35 0 79 -41 -63*	23 16 56		330 229 11,2 203 -82 101, -290	82.5 57.2 35.5 50.7 -20.5 26.0 -72.5
BLOCK FORALS	165	31/4	209	115		635 GRAS	D TOTAL

a Batimated Values.

instruction, tree branche 95 and 7 Table 2.8 y might finance pulses inches

adduntates objects forther in the confermi, of the requisites bredefine

Therefore a decrease of Analysis of Variance, and produced the

Regress of Freedom	Squares.	School &
Blocks Freetments h Fh 1 Fh 2	593.10 586.53 37743.78 2161.53	197.70 586.53 (-) 37743.78**(*) 2161.53 (+) 11438.28 (-)
FYR 1 FYR 1 ERROR 19 TOTAL ES 1	8096,28 66697,15 35859Jj6	8224.03 (+) 318.78 (-) 8096.28 (+) 3510.37

** Significant at 1.0%

Standard deviation of the difference between 2 treatment

menna = (3510.37 (2+2)) = 141.89

Table 2.9

Menn Increases in Relative Humidity.

	Fire	net	114.	Pire lit	
1	1 (3) 1	5.5	本 · · · · · · · · · · · · · · · · · · ·	244	* * W. 12
, h	120.6	3.8	5.46	-2.5	1 43
	135 de 1	3.6		-4.8	1 49
fh fh	243-8	1.7		-0.05	5 E
Standard	doviation	a 20	difference :	10.89	# 2.8

It is seen from table 2.9 that the coal fire was the most effective single factor in the central of the relative humidity increases, treatments Ff and Fh producing algnificant reductions. Therefore a decrease of practical significance was produced when the fire and the happer were used to ventilate the room.

The standard deviation of the difference between 2 means, one of which is for treatment Ff is $(3510.37 \ (1/3 \pm \%))^{2} = 54.03$

because of the two estimated values.

The effective number for (1) is 1+1+3+3=3The effective number for Ff is 1+1+0+0=2

Therefore the square root of the mean error Sum of Squares must be multiplied by the factor $(1/3+\frac{1}{2})^{\frac{1}{2}}$ instead of $(\frac{1}{2}+\frac{1}{2})^{\frac{1}{2}}$ to obtain the standard error.

Date of the Alfforders between D terratement means a 10297.

fee read than to the three water errors were element and, the fee old

Acousy removes a reducited and the Step on tearnable. Also the

B. Mid Level. Remote Corner. Position IIo

l. Dry Bulb Temperature.

Zable 2.10

Creatment	(1) R	(a)	(3)	(4,)	Treatment Totale.	Treatment Means
l h F Th Th	119.5 115.6 165.4 123.9 66.2 64.9 163.7 85.1	119.0 99.7 179.4 103.0 48.4 56.5 182.7 135.2	114.1 133.4 139.6 115.8 70.4 43.2 174.5*	1147.1 117.7 114.9 114.2 81.8 62.2 178.4* 213.9	529.7 hh6.h 629.3 h56.9 266.8 226.8 699.3 h60.2	132.42 111.60 157.32 124.22 66.70 56.70 174.82 115.05
BLOCK TOTALS	902.3	923.9	989.0	960.2	3715 de 61	RAND TOTAL

^{*} Estimated values.

* Significant at 1.0%

Table 2.11

			Analysis of	' Variance	
		DeFe	Sun of Squares.	Nean Aquare	Variance
Rlocks Treatments ERROR TOTAL	F FA FA FA FA	19 29	214.03 8937.84 18818.00 2595.60 5232.04 17.11 9653.55 378.12 4577.29 50484.18	71.34 8937.84 18818.00 2595.60 5232.64 17.11 9653.55 578.12 21,0.91	37.10** (*) 78.11** (+) 10.77* (-) 21.72** (-) .07 (-) 1.0.07** (+) 1.57 (-)
	**	Significan	t at 0.3%		

for Position I2 the three main effects were significant, the fan and hopper causing a reduction and the fire an increase. Also the

W. B. TEMPERATURE INCREASES AT POSITION \mathbb{I}_2

GAS BOILER TURNED ON T=30 TO T=105 FOR B,C & D } 54 CU. FT. OF GAS USED

NA ad

interactions of (F) with (h) and (F) with (f) appeared significant.

The mean increases in temperature derived from table 2.10 are shown below.

The profit		7.	ble 2.12	Territoria
(3.)		and the contribution of the state of the sta	nes in Bulb Tempera	ture
		Fire Off	Pire Gra	
591	(1)	8.83	10.b9	ALR:Y
, 3	(h)	4.45	7.61	
12 AV 8 15 CT		3.78	7.67	
Standar	and the second second second second	m of a diffe	rence = 10.97	0.73

Here again, the fun was the most important single factor. The analysis of variance table shows interaction Fh to be significant. The difference between the treatment means for Fh and (1) (1.22°F) is slightly less than the value required for significance (0.73 x 2.09 x 1.52°F). Therefore, the significance of the reduction of the dry bulb temperature due to the treatment Fh when compared with the control treatment is doubtful. At this position the convected heat from the fire has more effect than at the westing space. However, the difference between the treatment means for F and Fh (2.87°F) is clearly significant.

 $n_{\rm e}n_{\rm e}$ of difference between 8 norms = $(259.37~(0.05))^3$ to 10.66

* 154% of 1.05 * 51.00 of 5.25

2. Wet Bulb Temperature

man large and table 2.13

Treatments	1 8 0	petit	3	ls.	Treatment Totals.	Treatment means
(1) f f F F F F F F F F F F F F F F F F F	151.6 123.4 68.0 167.0 99.6 60.8 68.0 183.1	167.2 132.3 85.4 149.1 111.2 105.5 21.9 137.0 909.6	113.8 113.2 63.1 180.1 92.1 86.2 61.5 127.7	160.7 124.7 97.7 149.3 108.8 72.2 65.0 132.8 911.2	623.3 1,93.6 311.2 61,5.8 1,11.7 321.7 216.1, 520.6	155.8 123.4 78.55 161.45 102.9 81.2 54.1 230.15

to pursuited. The effect was in cruso a eightlinest increase of the Si

land, Is is close from the armingable 2.11 store tolds that the

mentacing for the tax took in Analysis of Variance . The largest which

Prooden of	Sum of Hean Squares. Square
Blocks 3	263.29 87.76
Trentments h	
teracionata dinimi h. The is in a	1281-hls 1281-hls+(-)
process to be manufactions to the	19925.07 19925.07° (~) 153.56 153.56 (+)
of militaret Pthone and the inter	4373.46 4373.46* (+)
RRROR 19	h5h8.12 239.37

⁺ Sign at 9%

S.D. of difference between 2 means = (239.37 (2+2)) = 10.94

^{*} Entireted values.

es sign at look

a Sign at 0.1%

Table 2.15

Mean Increases in Net Bulb Temperature.

	Fin	mot lit	F	ire li	135
2,	1	10.39		10.76	
h		8.25		6.86	
£		5.RL		සි රිසි	4
fh		3.60		Solyl	
		*	*		1

Standard deviation of a difference = 10.94 * 0.73

The analysis showed that the fire alone produced an increase in W.B. temperature above that of the control treatment (1). That was to be expected. Its effect was to cause a significant increase at the M level. It is clear from the analysis and the above table that the extractor fan was the most important single factor. The hopper window also gave rise to a significant reduction. The general effect of F appears to be to increase the W.B. temperature increases when comparing the right and left hand columns of the above table except when comparing treatments Fh and h. There is a reverse difference which the t test proves to be significant at the O.M level. Treatment Fh produced a significant effect and the interaction of F with h was significant at the M level from the analysis of variance table.

R.H. INCREASES AT POSITION Π_2

3. Relative humidity

Table 2.16

	1	tnent S	Figures 3	l.	Treatment Totals.	Treatment means
3	195	129	107	110	631	+158.0
h	85	204	160	85	1,34,	+308.5
2	31	2.07	95	136	369	+ 92,25
P	73	91	122	66	374	+ 93.5
Fla	en I Oly	2	35	49	-18	w 405
£h	63	45	-714	40 %	74	+ 18.5
PE.	-121	angrig.	400-100	m99e	*250 220	- 64.0
Ffh	au (1) P.a.	CAL a	message: es(3 ₁ ,3	anicone.	225	- 63.0
LOCK W	160	ml a	1.00		acred on	AND TOTAL

were preduced Estimated values, or, it and it in the orders

Figures Ed. 2.5. 2.6 and 2 Table 2.17

Analysis of Variance

the Santy to spe-	MACLEGE OY	Sum of Squares.	gquare Noon	
22	den 23 may	1,626.25 28800.00 94,612.50 18.00 76636.12	1532.08 28800.00**(-) 94612.50* (-) 18.00 (+) 76636.12* (-)	it their sta
fh Pe Pe	1 1 19	1485.12 5240.12 5356.12 45175.25	11,85.12 (-) 321,0.12 (-) 5356.12 (+) 2377.61,	hand offers
a full end eared	ni a B ipala	6825631-65 1-61	expectation is used.	ordilities

physical point outperfire reactions to lake enteriments

at Sign. at C.N. as sent important baseing on the

N.D. of difference between 2 means m (2377.64 (2+2)) = 34.4

st the regulating h meet bloods

Table 2.18

Rean Increases in Relative Runidity

locations of the	Fire Off	Fire on	also educe the
		ed old 6.2 les 2 pa-	In this were
	7.2 6.1	_	
(T 1005 - 50).	Local Services	and (2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	WORLT NEED,

Standard deviation of a difference = 3444 = 2.29

The analysis of variance showed all three main offects to be significant. The maximum reductions in relative humidity increases were produced by treatments Ffh, Ff, Ph and fh in that order.

Figures 2.4, 2.5, 2.6 and 2.7 illustrate the build up and decay of temperature and humidity with time for the treatments (1)
(R) (f) and (Fh) for the two positions discussed. Each point on the graph is the mean of the four observations of the factorial experiments and the four experiments with (R). Significant treatments are indicated in each case.

The 6t 6" and 6" levels (Positions I1. In. II1 and IIz).

As previously explained the mid level positions have been given a full and careful analysis because the temperatures and humidities at these two positions will have the most important bearing on the physiological and subjective reactions in later experiments.

However, some consideration must be given to the effects produced at the remaining & positions.

Using the data from the factorial experiment there were li replications of 8 treatment values at li different positions. The data had therefore three criteria of classification. In this case I took as the variables or treatments figures:-

(I max - To), (I max - To) and (H max - No) where I max,

I max and H max are the maximum values of dry bulb, wet bulb temperatures and relative hundrity obtained at the respective positions.

Therefore, whereas for positions I2 and II2 I was concerned with the general level of the temperatures and humidities because of their physiological significance, for the remaining positions I have considered merely the effects of the different ventilating methods on the maximum increases of temperature and humidity. These values were measured immediately before the gas wash boiler was

3000000000000000000000000000000000000			李朝		21.1	p	9	Į-	+	•	¥		9 24,	(S. J.		CONTRACTOR OF THE CONTRACTOR O
	- Annual Control		17	- Alleran	100	4-1			- I	1 1		- Constanting	Microsoft or co		#C)	photogramma.
el S	2 a	20.2	1	स्त्र है	01	20.01	8 0 0 0	60	20.0	20.08	के के कि	10 c	200	34	9 7	200
1 6 a l	13.0	13.1	35,2	14,07	100	of	100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3206	32.3	5			CV CV	in.	13
a e	12°0	197		10,01	10,0	12,0	13000	12,00	7000	16.1	10,01		000	200	0000	0 0
12	300	A. B.	CQ 073	12.6	6.7	5	500	7.0	Mod.	8.6	7.0		100	17. 64	0	1 to
14 8 102 11	M CON		2007	22010	1200	COL	3000	2000	Ser.	80.9	2003		120 S	04 0 05 0	12.64	E C

179-18 approximations as described in -

Table 2.20

Analysis of Variance

Source of Variation	D.F.	Sun of	Mean Equare	Variance
Between Positions	3	2722.70	907.56	
Between Treatments	7	1253.26	179.03	
Interaction between positions & treatments	21	602.42	28.64	17.68
Total between sub-groups	1 31	1,577-37		
Within sub-groups of four	2363	1/2.12	Lowk	
POPAL.	119	1,729.49		

The interaction between positions and treatments is significant at the O.1% level, therefore its variance is used as the error variance based on 21 degrees of freedom.

the first of the first began in the partition by the ball of the first beautiful and

The variance of a difference between 2 means = $\frac{28.64}{4}$ = 2

Therefore, the standard deviation = $(\frac{28.64}{4} \times 2)^{10}$ = 5.785

The 9% value of t for 21 degrees of freedom = 2.08

Therefore a difference of 3.785 x 2.08 = 7.87 is required for significance.

Table 2.21

Table of Treatment Heans

Maximum Dry Bulb Temperature Increases.

TERATMETE	7,	POSI	IIONS	113
1 h f F Fh fh Ff	22.65 21.65 14.20 19.92 18.42 9.95 21.55	8.65 10.05 3.97 11.20 12.12 6.97 12.62	23.02 21.55 13.62 20.20 17.40 9.30 20.10	5.75 7.02 2.50 6.97 8.47 4.17 12.60 8.92

occurred between treatment (1) (control) and any of the other seven treatments. Remover, it may be pointed out that there were eignificant differences between Ff and f for position I3 between Ff and f, Ff and fh for position II3. However, temperatures at this level are of little physiological importance only in as much as they have a bearing on the temperature gradient, limits for which have been recommended for rooms in continuous use (see Chapter 2).

At the 6.6" levels (positions I₁ and II₂) Ffh, fh and f produced significant reductions in peak values of the dry bulb temperature increases when compared with the control treatment.

			1	42.
		2 2 0 2 4 4 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
	Ož.	360000040		
Section 1977 PM	II	rood dee	The contract of	Selection of the select
Safetican genis		00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3	2. 12. 7 mil /2.
Services sees		HWWWWW	7	A September 1
	de la Presi Presidentes		62	33.23
Total break	- 5	I will take the take the take the take the	30	274,477
hivin out o				200
8	O	88588888 86644868	237	
Zahle S		Sandaga Sandaga Sandaga	:	
		HW-WWQWH Seeses and a seese	the state of the s	
	6. P	46444444		
norme		CO ME CO ME TO CONTINUE		
pera tura. I		\$5,45,454 5,45,45,4	2	
1.000	o) 48	いるものものかん	Pul Pul	
Die State of	die Ka	88488448 646466	ralitios	2 2 2
Marchann	Secret des	28844488	6	
	Tesalusars	-aundand		
	The same of the same of	And the second s		

<u>Table 2.23</u> Analysis of Variance

Source of Variation	Sun of Squares.	Degrees of Freedon	Monn
Retween positions	3142.33	3	2247.44
Between treatments	1129.86	7	161.l;1
Interaction of positions and treatments	823,92	21	39.23
Total between sub-groups	53%.11	31	174.07
(Within sub groups	186.07	88	2.11
z Error)Total	5582.18	119	
Between Positions F Between Treatments F Internation F	= 513.81 = 76.5 = 18.59	All signifi at the O level of	•3/

In applying the t-test to the difference between the treatment means the interaction variance, based on 21 degrees of freedom is used as the error variance since it is significant in the above analysis.

The variance of a mean of 4 readings = 39.23

Variance of the difference between 2 means = $\frac{39.23}{4}$ x 2

Standard deviation \$ (39.83 x 2)2 a 4.43

The 5% value of t for 21 degrees of freedom = 2.08

Difference of 2.08 x 4.43 = 9.2 is required for significance.

Table 2.24

Table of Treatment Means

Maximum Web Bulb Temperature Increases.

en en	MER	10 to	1	POSIT	INI	III3
A PLANT	ACT SHEW	2,23	12	13	7.44	1
1	2		26.2	20.0	26.7	8.3
	h	etitionen e r	21.9	12.3	24.6	10.1
This was	£	1	15.8	3.9	18.2	2.7
Company of the last	P	16	24.5	12.4	24.8	9ali
A X	Fh		21.9	Mals	8,03	11,2
	Źh	\$1	12.9	9.3	1/100	6.8
	P£	8	19.3	12.9	20.1	10.1
	Ffh	17%	Misels	12.9	12.8	9.4

It can be seen from this table that no significant effects were produced at the 6" levels (Pos I3 and II3).

However, treatments f (Pos II only) fa end Ffh gave rise to a significant reduction in the peak values of the Wet Bulb temperatures at the 6° 6° levels.

DABLADE 2.9

Table 2.25

党犯:4 了解影響等	4	97			S.	20	ed reg	7	ni Ng	io.					100		1
		90.	m		200 (A)	P+6 1	1077	1,000,000		7	prof.	140	Ling		26%		
	83	त्त्रं	OJ.	E ^{nt}	11	122	83	6	83	23	XI.	13	(C)	ä	2	100	
A	R	S.	8	19	8	11	S	13	ដ	200	28	17	8	H	त्री	60	
44	10	11	70	13	n	7	70	0	8	82	18	28	9	O.	E	9	
Pa.	18	8	祁	83	100	o	2	Ħ.	83	83	8%	8	77	07	ଷ	ৱ	1,000
FB	8	8	8	26	40	M	8	13	97	चं	র্	8	100	2	28	5	31. 71.23
đ	E.	ঝ	93	23	97	81		Ħ	क्र	10	8	en .	77	खं	2	Od ers	e e vita
44	N	23	15*	77*	-	ers.	C	(1) gr-4 gr-6	33	13	16*	100	10	32	17	15*	fort- gar
Pla	9	. 57	Ħ	03	ON	2	Ħ	c 3	8	prof. Prof.	10	0	N	97	18	2	No.
		1				b	9.75	th (Inc.)				7			100		

Notice of the state of the stat

Table 2.26

Analysis of Variance

Scuree of Variation	presselfation outside and	Pegroo		Mean Squares
Retween positions	1507.15	3	179	502.38
Between treatments	1782.18	7	25.52	54.59
Interaction of positions and Treatments	1380.54	21	20.7	
Total between sub-groups	1,669.87	31	South	
Within sub- groups	261,2,25	88	Shell	30.02
= Error	-	13.47	16.40	
TOTAL	7312.12	Star C	3545	
Between positions F				.1% level of F
Between treatments F	a 8.48	Age T	Maria Constitution	THE ST THE COMMUNICATION OF

Interaction F = 2.19 Significant at the 1.0% level of F.

Interaction again significant therefore its variance must be used as the error variance.

It was to perm therefore that tree bests fits and if previously

The variance of a mean of h readings = 65.7h

Standard deviation = $(65.7l, \times 2)^2 = (32.87)^2 = \frac{5.73}{l_1}$

end chambras whitever the deer doors. Note a provider to comply used

5% value of 5 for 21 degrees of freedom = 2.08

. Difference of 2.08 x 5.73 = -11.92 required for significance.

dealine and esteataking of the rose providing

following the fertocks experiment, experiments were expeted act

to along this affects. The proposages thoughout more decies of it become

ni per polacoled at racidar, the letter particulation on adjuste in a

Table 2.27

Treatment Means

Maximum Relative Rumidity Increases.

en e	TMENTS		7,	POSIE	Z C	121	113	
	1 h	îmă.	22.7	13.7		22.7	18.5	reactive recognized by the country and
	2		11.0	4.7	. 793	27.0	2.0	Section National Assessment
	P		26.0	23.0	7 G 8 J	26.5	18.0	E Service
in the Organ	Fla	to.	25*0	11.5	ork.	21.7	18.0	The second
0.3000	fh		19.0	16.0	-2	24.0	15.5	60.43
1. 2. ³ 7. a	PT .	3,00	13.5	13.0	a ji	M.O	12.0	6.7
1.3. ² 7.		AT ₂	8.0	9•5	.0	15.7	16.0	7 .0
	neleggesengder disk onde kviler -	3.	house state of the	1.30.0 1 6	adaptive)	AND SALES OF THE S	CALLERY	10.0

It can be seen therefore that treatments IIh and f produced significant results in the working space at the 6. 6. level. It also appears that f produced a significant effect at position II31 this is probably a spurious result.

II. One method of ventilating a room, so far not considered, is that afforded by the intermittant opening and closing of the hopper and casement windows and the door. Such a procedure is commonly used by housewives in normal practice, providing external weather conditions, design and orientation of the room permit it.

Following the factorial experiment, experiments were carried out to study this effect. The procedures adopted were those of 4 housewives selected at random, who later participated as subjects in a series of experiments to study the changes in physiological reactions and subjective thermal sensations related to changes in roca climate during demestic washing operations.

The figures obtained for
$$\{t = 255, (TL - ToL)\}$$
 and $\{t = 255, (H - Ho)\}$

for the two mid-level positions are shown in table 2.28.

Table 2.28

		10.71	- (MA) (CH)(H)	1415°	1.4354017	10 conto Loris	72 (48) (Annual States
		1,40	(X)	P E T	1 (3)	山山	Treatment Totals.	Treatment Kenn.
D.B. op.	POS.	12	97.8	62.0	54.2	70.0	284.0	72.0
D.B. of.		II2	99.1	67.2	1,7.2	65.3	278.8	69.1
N.B. OF.		Ig	92.5	62.6	58.9	72.7	266.9	66.7
W.B. OF.	\$277.00 miles in 1981.00	112	228.h	70.3	33.0	74.3	296.0	74.0
R.H.	11000	x,	54.0	16.0	65.0	59.0	éli-o	16.0
R.H.	5	IIg	139.0	55.0	-15.0	82.0	259.0	64.75

An overall standard deviation for the difference between 2 means in order to compare this treatment with the previous treatments of the factorial experiments was calculated from the figures for all 9 treatments.

Uning the value & A A. Th based on Al Agraman of Freeday the

for a comparison of the mean increases of the three thermal factors for this treatment, which I have called (R), with those of the factorial experiment, one is referred to the following table giving the increases and the pooled standard deviation.

the those two treatments and for (2) was not elaborately different.

At monthless the two come results that found both will regard to wet

Table 2.29

Mean Increases of D.B. and W.B. Temperatures and Relative Mumidity.

TRATMENT	DAY BU	B OF.	WET BUL	B OF.	The state of the s	MIDITY %
alchanicamana apag anas-e	15	11 ⁵	1.2	II2	12	II.S
1 Marie	9+95	8.83	9.92	10.39	5.5	10.5
h	8.09	7.73	8,46	8.23	3.8	7.2
P P	10.26	10.49	10.26	10.76	2.4	6.2
2	4.83	4.45	5.08	5.2h	3.6	6.1
Fh	7.5ks	7.62	6.74	6.86	-1.5	-0.3
Pf	13.49	11.65	10.01	8,68	-U.B	-4.3
fh	3.99	3.78	3.97	3,60	1.7	1.2
Ffh	7.90	7.67	6.34	5.41	-0.1	-5•5
R	4.80	4.65	Isolph	4.93	1.0	4.3
STANDARD DEVIATION	0.73	0,66	0.83	0.64	2.9	2.6

Using the value t = 2.07h based on 22 degrees of freedem the least differences necessary for significance (S.D. x t) are:-

Table 2.20 shows that treatment (R) had a very significant effect upon the build up of wet and dry bulb temperatures in the two positions considered. At position I2, together with the fan and the fan plus hopper window it produced the most significant reductions. The means for these two treatments and for (R) are not statistically different. At position II2 the same result was found both with regard to wet

bulb and dry bulb temperature increases.

However, it preduced no significant levering of the relative humidity increases at position I_2 (in the working-space) but proved effective for position II_2 although inferior Ffh, Ff and Fh.

III. Air Change rates for Room 2.

A series of experiments were carried out after the factorial experiments to determine the number of room air changes per hour for the treatments (1) F. h and Fh for Room 2 using Room 1 (see plan) as a control.

Since the air change rate is dependent to some extent on the external wind velocity (16) (17), it was recorded, together with the direction, during each experiment. The air change rates were measured three times for each room and treatment.

CO₂ was introduced into each room from Douglas bags and the air change rate was calculated from the decay in the percentage of CO₂ in the room air over a 15 minute period, the concentration being measured four times at 5 minute intervals (18). The results are suggested in the following table:-

The cash process the description of the filterapes.

the depositions of the eigenvecto sold on the entropic wind.

Table 2.30

Air Change Rates for Rooms 1 and 2 for Four Different Methods of Ventilation.

en Ineli Pa	nge Rate anges per hour)	Air Cha	al Wind	Externs	randa (
	Rocm 2 Vel. 1130a	Room 1	Velocity	tion.	REATHENT
	0.78				
0.85	0.61	0.74	9	1 1 m	17 42
for our and a	1.15	1.56	8.7	Saffa Be	3
ettiloritkovateininin ovaetin ettiin säätneetalaitein oli tohoopijalaeleininin ka	1.94	2.56	0	466	h 1
3.10	3.58	li=00		S.R.	2
the Textorial	3.52	5.62	7.6	B.B.	3
at Patronny	5-4	3-70	7.5	И	F 1
5.35	5.27	5.69	5.0	SaSaRa	aval 2 1 th
	5•39			1 9 1	
	7.03	5.24	7.5	N	Fh 3
8.89	10.66	10.00	20.2	S.W.	2
	7.0	5-14.	8.0	S.S.E.	3

hopper used in conjunction with the fire and the control treatment (1) produced the least number of air changes.

The dependence of the air change rate on the external wind velocity is not clearly shown from such a small number of observations.

However, the highest mean external wind relocity 20.2 m.p.h. observed during the second experiment for treatment fh caused a significant increase in the air change rate for both rooms above the values calculated for experiments 1 and 3 for the same treatment.

The air change rates for the remaining treatments were not measured. The carbon diexide decay method is limited to a maximum of approximately 12 room air changes per hour. Since the fan had an air delivery of approximately 18,000 cm.ft. per hour the number of room air changes would exceed the useful range of the experimental method for treatments f. fn and Ffh.

From the point of view of the vitiation of the room air, resulting from the combustion of the gas, observations made during the factorial experiments showed that even for the central treatment the CO₂ concentration never exceeded 1.0% at mid-level and 0.7% at burner level in the preximity of the gas wash beiler. Any presence of CO in the room could not be detected by the CO indicator Mark III (No. 1); such an instrument can readily detect the presence of CO to 1 part in 100,000. The upper physiologically safe limit for CO is 0.0%.

PI projusted a ticulational incomes of the D.S. Vectorature at

Page 12 of July Te

Partificaçãos Redundo entel Producid

Conclusions

The following two tables, based on the preceeding analysis show those treatments which produced significant reductions of the increases in the three thermal factors considered.

ers the Arrivensia believes the rate wilser free the first regulated

seeks of the modern increme of the Kit, or his, temperatures or the

of the own feater for the present and it is recommend. In table

Table 2.31

Significant Reductions of the Maximum Increases.

6' 6" len	ml in Workin	Space	6' 6' leve	1 in Remote C	orner
000	W.B. OF.	Rolle	Carlotte Company of the Carlot	was magness and an arrange of the same	R.H.
fh) 12.70 fh) 9.05 f) 8.45	fh) 13.20 Ffh) 11.70 f) 10.30	Ffh) 11,.7 f? 11.7		Ffh) 13.90 fh) 12.70	anarikarik ***

The regulto-from the bar is light and thus have bose addressed.

Showing Ventilation Nothods which Produced Significant Ecdustions of the Mean Increases During the 250 minute experimental period.

PO	sition i ₂		POSITION II2					
h.B. or	l in working	ReHays	D.H. OF	el in Remote	Corner. R.H.%			
sh) 5.58 R) 5.45 s) 4.73 sh 2.02 Ffh 1.67	R.) 6.00 fh) 5.95 f.) halls fh) 3.19 Pfh) 2.92	Ff) 10.0 Fh) 7.0	fn) 5.05 R) 4.99 £) 4.30	fh 6.78 R) 6.03 f) 5.15 Ffh) 4.97 Fh 3.53 h 2.16	Ffh) 16.0 Ff) 15.0 fh) 11.0 R) 9.0 fh) 9.0			

Ff produced a significant increase of the D.B. temperature at Pos. I2 of 3.94 F.

Ff (2.83°F) and P (1.86°F) produced significant increases of the D.B. Temperature at Pos. IIg.

In Table 2.31, the figures given with each significant treatment are the differences between the mean values from the four repeated tests of the maximum increase of the W.B. or D.B. temperatures or the relative humidity for treatment (1) (control) and the mean increase of the same factor for the treatment which it accompanies. In table

2.32 the figures given are the differences between the average values for the four tests of the mean increase during an experiment of the relevant thermal factor for treatment (1) and the mean increase of that same factor for the accompanying method of ventilation. The treatments have been arranged in the order of their significance; those of equal effect are bracketed together. Treatment (R) is not included in table 3.1 since there was only 1 instrument, at the 4' level in Position I during this particular test.

The results from the two 4 level positions have been subjected to a more detailed analysis since it is the temperature and humidity changes at these levels which will have the most significant effects on the physiological reactions and thermal sensations of a subject performing washing operations at position I and of a scated resting subject at position II.

The control of both wet bulb and dry bulb temperatures at this level in both positions can be achieved by a variety of different ventilating methods. Treatment R (the opening of windows and the deer) is for obvious reasons the most economical method and the significance of such a treatment can be readily seen from table 2.32. Such a method therefore can be effectively used for temperature control and of course is most widely used in present day practice. The major complaint of housewives appears to be on the question of moisture centrol and the experiments have shown that treatment R does not provide for a reduction of the relative humidity increases which seems to substantiate the impressions gained from housewives. Furthermore, the opening of windows and doors to provide "through ventilation" of

the working space is often impractical in winter time when adverse external weather conditions prevail. Therefore on these grounds an alternative method must be recommended for use during the winter time.

The 3" x 9" extractor fan, with an air delivery of 300 au. ft. per minute, either on its own or in conjunction with the right hand happer window is also seen from both tables to be an effective means of temperature control in both positions and of hunidity control at position II. Although it produced a mean reduction of 11.7% in the peak value increase such a figure is berely significant when compared with the standard error. The interaction of these two factors was nover significant from the analysis of variance. This was to be expected from their relative positions and furthermore, one would have thought that the effectiveness of the fan might have been reduced by the short circuiting of the air entering the hopper mindow to the fan. However, this appears not to have been the case. Therefore, an extractor fan, of the dimensions and air delivery used can be recommended for temperature and partial hunidity control when external weather conditions dater the housewife from opening the windows and deers. It should be pointed out that simultaneous use of a fan of that power and of a coal fire with windows and doors closed should not be made because of the adverse conditions, already referred to, which might quickly develop in a kitchen of the size considered.

However, a result of particular interest is for treatment Fh (the fire and hopper window) which by wirtue of the air change rate it effected provided significant reductions of all three thermal factors examined for both mid@level positions except for the dry bulb

temperature increases at position II2 which was nearer the fire. The reductions in temperature were significantly lower than for the methods already discussed above, but it did provide, to a certain extent, humidity control in the working space. Furthermore, it has been recommended in Post-War Building Studies No. 19³ that a solid fuel flue should be provided in all modern kitchens in order to prevent the steam and odours which are generated in the kitchen from permeating the rest of the house. The present experiments have shown that in addition to this function a solid fuel fire can cause significant reductions of temperature, relative humidity and condensation created by the performance of a weekly family wash.

The fire plus the hopper window effected a mean of 8.89 recm air changes per hour which was approximately 10,000 cu. ft. per hour. The extractor fam, if fully efficient under the experimental conditions was extracting 18,000 cu. ft. of air per hour.

In view of the findings of these recent experiments the minimum recommended air change rate of 18,000 cu. ft. per hour should be adopted for temperature control in kitchens of approximately 1,000 cu.ft. capacity during the performance of clothes washing. This can be achieved either by an extractor fan (air delivery 300 cu.ft/min) located in the immediate vicinity of the sink and gas wash boiler or, when external conditions permit it, by the full use of excement windows and external doors. Fignificant reductions of the increases of relative humidity may not be produced and considerable sendensation may still occur when use is made of such methods.

the second of the form to be the second of t

extractor fans are not normally installed in demestic kitchens or kitchen living rows at the present time, the control of moisture and condensation can be achieved by making full use of a solid fuel flue in conjunction with a hopper or casement window. In the present experiments the air change rate effected by this method was 10,000 cu.ft. per hour. It achieved humidity control at positions I₂ and II₂ and reduced considerably the condensation at the expense of less central of the increases of wet and dry balb temperatures than was produced by the two methods mentioned above. However, the increases of these factors were still significantly lower than the increases for the control treatments.

Summery

- (1) A series of experiments have been carried out to study the effect of varying ventilation rates on D.B. and W.B. temperature and relative humidity increases and distribution resulting from the operation of a desestic gas wash boiler.
- (2) The physical characteristics of the room were assessed at 6
 points over a 255 minute period, during which time the gas boiler was
 lit for 75 minutes consuming on the average 54 cubic feet of gas.
- (3) 6 different ventilation rates arising from all combinations of

Coal Fire		Hopper Window		Extractor Fan
Not Lit	×	Opened	200	Off
LAt		Closed		On

and the additional treatment afforded by the intermittant opening and elesing of the hopper and easement windows and the door, according to the schedule of four housewives chosen at random, were considered.

- (4) Special consideration was given to the two 4 ft. level positions.
- (5) Air change rates by the CO2 decay method were measured for the four treatments involving the Coal fire and the Right Ropper window.
- (6) The room air was sampled at 2 levels to assess the GO and GO_2 concentrations at peak periods during the factorial experiment referred to in (3)
- (7) Recommendations have been made for minimum air change rates for temperature central and attention has been paid to the control of moisture and condensation resulting from a gas wash beiler being lit for a 75 minute period.

The property described and the color account at the color of the color

GHAPTER IXI

User-Yest Experiments.

Introduction

During the period June 19th to June 29th, 1951 a number of user-test experiments were carried out in Room 2, at the Thatched Barn Field Test Unit. These were essentially pilot experiments as a preliminary to a more detailed investigation into the physiological reactions of housewives performing routine demostic tasks in kitchen living rooms. They included a detailed survey of the horisontal and vertical distribution of humidity and temperature throughout the operation as well as physiological and subjective observations.

The standard demestic tack in this investigation was that of performing a typical weekly wish for a family of four when using a movemble, demestic gas wash boiler. As in normal practice, this appliance had no direct lead to the external air with the result that the products of a combustion were free to be liberated and accumulate in the working space in the vicinity of the boiler unless controlled by a suitable method of ventilation.

of this type in relation to external climatic conditions is by no means an easy one and these pilot experiments were especially designed in order to ascertain to what extent the cenditions in the room can be controlled by the various devices available. Furthermore, the extent to which the atmosphere is controlled has an important bearing on the physiological reactions of the user and the importance of this point has been borns out by the results of these experiments.

In 1924 May R. Mayers (19) carried out an investigation into the working conditions and made certain physiological observations on workers in New York steam laundries. He found that with bad ventilating arrangements, temperatures and humidities ranged from 70°F, 60% R.R. to 90°F, 91% R.H. which, although not extremely high in themselves may have been harmful when added to the effect of prolonged and strenuous labour. He also suggested that strain could be measured in terms of changes in systelic and diastolic blood pressures.

For convenience, the scales for blood pressure (S.P.) in relation to age used by a New York Life Insurance Company were taken as standard and permitting a 12 per cent deviation he found many of the workers had abnormally high systolic blood pressures, pulse rates and pulse pressures and low diastolic pressures. There also appeared to be a definite relationship between working conditions in three different classes of Laundries and the number of abnormal blood pressures found, but no apparent relationship between the percentage deviation from normal systolic and duration of employment.

Although the nature of the work done and the humidity and temporature levels are not so severe in kitchens during washing, the capacity of the worker is generally not so great. Therefore particular care is necessary to ensure that kitchen ventilation reduces environmental temperature and humidity changes to a minimum.

Method

(a) Physical Assessment

The experiments were divided into two series, the first comprising a rough physical check on the effectiveness of a newly installed

POSITION OF WINDOWS AND HOPPERS RELATIVE TO THE WORKING - SPACE.

6" x 6" fan extracting approximately 115 cm. ft. of room air per minute in conjunction with an 8" x 5" air brick vertically below it and a canopy extending over the working space. Fig. 3.1 shows the location of the gas belier relative to the fan, air brick and windows. This arrangement relative to the sink and gas cooker is easily gauged from Fig. 2.3 which shows the arrangement for the factorial experiments.

This preliminary, purely physical survey occupied three days during which the build up and decay of temperature and humidity as a result of the gas beiler being lit for a 75 minute period was measured at 3 levels in positions I and II as described in Chapter II.

The distribution of temperature and hundrity in the room was measured under 2 different conditions with the fan operating continuously and the air brick open.

- (a) Day 1. All windows and hoppers closed.
- (b) Day 2. Right hand hopper open.

The conditions attained in these 2 tests could then be compared with those of the factorial experiments. From the combined results therefore the effectiveness of the present ventilating arrangement could be gauged.

The second series lasting four days comprised the actual user test during which the demostic task under investigation was carried out. For this, two subjects, when we shall subsequently refer to as A and B, were used. A was a normal average housewife, whilst B was a trained demostic science operator. This series was further subdivided into 2 parts in the following way. Each subject performed the prescribed task of washing for a family of four on two separate

THE ASPIRATION OF THE WET AND DRY BULB ELEMENTS.

eccasions. On the first occasion she was at liberty to open windows and doors as she herself saw fit in order to maintain a comfortable working atmosphere. However, on the second occasion the subject was strictly limited in this respect, the right hand hopper only being opened. During both tests the extractor fan was running continuously.

A further slight modification was necessary for the user test experiments. In order that the apparatus for the physical assessment of the climatic conditions did not in any way impede the subjects in the execution of their tasks, the temperature and humidities were measured at the 4 ft. level only in Position I. Two instruments were ventilated simultaneously as shown in Fig. 3.2.

The subjects were requested to restrict their use of the gas wash boiler to as near the 75 minute period as possible.

Fhysical measurements were carried out at quarter-hourly periods from t, = 0 to t = 195 and subsequently every half an hour until the final reading at t = 255 minutes.

On the 11th July, 1951, a further purely physical assessment was carried out. The apparatus was again arranged as for the first series of e xperiments above, i.e., the hunidities and temperatures measured at 6 points in the room. For the purposes of this test, thorough ventilation of the working space was achieved by having the door and casement windows opened by a fixed amount, namely that found desirable by subject A in her first user test, the only difference being that the fan was not used, its grill and the air brick below being sealed from the external air.

sectional Acceptable Standards War Labert Co.

(b) Physiological data

In the assessment of the physiological state the following observations were made:-

- 1. Blood pressure.
- Parallel Mark Mark there takes to be a special and the treat to be a
- 3. Oral temperature.
 - L. Skin conductivity.
- 5. Skin temperature.
- 6. Respiration rate.
- 7. Subjective sensations of heat, moisture and freshness of the subject according to the following scales:-

to the extile out wring a had made to be a recess of assular today

Thermal Comfort Sensation Scales.

Sensation Reat Index	Moisture. Sensation Index	Freshness. Sensation Index.
Confortably cool -1 Cool cool cold cold cold cold cold cold c	Neutral 0 Comfortably dry -1 Dry -2	Very stuffy + 2 Stuffy + 1 Cemfortable 0 Fresh -1 Very fresh -2

No. Swelcon the teacher

The skin temperature was measured by means of a Holl thermopile which was calibrated in the experimental room. Skin conductivities were measured by the method of H. Barcroft and G.T.C. Hamilton (1948) (20) who described some experimental observations using the sudometer test after upper limb sympathectomy. The principle of this test is that the resistance to the passage of electric current through the body is almost entirely in the skin and is determined mainly by the activity of the awart glands. This in its turn depends upon nervous excitation by the sympathetic (21).

A fixed electrode, consisting of a two inch square of copper gauze surrounded by cotton gauze souked in normal saline was strapped to the skills and using a 4.5 volt battery as a source of e.m.f., they found differences in current of the order of 40 microsups when a brass exploring electrode was held firstly in contact with the pads of the little fingers in which both ulmar nerves had been blocked (control) and then in contact with the pade of the thumbs of a number of subjects when maximal activity of the sweat glands had been induced.

It was thought that this principle might be applied, in the present experiments, to determine the time of enset of sweating and to give, if possible, a quantitative figure for the amount of sweat produced over any given area. The following areas were chosen:-

- l. Forehead.
- 2. Front of upper arm.
- 3. Rack of neck.

AREA COVERED BY MOLL THERMOPILE IN RELATION TO POINTS TESTED FOR SKIN CONDUCTIVITY.

The skin temperature was also determined for these three areas. Since the area covered by the Hell thermopile was relatively large the area of skin so covered was divided into i, quadrants and 5 points as shown in Fig. 3.3. were selected for skin conductivity, the mean of the 5 readings being taken.

The election is shown in Fig. 3.4. It consisted of the copper gause fixed electrode which was strapped to the axilla with surgical tape connected through a 1.5 volt battery and galvanometer to the exploring electrode. Shunted across the galvanometer were two variable resistances 0 to 1 chm and 0 to 10 chms in series to increase the useful range of the apparatus.

The exploring electrode consisted of a spring loaded brass conductor inside an insulating handle. The brass electrode could then be applied with constant pressure to a flat surface. Preliminary experiments with an electrode of the type used by Bancroft and Hamilton showed that the current in the circuit was affected considerably by the pressure with which the exploring electrodes was applied.

The internal resistance of the calvanometer was 25 chms and its sensitivity 0.5 cms. per microsmp. Then if R is the value of the resistance in parallel with the galvanometer then the conductivity of the circuit is given by

value d is the observed deflection in ons.

APPARATUS FOR THE ASSESSMENT OF SKIN CONDUCTIVITY.

Rs I skin resistance.

r = resistance of remainder of circuit

If Ra is very much greater than r. then

$$\frac{1}{Rs} = \frac{25 + R}{1.5 R} \times \frac{d}{2} \times 10^{-6} \text{ obses}^{-1} = \text{skin conductivity.}$$

$$0 = 10 \text{ cms.}$$

$$\frac{1}{Rs} = \frac{26}{1.5} \times 5 \times 10^{-6} \text{ obses}^{-1}$$

$$\frac{1}{86.6 \times 10^{-6} \text{ obses}^{-1}}$$

The exploring electrode was kept in contact with the skin until a steady galvanometer reading was obtained. When the sweat glands were active a decrease in the value of the resistances in parallel with the galvanometer was made in order to secure a deflection on the scale. It was important that the subject remained quite still whilst the steady deflection was being obtained.

Prior to the experiment proper, the subjects' height and weight were recorded and the subjects' haenoglobin estimated.

Prior to each days' experiment the nature of the subjects' clothing and previous neal were ascertained.

The purpose of the observations on blood pressure and pulse rate was to obtain a value for the Crampton Index. This index is an index related to the state of the waso motor tone which is related to the rice in pulse rate and the increase or decrease of blood pressure on changing from a lying to a standing position, the average normal value being over the range 70 to 80.

For purposes of calculating the value of the Crampton Index, the following scale was used 22:-

Table 3.2 Scale of Gravity Resistance Value (Grampton)

1		-	real new	Ministrative and the last	LUG	SLOOD	PRES	EURE				
Vaso motor tone		Jn	area	.60				1)	eere	080		
Heart Rate Increase	+1.0	+8	+6	-+/4	-+2	()	-6	ent.)	m6	= 8	-10	-
Onl.	100	catt	00	85	80	703	70	65	60	cor	50	
Dents	99.00	95 90	90 85	80		75 70	65	60	55	55 50	1,5	
9-12	95	85	80		75 70	65	4	200		Gar.	A	
	-	- 10		75			69	55	50	45	40	
13-16	85	80	75	70	65	60	55	50	45	40	35	
1.7-20	80	75	70	65	60	55	50	45	40	35	30	
21-24	75	70	65	60	55	50	45	40	35	30	25	
25-28	70	65	60	55	50	45	40	35	30	25	50	
29-32	65	60	55	50	45	40	35	30	25	20	15	
33-36	60	55	50	45	40	35	30	25	20	15	10	
37-40	55	50	45	LO	35	30	25	50	25	10	5	
1,2-1,1	50	45	40	35	30	25	20	15	10	F2	ő	

For blood pressure increases greater than 430 add 5% to +10 column for each 2m.m. greater than 10.

The oral temperatures were obtained with the normal type clinical thermometer.

Before the commencement of the experiment on each day the subject spent 20 to 30 minutes sitting at rest in the room in which the experiment was to be carried out. Skin conductivity, temperature and oral temperature were taken together with observations of the blood pressure, pulse rate and respiration rate, first in a lying position and then in a standing position. Pulse and blood pressure readings were taken until two consecutive readings agreed. Also the subjective thermal sensations of the subject were recorded. These consistituted the base line or zero readings, from which subsequent changes were assessed.

Similar observations to the above were taken at the following times:-And provided in terms of the transfer of the second

- End of scrubbing period. Mills the right ward carrier course spread.
- End of boiling clothes. remember and the control of the statement because the
- and of period during which subject had 3.
 - (a) taken lunch
- Three was a (b) used wringer (c) are played and the
- h. After hanging clothes and tidying the room.
- 5. At the end of 10 minutes rest in the experimental room.

In making these observations the following order of procedure was adopted to the efficient two means of names of the two two messes.

- A. 1. Skin temperature) Saken with subject standing in
- 2. Skin conductivity) the position at which she had 3. Oral temperature) been previously working.
- B. Subject lay in a supine position on a souch for a period of 2 minutes while the following observations were made:-
- by the 1.0 Blood pressure. Willed matthews considerable deliversors for
 - Pulse rate
- Respiration, the hard for the schings in other

until two consecutive readings were in agreement.

Subject then stood up and Series B was repeated until two consecutive readings of blood pressure and pulse rate agreed.

Results. (a) The Physical Check.

make that the data from sepectment (a) which the Fig. 3.5 shows the increase in the wet bulb temperatures for the unio de citas dicerción de Paga Pales three experiments of the series under consideration, namely:-

recordens their compared with, may, treatened (h) (become man entry)

- (a) 6" x 6" extractor fan in conjunction with an 8" x 5" air brick vertically beneath it at the lowest possible level.
- (b) Repeat of (a) with the right hand hopper window opened.
- (c) Both easement windows opened 72", the right-hand hopper window fully opened and the door opened 18". The fan grill and the air brick were closed.

Since the results from (a) and (b) are plotted using the data from only one experiment in each case it was not possible to compare strictly the results with those plotted for treatment (1). However, this rough physical check does show that the 6" x 6" extractor fan was probably not an effective means of controlling the temperature increases in either position I_2 of $II_{2\bullet}$ Therefore, for the purposes though file to the horse was a brown of the pilot user test experiments from these results it was decided acceptation of the L treatments was to cade it core such that that the fan used in conjunction with the window hopper would provide made the amorthous antiques that it has been been and a control treatment as opposed to the opening of windows and the door to confirm the same to be few to pay the beauty by the beauty by the two subjects. This would achieve considerable differences in thank of property the bolds to of calcifor him at it is two per thank environmental changes on the two days for one subject. In other words, the ventilation by the newly installed fan and window hopper would probably not give rise to sufficient reduction in temperature and hunidity increases as to cause any difference in the physiological reactions when compared with, say, treatment (h) (hopper open only) or treatment (4) as controls. These observations were confirmed in the user-test experiments and the data from experiment (c) which was conducted afterwards is also shown in Fig. 3.5.

placture as agt. Sile that a security processors to edopt in

experienced to preside the little of a control the day at the

an amendment for this ambanethment's will distributed along the telling that a

TAPIR 3.5.
Relative Aumidity Increases.

	POSITIO		POSITI	ON II2	ent die vereicht der geben der gester ein der	
TRANSTING	Peak Increase	Pinal Increase	Nean Increase	Peak Increase	Final Increase	Mean Increase
Fan only(a)	29	30	13.0	29	13	13.7
Fan plus hopper (b)	26	~2	7.0	21	~ 6	3.7
Window plus door (c)	-7	-10	≈8 . 8	-L	-17	~9.8
Control (1)	13	6	9.8	20	18	9.8

Although Table 3.3. has not been drawn up in order that strict comparisons of the 4 treatments can be made it does show that the humidity increases indicate that either treatments (a) or (b) would be suitable as control treatments since the fan appeared to be an inadequate means of reducing the build up of relative humidity in both positions.

In end II.

Conclusions

From this rough physical sheek it appeared that the fan alone was inadequate for temperature and humidity control and it was therefore decided to use the fan in conjunction with the right hand hopper window as a control treatment. Since these experiments were only of a preliminary nature, the subsequent pilot user tests would prove whether or not this was a satisfactory procedure to adopt in experiments to determine the effect of opening the door and windows as decided by the subjects. It was deduced from these pilot tests

that this comparison would reveal sufficient differences in the ingreases of temperature and hundrity as to cause significant differences in physiological reactions.

(b) The User test experiments.

experiment was not constant the results show that there is no strict correlation between relative hamidity of wet bulb temperature at position I₂ and Crampton Index. However, there were definite significant differences for both subjects in their Crampton indices between the days on which the wentilation was strictly controlled (fan working and right hand hopper open only) and the days on which the subjects were at liberty to open the door and casement windows as they now fit. These differences, which followed the same general brends for both subjects must be attributed to the environmental differences in temperature and humidity and air movement as shown by the graphs (Figs. 3.6., 3.7., 3.6., and 3.9).

The following table gives a good indication of the effect of the effective temperature on Crampton Index at certain times during each experiment.

F10. 3.8.

ZARAS Jak

Changes in Crampton Index for Subjects A and B and Effective Temperature.

1987)	Day	2 3	02 A	y 2	Day 1 Day 2					
Time.	Rffeet- ive	Gramp- ton Index	Effect- 1ve Temp.	Gramp- ton	Effect- ive Temp.		Effect-	Ster varmatica (1990)		
0	57.8	82.5	60.5	82.5	57-1	82.5	64.0	85.0		
60	62.0	65.0	66.7	67.5	Description kings	v. Tagli	to at 21p			
75	5 76 acts	ec minte	late dise	o kina sini	60.0	52.5	73•2	55.0		
120	62.0	82.5	67.5	57•5	63.0	80.0	74.2	27.5		
185	60.8	72.5	64.0	45.0	60.5	80.0	72.0	50.0		
236	62.3	82.5	63.0	82.5		Alate Yes	101010176			
245		100 Mer. 300		and September	59•0	67.5	70.0	70.0		
275	61.0	82.5	63.1	77-5	tus Ciertos	ula kathari		TO LO		
280				and the s	59.2	72.5	69.8	72.5		
Sin .	Ventila arranga subje	ed by	by fan hopper	plus	Ventile arrange subje	ed by	Ventila by fan hopper	plus		

A survey of air velocities at various points in the room for the treatments on Days 1 and 2 had previously skewn that on Day 1 the mean air velocity would be approximately 10ft, per minute and on Day 2 200 fit, per minute at the 4 ft, level in the working space. Using these figures, the effective temperatures have been calculated and Table 3.4 shows the differences between values on Days 1 and 2 for both subjects associated with which are significant differences in the Crampton Index observations. The effective temperature is evaluated into a single index from combinations of temperature, humidity and Table

that had called a Milkly to fully consensate for primeral temperature

air movement and it was found that various physiological responses were apparently stimulated by and related to this Index. (Yaglov, 1927)(23).

The comfort zone in the normal scale of effective temperature for persons at rest has been shown to be between 630 and 710. Vernon (1927)(24) argued that the Effective temperature index did not hold when heavy muscular work was being done since sweating would cause subjects to be more sensitive to W.R. temperature. Yaglou at first tended to agree with this since the scale had originally been developed using a subject performing light work. However, experiments at Pittsburgh (25) proved that the index was not substantially altered with heavy muscular work. Correlations of Effective temperature with Rectal temperature increases per hour and rate of increase of pulse rate per minute per hour were as close as when subjects were at rest. There were practically no changes in the physiological reactions until the Effective temperature reached 750 which appeared to be the upper limit of man's ability to fully compensate for external temperature whilst doing heavy muscular works

Table 3.4 shows that on no occasion did the Effective temperature exceed 75° but the differences between Days 1 and 2 were significant for both subjects.

For subjects A and B the effective temperature never exceeded 63° on Day 1 and the minimum observed Grampton Indices were 65 and 50 respectively. For Day 2 however, temperatures were considerably higher, reaching 67.5° and 74.1° for A and B. Associated with these higher temperature increases were more marked falls in the Grampton

Index to 45 for Subject A and 25 for Subject B. Furthermore, both subjects complained of fatigue at just those times when these low index values were observed.

Also associated with these falls in Crampton Index were increases in the subjective thermal sensations of the subjects. This fact is shown on the graphs which give observed values of the susceted sensations of Reat plus Moisture as assessed from the scale of fable 3.1 at serious times throughout the experimental period. Crowden and Lee (1910) (26) have shown that a high degree of correlation exists between these summated sensations and both wet bulb temperature and total heat of the mir.

turness the maint lawar are magligible when compared with the examinary

Temperature Gradients.

An environment which is considerably warmer at head level than at the foot level tends to produce a feeling of stuffiness whilst at the same time keeping the feet cool. It has been recommended that in rooms used for continuous occupation the D.B. air temperature at head level (5 feet) should not be more than 5°F higher than at feet level. Of course, comparisons in this respect could only be made for Position II. Table 3.5 shows the initial, peak and final temperature gradients between the 6°6° and 6° levels.

Table 3.5

Temperature gradients of in the Working Space
(between 6" and 6.6" levels).

	SUBJ	CT A	HUB.	TECT B
AND DE ST. SAN BUREL S	Day 1	Day 2	Day 1	Day 2
Initial	2.4	1.8	2.7	2.2
Peak	2.8	7.7*	5.1	10,100
Pinal Pinal	2.2	2.ds	2.4	3.8

* Gradient exceeded 5.9°F from T = 75 to T = 105 mins.

** 5.2°F " T = 15 to T = 135 mins.

The table shows that the gradients at all times were within the specified range only on the days when the subjects were controlling the ventilation rates by opening the casement windows and in the case of Subject A, the door as well.

Shall hold 188.7 67.4. 68.1 68.7

Skin Temperatures.

The discrepancy caused by sweating in the measurement of skin temperature by the Holl thermopile, both from considerations of absorption of infra-red rediation by, and the temperature gradient across the moist layer are negligible when compared with the accuracy of the instrument for the measurement of surface temperatures.

Increases in forehead skin temperatures are associated with increases in D.B. air temperature. Bedford (1935)⁽²⁷⁾ showed that on the average the forehead temperature rose by 0.23°F for a rise of 1°F in D.B. air temperature at the h ft. level in the range 55°F to 75°F. His observations were made on nearly 2.000 subjects performing light industrial tasks. In a gradually increasing environmental temperature a momentary fall in skin temperature would be associated with the onset of sweating followed by a slower increase as a result of further increases in D.B. air temperature.

The forehead temperatures recorded in the present experiments, because of the small time available for this observation were too infrequent and the increases in temperature so steep that this phenomenon could not be observed.

The ranges in forehead temperatures for both subjects were as

Table 3.6
Subject's Forehead Skin Temperatures OF.

REBURCT A	7ime: mina:-	0	60	120	185	236	275_	Mean Values
Day 1	Forehead temp.	93.5	96.8	94.3	95.7	96.0	95.5	95.3
	D.R. Tempe	64,02	68.7	68.7	67.4	68.1	66.7	±3.dgls
Day 2	Forehead temp.	92.0	Slie6	96.0	95.5	94.6	99 oli	94.7
	D.B. temp.	62.0	68.1	68.7	65.7	64.5	64.3	12.03
mpaect e	Times mines-	O	75	120	185	215	280	No.
Day 1	Poseitend temps.	93.1	91.3	90.6	92.4	90.5	94.8	92.1
5.773 (2.55) (2.50)	B.B. bemp.	62.1	68.3	69.2	66.8	65.7	66.1	±2.76
Day 2	Forehead temp.	94.2	93.8	98.8	91.8	93.1	94.3	93+3 ±0+09
	D.R. temp.	65.2	75.7	76.3	73.ds	72.5	72.7	-1/4/1/2

The day differences between the means for both subjects were not significant. The daily variations did not appear to be well correlated with D.B. temperature variations at the h ft. level and this was to be expected since this temperature alone did not adequately describe the thermal conditions to which the subjects were exposed. Temperatures of the back of neck and forearm also gave no significant differences between days.

the estaday after the last received that

Dkin Conductivity.

The apparatus employed, whilst not giving a quantitative measure of sweat produced, demonstrated well the onset of sweating. The

At one difficult to one,

appearance of sweat on the forehead resulted in a marked increased conductivity as measured. Table 3.7 shows the measures in skin conductivity in the two days for both subjects. Each figure is the mean from the five readings obtained for each area.

make the following the residence of the management of the partners of the contract of the cont

Court train on although the land point on remounding Indonesia

fulldance a measured and provered fiblic to thought more of specializing the

Subjects' Forehead Skin Conductivities. married on Just of the (ohms x 10-6)

SUBJECT A.

Time	Por	phead	Left Foreara hack of Neck
(mins.)	Day 1	Day 2	Day 1 Day 2 Day 1 Day 2
60 120 185 236 275	-0.6 + 4.5 +66.8 +70.7 +61.1	+50.2	No neasurable increases.

The tree cold to the server of the server of

Time (mins.)	Manus consultation agreement and a second agreement agreement and a second agreement a		Left Day 1	Foreara Day 2	Back of Neck		
75	+57.1	+ 133.1	+3.2	+6.8	+ 7.8	+87.0	
120	+70.9	+ 133.1	+3.9	+4.1	+10.8	+42.7	
185	+16.3	+ 123.8	+1.2	+2.6	+ 3.3	+10.8	
215	+21.5	+ 88.4	+2.3	+2.2	+ 1.3	+16.4	
280	+10.6	+ 26.2	-0.2	-0.8	+ 2.5	+ 4.0	

Onset of Sweating:-

To made information was pending.

in combonist M. Low

(a) Forehead on at his most density, one of the most important receives

Subject Ar- Day 1. Onset comurred whilst subject was using the wringer after she had reserked that it was difficult to use. market there at both moth

printers for the the new wife the subjects the specialist apprecions and for the

Day 2. Commenced sweating on forehead as a result of sorubbing.

- Subject B:- Day 1. Subject's sweating increased as a result of scrubbing, reaching a maximum at T = 120 mins.
 - Day 2. Showed some trends as, but greater increases than on Day 1.

wante van ledena an the town in it was east

door, have achieved stone carry

(b) Forearms and Back of Neck

Subject A showed no perceptible indications of sweating in these areas on either day. There were no measurable increases in conductivity.

Subject B showed a trend with skin temperature being more marked on back of neck than on forearm.

Oral Temperatures.

- Subject A:- The maximum difference between the two days was 0.8°F being higher on the first day (99.0°F).

 The maximum change in any one day was 1.0°F occurring on the second day.
- Subject B:- The maximum difference between the two days was 1.6°F being higher on the second day (98.8°F).

 The maximum change in any one day was 1.3°F occurring on the first day.

The two subjects were opposite in both respects and nothing significant as regards oral temperatures could be obtained from the limited number of readings taken in these experiments. Furthermore, there appeared to be no correlation between oral temperature and Crampton Index under the experimental conditions that existed.

Respiration.

No useful information was obtained.

Conclusions.

In these pilot experiments, one of the most important results from the physiological standpoint was that the lowering of the vase motor tone of both subjects during periods of maximum activity was much more marked on the days when the temperature and humidity were higher. During the days when the subjects themselves controlled the

They could deput that the newslittings were stating,

ventilation, the D.B. temperature never exceeded 710F. and the ik aptimi, timeltek, ita i tim kakit imperioli diplikt iku relative humidity for subjects A and B never exceeded 70% and 80% The serion of objections. A second of the serion of the contract of the confidencial contract of the contract respectively. The maximum decrease in their Crampton indices caused under introduck commer moneltistran är fompomern regioner (b.), 55 fr. by scrubbing was 17.3% for A and 30% for B. On the other hand, when the fifth these field the is since it therewas and opening the system the ventilation was strictly controlled, humidities reached 90% and pared bline in the consequence of facilities on a mandertable appeller efections the dry bulb temperatures 72.00F. and 79.10F. for A and B. In this case, the decreases in Grampton index were A. 36.9% and B. 57.5%. The difference in environmental conditions on the two days was much AND MALES MAY DESCRIPT THE SERVER WHEN SERVED SERVE greater for Subject B as shown in Table Joh, and this appeared to ter thornest a tipo nervice. The farments has payorelegated a consideration cause a larger decrease in the Grampton index on Day 2. For both and lakestable to become the out indicting in the rate tradition at the subjects during their first tests the vaso motor tone was within the normal limits except during the sorubbing period. This was not the lly ourse, of all far culture was not an offered to means of maintaining case during the second experiments when a minimum was reached prior a confortable bundles clarestone in the room. to lunch time by Subject B and after the wringing period for Subject A.

Noth subjects remarked that working conditions were confortable throughout when they could do as they pleased, but it should be noted that Subject B did not open the door. Furthermore, the physical conditions which similated the ventilation employed by Subject A showed that the fan could be dispensed with. However, when only the right hopper was opened and the fan operating, both subjects were most uncomfortable. They considered that the conditions were stuffy, too warm and much too damp.

From these results obtained in those pilot experiments any atrict correlation of physiological and physical data has not been possible, but it was clearly indicated that the physical environment had a very important bearing on the reactions and fatigue sensations of the

subjects.

It appears, therefore, that the most important finding from this series of experiments was that physically and physiologically under internal summer conditions in temperate regions (D.B. 55°F. to 70°F) when full use is made of windows and doors, (design permitting), as sources of ventilation a comfortable working atmosphere is attainable throughout the period of activity in the operation of domestic washing involving the use of a gas wash boiler in a room of the size employed in these user tests.

Furthermore, the marked differences in physiological reactions and increases in temperature and humidity in the room tegether with the opinions of the two subjects showed that a 6" x 6" fan extracting 115 cu.ft. of air per minute was not an effective means of maintaining a confortable working atmosphere in the room.

Discussion.

Leonard Hill (1895) first introduced arguments in support of reactions to postural change as a test of physical condition. The splanchnic area can hold a very large proportion of the blood in the human body and on changing posture from lying to creet position a large emeant of blood would collect there if it were not held in control by waso constriction. If this constriction did not take place a marked lowering of the blood pressure would occur and if it was excessive the blood pressure would rise. In fit and healthy young people it was found that the effect of gravity was usually over compensated for and the assumption of an erect position was accompanied by a slight increase in blood pressure. It was argued, further, that

in fatigued persons the vaso noter mechanism failed to react properly and an increase in the heart rate occurred in an effort to counteract diminished tension in the blood vessel walls.

Grampton (1905) (29) (30) (31) (32) (33) was of this opinion. He also argued that increased ventricular contraction would cause a rise in the immediate maximum blood pressure in the arteries since the blood would be forced more abruptly into them, but unless there was also an increase in the heart rate there would not be any marked increase in the mean arterial pressure. This was further substatiated by Frianger and Rocker (190h) (34) who held that the pressure would be low for a longer period than it was high in any one cardiac cycle.

In Grampton's Blood Ptosis test it was assumed that the arguments first proposed by Leonard Hill were correct. It was long appreciated that the simplest way to test the circulation was to note its reaction to a standard smount of work. Grampton's standard lead imposed upon the circulation was a simple and entirely natural one. The test consisted in observing the reaction of the circulation to the load placed upon it when the subject actively rose from a horizontal to a vertical position. For, in the horizontal position circulation occurs in one plane only but on rising the blood must return from the lower half of the body against gravitational attraction. The mechanisms for carrying out this process are:

- (a) Contraction of the leg muscles upon the veins.
- (b) Increase in abdominal tension.
- (c) The muscles in the walls of the veins, particularly of the splanchnic veins acting to prevent an accumulation of blood in the splanchnic region as previously mentioned.

In constructing his scale, Grampton took the records of several hundred normal fit young men and found that the total range of the an men anderstand beings to ance house for a considered some tell accept the observations were from 100 to -10 mm. Hg. of systolic prossure and from 0 to lik increases in heart beats per minute on actively rising rational of the Statement back to be to include the statement and the statement of to the vertical position. Furthermore, since he found these ranges there on a tradition had the Mestery Labor appriled a few trans symplecture to be statistically equal they were assigned equal values and each arms - control car. There are excited for the same are faith, and pract at him divided into 50 steps with the fair assumption that these steps were anademostic are was now and could be few the present offered at comercinative equal in significance. These figures constituted his original scale which had been derived from normal subjects. However, this did not absolut by reducing to a sattlemen. Demotive it may be take absolute prove to be a complete scale since records from very sick and fatigued bilites for the fringress ficies are of questionable salising out that persons soon demonstrated the necessity for extending it. This was is deed not preside a bushable ariveries for comparing different dens, the scale being extended in both directions using the same subjects. The this single beauty at the proper to be a mark matrix a manue measures as had been standardised for normal subjects and Crampton of payor ting absence in alreministry officiency and income the income considered the scale as being a pasful and convenient method of stating collision from maker the elements are the collection of the index for the collection approximately the condition of the gravity resisting mechanism of the individual in a device of empericulate of the area across real in the human body in terms of a single index. mentaci afed

Evidence has accumulated, however, to show that in the normal rested state there is practically no postural change in systolic blood pressure in well conditioned athletes but in poorly conditioned people the change is either positive or negative, instability being indicative of poor central of the splanchnic control mechanism. This showed therefore that the Grampton Index was of questionable value. Several workers have studied the Index as a test for endurance or physical fitness. Scott⁽³⁵⁾ used the index on his men at Mitchell Field, U.S.A. in 1921. He found that it could not separate those men physically qualified to fly from those who were not. The

Schnelder Test (36) (37) did. This test also useigns relative values Salley (1931) Sources (1939). on an emperical basis to each item in a combined test to yield an in 1937 lapuno promo timo elimpio piraling tempo republicante tivos arbitrary point score. This test was an attempt to combine the best altitude belts and but here would be somethered a pure valuable features of the Crampton test with the McCurdy pulse rate increase finder than fine types. This breek, hereever, the inver printed their test on standing and the Fester pulse acceleration test resulting the printer reprised out here above they those fellows confidently from exercise. Since exercise formed an integral part of the both Cloud attached and reduce their both between both and a talk endiants assessment it was not suitable for the present series of experiments shills that indices certaining blook preserves only. where it was essential that interference with the subjects routing The Constitue Index is compared below with studged in 5 winer should be reduced to a minimum. However, it may be that absolute inclina which exalt be emphily assessed outer the experimental values for the Craspton Index are of questionable validity and that econtrators that preventions the factors were a it does not provide a suitable criterion for comparing different (a) The Eclasgopitizator (Pales America a pulse sets) Estable subjects. On the other hand, it may prove to be a most useful means to be appreciated that equal to the heart colemna. This of revealing changes in circulatory efficiency and general physiological ne esente culculate quale da abore del culto describer en well-being, based on changer in the value of the index for any one t has now confidenced up the creater that illinear individual in a series of experiments of the type carried out in the MASS PERSONA Palan Tremmore (Standing) procest study. (i) the flower hader to the well a lar.

Several attempts have been made to improve the many tests of physical efficiency. The idea has persisted that some combination of blood pressure, pulse pressure and pulse rate giving an <u>Index</u> would give a better indication of condition than any one component taken separately.

For this purpose, 3 techniques were used, namely:-

- (a) Product or ratio technique. Erlanger-Rocker (P.P. x P.R.)
 Index (1904). Stone test (1913) Barach test (1914)
 Tigeratedt index.
 - (b) The Emperical Weighting scheme. Crempton (1905). Foster (1914) Schneider (1920) Lamb (1930).

W4535

(c) Statistical weighting in a Bultiple Regression Equation for optimum prediction. Road (1922) Sale (1931) McCley (1931) Larsen (1935). lations in valoual in matter mainte

In 1937 Larson showed that standing tests were more valid than sitting tests and that B.P. could be considered a more valuable index than pulse rate. This work, however, was never published, but studies corried out have shown that those indices containing both blood pressure and pulse rate are better correlated with athletic ability than indices containing blood pressures only.

merchines with willed the time then The Crempton index is compared below with changes in 3 other Defers Indial & with + 130 -130 1 4 10 m 100 m 05 Indices which could be readily assessed under the experimental conditions that prevailed. The indices were:-

- (a) The Erlanger-Mosker (Pulse pressure x pulse rate) index. During exercise or ismediately ofter, it is considered to be approximately equal to the heart output. The difficulty is in obtaining the correct values for blood pressure and pulse rate as both components drop very rapidly after exercise. It has been criticised on the grounds that fitness is usually associated with low, rather than high, pulse rates.
 - (Standing) Pulse pressure The Stone Index = Diastollic B.P.
 - (a) The Tigerstedt Index = Pulse pressure (standing) Systollio B.P.

The reasoning for both (b) and (c) is based on the assumption that the pulse pressure should average & diastollic R.P. plus 1/3rd systollic B.P. Neither index has appeared to give any significant correlations with endurance eriteria.

Table 3.8 gives the changes in these indices for the subjects in relation to their resting values observed on Day 1 and Day 2.

den the françoise Tales, in Roble 3.8 dentes and not except the

Changes in the magnitude and sign of physical fitness indices in relation to resting values.

The second to the other today and red at the thirty of the

	Crem Ind	A COLUMN TO A STREET OF	Erlan Hook Ind	or	Stor	10-27 (70) Tolk of \$10	Tigerstedt Index		
Phase of Experiment	Cay I	Day 2	Day 1	Day 2	Day 1	Day 2	Day 1	Day 2	
After scrubbing	-17.5	-15.0	+132	+450	13	0	06	0	
Before lunch	0	-17.5	+112	+20	12	02	05	08	
After wringing	-10.0	-37.5	-38	+ 70	17	08	08	04	
After hanging out	7 500 0 A	0	-al ₁ 8	-1,10	15	08	07	Oli	
After rest	0	-5.0	-397	-290	11	08	05	-, cb	

in APPEN STREET, the Test SURJECT B Considering on Perilbertains [34]

	Gran	pton	Erlan Hoo Ind	lcor	Sto		Tigerstedt Index.		
Phase of Experiment	Day 1	Day 2	Day 1	Day 2	Day I			PERSONAL PROPERTY AND ADDRESS OF THE PERSONAL PR	
After serubbing	-30	-30	-640	+650	21	+•07	-, 08	+.02	
Before lunch	-2.5	-57-5	-1760	-2240	27	22	12	11	
After wringing	-2.5	~35•0	-21/1/20	+420	27	-•03	10	02	
After hanging out	-15.0	15.0	-2190	-20	-,21	05	03	11	
After rest period	+10.0	-12.5	-3090	~900	32	++03	13	0	

For the Crampton Index, the changes during any one experiment and the differences between the two days have already been discussed. With regard to the other indices it is of particular interest to consider both subjects separately:

- I. Subject A: The three indices other than the Crampton suggested that on the basis of normal ranges the subject was more fatigued on Day I than on Day 2. This was the exact converse of the opinion of the subject and was not consistent with the differences in environmental conditions on the two days.
- 2. Subject B: Generally speaking the changes in the indices justified the same conclusions as for Subject A particularly so in the case of the Stone Index.

Consideration of these findings showed that these 3 indices were not suitable for use in the present study as physiological indices in experiments in which the physiological and subjective effects of changes in environmental temperature and humidity were to be assessed.

In 1923, however, the New York State Commission on Ventilation (38) used the Grampton Index as a gauge of physiological reactions to atmospheric conditions. Critics were inclined to agree that the normal range of 70 to 80 was too high but that relative figures might be significant. The Commission took observations from many subjects of the final value after, and changes in the Grampton Index, during four and eight hourly exposures to different temperatures and hundrities. They found that exposures to higher temperatures and hundrities resulted in a lowering of the Grampton Index. Also, comparisons in the changes in diastolic blood pressure with changes in pulse rate x pulse pressure should that the actual work done by the heart was unchanged in the atmosphere considered but that exposures to higher

temperatures decreased the perimeral resistance.

The blood pressure depends upon the cardiac output and peripheral resistance, the latter consisting of the skin and splanchmic vessels.

Now Grampton considered that changes were greatest within the splanchmic vessels and for a subject at rest in a constant environmental effective temperature this may well be so. However, when a subject is exercising in changing environmental conditions of temperature and hundrity the skin vessels cannot be neglected. Therefore, the greater the dilatation by the skin vessels the less the compensation afforded by splanchmic constriction. An alteration in resting pulse may be associated with environmental changes, consequently, a low Grampton Index does not necessarily mean a deficiency in waso motor tone. However, when the Index fell the subjective sensations showed the same general trends.

These pilot experiments indicated the nature of the observations which it would be worth while to make in later full scale experiments and field studies. The following recommendations for future experiments were formulated on the basis of the experience gained in these pilot studies:-

- (a) Physical. 1. Temperature, hunddity and air movement in the working space, bearing in mind that the position chosen must not in any way interfere with the housewife in the execution of her demestic tasks.
- 2. Temperature gradient humidity and air movement in a remote corner of the room where perhaps a second occupant may be located.
- 3. External temperature, hunidity and wind.

of the spectation ratio of the test laws large described and the ac-

of the proposed living to the form to

- (b) Physiological. 1. Blood pressure and pulse rate in the supine and standing positions.
 - 2. Skin forshead temperatures using the Holl thermopile might give interesting results if observations could be carried out on a large number of subjects.
 - 3. Skin conductivity. The apparatus used, whilst not accurate for an absolute measure of the emount of sweat on the skin surface, since it gives not only an indication of the presence of sweat actually on the surface but also in the sweat glands, in addition possibly, to an increased peripheral blood flow component, did yield very useful information as to the onset of sweating and a rough measure of relative sweating rates. Frequent observations would be necessary to establish the exact time of easet of sweating.

Difference between Subjects.

The figures showed that there was a difference in the changes in vaso motor tone, skin surface temperature and relative sweating rates of the two subjects.

Subject A was 30 years of age; Subject B was 1,7.

Supporty.

A number of pilot experiments have been conducted to examine certain physiological reactions of two subjects performing the routine demestic task of clothes washing in a kitchen living room at the Field Test Unit, Thatched Barn, and at the same time the horisontal and vertical distributions of temperature and humidity in the room were observed.

The effects on indices of the waso motor tones of the two subjects due to differences in the environmental conditions caused by variations of the ventilation rates of the room have been described and the use of the Crampton Index is discussed.

The findings of this pilot study indicated which observations were worth while taking in future full-scale user-test experiments and the experimental routine which could be carried out with minimum disturbance to the subjects in performing the specified task.

The first the second of the contract of the second of the

The next imperient of theremes was the presence of a seminal subject attended to probable 12. Any decrease, four working subjects were explanate making 5 emperiences in All.

fines while continue temperatures and also expectedly of the formation and have of most experiments, and problems to be continued to continue their many frequency readings of his formation to temperature of the formation also continued vity could be desire, then giving more county information suggestions that course of meaning on the formation of the formation

At the Sine contined to recomp for Length per and past expert particle its entire to exclude the continent of the continent o

CHAPTER IV.

The Full Scale User-Test Experiments

The results of the pilot experiments concerning the physiological reactions of housewives performing a typical weekly wash for a family of four persons when using a movable demestic gas wash boiler gave a definite indication that the extent to which the atmosphere in the room is controlled has an important bearing on the physiological reactions and subjective thermal and fatigue sensations, of the user. In the light of the results of these preliminary experiments it was decided to carry out a further series of experiments on the same problem with, however, several differences and improvements in technique.

The most important difference was the presence of a control subject situated in position II. Furthermore, four working subjects were employed making 8 experiments in all.

Since skin surface temperatures and skin conductivity of the forearm and back of neck regions yielded no useful data in the pilet experiments, such readings were excluded in order that more frequent readings of the forehead skin conductivity could be taken, thus giving more exact information regarding the onset of sweating on the forehead.

It was also decided to arrange for longer pre and post experimental periods in order to enable the subjects initially to acclimatise themselves to the atmosphere in the room and finally to reach a reasonably constant physiological state after the working periods

Method

(a) The Assessment of Room Climate

The build-up and decay of temperature and humidity as a result of the gas belier being lit for approximately a 90 minute period was measured at 3 levels in positions II and at the 1, ft. level in position I (Fig. 2.1) making 1, points in all. The following notation has been used in order to identify them:-

I2 # Position I. 4 ft. level.

II1 = Position II. 6 ft. 6 ins. level.

II2 2 Position II. 4 ft. level.

II3 2 Position II. 6 ins. level.

For this purpose 32 gauge copper constantan thermocouples were attached to the wet and dry bulbs of suspended whirling hygremeters as described in Chapters 1 and 2.

Each subject performed the prescribed task of washing for a family of four on two separate occasions. On the first occasion she was at liberty to open hoppers, casement windows and the door as she herself saw fit in order to maintain a confortable working atmosphere. However, on the second occasion the subject was strictly limited in this respect, the right hand hopper only being opened.

The subjects were requested to restrict their use of the gas wash bailer to approximately 90 minutes and in all cases within a few minutes they found this period quite adequate.

Physical measurements were carried out at quarter-hourly periods

from T = 30 to T = 270 and subsequently every half-an-hour until
T = 330 minutes.

The actual experiments were arranged according to the following table:

TABLE 4.2

Days	Subject washing	Control Subject	Ventilation arrangements.
2	B A	A B) arranged by) subject.
3	B	C B) R.H. Hopper) open only.
5	e 6	Es	Arranged by subject
6	c c	Pe	R.H.Hopper only open
7	D	C	Arranged by subject
8	D	G	R.H. Hopper only open.

^{*} These control subjects had to be obtained at short notice to deputise for Subject D.

Anthropometric Data of the Working Subjects.

SUBJECT	HE	COME		Ţ	TEI	HT	AGE
Λ	5 ft. 1	ine	8	at.	12	lb.	37
В	5 ft. 1	in.	8	st.	7	lb.	37
C	5 ft. à	in.	8	st.	72	lb.	50
n	5 ft. 2	in.	7	st.	10	lb.	30

In all, 6 subjects were employed but of these only 4 were actually engaged in the washing operations.

FIG. Lal

Experimental Procedure. The assessment of Crempton Index. Room Climate and Forehead Skin Conductivity.

Three observers were necessary to take the required data in the room and the experimental arrangement can clearly be seen by studying Fig. 4.1. On the left the control subjects' pulse rate and systolic blood pressure, whilst in a supine position are being measured in order that a value for her Granpton Index can be computed. The observer in the centre is reading the potentioneter, the readings of which give values for the wet and dry bulb temperatures at the 4 positions already described. The third observer is assessing a measure of the forehead skin conductivity of the subject in the working space from a reading of the galvanometer shown on the small table on the right. Also from this photograph the relative positions of the casement windows, hoppers, gas much boiler and sink are easily gauged.

Assessment of the physiological state.

The pilot experiments had indicated that of the various observations made, only four seemed likely to yield useful information, namely, blood pressure, pulse rate, skin conductivity and subjective thermal sensations. The purpose of the observations on blood pressure and pulse rate was to obtain values for changes in the Crampton Index.

As already indicated the Crampton Index is related to the vasomotor tone of the subject as it is derived from the changes in pulse
rate and increase or decrease in systolic blood pressure on rising
from a prone to a standing position. For the evaluation of the
Crampton Index the following readings were taken:-

Systolic blood pressure and pulse rate

- (a) at rest in the prone position, lying on a couch
- (b) after standing for 2 minutes in an erect position.

 Readings were taken until two consecutive ones agreed. The skin conductivity was measured over on the centre of the forehead, this position being chosen because of the following considerations:
 - l. The forehead skin overlies little muscle.
 - 2. Previous experiments had shown that sweating was more constant in this region.

The relative lack of muscle tends to eliminate variations in conductivity due to variations in blood flow through the underlying muscle due to the performance of muscular work.

A diagram of the apparatus used for the assessment of of skin conductivity is shown in Fig. 3.4; and the description of the apparatus is given on p.66.

The experimental time was divided up into three periods:-

- (1) A period of rest and acclimatisation in the experimental room (30 minutes).
- (2) A period of work covering the subjects' own particular washing routine. (approximately & hours).
- (3) A period of 1 hour, the "necessary stage" during which the subject remained at rest in the experimental room.

These experiments differed from these previously carried out in the following respects:

- l. A central, resting, sitting subject was present in the experimental room in position II.
- 2. Systolic blood pressure and pulse rate readings were taken every 20 minutes for the control subject.

3. Whereas readings for the evaluation of the Grampton Index were eriginally taken at the end of a particular phase in the washing routine, they were now taken every half-hour.

The skin conductivity was measured on the average every 10 minutes throughout the whole of the experiment. When, however, there was any indication of a great change in the skin conductivity, readings were taken every 5 minutes. At the same time as the conductivity measurements were taken, the subject indicated her subjective sensations of heat, moisture and freshness. A list of these thermal sensations and their appropriate numerical equivalent indices were easily accessible to the subject. The skin conductivity readings and her sensations were taken whilst the subject was in her working space, obviating any error that may have occurred by passing from one part of the room to another. The control subject remained in the working room for the complete experimental period save for the occasions when meals were taken in an adjoining room.

The period prior to the experiment proper was included in order that the subject might familiarise herself with the surroundings and the experience of the various observations.

However, a careful study was made of each subject's procedure and to preserve uniformity of activity on the second days, a timetable was given to the subject with instructions to adhere to it as closely as possible. The actual amount of clothes washed varied from subject to subject but each subject did the same amount on the two days. Therefore, the only variable entering the experiments was the

difference in the climatic changes on the two days. It was the effect of this difference on the changes in physiological and subjective reactions of the subjects which was to be studied.

Results

Crampton Index and changes in Summated Sensations related to changes in the room climate.

These experiments were carefully controlled, although only carried out on a small number of subjects. The findings clearly indicated that the Crampton Index followed the same general trend of change on both days but was significantly lower on the second day when the subject was working in a warmer and more humid atmosphere which caused greater thermal stress, as indicated by her subjective sensations of heat, moisture and freshness. This was shown to be the case for all the four subjects whose reactions were observed.

The increases in subjective sensations of warmth closely followed the increases in the W.B. temperature as might be expected; moreover, decreases in the Crampton Index corresponded with increases in the subjective sensations of thermal discomfort. Minimum values for the Crampton Index were seen to approximate to maximum wet bulb temperatures at the 4 ft. level in the working space.

During the pre-lunch period in which exercise, in the form of washing and scrubbing was carried out, a marked lowering of the Crempton Index was observed. Furthermore, the fall in the value

DAY 2 RIGHT HAND HOPPER OPEN ONLY WASHING INCLUDING SRUBBING SORTING 110 100 90 80 CRAMPTON INDEX. 6Q 5Q 40 30 SUMMATED SENSATIONS OF HEAT, AND FRESHNESS. MOISTURE WET BULB TEMP. "F AT 4" LEVEL IN 70 SPACE. WORKING 99 DAY I DAY 2 FULL ON RIGHT HAND HOPPER OPEN THROUGHOUT EXPERIMENT CASEMENT WINDOWS CLOSED THROUGHOUT EXPERIMENT. 60 TIME BASE 210 270 300 330

TRENDS IN CRAMPTON INDEX, COMFORT SENSATIONS AND WET BULB TEMPERATURE

VENTILATION ARRANGED BY SUBJECT .

SUBJECT ·

DURING WASHING OPERATIONS ON :-

of the index was more marked on those days when the ventilation control was limited and caused a greater rise in the W.B. temperature.

Subjects A, B and C had lunch in an adjoining room maintained at D.B., 65°F., R.H., 50%. During this period their Crampton Indices showed a distinct rise. This increase was less marked however on those days when the pro-lunch thermal stress was greater, except in the case of Subject A whose Crampton Index at this time exceeded the resting value on both occasions.

Subject D took her lunch in the same experimental room. The recovery, in respect of the Grampton Index was much less marked than in the cases of subjects A, B and G.

Further activity after lunch, mainly rinsing of boiled articles, wringing and hanging out, also caused a decrease in the Crempton Index but not so marked as that found during the pre-lunch period when the room temperature was higher. The after lunch activity was not so exacting and the differences in the Crempton Index decreases on the two days under comparison were not so great. The differences in the environmental temperatures on the two days after the gas wash boiler had been turned off were very much less than during the working period. The maximum difference observed in the W.B. readings were 14.00% within the 600% to \$600% range.

The Crampton Index reached its minimum values during the period of greatest stress, approximating at the middle of the

washing period whilst the gas wash boiler was in operation. The minima were reached at approximately the same times on the two days. This was partly due to the effect of work and partly due to the rise in temperature and humidity. See table 4.2 showing minimum values.

It is seen from Table 4.3 that during the last 30 minutes the changes are generally less than during the last hour. In fact the last hour consisted of (a) hanging out the clothes and (b) a period of 30 minutes rest in the experimental room. In other words, recovery took place rapidly on leaving the hot room.

The major part of this change generally speaking took place during (a) which entailed entering an adjoining corridor where the climatic conditions were different from those in the working room.

The greater change in the Grampton Index can be accounted for by the fact that the W.B. temperatures and the R.H.s. were considerably lower in the corridor than in the room. The control subjects did not show these marked variations in the last 40 minutes. The changes were randomised between 20 and -15 there being no apparent differentiations between days 1 and 2.

TABLE 4.2.

The Crampton Index and Subjective Thermal Sensations in Relation to Room Climate and Experimental Phase.

	_ sensettivenessestativenessest	lation	erfore deservativa especiales	I d by Subjec	<u>t)</u>	(Ventilation controlled)							
	Time (mins.)	op W.B.	R.H.	Summated Sensations	C.I.	Time (mins.)	E.B.	R.H.	Summated Sensations	C.I.			
SUBJECT A													
Initial After scrubbing	30	59.2	83%	≈ 2	85	30	57.5	78%	0	90			
(min.value)	90	66.8	87%	44	75	120	71.7	90%	+11	40			
After lunch	210	61.0	82%	0	95	210	67.0	89%	+3	100			
After wringing Final (after 30	270	60.5	82%	-1	75	240	69.0	90%	43	65			
minutes rest	330	59.2	78%	*2	85	330	66.0	86%	-2	85			
SUBJECT B					e gar-till en tittle til til startin	क्ष्म कुरुवीक राज्य यात्र व्याप विदर्भ वर्षात्र विदर्भ वर्षात्र व्याप विदर्भ वर्षात्र व्याप		egytingstyru (gglandstyru aggrandstyru a	yklineszöven hittigszávoltáte vitá mistietőkungszenken	programment and the second			
Initial	30	56.0	80%	-1	100	30	58.0	87%	+1	85			
After scrubbing (min. value)	150	63.0 62.5	87% 82%	+5 0	65 10 5	90 210	78.6 66.0	87% 88%	411 43	30 65			
After wringing	240	62.5	85%	0	60	240	66.0	87%	49	45			
Final (after 30 sinutes rest)	330	60.7	80%	-1	95	330	64.7	87%	43	90			

TABLE 4.2. (Contd.)

Posturence	(Venti	NEWSCHOOL PRINCIPLE	A Y	d by Subject	,		(Vent	DAY	controlled)	
	Time	°F		Summated	C.I.	Time	op Ba	P.H.	Summated	C.I
	(mins.)	NeDa	R.H.	Sensations	Vels	(mins.)	RaDa	11sile	Sensations	Va L
SUBJECT C	ago described to the model of									
Initial	30	62.1	87%	+2	80"	:30	59.8	83%	0	75
After scrubbing	100	0		3						
(min.value)	120	65.3	83%	4-7	25	130	72.4	86%	+14	15
After lunch	210	65.6	82%	45	75	210	67.0	825	45	65
After wringing	270	63.0	82%	45	55	270	67.0	82%	45	40
Final (after 30									8 6 31	
minutes rest)	330	62.4	82%	-1	70	530	64.7	735	42	85
SUBJECT D	Control Contro			The state of the s		Ster (Ster House, Com House House, Ho	Control of the Control			
				10 装		£				
Initial	30	60,5	825	-3	105	30	59.7	89%	-2	85
After scrubbing	52 52				28			D. D.		
(min. value)	150	64.2	87%	48	60	130	70.2	87%	48	30
After lunch	810	64.5	86%	⊸ S	75	22.0	66.2	96%	43	50
After wringing	260	64.5	86%	42	70	270	67.0	92%	45	25
Final (after 30					1 10 1	1	A	1 2 7		
minutes rest)	330	64.2	86%	-5	80	530	65.2	80%	+1	75

TAHLE 4.3

Changes in the Subjects Crampton Index due to:

- (a) entering corridor to hong out washed articles,
- (b) final 30 minute rest period in the Experimental Room.

		100		or and	orte clot	feren apton r han hes i Subje	Inde	300	Changes in the Crampton Index during 30 minute rest period. Subjects A B C D					
DAY 1	A B C D	4.3 7.9 5.0 4.6	4.4 7.0 5.1 6.9	9.0 9.0 15.0 -9.0%	+10	+25	4599	0	+5	0	+10**	+10		
DAY 2	A B C D	7.0 11.4 5.7 7.8	4.9 7.3 6.7 4.5	13.0 22.0 3.0 18.0	+10	435	435	+20	-5	- 5	+10	+30		

* Raining outside.

Figures obtained by interpolation.

Negative sign indicates corridor warmer or more humid then Experimental Room.

the weekt bridge to reaccements have been differents. Thereofeels dress

TABLE 4.4.

% Decreases in Crampton Index for Working Subjects.

Ua theo	DAY 1	DAY 2	DI FFERENCE
A	11.8	55.5	36.8
В		68.4	36.8
C	68.7	80.0	11.3
D	33,3	66.6	33.3

Table 4.4 shows that the % decreases in Crampton Index was again greatest on the 2nd Day for all subjects, the % decrease being least in Subject A and greatest in Subject C. The latter was in an older age group, and the Subject said that she felt the work was rather stremmons for her on both occasions.

During the post lunch working period the variations in Crampton indices were solely due to variations in activity since the W.B. temp. (see Figs. 4.2., 4.3., 4.4., 4.5.,) and D.B. temps., showed little decrease. The differences between days can be accounted for by the differences in W.B. temperature and air movement.

The Control subjects.

A comparison of the trends in the Crampton Indices throughout the experimental period has been made. Such a comparison has only been possible when the same subject has acted as control on the two days when the ventilation arrangements have been different. Therefore from Tables 1.1 showing the subjects participating in the experiments on the various days, it can be seen that these comparisons were possible; namely (a) Subject B. Days 2 and 1. (b) Subject C. Days 7 and 3.

A table for (a), (b) and (c) has been compiled which illustrates the differences in the trends of their Crampton indices between the two days. Also shown are the initial peak and final values of the W.B. temperatures and the relative humidities at the 4 ft. and 6 inch levels in the space occupied by the central subject, i.e. positions II2 and II3, the remote corner. As was often the case the maxima on the two days did not occur at the same experimental time. In such

cases both maxima at the different times have been shown together with the corresponding temperatures and humidities at precisely the same time on the other day. The significance of the difference in the trends of the Crampton Index in both cases for (a), (b) and (c) have been tested and the relevant results are to be found under each table.

TABLE 4.5

(a) Subject A. acting as Control. Crampton Index Differences and

		R.H. H	A Y)	Complete Service (A)		ces in		DAY ilatic		nged	DIFFERENCES Day 2 minus Day 4				
(mins.)	C.I.	4º le	R.H.	6" 1	H.H.	C.I.	4° 1 W.B.	R.H.	6" 1 U.B.	R.H.	C.I.		R.H.		R.H.
0 20 30 40 55 80	105 105 95 80 85	56.2	76	55.6	79	100 100 85 90 95	58.1	79	57.1	81.0	-5 -5 -10 +10 +10	+1.9	43	40.9	+2
100 125 135 140 150 160	90 75 85 80 85	75.6 76.9	97	64.0 64.4	87 90	90 85 95 100 85	67 . 3	88	62.6 62.6	8 7	0 +10 +10 +20 0	-8.3	-9 -13	-1.6 -1.8	0 -3
200 220 245 260 280	70 80 70 80 85					105 105 105 100 85	-				+35 +25 +35 +20 0 +10				
505 320 530 340	80 75	65.3	81	63.0	84	90 90 75	58.1	70	57.6	70	415	-7.2	-11	-5.4	-1

The difference between the mean values of the Crampton Index for the two days = 9.51. The Stendard Error of this difference = 3.266. Hence t = 9.51 = 2.91; Pless than .01 3.266

[.] Difference Significant.

TABLE 4.6

(b) Subject C, acting as Control. Crampton Index Differences and

squarisher description	ky program kan la	R.H. H	D A Y	1	Dates	ces in	Vent	DAY Ilatic	n arra	nged	DIFFERENCES Day 7 minus Day 3				3
Time (mins.)	C.I.		evel	6" 1 F.B.	evel R.H.	C.I.	4" 1	evel R.H.	6" 1		C.I.	National Address	evel R.H.	6" 1	evel R.H.
0	80	0.99	- CONTRACTOR - CON	alogo.		80			- 13		0		1967	re _{rec} ension e	
20 30 40 65 80	75 90 85 80	57.4	80	56-2	80	95 95 95	59.8	79	59.8	91	45 410 415	424	-1	45.6	+11
100 105 120 125	75 85	67.9 69.7	87 87	62.4 64.0	88 89	70	69 .0 58 . 8	96 88	63 .0 64 . 8	87 87	+15 -15 -5	+1.1	412 41	40.6 40.8	-2
140 160 185	85 80 80	93.3	要型	55,5	100	95 80	ds, 2	(32)	83,6		+15	Brown William Commission of the Commission of th		» l.s.	
210 220 245 280	75 85 85 90					85 85 90 85					410 0 -5 -5				
305 320 330	100 100	63.8	80	62.6	87	95 90	64.4	84	62.6	87	-5 -10	40.6	44	0	0

The difference between the mean values of the Crampton Index for the two days = 2.35
The Standard Error of this difference = 2.02. Hence t = 2.35 = 1.16; P greater than 0.2

^{. .} Difference not significant.

TABLE 4.7

(c) Subject C acting as Control. Crampton Index Differences and

		R.H. H	D A Y	Security	4 . 0			D A Y	_7 n erre bject.			Day		us Day	
Time (mins.)	C.I.	4° 1 W.B.	R.H.	6" 1 %B.	R.H.	C.I.	4" 1 W.B.	R.H.	W.B.	6" le	Cala	4° 1 E.B.	R.H.	6" 1 W.B.	evel R.H.
0 20 30 40 65 80	75 85 85 85	58.5	79	57.1	82	80 80 95 95 95	59.8	79	59.8	91	45 -5 410 410 410	41. 5	0	48.7	\$ 9
100 105 125	85 80	68.8	82.0	65.6	97	90 70 80	69.0	98	63.0	87	+5 -10 -5	40.2	+14	-0.6	-10
140 150 160 185	85 75 85	73.3	95	65.3	88	95 80	64.2	88	63.6	87	+20	-9.1	-7	-1.7	-1
210 220 245 260 230	75 75 85 85 75					85 85 95 90 85					+10 +10 +10 +5 +10				,
305 320 330	85 85	64.4	84	64.0	94	95 90	64.4	84	62.6	87	+10 +5	0	5.79	-1.4	-7

The difference between the mean values of the Crampton Index for the two days = 5.79. The Standard Error of this difference = 2.20. Hence t = 8279 = 2.65; Pless than .02

[.] Difference significant.

These results show us that in two out of three such comparisons the trends in the control subjects' Grampton indices are significantly different. In addition, we must draw attention to the differences in the W.B. temperatures at the 4 ft. level in the appropriate position (Position II_Q).

For the comparison between Days 2 and 1, the mean of the differences of eighteen such wet bulb temperature readings throughout the experimental period was 1,01,01. With a standard error of 0,93°F. Such a difference is significant. Furthermore, the corresponding figures for the experiments on Days 7 and 8 (mean of 17 readings) were 2,18°F with a standard error of 0,91,°F. Again significant.

The most interesting result however, is obtained when a similar comparison is made between experiments on Pays 3 and 7. In this case, as already shown, the differences in the Crampton indices are not significant. Furthermore the mean of the differences of the eighteen wet bulb temperature readings yields the figure 0.52°F. with the corresponding standard error of 0.57°F. Such a difference is clearly not significant (t = 0.91).

Thus we can conclude that in the three comparisons made for subjects in a position of rest throughout the experimental period significant differences in their Crampton indices were obtained only when the differences in the wet bulb temperatures at the lift. level at position II2 were significant.

(a) Working Subjects.

The following tables have been prepared to show the times of occurence of maximum temperatures, summated sensations of heat, moisture and freshness, together with values for the skin conductivity of the subjects.

Subjective Thermal Sensations & Skin Conductivity in Relation to Room Climate.

Time	Skin Conductivity cims-1 x 10-5	Summated Sensations	W.B.	D.B.	
	SU	BJRCT A			
47 103 135	3.66 1.36 2.19	2 4 3	60.7 65.5 68.8	63.6) 68.2) 70.1)	Day 1
122 147	73+7 100•0	11	71.8 75.2	74.0) 76.5)	Day 2
	SI	BJECT B		IA SE ANTONIO	in plan
147 121, 135	3.82 2.33 0.96	6	57-4 65-8 68-8	60.7) 68.4) 70.1)	Day 1
165 174	59.0 69.4	1/ ₁ 13	69.7 68.2	71.8) 70.1)	Day 2
	st	RJECT C	Water No.	·	
131 135 150	900.0 980.0 857.0	, L	67.7 67.7 67.9	69.7) 69.7) 72.0)	Day 1
115 135	780.0 536.0	114 13	72.4 73.8	75.6) 75.2)	Day 2
	SI	BJECT D	Augusto Millionia	allanten en	ago al especial de la companya de l La companya de la co
105 115 135	7.3 1.0 by the old	7 10 8	68.8 68.8 69.3	73.3) 72.0) 72.4)	Day 1
150	27.6 25.0	12	73.3 73.3	76 ds) 74.2)	Day 2

Generally speaking, the skin conductivity values showed greater increases on Day 2 than on Day 1, but Subject C showed very little difference in this respect. It should be noted that the Crampton Index for this subject fell steeply during the scrubbing period on the first day approximately to the minimum value reached on the second day. It was possible that the physical effort involved was almost maximal on the two days and this would account for the only slight differences observed in the skin conductivity. Furthermore, the maximum W.B. differences were only 6°F, during this period. It must be remembered too, that she was an older subject and the normal powers of adaption were consequently somewhat reduced.

It is seen that small increases in W.B. temperature in the range 65°F - 75°F. caused marked increases in sweating on Day 2, which was not propertionately equal for all subjects. This can be accounted for in part by the fact that the air movement, by virtue of the through ventilation of the working space was greater on the first day, (approximately 200 ft/min. compared with 10 ft/min.). The controlled experiments described in Chapter 5, poll; indicate that sweating as a result of exercise, where air movement was approximately 100 ft/min. does not show marked increases until a W.B. temperature of approximately 75°F. is reached. The subjects in these experiments were young men and women in the age group 20-30 years. Returning to the experiments under discussion, the observations indicated that the skin conductivity was rapidly affected by the amount of muscular work performed, this being particularly marked on Day 2. The sudden increases in skin conductivity were associated with the appearance of visible perspiration. These sudden increases usually occurred when the value reached 30×10^{-6} ohms⁻¹. This appeared to be a critical value.

In all cases the summated sensations were greater on Day 2 than Day 1. The maxima were associated with maximum muscular activity and skin conductivity and maximum values of W.B. temperatures. However, it should be pointed out that there is a slight time lag between the occurrence of maximum sensations and maximum sweating, the former preceding the latter by about 20 minutes for each subject. The summated sensations were stable during the pre-experimental period, rising during the initial washing period to a maximum, falling during the lunch interval followed by smaller rises during the later periods of activity.

It will be observed that changes in skin conductivity were closely allied to changes in summated sensations. In fact, neglecting the above-mentioned time lage the following correlation coefficients between the two variables have been found:-

Subject As	0.799 + .095	17 18
Subject B:	0.723 t 0.116	
Subject C:		

The times of onset of sweating as indicated by the appearance of visible sweat coincident with marked increases in skin conductivity were:-

ing the cons		Day 1	De	M 2.
Subject	At	ed walno is misjort to w	120	minutes.
Subject	Bs	ergon in this residing of	150	minutes.
Subject	Ga .	90 minutes.	90	minutes.

If 35 minutes be substracted from these values they are then in terms of the actual time that elapsed between the commencement of washing and the appearance of visible sweat.

(b) Centrel Subjects.

TABLE 1.9
Skin Conductivity Ranges: Control Subjects.

Days	ys Subject Ventilation Variations in arrangements Skin Conductivity (ohms-1 x 10-6)		Max. W.B. temp. in Pes. II2 (4 ft. level)	
1 A	1 A by subject	0.16 - 6.5	66•2	
2	В	by subject	0.83 - 13.9	67.3
3	C	Fixed	1.66 - 9.5	68,8
14	D	Fixed	0.66 - 11.45	76.9
5	B	by subject	0.16 - 2.98	68,6
6	р	Fixed	1.66 - 16.7	76.4
7	C C	by subject	0.99 - 5.15	69.0
8	C	Fixed	0.16 - 2.99	73.3

It will be seen that all the values are considerably less than the limiting values and indeed it was noted that at no time did any of the control subjects show any visible changes in sweating.

Such values for skin conductivity are based on very small galvanometer deflections, which consequently could not be read with great accuracy. Each calculated value is subject to an error of \pm 0.34 x 10⁻⁶ chms⁻¹ due to possible errors in the reading of a small galvanometer deflection on its lewest range.

The apparatus has not been designed to measure absolute values of skin conductivity but only to illustrate gross changes associated with changes in environmental conditions or the performance of muscular work.

Climatic Conditions and Vitiation of the Room Air.

High humidities cause condensation to occur on surfaces which have temperatures less than the dew point of the room air. Such condensation can be a source of serious damage to floors, paint, wallpapers and furnishings. Therefore the problem is to arrange for maximum ventilation of the room consistant with maintaining a comfortable working atmosphere, i.e. without the creation of undesirable draughts. In the experiments under consideration, two different modes of ventilation were employed. One in which the right hand hopper alone was opened. Previous experiments had shown that such an arrangement gives rise to an overall air change of 2.0 to 3.5 room air changes per hour. The second method of ventilation was not fixed as it was arranged by the subjects. The accurate estimation of the air change brought about by the various hoppers and windows being opened together with the door is very difficult, owing to the limitations of the GOp tracer method used. Furthermore, an overall estimate of the airchanges in the room under such conditions would not apply to all parts of it. It was quite apparent that in the working space, the airchange rate exceeded considerably the rate at Position II, the remote corner, because of the through ventilation between the windows and door.

FIG. 4.6

However, from the point of view of the vitiation of the air, resulting from gas combustion and the presence of five persons within the room, the COo concentration never exceeded 0.29% at mid-level and 0.25% at burner level near the gas wash boiler on those days when the right hand hopper only was opened. Any presence of CO in the room could not bedetected by the CO indicator Mk III (no. 1); such an instrument can readily detect the presence of GO to 1 part in 100,000 (0.00E%). The upper physiologically safe limit is 0.0E% for CO. No estimation of any other products of combusion such as SO2. SOZ. NO2 or CHOO was made; only one subject detected any smell to be associated with the combustion of coal gas in the wash boiler, but she thought it by ne means objectionable. Thus we can say that throughout the series of experiments the air change rates were well within the limit necessary to avoid any texic effects from the vitiated air. It should be remembered that this gas appliance had no direct lead to the external air with the result that the combustion products were free to be liberated into the room and accumulate in the working space in the vicinity of the boiler unless controlled by a suitable method of ventilation. Theread the the tree difference were last as well as the

Absolute Runddity. The first grants of Association Services in Control of Services

Fig. 4.6 is a graph illustrating the build-up and decay of absolute humidity in grains per pound of dry air at the working space during the experimental period. The 3 different conditions shown are:

- 1. R.H. hopper open only. Hean value of the four experiments.
 - 2. Subject deciding ventilation. do. -

3. R.H. Hopper open only. Gas boiler lit but no washing performed. The data was obtained from previous experiments and again each figure is the mean of four values.

The graphs show the increases in absolute humidity above the initial value recorded at the commencement of each experiment, and the effects of the two different ventilation rates can be seen. The increase was less for Day 1 than it was for Day 2 (27 as compared with 57 grains per 1b. of dry air).

It is interesting to compare conditions 1 and 3 where the difference between them was that washing was performed in 1 but not in 3. The increase in the absolute humidity due to the contribution from washing, rinsing and wringing of the garments can be seen.

The Wet Bulb Temperatures.

Mention has already been made (p.107) of the significance of the W.B. temperature at the location of the seated subject. It has been observed that for this subject the mean Grampton index only differed significantly on those days when the W.B. temperatures were significantly different.

markedly different for the two different ventilation rates and is elearly indicated on the graphs illustrating trends in Grampton index, summated sensations and W.B. temperature. The following table giving the initial peak and final values of the temperature at Pos. II2 shows the effect of an increased ventilation rate on the maintenance of a lower W.B. temperature.

TABLE 1..10

W.B. Temperature Increases at Position I2 (Working space).

	Initial Op	Peak op	Final op	
Subject A	59 .1 57.4	68.8 75.2	59•3 66•2	Vent. arranged by subject. R.H. Hopper only.
Subject B	56.0 58.1	66 . 9	60.7 64.8	Vent. arranged by subject. R.H. Hopper only.
Subject C	62 .1 59 . 8	67 . 9 73.8	62.ds	Vent. arranged by subject. R.H. Repper only.
Subject D	60 . 7 59 . 8	69 . 3	61;el;	Vent. arranged by subject. R.H. Repper only.

The Dry Bulb Temperature

A similar table for D.B. temperature has been drawn up (Table 1.11). Both tables not only illustrate lower peak values for both wet and dry bulb temperatures on those days when the ventilation was arranged by the subjects but also the impertant fact that also on those days the difference between Final and Initial temperatures was less, i.e. initial conditions of temperature and humidity were more closely approached on Day 1 than on Day 2.

D.B. Temperature Increases at Position Ip (Working Space).

ay ngàn gay sanghi na tanghi na tanà an ti ba saka sa na hailan da hailan sa	Initial op	Peak o _F	Final or	
Subject A	62.L	70.1 75.8	61,0 69.3	Vent. arranged by subject.
Subject B	59.6 60.7	69.7 72.4	61.ds	Vent. arranged by subject. R.H. Hopper only
Subject C	61,.8 62,8	72.0 75.6	66.0	Vent. arranged by subject. R.H. Repper only
Subject D	61.07	73.3 76.ls	67.1 68.8	Vent. arranged by subject. R.H. Hopper only.

Temperature gradient at Position II2.

In rooms used for continuous occupation it has been recommended that the dry bulb air temperature at foot level should be not more than 5°F lower than at 5° 0° level.

The following table shows differences in D.B. temperatures at the 6.6" and 6" levels at Pos. II at three phases of each experiment.

described riches that their people to nated health show on indi-

at between 60 and 60. Below 50 to belie to be obtained; a bigli lade

is a parameter original of impaired directables, or tendents or orders

The second program California and graduations are an efficient in a constraint an expensive

recommend distantance,

TABLE 4.12

D.B. Temperature gradients at POS. II. (the remote corner of room).

Control Subject	Inital op	Peak op	Final op	
A	0.7	7.8	1.5	Vent. arranged by subject
C .	1.6	7.6	2.8	R.H. Hopper only
В	1.9	5.5	0.9	Vent. arranged by subject
В	1.9	14.0	3.3	R.H. Hopper only
a de la Romania de la Calendaria de la C	2.5	4.5	1.7	Vent. arranged by subject
at have ex p eries the	2.1	8.9	s (• ee ja	R.H. Hopper only
C	2,8	7.0	3.5	Vent. arranged by subject.
CO SAN PARK CONTRACTOR	2.7	8.1	3.5	R.H. Hopper only

The table shows that the temperature gradients were less on those days when the ventilation arrangements were made by the working subject. The mean value for days I being 6.2°F and for days II 9.6°F.

Assuming a linear increase of temperature from the floor level upwards, the corresponding figures for the difference in temperature between the floor or foot level and the 5' 0" level would be 5.1°F and 8.0°F respectively.

Discussion

Grampton states that most people in normal health show an index of between 60 and 80. Below 50 he holds to be abnormal; a high index in a person obviously in poor health is abnormal. An index below zero is conclusive evidence of impaired circulation, or toxacmia or severe physical disturbance.

Experience has shown that minor changes in the index are not significant since there is an error of plus or minus 5 mm. Hg. in the measurement of blood pressure which can result in a maximal error of 10 points in the assessment of the index. It may be concluded, therefore, that trends in the index are more significant than separate determinations. Healthy people show widely divergent values for the index, consequently it is individual changes in the index which must be investigated. There are minor daily variations for a particular subject, e.g. of the order of 5 for the Crampton Index. Crampton was of the opinion that a low index was associated with diminished powers of adaptation of the circulation and impaired physical efficiency. It is worthy of note that the Crampton Index can be readily determined and may be employed in field studies where the emount of equipment to be used must be a minimum and when it is desirable to reduce interference with the subjects' routine also to a minimum.

The results have shown that the Grampten Index was significantly lower on the 2nd day of operation when the air change rate was purposely restricted. That this is due to the environmental conditions is shown by the fact that:

- (a) The amount of work done on the two days was the same.
- (b) The initial resting values of the index were the same.
- (c) Their general trends were the same.

Crampton, in the evolution of his index, considered that
constriction of the splanchnic vessels contributed the larger part
of the peripheral resistance, but in the experiments there was
considerable dilatation of the skin vessels as indicated by the

increased rate of sweating. Such a dilatation would detract from
the value of the peripheral resistance and consequently give a lower
value for the Crampton Index. Crampton originally designed his index
for use in temperate climatic conditions and the experiments described
in Chapter 5 were to test the validity of the Index under conditions
of increased temperature and humidity.

It has been shown by the New York State Ventilation Commission (1923)⁽³⁸⁾ that variations in air movement cause significant differences in the index; the greater the air movement the higher the index. Since the air movement on Day 1 was greater than on Day 2, this was undoubtedly a factor of significance, due to the increased cooling effect of the air on the body.

The increase in wet bulb temperature was greater on Day 2 which impeded the evaporation of sweat and consequently the blood flow through the skin was greater in an effort to maintain thermal equilibrium, i.e. thermal stress was greater on Day 2 when the Grampton Index showed a greater fall. Thermal stess even at rest becomes evident when the wet bulb temperature approaches 80°F.

The degree of activity of the subject has a bearing on the value of the index; the greater the activity the lower the index in subjects of the type used in the present study. Since the activity of the subjects was the same on the two days, the differences in the indices are considered to be due to the marked differences in the environmental conditions. A marked fall resulting in low values is considered to be significant since the subjects complained of fatigue at precisely

these times when the index was found to be low in relation to the resting initial value.

The Crampton Index for these subjects who took lunch in an adjoining room, rose more steeply than for those subjects who remained in the experimental room during this period. This can be attributed to the better climatic conditions (65°F. D.B., 50% R.H.), prevailing in the adjoining room since duration of the lunch period and type of meal were essentially the same.

The experiments have shown generally that a high degree of correlation exists between susmated sensations and skin conductivity as measured. It would appear that the rapid onset of sweating as indicated by the sudden increase of skin conductivity and the simultaneous appearance of visible sweat did not associate itself with any decrease in the summated sensations. It has been observed that a plateau of the maximum value of skin conductivity usually occurs during the period of greatest activity. The increases and decreases in skin conductivity are rapid, indicating the degree of physiological adaptation to the thermal stress of the moment.

conductivity were greatest on Day 2. This was associated with greater changes in wet bulb temperature. However, the percentage changes in wet bulb temperatures were relatively small compared with percentage changes in skin conductivity. From this it would seem that the W.B. temperature is of the utmost importance when the thermal stress of the subject is to be considered. It appears that with the degree of activity under consideration a W.B. temperature of approximately 650F

(R.H. 80%) is associated with the commencement of a positive increase in the subjective sensations. The summated sensations and skin conductivity depend in part upon the degree of activity but it is significant that the maximum values were obtained towards the end of the period of maximum activity.

The scale (p. 63) used for subjective sensations was originally designed to be used for subjects at rest or during the performance of light sedentary work. Consequently, the upper regions were reached at relatively lower temperatures and in some cases even an extension of the scale was indicated. Furthermore, the subjects were instructed that maximum values on the heat and moisture scales were to be interpreted as being those relevant to an environment inducing maximum discomfort, which indeed they would be if the subject was at rest.

In addition it might be pointed out that a certain amount of practice in the use of the moisture scale was indicated. For the untrained observer the assessment of the sensation of moisture is not easy. However, in these experiments, since frequent observations were carried out, the subjects soon became conversant with this scale and consequently the records can be considered reliable. The freshness scale, ranging from 'very fresh' to 'very stuffy', is only sub-divided into five grades. Whereas the negative (or fresh) grades were adequate, the positive (or stuffy) grades were coarse and most subjects indicated that the positive values should be sub-divided in order to give a value sonsistent with their subjective feeling.

SUMMARY

- 1. Following a pilet study a series of full scale user-test experiments has been carried out to assess the changes in some physiological reactions associated with changes in room climate during the perfermance of domestic washing by four different experienced housewives who acted as subjects.
- 2. The physiological changes studied on the working subject and on a seated, control subject were:-
 - (a) Changes in vaso-meter tone as indicated by the changes in the Crampton Index of each subject.
 - (b) Sweating as indicated by changes in skin conductivity.
 - (c) Subjective sensations of heat, moisture and freshness.
- 3. The room climate was determined by observations of dry bulb temperatures and relative humidity at four points in the room. These observations were made by thermocouples attached to the wet and dry bulbs of suspended hygremeters ventilated as required.
- 140 A study of the procedure of each subject was made and the same routine was carried out on the two days.
- 5. Each subject performed her task under two different sets of conditions, namely (a) ventilation arranged by subject. Day 1.

 (b) ventilation restricted to the use of one hopper only. Day 2.

Condition (b) gave rise to an overall air change rate of 2.0 to 3.0 room air changes per hour.

- 6. The results obtained were:-
- (a) The Grampton Index, the skin conductivity, and the summated sensations of heat, moisture and freshness showed marked variation between the two days. Summated sensations and skin conductivity were greater and the Grampton Index was lower on Day 2.
- (b) Consistent with (a) was the fact that the ventilation rate being restricted on Day 2, gave rise to greater increases in W.B. and D.B. temperatures in the working space.

phone in the control of a present of the period of the second of the sec

ralla territa buren beren Alementeko ila Chapter III.a. Iturak etana etana teneh turuk terrin abendat dipungsa résista terim meh membanyak aritu tan magnilaran sal Men mahlanteka mel Chapterskingan men manglabarat tulta tina disiparancea san

the confermental damper on the tree days statist for each vertical

and placed. There were inclined shifted equip easily be assumed units of

CHAPTER V.

Changes in Crampton Index, Subjective Thermal Sensations and Skin Conducttivity Polated to Changes in Environmental Temperature and Hunidity,

Introduction

The results of the pilot experiments, which were confirmed and emplified by the Full-scale user-test experiment described in Chapter III and IV respectively, showed that gross changes in the Grempton Index, Susmated Sensations of Heat and Moisture and the skin conductivity were closely linked with thermal stress and discomfort on the part of the subject whilst working in a hot and hamid atmosphere.

Rewover, it was necessary to carry out further experiments to ascertain if a quantitative relationship existed between the changes in those physiological reactions and environmental thermal changes.

From the findings of such a series of controlled experiments one could then determine whether or not changes in the Grampton Index were walld physiological indications related to thermal stress. Also, the possibilities could be examined for the prediction of changes in these physiological reactions for a subject performing a known fixed encunt of work when exposed to known temperature and hundress.

Other physiological reactions, e.g. Stone, Tigerstedt and P.P. X
P.R. tests have been discussed in Chapter XII. It was shown that these
tests showed changes which were not consistent with the opinions of
the subjects and furthermore, not consistent with the differences in
the environmental changes on the two days studied for each working
subject. These were indices which could easily be assessed under the

conditions arising from the performance of clothes washing in a kitchen or a kitchen living room. Therefore, in a controlled physiological investigation only those reactions which are readily assessable under such conditions can be considered as being of any practical value in this type of investigation.

Finally, the significence of sudden increases in skin conductivity in relation to the time of easet of sweating had to be examined under controlled experimental conditions.

Experimental method

The experiments were carried out entirely in an air conditioned room. The room measured 12 ft. x 9 ft. 6 in. x 7 ft. high with inlet and outlet duets to provide continuous circulation of the air. The wet bulb and dry bulb temperatures were thermostatically controlled at desired levels. An electric fan was set at one corner to provide air movement. An auxiliary two kilowatt heater was also placed in the room in order that the upper extremes of the temperature ranges considered could be reached. The walls of the room consisted of a double thickness of asbestos board separated by an air space containing sheets of reinforced aluminium foil to provide heat insulation.

four separate experiments. Two subjects were present in most experiments, a control subject, who remained completely at rest and a working subject who performed a fixed amount of exercise. Each acted as a resting subject on two occasions and as a working subject on the other two occasions.

Two constant hundrity levels were maintained throughout an experiment namely 60% or 80% whilst the temperature was gradually increased from that of normal room air (55°F.-60°F. dry bulb) up to approximately 200°F. dry bulb ever a four and a half hour period.

Therefore the four experimental conditions for each of the six subjects were:-

(2)	Resting	Constant	Relle	60% }	
(2)	Resting	n .	RaHa	80%	
(3)	Exercising	25	ReHe		Temperature gradually increasing.
(4)	Exercising	4.6	R.H.	80%	minara, am and and an

Those conditions were chosen for the following reasons:-

- (a) Changes in the physiological reactions under consideration resulting from gradual increases in temperature could be studied.
- (b) The effect of a fixed mount of exercise on these physiological reactions could be assessed for each subject.
- (a) The extent to which the hundlity levels affected the onset of sweating on the ferenead could be ascertained.
- (d) The temperature ranges adequately covered these ranges encountered in the kitchen living room during the User-test experiments.

Routine Experimental Procedure: During the preliminary stage of each experiment the subjects were required to lie resting quietly on a couch in the experimental room for a half an hour period. During this time the temperature and humidity were held constant at this initial level, whilst the lying and standing blood pressures and pulse rates were measured, the forehead skin conductivity was assessed and the

subjective sensations of heat, moisture and freshness according to the scale shown on p. 63 were recorded for both subjects. This period was necessary in order that the subjects could attain a state of equilibrium from which subsequent reactions to environmental changes could be assessed.

When the two subjects were present for a particular experiment the central subject remained at rest on a couch throughout the experimental period except of course whilst the standing blood pressures end pulse rates were being observed. The Crampton Index and forehead skin conductivity were recorded every 16 minutes, and subjective thermal consations were accessed every 8 minutes for this subject.

The working subject performed exercise, which consisted of step climbing for two minutes at 16 minute intervals during a period of approximately 1, hours. Exercise was performed during the time the Grampton Index was being measured for the control subject. The step consisted of a 1 foot rise with an intermediate step at the 6 inch level. The subject placed one foot on this intermediate step both in ascending and descending. The subject ascended thirty times without turning during the two minute period. For this subject the Grampton Index was assessed every 16 minutes, midway between two consecutive periods of exercise. The subjective thermal sensations were recorded at these times and also, tegether with the forehead skin conductivity immediately before and after exercise.

Emvironmental Conditions: The physical characteristics of the experimental environment which were measured were as follows:

(a) Dry Bulb and Wet Bulb temperatures by the whirling psychrometer.

- (b) Globe thermometer temperatures.
- (c) Air velocities from the cooling times of a 130 125°F. glass kata thermometer.

These observations were taken every 8 minutes throughout each experiment and a check was kept on the relative humidity at all times.

Chservers: Two observers were present in the experimental room.

Nr. J. Brown who collaborated with me in these experiments recorded the
pulse rates and blood pressures from which the values of the Crampton

Indices were computed

Subjects: All the subjects were fit and healthy medical students in the age group 20 to 30 years. Four were men and two were women.

Clothing worn by the subjects: Each subject were exactly the same clothing for each of his or her tests. It consisted essentially of a linen or light woollen shirt, kinen shorts, socks and light rubber shoes. In the case of Subject No. 1 a woollen skirt and stockings were worn in all experiments. It is possible that this difference in clothing may have, in part, accounted for the different degree of reactions to environmental changes as compared with the other subjects.

Results

I. Changes in the Crampton Index in Relation to Changes in the Physical Environment.

whose such applies all happeness for they affine but the field still beefte

In these controlled experiments showed that increases in the environmental warmth caused marked decreases in the transitory values

of the Crampton Index and that the rate of fall was increased when a standard amount of exercise, in the form of step-climbing at a fixed rate, was performed at regular intervals throughout the experimental period.

These decreases in the value of the Crampton Index were highly linearly correlated with the increases in the wet bulb temperature, a purely physical characteristic of the atmosphere and also with the corrected affective temperature over the range considered in the present study.

The effective temperature is a single index evaluated from combinations of temperature, hundrity and air movement. This index does not describe a physical characteristic of the air since the formulation of the scale was based on the subjective thermal sensations of a large number of lightly clothed subjects who compared their feelings of warmth in an environment of known conditions to one with still and saturated air. The temperature of the latter environment was regulated until the some feeling of warmth was enpressed as in the original environment (Yagloglou and Miller, 1925)(39). However, the scale does not make allowance for the effects of radiant heat. Houghton and McDermott (1933)(40) pointed out that a correction should be applied for the effect of cold walls. Bedford (1966)(12) has made an allowance for radiant heat loss or gain by using the globe thernometer reading in place of the air temperature, the scale then being known as the "Corrected Effective Temperature Scale."

The influence of the wet bulb temperature on changes in the Grampton Index was studied because Haldane (1905)(41) pointed out the importance of the temperature shown by the wet bulb thememeter as having an important bearing on subjective thermal sensations and physiological reactions. Furthermore, Houghton and Yagloglou (1923)(42) have shown that fordow-point temperatures above 61.5°F (at the lower limit of the range of temperature used in the present study), the wet bulb temperature exerts a greater influence on thermal sensations and physiological reactions than does the dry bulb temperature. They also showed, however, that a higher correlation existed between certain reactions, such as loss of weight per hour, increase in bedy temperature per hour and increase in pulse-rate per hour with effective temperature than with the wet bulb temperature.

The following table gives the values of the correlation coefficients of the Grampton Index with the wet bulb temperature and with the corrected effective temperature calculated for each experiment.

buttless have not been included by the house to be considered to the complete, when a let of the grades of IT on in the characters once, the extension to the complete of the complete of the class of the complete of the com

monthly to the analysis and the special states and appropriate to the for and 2

TABLE 5.1

Correlation coefficients of transitory values of the Crampton Index with wet bulb temperature and with corrected effective temperature.

Subject	REST	ING	STEP-CL	.IMBING.	Crempton Index correlated with:-
No.	RefleCE	R.H.BOX	R.H.60%	R.H.80%	
1	-0.619	-0.917	-0.91/1	-0.945	Wet bulb temperature
	-0.790	-0.930	-0.860	-0.880	Corrected Effective Temp.
2	-0.815	-0.901	-0.912	-0,966	Welle
	-0.856	-0.896	-0.91.7	-0,980	Celle Te
3	-0.897	-0.936	-0.965	-0°968	W.B.
	-0.919	-0.937	-0.965	-0°990	G.R.T.
4	-0.969	-0.933	-0,919	-0.933	WaBa
	-0.987	-0.911	-0,971	-0.898	G.E.T.
5	-0.825	-0.930	-0.941	-0.933	WeBe
	-0.834	-0.918	-0.995	-0.854	GeReYe
6	-0.870	-0.813	-0.945	-0.945	WeBe
	-0.912	-0.954	-0.737	-0.947	C.R.T.

In reference to the above table it may be noted that a memerical value of the Correlation Coefficient greater than O.455 can be considered significant as 15 to 17 pairs of observations were recorded.

The standard errors \(\frac{1-2}{(n-1)}\) calculated assuming a normal distinguished have not been included in the above table since for small samples, when n is of the order of 17 as in the above case, the distribution is not normal. Consequently it is deceptive in the case of samples of this size to use the standard error calculated assuming a normal distribution. The significance of each correlation coefficient was determined from the appropriate table for small samples (R.A. Pisher, "Statistical Methods for Research Workers")

lith Edition, p. 209). All the coefficients in the above table are significant at the level represented by P = 0.01.

A comparison of these correlation coefficients shows that from the number of observations that it was possible to make in the experimental time available, there was no evidence to suggest that the Crampton Index was more highly correlated with the corrected effective temperature than it was with the wet bulb temperature. Since the rate of air movement in any one experiment was fairly constant and the differences in hunidity were not excessive between experiments such a result might be expected. It has been shown, however, by the New York State Commission on Ventilation, as previously mentioned (p. 119) that variations in air movement cause significant differences in the value of the Crompton Index. Therefore, since air movement is one of the components from which the effective temperature is computed a full-scale comprehensive study of the effect of changes in environmental physical factors on changes in the Crampton Index ever a wide range of temperature, handity and air movement would probably indicate that the Index was more highly correlated with the effective temperature than with the wet bulb temperature. However, in the time available for the present study this was not possible.

The Crampton Index appears to be very sensitive to changes in temperature and therefore since a range of corrective effective or wet bulb temperature exists within which a single subject may feel comfortable as indicated by his or her subjective thermal sensations, according to the scale used (p. 63) there must also be a characteristic range of Grampton Index values observed within each individual subject's

comfort some in the transitory state. Furthermore, there will be a range of decreases observed for the Index from the comfort some values due to an increase in temperature evoking a feeling of thermal discomfort and fatigue when experiments are carried out on a group of subjects.

Tables 5.2 and 5.3 show the values of the corrected mean value of the Crampton Index and b in the equation X = a + bX, the relationship between the dependant variable, the Crampton Index (X) and the independent variable, the wet bulb temperature and the corrected effective temperature (X) respectively for each of the six subjects*

four tests in the experimental room.

TABLE 5.2

Constant b of the regression equation X = a + bX where

Y = Crampton Index

X a Wet Bulb Temperature of.

Also the mean value of Y corrected for variations of the mean wet bulb temperature.

		ected Me rampton	een Valu Indox		electric every	Value	d to	
Subject No.	REST R.H. 60%	RaHa 80%	ReHe 60%	R.H. 80%	Rest ReHe 60%	ING ReHe 80%	R.H. 604	R.H. 80%
2 3.456	67.93 25.21 46.99 38.49 72.31 36.09	62.32 14.33 147.03 142.36 67.80 78.07	61.68 9.49 21.26 25.56 47.21 50.38	51.64 41.43 37.84 53.21 49.31	-1.51 -1.99 -1.60 -2.59 -1.33 -2.79	-1.66 -2.11, -2.55 -1.79 -2.10	=2.56 =3.37 =2.06 =3.24 =1.98 =2.39	-2.65 -2.66 -2.48 -3.16 -2.76 -2.69

and have not the Colombian Statem confide a picture buril at her naverborhous file

and specializes of the mest entire of the entiretralization

TABLE 5.3

Constant b of the regression equation Y = a + bX where Y = Grampton Index.

X = Corrected Effective Temperature

Also the mean value of Y corrected for variations of the mean Corrected Effective Temperature.

esumunitarius dindrumovan amina	Corrected mean value of					THE REPORT OF THE PERSON	CHARLES THE STATE OF SHIPLE	
Subject No.	REST Reff. 60%	DEFENDANCE PRODUCTION AND THE REST	n Indoxo	L. C.	REST ReHe 60%	alue of ING R.H. 80%	STEP-CL Roll 604	IMBING R.H. 80%
2 3 4 5 6	7430 26.98 14.22 36.03 75.40 53.08	66.10 37.46 36.23 34.89 64.62 70.57	75.51 13.63 26.42 46.33 66.52 48.23	50.52 ld.11 23.90 ld3.90 3ld.5ld 35.89	-1.78 -1.63 -1.42 -2.09 -1.16 -2.19	-1.71 -1.69 -2.32 -1.53 -1.98 -1.91	-2.72 -2.71 -1.85 -2.70 -1.76	-2.29 -2.71 -2.71 -2.45 -2.09 -2.23

It will be noted that all the values of b have a negative sign in Tables 5.2 and 5.3 which means that in every case increase in environmental heat was associated with a fall in the Crampton Index. The degree of fall was generally increased by exercise.

A comparison of these two tables with respect to the value of the regression constant b does indicate that they are slightly more consistent in Table 5.3 (Grampton Index and Corrected Effective Temperature).

An analysis of variance using the method described in Appendix 2.A. has been carried out to assess the significance of the effect of the two humidity levels and of step-climbing at a standard rate on the value of b, and also the effect of these same factors on the mean value of the Crampton Index during a single test after correcting for any variation of the mean value of the temperature.

The analysis has shown that the rate of decrease of the Crampton Index with both wet bulb and corrected effective temperature is not

THE CRAMPTON INDEX AND CORRECTED EFFECTIVE TEMPERATURE. REGRESSION LINES FOR ALL SUBJECTS.

significantly different in the environments in which the relative humidity was 60% and 80%, but that in both cases for the two physical factors studied the rate of fall was significantly increased as a result of step-climbing at the fixed rate prescribed. Also the analysis indicated that generally speaking the rates of decrease were the same for all the subjects.

With regard to the mean value of the Crampton Index, corrected for variations of the mean temperature level between experiments, there was a significant difference between subjects both in respect of the wet bulb temperature and corrected effective temperatures. Furthermore, the mean value of the Index was significantly lower as a result of step-climbing, but the two humidity levels produced no significant differences.

Therefore the results indicated that the rate of fall of the Crampton Index was increased by the performance of muscular work when comparisons were made of observations on the six subjects in environments in which the temperature increases were comparable. In this respect the differences between the subjects were not significant.

However, each subject had a characteristic initial value which did not appear to affect the rate of fall of the Index when correlated with environmental temperature increases. Therefore, the regression lines would theoretically be a set of parallel lines at different levels for each subject. The regression lines for each of the four tests are shown in figure 5.1. For simplicity, the points from which the lines were calculated are not included on the graphs.

It will be seen from these figures that the above statements are substantially correct but some variations will be observed as is to be expected with physiological data. Such variations could be due to a number of uncontrollable factors, such as time and nature of last meal, pre-experimental activity and natural daily variations.

The following tables (5.4 and 5.5) show the mean values of the regression constant b and the corrected mean value of the Grampton Index for all the subjects. The data has been obtained from Tables 5.2 and 5.3. The standard deviations for assessing the significance of the differences between these means calculated from the Error variance of the analysis based on 15 degrees of freedom are also shown in the table.

Mean Values for all Subjects of the Regression constant b, showing appropriate standard deviations (S.D.)

		Indes 1th Walls OF. TEP-CLIMBING			
	ReHe ReHe 60% 80%	Refie Relie 60% 80%		Rollo Rollo 60% 80%	
Mean value of b for all subjects	-1.97 -2.17	-2.60 -2.73	-1.61 -1.86	-2.29 -2.41	
Standard deviation	0,250	0.260	0,218	0,218	
Pooled resting and step-climbing values	-2.07	-2,66	-1.73	-2,35	
Standard deviation of pooled mean	0.	184		164	

TABLE 5.5

Hean Values for all Subjects of the Mean Value of the Grampton Index for each test adjusted for the variations of the mean level of the temperature between experiments.

gan carrower on medicar dan rikecarian albertain di estat in albertain albertain albertain di estat di estat d	990506	and Wel	Index Reference Reference 60%	Rella	ACCIDING NATIONAL	and ING S	on Indo	MRING
Mean value for all subjects	1,8.81,	56.98	36.43	46.23	52,66	52,64	46.30	38,80
Standard devia- tion (S.D.)	6.	l.L.	6,	ld,	6,	97	6.	97
Pooled resting and stop- climbing values	52.	12	l,1.	33	514	65	le.	lış
Standard deviation of pooled mean	033	24	•55	er-usom nager prover in Schallerunger		L	4 . 93	

The value of t for 15 degrees of freedom = 2.131 (F = 0.05) from which it follows that a difference of at least 6.D. = 2.131 is required for significance, e.g. difference between pooled resting and exercising values of the rate of change of Crampton Index with Corrected Effective Temperature = 0.62. A difference greater than 0.164 = 2.131 = 0.319 is required for significance. Therefore a difference of 0.62 is significant.

While it would appear from the present studies that little significance can be attached to absolute values of the Grampton Index.

SUBJECT NO.4. CRAMPTON INDEX, FOREHEAD SKIN CONDUCTIVITY & SUBJECTIVE THERMAL SENSATIONS RELATED TO THE ENVIRONMENTAL TEMPERATURE.

stress or muscular work (or both). The previous use of this Index, as discussed in Chapter II has been restricted mainly to the interpretation of the significance of absolute values. It has been found in many cases, however, taking as a basis the normal range, held by Crampton to be between 70 and 80 that such interpretations have not yielded results consistent with other criteria of physical fitness.

The original protocols for these experiments are included in the appendix, but from the data, figure 5.2 has been dresm to show the changes in the Grampton Index in relation to corrected effective temperature in the case of one of the six subjects who participated in these experiments. Similar graphs could be constructed for each of the subjects.

II Subjective Thermal Sensations

As previously indicated (6.74) Crowden and Lee (1946) (26) have found that equilibrium values of the summated sensations of heat and moisture were highly linearly correlated with both wet bulb temperature and the total heat of the air, which included the sensible and latent heats.

Table 5.6 shows the values of the correlation coefficients of the transitory sensations of warmth (the semanted sensations of heat and moisture) with the corrected effective temperature, using the values which were recorded simultaneously with the observations of the Crempton Index. As was to be expected the correlations were highly significant since the temperature scale was based on the subjective thermal sensations of lightly clothed subjects.

TABLE 5.6

Correlation coefficients of transitory values of sensations of warmth (the summated consations of heat and moisture) with the corrected effective temperature.

SUBJECT NO.	Ren. 60%	TING R.H. 80%	E.H. 60%	R.H. 80%
1.	+ •0597	4 0-953	+ 0.902	+ 0.987
2	+ 0.971	+ 0.909	+ 0.957	+ 0,965
3	+ 0,969	+ 0.843	+ 0,910	+ 0.905
24	+ 0.963	+ 0.987	+ 0.947	+ 0.743
5	+ 0.856	+ 0.972	+ 0.979	+ 0.983
6	+ 0.933	4 0,888	+ 0.875	+ 0.943

As for the Crampton Index the effect of the two different humidity levels and of the step-climbing on the relationship between the subjective thermal sensations have been studied; the analysis of variance has been used to assess the significance of the findings.

A summary of the results are shown in Table 5.7.

IRAN WILES PROPIESO FOR STATISTICS OF SULL SCREEN (P to \$105).

In wall the court thursdays that the names of massages such police

daring the experimental period these not product a dignificant addard

an the same of things of the transferry things of the manufacture.

TABLE 5.7

Mean level of the summated sensations of heat and modisture corrected for differences in the mean temperature and the value of the regression equation

Y = a + hx where

Y a Summated Sensations of Heat and Heisture.

K = Corrected Effective Temperature.

	C	RRELAT Value		N	Value of b			
The entry of the property than	REF	FING	STE	P- BING	REST	ING	STE	P- BING
Subject No:-	R.H. 60%	R.H. 80%	R.H. 60%	R.H. 80%	R.H. 60%	R.H.	R.H. 60%	R.H. BOX
	2.78 1.73 3.47 4.18 2.32 2.10	-1.17 1.31 5.60 1.50 2.20 1.13	1.20 2.77 3.90 5.91 5.57 3.19	2,86 3,16 3,35 li.6li li.90 li.li9	0.63 0.35 0.28 0.52 0.52 0.27	0.57 0.35 0.51 0.45 0.45 0.55	0.67 0.38 0.37 0.54 0.49 0.35	0.74 0.49 0.43 0.36 0.43 0.40
MEAN VALUES	2,76	2,26	3.76	3.93	0.38	0.48	0.47	Oals7
STANDARD DEVIATION	0.	69	0,	69	0,	052	0.	052
POOLED RESTING AND STEP-CLIMBING VALUES	8	.51	3.	.81,	0.	113	0.	ls7
STANDARD DEVIATION OF POOLED HEAN			0.49			0,	037	

LEAST VALUE REQUIRED FOR SIGNIFICANCE = S.D. x 2.131 (P = 0.05).

It will be seen therefore that the amount of muscular work performed during the experimental period does not produce a significant effect upon the rate of change of the transitory values of the summated

sensations of heat and moisture with corrected effective temperature.

However, the performance of step elimbing at regular intervals of

time appears to have the effect generally of increasing the subjective

memerican of warmth by 1.33 points on the arbitrary scale for the same

temperatures when the subject was (a) resting and (b) step elimbing.

There was a significant difference between subjects with respect to the rate of increase of the subjective sensations of heat and moisture with corrected effective temperature as was to be expected. The rate of increase was greatest for Subject No. 1. There were no significant differences between subjects Nos. 2, 3, 5 and 6, whilst values of b for subject 4 were intermediate between those for subject 2 and the remaining subjects.

Therefore the rate of changes of the summated subjective sensations of heat and moisture does not appear to be affected by muscular work of the type and duration performed in these tests, but the mean level of the increases are higher and furthermore significant differences in this respect were revealed for the subjects. The interaction between subjects and treatments was not significant.

III. Ferenead Sidn Conductivity

Changes in the value of the skin conductivity were observed to assess the time of enset of sweating. Prior to the appearance of visible sweat on the forehead there was a gradual increase in the value of the skin conductivity which was probably due to increased peripheral blood flow and also to the presence of sweat in the glands

immediately below the skin surface. It has been shown (Cagge, Minslow, Herrington, 1937)⁽⁴³⁾ that the degree of wetness of the skin due to sweating is affected by the subject temperature and humidity and else by air movement. Therefore, changes in the skin conductivity have been considered in relation to the corrected effective temperature.

Initial values of the skin conductivity when the corrected effective temperature was between 51° and 68° were within the range 0.9 to 8.0 × 10° clus°1. The initial temperatures were, to a large extent, determined by the temperature of the air in the room in which the air conditioned subjete was located.

The following table gives the initial observed values for the skin conductivity and the value associated with the first appearance of visible sweat on the forehead, together with the cerrected effective temperatures.

Appearance of the Appearance of the

Values of skin conductivity and corrected offective temperature at time of appearance of visible seems, where

a refers to subject resting, environmental R.H. 60%

b refers to subject resting, environmental R.H. 80%

c refers to subject step-aliabing, environmental R.H. 60%

d refers to subject step-aliabing, environmental R.G. 80%.

Skin conductivity shown in units of ohms 2 x 10-6

SUBJECT HO.	INITIAL VALUE OF SKIN CONDUCTIVITY.	FIRST APPBARANCE OF A Value of Skin Cor- conductivity.	rected Effective
2 6 b	1.1.0 2.22 5.03	No visible sweet	87•3 85•0 78•9
2 a b o d	3.08 2.17 2.00 1.00	No visible sweat 23.9 27.3 25.4	86.0 88.2 84.1 82.8
3 a b a d	1.76 7.60 1.46 1.87	No visible sweat 21.2 21.2 22.9	85.9
24 a b a d	5.410 7.20 6.69 6.0	19•9 22•6 29•6 29•6	81.2 79.4 76.2 77.5
5 a b c d	1.61; 5.410 2.410 2.69	No visible sweat 22.7 25.9 23.6	88.0 88.5 75.6 83.4
6 R b c	1.000 7.600 0.93 2.410	No visible sweat Black 16.0 27.2	85.5 81.1 61.2 61.4

From this table it will be seen that the performance of the nuscular work provoked sweating to occur at a lower temperature than when the subject was in the resting state. In five of the observed cases for subjects in a state of rest, no moisture was present on the forehead skin surface at the end of the experiment and therefore a time mean value of the corrected effective temperature at the time of onset of sweating could not be obtained. However, when the subjects. were exercising, sweating commenced before the and of the experimental period in every case. The mean value of the observed corrected effective temperature which accompanied the increases in skin conductivity and the appearance of visible sweat on the forehead was 80.5° with a standard deviation of 3.6°. That is, below that temperature the skin was generally dry, but slight increases in skin conductivity occurred before visible sweat appeared on the forehead. Thereafter, the increase in skin conductivity with temperature was very much more rapid. Upon reaching a value of the order of 60 x 10-6 ohms" the rate of increase of skin conductivity with temperature generally appeared to decrease indicating the equilibrium phase between meat excration and evaporation. Further increases of skin conductivity are taken as being due to the presence of more sweat on the forehead skin surface due to the increased requirement of emporation for body temperature regulation as the corrected effective temperature was increased.

Fig. 5.2 indicates the changes in skin conductivity, subjective thermal sensations of heat and moisture and Crampton Index with corrected effective temperature for Subject No.1.

IV CRAMPTON INDEX AND SUBJECTIVE THREMAL SEMEATIONS.

The Crampton index has been shown to be sensitive to changes in the environmental temperature. The mean value calculated (Table 5.4) showed that the Index fell by 17.5 points per 100 increase in corrected effective temperature in the resting state and by 23.5 points per 100 increase when muscular work in the form of step climbing at regular intervals was performed. Therefore it follows that the greater the range of corrected effective temperature within which a particular subject may feel confortable according to thermal and Catigue sensations then the confort some Grampton Index range will correspondingly become wider. Also there are differences in this respect for each subject with the result that no significance could be attached to absolute values of the Grampton Index. However, some indication is necessary of the changes in the Craspbon Index from the comfort zone values which can be associated with the commencement of thermal discourants are as given, or for success believe to the terms

thermal sensations of heat moisture and freshness for the assessment of the ocafert zone in terms of corrected effective temperature the relevant ranges of Crampton Index values have been computed. Also the range of decreases in the value of this Index consistent with each subject expressing, when asked, a thermal sensation of +3 (too warm) on the heat sensation scale or +3 (too hunde) on the moisture sensation scale have been computed.

The results obtained from this analysis are shown in the following tables:

TABLE 5.9

Genfort Zone Range of Grampton Index (C.I.) walues and corrected effective Temperature (C.H.T.)

Within the ranges shown all subjects felt comfortably warm (+1) or comfortably cool (-1).

Subject No.	R.H. 602	ING R.H. BOK	ReHe 605	Halle Eqs	RANGE OF:
1	80-65 69.0-76.9	70 -7 5 77 . 0 - 81 . 2	75-65 72.0-71.0	75-65 71•2-73•8	C.E.T.
2	50-45 68.2-71.0	50-20 71-2-83-2	60-15 56-5-71-2	75-40 65-0-76-1	C.I. C.R.T.
3	70-60 56-5-69-8	55 68 .2-73. 0	55-20 56-4-75-3	55-25 59 . 5479 . 0	C.I. G.E.T.
4	65-85 61:3-75:0	60-95 57 , 9-69 , 0	65-60 61,41-69-8	60-55 63-6-70-2	C.I.
9	90-85 61,-8-75-7	85-60 67-8-77-5	366,0-69,0	70-60 57-5-69-5	G.T. G.R.T.
6	75-60 55.7-73.8	80-65 66,2-80,2	85-55 55-h-76-2	65-50 60 .1-67. 5	C.Z. C.F.T.

Where only I value is given, as for example Subject No. 5, stepclimbing R.H. 60%) a subjective thermal sensation within the range plus I to minus I on the heat or moisture scale was only expressed once at the time the Grampton Index was assessed during the experimental period.

faits for store that the wider the reaso of tropomities for the reafers

goes the greater was the variation in from the Refer without fine in

the area of fullfact for by a failule finance of flats sext homestoled with

a 6.1. mage of 30, malley a salida rouge of 7.4." was found to have

tions the case when the full reage rate life.

TABLE 5.10

Observed value of Grampton Index (C.I.) and Corrected Effective Temperature (C.E.T.) when subjective thermal sensation of + 3 (too warm) on the heat sensation scale or +3 (too humid) on the moisture sensations scale was first expressed.

Subject	Rell	REST		80%	R.H. 60% R.H. 80%					
rasionaliny talko design e adbus mittaga proside. N	C. J. S.	C.F.Ze	Calla	G.B.Z.	Cale	Callate	C.I.	C.B.T.		
125456	70 10 35 25 65 25	81.2 80.8 82.2 78.6 82.6 82.4	45 5 35 45 50 55	85.9 86.3 81.1 76.5 83.2 81.1	65 -10 10 50 55 30	77.1 81.0 81.5 70.7 73.8 80.4	35 30 25 40 55 25	78.2 81.3 82.8 77.0 71.8 81.2		

Tables 5.9 and 5.10 give the ranges of temperature and Crampton Index values previously referred to. In table 5.10, although obvious individual differences are apparent for the Crampton Index values it is clear that thermal discomfort was felt at lower corrected effective temperatures when the subjects were step-climbing than when resting. The corresponding mean values of the corrected effective temperatures were 82.07° (resting) and 78.54° (step climbing), each being the mean of 12 observations. Thus there was a difference of 3.53° for the temperature at which thermal discomfort was first evoked. The standard error of this difference was 1.126 (t = 3.53 = 5.135; P = 0.053.

Table 5.9 shows that the wider the range of temperature for the comfort zone the greater was the variation in Grampton Index values. Thus in the case of Subject No. 6. a G.R.T. range of 20.8° was associated with a G.R. range of 30, whilst a G.R.T. range of 7.11° was found to have been the case when the C.T. range was 15.

mone in Callin on the

Table 5.11 shows the decreases from the mean value of the Crampton Index comfort some range that were observed simultaneously with the commencement of thermal discomfort based on the preceding hypothesis. The resting and exercising values have been peoled in this table.

Grampton Index decreases from mean comfort some value associated with the enset of thermal discomfort.

SUBJECT HO.	54 T. T. T. T. W. T. A.	DEGREASE OF C.I. ASSOCIATED WITH 3 heat sensation or moisture sensation scales. (mean of h values).							
2 3 4 5	37.5 47.5 50.0 75.0	-16.7 -20.0 -23.75 -10.0 -31.25 -40.00							

and have the destruction of the contract of the commence of the contract of th

Expressed in terms of measurable units of the Crampton Index this yields the mean figure of 25 with a standard deviation of approximately 10 units. However, as a basis for attaching significance to such changes in the value of the Crampton Index the initial calibration of the subject over his or her complete confort some temperature range is required. As this cannot obviously be achieved in field studies where experimental procedures are not controlled some other definition for the range of minimal changes in the Crampton Index to be associated with circulatory changes accompanying the onset of subjective thermal stress must be formulated.

Thus the Crampton Index at the lower or seel limit of the comfort zone is taken as the basal value from which the changes associated

with the onset of thermal discomfort have been assessed. Working on this basis the mean decrease of the Crampton Index (24 observations) was found to be 32.08 units with a standard deviation of 15.54.

to be between 15 and 15, with a mean value of 30, 75% of the observed decreases were seen to fall within this range. Hence it would seen reasonable to assume that circulatory changes evoked by increased enviconmental temperature or the performance of muscular work, or a combination of both factors, which were associated with the enset of subjective thermal discomfort are such as to cause a decrease in the Crampton Index of between 15 and 15 units with a mean value from 21, observations of approximately 50. Also the probability would be at least 0.7 that unit decrease in the Crampton Index from a confort sone value within this range or above its upper limit of 15, might be associated with the onset of thermal stress and discomfort.

A similar calculation showed that the corresponding decrease in the Grampton Index to the time of onset of sweating was 1,0 units with a standard deviation of 15 (to the nearest measurable units). The corresponding mean value of the subjective thermal sensation of moisture was 3.2 on the arbitrary scale.

The correlation between sugmated subjective thermal sensations of heat and moisture and Crampton Index for each subject has shown that generally the rate of increase in thermal sensations with decreases in Crampton Index is constant for all subjects but that the general regression level showed differences between subjects as was previously indicated. The results are sugmarised in Tables 5.12 and 5.13.

TABLE 5.12

Correlation of the transitory values of the Summated Thermal Sensations of Heat and Moisture with the Crampton Index.

SUBJECT	HO. OF OBSERVATIONS	CORPLATION CORFFICIENT
2 3 4 5 6	5l ₄ 63 65 67 67 66	-0.768- 0.056 -0.749- 0.035 -0.821- 0.041 -0.922- 0.018 -0.897- 0.024 -0.746- 0.055

TABLE 5.13

Hean value of the Crempton Index corrected for Differences in the mean value of the subjective sensations of heat and moisture and also the value of b of the regression equation.

Y = a+bx

where Y = Grumpton Index

X = Suggested Sensations of heat and meleture.

SUBJECT	CORRECT EXP CRAMPTON	VALUE OF
NO.	INDEX MEAN VALUE.	b
1 2 3 4 5 6	59•3 27•1 37•6 5l•3 55•9 15•2	-2.75 -4.55 -4.06 -4.02 -4.39

From table 5.13 it will be seen that except for Subject No. 1 the regression constant b was not significantly different from one subject to the other, and the values of b malculated separately from each test did not appear to depend upon the activity of the subject or upon the mean humidity level.

Figure 5.3 shows the correlation between the Crempton Index and Summated thermal sensations of heat and moisture for Subject No. 4 and also the standard deviation of prediction of Crempton Index values from Summated thermal sensations.

Conclusions

problems of least and this there will be an entered without the These results have shown that the circulatory changes that occur extens was next allegable the tallens has on exposure to gradually increasing air temperatures are such as to will be appropriate our was the first till a cause changes in the Crampton Index which become more marked as a NAMES TAKEN AND AND THE REPORT OF THE PERSON result of the performance of a standard amount of exercise at regular intervals of time. This Index, when used in the Veer-test experiments g feet total authors for most seek outsiever when described in Chapters III and IV had also shown consistent changes the street of the street of the which appeared to be related to the enviormental temperature and air movement and also to the amount of muscular work carried out by the subjects. Therefore, these changes in the value of the Crampton Index did show that as a result of increased ambient temperatures combined with the performance of muscular work, the subjective thermal sensations increased. As the subjects began to feel fatigued the vaco motor mechanism failed to react adequately and an increase in the heart rate occurred in an effort to counteract diminished tension in the blood vessel walls. Hence these centrolled experiments confirmed the deductions drawn from the User-test experiments with regard to the

physiological significance of changes in the value of the Grampton Index.

oquivalents of the various gradations in the subjective thereal sensation scales of heat and moisture (the sensation of warmth) and the corrected effective temperature was also shown to be modified for the subjects when exercising. The scale had originally been devised for assessing the thermal comfort vote of subjects at rest or whilst performing light sedentary tasks. However, in the present experiments the scale has been used for subjects performing muscular work. The results showed that whilst the rate of increase of the subjective thermal sensations of heat and maisture with corrected effective temperature was not altered, the values appeared to be higher by approximately 1.3 graduations when compared with the resting values for equal temperatures and humidities over the range considered.

Since both the decreases in the Crampton Index and the increases in the summated sensation of heat and moisture were both more marked as a result of exercise this physiological index was correlated with the subjective thermal sensations for each subject. The correlation coefficients together with the corresponding standard errors are shown in Table 5.12. However, the most interesting result was that the rate of decrease of the Crampton Index with increases in the subjective thermal sensations appeared to be not significantly different for five (Nos. 2-6) out of the total of six subjects. As already mentioned the clothing worn by Subject No. 1 was heavier than that worn by the others. Since an analysis of the comfort sens values of the Grampton Index had shown that each subject appeared to have a characteristic range of

values which was not the same for all subjects a single regression
line for the relationship between these two variables was consequently
not adequate. However, since the slopes of these lines were generally
equal it does appear that changes in the Grampton Index and not absolute
values may form a basis for assessing increased thermal stress,
discomfort and fatigue sensations.

Maving this in mind, the decreases in the value of the Crampton Index for an increase in heat or moisture sensations to +3 on the arbitrary scale were examined. The results showed that from the mean comfort sens values the Crampton Index decreased by 25 units with a standard deviation of 10 units, when considering all the subjects together. When assessed from the lower (or cooler) limit of the confort some the corresponding decrease value was 30 with a standard deviation of 15. Thus a subjective sensation change from comforably cool or moist to toe warm or too moist was found to be associated with a Grampton Index change of 30.15.

Further examination of the data showed that the enset of sweating occurred when the skin conductivity reached the value of approximately 20 class 1 x 10 and the corresponding mean value of the thermal sensation of moisture was +3 on the scale. Refers the appearance of visible sweat on the forehead there was a gradual increase in the value of the skin conductivity from the initial value due presumably to increased peripheral blood flow and the presence of sweat in the glands immediately beneath the skin surface. The corresponding fall, from the lower (or cooler) limit of the confort zone of the Crampton Index which occurred at the time of enset of sweating was found to be

40 units with a standard deviation of 15.

interpolar distanciant for model and the period.

The Fabrica abadement forteached about --

From these considerations it some justifiable to deduce that changes in Grempton Index may be highly correlated with environmental thermal changes and affected by the performance of muscular work. The data has also been used to ascertain the limits of the range of decreases in the Grempton Index which occur at the time of enset of thermal stress and also at the time when profuse sweating was first evoked for body temperature control.

END TON THE STATE OF WITHOUT THE MERCHANISM WAS EXPERIMENT FOR WARRINGS AND ARE

Stammary,

- nents has been carried out in an air conditioned room with the temperature and humidity controlled at various levels to test the validity of the correlation between the physiological reactions and subjective thermal sensations employed in the User-test experiments and the changes in room climate. The effect of performing a standard amount of exercise at regular intervals has also been investigated.
- 2. Six medical students, 2 women and h men, in the age groups 20 to 30 years, acted as subjects and each participated in four experiments, twice at rest throughout the experimental period and twice when they performed the prescribed step-elimbing. Two humidity levels, approximately 60% and 80% were maintained in the experimental room for each subject's resting and exercising test whilst the wet and dry bulb temperatures were gradually increased over a four-hour period.
- 5. The physiclogical changes studied on the six subjects were
 (a) changes in the wase meter tone as indicated by the Crempton Index.

- (b) the time of easet of sweating as indicated by changes in skin conductivity, (c) subjective thermal sensations of heat, moisture and freshness.
- In One observer recorded the data from which the values of the Drampton Index were computed whilst a second observer questioned the subjects regarding their thermal sensations and took readings of the met and dry bulb temperatures as given by a whirling hygrometer, silvered and globe thermometer temperatures and kata thermometer coeling times from which values of the air velocity were computed at regular intervals throughout the experimental period.
- 5. The results obtained indicated that:-
- (a) The Crampton Index was very sensitive to environmental temperature changes and to the perfermance of muscular work.
- (b) The relationship between the summated thermal sensations of heat and moisture and corrected effective temperature was modified as a result of the subjects performing exercise at regular intervals.
- (c) Marked increases up to 20 x 10⁻⁶ ohme⁻¹ of the skin conductivity occurred at the time of caset of aweating.
- (d) A relationship between subjective thermal sensations of heat and moisture and the Grampton Index was established and a range of decreases of the Grampton Index for the six subjects from the comfort zone values to the time of onset of thermal disconfort and smeating was determined.

the to execute a the expensive of plants to the execute and the contract of

and to computate a preparation of the special value and a contractive

the material strong of constant which expects if a language are specificate as to reach.

This study has been concerned with the changes in room climate that occur as a result of dementic washing operations and their physiological effects upon the occupants with a view to establishing a scientific basis for formulating recommendations for the full use of provisions available for ventilation and washing which are installed in houses of modern design.

This demestic operation was chosen for study because it is well known that marked changes in room elimate can occur in kitchens as a result of the housewife performing a weekly family wash particularly when use is made of a gas wash boiler, an appliance in common use and supplied to dwellings on post-war bousing estates.

The extensive surveys which have been carried out in industry to demonstrate the relationship between the thermal characteristics of the environment, physiological resotions and subjective sensations do not appear to have been fully extended into the home environment.

Therefore, having developed a technique for the rapid assessment of changes in room temperature and humidity which would not impede housewives in the execution of their tanks it was applied to a detailed investigation of the magnitude of the changes in room climate that occur as a result of a gas wash boiler being lit for a time which conformed approximately with user practice. The purpose of this investigation was to assertain the effects of different ventilating rates and methods and to formulate a recommended air change rate which would be effective in maintaining a confortable working atmosphere throughout an experimental period of four-and-a-quarter-hours.

It was indicated that for a room of the size considered (1,000 cu.ft) am air change rate of at least 18,000 cu.ft. per hour was necessary for the maintenance of a confortable working atmosphere. Such an air change rate could be effected by a 9" x 9" extractor fan with an air delivery of 300 cu.ft. per minute or by the full opening of windows and doors. However, this air change rate did not necessarily suffice for the control of moisture. There was a marked reduction in the absolute humidity of the air, but considerable condensation on walls, furnishings and the floor was observed even in the remote corner of the room.

However, a result of particular interest was afforded by the use of a coal fire and a hopper window as a means of ventilating the room. This method appeared to reduce considerably the condensation by maintaining the wall and floor surface above the dew point temperature whilst at the same time reducing significantly the relative humidity increases and by virtue of the increased room ventilation rate to approximately 10 room air changes per hour caused a significant reduction of the increases of temperature in the working space. These reductions, although not so marked at these afforded by the use of the extractor fan or the opening of windows and doors did indicate that much a means of wentilating a kitchen or kitchen living room may prevent the development of excessively high air temperatures and hunddities in winter time when the full use of windows and doors may not always be practicable owing to external weather conditions. Therefore, it may be stated that unless a special method, such as ducting for the extracion of the products of combustion and heat from

the immediate vicinity of the gas wash boiler is installed a minimum air change rate of 13 room air changes for the maintenance of comfortable working atmosphere is necessary. The control of noisture appeared to be a more difficult problem and for this a solid fuel flue as recommended in Post War Building Studies No. 19 for the control of kitchen edours, should be made use of, particularly in winter time.

having established this, the study was extended to an investigation into the physiological and subjective thomal reactions in the first instance of a normal housewife and a trained demestic scientist who noted as subjects in a series of experiments which were carried out at the Field Test Unit, Bereham Wood, Herts. The purposes of these preliminary experiments were to determine the nature and extent of the changes in certain physiological reactions which might occur as a result of performing a weekly wash for the average family of four persons, and also to determine appropriate techniques for the assessment of their physiological reactions and subjective thermal sensations which would cause the least disturbance to the subjects during the performance of the specified demestic task.

For this purpose, observations on the resting and standing values of the systolic and diastolic blood pressures and pulse rates, together with measurements of the values of the skin conductivity, increases in which appeared to indicate the time of onset of sweating were employed.

It was found after a detailed analysis of the data that a single component of blood pressure or pulse rate did not appear to give results which could be considered consistent with the environmental thermal changes that occurred, the times of performance of maximum

muscular effort, also the opinions of the subjects during and after each test, and from their subjective thornal sensations of heat, noisture and freshness which were considered as being reliable.

Therefore, a review was necessary of the physiological indices which could be of use in the present studies to assess thereal stress. and fatigue and which were based on blood pressure and pulse rate components. It was found that the Crampton Index computed from the differences between lying and standing systelic blood pressures and pulse rates gave consistent results. The formulation of this index was based upon arguments first introduced by Leonard Hill in 1895 in support of reactions to a postural change as a test of chysical condition. These arguments, with which Crompton appeared to be in complete agreement, were that in fit and healthy young people there would be a slight increase in systelic blood pressure, accompanied by a slight increase in pulse rate on rising from a supine to an erect position. This reaction occurred in order to compensate for the effect of gravity which would force all the blood into the lower half of the body if it were not for the contraction of the leg muscles upon the veins, increased abdominal pressure and the contraction of the muscles in the walls of the veins, particularly of the splenchmic vessels. However, it was further argued that in fatigued persons these mochanisms would not react to the same effect and consequently there would be a decrease in systolic blood pressure accompanied by a marked increase in heart rate to counteract increased gravitational attraction on the blood upon assuming an erest position.

Crempton's scale has received considerable criticism on the

may test him this An him excepting he made in the yearse

give valid indications consistent with other criteria of physical fitness. Thus absolute values between 70 and 80 were considered by Crampton as being within the normal range. However, the present study demonstrated that certain changes in the value of the Index for a subject are associated with the caset of themal stress and fatigue.

Having established an experimental technique for the rapid assessment of changes in room elimate and physiological reactions associated with these changes and the performance of muscular work, a second and more detailed series of user-test experiments were carried out.

ountrol resting subjects the experiments were carried out to ascertain whether or not a problem of climate central could arise in a room of that type when full use was made of the windows and doors as a means of ventilating the room and also to study the extent of the changes in the physiological reactions and subjective thermal sensations when the changes in room climate were almost maximal corresponding to the case where the ventilation was restricted to the use of a single hopper window only.

The results clearly indicated that an air change rate of the order of 13 ross air changes per hour was necessary for the maintenance of a confortable working atmosphere, which confirmed the findings of the preliminary physical experiments. It also appeared that a ventilation rate of that order was not necessary throughout the complete experimental period but that it was necessary as soon as the water

in the gas wash boiler had boiled and the transferance of the washed articles to the sink commenced.

When the ventilation rate was purposely restricted the marked four two paracraited works and total large obliffer makes abasewed tradement the large increases in temperature and hundrity that occurred combined with disposites realistic cural lices when he asstant with a marketing, undepends you've does by the the performance of considerable macular effort involving the sorubbing, knowhered evertressented temperatures and breddinker and reduces alr rinsing and wringing of the articles gave rise to marked decreases in maranagi camaliti, from inadalparis tarrallation of the cortains agrees. the Francian Index from the initial resting values and marked increases luijoi procesto tentra la pare no chilo rimile importizzation en protesse. in the subjective thermal sensations. The subjects also remarked that Bied to the stanger in rest of her by and to stanty restitute provides providence weigh they felt very tired at the end of the experimental period. Also on Annue Angian tendang operations to citll be received. However a these days the central subjects' physiological and subjective reactions mentioning annalisation of the lad areation to har electred speece turk were such as to indicate increased thermal discomfort even though they becomed was have relieved through objectiones that it is proceeding to were at rest in the corner of the room furthest from the working space. manipul transporture and famility in treat man many to define and the courted

The interpretation of these findings had been based on the assumption of the significance mainly of changes in the Crampton Index and subjective thermal sensations. Therefore a further series of experiments were necessary to determine the validity of the correlation between these indices and the environmental warmth and also to assess the effect of muscular work.

ing brang manental work an that come that on the gas weak heiter is These experiments were conducted in an air condition cubicle. in apprecions. In filling wards, the articles not incented by beiling are They confirmed the theory that it was in the changes that occurred in mission on two day and on a subscription day they has the much butter for the Grampton Index that made it of considerable value as a physiological and he are little a lay made from reals which was be passivered to encoded index of reactions in the experiments of the type considered. The and alter the gas much talled bat burn terms will and the temperatures regults demonstrated that the Crampton Index was very sensitive to ikian basa kalibe a indicable leader the people wilmed. In could changes in the environmental temperature and appeared to be linearly tran daka of the Compress Index described and pleasured on correlated with the corrected effective temperature over the range ing thereon, secondaries that the latter technique is desirable on 550 to 900 considered. This index and the subjective thermal sensations finil provide and should be followed on days then the case says

pailer had so be world

of heat and moisture also appeared to be affected by the performance of muscular work in hot and hund atmospheres which led to the conclusion that the changes observed in the user-test experiments were undoubtedly due to muscular work and that the differences observed between the two days on which each housewife acted as a working subject were due to the increased environmental temperatures and hundridities and reduced air neverent resulting from inadequate ventilation of the working space.

The field survey which is part of this micle investigation to collect data of the changes in room climate and to study routine procedures which occur during washing operations is still in progress. However a preliminary examination of the information so far obtained shows that housewives have ralised through experience that it is necessary to control temperature and humidity in rooms when washing is carried out. Some housewives who wash and sorub on days when they also boil the soiled white articles appear to make considerable use of the ventilating appliances available in houses of modern design and other housewives who used to feel exhausted after a day of clothes washing new devote two days to the task. They arrange the routine so that they do not have to perform heavy muscular work at the same time as the gas wash boiler is in operation. In other words, the articles not intended for boiling are washed on one day and on a subsequent day they use the wash boiler for white articles. Any musbular work which may be necessary is carried out after the gas wash boiler has been turned off and the temperatures and humidities have fallen considerably below the peak values. It would appear from data of the Grampton Index decreases and observation on subjective thermal sensations that the latter technique is desirable on physiological grounds and should be followed on days when the gas wash boiler has to be used.

From the experience gained in these pilot user-test studies & number of experiments were carried out in which both working and control resting subjects participated. These experiments were conducted in order to compare the physiological reactions and subjective thereal sensations that occurred as a result of the performance of clothes washing when the means for obtaining the recommended air change rate were made available to the working subjects with these same physiological reactions that occurred as a result of performing exactly the same task when the ventilation rate was restricted to approximately 3 room etr changes per hour. The results indicated that considerable thermal atreas was imposed on the working subjects when the ventilation rate was reduced but that the opinions of the subjects together with the changes in the physiological reactions observed indicated that the air change rate recommended from the physical study was sufficient for the maintenance of a reasonably confortable working atmosphere.

The validity of the changes in the physiological reactions and subjective thermal sensations as indications of thermal stress due to increased environmental temperature and a fixed amount of muscular work were then carried out under controlled conditions in an air conditioned cubicle. These experiments appeared to confirm the interpretation of the results from the user-test experiments.

Finally, some of the preliminary results of a field investigation which is still being carried out in houses of modern design and which is to be part of the whole study of this particular problem, have been indicated.

ACKNOWLEDGMENTS

I wish to express my thanks to Professor G.P. Crowden under whose constant care and guidance this research was carried out. The experiments described in this thesis formed part of an investigation on housing requirements for comfort and health carried out by the Department of Applied Physiology of the London School of Bygiene and Tropical Medicine under the direction of Professor Crowden. This research has been aided by an extra-mural grant from the Ministry of Works and the Department of Scientific and Industrial Research.

the measurements of blood pressures and pulse rates in the user-test studies and in the controlled laboratory experiments and also to Mr. W.R. Hindes for valuable assistance in the construction and calibration of the thermoscoples, and switching circuit as well as in recording data in the user-test experiments.

Mark Town Co. 1. (1964) Devironmental America and the Mesoneronals Mark C. San Devironment Ed. 17. San Los.

15. STIDATE, A.J. (1936) Transportant of the Royal Semioty of Decad.
Advisor, Ph. 205.

Man DATIO, Asis (1991) Spinomacion on Desprisatory," The Pagetterly of Landons Up.

Ma RESPONDA SA A MARKETA SASA (2003) Attended of the Payer Interiors,

and course John (1966) the deposits of Myginnes like Mr. S.

BIBLIOGRAPHY

- 1. HITE, S.C. & BRAY, J.L. (1948) "Research in Home Humidity Control"
 Purdue University Research Bulletin No. 106.
- 2. MILLER, W.T. & MORSE, F.B. (1950) "Moisture Problems in Homes"

 Furdue University Research Bulletin No. 70 (Reprint)
- 3. Heating and Ventilation (1945). Post War Building Studies No. 19. Halla Sale (London).
- 4. Heating and Thermal Insulation (1949). British Standard Code of Practice CP3, Chapter 8.
- 5. Ventilation. (1950) British Standard Code of Practice CP3. Chapter 1 (c).
- 6. GRIFFITHS, R., VICKEYY, J.R. & ROLMES, H.E. (1932). Special Report of the Food Investigation Board, London. Wo. 11. 31.
- 7. ORADA, M. (1931). Journal of the Imperial Fishing Institute, Tokyo.
- 8. LANNING, J.H. (1932). Industrial Engineering Chemistry (Analytical Edition). 4. 286.
- 9. PARGUILL. F. (1949) Quarterly Journal of the Proceedings of the Royal Meteorological Society. 75. (N.S. Jones' letter)
- 10. POWELL, R.W. (1936) Proceedings of the Physical Society. 48, 406.
- 11. HILPERT, R. (1932) Forechungsh ver. dtech.Ing. No. 355. July-August.
- 12. BEDFORD, T. (1946) Environmental Warmth and its Measurement.
 M.R.C. War Memorandum No. 17. H.M.S.O.
- 13. SPIIRAUS, A.F. (1936) Transactions of the Royal Society of South
 Africa. 24, 185.
- 14. DAVIS, A.H. (1921) "Discussion on Hygremetry." The Physical Society of London. 85.
- 15. SKIRNER, P.S. (1921) 151d. 60. American Modern Association, 70.
- 16. BEDFORD, T. & MARNER, G.C. (1943) Journal of the Royal Institute of British Architects. November.
- 17. CARNE, J.B. (1946) The Journal of Hygiene, Ly. No. 5.

- 18. REMBOURNE, E.T., ANGUS, T.C. ELLISON, J. McK., CROTON, L.M. & JOHRS, M.S. (1949) The Journal of Hygiene, 47, No. 1.
- 19. MAYERS, M.R. (1921) Journal of Industrial Hygiene. 6, No. 7.
- 20. BARCROFT, H. & HAMILTON, G.T.G. (1948) The Lancet, March, 20th.
- 21. RICHTER, C.P. (1946) J. Reurosurg. 3. 181.
- 22. CRAMPTON, C.W. (1927) The American Journal of Medical Sciences.
- 23. YAGLOU, C.P. (1927) Journal of Industrial Hygiene. 2, 297, Feb.
- 24. VERNON, H.M. & HEDFORD, T. (1927) Industrial Patigue Research

 Board Report No. 39, H.M.S.O.
- 25. HOUGHTON, F.C., TRAGUE, H.W., & MILLER, W.E. (1926) Journal of the American Society of Heating & Ventilating Engineers. 32, 473.
- 26. CROWDEH, G.P. & LEE, W.Y. (1940) Chinese Journal of Physiology. 15. No. 4. 475.
- 27. BEDFORD, T. (1935) The Journal of Hygiene. 35, No. 3.
- 28. HILL, L. (1895) Journal of Physiology. 18, 15.
- 29. CRAMPTON, C.W. (1905-6) American Physical Education Review:10 Dec. 1905; 11 March, 1906; 11 June 1906;
 11 Rept., 1906; 11 Dec., 1906.
- 30. CRAMPTON, C.W. (1913) New York Medical Journal. Nov. 8.
- 31. CRAMPTON, C.W. (1915) Proceedings of the Society for Experimental Biology and Medicine, 121, 119.
- 32. CRAMPTON, C.W. (1905) Medical News. 87.
- 33. CRAMPTON, C.W. (1920) American Journal of Medical Sciences, 160.
- 34. ERLANGER, J. & ROCKER, D.R. (1904) John Ropkins Respital Reports.
- 35. SCOTT, V.T. (1921) Journal of the American Medical Association, 76.
- 36. SCHNEIDER, E.C. (1920) ibid.
- 37. "A Cardiovascular Physical Fitness Test" Journal of Aviation Medicine, 6.

- 38. Ventilation. Report of the New York State Commission on Ventilation (1923).
- 39. YAGLOGLOU, C.P. & MILLER, W.R. (1925) Transactions of the American Society of Reating and Ventilating Engineers. 31, 89.
- io. HOUGHTON, F.C. & MeDERMOTT, P. (1933) Heating, Piping and Air Conditioning. 5, 53.
- bl. HALDANE, J.S. (1905) Journal of Hygiene. 5, Lob.
- 42. HOUGHTON, F.C. & YAGLOGLOU, C.P. (1923) Journal of the American Society of Heating and Ventilating Engineers. 29.
- 13. GAGGE, A.P., HERRINGTON, L.P. & WINSLOW, C.-E.A. (1937) Ameircan Journal of Hygiene. 26, 84.

W.

Paraconda of Encarleograph on the Arearanach of Changes in rece ellowin des de the encounted of a encounte gas much believ extenting to entres promittes.

Repartments applieded to the State Test test of the State Test at the State Test of the State St

APPENDIX I.

Protocols of Experiments on the Assessment of Changes in room climate due to the operation of a demestic gas wash boiler according to common practice.

Experiments conducted at the Field Test Unit of the Building Research Station, Boroham Wood, Herts.

٤	17	4	17	'1		. / K+0		*;		ני	,	209
8.0	18 .W	D B.	.8 .W		.8 .W	.8 .0	.8 .W	0.8.	.8 .W	.B .a	'9 'M	TIME.
26.8	1.15	0.72	5.09	2.7.2	25.3	66.7	50.7	57.0	1.49	8.95	24.2	0
25.5	145	27.3	63.0	573	25.5	55.5	2.05	5.95	6.83	5.95	27.3	51
1.98	8-15	2.69	242	6.65	5.49	7.23	6.05	8.95	63.9	8.95	25.20	30
64.3	7.52	8.29	7.89	6.89	2.65	2.8.9	4.49	8.19	0.85	0.29	4.85	54
4.85	2.55	6.49	1.19	4.49	5.79	7.09	2.95	2.59	9.19	6.99	62.3	09
2.83	2.93	€.99	7.59	4.89	4.49	9.19	27.5	4.49	629	1.89	4.49	51
6.63	8.83	2.17	4.69	1.54	24.3	5.29	9.89	5.24	0.07	1.44	73.2	. 06
8.09	7.65	1.52	7.57	2.67	5.8L	6.89	2.65	45.5	43.9	8.77	747	501
1.19	0.69	8.29	88.3	0.07	7.69	6.29	5.65	0.07	7.69	6.17	0.04	150
1.19	4.85	8.99	4.59	4.49	6.59	5.29	0.65	9.49	5.99	4.89	8.99	381
9-09	0.89	4.59	1-49	8-99	1.49	9.19	9.85	5.99	6.49	0.49	5.49	120
2.00	7.83	1.49	2.29	4.59	7.89	9.19	9.85	2.59	1.49	1.99	5.59	591
2.09	789	8.49	5.29	6.49	62.3	8.19	4.85	1.49	759	7.59	4.69	081
6.65	5.45	129	0.79	8.49	9.19	8.09	0.85	8.49	4.29	4.49	0.79	561
2.65	049	6.79	8.09	2.59	4:09	4.09	SYS	7:59	9-19	129	1-19	572
59.0	8-95	0.59	4.65	5.29	8.83	293	0.45	8.19	7.09	5.29	59.5	722

ETAT REF. FIRE OFF; HOPPER CLOSED (LONTROL)

	ος I' I' I' I' II' II' II' II'												
1		1	1	1		1	7	7	7	1	r	SON	
0.8	N. B.	8 0	'8 'M	8.0	18 'M	8.0	18 'M	8.0	W.B.	8.6	18.W	TIME.	
4.55	9.19	545	2.85	0.89	8.20	25.7	2.05	8.93	4.63	0.73	87.3	0	
6.95	9.15	878	23.2	4.89	2.29	2.55	2.09	0.73	6.85	0.73	27.5	51	
5.95	1.25	4.69	0.55	8.09	0.59	5.95	1.13	575	5.43	37.6	8.75	of	
5.45	1.4.9	7.59	8.85	2.59	4.09	29.5	245	7.89	9.85	6.29	4.65	54	
4.85	2.50	4.179	8.09	0.49	8-29	8-09	2.99	4:59	1.19	1-99	8-19	09	
8.89	6.00	299	7.59	2.69.2	7.99	8.29	848	8.49	6.59	8.39	549	54	
4.09	4.83	6.12	8.69	6.54	9.44	6.89	0.63	1.87	1-89	42.9	5.14	06	
8.19	262	1.94	7.57	.0.64	78.3	649	9.09	P.27	43.4	7.77	8.44	501	
8.19	069	4-89	4.49	0.04	4.89	1.179	9.09	40-3	4.69	417	269	اکھ	
1-19	883	7.49	6.59	8.39	8.99	289	2.09	1.89	2.78	7-69	2.99	135	
8-09	28.0	1.99	8.49	0.49	5.49	4.29	29.5	5.99	4.59	4.73	6.49	051	
9-09	28.0	2.59	7.29	4.59	6.29	8.29	8.89	4.59	8.49	1.99	589	591	
7.09	249	1.49	4.29	7.59	0.29	8.19	8.89	6.49	7.29	4.59	7.29	981	
7.09	67.0	8.49	8.79	4.49	819	8-19	4.89	5.79	7.29	4.49	0.79	561	
4.63	.072	5.29	1.19	6.59	9.09	9.09	8.73	4.89	819	6.59	8.09	378	
7.65	2.95	.62.9.	9.09	.9.89	6.93	9.09	37.5	2.89	1.19	750	4-09	550	

Ethr Ref. (1)

,		٠.	
		6	
	G	A	
	4		
	3	õ	
		c	•

	II,	9. 46.	5.04 0.	014 4.	6.7 4.	.8 43.3	7.44 1.	47.8 45.7	5.94 4.44	45.4 45.6	45.5 46.5	44.9 463	44.4 46.3	5.94 1.	.5 46.5	4.6.6	2 46.3	0 1.7.1
		B. W.B.	37.0	37.7	\$ 38.4	8.04 5	3 42.1						-	1.44 4.	3 44.2	1.44 1	2.44.5	2 1.30
	II	0	37.7 408	37.9 41.0	0 43.5	45.2 47.5	47.0 49.3	1.15 5.64	54.3 565	80.5 60.8	1 53.7	51.6 52.1	50.3 51.1	49.5 50.7	49.1 50.3	18.8 49.7	47.9 49.5	1.00 1.9.2
		D. 8. W. B.	41.3 37	41.9 37	0.04 K.ht	49.7 45	52.1 47	54.3 49	9.09	09 1.99	55.0 53.7	63.3 51	52.3 50	21.6 4	51.1 4	20.9 48	50.5 4.	-
	II'	W. 8. 0.	37.9 41	38.4 4	40.5 4	4 5.94	1.64	51.3 5	58.8	65.9 6	545 5	52.1 6	50.7 5		49.3 5	48.8	479 5	_
DAYS	_	0.8.	40.3	5.07	5.14	4.44		7.14	4.84			4.84		7.87	47.9	47.9	6.14	1
7	L	N. 8.	36.3	36.5	37.3	5.04	45.4	43.8	1.44	47.5	47.0	1.97	9.54	45.4	45.6	7.54	4.54	1
	4	0.8.	8.04	0.14	41.7	47.9	1.15	53.3	55.9	8.09	25.9	53.7	52.5	518	51.3	50.9	505	
	7	₹.8	38.4	38.7	39.4	44.7	1.84	50.3	53.0	2.65	55.9	53.0	51.3	50.7	500.	49.7	1.64	-
	I,	0.8	5.04	41.0	4.7	47.9	1.15	53.9	8.95	6.49	57.0	54.3	53.3	52.5	51.8	51.3	1.15	,
	•	₹.8.	34.0	37.7	38.7	45.6	46.00	51.1	54.5	64.3	57.0	52.5	51.1	50.3	49.5	1.64	40	*
	Pos	TIME.	0	15	જ	3	\$	22	8	105	3	135	150	18	180	561	225	,

8.15	5.03	4.49	63.5	22.3	5.55	2.8.8	5.05	65.3	24.3	25.7	6.83	. 866.
1.25	6.00	0.00	6.85	T.SS	1.49	6.83	2.1.3	1.95	23.9	1.99	2.49	577
1.29	4.05	وىى	2.49	6.55	4.49	8.45	21.3	2.92	64.3	0.72	25.0	361
1.75	1.15	وي. ٢	6.49	29.5	0.00	2.3.2	25.3	5.9.9	6.55	0.49	7.33	081
1.79	21.3	2.93	6.00	0.69	1.95	232	27.2	8-73	0.65	2.85	2.99	591
1.79	21.3	0.49	5.99	849	8.99	63.4	1.25	4.85	28.0	288	573	051
25.2	8-19	0.85	0.89	9.85	2.8.5	6.88	9.15	5.6.9	29.3	7.09	8.85	581
25.2	1.29	6.65	7.09	8.19	8.19	8.43	25.2	8.19	0.79	2.59	7.89	31
9.15	1.19	1.19	1.99	E-14	2.12	5.45	258	2.78	4.59	9.01	9.04	501
1.15	50.3	4.89	8.19	8:99	5.99	0.85	4.09	9.09	4.09	H.59	4.49	06
20.3	8-84	573	2.53	2.65	5.65	9.19	9.87	28.0	0.00	28.6	2.99	34
8.84	5.44	2.53	0.85	8.95	24.4	1.15	6.74	1.95	25.8	29.5	1.49	99
1.84	1-94	63.3	20.0	24.3	25.3	8.64	8.97	29.2	8.64	8.2.8	6.05	54
4.94	8.84	8.84	8.54	8.64	1.94	8.94	8.54	ሬ ሃት	4.94	0.44	4.44	30
1.94	8.84	5.94	7.44	7.44	て・ササ	8.94	43.3	594	46.2	8.94	T. 77	51
8-94	8.84	5.94	8.44	0.44	7.44	8.54	1.84	1.947	7.54	1.94	8.54	0
8.0	'8 'M	D. B.	.8 .W	80	'8 'M	8.0	.B.W	8.6	W. B.	8.6	W. B.	TIME
· • • • • • • • • • • • • • • • • • • •	7	` ~1	7	· ' <u>7</u>	7	Ľ	•	77		1	•	.209
_		-	-	_	# 16	19						

EYPT. Ret. (1)

IMAGING SERVICES NORTH

Boston Spa, Wetherby West Yorkshire, LS23 7BQ www.bl.uk

ORIGINAL COPY TIGHTLY BOUND

	Expt	Ret	?	FIRE	OFF	-	HOPPER	CL	OS BD)				
		D	AY I							DA	y 2			
Pos.	I,	I_{λ}	I_3	II,	II_{\perp}	II_3		I,	I_{λ}	I_3	Л,	<i>II</i> .	II,	
0	74.0	83.0	71.0	72.0	75.0	76.0		14.0	1	41.0	10.0	1	1	1
15	77.0	84.0	72.0	42.0	16.0	76.0		45.0	81.0	41-0	67.0	44.0	1	1
30	44.0	82.0	72.0	71.0	74.0	76.0	•	74.0	82.0	71.0	10.0	1	1	1
45	80.0	80.0	48.0	77.0	80.0	79.0		83.0	44.0	42.0	44.0	48.0	81.0	l
50	83.0	82.0	74.0	770	82.0	86.0		79.0	79.0	48.0	49.0	800	83.0	1
75	83.0	83.0	80.0	81.0	86.0	86.0		82.0	82.0	74.0	810	86.0	83.0	İ
90	96.0	88.0	80.0	94.0	90.0	94.0		94.0	82.0	74.0	95.0	900	90.0	1
05	100.0	93.0	49.0	86.0	93.0	71.0		98.0	89.0	80.0	94.0	93.0	90.0	Ì
20	91.0	94.0	82.0	94.0	100.0	89.0		88.0	96.0	82.0	94.0	94.0	88.0	
45	89.0	94.0	81.0	22.0	94.0	86.0		88.0	96.0	83.0	90.0		84.0	l
50	88.0	91.0	83.0	89.0	92.0	86.0		88.0	94.0	82.0	88.0	90.0	85.0	
65	84.0	91.0	83.0	89.0	92.0	89.0		88.0	93.0	81.0	860	90.0	86.0	
80	84.0	92.0	84.0	880	91.0	89.0		88.0	92.0	83.0	84.0	89.0	86.0	
95	84.0	91.0	85.0	84.0	41.0	88.0		840	90.0	85.0	86.0	90.0	81-0	
125	88.0	90.0	85.0	84.0	90.0	84.0)	84.0	90.0	840	83.0	88.0	85.0	
55	85.0	1		80.0	88.0	880	•	83.0	88.0	1 -		88.0	81.0	

		4	AY 3						DA	y 4		
	I_{I}	I2	I_3	II,	II_2	II_3	I,	I_{2}	I_3	Д,	II_2	II_3
0	43.0	82.0	69.0	43.0	44.0	42.0	83.0	93.0	81.0	81.0	84.0	82.0
15	73.0	81.5	69.0	44.0	44.0	45.0	86.0	91.0	82.0	80.0	84.0	80.0
130	73.0	82.0	69.0	40.0	75.0	44.0	82.0	89.0	82.0	880	80.0	80.0
145	84.0	49.0	73.0	80.0	85.0	81.0	89.0	80.0	81.0	88.0	83.0	84-0
160	85.0	81-0	48.0	81.0	86.0	85.0	84.0	80.0	80.0	84.0	84.0	90.0
15	86.0	81.0	78.0	82.0	90.0	82.0	88.0	83.0	82.0	90.0	89.0	91.0
80	84.0	84.0	46.0	90.0	88.0	85.0	94.0	99.0	84.0	99.0	90.0	95.0
35	98.0	90.0	92.0	99.0	98.0	199.0	100.0	92.0	90.0	100.0	94.0	98.0
50	100.0	100.0	89.0	980	100.0	89.0	100.0	100.0	90.0	100.0	100.0	99.0
35	90.0	94.0	84.0	94.0	94.0	88.0	91.0	99.0	88.0	98.0	100.0	94.0
50	88.0	93.0	81.0	90.0	96.0	88.0	91.0	98.0	_		t	1 1
15	88.0	92.0	800	89.0	92.0	88.0	90.0	95.0	93.0	1	940	• .
20	86.0	92.0	84.0	89.0	93.0	85.0	92.0	96.0	92.0	(92.0	1
15	88.0	92.0	81.0	88.0	95.0	85.0	89.0	880		1	920	940
3	85.0	91-0	83.0	82.0	900	84.0	890	84.0	1	91.0	•	1
22	82.0	92.0	79.0	85.0	90.0	830	89.0	95.0	88.0	1	22.0	92.0

					120	1						
Sol		2	Ţ	. 4	I	۳,	П		П	4		П.3
TAME		W. 8. D. B.	W. 8.	0.8.	0.8. W. B. D. B.	0.8	₹, 8.	D. 8.	W. B. D.	0.8.	W. 8. 0. 8	0.8.
0	45.4	60.3	4.94	49.3	44.7	1.64	5.44	50.9	47.0	50.0	45.7	5.64
75	4.54	50.3	46.5	49.3	4.4.4	8.84	47.4	21.1	4.94	50.3	45.4	49.5
30	45.4	503	465		6.44	264	8-8+	27.8	47.5	81.8	8.54	20.0
#	530	57.0	1.15			53.7	64.7	58.0	81.8	55.5	48.8	2/.8
9	55.7	6.69	1.49	67.8		65.3	57.5	9.09	24.7	27.8	20.7	53.0
75	57.3	8-19	26.1	565	53.0	5.95	69.0	62.0	55.7	28.5		24.1
8	8.49	68.3	8.19	1.49	26.1	58.4	4.69	20.0	63.2	4.59	54.7	56.
105	12.	72.5	65.6	67.0	57.8	59.2		72.5	1.99	9.19		2.95
120	62.3	1.49	9.79	62.0	- Carrier	8-85		63.2	595	2005	55.7	26.1
135	59.7	8.19	59.5			5%5	7.09	8.09	575	58.8	25.0	6.99
150	575	687			54.3	565	28.6	595	29.95	0.85	543	55.7
165	26.1	8-85	653	57.3	53.5	6.55	573	9.89	5.55	573	53.7	25.0
081	55.0	58.0		57.0	52.8	55.5	26.1	580	54.7	5.95	53.3	24.7
96/	54.3	675	54.5	56.3	52.3	58.3	557	575	53.9	5.95	62.5	24.5
225	530	50.3	53.3	55.3	21.1	84.3	545	8.95	53.0	25.7	22.1	54.3
255		6.5.9		54.5	508	53.7	53.7	55.9	52.1	25.0	1.15	8.9

HODDER OPEN.

Expt Ref. FIRE OFF;

0.8	11 11	80	'8'M π	1	II		I A M	80	'8'M I	17		POS
8.15	L.L+	25.3		8.52	9.84		0.4	8.15	3.64	25.1	8.8+	0
23.1	6.47	2.03	8.64	53.0	F-84	21.3	0.74	1.75	£.64	1.75		ای
2.20	1.84	23.5		243	L.6+	8.15	5.44	1.79	£.64	1.75	9.84	Œ
4.83	4-05		583	,	20.2	2.00		8.95	53.0	0.85	28.0	42
255			2.52	9.19	0.85		23.7	7.69	2.55	1.19	872	09
8.99	65.0 53.7	4.00	8.65	6.89	2.09		2.45	8-19	549	932	4.65	22
28.4	•	1.59	6.89	0.07	7.69	2.63	1.95	7.59	8.29	1.39	8.49	06
7.85			0.29	7.57	4.87	0.29	0.69	2.89	5.99	6.5%	152	901
و8.0	.0.48	,	9.09	1.49	6-29	4.00	285	5.59	5.69	4.49	7.89	150
27.8	6.93	h.00	9.85	£.29	1.19	2.85	8.95	1.19	7.09	4.59	4.09	981
0.4.5	,	2.65	5.45	1.19	7.65	4.89	1.55	4.65	4.85	8+9	0.65	
8.95	1.49	8.85	3.95	6.65		24.2	4.49	8.82	24.3		5.65	591
2.95	1.H5		1.95			0.63	6.85	2.85	595	2.65	895	081
6.55	9.8.0	5.79	29.3			2.95	53.3	845	6.99	8.85	1.95	-
		595	24.3	•		6.55	27.2	0.4.9		8.45	0.55	550
22.2	25.5	2.95	6.53	575	5.45			2.95			5.75	

Expr Ref. h.

ETAT. Ref. 1

											,	,
Pos	7	, r	7	4	-	77	Д,		7	Пъ	7	Пз
TIME	W. 8.	TIME N. 8. D. 8. W. 8. D. 8.	W. 8.	0.8	W. B.	0.8	W. B. D. B. W. B. D. B.	0.8.	W. B.		0.8. W. 8. 0.	0.8.
0	44.0	t.8+ 0.4+	4.54	4.87	43./	1.8+	9.64 6.44 1.84	49.6	44.7	48.0	44.7 48.6 44.2	48.4
15	7:14	44.2 48.4 45.2	45.7	1.87	43.8	4.84	48.4 44.7 49.5 44.2 48.6	49.5	7.44	9.84	7.4.5	.84
30	44.2	H-54 7.4 46.4	46.4	4.84	43.5	4.84	43.5 48.4 46.1 50.9 45.8	20.9	45.8	603	4.44	48.6
45	1.15	54.1 50.0	50.0	53.9	53.9 47.9	21.0	51.8 51.6	52.3	50.3	54.1	47.5	50.7
09	53.9	54.3 53.0	53.0	5.95	565 50.0	53.5	53.6	54.5	54.5 52.1	55.7	48.8	21.6
75		595	55.0	28.6	51.3	26.0	near-manipe	587	66.6 547 54.3	57.5	50.5	\$5.€
90	62.7	62.7 64.5	59.0	819	54.3	5.93	66.3 65.9 67.0	67.0	9.09	62.3	53.5 57.5	10,40
105	4.69	8.69	1.49	65.7	55.6	57.8	70.0	71.3	1.49	65.5	54.5	25.5
120	9.19	8.50	7.09	9.09	55.7	57.3.	57.3 62.0	67.0	28.0	5.8.8	1.45	26.0
135	28.0	663		28.9	53.9	56.3	9.89	59.5 55.9		57.5	53.7	24.8
160	56.3	28.4	56.1 57.3	57.3	53.5	55.7	26.8	58.2	54.7 56.5	505	23.0	54.3
165	-	57.3	54.7 66.3	66.3	52.1	55.0	8.2.3	573	53.9	55.9	52.5	54.3
180	180 54.1	26.8	54.3 56.1	26.1	9.15	54.5	54.3	26.8	53.0	55.5	52.1	1.45
195	المنج ك	53.5 56.3	53.6	53.6 55.5 51.1	1.15	54.3 537	537	199	561 52.5	55.3	52.	53.7
225 52.8	52.8		53.0	55.3 505		1.45	53.0	25.7	52.1	24.7	5.0	53.5
1.65 53.1	1.65	55.3	52.3	52.3 545 49.7 53.5 52.1	49.7	53.5		55.0	51.3	54.3	50.7	53.0

	•
,	~
	Ret
	¥
	14
	7

Pos	·	I,	7	Å	٦		7	77	7	77	7	677
TIME	¥.8	8.0.8	1 350 10	W. 8. 0. 8.	W. 8. 0. 8.	0.8.	W.B.	W. B. D. B	W.B.	0.8.	W.B.	0.8
0	41.5	44.0		# . ++	41.5	44.2	43.4	6.44	47.4	44.7	41.9	44.7
15	42.1	44.7	43.3		41.9	44.7	45.8	45.4	47.6	44.9	43.4	452
30	9.54	45.5	43.5		47.4	45.5	0.44	44.0	0.44	4.94	42.8	45.0
45	48.8			50.9		9.84	48.8	51.3	47.9	50.0	45.4	175
9	51.3		49.7	53.5	44.9	50.3	51.1	63.7	50.3		9.94	
75	53.5		5/.8	55.3	1.64	9.15	53.3	55.5	52.1	64.3	47.9	
90	57.8		55.0	57.6	50.9	53.0	9.08	6/.3		58.7	49.7	or consta
105	65.7	7.99	7.8	62.3	52.8	53.9	65.3	8.99		9.19	1-19	5.
120	26.1	Section of the last of the las	26.6	57.0	5.2.5	53.9	85.3	555	24.7	2.49	21.1	21.8
135	53.0	-	1.49	54.7	51.3	53.0	5.25	53.9	62.	635	60.7	5/.1
160	52.3	543	63.0		50.7	52.3	81.8	535	21.8	530	50.3	51.1
165	1.19	53.7	52.1	53.3	50.0	8.15	50.7	25.8	60.7	5.4.3	49.7	50
180	50.3	52.6	51.3		49.7	21.6	20.0	52.3	20.0	52.1	49.7	50.7
195	49.7	52.3	50.7	52.1	40.00	21.1	49.5	1.79	49.7	21.6	49.3	50.5
225	40	27.6	49.5	21.1	47.7	505	49.3	21.6	40.00	1.19	1.84	000
255	7.8.4	51.6	49.3	51.3	47.7	50.3	48.8	9.19	4.84	50.9	47.9.	50.3

Pas

0

15

30

45

60

75

90

105

120

135

160

166

80

95

125

355

POS. 84.0 81.0 81.0 82.0 83.0 80.0 78.0 80.0 69.0 44.0 42.0 0 40.0 83.0 83.0 90.0 81.0 80.0 62.0 69.0 80.0 42.0 80.0 80.0 44.0 15 80.0 82.0 85.0 81.0 81.0 69.0 72.0 80.0 80.0 41.0 40.0 74.0 Jo 86.0 78.0 84.0 83.0 80.0 48.0 74.0 79.0 80.0 84.0 80.0 82.0 45 88.0 82.0 80.0 48.0 8001 85.0 78.0 84.0 86.0 86.0 80.0 80.0 60 49.0 88.0 88.0 80.0 82.0 82.0 87.0 85.0 49.0 86.0 89.0 75 81.0 89.0 86.0 88.0 91.0 92.0 94.0 97-0 90 86.0 94.0 91.0 9**0**-0 90.0 95.0 96.0 89.0 95.0 95.0 98.0 93.0 94.0 100.0 90.0 94.0 105 91.0 91.0 99.0 100.0 940 90.0 96.0 96.0 94.0 94.0 98.0 100.0 120 96.0 98.0 90.0 98.0 92.0 92.0 93.0 90.0 860 96.0 94.0 90.0 135 90.0 92.0 89.0 88.0 91.0 90.0 92.0 92.0 90.0 90.0 95.0 160 94.0 89.0 86.0 89.0 89.0 91.0 92.0 89.0 90.0 93.0 165 83.0 89.0 90.0 84.0 84.0 86.0 86.0 89.0 89.0 84.0 180 82.0 88.0 91.0 93.0 89.0 85.0 89.0 84.0 85.0 84.0 92.0 195 81.0 85.0 91.0 84.0 91.0 88.0 84.0 86.0 89.0 90.0 82.0 84.0 85.0 84.0 90.0 225 49.0 81.0 84.0 80.0 48.0 830 82.0 87.0 88.0 83.0 82.0 86.0 84.0 355 87.0 81.0

77			7	DAY 1. Is	·	Д,		U,	,	U,
D. 8. W. 8. N. 8.	-	-	W. 8.	0.8.	₹ .00	9.8	W. 8.	0.8.	W. B.	0.8
51.3 48.1 50.6 4		1	44.2	8.8	48.0	5.2.5	4.84	5.60	1.94	49.5
80.7		1	447	1.64	49.3	52.8	48.	53.0	1.94	49.5
			#.94	49.7	51.3	55.7	50.9	55.6	47.0	50.6
	6.9		50.0	53.7	26.1	59.5	55.3	69.0		5.5
61.6 65.9 59.7	7.7		51.3	56.9	28.8	63.7	58.2	3	50.0	53.7
	£.3		52.8	57.3	8.00	4.50	59.7	1.49	51.1	53.9
62.7	8.6		55.3	2.85	9.6		66.5	\$8.5	53.5	
67.6	0		503	59.7	73.7		9.60	71.3	54.3	
67.4 63.9 64.9	4.9		1.95	59.2	63.9	₹.5ª	b.2.5	6.40	53.7	56.3
1.10	. '5		6.59	58.6	9.19		01.3	64.5	53.3	
59.7	ö		55.7	28.6	30.00		9.10	65.7	53.3	
1.19 888 6.19	?		54.7	58.0	59.7	€3.7	67.7	1.40	62.5	55.4
9.09 0.89			54.3	58.0	2.65	63.5	69.5	63.7	52.	400
8.08.0			24.	68.3	59.7	64.3	59.9	6.49	52.1	5.9.3
58.2			1.49	58.5	59.7	67.5	59.5	6.40	52.	66.3
8.00 080 5.40	0.									'

HOPPER CLOSED.

Expt. Ref. FIRE ON.

Expr. Ref: F.

	II.	0.8	2.95	57.0	28.4	599	\$ 9.4	1.19	62.3	64.3	64.3	64.8	64.3	64.3	644	4.59	66.7	1.99
		W.B.	8.15	21.5	53.7	5.5.5	5.9.3	57.5	4.00	62.3	1.19	8.6	20.5	59.9	6.63	7.06	4.09	59.7
	IL.	0.8.	2.09	8	63.7	67.0	4.89	41.0	76.3	78.5	1.5%	73.9	73.7	72.9	73.9	15.1	757	76.3
	7	W. B.	64.7	55.3	580	8-/9	68.8	8.99	1.9%	74.7	70.0	4.89	1.89	67.7	67.7	67.2	67.0	67.4
	Π,	W. 8. D. 8.	200	9.09	1.49	8.49	700	72.3	7.8.5	8.18	1.96	437	72.9	73.2	1.4.	15.1	75.5	75.7
7		W. B.	54.7	25.0	58.7	5.03	64.3	4.4.9	18.7	5.08	41.0	4.89	1.89	4.19	9.49	4.79	4.49	9.69
2 7 70	12	8.6	5.99	26.8	9.83	6.2.3	63.4	649	4.19	60.5	67.8	67.4	67.0	8.99	67.0	9.49	67.0	67.0
7		W.B.	8.15	9.19	63.0	26.8	4.89	59.7	6 3.2	63.2	1.49	63.7	63.2	63.2	63.9	62.5	6.1.3	00.79
	$I_{\rm L}$	D. 13.	9.85	9.89	8.6	65.5	8.69	8.69	74.8	7.87	72.9	71.3	9.01	9.01	8.0%	41.7	41.9	41.4
		W. 8.	55.0	\$5.3	5.93	80.00	63.7	1.99	72.7	26.8		•	9.19	67.0	8.99	67.2	67.0	8.99
	I,	0.8.	59.2	59.2	1.19	66.3	69.2	71.5	77.0		75.7	73.4		7.57	13.4	74.3	14	
		W.B.	53.9	53.4	55.5	8.08	63.7	66.3	76.9	79.5	8.01	9.89	67.0	66.3	1.99	1.99	6.39	65.7
	Pos	TIME	0	18	2	45	09	76	90	501	3	135	150	166	180	361	225	266
		-	-	-			100	-		THE PERSON NAMED IN	0.00	THE OWNER WHEN	STREET, STREET, ST.	THE RESERVE AND ADDRESS OF THE PERSON NAMED IN	PRODUCTORS	Married Transport	Erigin, Printers	Special representation 1

Expt. Ref. F.

					٩	DAYS					î	,
500	•	I,	•	1		2	7	П,	7	4.	7	7
TIME	W. B	0.8	≥ 8	0.8		W. B. D. B.	₩. 8.	W. 8. D. 8.	W. B.	0.8.	N. 8.	0.8
0	1.6+	55.7	50.3	54.3	45.5	50.7	50.3	56.8	6.00	57.0	+6.3	21.1
12	49.3	55.7	50.3	54.3	45.6	50.9	51.1	54.0	52.	67.5	46.3	51.3
જ	49.3	5.95	50.7	55.0	1.9+	27.7	22.1	000	52.5	00	47.9	52.5
45	66.5	80.8	58.0	64.9	50.7	55.3	20.8	62.5	26.1	819	49.5	
8	54.0	63.5	57.0	62.0	52.5	56.3	58.8	4.40	88.0		53.3	53.9
	59.7	65.7	59.7	64.3	1.49	57.8	61.3	67.4	80.7			54.5
	1.89	70.3	64.5	5.89	56.	59.5	21.3	41.9	67.0			55.5
105	73.4	1.4.	4.40	7.57	58.4	1.19	14.0	75.3	70.0		54.5	20.1
97	67.6	21.0	8.99	1.89	58.2	1.10	7.59	2.0	5.40		26.0	28.0
135	64.3	5.00	1.779	5.90	67.3	7.00	63.6	86.3	63.5		2. + 5	57.00
150	62.5	67.7	62.3	65.7	8.95	59.5	62.0	8.60	5.79		24.7	375
165	61.3	67.0	610	65.7	5.95	59.5	8-19	67.4			54.3	215
180	4.08	67.0	8	6.40	60.3	59.2	61.3	8.20			63.9	28.0
36	8.3	67.6	8.		65.7	59.7	61.3	80.5	8.10	68.3	53.7	57.00
226	69.5	67.7	80.3	64.5	55.3	59.7	2.03	07.0	7.08	07.0		
365	28.6	67.0	59.7	84.3	5.4.5	5.9.5	9.99	9.89	0.9	68.6	53.7	27.8

28.5	535	4.69	809	9:19 9:19	E-19 9.19	29.0	L.95	1.49	6.63	£.99	2.09	550 162
7.85 7.85	6.89	9.L9 14.9	0.29	7.29	0.79	7.69	299	1.49	9.09	4.59	9.09	081
0.85	6.89	4.19	62.3	H119	4.29	7.69	و9.9	8.419	1.19	1.99	9.09	991
280	1.49	8.19	3.19	9.49	4.29	7.69	0.72	4.49	8.19	9.99	8.29	091
0.89	2.49	8.49	6.59	1.89	1.89	6.93	2.72	7.59	-6.29	9.29	6.29	138
5.63	9.49	5.89	8.49	6.89	7.59	7.09	5.7.3	0.19	8.49	9.69	4.99	077
2.73	4.99	7.57	0.17	2.5%	9.41	8.19	28.0	P-17	8:49	7.57	6.64	201
6.55	23.6	7.69	8.99	211.3	7.69	2.63	8.99	2.99	8.19	1.89	4.99	46
5.55	9.19	2.59	4.09	2.79	8.19	2.83	L.#9	6.89	0.65	#.99	8.09	1
64.3	200	6.79	0.65	6.479	6.65	8.9.5	5.83	8.29	57.3	7.89	28.8	09
6.85	4.64	2.69	0.4.9	6.79	2.8.5	20.0	81.3	2.60	6.05	7.09	2.95	9#1
53.0	4.34	7.62	2.50	2.65	7.53	8.15	5.94	L.49	20.3	22.3 28.3	20.2	چە / ئ
8.19	1.94	2.95 2.95	1.29	2.95	1.15	200.2	1.94	29.62	2.64	64.3		0
8.0	.8 .W	80	.8.W	80	B.W.	0.8.	'8 'M	8.0	.8.W	0.8	.8.W	THIL
2	}	71		12		7	1	77		'I		Sol

ENDS Ref. F.

 II_{λ}

69.0

74.0

RELATIVE HUMIDITY Ref. FIRE ON: HOPPER Expr. CLOSED. DAY 1 II_{I} II_{λ} I_3 II_3 I_1 I_{i} I_{i} L 77.0 75.0 49.0 80.0 46.0 85.0 70.0 41.0 41.0 79.0 78.0 79.0 75.0 84.0 81.0 41.0 45.0 76.0 73.0 YY.0 41.0 Y3.0 82.0 Y8.0 81.0 80.0 80.0 49.0 79.0 43.0 79.0 80.0 81.0 79.0 48.0 49.0 79.0 44.0 45.0 76.0 80.0 45.0 48.0 Y8.0 84.0 78.0 83.0 44.0 84.0 83.0 94.0 90.0 91.0 92.0 94.0 90.0 100.0 92.0 90.0 84.0 81.0 94.0 93.0 94.0

90.0 89.0 85.0

86.0 84.0 84.0

80.0 48.0 81.0

78.0 79.0 79.7

44.0

41.0 69.074.0

 II_{λ}

66.0

41.0

67.0

71.0

71.0

76.0

89.0

91.0

18.0

46.0

72.0

71.0

40.0

64.0

63.0

80.0 84.0

74.0 Y6.0

80.0 82.0

18.0

18.0

 II_3

69.0

68.0

41.0

77.0

49.0

80.0

89.0

90.0

82.0

83.0

81.0

77.0

78.0

77.0

78.0

81.0

76.0

 II_{i}

65.0

69.0

64.0

70.0

41.0

71.0

98.0

94.0

80.0

40.0

73.0

74.0

40.0

67.0

65.0

73.0 64.0

95.0 88.0

93.0 83.0

88.0 82.0

84.0 80.0

86.0 79.0

85.0 78.0

86.0

 I_{2}

78.0

78.0

74.0

73.0

73.0

77.0

81.0

88.0

90.0

89.0

83.0

80.0

48.0

79.0

77.0

Y3.0 82.0

78.0

DAY3.

 $I_{\mathbf{J}}$

66.0

68.0

64.0

74.0

79.0

80.0

81.0

85.0

84.0

83.0

85.0

83.0

83.0

79.0

77.0

85.0 71.0

84.0

80.0

49.0

79.0

44.0

46.0

73.0

 I_{l}

63.0

64.0

60.0

71.0

68.0

71.0

90.0

94.0

86.0

80.0

78.0

69.0

66.0

64.0

60.0

205

0

15

10

45

50

45

90

105

120

135

160

165

180

95

225

355

10

15

40

45

60

75

90

105

120

+36

150

165

180

195

225

265

43.0 71.0 40.0 71.0 43.0

77-0

82.0

49.0

49.0

69.0

66.0

65.0

63.0

 I_{I}

72.0

71.0

71.0

80.0

78.0

79.0

84.0

94.0

48.0

77.0

74.0

69.0

80.0 84.0

80.0 86.0

73.0 85.0

64.0 44.0

91.0

88.0

82.0

80.0

78.0

79.0

 I_{λ}

44.0

78.0

78.0

73.0

45.0

46.0

48.0

81.0

84.0

82.0

80.0

78.0

75.0 84.0

Y2.0 83.0

 $\mathcal{L}_{\mathbf{i}}$

40.0 41.0 76.0 75.0 74.0 79.0 81.0

DAY2.

 II_{I}

70.0

41.0 76.0 99.0 97.0

78-0 79.0 78.0 79.0 95.0 96.0

 II_{2}

71.0

YO.0 42.0

80.0 90.0 90.0 78.0 84.0 77.0 80.0 76.0 80.0 76.0 78.0 72.0 76.0 68.0 75.0

82.0 79.0 82.0 49.0 88.0 75.0 80.0 72.0 48.0 69.0 79.0 64.0 64.0 45.0 76.0

82.0

64.0 64.0 68.0 DAY 4

 \mathcal{L}_{i}

43.0

72.0

71.0

80.0

80.0

80.0

83.0

80.0

84.0

84.0

88.0

83.0

82.0

81.0

81.0

80.0

 II_{λ}

70.0

 $I\!L_{3}$

78.0

79.0

84.0

79.0

74.0

92.0 90.0

80.0 82.0

18.0 80.0

73.0 Y6.0

70.0 76.0

68.0 74.0

68.0 73.0

41.0

730

II, 75.0 74.0

69.0 41.0 40.0 73.0

68.0 70.0

71.0 Y6.0

84.0

74.0 76.0 80.0

75.0 88.0

90.0

94.0

83.0

80.0

Y8.0

49.0

46.0

41.0

700

70.0

. 2	u	-4	L			1 /		_		1		240
	1	*2	1	1	-	η		27	1	1	1	sod
. B. a	.8.W	8.0	B.W	.8 .0	'8 'M	.8.0	.8 ,W	D. B.	W. B.	.B.G	M.B.	JWI
6.35	8.79	275	25.5	27.6	1.45	4.49	1.23	2.53	5.45	045	23.6	0
2.20	8.00	245	26.3	275	1.49	4.49	1.85	1.95	1.45	29.9	63.3	ري
64.0	2.83	2.63	1.99	9.25	L.#5	295	2.62	2.93	54.3	8.95	29.65	S.
9.80	2.8.2	4.29	2.65	6.29	9.85	2.63	2.99	919	0.85	279	7.85	5#
583	895	2.79	8.09	4.49	6.69	1.19	575	7.89	6.63	6.49	2.65	99
4.09	27.6	6.59	8.19	7.59	1.19	8.29	4.85	6.49	1.19	1.99	9.09	75
0.59	3.09	8.07	9.89	7.17	9-01	6.49	289	2.69	0.70	0.07	6.89	06
6.89	4.29	7.27	5.17	1+4	73.7	_9.99	5.49	7.17	+.69	9.27	8.17	رەي
7.59	9.09	0.19	6.479	8.99	6.59	449	8.19	4.99	1-49	1.99	1.19	150
9.09	2.65	659	6.09	4.99	2.79	63.5	2.63	1.49	8./9	2.89	#83	138
2-29	0.60	2.59	8.29	6.99	3.19	6.59	4.85	2.59	9.09	4.89	8.73	روه ا
5.89	8.89	299	99.2	5.99	8.19	6.29	28.0	2.89	6.69	8.19	8.99	59
4.29	58.8	8.99	9-19	9.99	1-19	6.09	2.42	2.59	ولم.	6.79	0.70	08
7.89	9-89	0-29	8.19	8.79	8-09	4.59	2.95	6.29	6.69	_9.89	5.72	961
7.89	9.29	2.79	9.19	0.79	9.09	94.2	1.99	6.89	7.92	2.29	0.69	554
4.29	28.0	8-29	8-19	2.7.9	9.09	9.29	4.99	5.29	2.63	6.29	8.93	328

EXPL REF. FIRE ON; HOPPER OPEN.

8.19	1.49	6:59	4.89	1.99	19-89	8-19	24.3	0.09	2.6	8.49	0.25	590	1
1.19	2.99	0.19	2.65	0.29	.9.60	0.29	1.49	8.19	57.5	6.65	6.53	577	
1.19	وو.و	1.59	2.6.9	6.99	1.60	8-79	65.7	8.79	28.4	0.79	6.95	961	
9.09	6.55	4.99	4.6-9	1.99	4.09	0-79	6.50	8-19	2.85	6.79	0.73	081	
1-19	1.99	7.59	2.65	6.59	7.09	8-79	2.95	8.19	9.85	5.89	7.89	291	
1.19	5.90	2.59	4.09	4.99	9.09	87.3	57.3	0.79	8.89	9.19	58.0	100	
1-19	8.25	4.59	9-19	1.99	8-19	4.79	4.85	4.79	7.09	2.89	4.09	381	
1.19	4.85	6.99	6.59	1.99	2.89	6.89	2.09	7.89	8-19	649	8.19	150	
2.09	8-19	9.91	6.89	1.71	4.87	2.73	5.49	8.07	2.69	7.87	2.57	102	
8-19	2.65	9.69	0.29	7.2.9	4.17	8.49	8.19	4.76	6.49	0.07	8.39	06	
8.85	1.95	0-19	8.19	9.29	94.6	6.29	57.3	1.49	4.09	1.99	9.09	24	
2.8.9	65.3	6.59	7.00	1.99	9.09	8.09	1.95	4.29	8.89	249	4.65	09	
5.72	1.45	6.29	9.85	4.89	4.89	0.69	5.45	4.09	2.95	8.09	6.93	42	
6.55	9.19	9.09	وو.ع	6.69	5.4.2	55.9	2.0.3	1.99	53.0	5.53	60.5	O.E.	
1.45	1.05	4.85	6.83	4.89	0.89	2.4.3	2.64	66.3	8.23	8.53	5.64	12	
24.2	20.0	9.89	64.3	0.89	5.53	2.49	20.0	1.95	64.3	6.6.3	1.15	0	
	W.B.	0.8.	B.W	8.0	18 W	.8.0	W. B.	D. B.	18.W	.8.0	W. B.	JHIL	
£1	7	*I	7	'7	Z	r _I	•	I	•	'I	•	500	
						711	VQ						

Expl. Ref. Fh.

		1				DAYS	~					
Pos		I,		7		I_3		Д,	7	77	7	Пз
TIME.	W.8.	W. 8. D. 8. W. 8. D. 8.	W.8.	0.8.	W. 8.	W. 8. D. 8. W. 8. D. 8.	N. 8.	0.8.	W. 8. D. 8.	0.8	W.8. D.B.	D. B.
0	40.0	\$	40.8	43.1	1.68	43.1	43.5	47.0	42.8	1.94	40.3	44.0
Ś	40.5	44.7		43.3	39.6	43.5	43.3	47.5	44.00	1.94	408	7.44
30	40.3	444	41.3	0.44	39.8	4.44	4.44	1.64	44.2	1.8+	1.3	1.94
45	47.9	51.3	1.94	49.3	7.94	49.3	49.3	53.3	47.9	8/10	44.7	47.9
9	1.15	55.0	8.84	52.1	0.44		21.6	56.7	49.7	68.9	1.94	1.64
18	52.8	8,90	60.7	54.3	48.9	53.3	54.3	58.2		5.93	47.5	80.0
60	59.9	1.19	5.95	54.5	52.3	5.45	1.19	6.29		58.4	0.09	80.9
901	4.59	4.99	2.8	9.19	64.7	1.99	8.99	8-99	1.8	61.3	5.7.5	53.3
120	67.0	5.60	56.3	1.95	62.3	1.49		28.4		57.3	50.7	50.7 62.5
135	53.7	540	54.3	535	49.3	52.5	1.49	80.93	21.6	54.7	48.8	8.18
150	62.1	55.5	50.5	52.3	47.9	9.19	52.5	1.9.9	50.5	53.7	1-8+	51.5
165	50.9	54.5	49.3	9.15	47.2	50.9	9.15	26.0	5.64	63.3	47.5	50.7
08/	50.7	24.7		51.3	7.9+	60.7	50.9	55.3	1.6+	5.8.8	47.0	50.3
195	49.7	64.3	400	61.3	46.3	50.7	00	64.3	7.87	8.49	₩.3	50.3
225.	47.9	53.0	47.2	50.3	45.5	45.2 49.5		54.3	47.9	£.	45.6	49.7
255	47.7	53.0	17.5	47.7 53.0 47.5 505 44.7 49.7 49.3 54.7 47.9 52.8	44.7	49.7	49.3	24.7	47.9	52.8		45.4 50.0

1:0 =	220:10	0.00	1 6 10	0.10	6.65	0.09	283	5.89	2.89	2.89	2.95	اح وو	
0.0		1	8.19	8.1.9	2.99		29.2	5.79	7.85	7.59	9.99	500	
9-10		9.19	1.19	7.19	,	8.19	. 1		4.85		0.72	261	
2.3		8-99	8.19	7.19	9.09	5.09	6.95	2.29		5.89	4.85	081	
8.19		1-99	8.09	1.99	4.69	8-19	2.99	3.79	9.89	6-89			
2.0	57.3 6	2.99	€.19	5.99	9.09	0.79	67.3	-6.59	4.69	2.99	2.65	_991	
2.3	9 8.2.3	0.19	5.29	8.99	1-19	8.79	8.72	7.89	2.00	7.39	2.63	120	
16.5	9.85	8.89	7.89	8.19	3.09	7.89	889	4.49	8-19	8.99	0.29	138	
3.2	9 4.09	8.69	0.07	9.69	6.49	6.49	1.19	2.99	5.49	9.69	1.779	150	
8.4	- 1	73.2	8.02	2.92	2.47	9.99	5.49	9.01	2.69	1.71	2.57	501	
1.7		1-71	5.89	73.5	2.14	4.49	0.79	5.89	4.59	1.17	8.69	06	
1.1	- '	6.89	7.89	L-89	2.09	679	0.85	4.99	4.09	2.49	8-19	24	
5.6		8.99	1.19	6.39	6.63	9.09	6.55	6.89	9.85	1.79	8.85	09	-
8.8.	11.	8.49	0.69	6.89	4.25	2.89	1.45	9.19	8.95	0-29	0-25	24	
7.3	1	9.19	6.99	8-99	2.45	6.95	2.05	24.3	2.83	57.3	21.3	of	
8.9	_	6.65		2.60	2.85	8.45	4.64	8.95	8.75	2.99	1.13	31	
وبكا		5.69	1.45	4.85	0.89	24.3	5.64	2.99	5.09	1.95	6.05	0	
.8			W. B.	8 0	.8.W	.8 .0	'8 M	0.6.	N. B.	0, 8.	18 M	FHIL	
1	E_I	77	7	1	7	2		77	-	1		508	
		_		_	. 47	LYO		_					

EYPT. Ref. Fh.

Expt. Ret.

FIRE ON; HOPPER

OPENED.

		DAY	1						DΑ	Y 2			
	I,	I.	I_3	II_{\prime}	II_{2}	II_3	I,	I,	I_a	Δ,	11,	113	
0	80.0	91.0	84.0	80.0	89.0	81.0	78.0	89.0	Y4-0	43.0.	75.0.	1	
18	82.0	89-0	84.0	80.0	88.0	82.0	74.0	86.0	72.0	Y1.0.		1	
10	81.0	88.0	78.0	79.0	83.0	80.0	71.0	81.0	70.0	72.0		77.0	
45	49.0	80.0	80.0	49.0	81.0	80.0	77.0	79.0	75.0	73.0.		81.0	
60	74.0	80.0	80.0	46.0	80.0	84.0	74.0	79.0	75.0	1	y3·o.	†	
45	73.0	81.0	80.0	49.0	80.0	85.0	74.0	81.0	Y6.0.		73.0	1	
70	93.0	89.0	88.0	94.0	91.0	94.0	92.0	88.0	85.0		88.0	90.0	
05	93.0	90.0	90.0	96.0	96.0	94.0	98.0	90.0	84.0.	1	91.0	91.0	*
20	79.0	92.0	82.0	85.0	89.0	88.0	84,0	90.0	81.0.	86.0.	85.0	85.0	
35	45.0	88.0	79.0	83.0	84.0	84.0	83.0	84.0	Y9.0.	49.0.		81.0	
50	74.0	86.0	77.0	80.0	83.0	81-0	80.0	82.0	Y5.0.	76.0.	77.0	76.0	
165	78.0	82.0	76.0	75.0	80.0	80.0	43.0	82.0	Y1.0.	72.0.		74.0	
80	70.0	81.0	72.0	75.0	79.0	79.0	40.0	81.0	69.0	41.0.	71.0	74.0	
95	70.0	80.0	69.0	73.0	75.0	76.0	69.0	80.0	67.0	70.0	69.0	41.0	
25	69.0	80.0	69.0	70.0	73.0	76.0	69.0	77.0	62.0.	64.0.	1	40.0	
56	69.0	49.0	64.0	69.0	70.0	76.0	640	49.0	61.0.	62.0.	64.0.	66.0.	
	4												
ļ			DAY 3	·.					DAY	4.			
	I,	I_{1}	I_3	II,	II 2	II_3	I,	I_2	L	П,	II_{\perp}	II_3	
0	70.0	80.0	41.0	77.0	76.0	74.0	70.0	18.0	71.0	69.0	74.0	44.0	
15	Y2.0	82.0	41.0	72.0	Y6.0	12.0	70.0	74.0	43.0	69.0	46.0	72.0	

I,	I ₁	I_3	π,	<i>II</i> 2	Ц3	I_{l}	12	L	ш,	112	μ_{3}
70.0	80.0	41.0	77.0	46.0	74.0	70.0	48.0	71.0	69.0	74.0	44·0
42.0	82.0	41.0	72.0	46.0	Y2.0	70.0	74.0	43.0	69.0	46.0	72.0
71.0	81.0	68.0.	70.0	74.0	42.0	68.0	Y8.0	40.0	64.0	40.0	72.0
49.0	80.0	48.0	78.0	76.0	79.0	740	74.0	77.0	72.0	43.0	48.0
49.0	80.0	40.0	48.0	76.0	80.0	71.0	43.0	44.0	40.0	46.0	79.0
78.0	48.0	41.0	78.0	77.0	84.0	74.0	77.0	76.0	72.0	74.0	79.0
92.0	88.0	88.0	91.0	90.0	94.0	90.0	88.0	84.0	92-0	83.0	90.0
100.0	92.0	91.0	98.0	95.0	1000	96.0	92.0	90.0	95.0	87.0	91.0
85.0	94.0	88.0	91.0	83.0	89.0	47.0	89.0	81.0	48.0	100.0	84.0
80.0	93.0	80.0	85.0	82.0	81.0	77.0	86.0	45.0	76.0	79.0	49.0
80.0	90.0	74.0	49.0	81.0	80.0	69.0	82.0	78.0	73.0	79.0	44.0
48.0	86.0	780	80.0	48.0	80.0	41.0	80.0	76.0	42.0	76.0	76.0
48.0	87.0	75.0	74.0	¥9.0	79.0	Y3.0	80.0	41.0	69.0	75.0	74.0
42.0	84.0	41.0	48.0	67.0	75.0	68.0	79.0	64.0	1	1	1
69.0	83.0	75.0	1	1	79.0	64.0				1	
68.0	81.0	68.0	10.0	69.0.	41.0.		1		1		1
	70.0 71.0 79.0 78.0 92.0 100.0 86.0 80.0 78.0 78.0 78.0 78.0 78.0	70.0 80.0 71.0 81.0 71.0 81.0 79.0 80.0 78.0 78.0 92.0 88.0 100.0 92.0 86.0 94.0 80.0 90.0 78.0 87.0 72.0 84.0 69.0 83.0	70.0 80.0 Y1.0 Y2.0 82.0 Y1.0 Y1.0 81.0 68.0 Y9.0 80.0 Y3.0 Y8.0 Y8.0 Y1.0 92.0 88.0 88.0 86.0 94.0 88.0 80.0 93.0 80.0 80.0 90.0 Y4.0 Y8.0 87.0 76.0 Y2.0 84.0 Y1.0 69.0 83.0 Y3.0	70.0 80.0 Y1.0 Y7.0 Y2.0 82.0 Y1.0 Y2.0 Y1.0 81.0 68.0 Y0.0 Y9.0 80.0 Y3.0 Y8.0 Y8.0 Y3.0 Y8.0 Y3.0 Y8.0 Y3.0 Y3.0 Y8.0 Y8.0 93.0 93.0 93.0 86.0 93.0 88.0 93.0 80.0 93.0 80.0 85.0 80.0 93.0 75.0 74.0 Y8.0 87.0 75.0 74.0 Y2.0 84.0 Y1.0 Y8.0 69.0 83.0 Y3.0 Y8.0	70.0 80.0 71.0 77.0 76.0 72.0 82.0 71.0 72.0 76.0 71.0 81.0 68.0 70.0 74.0 79.0 80.0 78.0 78.0 76.0 78.0 78.0 77.0 78.0 77.0 78.0 78.0 77.0 78.0 77.0 92.0 88.0 88.0 91.0 96.0 86.0 78.0 78.0 78.0 88.0 80.0 78.0 88.0 88.0 88.0 88.0 80.0 78.0 88.0 88.0 88.0 88.0 88.0 80.0 78.0 78.0 88.0<	70.0 80.0 71.0 77.0 76.0 74.0 72.0 72.0 82.0 71.0 72.0 76.0 72.0 71.0 81.0 68.0 . 70.0 74.0 72.0 79.0	70.0 80.0 71.0 77.0 76.0 74.0 70.0	70.0 80.0 Y1.0 Y7.0 Y6.0 Y4.0 Y0.0 Y8.0 Y2.0 82.0 Y1.0 Y2.0 Y6.0 Y2.0 Y0.0 Y7.0 Y1.0 81.0 68.0 Y0.0 Y4.0 Y2.0 68.0 Y8.0 Y9.0 80.0 Y3.0 Y8.0 Y6.0 Y9.0 Y4.0 Y4.0 Y9.0 80.0 Y3.0 Y8.0 Y6.0 80.0 Y1.0 Y3.0 Y8.0 Y8.0 Y6.0 80.0 Y1.0 Y3.0 Y8.0 Y8.0 Y7.0 84.0 Y4.0 Y7.0 Y9.0 88.0 91.0 96.0 94.0 96.0 96.0 Y7.0 89.0 86.0 94.0 88.0 91.0 89.0 Y7.0 89.0 Y7.0 89.0 80.0 94.0 88.0 91.0 89.0 Y7.0 86.0 80.0 96.0 96.0 89.0 Y7.0 86.0 80.0 Y8.0 80.0 Y8.0 Y8.0 Y8.0 98.0 <td>70.0 80.0 71.0 77.0 76.0 74.0 76.0 74.0 76.0 /td> <td>70.0 80.0 71.0 77.0 76.0 74.0 74.0 76.0 74.0 76.0 /td> <td>70.0 80.0 Y1.0 Y7.0 Y6.0 Y4.0 Y2.0 82.0 Y1.0 Y2.0 Y2.0 Y0.0 Y4.0 Y6.0 Y4.0 Y1.0 81.0 68.0 Y0.0 Y4.0 Y2.0 Y0.0 Y7.0 Y6.0 Y6.0 Y9.0 80.0 Y3.0 Y4.0 Y2.0 Y4.0 Y7.0 Y2.0 Y0.0 Y9.0 80.0 Y3.0 Y4.0 Y7.0 Y4.0 Y7.0 Y2.0 Y3.0 Y8.0 Y8.0 Y6.0 80.0 Y4.0 Y4.0</td>	70.0 80.0 71.0 77.0 76.0 74.0 76.0 74.0 76.0	70.0 80.0 71.0 77.0 76.0 74.0 74.0 76.0 74.0 76.0	70.0 80.0 Y1.0 Y7.0 Y6.0 Y4.0 Y2.0 82.0 Y1.0 Y2.0 Y2.0 Y0.0 Y4.0 Y6.0 Y4.0 Y1.0 81.0 68.0 Y0.0 Y4.0 Y2.0 Y0.0 Y7.0 Y6.0 Y6.0 Y9.0 80.0 Y3.0 Y4.0 Y2.0 Y4.0 Y7.0 Y2.0 Y0.0 Y9.0 80.0 Y3.0 Y4.0 Y7.0 Y4.0 Y7.0 Y2.0 Y3.0 Y8.0 Y8.0 Y6.0 80.0 Y4.0 Y4.0

355 58.6 64.3 55.0 63.5 51.6 59.7 66.0 64.3 64.7 62.7 52.5 699 350 688 64-7 55-3 63-9 518 60.2 65-5 64-7 563 64-9 53.0 60.2 196 592 64.5 65.3 63.9 51.6 60.2 65.7 64.5 65.5 62.9 63.0 60.2 9.09 0.23 92.5 82.3 94.1 81.3 90.4 88.7 849 85.7 83.8 83.0 90.9 909 29.3 Pt. 218 PH 293 PEIT CPR 892 E30 POP 9.09 1.59 97.5 97.8 91.3 91.0 96.1 67.2 94.1 83.1 90.9 1.19 8.43 6.49 0.63 8.99 7.63 8.19 8.83 6.89 981 1-99 9.85 tr.L9 1.19 2.49 5.99 8.19 1.89 8.49 0.79 545 1.89 9.19 9.69 70.6 55.7 62.9 71.3 78.2 67.2 68.4 66.1 61.6 6.59 LEL 0.11 501 1.19 E.33 E81 1.99 L.51 86.8 E83 E8.3 E1.1 6.17 28.0 66.5 F37 61.8 bout 68.1 592 65.7 63.7 60.4 1.89 2.62 6.43 6.43 6.43 6.82 6.43 6.43 6.43 6.43 6.43 7.65 1.29 679 6.59 6.49 8.98 trog 1.25 729 0.55 E.49 tres 94 9.89 9.19 9.09 819 684 884 897 80.9 8.19 9.09 18 88.9 60.2 80.9 80.7 80.3 68.0 63.3 60.8 62.8 69.7 68.0 26.9 59.9 51.3 59.7 50.9 58.6 53.7 60.6 538 59.7 518 58.4 B. O. B. W. B. W. B. O. B. W. B. W. B. O. B. W. 500 L_3 ₹*1*[E7 717

.1 YAG

FIRE DEF : HOPPER CLOSED :

FYN

عرى وه· 7 وورا ولم ولم وعره وارا ولم ووره وورد وعرو وورد وعرو وورد 559 6.42 E.73 E.73 64.2 64.2 64.2 64.2 64.2 64.3 64.3 64.3 64.0 195 61.6 61.4 57.5 66.1 64.1 61.8 58.6 67.4 57.8 65.7 55.0 62.0 180 970 944 284 993 24.2 95.2 26.1 94.8 28.4 99.1 22.3 95.3 199 P3.5 P8.1 28.8 P4.0 St.7 P3.5 P0.9 P8.3 29.0 P9.1 25.5 P3.5 1.20 639 4.89 4.00 F.80 6.20 6.20 F.80 5.80 F.80 F.80 F.80 F.80 T.E9 L.SS 9.L9 E.19 8.69 H.S9 1.49 L.SS E.89 E.19 9.06 5.99 SEI 170 Pd. 75.3 P3.5 P3.8 P9.8 P4.1 PY.0 YIS P2.9 P87 SEG 63.5 108 X5.5 LB.0 XP.P XM.P 24.E PE.3 X2.3 XX.3 XI.3 X3.2 28.E P3.9 S.59 8.95 6.11 4.69 6.51 2.51 2.59 3.45 L.21 2.69 8.91 1.51 94 2.60 F.20 P.DL E.40 F.40 E.95 0.01 8.19 6.12 41.59 82 7.89 1.95 6.79 1.95 1.89 8.09 EOL 0.79 1.49 1.93 5.89 P.P2 0.01 1-59 09 9.58 61.0 56.7 63.5 60.8 69.2 59.2 67.0 56.7 62.5 57.0 64.7 55.7 62.5 1.99 0.85 8.19 L.45 6.59 1.95 5.49 12 90.4 94.6 26.1 63.9 66.0 61.8 54.3 65.2 66.8 63.9 66.7 62.5 1.79 6.55 1.49 5.95 7.59 5.65 5.79 L.55 L.49 8.95 6.49 9.09 0 TIME N. B. D. B. W. B. D. B. · £77 TI 477 ²7 T 11 SOd

2140

t star Ret +

spt. Ref. +

DAYS

$I\!I_{\mathcal{S}}$	W. B. D. B.	1.6+ 1.++	1.6+ 4.44	44.7 49.7	45.6 50.7	46.3 50.9	46.3 50.9	1.15 4.94	47.9 51.6	45.8 50.5	45.8 505	465 50.9	45.8 503	45.650.5	205 1.94	45.4 50.0	0.05 9.54
II_{λ}	W. B. D. B.	7.05 S.O.Y	70.0 50.5	+7.0 51.6	50.0 53.9	51.6 55.5	53.0 56.5	56.3 59.2	8.19 61.8	55.7 54.0	54.3 56.1	53.3 55.7	52.8 55.3	52.1 55.3	52.1 55.0	49.7 53.9	48.8 53.5
Π,	0.8	51.3	51.6	5.45	25.7	57.3	29.5	67.3	8.99	565	58.0	57.3	50.5	1.95	20.2	55.3	54.5
	N. B	46.5	1.94	47.5	507	52.3	543	2.00	65.7	54.8	583	537	52.1	51.6	21.6	50.0	49.3
L3	0.8.	49.5	1.64	49.5	50.7	52.3	22.1	55.5	53.0	5/3	1.15	1.15	1.15	50.7	50.9	50.9	50.5
	W. B.	44.9	1.44	1.7.4	45.8	44.7	44.2 52.1	44.9	1.64	7.4	497	44.0	46.7	46.5	46.3	1.94	1.94
1,	0.8	50.5	50.3	50.7	54.1	56.3	57.3	58.8	1.19	58.7	\$ 9.9	1.95	55.7	55.3	55.3	53.9	53.5
	N. B.	46.3	45.4	45.6	49.3	21.1	52.1	54.5	59.5	54.3	52.3	21.8	51.3	50.7	50.3	48.8	48.4
I,	0.8	50.9	21.1	1.15	55.5	57.8	59.0	61.3	1.99	9.09	9.85	575	54.0	56.5	563	55.3	24.7
	N. 8.	47.9	47.9	1.84	51.3	53.7	55.3	28.0	64.3	2.65	8.95	55.9	5.45	53.9	53.3	52./	1.15
POS	TIME	0	b	B	\$	3	70	60	501	150	135	150	165	081	195	225	255

EYDT. Ref. f

DAY 4

#. 8. 0. 8. #6.3 50.0 #6.3 50.0 #7.2 51.6 #7.2 51.6 #7.9 50.7 #7.9 52.1 #7.0 52.1 #7.0 52.1 #7.0 52.1 #7.0 52.1 #7.5 52.8 #7.5 52.8 60.60 50 55.7 W. B. 46.3 46.3 47.2 47.2 50.0 50.0 57.3 50.3 57.8 57.8 55.9 55.9 55.6 53.0 53.0 53.5 0. 8. 503 50.5

				K	ELATI	VE	HUMIL	oif y					195.
		Exp	1. Ref	FIR	E 01	FF;	HOPPER	CLOSE	D;	FAN	ON	<u>.</u>	
			AYI							DAY	2.		22.2
	I,	I.	I_s	Ц,	U_{\bullet}	II3		I,	I_{λ}	$\widehat{L_{\mathbf{z}}}$	Ľ,	II_{2}	$I\!I_{m{s}}$
0	79.0	54.0	59.0	63.0	64.0	65.0		79.0	61.0	66.0	62.0	62.0	66.0
15	77.0	53.0	69.0	61.0	63.0	63.0		78.0	62.0	66.0	61.0	64.0	67.0
30	41.0	54.0	59.0	60.0	61.0	61.0		77.0	62.0	63.0	61.0	62.0	67.0
45	40.0	60.0	58.0	61.0	Y0.0	62.0		77.0	61.0	61.0	61.0	63.0	640
60	71.0	60.0	58.0	61.0	64.0	61.0		72.0	60.0	61.0	63.0	64.0	68.0
75	42.0	60.0	59.0	64.0	69.0	65.0		71.0	64.0	60.0	64.0	40.0	65.0
90	83.0	75.0	60.0	84.0	89.0	40.0		88.0	84.0	62.0	88.0	88.0	68.0
105	87.0	79.0	64.0	91.0	90.0	71.0		900	82.0	62.0	91.0	91.0	65.0
120				79.0	18.0	66.0			42.0				
135		64.0			71.0	64.0		81.0	68.0	59.0	80.0	40.0	62.0
150		60.0				63.0		78.0	70.0	640	69.0	69-0	65.0
165	45.0			58.0				47.0	61.0	61.0	65.0	67.0	65.0
180	72.0			57.0				40.0	62.0	60.0	62.0	62.0	66.0
195	12.0	•		58.0				73.0	590	61.0	59.0	62-0	65.0
225	71.0	•		54.0				72.0	59.0	58.0	58.0	60.0	60.0
255	41-0	58.0	58.0	55.0	60.0	61.0		41.0	62.0	58.0	58.0	59.0	60.0
			. 2										
					y	77		r	-	DAY		π	71"-
TIME				π,					I_{λ}				
0				69.0					45.0				
15		40.0	70.0	64.0	75.0			80.0	74.0			74.0	
30	81.0	68.0	69.0	70.0	71.0			79.0	44.0	70.0		75.0	•
45	74.0	71.0	69.0	71.0		69.0			74.0			78.0	
60	78.0	41.0	70.0	72.0	_	71.0			77.0			Y9.0	
75	80.0	42.0		43.0	-	71.0			78.0			68.0	
90	82-0	44.0	-	89.0		40.0		88.0				90.0	
105	90.0	90.0		95.0	88.0			93.0		-	98.0		72.0
120	91.0	79.0		•	91.0 89.0	40.0		90.0		80.0		91.0	41.0
135	88.0	76.0		86.0		41.0			81.0	¥3.0			69.0
160	90.0	76.0				41.0		84.0		40.0		86.0	
165	85.0	45.0		77.0		70·0	'	82.0	•	69.0			69.0
186	84.0	74.0		74.0		69.0		80.0	74.0		79.0		66.0
195	82.0	41.0	71.0	72.0		A5.0		80.0	78.0	69.0	11.0		68.0
225	82.0	40.0	Y1.0		77.0	Y0.0	1	48.0	76.0	68.0			68-0
255	80.0	40.0	72.0	40.0	14.0	71.0		47.0	76.0	67.0	69.0	13.0	

HOPPER OPEN: FANON. FIRE OFF; Expl Ref.

Expt. Ref. f.h.

7.0 \$ 5.5 \$ 3,000333658638833

FYBL Ref. fh.

0.0 6.7.8

7. 8. 0. 8.

7. 6. 5.7.8

9. 6.8.4

5. 60.2.3

9. 63.7

6.1.3

6.1.3

6.1.5

60.6

53.6

60.6

53.6

60.6

53.6

60.6

53.6

60.6

53.6

60.6

53.6 55.35 32,98633663868860<u>18</u>

Expt. Ref. f.h

8.6.6 9.6.6 9.6.6 9.7.6 9. 7. 6 57. 7 57. 6 57. 6 57. 6 57. 6 57. 6 57. 6 57. 6 57. 6 57. 6 57. 6 57. 6 57. 6 57. 6 57. 6 57. 6 57. 6 57. 6 57. 7 50.00 50 340633648346486486

0 N.	
FAN	
CLOSED;	Ĭ.
HOPPER	DAY
FIRE ON;	
Expt Ref.	

B D B
#8 64:3
#9.1 54:5
50:0 56:1
50:0 56:1
50:0 56:1
50:0 56:1
50:0 63:2
50:0 63:2
50:0 63:2
50:0 63:5
50:0 63:5
50:0 63:5
50:0 63:5
50:0 63:5
50:0 63:5
50:0 63:5
50:0 63:5
50:0 63:5
50:0 63:5
50:0 63:5
50:0 63:5
50:0 63:5
50:0 63:5 5 7.0 8 5 7.0 8 6 7.0 8 6 7.0 8 6 7.0 8 6 7.0 8 6 7.0 8 6 7.0 8 6 7.0 8 6 7.0 8 6 7.0 8 6 7.0 8 6 7.0 8 6 7.0 8 6 7.0 8 6 7.0 8 6 7.0 8 6 7.0 8 6 7.0 8 6 7.0 8 6 7.0 8 322995586868686

Expr. Ref. F.f.

DAY 2.

7.00 0.00 56.5 56.5 56.5 57.5

					¥	RELATIVE	HUMIDITY.	D17%			•	
	4	SYbt.	Ref.	FIRE	(%0	HOPPER	(03507)	9	FAN	OA	. 1	
	I		OAY						DAY	172.	ı	
TIME	Z,	I_2	13	П,	II_{2}	II_3	I,	I_1	73	Д,	II_{λ}	II_3
0	70.0	78.0	72.0		73.0	0.89	62.0	20.0	43	48.0	0.09	62.0
18	72.0	78.0	71.0	62.0	70.0	70.0	59.0	50.0	20.0	47.0	52.0	21.0
30	0.89	73.0	0.69	0.09	0.69	67.0	57.0	49.0	50.0	47.0		0.19
£.	70.0	41.0	0.69	0.09	0.89	70.07	0.09	20.0	21.0	48.0	48.0	63.0
8	0.1	70.0	0.40	59.0			58.0	45.0	25.0	45.0	48.0	21.0
×	0.89	70.0	72.0	59.0	099	40.0		47.0	64.0	48.0	480	20.0
2	70.0	710	73.0	70.0	0.69			570	0.19	29.0	80.0	0.49
.88	82.0	75.0	79.0	0.0%	82.0	18.0		63.0	0.73	63.0	67.0	0.49
180	67.0	67.0 77.0 7	78.0	730.		0.69	63.0	49.0	540	0.97	550	21.0
135.	63.0	44.0	7.0	54.0		65.0	56.0	45.0	55.0	9		0.84
92	62.0	41.0	6	\$5.0 62.0		0.19	64.0	45.0	50.0	39.0	45.0	47.0
165.	29.0	41.0	1.0	24.0	0.19	0.19	21.0	45.0	48.0	38.0	0.44	45.0
Ą	59.0	41.0	80	21.0	0.09	0.09	20.0	43.0	47.0	37.0	0.44	0-11
55	58.0	0.69	00	25.0	0.09	58.0	50.0	44.0	0.97	37.0	0.44	43.0
X	58.0	0.89	0.6	0.84	64.0	58.0	48.0	40.0	44.0	37.0	40.0	0.14
286	59.0	67.0	0.0	+8.0	540	540	48.0	38.0	45.0	34.0	37.0	40.0

7.89 5:	68.3 23	5.4 5 9	.69 1.95	8.40	1.79	1.00	0.22	4.59	9.9 5	322
6.39 6.		6:55 7		6.59		4.59				
						,				
5. 62.3			-	-2.89		1.49				961
5.29 5.	ES 1.99	555 1	28.3 88.	2.89		1.49			8.73	081
15 62.3	66.7 63	4.55 to	28.3 67	4.89	25.25	L.49	1.45	7.89	0-85	591
5.29 5.	25 1.99	L.53 H	29 6.49	8.49	5.53	6.49	6.45	5.89	545	120
5.79 6.8	65.9	6.55 2.	19 5.59	6.29	2.89	5.49			4.85	581
7.59 1.1	1.99	0.Ls 0	.19 -8.95	4.59	2.53	1.99	2.72	2.59	1-19	150
5.29 8.6	S 1.89	1.89 0	0L L.+19	-5.99	9.85	1.89	T.89	8.69	8.99	5007
7.5 62.3	5 0.19	8.09 4	19 9.19	4.59	55.7	8.99	6.63	0.49	7.89	06
.4.19 8.8	5 1.49	5.45 7:	22.6 65	5.89	0.55	6.89	2.45	8-49	24.8	54
9.09 8.1	8 6.29	0.83 8.	6.85	8.29	8.15	5.79	53.3	0.79	1.95	09
L63 E.13	0.79	1. 25.3	23.3 95	1.19	4.09	1.19	25.2	8.19	66.3	94
783 283	7 4.00	1.15 9.0	29 8.15	8.25	1.84	289	5.64	0.89	63.0	or
5.95 8.8	4 9.85	1.15 L.	S 5.64	1.95	7.44	24.3	1.67	543	0.85	91
5.05 1.6	2.65	9.15 6.6		1.95	P.7+	57.3	7-94	8.95	0.85	0
808	M 8 0	8 M 8	0 8 M	8 0	8 M	8 0	8 M	80	8 N	THE
\mathcal{I}	*11		1	I^3		T.		1		509

EYDT. REF. FIRE ON; HOPPER OPEN; FAN ON.

Expt. Ref. Ffh.

DAY2.

56.3 63.2 53.9 62.3 57.6 59.7 54.7 66.1 56.1 65.7 53.0 55.3 63.2 53.9 62.3 57.6 59.7 54.7 66.1 56.1 66.7 53.3 55.6 57.9 54.7 66.1 56.1 66.7 53.3 55.6 57.9 54.7 66.1 56.1 65.7 53.3 55.6 57.9 64.7 58.0 11.9 57.3 61.0 53.9 57.0 64.7 58.0 11.5 58.1 67.1 58.0 11.5 58.1 11.5 58.0 11.5 58.1 11.5 58.1 11.5 58.0 11.5 59.2 11.5 58.1 11.5 58.0 11.5 59.2 11.5 58.1 11.5 58.1 11.5 58.0 11.5 58.1 11.5 58.1 11.5 58.0 11.5 58.1 59.1 59.1 59.1 59.1 59.1 59.1 59.1 59		L	•	7	ان د		7		2	T,	3	
9 54.5 62.7 52.1 60.2 54.7 66.1 56.1 66.7 56.9 66.7 55.3 62.9 53.0 62.5 56.1 61.8 57.3 61.0 58.2 67.4 68.9 58.2 67.4 58.0 61.2 58.6 71.5 59.2 71.5 59.5 71.5 59.2 71.5 59.5 71.5 59.2 71.5 59.5 71.5 59.2 71.5 59.2 71.5 59.2 71.5 59.2 71.5 59.2 71.5 59.2 71.5 59.2 71.5 59.2 71.5 59.2 71.5 59.2 71.5 59.2 71.7 58.1 77.5 52.7 71.6 52.9 78.1 52.5 78.1 52.5 78.1 52.5 78.1 52.5 78.1 52.5 78.1 52.5 78.1 52.5 78.1 52.5 78.1 52.5 78.1 52.5 78.1 52.5 78.1 52.5 78.1 52.5 78.1 78.9 58.9 72.3 52.3 78.4 52.9 77.7 59.5 52.4 78.9 52.9 78.9 52.9 78.9 52.9 78.9 52.9 78.9 52.9 78.9 52.9 78.9 52.9 78.9 78.9 52.9 78.9 78.9 78.9 52.9 78.9 78.9 78.9 78.9	in a	20	3.50	53.9	62.3	8 4 B	59.7		563	65.7	53.0	62.0
7 58.3 63.9 53.0 62.5 561 67.8 573 67.0 67.6 58.4 68.9 6 58.4 56.7 64.7 58.0 69.0 58.4 68.9 68.4 57.0 67.1 58.0 71.5 58.0 71.5 71.5 71.5 71.5 71.5 71.5 71.5 71.5	0	4	5.0	54.5	62.7	52.1	3		1.95	1.39	53.3	
7 58.2 67.4 56.7 64.7 58.0 69.0 58.4 08.9 5 64.4 57.0 67.4 58.0 71.5 59.2 71.5 59.5 71.7 59.5 58.8 71.9 59.6 59.4 78.9 58.4 78.9 58.9 78.1 59.9 58.4 78.9 58.9 78.1 59.9 58.4 78.9 58.4 78.9 58.9 78.1 59.9 58.4 78.9 58.9 78.1 59.9 58.4 78.9 58.9 78.1 59.9 58.4 78.9 58.9 78.1 59.9 58.4 78.9 58.9 78.1 59.9 58.4 78.9 58.9 78.1 59.9 58.4 78.9 58.9 78.1 59.9 58.4 78.9 58.9 78.1 59.9 58.9 78.7 59.9 58.9 78.1 59.9 58.9 78.7 59.9 58.9 78.1 59.9 58.9 78.7 59.9 58.9 78.1 59.9 58.9 78.7 59.9 58.9 78.1 59.9 58.9 78.7 59.9 58.9 78.1 59.9 58.9 78.7 59.9 58.9 78.1 59.9 58.9 78.1 59.9 58.9 78.7 59.9 58.9 78.1 59.9 58.9 78.7 59.9 58.9 78.1 59.9 58.9 78.7 59.9 58.9 78.1 59.9 58.9 78.7 59.9 58.9 78.1 59.9 58.9 78.7 59.9 58.9 78.1 59.9 58.9 78.7 59.9 58.9 78.1 59.9 58.9 78.7 59.9 58.9 78	90	•	1.4	85.3	63.9	53.0	62.5		3	61.0	53.9	
59.5 69.4 57.0 67.4 58.0 71.5 59.2 71.5 3 61.1 71.3 59.0 69.8 59.7 72.9 60.2 72.9 5 65.7 74.6 62.7 73.2 67.6 77.7 68.1 77.5 9 63.6 74.3 67.6 72.1 62.3 76.8 63.5 76.1 9 63.6 74.3 67.6 72.1 62.3 76.8 63.5 76.1 9 62.5 73.9 60.2 71.9 67.8 77.5 62.7 76.8 1 62.9 74.3 59.2 77.9 67.8 78.1 62.7 77.0 1 62.6 74.3 58.8 71.9 67.8 78.4 62.5 78.1 5 62.7 75.1 58.8 72.3 62.3 78.9 62.5 78.1 64.1 75.9 58.4 72.9 64.9 79.8 63.4 78.9 76.4 62.4 76.3 58.8 73.1 66.7 80.6 64.7 79.5	3	4	1-8	2.85	4-19	26.7	1 49		1.00	6.89	66.7	
3 61-1 71.3 59-0 69-8 59-1 72-9 60-2 72-9 56-7 74-6 62-7 71-0 66-3 76-3 66-5 76-3 76-3 66-5 76-3 76-3 66-5 76-3 76-3 66-5 76-3 76-3 66-5 76-3 76-8 63-5 76-8 63-5 76-8 63-5 76-8 63-5 76-8 72-1 62-3 76-8 63-5 76-8 73-9 60-2 71-9 61-8 77-7 62-7 76-8 76-9 76-9 76-9 76-9 76-9 76-9 76-9 76-9	6	-	0.1	298	\$.	67.0	7.19		24.5	71.5	1.45	
5 66.7 74.6 62.7 71.0 66.3 76.3 66.5 76.3 76.3 66.5 76.3 76.1 77.5 62.1 77.5 62.7 77.5 62.7 76.8 62.5 76.1 77.5 62.7 76.8 76.1 77.5 62.7 76.8 76.1 77.5 62.7 76.8 76.1 77.5 62.7 76.8 76.1 77.5 62.7 76.8 76.1 77.5 62.7 77.0 77.5 62.7 77.0 77.5 62.7 77.0 77.5 62.7 77.0 77.5 62.7 77.0 77.5 76.8 78.1 62.7 77.0 75.1 58.8 71.9 62.0 78.4 62.5 78.1 64.1 75.9 58.4 72.9 64.9 79.8 63.4 78.9 78.1 64.7 75.9 58.8 73.1 66.7 80.6 64.7 79.5	S	_	2.3	1.10	71.3	59.0	8-69		7.8	72.9	51.0	
1 69.2 76.3 65.7 73.2 67.6 77.7 68.1 77.5 9.3.5 74.3 67.6 72.1 62.3 76.8 63.5 76.1 76.1 4.3 67.6 72.1 62.3 76.8 62.7 76.8 76.1 77.5 62.7 76.8 7.1 62.0 73.9 59.2 77.7 67.8 78.1 62.7 77.0 62.6 77.7 62.5 76.8 78.1 62.7 77.0 75.5 78.8 77.3 62.3 78.4 62.5 78.1 64.1 75.9 58.4 72.3 62.3 78.4 62.5 78.1 64.1 75.9 58.4 72.9 64.9 79.8 63.4 78.9 75.4 62.5 78.1 64.1 75.9 58.8 73.1 66.7 80.6 64.7 79.5	~	7	7.5	1.39	74.6	62.7	11.0		5.99	76.3	8.19	
9 63-5 14-3 61-6 72-1 62-3 76-8 64-5 76-1 9. 62-5 73-9 60-2 71-9 61-8 77-5 62-7 76-8 1. 62-0 73-9 59-2 71-7 61-6 77-7 62-5 76-8 6 62-9 74-3 59-2 71-9 61-8 78-1 62-7 77-0 1. 62-5 74-3 58-8 71-9 62-0 78-4 62-9 77-7 5 62-7 75-1 58-8 72-3 62-3 78-9 62-5 78-1 1 64-1 75-9 58-4 72-9 64-9 79-8 63-4 78-9 2 62-4 76-3 58-8 73-1 66-7 80-6 64-7 79-5	Car	_	1.8	7.50	16.3	1.89	73.7		1.89	17.5	5.89	
9. 62.5 73.9 60.2 71.9 61.8 77.5 62.7 76.8 1. 62.0 73.9 59.2 71.7 61.6 77.7 62.5 76.8 1. 62.9 74.3 59.2 71.9 61.8 78.1 62.7 77.0 1. 62.5 74.3 58.8 71.9 62.0 78.4 62.5 78.1 5 62.7 75.1 58.8 72.3 62.3 78.4 62.5 78.1 1. 64.1 75.9 58.4 72.9 64.9 79.8 63.4 78.9 1. 64.1 75.9 58.8 73.1 66.7 80.6 64.7 79.5	•	7	3.9	63.6	74.3	9.19	1.71		5.89	1.91	2.6.9	
1 62.0 73.9 59.2 71.7 61.6 77.7 62.5 76.8 6 62.9 74.3 59.2 71.9 61.8 78.1 62.7 77.0 1 62.5 74.3 58.8 71.9 62.0 78.4 62.9 77.7 5 62.7 75.1 58.8 72.3 62.3 78.4 62.5 78.1 1 64.1 75.9 58.4 72.9 64.9 79.8 63.4 78.9 2 62.4 76.3 58.8 73.1 66.7 80.6 64.7 79.5		,	6.0	62.5	73.9	7.08	71.9		1.79	8.91	28.8	
6 62.9 74.3 59.2 71.9 61.8 78.1 62.7 77.0 1 62.6 78.4 62.9 77.7 56.7 75.1 58.8 71.9 62.0 78.4 62.9 77.7 56.7 75.1 58.8 72.3 62.3 78.9 62.5 78.1 61.7 75.9 58.4 72.9 64.9 79.8 63.4 78.9 7 62.4 76.3 58.8 73.1 66.7 80.6 64.7 79.5	-	2	1.4	8.0	73-9	59.2	11.7		5.79	8.91	\$ 00.00	
1 62-6 74-3 58-8 71-9 62-0 78-4 62-9 77-7 5 62-7 75-1 58-8 72-3 62-3 78-9 62-5 78-1 1 64-1 75-9 58-4 72-9 64-9 79-8 63-4 78-9 7 62-4 76-3 58-8 73-1 66-7 80-6 64-7 79-5		7 7	9.4	6.79	74.3	24.5	6-12		62.7	77.0	230	
5 627 751 588 723 623 784 625 781 1 641 759 584 729 649 798 634 789 2 624 763 588 731 667 80.6 647 795		1 7	÷	9-79	74.3	\$ 800	6-11		67.9	17.77	29.0	
2 62.4 76.3 58.8 73.1 66.7 80.6 64.7 79.5		3 75	15	62.7	15.1	28.8	72.3		5.29	1.81	285	
2 62.4 76.3 68.8 73.1 66.7 80.6 64.7 79.5		17 7.	1.5	1.49	75.9	58.4	72.9		63.4	78.9	0.9	
		1	7	62.4	76.3	\$	73.1		64.7	79.5	28.8	

Expt. Ref.

8 0.8 W.8 0.8

50.3 55.9 49.5 54.7

51.3 58.2 50.5 55.7

52.5 58.6 51.6 56.5

53.9 59.7 58.3 58.2

55.3 61.6 54.3 59.2

75.7 62.0 55.0 60.2

1.3 64.9 57.3 60.4

3.7 66.5 58.4 60.6

8.0 64.5 66.7 61.3

2.0 65.7 55.9 61.1

5.0 65.7 55.9 61.1

5.0 65.8 55.9 61.8

5.0 68.8 55.9 61.8

5.0 68.8 55.9 61.8

5.0 68.8 56.1 61.3

68.3 56.1 62.7

68.3 56.1 62.7
 W. B. D. B

 51.1
 58.0

 51.8
 58.8

 52.5
 59.2

 53.7
 59.9

 53.7
 59.9

 55.0
 62.3

 64.7
 67.6

 58.6
 66.3

 58.6
 66.3

 58.2
 67.4

 58.4
 69.1

 58.4
 69.2

 58.4
 69.2

 58.4
 68.3

 58.6
 68.3

 58.0
 68.5

 58.0
 68.5

 M. B. D. B.

 48.4
 53.0

 48.4
 53.0

 49.7
 55.3

 52.3
 57.8

 53.7
 59.2

 54.5
 60.2

 57.8
 61.6

 57.8
 62.0

 55.7
 62.0

 55.7
 62.0

 57.0
 64.5

 54.7
 62.0

 54.8
 61.8

 54.1
 62.0

 54.2
 62.0

 54.3
 62.5

 54.3
 62.5

 54.3
 62.5

 54.3
 62.5

 20万岁为为公司的公司的公司的

Expt. Ref. Ffh.

8.8.6 5.7.6 5.99.6 6.9.6 6.9.6 6.9.6 6.9.6 6.9.7 6.9.7 6.9.7 6.9.7 6.9.7 6.9.6 6.9.6 6.9.7 6.9.7 6.9.7 6.9.7 6.9.7 6.9.6 6.9.7 6.0.7 L. B. D. B.

91.0 85.0 83.0 86.0 84.0 88.0 78.0 72.0 72.0 69.0 YO.0 Y9.0 105 69.0 58.0 60.0 58.0 68.0 63.0 79.0 72.0 71.0 64.0 68.0 73.0 120 42.0 68.0 68.0 64.0 64.0 42.0 65.0 55.0 54.0 62.0 53.0 59.0 135 71.0 64.0 64.0 61.0 62.0 63.0 65.0 64.0 52.0 54.0 60.0 73.0 150 69.0 65.0 62.0 58.0 59.0 70.0 62.0 53.0 64.0 53.0 56.0 68.0 165 69-0 62.0 61.0 53.0 59.0 61.0 50.0 62.0 49.0 49.0 56.0 71.0 180 69.0 60.0 61.0 52.0 57.0 69.0 60.0 50.0 52.0 50.0 50.0 63.0 195 68.0 54.0 60.0 55.0 59.0 68.0 60.0 52.0 51.0 48.0 50.0 50.0 125 66.0 54.0 60.0 53.0 53.0 68.0 59.0 53.0 55.0 48.0 49.0 52.0 455

Protocols of the Pilot User-Test Experiments carried out in order to develop routine techniques for the assessment of physiological and subjective reactions of working subjects.

Appropriate the particular production of the pro

a 6" x 6" extractor fan (air delivery 115 cuefte per minute). Physical check on the Effect of PILOT USER TEST STUDIES.

PILOT - USER TEST EXPERIMENTS: TEMPERATURES I PHYSICAL CHECK (NET BULB & DRY BULB

ALL WINDOWS & HOPPERS CLOSED. 6"6" FAN EXTRACTIVE APPROX, 115 cmft/min. (a)

696" FAN EXTRACTING APPROX. 115-2-+1/min RIGHT HAND HOPPER OPEN (4)

> POS I, I, I, I, II, II, II, II, III, III. 58.8 647 570 641 501 623 508 645 573 659 573 620 592 654 580 647 563 627 586 663 58.8 64.9 57.5 62.5 58.0 63.9 56.3 62.6 56.1 61.8 56.3 64.3 57.0 63.5 57.3 62.3 1.59 5.9.3 59.2 63.7 71.3 62.0 66.3 5.99 1.19 5.49 9.08 O.OL 1.49 9.08 618 65.4 72.1 62.0 66.5 61.8 64.3 20.8 61.8 665 1.99 1.10 7.50 2.00 78.1 78.9 62.9 66.3 6.30 9.00 41.0 763 41.9 73.9 9.69 6.49 68.3 070 1.50 1.40 4.19 1.5% 15.1 9.10 5.99 79.5 87.0 70.3 C-67 72.3 43.9 73.2 75.3 72.3 41.9 41.7 71.0 625 68.7 58.6 64.7 63.5 70.0 71.3 65.7 65.2 71.5 01.8 67.2 67.0 1.01 1.89 67.6 72.7 61.3 67.4 69.6 72.3 62.0 67.2 68.3 66.5 70.0 64.3 70.0 59.7 60.1 64.5 1.89 1.99 1.99 5.99 7.18 8.89 63.5 07.4 07.6 732 647 70.8 60.2 725 60.6 763 632 79.1 627 75.3 61.3 13.5 41.7 7.3 42.9 5.89 0.1.0 77.7 20.0 67.2 76.9 670 73.9 010 80.2 72.3 73.7 7.7 3.5 78.0 45.1 72.9 9.69 8.94 6-18 7.69 15.1 8.69 11.7 3 3 3 8488

THE W. 8. D. 8. 419 6:49 Sp.0 64.7 57.5 62.0 58.8 84.1 58.4 80.7 57.5 018 5.40 t.50 8-00 6.50 844 844 545 654 540 04.7 540 64.0 58.4 64.9 592 045 575 01. 505 06.4 58.9 05.7 69.7 66.8 54.7 05.4 5.7. The pts 542 545 pty 649 700 625 683 547 6.7 est 72:1 eig 66.8 665 72.3 66.0 70.0 61.3 4.9 +.50 K.70 7.19 7.59 the died the 73.9 40.8 73.2 66.7 67.40 58.6 40.8 675 61.0 675 60.1 62.8 61.5 67.2 62.2 65.3 58.7 61.5 7.49 8.61 72.3 4.59 5.99 1.4. 10.8 76-5 77.7 1.27 8.90 6.47 689 7.40 1.40 7.57 8.70 74.0 67.8 73.9 66.2 68.5 885 75.2 69.2 41.7 67.8 67.5 63.7 61.8 61.4 62.5 73.4 65.4 72.9 64.3 68.3 65.2 71.5 65.4 6x5 643 72.1 64.9 St.9 63.2 10.8 65.7 70.0 79.4 79.9 8.46 71.7 74.8 70.0 80 6 813 77.7 65.2 500 till 181 73.7 64.3 72.7 63.7 721 TSY 68.5 75.2 1.80 75.7 3 13.7 1.99 8.00 1.07 9.07 1.+1 14.5 850 2.94 77.8 80.0 7.50 1.4. 8-69 8.3 68.3 70.8 2630 800 135 378 185 165 \$ 3 9 150

> TIME W. B. D. B. M. B. D. B. M. B. D. B. M. B. D. B. M. B. D. B. W. B. L. B. 899 819 899 819 899 8.09 E 647 119 9.19 9.19 1.19 20.3 299 8.09 4.69 73.2 9.01 8.69 413 35 21.0 819 919 VENTILATION KOUTINE AS FOR SUBJECT A 9.79 9.19 1.99 0.19 62.3 9.19 9.19 5.99 8.19 10.0 0.12 9.69 1.01 148 0.11 9.01 65.9 62.5 66.5 616 65.9 62.0 819 5.7 13.5 E 61.0 1.19 6.99 66.5 62.0 6.89 457 10.6 706 703 698 11.7 62.0 76-1 67-0 73-2 649 78-4 68-3 74-1 654 72.5 64.5 71.7 62.5 149 0.29 0.79 72.3 63.7 70.6 618 Ę 1.5 647 71.7 6.89 6.79 1.49 7.81 64.1 11.9 63.9 0.19 8.01 7.89 1.99 DAY I 60 643 7 75 645 7 90 706 7 120 64-7 135 64-3 150 63-2 165 62-9 180 63-2 8.09 61.3 734 919 છ 0203

CASEMENT WINDOWS AND DOOR OPENED.

10.6 203 969 8.69

10

70.3

819

819

21.0 618

717 63.9 71.3 61.8

20.3 20.0 869

71.5 62.0

18 500

90.01

71.5 64.3

225 632

7.59 5.12

195 637

EEE

6.89 9.69 9.01

PILOT USER TEST STUDIES. Subject A washing. Ventilation arranged by working subject.

PILOT USER - TEST EXPERIMENTS. PHYSICAL L PHYSIOLOGICAL DATA:-

SUBJECT A. DAY 1. (Variables awayed by Salfect)

	PHYSI	0 - 04/14	L DAI	TA		1	F H	Y. 121	1		ATA.		,	VoiEs
IME Mins)	CAMPTON INDEX		FOREHIAD SKIN		JENLATIONS OF HEAT+ MAUTURE	iv. 6.		₩. b.	L 0.	N. 8.	1 <u>.</u> L. b.	IV. 6.	L. O.	
0	82.5	4.1	43.5	18.4		51.0	64.1	58.0	64.7	51-	44.7	26.5	4.5	TO R.H. w. H. assert windows where H.H will
15					0	513	65.7	57.4	66.1	51.5	64.	56.5	6.7	T-30 420 hack millied in.
45	65	8.5	76.8	18.8		40.6	68.7	61.1	61.2	61.1	62.1	57.0	65.2	T. 45 Coor oxined.
15	63	, ,			+2	62.7	61.8	62.7	64.7	6.7	61.4	61.5	65.1	T- 45. was full on.
105		45.7	3.,	330		61.3	64.2	62.0	64.2	154	6+.4	61.6	66.	T-120 was aund off.
135	82.5	13-6	743	45.8	0	51.2	6/4	542	612	54.2	61.2	52.4	65.7	T-125 to 1= 140. Interest work winter
165						58.6	66.8	57.2	61.0	57.0	61.2	54.4	ary	Follow in command warring collected my harrying but realist to easy a correct.
185 15 125	72.5	75.4	457	77.0	+1	51.0	64.5	54.0 5r.2	64.	517	60.1	54.7 5×.4	61.0	
236	82.5	11.8	76.0	99.0		1				1				T- 206 ladject finished working.
55	-				0.	51.7	64.7	11-	68.1	27.0	60.3	58.4	665	,
275	82.5	70.0	45.5	11.0										

PILOT USER TEST STUDIES. Subject A washing. Ventilation by Right Hopper Window only.

PILOT USER. TEST EXPERIMENTS. PHYSICAL & PHYSIOLOGICAL DATA:

DAY 2. (Raid wappen only spin) SUBJECT A.

		ci.				ingest ducting it into					Lun. A.			Xur tukuran							
	Notes.	I and the processing the							2 1010	were off.	Sulyiet look			ined to			Subject finished woring.				
		3			La Fin Er. C.	1-30 Was bouter		FIN STATES		1-105 400 warx off.			7.15	hearing			7= 236 Subject				
F		4.	6.0	1779	61.9		5.2		(49	1.99	1.99	1.59	3	60.2 60.4 64.5	£4.2	57.2 645 577 645 571 643 570 657	62.7.				
	TEMPERATURES. (°F)	E. H.	3.0	400	565	1.55	614 54.2	9.00	9.19	63.7	63.7	9.19	2	4.93	54.4	57.0	57.7.64.3 60.2 64.3 540 64.1 54.0 62.7.				
1	11.786	7	٥. ۵	0.79	565 618 560	51.0 62.7	65.7	4.49	5.89	9.01	2.5	4.79	66:7	7:59	7.59	64.3	1.49				
LATA	MASKI	7 .	5.	56.5	5.6.5	21.0	62.5	65.7	1.99	1.89	0.70	67.9	9.19	9.09	4.09	149	54.0				
	rei	7	9.7	6.29	4.79	6.7	8.79			4:2		499		4.79	1:39	645	64.3				
PHYSICAL	W.C C. G.	7	Ş. 9	5/3		25				9/		É	9.19	1-19	1.19	211	7.09				
PHY	W.E	.4 9	, o	67.0	64.3	5.7	1.89	644	8.01	1 3	199	66.3		159	65.5	349	64.3				
		7 9 3	ċ	5.95	26.8	58.7	2.79	299		110	63.2		8.8	. 8	4.09	23.5	54.7.			u i kindana	
		TEMP. OF MEAT	+ MOSTAE		ل ر			7			15+				1+		0				
		TEMP.	9	38.0			4.84			44.0				97.0		9.86	6.54	:			
DATA:-				1	9		346			76.0				35.5		8.46	736	?	3		
PHYSIOLOG ICAL	TIME CAMPON ENGLISAD CANADA	SKIN	CONDUCTIONY TEMP.	16.4			21.0			95:0				0.99		57.0	0.19				
PHYSIO	CAMMON	1106		25.			67.5			5/5				3		25.5	77.5				
	TIME		(MINS)	0 %	3	45	97	2	501	150	3 6	150	3 %	3	175	3 %	255				

PILOT USER TEST STUDIES. Subject B washing. Ventilation arranged by working subject.

PILOT USER- TEST EXPERIMENTS.

PHYSICAL & PHYSIOLOGICAL DATA.

SUBJECT B. DAYS. (Virilation manyed by subject)

-	PHY	11020412	AL DA	ra:-	. 1		PHYS			TA:-				12/25
TIME	LAMFIEN	FOREHEAD	FOREHEAU SRI'S	OKAL	LENSAIMAS AF HEAF HMAISTURE	11		V.6.	1	4	L. D.	L	L. C. C.	(anapadi para ma
(MINS)		3HM2 410-6	o _F	OF.		1								•
0 15 30 45	82.5	4.0	93.1	97.3	-1	515	62·7 64·/ 6/·0	51.5 54.1 62.7	62.5	51.5 58.5	62.0	510	60.8 61.6 62.7	Too be have medical to. Two T= 15 inspect wentling it work
15	52.5	61-1	913	986	+2	62.0	665 688	64.3	61.8	100000000000000000000000000000000000000	61.8	60.6	65.7	F 15 vas lained down.
105	80	14.9	90-6	918		645	10.6	61.0	10.3	6/2			64·1 65·2 65·2	F-10 Ved Court off. F-110 is F-100 veryed work in he
135 150 165					13	54.4		50:2 60:4		60.6 60.6	66.1		652 645 645	To 100 Sommered wringing and ranging and
185	80	20.1	42.4	91-2	0	61-1	67.8	616	663	61.1	66.5	544	64.5	walls to my in order
245			90.5	97.2	0			ĺ	05.7					7:245. subject funded working.
280	12:5	14-6	14.8	98.2					AND THE RESERVE OF THE PROPERTY OF THE PROPERT		AND THE PROPERTY OF THE PROPER			

PILON USER TEST SYNDIES. Subject B washing. Ventilation by Right Hopper Window only.

PILOT USER TEST EXPERIMENTS.
PHYSICAL & PHYSIOLOGICAL DATA

SUBJECT B. DAY 4 (Eye waster net your

																	· ·										
N3723	(myself perturns							1:30 Yes Loiles innerted or.	67-15	T: 70 des aused low.			T-105 440 hull in	Has lunes . 4.	T- 120 subject look week, all 1:100		To 100 which commended wrenting in a	and lotted in ording.				T: 245: subject limited worning.					
F	7	,	. 6.		1	1.59	65.7	2.50	1.99	1 7/9	9/9	68.0			1.39	2.69		68.7		1.89			2.5		 - 1- Series is		
	TEMPERATURES (OF)	1, 1,	1.0.	-			588	1.19	1.79			66.5	5.99	+19	0.19		65.7 6				1.89 1.59 1.71		72.3 640 68.7	-	 		
	FURE		.6.	-	1	65.7 3	1.99	1.89				15.51	8.91	15.1 6	9 841	1.5	11.7 6			1.49 1.71	9 1.71	-	9 5.7	-	 		
LA [A:-	PEKA	Z,	1.8.		-	9 7.09	8.09	63.5 6	661 103	5.89	113	15/	15.5	1.1	13	7.49	8.19	-		1.89	819		+1	-	 		
17	TEMI		0.0		-	9 6.59	5.99	919	11.1	-		8.9/	18.4		1.+1					12.5	14.5		14.5. 6		 -		
LAL	2.7	171	1.8.	-	-!	9 7.09	613 6	9 1:19	1 719	1 68.4	1.71		811	12.5	10.6	1.89				1.89	+19		+19 5-71 +19			-	-
PHYLLAL		1			1	65.2 6	66.5 €	7.19	11.9						1.51	13.1				13.1 6	12.5		9 1.71				
	3	T.	1.8.	No. or or	-	9 7.06	9 1.19	9 0.79				13.2	8.91							1 9/9			1 1.59				
-	-					•	_	•		•			-				4	_		9	•		•	10-1124			- November 1
		SE WATTON	OF HEAT	+ Mastuke			1+				44				+3	•				7+			+2				
CATA:		JAAC	TEMP.		9 F	48.0					48.0			8.86					30			18.4		18.7			
		FOREMEAD	3817		30	7.46					13.8			8.76					8.16			43.1		243			
PHYSIOLOUICAL		TIME LAMPTON FOREMEND FOVEREND	7/15	CONDATIVITY	OWN WAS	6.0										_			128.7			93.3		31.1			
PHYS		KAMPTEN	14 6E X			85,					55			27.5					20			0/		12.5			
		I'ME			(MINS)	0	15	9	5#	8	, '2	2	105	170	135	150	14	3 5	150	12	5	245	255	280.			

Protocols of the Full-Scale User-Test Experiments carried out on Working and Control Subjects.

English Charles Charles

AND THE STREET AND TH

Electrical Page

FULL-SCALE USER-TEST STUDIES. Day 1. Subject B washing; Subject A control. Ventilation arranged by Subject B.

						PHYSICA DAY I.		WORK			1 566	DAT	_	3	VENTILATION AS	
						UNY I.		CONT			7607			}	by SUBJECT B	
_		PHYLIO.	B		JAJECT	4	- ~	PN	4. 1LA	-	447	TA.	• 4			Hara.
16	CRAMPIN	PHENEAD	JAMMED	LEAMPTON	FIREMEND	AMMATE D		Ç.		I,	1	T.	4	Z,	(to processes eles
	INDEX	LONDATING	OF HEAT+	14461	LANGENTY	OF HEAT	1				1					
Q.	95		MOSTA	85	1.4	MUSTJEE	W. 6.	6 6	V. 6.	0, 6	N. B.	L. 6.	₩. 8	D. D.		
	73				3.4		1									
		1.6			1.3											
1			-1			-3										
		1.3		85			1									
				*5	2.4											
		1.1	0			-2	1									EXTERVAL: Y8 44.0" A8 5.0"
	100				0.3		56.0	546	544	598	638	543	540	541-	SORTING	
		0.3		85	2.1									_		TOUT LEFT & KIGHT
İ					1.1	-2	5/4	60.1	55.6	6/2	55.4	604	55.1	54.8		U-IMPLY GREVAL
		23	+1			-										
		0.3	+3		4.8	-2										
	10				0.7		58.5	658	364	61.1	560	61.7	55.Y	605	WASHING	1.60 JA JAN 64-44 -11.
				40												
		22	+3		2.5	-1									INCLIDING	
				¥5-	2.2		61-2	65	61.1	66-1	60.7	653	516	61.2	JL 4766 1N4	
		0.1			4.2										AF	
	15	0.6					614	619	Lich	68.4	6.8	611	54.1	61.6	3/44	
		0.1			4.4			-11				.,,	070			
		0.6		40	1.4		640	68.4	65.8	68.2	626	673	548	6.0		FILLY SPENED.
			+3		1.8	+1	İ									
		10			3.7		1								1	
	85	1.0					664	69.7	672	714	66.2	10.1	6/2	636	•	
			45	75	1.8	+2								1		T. 1-5 COTH ASEMENT VINDONS HALF SPENED
		1.4					101		1.7	74.11	100	411		640		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		0.6					~ 3	610	61.7	104	•33	-/0	01.4	.40	WEINGING	
					0.2											
			+4	40		+1										
	65	0.6			0.7		63.0	6.8	68.2	70-4	648	65.8	5 8.4	628	4	1-150 WAS TURVED OFF
		2.2			0.6										SCRUBBING	
				40	0.6										KINSING	
		2.1			2.2	1	626	650	6:8	66.0	63.0	655	541	633	AT	
	65	1.0					61.4	64-4	544	64-4	548	64.2	541	62.8	SINK.	
				80	1.5	-2										
					1.4		604	64-4	543	64.2	585	63.6	545	62.4	GOTH JUBSELTS	****
				40										1 1	LUNCH IN AN	ABJOINING COOM.
		11			0.4										1	
	105				0.5		60.7	640	543	644	543	646	585	62-6	KINDING	TILIS ANAT LASEMENT
		5.4		40		0									AND	WINDOW LLOSEL.
						U	648	66.0	548	653	548	65.0	54.6	633	WRINGING.	
		1.4			0.1											
	60	0.6	0	85	0.5	-/	61.6	658	614	65.8	612	65.4	548	633		EXTERNAL N. 6. EL F. A.B. SEF
					0.4										HANGING	OUT LLOTHES.
	70	0.6		85	0.7		618	65.0	60.0	65.0	59.8	646	603	43.6	†	
				85	0.1											
	45				.,		609	65.0	543	64.6	591	64.2	591	63.6	RESTING	В
			0	40		0	-									
				90		-2									1	
				10	0.3						1					
			-2		- 1	-2	0.						1			

FULL-SCALE USER-TEST STUDIES. Day 2. Subject A washing: Subject B control Ventilation arranged by Subject A.

						DAY 2			7404			8 3 6	ELT	8	SOUTH THE ACCANGED
-	-	WY 10 L 0 4	LAL	DATA	<i>;-</i>			PAY	IKA.		LA	rA:-	- 7.		Nore-
	201	ILELT A	1	10	FECT	B	W.		DB II,		n he a		ES (°		(much bearing in
E	LRAMPTON INDEX	MEHED!	CHATED	LINDEX	SUN .	LANATRAS	ī		,		7.		43		
	,,,,,,	LONGO TIMY	OF HEATH	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	DAMS NO	OF MEAT								-	
0)		SHM'SME!		100	1.0	MODIAE	W.B	48.4	1 8 . 1	0.6	v. 8 . D	B. *	. b . B	+	
	45	0.28	-2	,,,,	10	+2	- 1								
•		1.10			2.0		1 1			1	1			1	
		0.6	0		2.1	+2								1	
		0.5	-2	100							1				
	85	1 1	0		1.0	+1	541	0.4	581	6.4	581	2.0	://	050	SORTING FUTLEVAL: NELLO'S DE
-		1			2.2	1		1		- '			1	-	20411MB
		0./	0			+1					1	- 1			
		1 1		85		71					1	1		1	
5							60.7	636	548	63.6	54.6	63.3 3	11 6	0.4	
1		2.2	+2			-1						1		11	
5					1.0	-1		ï	1			1			
7		1.1	+1				1.0			110			Cv.I	. 1	FIGO JAS WASH BOILER -
5	85			90			60.4	646	34.8	118	54.	00.0	2 4.1	0	THE STAN WALK BOILER LY
,	į.	1.3		10	1.4				1	-	-				
3			+2			0	1	101	1.0		60.4		44	0.2	WASHING TITS LEFT LASENGET VINS
5		1.8	+1	45			64.6	61.6	64.8	6 K-Z	60.4	6/3	70	m.0	INCLUCING HALF OPENED
2				,,,	2.1	0									
0	15	1.0			2.0	1	66.4	641	66.4	64./	65.4	670	61-	€0.8	SCRUBBING FIRE RIGHT CALE THEY SEE
0	1	0.8		40	2.0	1 1									Ar
3			+3	1											SINA. TOTAS KAUNT LANG TO VINE
4					1.1	0	665	68-2	66.2	64./	600	6/7	60-/	44	SINA. THOS KNAT LAW TO YOU FULLY OMEYAD
3		1.1													
4			+3	1		+1	100		100		(1)		49.4	1.1	TILD JAS TURVED BE IN
5	15		+3	85	0./	+1	P 2 - W	68-4	88.T	10.1	6/3	DN-2	67.0	***	7.72
16		1.1	+2											- 1	
2		1.5		tr	1	4	1	, ,	,		, ,	, ,	,	1	
45			+2		0.7	+2	68.8	10.1	66-6	69.5	668	68.4	62.6	65.3	
40				95											
50		1.4	+2			+4	1.0	10 11	420	49.	65.5	64.11	41.4	400	F-150 WAS TURNED FOR
54		1.7	+2			+2	04.0	****	0/0	.,.	60.0	25.4	02.0	000	
60				100	4										
64		1.3	+2			+1	63.8	66.2	64.0	61.7	63-6	67.1	60.7	64.0	
70	3				0.7	+1			.,.						
80		0.3	+1				65.6	66.2	641.7	644	63.0	44.0	41.2	640	
3					2.0	+2		001	.42				• • • • • • • • • • • • • • • • • • • •		THE LEFT LABORERY WITH
85 44		1.8	+2	85										_	fully offered
01				105	-		61-4	64.4	605	64.8	60.5	646	626	60.0	BOTH SUBJECTS TOOK
10	45	0.1	0											63-6=	
24				105	1.4										ESTABUAL :- N. S. S. S. S. S. S. S. S. S. S. S. S. S.
2	5				0.8		60-	64-2	61-2	65.8	61.2	65.8	600	64.0	1044 BOK V 846000 B & 10-
26		1.1	0		-	+1					1				WKINGING
32 40		1.0	0			1	60-7	642	60.9	655	60.7	653	SW	64-0	1
41	,		1	105	0.5										1
56				103	0.8	0									HANGING OUT LLOTHES.
60	0	0.6	-1	100											
70	75				¥-4	+1	SN	63-6	58.4	640	519	644	54.6	636 m	1
13	5	0.1	0			.,									1
78	1			0.00	. 1.1										
80				85			60.4	600	60-0	64.0	59.6	644	541	442	SUBTECT A
05				90				.44	50-0	-44	-74		3.7		RESTING.
06	6		-2		1.1	+1									
10		0.3							1						
20				90	2.9										
30	1	0.3	-2				289	640	507	642	581	644	576	43	
7		0.4		75	. 0.7	-1					1				
	1	1	1			1	11	1	i		1			1 L	J

FULL-SCALE USER-TEST STUDIES. Day 3. Subject B washing: Subject C centrol. Ventilation by Right Hopper Window only.

FULL SCALE USER-TEST EXPERIMENTS. PHYSICAL L PHYSIOLOGICAL DATA.

						DAY	. 3		RKI		500	SJEC	cr : r :	. 8 . c	RIGHT HOPPER OPEN ONLY.
		PHYSIO	LOUILA	DAT	A				PHY.	ILAL	-	ATA	-		NOTES.
T.M.C		DAJELT	. 8	10	BJECT	C		6. 1				E AT			(Subjects procedure ale).
	INDEX	LINELTHA	SENGATIONS FOR HEAT +	INDEX	SAIN	SIMMATES SENDATIONS PIDE NEATH MODELEE		<i>I</i> 1		π,		1		m,	
LMIV.	45	'MM, WO	MOLTXE	80	OHMUND	MOSTAE	W. B.	D. B.	W.B	D. B	W. B.	D. B.	W. 6	46	
12	,,,	15	+1	00		1 1									
15		2.8	+1		3.9	-1	1								
20				75		1- 1									
25		2.1	+1		2.2	-2								1	_
30	*5						581	60-7	51.1	61.4	5/4	61.2	560	54.8	SORTING LOCKIDOR W.B. 550°F D.B. 600°F
36		22	+/		1.5	-1									
40				90		1				1		1			
45		1.9	+1		1.0	-2	5KK	61.7	58.3	6.1	513	61.9	54.4	60.0	
44		1.5	+2						0.0					60.0	
60	50				1.5	- 5	60.9	653	60.1	64.0	land	641	CY.	41.9	WASHING T-60 TAS WASH BOILER
64		36	+6	85	2.8	. +2	,							,	LIT.
74				8.2	2.8	+4									INCLUDING-
15		4.4	+8	20			65.6	611	648	61.4	610	6/5	546	62.4	SCRUBBING
×4		4.5	+7	80	2.4	46							1		AT
40	30	67.7	+4					10.7		10.00	1				
12	30				3.8	+5	18.0	64./	66-2	64.7	65.5	64.8	60.9	63-6	SINK.
100		12.0	+4	75		+2	ì				1			1 1	
10		10.4	+11	13			1 -								
105			+13		2.6	+7	67.9	71-6	68.4	71.4	674	10.4	62.4	64.8	
118			113		5.6	+4									-
120	30	10.1	+/3				64.5	72.4	10.4	13.8	69.7	12.6	64.0	66.2	†
125				85		i								1 1	1
132		13.2	+13		2.1	1								1 1	WRINGING.
135		,	1		1	1 1	695	72-0	68-6	12.0	68.4	'A.	64.4	66-6	W KINGING.
137			+13	u, .											
146		12.4		83.											
150	55				2.4	+8	400		100		100				
156	00	22.8	411				-0.4	11.4	01.8	11.6	64.8	11.4	64-8	£6.6	T-150 GAS TURNED SCRUBBING OFF.
160		34.4		80	5.7	+6	101						,		AND
170		34.4	114		3.6	+6	01.7	11.8	or.x	11.1	08.6	11.1	644	66.6	RINSING AT
174	50	41.6	+13				60.7		11.			1	1.10		SINK.
185				80			01.2	10.1	00.0	• 7.7	01.1	10.1	64.8	67-1	
200				75			67.3	44.	65	68.4	46.2	600		67-1	BOTH SUBJECTS
210	65			,,			1								ROOM . ADJOINING
212		4.7	+3		2.8	+2	65.8	68-4	64-2	618	644	68.2	63.6	66-2	
220		-		85											
277		3.1	+3		1.8	+1	66.2	64.3	648	68.6	648	60.8	63.6	66-2	RINSING
231		8.7	+3		2.1						1				WRINGING.
240	45					+4	66-2	68.8	648	68.6	64-8	68.8	63.6	66.2	EXTERNAL: W.S. STOPF D.S. 630PF
241		4.1	+9	85	41	+2									CARRIDOR: W.B. 580% AB. 610%
252			100	0.0	2.8	+1									HANGING OUT CLOTRES.
255		45	+4	45											
265		5.2	+7	,,,											7
270	65				1.7	+1	66.0	68.4	64.0	60.0	641	69.4	62.5	66:2	
272			4		1.7	+1		7	- 77	4	04.6	016	m.7	00.7	1
280		4.8	+4	40											SUBJECT B
283		5.0	+3												RESTING.
291		2.5	+4		1.7	+1									
297	4				1.7	+1	1-	1	,		,			. 1	100
300	45	4.6	+3	100			0.0	6/.7	64-0	68-2	64-0	68-2	63.0	66-0	*
311		2.1	+3		1.00		1								
3/3				100	10	0									
304		2.4	+3			_	1 1								
337	90				13	0	648	67-7	64-0	68-1	63.8	68.2	63.4	65.4	
335			1	85		1	1	.,	-,0	1	-		-		-

PULL-SCALE USER-TEST STUDIES. Day 1: Subject A washing; Subject B control. Ventilation by Right Hopper Window only.

FULL- SCALE USER-TEST EXPERIMENTS. PHYSICAL L PHYSIOLOGICAL DATA.

					DAY:-	4	WORK	1149			e cri	A	<u> </u>	?	RIGHT MOPPER
	_	PHYS	10-041	CAL	LATA:		CONT			ILAL	cr:	LAF	A :-	,	NOTE.
	50	BJELF	10-041	50	SELT	B		6. 1	0.8	T	EMP.	RAF	URE.	(°F)	myself procedure ale
IME	INLEX	FOREHEAL	PENNUM			SENSATIONS	1	1		π,		1	,,,	П.	
		AND THE	AF HEATA		LANGLINE	OF HEAT+				1.					
MINA	90	CAMP >10	MOLITIKE	105	DHM WO	MOINT WE	W. B	0. 6	IV. 6	4 8	W. 6	D. 6.	W. 8.	D. B.	
6	10	1.2	0								1				
13		25	٥	105						1 .					
25		0-7	0									1			
32	95				0.4	+1	574	617	56.2	61.2	562	60.9	55.6	6 543	
35		1.8	0			1				1	1				SORTING EXTERVAL : W. S. SHOP D. SHOP LOREIDOK : N. S. SEOP D. 40-0-F
40				95	1.1	+1	rai	41.1	co.					603	350000000000000000000000000000000000000
45		4.1	+3			"	377	64.6		65.0	3 4.3	04.0	00.0	600	
53					2.2	+1					i				
54	15				1.1	+1	605	64-4	54.7	6.6	5×4	63.6	576	614	T=60 WAS WASH GOILER
61		0.7	+3								1				L17
67		3.5	+5	80	0.4	+1									
14		-			1.6	+2								1	
15		3.2	+6				63.6	617	64-4	67.2	62.6	61.3	59.1	62-1	WASHING
80		0.2	,,,	85							1			1	INCLUDING
83		4.			1.0	+3									
87		10.7	+6		2.1										SCRUBBING
40	10						66.3	10.0	61.1	14.0	66.6	10.1	60.7	6.6	AT
48		9.7	+8		3.1	+4				,					SINK.
100				40						į.					3745.
104		13-7	+8			+5	.0.	71.7	14.7	10	44.0			644	A
111					1.4	+5	66 7	12.1	013	130	64.5	11.0	0.2.1	64.4	
120	40	17:1	410				110					, -	1.	66-01	
122	40	44.3	+11				100	14.0	141	10.0		120	600	66.01	TOWO WAS FURNED BOWN.
114			1		2.0	+6		ľ	1				1		
148		'	1	75	3.2	+6	1	1		+	!			1 1	
100		14.3	+11												
138					3.5	+6	15.8	158	714	118	15.6	16-4	640	66-6	
140		45.7	+//	85											
147		600	+11												
150	40				J·5	+6	75.4	15.6	80-2	80.1	164	16.4	644	66-21	T-150 WAS TURNED OFF.
160				80									20.7		7777
105		24.5	+6		6.9	+3	70.7	4.6	71.6	13-1	11-4	Dat	64.0	66.6	
1/4					2.7	+1						- 7	.,,		
118	65	8.9	+3				10-1	74-0	70-1	4.6	10-1	4.0	6	66-6	
187					1.4	+1	,.,					,,,	PU-8		
145				85			68.3	49.7	64.6	6+1	66.6	44.2	613	41	T
200				70			0	617		-17		• 13	0/-		BOTH SUBJECTS TOOK LUNCH IN
201	100				2.1	+1	62.1	400	40	64.		44.1	61.	662	ADJOINING ROOM.
214		9.5	+3				61.1	07-3		610	002	873	0.0	66.2	
410		4.1	+3	80	1.3	+3									
224		4		80	1.8	+3									Weinging.
445		4.0					615	10-4	66:2	10.4	66.6	64.7	636	640	F1. Indiana
www.		. 6.0	43		4.5	+3									
404		5.4	+3												EXTERNAL: WE STOPE DE 6.00F
440	15		- 1	70	2.1	+3	08-6	10-1	6/1	10.4	61-1	10-1	63.8	66.4	LOCKIDGE: W.B. 5NO F. D.B. 6.00;
-+/		6.8	+3												
460		8.4	+3	80		+3									HANGING OUT LLOTHES.
-67	10						4-								
-11	80	2.1	+3				675	647	66-1	61.4	66-4	614	61.6	66-6	1
-14		25	+3												
~11					1.5	+3									
-18		2.8	+3	85			1								Lugrace A
487		1.1	+1												SUBJECT A RESTING.
200	10		1		2.8	+3	64.4	646	600	10=	60.0	4	1.		
205		5.9	-1	80				014	~~	•17	62.8	61.3	er. 6	60	
200	25	1.3	_,	75				40.		60.0	1	10			
220	***	1.3	-2	1	0.8	+2	66.2	•15	05.3	647	62.3	69.3	6.0	664	
-			- 1	1					1						

Day 5. Subject C washing: Subject E control. Ventilation arranged by Subject C.

FULL SCALE USER- TEST EXPERIMENTS.

					DAY:	5		W		ING		108	JEC	r :-	
· !	P	17310-0	41cd-,	LA	r Al-	1	!	P 11	Y-1-	AL	4	17A:		1	Nario
	. '	NF MEHEAD	_		LIELI		W.	6. s.	4.0.	TEM.	FEA,	ATUK			uniqued persone is
		JAIN					•	1	4	4'	-	7.	4	7,	
		LANDATINEY	OF HEAT		LONGLININ	OF HEAT									
(MMO).		SHM WAR				+ Mastual	W. 6.	0.6	W. B.	0.8.	W B.	D. B.	W.B.	0.6.	
10	80	3.4	+2	100	0.1	0									
15		5-7	+2		- /										
- 0		7.3	+2	70	0.4	0					1				EXTLANAL: W. 6. 576% D.S. 6.
25	×S				0.4	J	61.1	648	61.4	65.4	61.7	65.5	60.0	63.3	True Court court
40		2.04	+1	15	0.1	-2	áJ.9	646	41.	602	600	15.2	n)	63.8	SORTING 1 35. KIGHT CASEMENT
50		1.3	+3				91.7	0.4.0	67.2	•0.5	604	•3.3	3 7-8	D3.8	
55		2.4	+1		0.7	-1					9				
65	10	r.3	+5		A .		63-6	66.9	61.4	66.0	61.7	66.2	60.7	64.4	F-60 WAS WASH BOILER
61		5.6	+3	45	0.3	- 2									LIT.
15		14.8	+8			_	64.0	67.5	64.4	683	640	68.2	61.9	65.0	WASHING
16		388	+8	75	0.1	0									INCLUDING
15	_	36.4	+10				1		100			100			•
10	35	~ 1.C	+1		1.8	C	66-2	104	65.8	644	050	688	05.0	88.6	J-95. DOOR OPENED 23"
100		30.1	+4	40											AT
102							64.2	619	63.0	64.	65.4	679	61.9	66.4	SINK
115		2 8 0	+1										·		T-W-
120	25	277	+7				65.3	64.8	66.6	68.6	65.8	686	64.4	615	T= 1/5 GAS TURNED DOWN
1.5		. 54.2	+1:	40		c									T-128 DOOK CLOSEE.
100							61.1	64.1	64.4	12.2	686	72.6	65.5	67.7	
140		51.0	τ/	40		0									
145		54.0	t5						100						
150	65	51.5	14				6/.9	12.0	6x.8	12.2	67:1	70.9	65.0	6/9 =	T- 150 DOOR OPENED -3
150,					1	0		ļ.,		1			,		WRINGING.
155		20.2	14	105											T-155 GAS TURNED OFF
115							66.0	688	646	688	64.4	646	63.8	61.1=	
117		25.6	+4			-2									WASHING AT
135	55	22.0	+4				65.8	610	646	643	64.2	64.8	638	61.1=	1
115				100			63-6	61.1	62-6	61.1	62.4	615	61.4	06.2	BOTH SUBJECTS TOOK LUNCH IN
200				40		-2						.,-	. ,	1	EXPERIMENTAL
XIC.	75	10.4	t5				63-6	673	62.6	611	61.4	615	61.9	664	ROOM
414	0.5				0.6	-2			1	"	.,	,,,		-	4
***		4.1	+2	100			64.0	61.1	63.0	68-4	62.6	68.2	61.1	66.2	
234		20.9	+2		0.1	-4									WALLEY C
240	45						63-6	6/5	63.0	68.4	62.4	68-4	61.4	66.4	WASHING AT
444		13.0	+2	85		- 2				1					SINK.
254		12.5	+2												
455			1	80		-2		1							ļ
266		55.4	+5"				ĺ	1							
261	55					-2	63.0	66.9	62.6	68-6	62.1	68.2	62.1	66.2	WRINGING BYTERNAL-N.B. 560°F; D.B. 64 CORRIDGE: N.B. 510°F; D.B. 64
275		31.0	+5	0-		-2								=	1
285		26.0	+4	45	+	0	1								HANGING OUT CLOTHES.
292		27.1	+3	70			100	1.	1	1		1			1
300		19.3	+2	75			83.0	67-1	62./	67.9	61.4	679	61-/	664	SUBJECT C
314		10-6	-3												RESTING.
330	70	12.0	-3 -1.	90			62.4	66-0	61-41	67.5	60.9	614	605	65.8	1
					1	1 1		1	- 4						

FULL-SCALE USER-TEST STUDIES. Day 6. Subject C washing: Subject F control. Ventilation by Right Hopper Window only.

PHYSICAL & PHYSIOLOGICAL DATA.

	PH	7510104	ICAL	PATA :				PHY	YSICA	14	DAT	A:-			NOTES
		BJECT			FECT	F	W				PERA		5 (0	F)	Julyaids procedure etc.
ME				CHAMPION	FOREMEN	JAMMATEL		I.		Ţ,		T_		7.	
1	INDEX		YOF HEAT			YOF HEAT						t			
wa)		DHAC HOP	+ MOUTINE		CHMICHO	+ MINITIME	WR	DR	WR	D R	W. B.	DR	W. R	0.6	
0	75	J 27.0		45	1.0	-2	111.5								
0		0.4		80			1								
0	70		0				59.8	678	58.9	63.0	58.7	63.0	58.3	619	
6		0.6	+1			-1									FYTGUAL BY GOLDS
10				90		'									SORTING EXTERNAL!- N.B. 54.0°F D.B. 580 LORRIDON:- N.B. 56.0°F D.B. 60.09
+1						-1	1.					,			
5		1.3	+2				60.5	63.8	60.3	64.6	60.3	644	240	62.1	1 ×
6		4.8	+5			0									
0	30						62.1	658	61.4	65.3	61.2	65.0	60.0	63.6	T-60 GAS WASH GOILER
2		3.2	+5												LIT
3		38.5	+12	15		+1									
3		30.0	112		2.6	+2									WASHING
5							65.0	69.3	66.2	70.1	66.0	64.3	61.4	64.2	
0				80											INCLUDING
!		51.0	+14			42									N. G. G. G. W.
6		45.3	+14			+3									SCRUBBING
7		400	117			+3									AT
4		5/2	+14					_							
0	20	11.0	41.1			+3	68.4	72.4	68.2	71.6	67.7	71.1	63.6	65.5	SINK
4		67.4	+14	65		+4									
5				••		+5	64.7	74.0	70.1	74.4	10.1	73.8	64.4	66.2	
4		45.5	114											-	
		41.0	+14			+5			41.0				100		T: 115 GAS TURNED
0	15	41.0	+14		7.8	+6	12.4	15.6	13.8	76.4	72.4	147	62.8	6/.5	DOWN
5-		4. 0		65	1.0					1					
6		26.1	+14						i						
2		32.3	+13			+8							1	17-	
50		30.8	+4	75	10.1	+8	73.8	75.2	13.0	14.1	12.2	13.8	65.8	67.5	
4		23.5	+4	13					1						
5		-00	· ′ į	ĺ		+8	~	1	1	f		1	1	1	
	20	23.5	+8			+5	10.9	13.8	10.1	13.3	10.1	14.8	05.6	6/5	넉
1		15.6	18			14									T-155 YAS TURNEL
			41	15			1		1						WRINGING OFF.
5		14.4	+6				16.1	12.4	64.0	12.0	64.4	11.8	656	67.1	
0		20.5	+8				10,		1-10		-/0			.,,	WASHING AT SINK
10	60	1+1/	+8			+4	10.1	12.2	68.4	12.0	64.0	11.6	6/5	61.1	=
-							400	11.6	620	11.0		24.7	61.0		BOTH SUBTELTS
50	65		1								61.0			68.1	
13					22	+3	.,.	1	1.75	11-	0,0	11.0	0,0	60.1	ADJUNITY COUNTY
5		67.5	+3					1	1	i		-			-
10		(v 1		40		4.70									
C. 1		18.2	15			+5	61.0	10.2	140	11.2	6/2	11.0	6641	44.2	WASHING AT SINK.
1		15.0	+6				013	10.0	0/2	11.7	012	110	004	60.7	WASHING AT STAK.
10	25						61.2	10.2	6/0	11.2	61-2	10.8	664	690	
زد		1.6	15			13									
7		4.1	+6	100		+3							1	1	
5		4.7	+/			+3		1						-	
0		20.8	112	75		+4		1	1			1	1		EXTERNAL: - N.B. 5 10°F BB 60.0°
0	40						610	11.0	66.5	70.	66-2	10.5	65:0	64.0	WRINGING . LORRIDOR: - V.B. 58.0°F D.B. 640°
0		1.0	+3	15					1			1			-
5		1.8	+5	15	4.2	+4		1							HANGING OUT CLOTHES.
5			, ,		72										→
0	15				3.1	+1	64.6	64.8	66.6	71.1	65.3	10.2	645	69.1	
4		2.1	+2												SUBJECT C
5				85.	2.1										Pr. Tille
8		1.5	+2		22	+1							1		RESTING.
5		2.8	+2			+1									
0				45								ļ .			
5	85	1.6	+2			+1									
0	# C .	1	1	- 1	14.1	1	64.7	70.1	1 66.7	71.8	65.6	14.2	1600	40.7	_

PULL-SCALE USER-TEST STUDIES. Day 7. Subject D washing; Subject C control. Ventilation arranged by Subject D.

FULL SCALE USER- TEST EXPERIMENTS.

PHYSICAL & PHYSIOLOGICAL DAT A.

	PHY	310-000	LAL JAJ	A				PHYS	ICA		ATE		_		NOTES	
I		1216		54	ATECT	C	W.	BA J		TEMP	FRA	TURE	· (·	1)	subjects prosiding its.	
2		FOREHEAD	SUMMATE)	RAMPA	H FOREHERP	SIMMATE		Fa	I,			-		FJ		
	HPEX		MINSATIONS	in de x												
١.			PHOSTURE.		CONDUCTION	MONTURE	WR	T A	WA	2 6	w.a.	9 A	w/A	DA		
	90			80				-	-							
			,		1.1	0								1		
		6.7	- 3	80												
		1.3	-2		0.8	+1			_				_		EYTER NAL: W.B. SP.OF. D.B.	
	105	1.3	- 3				60.7	*4.4	24.9	64.0	244	64.0	2 4.8	64.17	SORTING.	61.0%
			,			+1								H		
		0.6	-5													
		1.4	-1	45	1.	1								1 11		
		1.4	1		0.6	-1	647	64.0	60.3	646	600	64.4	58.4	61.1		
		1.0	-1		1					100				,		
		0.4	0		1	1			1							
		0.3	+1		1-2	+3								11		
	15						64.2	6×4	611	65.8	62-1	65:6	603	6.6	T=60 JAS WASH 6	OILEL
	NACTOR .	0.6	+3	45.		++	,								417	
			4.												WA: MING	
		0.4	+2				45.5	64.1	62/	760	66-6	70./	0.4	640	WASHING TOTE RIGHT CASE	NEVT
		0.5	+2		0.1	+v-		.,,				,	- 7	-	INCLUDING WINDON HAL	
				40.						Î					SPEVED	
	60	0.4	+3		0.6	+3	69.8	71.0	60.0	1.0	6r.6	11.6		6 Cer	*CEUBBING	
	•••	1.0	+3			.,		***	•,.,	15.0		11.6	44	~"	AT	
						++			1	1				1 11	360.00	
		6.3	+4	40						1					SINA.	
				10			684	73:3	764	13.0	40	64.4	bire	658	T-105 LEFT LAVE	MEVT
		7.3	+7						,			-,,				LLY
	4.	10	HC		2.5	+7									OPEVED.	
	10					+5"	68.5	12.0	10.1	14.8	CKX	67./	04.4	tur	T-120 LAS TULVE	D
		4.5	+8	10		10			1						2044	
		2.9	+7		1	, 1		1		1	1	1		į !	*	
			12			+5	(4)		2.	. Z					1-135 DOOK FY	
		14.1		*0			013	12.4	. 60.4	10	64.8	084	04.4	64.3	OPEVEL.	4
		6.2	48		2.4	+2										
	60	8.0	+3		1		64.4	6/1	640	1 61.1	64.1	66.6	62.6	66.1	T-150 WAS TURVE	D OFF.
		0.0				-2 ,										
		<i>i</i> .	+4	45												
		6.2				- 3	Lui	6.1.0		641				64.6		
		5.3	+1				04.4	24	Dar. 1	640	01.7	044	01.0	64.6	RINSING	
						-4			1							
	60					-6	6.6	65.8	61-1	66.7	62.1	66.2	63.0	64.8 -	To INO DOOR LE	LOSED.
		1.2	- 3	80	2.1	- 6									BOTH SUBJECTS	
							64.4	6/5	644	+ 614	64.0	619	64.6	648	TOOK LUNCH	
			. 1					110							IN EXPLAIMENTAL	
	15			85			64.6	6/3	64.0	6/4	64.1	6/5	63.3	64.8	ROOM.	
		1.5	-3				65.5	68-4	64.	£ 68.8	64.4	686	63.4	64-6=		
					2.7	+1										
	50	0.4	0			+1	400	(4.3	6	14.	1	4		65.5		
		1.3	+2		1	*-	60.0	• 7.5	04	•	04.0	08-4	0.6	62.5		
				45											T=245 RIGHT L	ISE WEN
	10	0.6	-3	40	3.1	-1										ALMOST
	10	0.6	+2	70	3.7	-2	64.6	61.1	642	L 64.2	64-4	67.1	4:4	45.2	FULLY OF	ENE D.
						- 2	-40	.,			4	-//	D. D	0.0	EYTEL VAL: W.B. 540°F D.B.	60.0°F
				85											CARRIDOR: N.B. 600F D.B.	t1.00F.
		0.3	41	-		4.								100	HANGING OUT CLOTHES.).
	10	0.6	71			+2	64.6	61.9	64	1600	44.4	69.0	64.0	653=	HANGING OUT CLOTHES.	
	2.5%	1.1	-2				-76	-11	-71		04.4	***	040	630 -		
		, .		95		+1									SUBJECT D	
		2.0	-3	10		-2									RESTING.	
			1	10			64.4	(1.1	L	1400		1 70	10.1	65.3-	1	
	80		1							D.1.4	D(4-71	64.7	P P.			

FULL-SCALE USER-TEST STUDIES. Day 8. Subject D washing: Subject C control. Ventilation by Right Hopper Window only.

FULL- SCALE USER-TEST EXPERIMENTS.

					DAY:- 8		ORK			U8 :			D	RIGHT HOPPER OPEN ONLY.
	PI	14 210 10	GICAL	DATA				HYSIC		DAI				Nores.
40		JECT			FARCULAN	. W	. 6. 2	D. B.	TEN	PER	ATU			Subjects procedure etc.
74	INDEX		SENSATIONS		FOREHEAD SOMMA SKIN SENSATIO		1		π,	1	I.	4	3	
		CONDOCTM	OF HEAT		CONDUCTIVITY OF HE	+/								
o)	90	OHMS HOD	+MOGTURE		OHMS XIO + MOGR	W. B.	D.B	W.B.	D. B.	W. B.	D. B.	W. B.	D. B.	
5	,,			75	73 11									
8					+2									
5			-4		+3									
0			-4	85										
5	85		0			500								
4	0.5		-3		0.8 +1	3 78	61-7	58.4	20	282	62.6	57.1	60.3	SORTING. EXTERNAL:- N.8 560°F D.8.56
15			-2											LORRIDOR:- W. 8. 560°F. D. 8. 54.
15			0	85	0	590	67-1	59.2	42.4	100	11.	62/		
50			0		+1	316	011	373	63.6	378	63.0	3/6	00./	
5	/-		+1											
5	65			86-		60.9	644	548	64.2	603	63-6	548	64.1	To 60 GAS WASH BOILER
7			0	- 0	12									1
10			+2			1	1.0	4.0	100	11.0	100	4		
80			72	85	+3	64.4	67.9	04-8	68.8	648	11.8	647	61.6	
85			+7		+6									
95	45		+2			1.7.	72.4	68.6	63.0	67.9	70-1	63.6	644	WAS HING
96	45				1.5 +5								1	INCLUDING
00			+1	85										
02			ľ		+4		72-4	60.7	71.0	100	71.0	414	44.0	SCRUBBING
07			+9				12.4	•17	,,,	84.0	1-8	636	•4.4	AT
09					+6									*
12			+9		0.7 +6									SINK. THE WAS TURNED DOWN.
20	30						73.2	68.8	74.8	68.4	71-1	644	653	PAS TAS TRUES DOWN
30			110	80		1								
35			110			73-3	75.2	73-3	75.2	72.8	743	66.6	44	
40			48	85	+6	1.00					,,,,			
5		12.0	+8		2.1 +6			_						
0	45	27.6	+11			13.3	76-4	73.5	76.0	73.3	74.2	453	67.9	TISO GAS TURNED OFF
5					+6									
0		15.0	+12	15	+8									
15		14.6	+10			73-3	74-2	742	74.7	73.0	73.2	15.2	61.5	1
67					+1	?	1		,	,,,				
70 76		36.4	110											RINSING
79		30.4	+11		+7	,								
80	40			0.		73.3	74-0	73.5	74.7	72.0	73.8	66.2	67.9 .	4
91				85	32 +3									BOTH SUBJECTS
96					02		71.5	705	72-2	600	10-8	65.1	65.9	TOOK LUNCH IN
00	50	2.5		75			1							EXPERIMENTAL ROOM.
18	30	1.5	+3			94.8	69.7	613	61./	00.7	• • • • •	64-0	62-4	1
20				75		1	4-					1	. 1	1
30		7.7	0		0		69.8	664	693	66.1	68.8	644	658	4
30		3.4	0		+1									
40	50					679	693	66-6	69.7	66-2	688	644	666	
45		4.5	0	86	+1		1							1
53		1.7	+3		**		1							WRINGING
69		3.5	+5		+3									
70	25	9.8	-2	85	0.1 +6	67.1	188	44.2	69.2	45.3	180	Lu.	160	
73		3.5	-1				***		010	~0		***	***	EXTERNAL; N.B. SJ.C.F. D.B. 54.0
75				70	+3	×								LOG FIDON: W.B. 5100 - D.B. 63:0
ro		8.5	+5	75	+3							1		4
15	20.00	6.0	+7		+1									HANGING OUT CLOTHES
00	45	1.5		0-			67.6	648	68.4	640	67.9	60	648	
15		3.4	+5	85	1.8 +1									SUBTECT D
20		2.1	+1	8.5								1		RESTING
6					+1		68-8		100					
10	75													

Protocols of Controlled Laboratory Experiments carried out to test the correlation between the physiological indices employed in the User-Test studies and changes in environmental thermal conditions.

Experiments on working and resting subjects in an airconditioned laboratory at the London School of Rygiene
and Tropical Medicine.

CONTROLLED LABORATORY EXPERIMENTS Subject No. 1. Resting. Relative humidity approximately 60%

	prox.	were never y
	a four solid	thinly men not in wit
NoTES.	Second seat	y in nu
	subject it not carryout a four-onlist person.	to reconsiste of view meadinely mea recreeped
-		· il

		subject it not		10 newweening	to the wine																	,	Visible mist													,
	AIR	151		#/+	8	X			40				210	3				225	165		07		135		3	91		165			35		59	3		
		IEK!		٠,					11.0		7.91		20		2.7.4		9.4%	0.5%	4.7.		1,		7.		110	10.01		7.1		₹.			7.1	4.4	+4	
		186		٠,					0.11		17.8		17.4		80.5		3.50	3.6	4:58		3.3.		9.12		7.00	111		10.7		40.3	13		4.4	2.041	0.001	
			KI	%	62		3		19	5	19	4			63			60	27		00	5	10	79	3	79	49	40	†9	49	3	+0	, 9	99	3	
1	WHIRLING HYUROMETER		1.8	*	68.6		0.01		14.5	0.91	11.0	3.00	Š		\$ 3.0	54.0	35.58	26.0	21.0		48.0	×8.0	41.0	201	4.0		41.0	14.0	4.0	15.5	14.0	45.0	0.91	4.0	11.0	
110.	HYUR		×. 8	7	510		6.3		6.29	0.19	67.0	0.01	5	3	13.0	14.0	74.0	0.31	0.91		14.5	0.11	6.0	11.0	14.0	20.0	21.0	4.0	5.50	30	Ş	4.0	30	46.0	26.0	
JELL	CRAMPTON THERMAL	INDEX DENSATIONS		H. M. F.		1-7-5-		1-7-5-	トアラ		001	001+	007	0 1+ 1+	0 1+ 7+		47 42 0	4			1+12+1		14 13 +1		14 17 47	+4+	t4 t5 +2	440 +2	e e	16 15 72	th t5 +2		17 46 42	+1 +0 +2	+1 +1+7	
3)6	LRAMPTON	INDEX							12		20		3		,39			,°			0/		01	1	3	5		3		10				157		
	TIME			MINS	0	t	. 0	ŧ	2	*	1;	3	25	5.6	63	19	77	. %	9	47	601	0)	3	130	138	150	891	08/	147	194	704	750	ممرح	232	240	

CONTROLLED LABORATORY EXPERIMENTS. Subject No. 1. Resting. Relative humidity approximately 80%

14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	HAME 77 14 10 18 16 18 18 18 18 18 18 18 18 18 18 18 18 18		11.2 50 11.2 5			6.08		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	400	*	ų		
12.2.2. 560 760 81 760 636 438 762 763 763 763 763 763 763 763 763 763 763	22-2-2-680 760 84 22-2-2-680 760 84 22-2-2-680 760 86 22-2-2-680 760 86 22-2-2-680 760 86 22-2-2-680 760 86 22-2-2-680 760 86 22-2-2-680 760 87 22-2-2-680 760 87 22-2-2-680 760 87 22-2-2-680 760 87 22-2-2-680 760 87 22-2-2-680 760 87 22-2-2-680 760 87 22-2-2-680 760 87 22-2-2-680 760 87 22-2-2-680 760 87 22-2-2-680 760 87 22-2-2-2-680 760 87 22-2-2-2-2-2-2-2-2-2-2 22-2-2-2-2-2-2-		11.2 46 11.4 46 11.4 46 11.4 46 11.4 46 11.6 50 11.9 50 11.9 50 11.9 50 11.9 50		, ,	66.9	44444	8 %	40.0				
667 110 84 106 103 56 118 50 118 50 109 118 50 100 81 844 101 2-2-2-600 110 86 110 110 110 110 110 110 110 110 3-2-2-600 110 86 110 110 110 110 110 110 110 110 3-2-2-600 110 86 110 110 110 110 110 110 110 110 110 11	22-2-2 680 710 84 22-2-2 680 710 86 22-2-2 680 7					•	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0 0	300				
2-2-2- 680 11-0 86 10-8 54 118 3-2-2- 680 11-0 86 118 118 118 119 119 50 4-2-2- 680 11-0 86 118 118 118 119 119 119 119 119 119 119	22.2.2 680 140 86 22.2.2 680 140 86 22.2.2 680 140 86 22.2.2 680 140 86 22.2.2 680 140 86 22.2.2 680 140 86 22.2.2 120 140 86 22.2.2 120 140 86 22.2.2 120 140 87 22.2.2 120 140 87 22.2.2 120 140 87 22.2.2 120 140 87 22.2.3 120 140 87 22.2.4 140 660 180 660 88 22.2.4 141 870 660 88 22.2.4 141 870 660 88 22.2.4 141 870 660 88 22.2.4 141 870 660 88 22.2.4 141 870 660 88 22.2.4 141 870 660 88 22.2.4 141 870 660 88 22.2.4 141 870 660 88 22.2.4 141 870 660 88 22.2.4 141 870 660 88 22.2.4 141 870 660 88 22.2.4 140 670 88 23.2 140 670 88 23.2 140 670 88 23.2 140 670 88 23.2 140 670 88 23.2 140 670 88 23.2 140 670 88 23.2 140 670 88 23.2 140 670 88 23.2 140 670 88 23.2 140 670 88 23.2 140 670 88 23.2 140 670 88 23		•				44 13 +2	810	13.0		16 468		
13-2-1 660 700 8 115 112 40 116 116 50 117 105 114 116 116 50 117 105 114 116 116 116 117 115 117 117 117 117 117 117 117 117	22-2-4 686 716 86 2-2-4 686 716 86 2-2-4 686 716 86 2-2-4 726 716 87 2-2-4 726 716 87 2-2-4 726 716 87 2-1-1-1 756 716 83 2-1-1-1 756 716 83 2-1-1-1 756 716 83 2-1-1-1 756 716 83 2-1-1-1 756 716 83 2-1-1-1 756 716 83 2-1-1-1 756 716 83 2-1-1-1 756 716 83 2-1-1-1 756 716 83 2-1-1-1 756 716 83 2-1-1-1 756 716 83 2-1-1-1 756 716 83 2-1-1-1 756 716 83 2-1-1-1 756 716 83 2-1-1-1 716 716 716 83 2-1-1-1 716 716 716 83 2-1-1-1 716 716 716 83 2-1-1-1 716 716 716 83 2-1-1-1 716 716 716 83 2-1-1-1 716 716 716 716 716 716 716 716 716 71		•				4 5 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4	2	9				
-3-2-2 68°C 78°C 86 711 714 46 -2-2-2 720 77°C 81 788 712 51 -2-2-2 73°O 77°C 81 788 712 51 -1-1-2 73°O 77°C 81 789 719 760 -1-2-2 73°O 77°C 81 789 719 760 -1-1-1 75°C 57°C 81 789 88°1 62 -1-1-1 75°C 57°C 81 788 88°1 62 -1-1-1 75°C 57°C 81 88°S 89°1 88°1 62 -1-1-1 75°C 57°C 81 88°S 88°1 88°1 62 -1-1-1 75°C 57°C 81 88°S 88°1 88°1 62 -1-1-1 75°C 57°C 81 88°S 88°1 88°1 88°1 88°1 88°1 88°1 8	2-2-2 68°C 78°C 88 2-2-2 72°C 78°C 88 1-2-2-2 72°C 78°C 88 1-1-2-1 75°C 78°C 88 1-1-1 75°C 78°C 78 10 0 18°C 78°C 78 11 11 8°C 78°C 78 11 11 8°C 78°C 88 12+1+1 8°C 78°C 88		• •								1001		
-2	100 140 87 1-2-2 120 170 87 1-2-2 120 170 87 1-2-2 120 170 87 1-1-1 120 170 83 1-1-1 150 170 83 1-1-1 150 170 83 1-1-1 150 170 83 1-1-1 150 170 83 1-1-1 150 170 83 1-1-1 150 170 83 1-1-1 150 170 83 1-1-1 150 170 83 1-1-1 150 170 83 1-1-1 150 170 83 1-1-1 150 170 83 1-1-1 170 170 170 83 1-1-1 170 170 170 83 1-1-1 170 170 170 83 1-1-1 170 170 170 83 1-1-1 170 170 170 170 83 1-1-1 170 170 170 170 83 1-1-1 170 170 170 170 83 1-1-1 170 170 170 170 83 1-1-1 170 170 170 170 83 1-1-1 170 170 170 170 83 1-1-1 170 170 170 170 83 1-1-1 170 170 170 170 83 1-1-1 170 170 170 170 170 83 1-1-1 170 170 170 170 83 1-1-1 170 170 170 170 83 1-1-1 170 170 170 170 170 83 1-1-1 170 170 170 170 170 83 1-1-1 170 170 170 170 170 83 1-1-1 170 170 170 170 170 170 83 1-1-1 170 170 170 170 170 170 170 170 170 17												
-2-2-1	222-2 12-0 17-0 17-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-												
	1-2-2 12:0 17:0 18 1-2-2 12:0 17:0 18 1-2-2 12:0 17:0 18 1-1-1 12:0 18												
	1-2-2 720 775 81 1-2-2 720 775 83 1-2-2 750 775 83 1-1-1 750 770 83 1-1-1 750 770 83 1-1-1 750 770 83 1-1-1 750 770 83 1-1-1 750 770 80 10 0 0 180 720 80 11 0 0 180 720 82 11 0 0 180 720 82 11 11 850 750 83 11 11 850 750 83 12 11 11 850 750 83 12 11 11 850 750 83 12 11 11 850 750 83			4									
-1-1-2 12:0 13:8 11 15:8 11:0 -1-1-2 12:0 13:0 87 769 16/7 -1-1-1 13:0 13:0 83 19:1 79:4 -1-1-1 13:0 13:0 83 19:1 79:4 -1-1-1 13:0 13:0 83 19:1 79:4 -1-1-1 13:0 13:0 80 80:1 80:7 -1-1-1 13:0 13:0 80 80:1 80:7 -1-1-1 13:0 13:0 80:1 80:7 -1-1-1 13:0 13:0 80:1 80:7 -1-1-1 13:0 13:0 80:1 80:7 -1-1-1 13:0 13:0 80:1 80:7 -1-1-1 13:0 13:0 80:1 80:7 -1-1-1 13:0 13:0 80:1 80:7 -1-1-1 13:0 13:0 80:1 80:7 -1-1-1 13:0 13:0 80:1 80:7 -1-1-1 13:0 13:0 13:0 13:0 13:0 -1-1-1 13:0 13:0 13:0 13:0 13:0 -1-1-1 13:0 13:0 13:0 13:0 13:0 -1-1-1 13:0 13:0 13:0 13:0 13:0 -1-1-1 13:0 13:0 13:0 13:0 13:0 -1-1-1 13:0 13:0 13:0 13:0 13:0 -1-1-1 13:0 13:0 13:0 13:0 13:0 -1-1-1 13:0 13:0 13:0 13:0 13:0 -1-1-1 13:0 13:0 13:0 13:0 13:0 -1-1-1 13:0 13:0 13:0 13:0 -1-1-1 13:0 13:0 13:0 13:0 -1-1-1 13:0 13:0 13:0 -1-1-1 13:0 13:0 13:0 -1-1-1 13:0 13:0 13:0 -1-1-1 13:0 13:0 -1-1-1 13:0 13:0 -1-1-1 13:0 13:0 -1-1-1 13:0 13:0 -1-1-1 13:0 13:0 -1-1-1 13:0	1-1-2 12:0 13:0 81 1-1-2 12:0 13:0 83 1-1-1 12:0 13:0 83 1-1-1 12:0 13:0 83 1-1-1 12:0 13:0 83 1-1-1 12:0 13:0 82 1-1-1 13:0 13:0 82 1-1-1 13:0 13:0 82 1-1-1 13:0 13:0 82 1-1-1 13:0 13:0 82 1-1-1 13:0 13:0 82 1-1-1 13:0 13:0 82 1-1-1 13:0 13:0 83 1-1-1 13:0 13												
1-1-2 120 160 87 769 161 1-2-2 1750 565 78 778 791 1-1-1 755 550 81 788 801 1-1-1 755 550 71 800 71 0 0 0 1750 550 71 800 71 0 0 0 1750 550 82 838 11 0 0 785 550 82 838 11 0 0 785 550 81 854 865 11 11 11 865 555 81 854 865 11 11 11 865 555 81 854 865 12 11 11 810 855 82 831 13 11 11 810 855 81 814 13 11 810 850 81 814 13 11 810 850 81 814 13 11 810 850 81 814 13 11 810 850 81 814 13 11 810 810 81 814 13 11 810 810 81 814 13 11 810 810 81 814	1-1-2 100 100 83 1-2-2 1750 100 83 1-1-1 1750 100 83 1-1-1 1750 100 83 1-1-1 1750 100 83 1-1-1 1750 100 83 1-1-1 1750 100 83 100 0 180 200 82 110 0 180 200 82 110 0 180 200 82 1111 800 200 83 1111 810 200 83 1211 810 200 83												
120	1-2-4 1-1-1 150 150 83 1-1-1 150 100 83 1-1-1 150 100 83 1-1-1 150 100 81 0 0 0 1 100 100 80 10 0 120 100 80 11 0 0 120 100 80 11 0 0 120 100 80 11 11 1 100 120 80 11 11 1 100 120 80 11 11 1 100 120 80 11 11 1 100 120 80 11 11 1 100 120 80 11 11 1 100 120 80 11 11 1 100 120 80 11 11 1 100 120 80 11 11 1 100 120 80 11 11 1 100 120 80 11 11 1 100 120 80 11 11 1 100 120 80 11 11 1 100 120 80 11 11 1 100 120 80 11 11 11 11 11 11 11 11 11 11 11 11 11												
170 505 78 778 1977 1-2-4 750 740 83 791 794 1-1-1 750 700 81 798 801 0 0 -1 760 710 80 804 807 1-1-1 750 700 710 80 804 807 1-1-1 750 700 710 80 804 807 1-1-1 750 700 810 810 810 1-1-1 750 700 81 810 810 1-1-1 750 700 81 810 1-1-1 750 700 81 810 1-1-1 750 700 81 810 1-1-1 810 700 81 810 1-1-1 810 700 81 810 1-1-1 810 810 81 810 1-1-1 810 810 81 810 1-1-1 810 810 81 810 1-1-1 810 810 81 810 1-1-1 810 810 81 810 1-1-1 810 810 81 810 1-1-1 810 810 81 810 1-1-1 810 810 81 810 1-1-1 810 810 81 810 1-1-1 810 810 1-1-1 810 810 81 810 1-1-1 810 1-1-1 810 1-1 810 1-	1-2-2 1-1-1 150 700 83 1-1-1 750 700 81 1-1-1 750 700 81 0 0 -1 700 700 80 1 0 0 785 700 82 1 0 0 785 700 82 1 0 0 160 700 82 1 1 1 1 905 700 82 1 1 1 1 905 700 83 1 1 1 1 905 700 83 1 1 1 1 905 700 83 1 1 1 1 905 700 83												
1-2-2- 1-1-1 15°C 17°D 83 19.1 79.4 1-1-1 15°C 17°D 81 19.8 80.7 1-1-1 15°C 10°C 81 80 80.1 80.7 0 0 0 1 70°C 10°C 80 80.6 83.8 11 0 0 18°C 10°C 82 83.8 84.2 11 0 0 18°C 10°C 81 85.8 84.2 11 11 11 8°C 10°C 81 85.9 86.1 11 11 8°C 10°C 81 85.9 86.1 12 11 11 8°C 10°C 81 85.9 86.1 13 12 11 8°C 10°C 81 8°C 82.6 13 12 11 8°C 10°C 81 8°C 82.6 13 12 11 8°C 10°C 82 83 85.9 86.1 14 10 0 18°C 10°C 81 8°C 82.6 15 12 12 12 12 12 12 12 12 12 12 12 12 12	1-2-2 1-1-1 150 150 83 1-1-1 750 200 81 1-1-1 750 200 81 0 0 0 180 200 80 10 0 180 200 82 11 0 0 180 200 82 11 0 0 180 200 82 11 11 800 200 83 12 11 11 810 200 83 12 11 11 810 200 83 12 11 11 810 200 83	19.8							-				
1-1-1 15-6 17-5 83 19-1 79-4 1-1-1 75-5 16-6 81 19-8 86-1 1-1-1 75-5 16-6 81 19-8 86-1 0 0 0 1 76-5 16-6 81 80-6 83-8 11 0 0 78-5 16-6 82-8 83-8 11 0 0 78-5 16-6 82-8 83-8 11 0 0 78-5 16-6 82-8 83-8 11 11-1 81-5 16-6 82-8 83-8 11-11-1 81-5 16-6 82-8 13-11-1 81-5 16-6 82-8 13-11-1 81-5 16-6 82-8 13-11-1 81-5 16-6 82-8 13-11-1 81-5 16-6 82-8 13-11-1 81-5 16-6 82-8 13-11-1 81-5 16-6 82-8 13-11-1 81-5 16-6 13	1-1-1 150 170 83 1-1-1 755 100 81 1-1-1 755 100 81 1-1-1 755 100 82 100 120 250 82 110 0 120 250 82 110 0 120 250 82 1111 810 250 83 11111 810 250 83 11111 810 250 83	19.7							-				
1-1-1 75° 70° 81 198 80° 1-1-1-1 75° 70° 81 198 80° 19° 1-1-1-1 75° 70° 80° 19° 19° 19° 19° 19° 19° 19° 19° 19° 19	1-1-1 755 806 81 1-1-1 755 806 81 0 0 0 1 760 500 80 1 0 0 180 500 82 1 0 0 180 500 82 1 0 0 180 500 82 1 1 1 1 800 500 83 1 1 1 1 800 500 83 1 1 1 1 800 500 83 1 1 1 1 800 500 83	36.6											
1-1-1 750 250 19 800 191 0 0 -1 760 250 80 826 838 10 0 0 785 250 82 834 837 11 0 0 785 250 82 838 842 11 0 0 785 250 81 844 866 11 11 11 850 250 81 859 861 12 11 11 810 250 81 859 861 12 11 810 250 81 858 853 13 42 11 830 880 81 848 836 13 42 11 840 960 78 886 877	1-1-1 750 ccc 19 0 0-1 760 ccc 19 0 0 0 180 250 80 11 0 0 785 250 82 11 0 0 140 755 82 11 11 11 865 355 81 11 11 865 355 81 11 11 865 355 81 12 11 865 355 81												
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 100 100 100 10 10 10 10 10 10 10							1					
0 0 -1 760 710 80 801 801 01 0 0 0 0 180 20 0 826 838 71 0 0 180 720 82 838 842 71 0 0 180 720 82 838 842 71 1111 810 720 82 81 859 861 71 1111 810 720 82 81 859 861 72111 810 720 82 81 858 826 73 74 74 74 820 820 81 850 820 820 830 840 840 850 841 850 820 841 850 841 850 820 841 850 841 8	0 0 0 -1 16.0 71.0 80 0 0 0 18.0 22.0 80 11 0 0 18.0 72.0 82 11 0 0 18.0 72.0 82 11 11 11 866 866 77 11 11 810 866 83 12 11 11 810 866 83	0.02											
000 180 200 80 846 838 100 185 200 82 834 837 1100 180 200 82 858 842 11111 800 200 83 859 861 12111 810 200 83 859 861 12111 810 200 83 859 861 12111 810 800 81 818 836 13 1211 840 900 78 886 877	0000 180 800 80 1100 180 800 82 1100 180 805 82 11111 800 805 83 12111 810 855 83 12111 815 855 83	80.1							-				
100 185 500 82 854 857 100 185 500 82 858 842 1100 180 500 81 858 842 11111 800 500 81 851 864 12111 810 500 81 854 861 12111 810 850 81 818 834 13421 840 960 78 586 877	100 185 750 82 1100 185 750 82 1100 180 755 82 11111 850 855 81 12111 810 855 83 12111 815 855 83												
2.0 82 834 837 2.0 82 838 842 2.0 81 85/ 864 2.0 81 85/ 864 2.0 81 85/ 864 8.0 81 818 836 8.0 81 818 836	2 2 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9.72											
25. 82 858 842 25. 83 859 861 25. 83 859 861	2 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	84.7											
25.5 82 848 842 55.5 81 85.7 862 55.5 83 85.7 864 55.6 83 85.7 864 55.6 81 818 83.6 55.9 81 818 83.6	2 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3									-		
6.5 77 844 866 6.5 81 85/ 86/ 6.5 82 85/ 86/ 8.6 81 818 836 6.0 81 818 836 6.0 81 818 836	14 33 34 34 35 35 35 35 35 35 35 35 35 35 35 35 35	35.50							-				
6.0 77 844 866 69.0 60.0 81 82.4 86.4 86.4 86.4 86.4 86.4 86.4 86.4 86	3 889										y		
80 81 851 864 80 81 864 864 80 81 864 864 80 81 864 864	666	4.48											
8-0 81 857 864 8-0 82 864 864 8-0 81 848 836 8-0 81 848 836	688										-		
8-0 81 81-8 83-6 8-0 81 81-8 83-6 8-0 78 87-8 87-7	5 6												
1.60 18 18 0.9 1.60 1.60 1.60 0.9					14.11-19								
+3 +2 +1 84.0 88.0 81 86.8 53.6 +3 +2+1 84.0 90.0 78 58.6 87.7													
13 12 11 84.0 90.0 78 58 6 877									-		• • • •		
+3+2+1 84.0 90.0 78 58.6 84.7	17 47 1 17.0 88.0									-			
	+3 +2 +1 84.0 90.0	200						*******				-	
										-			

CONTROLLED LABORATORY EXPERIMENTS. Subject No. 1. Step-Climbing Relative humidity approximately 60%

TIM	Cons	ECT NO	1.1		WHIRL	INY						TIME	3 48	TELT A	10:-1	HYGE	CHETER.					induct receiving in no
	CRAMPTON	_	-		пуци	1		w 8	1 P	AIR					THEKHAL				8E 670.	CHO.	AIR VEL.	mande wines . Time of
	INDEX	SKIN	-	NSATIONS				GLOBE THERMO.	LVEA	AIR VEL.	NOTES.		INDEX	SKIN	JENIATIONS				776	14.VE	VEL.	communicing exercise
		CONDUCTIVE	- 1	- 1	W.B	D. 6.		1		1 1 1				CONDUCTOR		W. b.		K.H.		0,5		round by E. A 4
(MIN	-	OHMS NO	+	M. F.	°F	°F	%	°F	•F	4/-		(MINS)		OH45 NO	-	°F	o.F	70.	-	-	Krain	of cach title.
-20		2.22	-2	-2 -2	61.5	6K-C	69	61-0	674			138		17-7	+3 +2 +1							./
-12	45	1.29		- 1	60-0	10.0	68	640	64.0			141		14.7		3	١	1 -				VOTES.
-5		1.47		1	640	10-0	72	645		10		144		16.2	+3 +2 +1	\$1.0	41.0	03	110	42.0		1
-4	.40			i	64-0	10-0	15	61-7	ty.	61		14/		10.4	+3 +2 +1			14	l			
+3		0.73		- 1							E	154				82.0	12.0	0.0	71.4	12.7	10	Visite and a vage of
. 12		3.82	-4	-2 -4								154		×4.0	45+241			1		1		race and a say.
16	K5		1	- 1	65-0	11-0	10	70.4	104	140		157		24.4	+4 +5 +1					١	,	
18		2.16		- 1								190	50	20.2	+4 +3 +1		1	1		150		
22		5.81								1		164		20.0		83.0	13.0	66	12-	13.6		
26		5.14	0	00	61.0	ix.C.	6+	10.7	714		E	148										
32	15		+1	00	11-5	145	65	11-4	40.6	42		110		66.2				1		1		
156		082						1				172		400	+5+++1							
40			+1	00	12.0	XI-V	65	11:2	41.4			1/6	55	112	+5 +4 +1	83.0	100	66	47-6	11.1	+1	i
43		5.62							41.4	XX		180		25.1	+5+4+1							
+5	-			2 +1	12.5	40-C	68	20.2	19.2		E	184				83.0	14.0	63	10.0	14.1	0	
48				0 +/					60.0	ise		196		+r./	+5+5+1							
54		4.40										140		500	+5+5+1							
56		1		- 1	4.0	4.0	62	12.0	400	40		142	40	+1.1		84.0	14.0	66	1.0	14.4	+-	
54		1.15		0 +/								145		42.2	151512					1		
62	1			0 +1								147										
		710		2 +/	74.0	k	60	Ye. 1	r4.4	10	=-	200		,		84.0	14.0	66	1.0	44.4	1/	
64		4.10		2 11		85.0		1	1		_	202		56.1	+6 +5+2		1	1				
10	1	711		- 1		×5.5			49.0	.4		204		514	+6 t5 +2			1				
12			1		10.0	42.0	60	77		1.7		20%	ا تان		+6 +5 +2		144.0	66	40.00	14.8	00	
15	- 1	10.0		71 7			1					21-2	-	1.5	16 15 12		1,40				1	
11		~~4							-6.0	50		215		- 1	+6 \$5 +2	1						
80		2.14		+1 +1	11.0	1.0	64	r:12	. 6		E	li .		L4	10 10 12		16.0	67	4.4.4	46.4	-^	
83		0.63	144	+1+1					١.			218		1.7	+6 +5 +2			101	/		•	
18	'			i	16.0	×6.0	04	1.6.0	"ex	10					+6 +0 +2			1				
70				+1+1								244	15	436		F / C	48.0	14	11:4	14.1		
44		1.40										204	10	46.7		17.0	14.0	107	1112	114		
10				+1+1	11-0	410	64	14.0	"C:	4		228		27.7								
17		2.57	1-								_	250		20.7	16 16 FZ		101.		14. 3		-	
10-	+		+2	+1+1	15.0	×1.0	t-	41.4	-1-4	60	E	202					101-0	30	194.2	100.0	~	
100	5	5.60										254			+7+7+2							
13	1	4.76										20/			17 +7+2			60				
112		0.42	70	12 +1	11.0	10-0	64	44.4	10.1	15		240	20		+7 +7+2	84.0	102.0		108.7	1048	30	
116		4.44																			1	
120			1		r0-0	100	65	71.0	10.0	50											1	
12.	_	11.7	++	+++1	i																	
125				+1+1																		
128	1	1.28			80-0	11-0	62	44.4	11.2	13												
43.			10	+2 +1																		
13			43	+2+1	81.0	11-0	65-	90.4	12.0	58				1	1							

CONTROLLED LABORATORY EXPERIMENTS. Subject No. 1. Step-Climbing. Relative hunidity approximately 80%

-1	1	1000	JORNEL MO.	H	JKOMETEK	TEK	1	+	-	Ţ		1	?	3087511		-	HACKBARTER			1		,
-	TIME U	KA4450A	THE CRANTON FOREHERD THERMAL				30	048	ewb.			IHE	KAMPION .	-	C THE PH	7 1			39°	KANO	subject various for	9
	MINS	INDEX	CKIN SEVERTIONS		7.6. 4.	200	-	3HL			MIES.	(MINS)	INDEX		\$ 3	7. W. B.	9.0	A. H.	IHI U	THE LINE	of commend of	-
-			DHMS NO H. M. F.					0 Y	# 40	4/-	1,			CHTS XID TT.	r'		+ 6	1	1	1	interested by the American	1
	ci.	8	5.03	50	0			68.7 08		58	,	000					2		,	,	S	
-	0		+1.0	.99	0		_		69.0 32	320		10		4	-	1						
£(1)+	,,	80	.1.1.	-1-1 67.	0		98		69.8 22	220		175			+0+0+	-						
_	60 +			63	b	71.5 8		70.4	51 8.01	0 5		176	57				0.46 0.68	40	0	2.4 4.5		
_	0		5.15 -1-1-1				_	-		E	E(16) + 1	0 %		69.3	+6+6+2							
-		10	7	00	5			2.0 7/	1.6 27	0		781				.06	0.06 0.06	6	1.06 0.46	03/ 1.0		
(5-)				À	0	7.0.77	79 73	73.0 7	15.8 16	0 9	-	187		118	+6+6+2	ü	-					
_	,		0 1+ 1/2	0							-	2.	20			90.	90.5 95.5	35	1.16 7.56	17.1165		
-		,		, ,	(22	9		0	1	961		70/	+7+7+2	_						
E(34)+		9				0 0		7	20.0	0	'11	00				0.16	0.96 0	83	90.0	90.0 97.7 100		
	3 (ì	ţ	5			t)		201		9.66	+7+7+2	-						
_	1					-						200	00		1	0.16	0.06 0	5	5 + 96	34.4 98.0.175		
	3 .	,		,	-		6	- 7		(•											
1,	0 1	3	F	3 3	5 (0 0		1 0	+ 00													
u	3			9/	0			0)						- space						
_	5		2.20 +7 +1	0						,					-							
	7	50		14.	٠,	\$6.08		9.08	0.18	200					,		-	,				
,	65		++	0			-									-		-	-			
4	7		3.10	77	0	87.0	000	81.7	0	25.5	7											
-	27		7.37 5.3 11	0					Ţ													
-				-			0		61. 1	0						-						
+ (18)=		3		- '	5 (0 0	-	+ 0.70		7,4												
_	10 (a)			0	0	•	0			•												
-	j .	,	11.0 15 12 1	-					0.00	,												
		3	t3 t2 t2	-	0	20.08	*	4	4	0							_					
£(103)+			89	0	(6		00	,						-						
_	10			0 1				+ 00	1	•	1.11											
-	501		26.7 +3 +2 +1 74.5	7								-										
_	711	0+	15.0 74 +2 +1 79.51	5.				00 00 00 00	00		and the same											
-	11			ż	O	18 0.18		8 4.78	1 0.28	160	- that	-		-								
ш	5		1+ 2+ 2+ 7. 27	,	-			-		1,00	Selent.	-										
-	124			e e	90	0	8 08	62.083	89.7	210												
_	8 7	35										-										
= (351)=			25.2 +5++1	-																		
-				Ġ.	200	0.		87.5 88	\$1 9.88	0												
-	138		Q1. 7 +5 +5+	7				-				-										
-	140								-			-								-		
	00 +		26.8			-	-					-				-1:00			10.7 (40.7			
£(151)=		35	14 44 54	-	.06 3.	0	000	9.88	0.16	250										nac is f		
			37.275 +5+1	1								-					_			. Rustian		
	157		38.1	•		and (1971) - 18 (1971)	-									-	-		_	ur des des		
	09/	000		36	20	0	78 90	3.76 4.06		561										Dayo		
	16.2		45.454	-	_			-				_								-		
				ě	_	-		-	-		-	-		_		-			-			

CONTROLLED LABORATORY EXPERIMENTS Subject No. 2. Step-Climbing. Relative Humidity approximately 80%

Ī		20	BJECT	Va: 2	WHIEL	PHETER						1	SUBJ	ECT NO	:- 2	HYGE	OWETER					subject is incoming in
- 1	Title	CRAMPION			HYUE	WETER		0	20	AIR	t	TIME	CRA MPTON						40	SILVERED THENMO.	AIR	munite periods.
- 1	IIME	INVEX		SENSATIONS				THERMO	SILVERED THERMO	VEL	NOTES	11	INGEX		SENLAHONS				THERMO	1 6	VEL.	Line of commany -1-4
- 1		MEEA	COMMETINITY	JE SAMO		D. B.	R.H.	AT.	SIL			1		LONDETINE		W. B.	D. B.	R.H.	35	3 5		indicated ay E in relia
- 1			OHMS XIOD	HME	0F	OF.	0/0.	of	°F	t/-		MINS	l l	_ /	H. M. F.	05	OF	%	oF.	°F	Hai	left of each time.
1	-20		2-11	-1 0 -1	65.0	-	81	61.8	61.3	135	E			-	+4+5+1							<i>D</i> 5
- 1	-	65	2.11	+100	66.0	2 1		618	610	15	_	168			1	86.0	12.0	18	10.9	12.2	110	NOTES.
- 1	-10	75	1.05	# 00		10-0		100		160	i	169		12.7	+++5+1							
E	ZERO			0 -1-1	01.0	10.0	36	100	011	160		170			,							
=	17		1.01		68.0	11.0	26	10.1	10.1	1.0		176	15		+5+5+2	85.0	10.0	81	10.7	41.0	150	
-	8		1.40	0 + +	00.0	11.0	. 0	1.1	107		E			45.0	15+5+1							
	1	15	1.40	0 1-1	10.n	71.0	86	71.0	-/40		_	184				81.5	735	11	11.7	42.6	150	
٠	/p	15		0 17		78:0				140		185		64.1	+5+5+2							
	44		20.46	0-1-1	100	18.0	10	11.9	144	100		142	15		+4 +0 +2		15:0	83	13.7	45.8	150	
	×5	100		+100	12.0	11.0	-11	7:1	11/	110	E	1 .00			t5+5+2							
) +	32	60		the state of the s		115			116		_	200				91.0	16.0	83	45:0	76.8	10	
	40		14.1	# 0 0	13.0	18-0	17	11.2	11.8	1/0		201		43.3	+6 +5 +2	1000						
	41		1.64	# 00	12	47.	01	14.7	72.			108	10		+6 +6 +2		11.0	83	16-1	41.1	155	
_	48	+5	2-1		13.0	71.5	81	10.3	77.5	110	E		1	101					,	.,,		
E	55		3.51	000		-70 .	17	F7 14	.,00		-	216			46 46 42	45.0	18.0	83	46.8	480	135	
	56				12.8	79.0	//	11.7	14.0	140	l l	217			to to 12							
	31		4.00	1100			14	-7.3 -7	441	414		224	-10		+6 +6 +2	42.0	47.0	*3	11.3	47.8	205	
_	£7	+5		+1+10	15.0	80.0	17	79.7	800	120	1	224	-,0		10.012	100						
E	11	i		11 110		3	44.4		60.0		i											
	12				12.2	800	80	803	105	100	l											
	13			+1 +1 C		a																
_	80	+0	27.	# #1 0	16.0	80.0	ి	80.4	*0.4	10												
Ε	18/		3.14	11110			-1		-4.	, .												
	88		1		11.0	80.0	5/	008	10.0	140												
	81		2.03	11110		J-1		40			il il											
_	70	30		12 +1 0	77.0	K2:0	77	21.8	144	105												
Ē	103		12:4	12+20				611														
	10+				17.5	845	81	83.6	×4.2	170												
	105			+2 +2 0			41	610														
	./2	30		+2+2+1	14.5	12.0	86	83.8	42.7	100		1										
E	119			+2 +2+/			(i.e.			1110		1			İ							
	120				20.0	84.5	82	84.1	64.7	160												
	121			+2+2+1					677	1.60		1										
	128	30		12+3+1	2.0	44.0	18	42.0	11.1	100												
Ε	135		19.7	+3+4+1		ctr			674			1										
	136				82.0	81.0	81	\$1.0	81.2	160	4 Visite	9	- 1									
	137			+3+4+1				0.4	Ca.													
	144	25		£3 14 11	83.0	88.5	80	87.4	88.6	145	iment	1										
Ε	151		35.5	14 15 11		2-		Go.			·~											
	152			1	85.0	92.0	75	84.7	71.5	140	Jalyada	1										
	153		41.6	14+5+1							frehad	-										
	156		İ								1	ı										
	160	15		+4+5+1	85.0	40.0	81	90.8	40.6	185	1	N .	1									

CONTROLLED LABORATORY EXPERIMENTS Subject No. 3. Resting. Relative humidity approximately 80%

	SUBJE	CT NO:	?			MAIRE	WETER.				
TIME		FOREHEAD SKIN CONDUCTIVITY	THE SEN			N. 8.	D. B.	R.H.	GLOSE THERYO.	SILVEFED THERMO.	AIQ VEL
(MINS)		OHM5 x106	H.	M.	F	0F	OF	%	عره ا	OF	At/min
-15	75		-3			61.0	11.0	82	10.2	64.8	185
-5	75	1.60	-2	-1	0	6:0	10.0	86	10.2	70.0	140
ZERO											
+8	50					68.0	72.0	82	12.7	71.7	260
18		11.70	-2	-2	0						
24	55	5.85	0	+1	0	12.0	18.0	15	14.0	11.8	~~~
40	55	2.70				15.0	80.0	74	14.0	14.8	200
47		540	41	+2	0	15.0	80.0	19	14.7	80:2	~ 65
56	55	4.50	+2	12	0	765	x0.5	84	X0-2	KO.2	× 10
72	60	4.50	12	12	+1	11.0	81.0	84	31.1	80.6	~40
88	50		+2	12	Đ	17.0	81.0	84	X1.5	81.2	255
45		4.50									
104	35		+2	+2	+/	80.0	85.0	×1	24.2	85.8	240
104		2.70									
112	l	4.05	12	12	+/						
1-0	35	5.85	13	12	+1	82.5	84.5	75	Po.5	84.6	240
136	30	12.10	+3	tż	+1	82.0	88.0	75	88.3	885	25
145		13.6	8	13	+/						
152	35	11.8	15.	15	12	84.5	41.0	17	40.0	40.2	210
160		12.5	15	15	12						
168	15	21.2	15	15	12	86.0	42.0	18	41.2	41.4	270
116		51.0	+6	+5	+2						
184	15	79.5	+6	+ 5	12	815	42.5	82	41.8	42.8	145
192		87.5	16	15	+2						
200	5	72.0	46	46	12	410	46.0	.83	94.6	46.5	310
208		65.0				92.0	41.5	81			
216	10	83.2	+6	16	12	42.0	47.5	8/	96.2	47.8	045
220		71-1	+6	16	+2	42.0	44.5	71			
226						43.0	100.0	77	47.2	48.4	400
230	1	70.3				43.0	100.0	17	42.6	99.0	
234	I	86.6	+7	17	42				1	l .	1

NOTES .

Subject using they out settiminated placed

Visible smeet in toward of yest

CONTROLLED LABORATORY EXPERIMENTS Subject No. 5. Step-Climbing. Subject No. 3. Resting. Relative hymidity approximately 60%.

		T 130:			r vo		WY.	SOVETER.				
IYE		VOLEHEAD				THERMAL					9 4	AIR
	146×		LY HATTY	IVER	-4/4	I E VS 4FROAS				745.40	LANGED THER YE	JEL.
W/6		MO LIMIT	H. 4. F.		Aurilia 6	H. Y. F.	1.5. 0F	0.6	4.11	oF.	7 E	
-20			-4-10		5 HAT No	-3 -4 -1	53.0		52	61.6	611	4-
-15			-3 -1 0	10		-1 -10			54	64.1		400
-5	15	2.40			1.16		560		53	64.1	64.7	
-	,		-3-1-1	10		-1 -1 0	505	660	55	65.0		
1		3.57	-3 -1 -1	10			ro-				,	
8		5.60	-1-10	10		-1 -1 0	\$ 8.0	6/0	58	66.0	66.6	410
16	×5"		-3-10		5.00	-4-10	585	075	58	66.7	44	
23		6.40	-3 -10					0/3	-	007	3/2	44.5
4				10		-1-10	540	68.0	54	6/3	61.6	600
25		5.12	-1-10									
12	15		-3-10		4.40	100	60.0	68.0	65	618	68.0	600
34		1.00	-3 -10									
40				10		-100	65.0	15.5	63	67.0	118	v+0
41	10	-20	0-10			+1 +1 0	41.	14		p.	, , ,	
48 55	16	5.00	0 -10		1.15	71 71 0	6/0	160	61	12.4	12.6	4.0
50		1		60		+1 +1 0	685	78.0	64	15.5	11.8	540
51		1.20	+100								.,,	1
64	10		+1 0 +1	İ	2.40	+1 +1 +1	67.0	18.5	64	110	18.6	+10
11		4.02	+1 0 +1									
14				65		+1 +1 +1	10.0	140	64	111	18.0	4.0
15		1.15	+1 0 +1									
80	10	Cun	11 0 11		5.15	+1+1+1	10.0	185	60	18.0	18.7	400
88		020	11 11 0	60		+1+1+1	1.0	81.5	1.4	14.		
*4		5.60	+1 +1 +/			111111	12.0	113	67	11.4	81.7	450
96	65		+4 0 +1		5.40	t2 +1 +1	14.0	820	64	80.5	81.4	+10
100		t.00	+4 0 11				1		-			410
104				60		+2+1+1	15.0	850	62	81.6	83.0	+10
105		2.60	12+1+1									
114			+2 +1 +1		6.00	12+1+1	155	85.5	62	82.6	85.1	cro
114		8.20	+++1+1									
120				10		+2+1+1	140	840	63	83.1	84.0	660
128		1.40	+3 +2+1		4	+1 +1 +1	100	1.2-	١.,		06	
135		x.40	13 12 1/		6.40	71 71 71	13.0	\$50	63	84.0	048	565
136				50		+2+1+1	15.0	85.5	62	1 Ku . L	85.1	50
13/		6.40	+3 +2+1				100	1000	-	1	1	
144	1 55		+3 +3 +1		2.60	+1+1+1	75:5	86.0	62	85.3	858	510
151		4.40	13 13 11					0		4.00		
152	. 1		43.43	40	-	12+1+1	160	115	64	85.8	81.0	560
53	50	2.2/	t3 t3 t1 t4 t4 t1		3.7.	+1 +1 +/	11.0	*10	64	ri-3	91.1	540
167	• 0	5.60	10 14 11		574		11.0	.10	-4	. 1.3	0 1.4	.40
168				40		ti ti +1	110	88.0	61	86.1	11.6	480
169		4.20	+3 14 11									
116	50		+5 ++ +1		5.23	+1 +1 +1	11.5	88.0	62	21.1	81.7	680
183		12.1	+4 +4 +1				**	Or .	4.	Qui -		
184 185		9.00	4 Carre	J5"		12 +1 +1	14.0	40.0	62	11.1	40.2	400
192		7.53	15+4+1		3.7.4	+2+1+1	800	91.0	65	42.0	42.1	455
194		10:4	+4 +4 +1		- 14	- 1.1		110	50			730
200				35		N + + 1	81.0	92.0	63	94.1	936	430
201		21.1	+5+4+1									
208	35		+5 +4 +1		8.10	+3 +2 +1	87-0	93.5	62	955	44.3	400
215		19.8	+5+41	2,00			0.	0	41	94.2	9	ci-
216	1	24.0		35		+4 +3 +1	82.5	14.0	61	96.3	14./	3 10
217 224	25	~ 0.0	+5+5+1		8-80	+4 +3 +1	83.0	94.0	63	96.5	95.1	440
231		25.9	+5+5+1			7.017		.,,			,,,,	1
232				15		+4 +3 +2	840	96.0	61	988	47.3	350
233		40.7	16 t5 t2			1	1					1
			+6+5+2	11	13.1	+4+3+2	E					1 4

CONTROLLED LABORATORY EXPERIMENTS Subject No. 6. Step-Climbing. Subject No. 1. Resting. Relative humidity approximately 60%

		£7 Mo -			CT No .	4	HY.	SOMETE	-	-			NOTES.
The			THERMAL							. 0	THERMA	918	7
	IMPEX	SKIN	SEMSATION	INGEX	SKIN	SENSATIONS	1			PLOBE THEEN	THERMO	VEL	Subject NO 6 Execusing for love minuted
		CONGRETIVIT			COMPULTIVIT		w 6	1 13	RH	6 3	지원		time of commencing resisters indiscrete to salience left of little.
M. 45)	0-	CHMS KIO	HMF		CHMS X10	HMF	9¢	%	%	175	47.	8 James	value left of line.
-10	85		-1 -1 -1	40		-2 -1 -1		68.5	65	67.5	688	500	
- 5	80		-1 -1 -1	75		-2 -1 -1	64.0	61.0	66	68-8	673	465°	
ERO	0.0		-2 -1 -1	75	5.40	-4-1-1		11.0	64	67.6	67.7	475	
+7		0.93	-2 -1 -1		3.40	7	100		0.4	.,.	0,11	7,4	
R				65		-4-1-1	640	11.0	67	10-2	10.4	555	
. 4		4.40	-1-1-1			1 (2 (1)			-1			300	
10	75		0 -1 -1		4.60	-3 -1 -1	€5.5	14.0	7/	70.8	11.8	540	
23		3.37	000							- COR			
24				65		-1 -1 -1	11.5	14.0	10	14.8	18.0	605	
45		5.08	000										
02	70		0 0 11		6.77	-1 -1 -1	10.5	81.5	69	77-6	803	6/0	
To		6.06	00+1			0 -1 -1							
+0						0-1-1	14.5	13.0	61	X0.7	12.6	145	
41		1.41	000	55									
48	65		000		2.70	1100	15.0	85.0	65	82.1	84.2	680	
55		4.40	11 +1+1										
50				40		+100	16.C	*15	60	44.0	K5.7	180	
57		4.40	+1 +1 +1										
04	55		+1 +1 +1		4.40	1100	itis	87.5	61	*2.1	8 7.6	845	
71		1.54	+1 +1 +1										
12				35		1100	14.0	44.0	54	464	88.2	355	
13		2.10	+/ +/ +/						87.97				
80	0		+1 +1 +1		Y-60	+2 +1 0	110	40.0	51	8/3	44.2	615	
87		»·//	+1 -1 +1										
88			+1 -1 +1	10		12 41 0	18.0	10.5	51	**.4	10.0	650	
84	40	5.14	+2-1+1		-0-				-71				
103	40	4.50	42 -1 +1		5.85	+3 +2 +1	iPu"	41.0	28	24.4	11.4	140	
104		430	42 -1 +1	25					٠.			100	
105		2.80	12 +1	~ ~		13 12 11	17.5	14.0	58	10-4	41.7	650	
112	35	2 00	+2 + +1		420	+4 +2 +1	¥0.0	14.0	60	41.2	125	640	
114		4.10	12 -1 +1		120	14 12 11		14.0	00	11-	12.0	0,0	
1-0				25		+4 +3 +1	¥0.0	4.0	57	11.6	45.0	630	
121		6.60	+2 +1 +1			14 .0 .7			٠,		1,5	000	
128	10		+3 +1 +1		16.7	14 15 11	xit	1.0	60	1-4	73.5	620	
135		7.00	13 +1 +1		,			100	80	1-4	,,,,		
136				25		44 to +1	×15	14.0	58	4-6	13.6	430	
137		10.6	+: +1+1			,							
144	35		+3 +1 +1		19.9	+4+4+2	82.0	14.0	60	42.8	43.7	800	Visible smeat on forchead of subject 10
151		10.0	13 11 11								'		, , , , , , , , , , , , , , , , , , , ,
151				20		+4+4+2	825	40.0	54	43.0	43.4	140	
153		16.0	43 42 41					1					I shipt would sweat in freshood of subject to
100	35		43 +1 +1		30.3	+4 +5 +2	Y4'5	1+2	60	13.2	14.1	160	, , ,
167		d0.8	+3 +2 +1										
168				25		++ +5+2	10.0	1.0	60	45.4	14.1	150	
164		18.0	+3 +2+1							1			deany purpushin on forchead of entyed to
170	15		+3 +3 +1			14 1512	K3.5	15.5	61	43.7	140	885	
183		227	+5 +5 +1	10			3-						
84				20		15 15 12	10.0	11.0	61	45.0	16.7	805	
185	30	508	13 13 11		21.2	+5+6+2	000	10-	50		44.	0	
142	30	-14	43 +3 +1 +4 +3 +1		0 1.0	FU FO F2	0.0	100	58	11-2	18.3	840	
144		51.7	74 73 7/	15		+5+5+2	86.4	49.0	60	98.6	24.1		
200		42.7	+5+5+2			70 72	30.0	17.0	00	18.0	44.1		
108	25	72./	+5 +5+2		78-8	15 15 12	865	44.0	60	495	97-8	900	
215	~ 3	65.7	15 15 12	15	,,,,			170	-	.,,	1,10	,00	
216		/				+5+5+2	81.0	1005	61	100.1	1005	755	
17		61.5	+5+6+2			10 12	1						
224	30		+5+6+2		59.7	+5+5+2	815	100.5	60	1008	100.8	840	
231	0.0	62.3	+5+6+2						-				
231				5		151512	89.0	103.5	18	103.4	14.4	565	,
		68.5	15+6+2	_				1			- 1	1	
233													

CONTROLLED LABORATORY EXPERIMENTS Subject No. 2. Step-Climbing Subject No. 6. Resting. Relative humidity approximately 60%

	50376	CT VO:- 1	4	SUBT	ECT NO:-	Ь	41040						NOTES.
4E	CRAMPTON	FORENEAD	THERMAL	CHAMPTON	FOREHEAD	THERMAL					9 6	AIR	
	NOEX	SKIN	SENSITIONS	MOEX	SKIN	SENSATIONS				7.0000	\$14.V.892D	VAL.	ladjest No. d. or wining for x much periods.
		CONDUCTIONS		1	CONNUTNITY		W. 8.	D. B.	R.H	9 5	3/4	-	Vine of community species overcisis in "" or raise
		0 mm 5' x 10-6	H. M. F.			H. M. F.	*#	**	%.	*F	**	Hair	left of tack.
	60		-2 -1 -2			-1 -1-2	58.0	68.5	5/	e 5.8	66.8	060	, ,
			-2-1-2		1.00		58.0	6/5	51	66.1	664	440	
	60	3.60	1-1-2			-1 -1 -1	51.0	68-0	07	6/1	6/-2		
		3.00			4.40				1		, -	10.0	
			-1-1-2		4 4 0								
		2 40	1-1	70		-2 -1 -1	61.0	640	63	6Y-2	600	400	
		1151	-1 -1 -1			2.1-1		0,0		61.7	6.6	400	
					1.50		64.5	615	63	68.7	Lun	500	
		4.00	-1 -1 -1		5.00	-1 -1 -2	17.5	0.13	63	60.1	.10	300	
3			-1 -1 -1				11.0	11:0		1	51.00	1000	
				70		-1 0 .1	66.0	13.0	67	614	17.8	500	
			-1 -1 -1					1	١.,				
	50		-1-1-1		4.00	-100	610	11.0	82	11.1	10.5	4/0	
		1.87	-1 -1 -1										
				40		-1 0 -2	64.0	14.0	14	11-1	12.1	450	
		1.05	-1 -1 -1										
	45		0-10		2.12	000	115	145	68	14.4	117	510	
		1.75	000										
				65		0+1+1	15.0	84.0	65	11.7	ro7	540	
		2.66	000								,		
	00		1100		3.40	0 +1 +1	75.5	840	61	80.7	12.x	600	
			+100							,			
				60		+1 +1+1	73.4	845	63	Y2-3	x4-2	\$10	
		2.80	ti o ti	,,,		******					. , .	1	
	25		+1+1+1			+1 +1 +1	14.0	860	57	×4.2	w.C.L	110	
	g. W				2.80	TI TI TI	140	100	01	.42	17.€	110	
		2.72	+1+1+1					24.0					
				60		ti o ti	14.0		57	84.7	44.7	\$40	
			+2+1+1							b	4.*-		
	15		+1+1+1		4.70	T = +1 +1	14.0	×6.0	57	147	49.0	770	
		5.40	+2+1+1										
				50		r.tlt.	12.0	890	51	81.2	45.4	540	
		P. O C	te titl			t=+1+1							
2	0		retiti			ratiti	140	810	54	49.3	16.0	140	
		240	THE PATE										
				45		T. DTI	14.0	81.0	54	160	16.6	610	
		5.60	+4 +2 +1			ratiro							
	20		t= +=+1		4.00	1210+1	100	865	57	K6.1	×6-4	540	
			tu +2+1		4	21071			.,			, , ,	
		3.00	12 //	25		72+1+1	in	¥ 1.0	68	86.3	86.6	600	
		4.00	ti ti ti					10				1.0	
	20				35.25		1:0	xi.	1k	86.2	Kh.L	car	
	× 0		12 12 11		6.00	tiriri	100	1.0	0.0	0.0.3	16.6	300	
		0.70	+=+=+1	2.0			77	KIL	6.	H4.11	110	Con	
		Cen		30		T-11T2	11.0	4 10	04	20.4	*64	1000	
		2.80	42 41		4.10				0.14		١,,,		
	0		5 42 41		640	12 11 12		8/2	64	46.9	86.1	110	
		250	# # +1			12 +1 +2		0.0	,				
				20		12 11 12	760	87.5	60	×6.6	×6.8	110	
			たまた										
	0		11 11 11		4.00	12 11 12	165	815	61	× 1.4	16.8	460	
		10.2	たたた										
				30		+2 +1+2	78.0	90.0	54	10.0	40.6	425	
		15.4	43 4242					1		1	1		
	-10		131312		4.40	12 0 +1	790	41.0	60	9.7.5	91.4	400	
	.0	17.4	13 14 12		7 40	,		1,,,,	00	10.3	12.4	400	
			-0 F4 W	2.0		+2+1+2	19.0	41.5	62	du t	93-1	260	
		32.6	4	20		12 TI TI	113	11-0	63	14.9	10.1	0.00	
	-15	11.6	14 +5+2		3.4-		70.0		6.	400	4	- 111-4	
	-10		18 1412		3.60	+2 +1 +2	14.5	14.0	07	42.6	47-7	465	
		20.7	141412				0	l				1	
				25		+2+1+2	80-0	252	24	46.0	140	1 40	4.54
		273	14 15 12		1								Visible sweat on forchard of bubyest No.2.
	-15		14 1512		12.4	13 +1 +2	815	45.0	16	483	43.6	365	, , ,
		41.0	14 1412	5									
1						12 +1 +2	82.5	960	56	101-2	96.1	550	
		48.6	+4+5+2				1				1	1	
1	-15		14 1512		26.2	+3 +1 +2	87.5	910	56	101.9	99.1	190	
10	-12	49.0	74 LT LT	i .		10 11 14	000	1110			1 114	4010	T 1 1 TETTE A CONTRACTOR OF THE CONTRACTOR OF TH

CONTROLLED LABORATORY EXPERIMENTS Subject No. 3. Step-Climbing Subject No. 5. Resting. Relative humidity approximately 60%

		ECT O.	J		ECT NO		NYGRO	METER	_	-			NOTES.
TIME	CRAMPTON INDEX.) Monthematic	The section of the section of		PRHEAD			1		FLEBE THEEMS.	SWIERED THERMO.	AIR	Öz a azır i i
	INDEX.	SKIN CAMBOCTIVEY	ENSATIONS	INDEX	SKIN (ON BOCTIVE)	SENSATIONS	W. B.	D.B.	R.H.	1 4	1	VEL.	laborat No. 3 remaising for two minute personals.
MINS)		DHM5 110 6	H. M. F.		SHAES X 10 6	H. M. F.	** F	oF.	%.	oF.	* F	#/	Line of commoning equies maintelled my "" on said
-20	75		-3-1-1			~ - < -1	51.5	635	11	647	65.4	sie	7. 7
-15			-5 -1 -1	15		-0-2-1	540		48	64.0	644	4-0	
640	65	1.40	-4 -1 -1	45	1.64	-> -/ -/	263	66.0	34	65.0		4.0	
7		4:40	-2-1-1	15		3 -7 -7	383	663	3.4	6. 8	664	710	
8				40		-4-1-1	5 N - D	64.0	55	66.1	66.1	400	
4	55	1.87	-1 -1 -1										
16	22	3.64	-1 -1 -1 -1 -1 -1		1.64	-5-1-1	505	6K-0	01	614	6/1	443	
44		0.0-		10			62.0	10.0	14	600	11/	44	
45		3.84	0-10									30.00	
1	55		1100		0.40	-2-1-1	645	115	20	1.0	11.1	330	
40		J.00	+1 +1 0	40		-1-1-1	65.5	125					
41		47-	+1+10	70		7,	00.2	11.3	10	1000	14.2	5.0	
48	*		11110		10.2	110	665	120	12	114	12.0	+40	
55		+10	41 +1 0								1		
56		3.00		10		1-10	660	11.7	57	11	13	140	
64	+0		11100		110	1-10	65.5	114	. 3				
11	,	5.40	+100		1.5	, , ,		11.5		1111	11.2	412	
72				40		-1-10	600	10.5	.4	101	110	200	
13	+0	5.40	0 0 0										
87	7.		+100		5.20	110	67.0	110	54	11.0	1.1	44	
88				75		0-10	645	140	41	100	P	1.0	
89			+2 +1 +1				1						
105	50		100		16.4	0-10	10.0	V. 0	4/	-1	17.0	240	
0+		0 00	41.00	Y.,"		0 -20	11.5	100	41	Y4"_	*64		
25		11.0	+100						1 '	1	. 4	1.0	
4	20		4100		170	0 -20	1.0	11.5	+1	150	114		
9		0.0 T	410 C	80"						١			
/		1.00	+1+10			0-20	12.5	1/3	47	.0	1.1.	0-0	
18	×o"	,	+100		4.40	11.20	14.0	110	54	1.0	10-1	1 15	
05		14.4	1100								,	, .	
156		1.40	+100	30		41-10	15.0	11.2	00	.0.1	,1 -	D. C	
144	20	140	1200		1.40	11-20	15.3	88.0	51	×1.0	11.5	100	
151		13.5	11 0 0							' '	13	,,,,	
152		- 11 ::		80		+1-2+1	160	8/5	67	41.7	11	455	
153	20	22.8	1100		15.1	+1-2 0	16.5	110					
167		21.2	12 11 0		,	11 2 0	10.3	110	57	17.2	111	4-3	
168				80		41-20	11-0	88.0	61	814	X11	510	
176	15		12 H 0		4. 6								Vosible west experied in freezend of helyest 10.0.
183	' '		+2 +3 +1		10.6	H-1 0	11-0	88.0	61	812	880	500	
184				75		12-2+1	140	41-0	60	89.7	410	411	
185			12 +3 +1										
192	10		43 +3 +1			47 -7 +1	80.0	42.0	60	93-2	92.6	440	
200		17.0	14 13 11	65		42 -2 41	805	92.5	60	95.7	941	460	
101		108	+4 +4+1								147	4.00	
208	15		14 14 11		7-18	13-1+1	81.0	925	61	96-2	94.4	445	
215		91-7	154541	55					60	941	000		
217		91-7	+5+5+2	*2		14011		44-0	20	97-1	950	415	
224	15		151512		19.5	45° 42 H	83.0	95.0	60	918	96-1	360	
231		116.0	16 15 12										
232		120		40		15 14 11	840	970	59	101.2	99.2	347	
233			16 15 12				1 8		60	1	1	. 1	

CONTROLLED LABORATORY EXPERIMENTS Subject No. 4. Step-Climbing Subject No. 2. Resting. Relative humidity approximately 60%

	5	ir	4	5	er no	1	1 WHIA						
	34930	1	THERMA.	24036	ET MO	-	- MY	rtanca d	_	-		1	
Time	In Je					SENSATIME	1			3 5	A .	AIR	intgist
			IL NO P TIETLE	IMPER						A 21.016	3 3	VEL	4
		Conquetions			Conguerous m			9.0	Q H.			1	Time of
MINS		6.68	H M. F.	.50	3.08	H. M. F.	540	445		664	66.4		apt of
-5-	80.		-3 -2 -2		2.08	-2 -7 -7			60	66-2	656		
2540	••	5.5	-3 -2 -2		148	-2 -7 -7			56	66.2			
		10.8	-2 -7 -7		148	-3 -4 -2	01.0	\$6.7	56	66.7	64.4	4/0	
+1		10.8	3 -2 -1	-					-				
8			. V	50			1.40.0	67.0	-4	60.3	68.0	5/0	
1		4.45	-9-7-7										
10	65		-3 -2 -2		3.10	7-1-1	11.0	67.0	63	68.3	68.8	605	
23		6.85	-2-2-2										
-+						-3 -1 -2	6/.5	16.0	64	115	754	540	
45		560	-1 -1-1										
4	65		0-1-2		14	-1-1-1	610	14.0	64	14.0	7/3	660	
37		4.00	0-1-2										
40				50		-1 -1 -1	115	800°	65	11.8	804	610	
		1.00	+1-1-1			,	,			•••		-	
48	60	1.0	+1 -1 -1		7.4.2	-1 -1 -1	1.0	*11.0	65	110	W. 1	610	
	U 17		1200			-1 -1 -1	120	12.0	• 3	110		U	
55		1.45	42 0 0									41.	
50		0.0114	W. W	40		0 -10	10.0	47.0	63	40.K	*1.7	. 10	
51	-	1= -5	100								2.24		
64	50		1100		4.00	000	12.5	×2.0	63	40-1	81.7	500	
11		\$ 10	1200										
12				50		+1 0 0	115	×1.5	65	40.8	41.3	450	
13		¥.10	1300										
80	45				4.05	+100	155	44.0	61	41.9	814	560	
×7		12.15	120 11										
88				40		+1 € +1	14.0	¥5.0	to	82.X	¥4-1	640	
24		24.8	14 0 11				140					040	Visite un
76	US-		+++1+1			12 e c	14.0	90 A	60	¥2.4	145		Tribble with
103	00	28.7	14 11 11	•	. 40	12 0 0	14.0	49.0	00	07.0	.40	910	
			74 11 11	-				47.4				-	
104					,	+2 C +1	15.0	46.0	60	14.3	73.4	600	
105		45.8	14 +2 +1										
112	10		+4 +1 +1		3.34	+2 0 +1	16:0	46-0	60	84-7	K5.4	160	
117		405	14 15 11										
1.0				10		+1 0 +1	15.0	46.0	60	45:2	16.0	610	
1-1		54.5	+5+311							200			
1.8	30	•	+4+1 +1			+20+1	100		59	X1.1	86.2	160	
135	• .	2. 0					120	10	-1	4.6		300	
		33.8	44 45 41				700		20	4.*0	W 6 .40	C 9-	
136				45		11 0 11	19.7	4 1.0	21	HS: P	10.4	2 /6	
13/		54.0	15+4+1							64.		l l	
144	25		+5 +4 +1		3.40	+2 0 +1	16.0	+1.0	61	86.1	46.6	210	
151		45.8	15+411										
152	1			20		12 0 11	160	18/15	60	86.2	¥7.0	270	
153		60.6	+5 +4 +1									1 1	
100	10		15 +4+1		_	+1 0 11	75.0	265	60	86.1	86.2	600	
161		5+1	14 14 11										
168		. ,		20		+1 0 41	16.0	8/0	61	¥6.1	86.9	610	
167		51.4	151411		2.13	.,				,	1		
16	20		1++++/			+1 0 11	16.0	81.0	61	16.4	86.8	170	
183		51.6	to +4 +=		450	"		-70		7		-10	
134		24.6	10 14 14		740				59			44.	
				15		11 0 11	18.0	10.0	• 1	10.4	40.8	4/0	
185		00.7	15 14 12									1	
142	15		+5+4+2		1.65	13 +1 +1	167	100	57	47.6	41.6	415	
177		11.5	+5 +4+2									l	
200				10		15 1111	110	11.0	-4	15/	41.2	450	
101		140	+5+++1										
08	5		15 to 12		622	13 12 11	10.0	41.0	60	15.0	43.1	450	
115		91.5	45 +4+2							1	1		
		17.0		10		ts +2 +1	40	200	60	4.5	43.8	445	
116				10		.3 .2 11		14.0		,30	10.0	773	
"/		41.0	15+12							410		26-	
114	0		15+41		112	+4 +2 +1	87.0	140	60	49.8	45.4	310	
131		1000	45 44 42										
100				5		+4 +2 +1	¥4.0	46-5	60	1006	4x.0	360	
464													
انداد		92.6	16 14 12								1		

Notes inheret Nova opening for in mounted provide the of communing sources inscended my 2" or received light of links.

finite south on freeland of surgist , No. 4.

CONTROLLED LABORATORY EXPERIMENTS Subject No. 1. Step-Climbing Subject No. 6. Resting. Relative humidity approximately 80%

TIME		GT NO:	4	SUR!	ECT NO	:- 6	WHITE.	~ 4 0~6766					
	CRANPION	FOREHEAD	THERMAL	CRAMPTON	FOREMEAD	THERMAL	7704					AIR	Y 0 1 6 8
	INDEX	SKIN	SENSATIONS		SKIN	SENSATON				2000	Surgery Tracus	VEL.	Subject No 4 exercising for two minute periods.
		CONDUCTIVITY			CONDUCTIVE		N.B	D.8.	RH	o. F	3 6		Time of commoncing sensite indicate by " or sales
MINS)	-	CHMS NO	H. M. F.		DHM5 x10	H. M. F.	1/2	°F	%	0F	o.c	thin	left of take.
-20	60	4.00	0 -1 0	1		0 -1 +1			15	17.8	77.7	. 880	
-15 -5	55		+1 0 +1	65		0 -1 +1		81.0	72	75.2	198	565	
LERO			+1 0 +1	70	7.60	000	75:5		73		82.8	520	
+7		6.00	+1 0 +1						- '				
8				70		+1 0 +1	17:5	845	13	824	842	515	
7		12.2	+1 0 +1		-1-		70 -	0/-		010	0		
16	40	7.110	12011		3.60	+1 0 +1	18.3	1.0.0	72	83.8	825	505	
24		740	12 0 11	75		+100	795	615	71	85.2	86.3	615	
25		12.40	+3 +1+1				.,,	.,.	"			0.0	**
12	40		+3 +2 +1		5.15	+1 0 +1	800	875	73	86.3	8/3	515	
39		16.00	13 12 11							-			
40				75		H 0 H	80.0	880	71	869	818	545	
41	55		14 +3 +1	٠,		+1 0 +1	800	885	71	87.3	00.	w	Myst wishle smeat a facinad of early et M. st.
48 55	33		13 +3 +1 13 +2 +1			11 5 11	000	18.2	1/	.13	88.0	635	
56		,,,,		75		+1 0 +1	78.0	840	77	86.0	82.8	500	
51		28.2	+3 +3 +1						.,				
64	55				3.00	1100	170	805	86	83-2	80.4	450	
11			+3 +2+1	0.									
13			+3 +2+1	80		000	78.0	84.0	17	81.8	833	515	
80	50	30.7	+3 +3 +1			+10+1	00.0	9. 4	11	85.0	00.1		
8/		22.4	+3 +3+1	1		77 0 77	80.5	10.0	67	13.0	000	- 1	
88				75		+1 0 +1	81.0	40.0	71	81.0	40.7	510	
87		46.7	+3 +4+1								,		
96	45		13 +3 +1		10.60	11011	82.5	405	71	88.1	848	535	
ره		48.4	13 +3 +1										
04		35.8	44 42 44	75		+1 0 +2	83.0	11.0	72	89.2	400	600	
1/2	25		t4 t3 t1 t3 t3 t1		6.80	+1 0 +1	82.5	410	72	898	90.4	435	A
119	-0		13 +3 +/			.,,	0.0	"	17.4	4/6	10.4	435	integet No. 4 complains official headache in stinding
20				70		+20+1	83.5	415	12	90.2	91.0	550	
21		41.6	+4+4+2										
18	30		+3 +3 +2		5.20	11.0.11	83.5	915	72	90.6	914	515	
35		58.8	13 14 12				l						
137		62.4	+4 +4 +2	70		+20+2	84.0	42.E	72	91.0	917	540	
+4	30	• • •	13+4+2		6.91	120 12	94.5	925	72	913	42.0	465	
51		753	13 14 12	F .			,,,,	/- 0	-	5	12.0	460	
52				65		+2 +1 +2	85.0	93.0	71	917	92.2	950	
53			+4+4+2										
67	30		+4+4+2		12.05	12 12 12	855	93.0	74	91.9	92.5	615	
68		\$1.3	+4 +4 +2	55		+4 +2 +2	97.0	9).5	77	92.4	920	5.10	
69		80.8	15+5+2	33		14 12 12	010	100	"	12.4	93.5	2 10	
76	15		1515+2	1	34.64	+4 +3 +2	87.0	94.0	76	928	935	805	their will sucat on foreleast of Entreet M. 6.
83	-	104.7	151512										these wishes sweat on foreleast of laboret 186.
84				55		14 15 12	88.5	95.0	77	93.5	94.4	700	
85	_		+6 +5+2					01					
92	15		+6+5+2	. 2-		154512	895	76.0	77	94.0	95.0	680	
00		94.5	+6 +5 +1	30		15.54	04.4	965	78	0.7	art	710	
4/		134.0	+6 +5+2	- 1		+5+5+2	100	100	"	946	45.2	150	
80	5		+5 +5+2	- 1	29.9	+5+5+2	900	96-0	79	950	958	715	Subject No. 4 had glass of water.
15			+5+5+2						.,			,	Subject No. 4 had glass of water.
16	,			35		15+5+2	915	98.0	78	958	96.8	600	
17			+6 +5+2										
2.4	5		15 15 12		73.7	15 +6 +2	91.5	980	78	962	97.3	810	
24			15 15 12				000	00-	0.	016	910	41.	
31													
31 32 33		107.0	+6 +5+2	25		45+6+2	45.0	48.5	80	968	97.8	760	

CONTROLLED LABORATORY EXPERIMENTS Subject No. 5. Step-Climbing Subject No. 4. Resting. Relative humidity approximately 80%

	JUBIE	cr No:	5	100	SIELT N	0:- 4	WHITE	COMPLE R			-		NOTES
TIME	AAMMON	FORHEAD	THERMAL	RAHMON	FOREHEAD	THERMAL					9 9	AIR	ND/ES,
	INDEX	1414	JENGATIONS	WELX	SKIN	IENG ATIONS				9 6	1991	AIR VEL.	Subject No.5 is using for two ments persons.
,		LONDAM			LIVEJNIT)	(W.8.	08.	R.H.	4 5	1 5		Line of communing exercise indicated by "" " a in
440)		CHAR A10.	H. M. F.		OHYS SIC	H. M. F.	o.t	of.	%		of	Hom	left of libble.
-20	50		0 -1 0	1-		1-10			10		640		
-15	65		-1 -1 -1	60	1	-1-10		64.0	12		68-4		
ZERO			-1-1-1	r -		-1-10			11		68-8		
17			2-1-1	55	1.20	-1-10	64.5	10.0	15	670	64.2		
8			- 1-1	60		-2-1-1	650	78.6	17	Lac	141	610	
7		2.87	-1 -1 -1	00			00.0	100	''	012	01.6	410	
10	05		-1-1-1		9.95	-2-1-1	65-0	10.0	77	10.0	76-2	150	
43		4.41	-1-10						.,			,	
-+				55		-1-10	725	17.0	81	71.7	75:0	465	
45		6.00	000										
32	65		0 0 11		1.80	000	150	785	87	16.0	.18.2	160	
01		5.74	0 0 11										
+0				55		000	145	765	41	114	76-2	430	
+1	1.	5 60	0011				400						
48	10		110 11		11.4	+1 +1+1	10.0	ROR	85	114	18.8	4/5	
55		4.00	+1+1+1	50			10.						
5/		C:0	+2 +1 +1	30		+1+1+1	18-0	62.0	18	74.6	82.4	440	
	55	2.10	12 +3 +1		1 40	+3 +2+1	14 4	6.0	11	02.	or.		
11	30	CAN	12 13 11		1.10	73 72 71	17-0	87.0	17	£2.0	85-4	110	
1.		5 00	12 13 17	45		13 12 11	800	¥7.0	711	K48	V(.V	170	
13		6.40	12 +3 +2	45		.5 12 17		110	14	048	40.8	360	
80	45		15 15 +2		14.0	13 12 11	81.0	RX-0	7.4	86.0	64.0		
87		4.00	+3 +3+2		110	13 12 17	,,,		17		44.0	400	
88				40		13 12 11	X1:0	*4.6	71	81.8	88.4	540	
84		+ 15	+4 +4 +2					., .	"			.,.	
40	+5		+3+4+2		22.6	+3 +3+1	120	845	13	88.6	84.6	600	Visible sound on freeend of suggest No. 4.
103		4.80	+3+4+2						,,,				the think is freeing of strayers
10+				40		+3 +3 +1	82.0	40.0	71	84.1	40.3	100	
105		8.40	44 +4 +2										
114	+0		+3 +4+2		61.6	+4 +3 +1	825	405	71	84.6	10.6	610	
117		5.61	14 14 12										
120				25		+4+4+1	850	41.5	72	400	40.9	210	
121		15.2	+4+42										
128	35		131412		34.8	+4 +4 +2	84.0	415	14	40.7	41.7	860	
135		20.4	+4 +4+2										
136		11.0		25		+5+4+2	12.2	12.5	75	41.7	42.3	446	
137	35	11.8	14+4+2		11.1				ri-	0. 4			
144 151	55	11.4	14 14 12		71-1	+5+5+2	82.2	41.0	ro	41.4	47-0	403	with a second
152		×2.0	14 +4+2	25		15.5.3	900	0.0	Da.	a	90.9	43.0	Visible sweat on fredead of Interest No.5.
153		26.8	+5+4+2		\	+5+5+2	1000	71.0	10	11:4	10.7	1423	
160	30	# 8·0	+++++			+5+4+2	F2.0	100.	18	24.5	88.8		
167	30	23.4	+4 +4 +2		594	13 1412	19.3	0.10	10	1072	4.8.8	410	
168		-07	7.772	20	0 14	15-14-12	86.5	945	82	10-6	41.8	500	
169		32.4	+4+5+2		1	, 17					1.0		
176	30		141512		58.8	15 14 12	865	915	82	90.8	10.8	165	
183		28.6	14 +5 +2										
184				20	1	45 14 12	870	92.0	82	908	42-0	480	
185		60.7	+5+5+2										
192	5		+5+5+2		19.0	15 +4 +2	885	945	79	92.1	935	486	
199		34.7	15 15 12										
200				20		+5 +4 +2	895	45.5	79	934	95.0	360	
201		39.9	+6+5+2						-70		0.		
508	10		+6 +6 +2		16.7	15 15 12	406	465	17	14.9	46.5	453	
215		21.7	454512				9		0-	10	0.4		
216		71.		15		151512	415	1/2	80	42.1	4/4	560	,
217	-	71.0	+6 +5 +2		40.0	+5+5+2	9.5	970	81	94.1	90.2	505	
224	5	0.	+6 15 12	2.	67.4	13 10 12	7/3	110	01	100	78.2	3 03	Clusted C 1 1 military
231		20.0	16 15 2	5		+5+5+2	92.5	985	80	97.1	48.6	690	Subject No. 5 dyper soutilating.
		1		3	1	TTO TOTAL	140	100		1111	100	-10	
232		70.0	+6 +5+2	-	1							1	

CONTROLLED LABORATORY EXPERIMENTS Subject No. 3. Step-Climbing. Subject No. 2. Resting. Relative humidity approximately 80%

		Jack NO. 3		TELT NO	12	450 e	прития.					NOTES.
1.46	ANYFON	FOREMEND THE AMA	LIMPROV	FOREHEAD	THERMAL			-			410	******
	INDEX	JAIN HASATINA			. 4 MA/ma			1	1 1	3 5	V6 4	
		LA V BOCINEY		. OVENT W		W.6	0.0	R.M.	4 5	Tables.	,	the same of the same of the same of
4 4.1		CAMBOLINEY H. M.		ourilue !	H. H. F.			7.				free of coming social minimizer of to a
20	60	-100			-2 -1 -2	7400	140	41	+			A 1244.
15	• •	-100		!	-2 -1 -2	465	. 44 0	83		644		
÷.	55	100		2.17						610		
40		111 -100		2.17	1 -1 -2				67.6		600	
					1	61.0	10.2	84	64.7	69.7		
+/		1.55 -100										
4			55		-2 -1 -2	70.0	16.0	15	70.8	12.3	410	
1	5.5	1.81 -100										
16	55	-100		3.80	-1-1-2	645	13.0	14	12.8	713	410	
23		2.10 -1.00										
24			55		-2 -1 -2	12.0	11.5	11	73-1	14.4	410	
25		3.66 -100			1			.,			7.0	
14	50	0 +16		3.44	-2 -1 -2	160	V1.5	1.1	16.00	74.0	****	
01		3.45 11 00				. ,,0	,,,,	14	1.0	11.0	410	
40		0 10 11 -	50		1 .1 .1	11.			140			
		4.60 4100	• •		1-1-1	16-0	11.2	"	14.8	81.7	500	
41	"	+100							1.4			
48	45			7.11	-1-1-1	7/3	85.0	12	804	81.5	520	
55		4.41 +100										
56			50		0 -1 -1	785	×40	14	11.7	12.5	525	
5/		5.15 +1 00										
64	35	+100		5.60	00-1	X0-0	265	16	84.1	×645	620	
11	1 1	6.76 +1 0 0										
72			50		00-1	80.0	000	74	VICA	P.C. 9	510	
15		3.66 41 00					100	"		.4.7	3.0	
80	35	+1+10				70.0			4		2	
18	• •	4.10 +1+10		4.11	110-1	147	***0	11	847	17.0	000	
**		710 11110				900						
			50		+1 0 -1	800	16-7	16	84.4	85.4	560	
*4	1.0	6.55 +1 +1+										
46	25	+1 +1+	1	2.80	11 0 -1	872	X4.0	16	8 t. 8	81.7	600	
100		7:13 +1 +1+								,		
104			40		+1 +1 0	41.0	40.0	1:0	¥ × 44	40.4	600	
105		14.0 +2 +1+					10.0	••	90.4		020	
112	20	+2+2+		541	## 0	V.C.	41.6	1.0	bu 7			
117		22.7 42 424		0.41		90.0	74.0	12	0.4.1	71.4	340	L 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		42.7 42 421										Visible ineat or freezed of to exect 10 J.
120			30		41 +1 0	88.0	42.0	78	41.0	43.7	560	
121		40.8 +3 44.										A.
128	15	42 +2 +		8.50	+1+1+1	85.0	40.0	81	41.0	40.5	500	
135		64.5 +3+3+	1									
136			20		+1+1+1	84:0	40.0	*1	40.7	400	575	
137		61.5 +4+4+	2							100	4.0	
144	15	+4+4+		5:30	42 +1 +1	86.0	415	KO	40.0	90.4	590	
151		76.2 14 141		- ,,,			,		100	10.0	V4.0	
152					12 +1 +1	£ 1.0	41.0	79	46.3		410	
	1	401	26		12 41 41	1.70	10.0	17	40.7	44.6	020	
153		11.0 4451									, !	
160	10	14 15 1		610	13 12 11	84.0	140	14	12.4	143	600	
161		16.6 to 15 1.				1						
168			5		43 43 42	44.0	1.0	11	to	16.0	540	
167		18.0 15 151.										
116	5	1040 15 +01.		10-4	+4+3+2	40.0	150	*1	44.2	458	540	
183		701 15 151										
184			10		+4++2	405	460	74	44.4	16.4	610	
184		84.2 45-454			7.7.2	,		"	777		3.0	
				27.0	444.4	4		2.4	44.0	4.0	Con	V '7/.
HZ	0	75.5 45 tst.		20.1	+4+4+2	70-0	140	"4	44.5	4.8	000	Visible smat is frehad observed 10.2.
144		70-2 15 tst.									-	
200			10		+4 +5 +2	410	167	81	46.1	46.9	550	
101		40.0 46 46 4									. 1	
708	-10	104-0 16 16 1	†	341	15 45 42	42.0	44.	82	16.0	416	600	
	1				1	11 1						

CONTROLLED LABORATORY EXPERIMENTS Subject No. 6. Step-Climbing Subject No. 5. Resting. Relative humidity approximately 80%

- 1		5161	ELT NO:	6	II Cu	GJELTNI		WARRE	OMETER					NOTES.
	TINE		FOREHEAD		FAMPL	FORMAN	THEMA	"14"	070/8			0 0	410	
		INDEX				JAIN					10 E	Person	AIR VEL.	Sund of communing exercise moves the by " "
			CHARGENTY			LWARTHY		W.6	D. B	R.H.	5 %	4 5		interne left of label.
	414)		OH \$100	Francisco Contractor Contractor			H. 4. F.		oF.	%	°F		#/-	
	-20	03		-10-1			-2-10	61.5	10.5	86		12.3		
	-15			-10-1	80		-2 -1 -1	61.5				69.9		/
		60		10-1	7 -		-2-1-1	68-0	11.0	86	70.4	10.1	450	,
=	2 # to		210	-1 +1 0	75	3.40	-2 -1 0	10.0	13.2	84	70.4	17.8	415	
	8		2 40	1 110	40		-200	71.5	16.0	14	12.3	100	.,	
	7		2.57	1 +1 0						' '	10.7	14.3	400	
	16	60		100		4.65	-200	71.0	15.0	×2	144	740	405	
-	23		1.75	0 11 0										
	24				15		100	13.5	805	72	16.2	79-1	460	
	25			11 11 0										
	52	50		41410		5.12	1100	137.	140	17	18.4	810	510	
E	37		2.60	+1+10										
	40			11 +1 0	12		000	13.7	11.5	83	18.8	7/2	515	
	48	50		+1+10			100	71.6		41		701		
-	55	30		0110		4.42	-100	150	10.0	0/	11.7	75.6	440	
	56		320	0110	15		-200	7:0	74.0	F-1	76-3	15.1	cor	
	5/		4.80	0 11 0	,,			130	10.0	0/	103	1.0.1	***	
	64	55		0 110		2.12	-300	13.0	755	44	15:1	150	425	
	7/		12.17	0 11 0										
	72				15		400	13.0	15.5	84	15.5	746	500	
	73		5.50	0 110										
	\$0	60		0 110		3.51	-3 0 C	130	155	×9	11.3	14.7	405	
	81			0 110	85.	į į					- 11			
	19			0 11 0	8.7		-3 C C	17.0	160	×/	75.6	15.7	410	
	16	65		+1+10		3.48	-1	-1	-74.5	٠ ،	7. 1	160		
	03	03		11 110		3.48	300	14.3	14.7	.2	75.7	10.8	450	
	64		3 00	0	85		000	12.0	P1.1	14	10.0	813	F1.0	
	105		4.60	11110				10.0		10	10.0		300	
	//2	30		11110		1.65	1100	74.5	ri-5	77	830	86.1	540	
	114			11110			,, , ,	.,,		• 1		0.1	5.40	
	120				60		11 +1+1	81.0	81.5	16	81.1	81.0	620	
	121		5.49	+1+10										
1	28	20		11110		4.40	+1+1+1	82.0	88.5	16	868	88.6	460	
1			3.40	11110										
	136				55		+2 +2 +2	83.0	840	18	81.8	89.1	550	
	137		4.40			100								
1	151	Jo		+1 +1 +1		6.47	12 12 12	84.7	41.0	17	84.4	40.8	490	
11	152		4.43	+1 +1 +2	50		12 +3 +2	01.0	41.	10	0.7		11.	
	53		211	+1 +1 +2	20		12 13 12	1000	72.0	10	40.7	41.1	0/0	we ex
	160	25		12 +4 +2		4.49	+++3+2	\$7.a	42.0	74	91.7	02.	540	Visible smeat on forcead o of Judgest No. 6.
	67		15.2	12 +4+2				.,,	100	''		73.0	340	<u>.</u>
- 11	68				45		+4 +4 +2	840	14.0	14	42.5	94.2	600	
	169			12 15 12										
	116	25		+3 +5 +2		4.20	14 14 12	884	140	79	93.2	945	540	
	183		540	13 15 12										
	184				33"		14 14 12	84.5	47.7	79	140	954	600	
	185			+4 +5 +2									l	
	142	5		141612		17.6	14 14 12	40.0	460	17	44.1	96.0	510	
11.	149		13.7	14 16 12	35-				24.5	64	4.	0.		
	200		85.8	15 16 12	0.5		+4 +4+2	40.7	46.0	8.1	45.3	466	720	*
1	801	0		14 16 12		13.0	14 1512	94.0	9.0	64	a.,	9	Gin	Marke a decrease and
	215			14 16 12		-4.0	7 73 72	7.0	144	0.4	14.0	144	540	Vosille sugat on freehead of Integet No. 6.
1.	216		10/2	4 10 12	15		15 t5 +2	41.0	96.5	81	94.7	960	790	
	7		544	15+7+2		28.4	.5 75 72	110	10.3	.,	147	104	110	
. "	24	-5		5+7+2			15 15 12	91.0	91.0	91	are	04.	1600	

S. S. W Bolesh Fall

s & Swand Youlle

Statistical Method Employed for Assessing the Results from the Experiments Described in Chapter 2.

The Mark the of hereby

The main effects and interactions may all be obtained by subtracting the sum of 4 of the treatment totals less the sum of the other 4. The actual signs are given in Table 2A.1.

Combination of Treatments.

EC	Cect	(1)	h	F	m	2	D.	FI	Ffh_
Tota	al.	+	+	+	+	+	+	+	+
	h	with 162	+		4	_CSTRUE	+	**	+
	F	**	**	4	+		-	4	+
2 64	Ph	+	Liberty !	19232	+	+	munder.	Falcon Paris	4
	f	**	**			+	+	+	+
set be:	Ch .	4	alla h	40000	201 (8)	4	-	+	
1	Ff	+	+			**	44	4	+
IF:	ch .	- 5a	4	*	000 0	LAND I	sexual s	KIN ALAR	4

then obtained by squaring these Effect values and dividing the result by 32 since it is the square of the total of times the treatment values of each of 32 experiments.

e.g. The effect value for F (Table 2.4) is -595.7 + 507.3 + 615.2 + 404.8 - 305.2 - 238.4 + 602.6 + 380.3 = + 356.3.

The Sum of squares is therefore = $(356.3)^2 = 3987.17$ as in Table 2.5.

(2) The Treatment Sum of Squares =
$$\sum_{1}^{8} \frac{(st)^2 - s^2}{4x^8}$$
 s.T. = Total for 1 treatment.

(3) The Total Sum of Squares =
$$\sum_{1}^{32} x^2 - \sum_{1}^{2} s = Grand Total.$$

THERE FOR HOSE WHAT IS ME.

A G All + Day + into

tells got la sterilities to the full point table.

Church firm the hold out it reclaimed

The treatment sum of squares can be checked by taking the total of the individual treatment sums of squares obtained from the use of table 2A.1. This should be equal to (2).

The analysis is then carried out in the normal way allowing 3 degrees of freedom for Block sum of squares, 7 for treatments, 19 for Error (two less than the normal number, see Appendix 2B) making a total of 29 degrees of freedom.

ich is a fried for their block maker tealwheet the closing which

of C fished for Ward Area to the White Alley Arelation was

according selow (Less havel of 5 vertice);

The experiments in which the fire was combined with the extractor fan as a means of ventilating the room were abandoned after only two tests for reasons which have been given in Chapter 2. Therefore the two missing values had to be estimated.

When only one result in a set is missing or abnormal it may be estimated by the following formula. (O.L. Davis, "Statistical Methods in Research and Production" p. 116).

where R = estimate of missing value

n = number of treatments

m = number of blocks

S = sum of all known (rm - 1) observations

ST = sum of treatment totals, not including the treatment of which one result is missing.

Sp = sum of block totals, not including the block of which one result is missing.

Thus for n = 8 and m = 4

$$K = \frac{11s - 8s_T - l_t s_B}{21}$$
 (1)

This can be simplified in the following way:-

Let B = Total for that block which includes the missing value (i.e. the total of 7 values)

t = Total for that treatment which also includes the missing value (i.e. total of 3 values)

Then
$$l_{1}S_{2} = l_{1}S - l_{1}B - - - - - (2)$$

 $8S_{3} = 8S - 8t - - - - - (3)$

Substitution in (1) gives
$$K = LB + St - S. ---- (4)$$

However, in the analyses there were two missing values and a method of successive approximations was adopted as follows:-

- (a) The mean of the two observed values, say at for treatment .

 Ff was inserted in column 3.
- (b) Using a and equation (h) the missing value, say by was calculated for column h.
 - (c) Then using by a new value for column 3, say ag was calculated.
- (d) If ag was not very much different from ag then ag and bg were used in the analysis. However if there was a considerable discrepancy the above procedure, commencing with ag in column 3 was repeated until consistent values were obtained.

The analysis was then carried out as in the normal case but with one exception. The number of degrees of freedom for the remainder is two less than for the normal case, owing to two results having been estimated. For the analysis of the increases in dry and wet bulb temperatures and relative humidities at the two lift. levels (Positions I2 and II2) the Error degrees of freedom were consequently reduced from 21 to 19.