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A B S T R A C T

Objectives: Hepatitis C virus (HCV) clearance rate (fclearance) is defined as the proportion of infected persons
who will spontaneously clear their infection after acute infection. We aimed to estimate fclearance using a
novel approach that avoids limitations in existing estimates, and to clarify the link between fclearance and
HCV viremic rate—the latter being the proportion of RNA positivity among those antibody positive.
Methods: A mathematical model was developed to describe HCV transmission. fclearance was estimated by
fitting the model to probability-based and nationally representative population-based data for Egypt
(Egypt 2008 and Egypt 2015) and USA (NHANES A and NHANES B). Uncertainty and sensitivity analyses
were conducted.
Results: fclearance was estimated at 39.9% (95% uncertainty interval (UI): 34.3%–46.4%) and 33.5% (95% UI:
29.2%–38.3%) for Egypt 2008 and Egypt 2015 data, respectively; and at 29.6% (23.0%–37.1%) and 39.9%
(31.2%–51.0%) for NHANES A and NHANES B data, respectively. fclearance was found related to HCV viremic
rate through (approximately) the formula fclearance = 1.16 (1 � HCV viremic rate). HCV viremic rate was
higher with higher risk of HCV exposure. Robustness of results was demonstrated in uncertainty and
sensitivity analyses.
Conclusion: One-third of HCV-infected persons clear their infection spontaneously, higher than earlier
estimates—the immune-system capacity to clear HCV infection may have been underestimated.
© 2018 The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
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Introduction

Hepatitis C virus (HCV), first identified in 1989 (Choo et al.,
1989; Kuo et al., 1989), is a major cause of liver fibrosis, cirrhosis,
and cancer (Hajarizadeh et al., 2013). It is estimated that 1–3% of
the population in most countries are infected with HCV (Mohd
Hanafiah et al., 2013; Lavanchy, 2011). A key highlight of the
Abbreviations: HCV, hepatitis C virus; PWID, people who inject drugs; RNA,
ribonucleic acid; Ab, HCV antibody; SM, supplementary material; EDHS, Egypt
Demographic and Health Surveys; NHANES, National Health and Nutrition
Examination Surveys; CI, Confidence Interval; UI, uncertainty interval; DAA,
direct-acting antiviral.
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natural history of HCV infection is that a proportion of infected
persons spontaneously clear the infection after enduring acute
infection (Hajarizadeh et al., 2013). Earlier studies, following the
discovery of the virus, suggested that only 10–15% of infected
persons clear their infection (Di Bisceglie, 2000). Having an
accurate and precise estimate of HCV clearance rate is important
for HCV response, and will inform HCV treatment in early infection,
planning of health services provision, and estimation and
projections of HCV chronic infections and disease burden (Micallef
et al., 2006; Grebely et al., 2014).

With the interest in clarifying HCV natural history, a number of
longitudinal cohort studies were conducted and reported their
findings in recent years (Micallef et al., 2006; Grebely et al., 2014;
Amin et al., 2007; Seeff, 2002; Soriano et al., 2008). Although
different studies have had different lengths of follow-up, making
comparability less certain, they estimated a broad range for HCV
clearance of 0%–57% within 6–48 months after infection (Micallef
et al., 2006; Grebely et al., 2014; Amin et al., 2007; Seeff, 2002;
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Figure 1. Conceptual framework and key definitions for hepatitis C virus (HCV)
natural history.
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Soriano et al., 2008)—the best estimate was about 25% after an
acute-infection duration of 16.5 weeks (Micallef et al., 2006;
Grebely et al., 2014). These studies have also indicated that
infection clearance is predicated on a complex interplay of host
and virus factors (Hajarizadeh et al., 2013) such as female sex
(Micallef et al., 2006; Grebely et al., 2014; Page et al., 2009), IL28B
CC genotype (Grebely et al., 2014), and HCV genotype 1 (Grebely
et al., 2014), among others (Ray et al., 1999; Li and Lemon, 2013;
Lemon, 2010; Takaki et al., 2000).

While cohort studies provide a direct approach to estimating
HCV clearance rate, this approach suffers from methodological
limitations and potential biases (Micallef et al., 2006; Amin et al.,
2007). The heterogeneity across studies in design, study popula-
tion, sample size, inclusion criteria, length of follow-up duration,
and analysis method contributed to a broad range of estimates and
added complexity to the estimates’ interpretation and compara-
bility (Amin et al., 2007; Micallef et al., 2007). Reported clearance
rates were often based on small samples of less than 50
participants and follow-up durations of less than 12 months,
though evidence suggests that undetectable RNA levels could be
reached over longer time intervals of up to 48 months (Amin et al.,
2007; Micallef et al., 2007). Several studies opted for retrospective
testing of stored HCV RNA samples for the assessment of clearance,
but there are known limitations for samples stored under
suboptimal conditions (Amin et al., 2007; Micallef et al., 2007).

The recruitment of participants may have been a key limitation
in these studies and poses a question about their representative-
ness and generalizability. Studies tended to recruit individuals who
were symptomatic and viremic at baseline (Micallef et al., 2006;
Amin et al., 2007), but HCV infection is mostly asymptomatic
(Hajarizadeh et al., 2013)—only few studies assessed clearance rate
among sero-incident cases (Micallef et al., 2006; Page et al., 2009).
Most studies recruited opportunistically from populations such as
people who inject drugs (PWID), or post-transfusion HCV patients.
The risk of reinfection in these populations is often high, and this
could have influenced the identification of a unique acute infection
(Micallef et al., 2006). PWID, a marginalized population by
definition, may not have been also representative of the socio-
demographic characteristics, prevailing HCV genotypes, or mode of
acquisition and associated inoculum effect, of incident infections
in the population at large (Hajarizadeh et al., 2013; Grebely et al.,
2014; Pawlotsky et al., 1995; Messina et al., 2015). For example,
females have a higher clearance rate than males (Grebely et al.,
2014), but are often under-represented in the predominantly male
PWID populations (Mumtaz et al., 2014). The difficulty in detecting
asymptomatic acute infections, and the lack of a reliable diagnostic
test to differentiate between acute and chronic infection stages
may have as well affected the validity of clearance rate estimates,
and their representativeness of clearance in the population at large
(Amin et al., 2007).

Another critical limitation in existing studies relates to the
heterogeneity in clearance definition in terms of using a single HCV
Ribonucleic Acid (RNA) negative test, as opposed to two negative
tests within a period of one to six months (Micallef et al., 2006;
Grebely et al., 2014; Amin et al., 2007). It has been further shown
that even slight variations in case definition and analysis method
can underestimate clearance rate (Micallef et al., 2006), and
generate estimates ranging from 14% to 68%, on the same primary
data (Amin et al., 2007).

In light of these largely unavoidable limitations in cohort
studies, there is a need to provide an estimate of clearance rate
using a methodology that is independent of these limitations. We
present here a novel approach to estimate HCV clearance rate
(fclearance)—defined as the proportion of HCV infected persons who
spontaneously clear their infection after the acute stage of
infection. This approach also clarifies the subtle link between
fclearance and HCV viremic rate, with the latter being defined as the
proportion of individuals who are HCV antibody (Ab) positive and
HCV RNA positive, out of all who are HCV Ab positive regardless of
RNA status, as measured in a given cross-sectional survey. Of note
is that fclearance and HCV viremic rate are technically not rates, but
are strictly proportions with no time unit, and therefore should not
in principle be labelled as rates. However, to avoid confusion with
prevailing convention, we labeled them accordingly for consisten-
cy with existing literature, where these two measures have been
labelled as “rates”.

The fundamental concept of the present approach is that HCV
natural history effects at the individual level manifest themselves
at the population level. Starting from probability-based and
nationally representative population-level data, we used mathe-
matical modeling and simulations of the infection process to
estimate the average HCV clearance rate in the population.

Though this approach relies on an indirect method, the strength
of this analysis lies in its independence from most of the biases and
limitations affecting current empirical measures. The approach
also capitalizes on the availability of quality population-based
data, and provides an estimate that is representative of the socio-
demographic and mode of acquisition diversity in the population
at large. In a sense, this approach is effectively equivalent to
conducting a cohort study for the entire population of a country,
but in silico.

Materials and methods

Conceptual framework and key definitions

We used a conceptual framework for HCV natural history based
on current knowledge of HCV biology (Figure 1) (Hajarizadeh et al.,
2013). Infected persons are assumed to develop primary acute
infection. A fraction (fclearance) of these individuals clear their
infection spontaneously after the acute stage of infection, while the
rest (1 � fclearance) become chronically infected and positive for both
HCV Ab and HCV RNA. For those who clear their infection, they can
be re-infected, and thus go through a secondary acute infection
stage. A proportion of the latter individuals will clear the infection
while the rest become chronically infected.

To avoid confusion of subtle and closely related measures,
Figure 1 includes also the exact definitions used in the present
study for HCV clearance rate and HCV viremic rate.
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Model description

A deterministic compartmental model was developed to
describe HCV transmission in the population at large (Figure S1
in Supplementary material (SM)). The model is an extension of
previous models (Vickerman et al., 2007; Vickerman et al., 2012;
Deuffic-Burban and Yazdanpanah, 2013; Ayoub and Abu-Raddad,
2017; Ayoub et al., 2018), and consists of a system of coupled
nonlinear differential equations that stratify the population
according to HCV status and stage of infection, and level of risk
of exposure (SM). To account for heterogeneity in risk of exposure
in the population, the model incorporates 15 risk groups covering a
spectrum of HCV exposure risk, from low (say blood donors or
pregnant women) to high risk, with the three highest risk groups in
the model representing PWID.

Informed by earlier work (Ayoub and Abu-Raddad, 2017; Ayoub
et al., 2018; Handcock and Jones, 2004; Hamilton et al., 2008;
Cuadros et al., 2011; Omori et al., 2015), we assumed that the
distribution of the population across risk groups follows a gamma
distribution (SM). Individuals who leave their risk group are
distributed proportionally across all risk groups. The mixing
between individuals in the different risk groups is determined by a
mixing matrix (SM) that allows a range of mixing behaviors
varying from fully assortative (mixing only with individuals in the
same risk group) to fully proportionate (mixing with individuals
with no preferential bias for any specific risk group) (Garnett and
Anderson, 1993; Awad and Abu-Raddad, 2014).

Risk of infection was captured by the force of infection that
factors in the effective number of contacts conducive for HCV
transmission, HCV transmission probability, and mixing among
risk groups (SM). We assumed that the distribution of risk of
exposure across the different risk groups follows a power law
function (SM), as suggested by earlier modeling analyses (Ayoub
and Abu-Raddad, 2017; Ayoub et al., 2018; Awad and Abu-Raddad,
2014; Barendregt et al., 2003; Barrat et al., 2004). Further details on
the model structure can be found in SM.

Model parameterization

We parameterized our model using current HCV natural
history and transmission data (Table S1 in SM). The model was
applied to two countries—Egypt and the United States of America
(USA)—where HCV biomarker data for the population at large has
been collected through rigorous probability-based and nationally
representative surveys. The Egypt data were derived from the
2008 and 2015 Egypt Demographic and Health Surveys (EDHS)
(El-Zanaty and Way, 2009; Ministry of Health and Population
[Egypt] et al., 2015). HCV Ab prevalence was estimated at 14.7%
(95% confidence interval (CI): 14.0–15.4%) in 2008 and at 10.0%
(95% CI: 9.3–10.7%) in 2015. HCV viremic rate was assessed at
67.1% (95% CI: 64.5–69.6%) in 2008 and at 70.2% (95% CI: 67.2–
73.1%) in 2015. For ease of reference, these two data sources have
been labeled thereafter as Egypt 2008 and Egypt 2015,
respectively.

The USA data were derived from the continuous series of the
National Health and Nutrition Examination Surveys (NHANES)
(NHANES, 1999–2012NHANES, 1999NHANES, 1999–2012). HCV Ab
prevalence and HCV viremic rate were estimated for each NHANES
round between 1999 and 2012 (before the recent scale up in
treatment), and then pooled using DerSimonian-Laird random-
effects meta-analyses (DerSimonian and Laird, 1986). Pooled HCV
Ab prevalence was estimated at 1.4% (95% CI: 1.3–1.6%), and pooled
HCV viremic rate was estimated at 74.0% (95% CI: 57.9–79.6%). This
data source has been labeled thereafter as NHANES A.

Since NHANES laboratory procedures entail the additional
testing of individuals with undetermined HCV Ab results for HCV
RNA positivity, we also derived a second pooled estimate for the
NHANES viremic rate including as denominator both individuals
confirmed as HCV Ab positive and those with an undetermined
HCV Ab status. This yielded a viremic rate of 64.6% (95% CI: 56.2–
72.6%). This data source has been labeled thereafter as NHANES B.

The model was additionally applied to six countries where HCV
biomarker data were available through population-based surveys,
but without sufficient description of the methodology to assess
whether the data where collected using strictly probability-based
and nationally representative sampling of standardized and
comparable methodology to that of the EDHS and NHANES
surveys. These included surveys from Brazil (Pereira et al., 2013),
India (Lee et al., 2014), Ireland (Thornton et al., 2012), Latvia
(Tolmane et al., 2011), Netherlands (Vriend et al., 2012), and
Vietnam (Do et al., 2014).

Data on the population proportion of PWID, a key determinant
of HCV epidemiology across countries, were retrieved from global
and regional reviews (Mumtaz et al., 2014; Aceijas et al., 2004;
Lansky et al., 2014).

Model fitting

We estimated the population fclearance by fitting model output to
HCV Ab prevalence, HCV viremic rate, and the population
proportion of PWID for each country, assuming endemic equilib-
rium. Model fits were implemented in MATLAB1 (MATLAB1, 2013)
using a nonlinear least-square fitting method based on the Nelder-
Mead simplex algorithm, described in Lagarias et al. (Lagarias et al.,
1998).

Uncertainty analysis

We conducted multivariable uncertainty analyses to determine
the range of uncertainty around our estimates for fclearance by
varying the model parameters. We specifically implemented 500
runs of the model applying at each run Monte Carlo sampling from
uniform probability distributions that were generated from either
the CI, or assuming (if uncertainty is not captured by CI) �25%
uncertainty around the point estimates of these parameters. In
each run, the parameters’ values were randomly selected from
their specified ranges, and the model was refitted to data.

The parameters included in the uncertainty analyses are HCV
transmission probability for the different stages of infection,
duration of each infection stage, proportion of individuals in
secondary acute infection who clear their infection spontaneously,
HCV viremic rate in each setting, duration that an individual
spends in a specific risk group, the degree of assortativeness in the
mixing, the scale parameter in the gamma distribution of the
population across risk groups, and the exponent parameter in the
power law function of the distribution of risk of exposure. The
mean of the resulting distribution for fclearance and its associated
95% uncertainty interval (UI) were derived.

Sensitivity analyses

Several sensitivity analyses were conducted using the Egypt
2008 model as an illustrative example. These analyses assessed the
robustness of our predictions for fclearance to variations in key
measures or parameters that may not be known with sufficient
precision, or suspected to potentially influence our predictions.
These measures or parameters included HCV Ab prevalence in the
population, statistical distribution of the duration of primary acute
infection, statistical distribution of the population across the 15
risk groups, risk of exposure variation among the 15 risk groups in
the model, and fraction of individuals in secondary acute infection
who clear their infection spontaneously.



Figure 2. Estimated mean and 95% uncertainty interval (UI) for hepatitis C virus
(HCV) clearance rate (fclearance). The estimates were conducted based on data from
the 2008 and 2015 Egypt Demographic and Health Surveys (EDHS) and the
continuous series of the National Health and Nutrition Examination Surveys
(NHANES).
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We further conducted two additional sensitivity analyses. In the
first analysis, we estimated fclearance in Egypt by fitting the model
output to the actual temporal variation in HCV Ab prevalence, that
is by relaxing the assumption of endemic equilibrium. In the
second sensitivity analysis, using the Egypt 2008 model as an
illustrative example, we assessed the robustness of our estimate
for fclearance to large variations in the uncertainty of the input
parameters by allowing 50% uncertainty around the point
estimates, instead of only 25%.

Results

Robust model fits were obtained for the fitted epidemiological
measures in all country-specific estimations (Table S2 in SM). In
Egypt, fclearance was estimated at 39.9% (95% UI: 34.3%–46.4%) for
Egypt 2008, and at 33.5% (95% UI: 29.2%–38.3%) for Egypt 2015 data
(Figure 2). In the USA, fclearance was estimated at 29.6% (23.0%–
37.1%) for NHANES A, and at 39.9% (31.2%–51.0%) for NHANES B
data (Figure 2).

Figure 3 shows the estimated fclearance versus HCV viremic rate
in the population using (in addition) the survey data from Brazil
(Pereira et al., 2013), India (Lee et al., 2014), Ireland (Thornton et al.,
2012), Latvia (Tolmane et al., 2011), Netherlands (Vriend et al.,
2012), and Vietnam (Do et al., 2014). Figure 3 also shows the
functional relationship between the estimated fclearance and HCV
Figure 3. Relationship between hepatitis C virus (HCV) clearance rate (fclearance) and HC
relationship between the estimated fclearance and HCV viremic rate in the whole popula
prevalence in the population), as an illustrative example. The figure shows also fclearanc
population-based survey data.
viremic rate, as generated using the Egypt 2008 model as an
illustrative example. fclearance was found to linearly depend on HCV
viremic rate. The best fit line to the model predictions yielded the
following linear relationship:

f clearance ¼ 1:16 1 � HCV viremic rate from populationð
�based surveyÞ ð1Þ

All country-specific estimates for fclearance, from each individual
country-specific model, were found to lie very close to the curve
generated using the Egypt 2008 model (by changing the
background population antibody prevalence).

The above result establishes the functional relationship
between fclearance and HCV viremic rate in the whole population,
but HCV viremic rate is most often measured for specific risk
populations, such as PWID, rather than for the whole population
using probability-based and nationally representative surveys.
Figure 4 shows the estimated HCV viremic rate for each risk group
of the modeled 15 risk groups in the population, using the Egypt
2008 and NAHNES A models as illustrative examples. The figure
further displays HCV viremic rate for the whole population and
indicates fclearance as estimated above for each of Egypt 2008 and
NHANES A.

HCV viremic rate was found to increase with the level of risk of
exposure to HCV infection, and was highest among groups at
highest risk, particularly PWID (Figure 4). In the higher risk groups,
HCV viremic rate can be substantially higher than the HCV viremic
rate in the whole population—it could not be used to estimate
fclearance using Eq. (1). Meanwhile, HCV viremic rate in the lower
risk populations (say blood donors or pregnant women) was found
to be closer to HCV viremic rate in the whole population (with
slight underestimation)—it could be used to estimate approxi-
mately fclearance using Eq. (1).

The five conducted sensitivity analyses assessing the robustness
of our predictions to variations in the key measures or parameters
affirmed the robustness of the estimates for fclearance (Figure S2). They
also demonstrated the impact of variations in the different input
parameters on the estimated fclearance. Only small variations were
observed in the estimated fclearancedespite extreme variations in the
measures and parameters that may not be known with sufficient
precision, or suspected to potentially influence our predictions.

In the additional sensitivity analysis assessing the impact of
relaxing the assumption of endemic equilibrium, the estimated
V viremic rate in the whole population. The figure shows (solid line) the functional
tion, as generated using the Egypt 2008 model (by varying background antibody

e versus HCV viremic rate in the whole population as estimated using 10 different



Figure 4. Hepatitis C virus (HCV) viremic rate for each HCV risk group of the modeled 15 risk groups in the population, using the Egypt 2008 and NAHNES A models as
illustrative examples. The figure also shows HCV viremic rate for the whole population.
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fclearance for Egypt was 37.5%, within the range of the estimates
assuming endemic equilibrium, thereby affirming our conclusions.
In the sensitivity analysis assessing the impact of large uncertainty
in the input parameters, fclearance for Egypt 2008 was estimated at
39.3% (95% UI: 33.4%–46.1%)—affirming also our conclusions
despite the larger uncertainty interval.

Discussion

We estimated HCV clearance rate (fclearance) using a novel
analytical approach that avoids most limitations of the estimates of
longitudinal cohort studies. We found that fclearance is in the range
of 30–40%—substantially higher than the best estimates of cohort
studies of about 25% (Micallef et al., 2006; Grebely et al., 2014). We
also derived a simple relationship that can predict fclearance in the
whole population from a measure of HCV viremic rate in this
population (Eq. (1)). While quality probability-based and nation-
ally representative measures of HCV viremic rate may not be
available for most countries, we found that HCV viremic rate in low
risk populations, such as blood donors or pregnant women, can
approximately represent HCV viremic rate in the whole popula-
tion, and could be used to estimate fclearance for this population.
Meanwhile, we found that HCV viremic rate in high risk
populations, such as PWID, may not be representative of that in
the whole population and should not be used to infer fclearance in the
population.

Our finding that existing empirical measures from longitudinal
cohort studies are likely to have underestimated HCV spontaneous
clearance should not be surprising. Cohort studies reported
inconsistent estimates that ranged between 0%–57% (Micallef
et al., 2006; Grebely et al., 2014; Amin et al., 2007; Seeff, 2002). A
broad range of limitations have also been identified in these
studies, as reviewed in the introduction section above, and these
limitations could have affected these studies, as well as their
generalizability and representativeness.

While we introduced a method for estimating fclearance from HCV
viremic rate, existing literature suggests large variations in
measured HCV viremic rate (Harfouche et al., 2017). Figure 3
demonstrates this variability for the 10 population-based meas-
ures of HCV viremic rate from different countries. While it is
conceivable that there could be true variations in HCV viremic rate
reflecting underlying heterogeneity in the factors that affect
spontaneous clearance such as the population proportion of PWID,
type of population affected by HCV infection, gender, circulating
genotype, and level of HIV coinfection, we are more inclined to
believe that this variability arises mainly from differences in the
complex laboratory methods used to assess HCV viremic rate.

Assessment of HCV viremic rate requires a two-test algorithm,
for HCV Ab and HCV RNA, and the diagnostic assays and protocols
can vary from one study to another. Even small variation in analysis
methods, such as definition of the denominator in HCV viremic
rate, can lead to large variations in the estimated rate. An example
to this end can be seen in the difference between the two estimates
of NHANES A and NHANES B, where the difference relates solely to
how the denominator was defined. Another example is the
variation in the viremic rate in NHANES in recent rounds versus
earlier rounds, which in part may be due to a minor change in the
testing protocol starting from 2013 (Centers for Disease Control
and Prevention, 2016, 2018a, 2018b).

A recent comprehensive systematic meta-analysis of HCV
viremic rate measures in diverse populations in the Middle East
and North Africa supports this conjecture (Harfouche et al., 2017).
Though HCV viremic rate was found to vary extensively across
studies, the pooled means were similar irrespective of country or
subregion, population HCV Ab prevalence, or study sampling
method, among other factors. The overall pooled mean of all 178
measures was estimated at 67.6% (95% CI: 64.9–70.3%), closely
similar to the probability-based and nationally representative
estimates of the EDHS and NHANES (El-Zanaty and Way, 2009;
Ministry of Health and Population [Egypt] et al., 2015; NHANES,
1999–2012NHANES, 1999NHANES, 1999–2012). These consider-
ations advocate for use of one standardized methodology for the
definition and measurement of HCV viremic rate in the literature.
This will not only facilitate estimation of fclearance in a given
population, but (importantly) it will facilitate the use of the
viremic rate for assessing and monitoring the scale up and
coverage of HCV treatment programs, as we progress towards the
target of HCV elimination by 2030 (World Health Organization,
2016).

Our study has limitations. The introduced approach for
estimating fclearance is best implemented on probability-based
and nationally representative data, but such data are not yet



H.H. Ayoub et al. / International Journal of Infectious Diseases 75 (2018) 60–66 65
available in most countries. In absence of a standardized
methodology for estimating HCV viremic rate, measures will tend
to vary widely curtailing the utility of the introduced method to
estimate fclearance. A pooled measure (over many studies) for the
viremic rate, instead of a study-specific measure, may alleviate this
challenge as has been shown recently in the systematic meta-
analysis of HCV viremic rate data (Harfouche et al., 2017). We used
an elaborate mathematical model to capture the complexity of
HCV dynamics, but some of our model assumptions may not hold
and this could have affected our predictions. However, our model
yielded robust fits to the epidemiological measures (Table S2 in
SM), and we performed multiple sensitivity analyses on the model
output to assess the robustness of our estimates—these analyses
affirmed our findings (Figure S2).

We did not incorporate treatment coverage for HCV chronically
infected individuals, but treatment coverage has been very low up
to the recent scale up of direct-acting antivirals (DAAs) programs
(Ayoub and Abu-Raddad, 2017; World Health Organization, 2016;
Polaris Observatory, 2018; Egypt Ministry of Health and Popula-
tion, 2014), and therefore could not have affected the model input
data, such as those of EDHS and NHANES, or the model output. We
assumed that those exposed to HCV infection will be HCV Ab
positive for life, which may have underestimated the clearance rate
if considerable fraction of individuals lose their antibodies over
time. We assessed the clearance rate in Egypt and USA where the
dominant genotypes are 4 (Mahmud et al., 2018) and 1 (Klevens
et al., 2012), respectively, but these results may not be generaliz-
able to other settings where other genotypes, such as genotype 3
(Messina et al., 2015), are dominant. For simplicity, we did not
explicitly incorporate gender or full dynamics details of injecting
drug use in the model.

Our study has key strengths. We used a novel approach to
estimate fclearance that builds on the success of related approaches
applied for HIV infection (Bellan et al., 2015; Chemaitelly et al.,
2014) among other infections (Omori et al., 2018). Our approach
provided an independent estimate for fclearance that avoids most
limitations of empirical measures. fclearance estimation was based
on state of the art population-based input data generated through
rigorous probability-based and nationally representative sam-
pling. The fclearance estimates were also generated as averages for
the whole population, and therefore are representative of the
diversity of factors that exists in the whole population (and may
affect clearance) such as socio-demography, mode of acquisition
and associated inoculum effect, heterogeneity in risk of exposure,
interplay of host and virus factors, infection symptoms, and risk of
reinfection. This is to be contrasted with cohort studies that recruit
from specific settings and populations, such as PWID, who may not
be representative of the wider population exposed to HCV
infection.

Moreover, existing literature (Micallef et al., 2006; Grebely
et al., 2014; Amin et al., 2007; Harfouche et al., 2017) supports our
modeling results that the viremic rate is higher among PWID than
among the wider population. For example, the viremic rate in the
NHANES A analysis was 74.9% (67.3–81.9%) among PWID versus
69.9% (59.2–79.7%) in the wider population—while the difference
is not statistically significant, it is suggestive of higher viremic rate
among PWID.

Importantly, we introduced a simple equation for deriving
fclearance from HCV viremic rate, and this equation clarifies the
subtle link between fclearance and HCV viremic rate, two distinct
measures that seem often to be confused as one measure. The
fclearance estimate was found higher than estimated using the
simplistic formula f clearance ¼ 1 � HCV viremic rateð Þ. The differ-
ence is due to reinfection, as people who clear their infection can
be re-exposed leading to chronic infection despite earlier
clearance, as well as to the finite and not too small months-long
duration of primary acute infection.

Lastly, we conducted an extensive uncertainty analysis around
the estimated clearance rates. This analysis captured more sources
of uncertainty than possible through conventional maximum
likelihood parameter-estimation methods. For example, the
estimated clearance rates for Egypt 2008 and NHANES A using a
maximum likelihood approach are 39.9% (95% CI: 39.8–40.3%) and
29.6% (95% CI: 29.3–29.8%), respectively—the narrow confidence
intervals being a consequence of the very large sample sizes of
these national surveys.

In conclusion, about one-third of HCV infected persons clear
their infection spontaneously, indicating that empirical measures
from longitudinal cohort studies may have underestimated the
capacity of the host immune system to clear HCV infection. This
finding has implications for the ongoing efforts to estimate HCV
infection burden, and to plan for health services provision. This
finding also may have implications for our understanding of the
biological determinants of HCV spontaneous clearance. It may
hint that a strategy for HCV vaccine development could be a
vaccine that does not necessarily prevent infection, but modu-
lates immune response towards conditions that increase the
capacity of the host immune system to clear HCV infection
spontaneously.

Acknowledgements

The authors are thankful for The Demographic and Health
Surveys Program and for the National Health and Nutrition
Examination Survey for putting the country-specific demographic
and health data in the service of science, and for the United States
Agency for International Development and the Centers for Disease
Control and Prevention, among other donors, supporting these
initiatives.

Conflict of interest

The authors have no conflicts of interest to disclose.

Authors’ contributions

HHA conducted the mathematical modeling analyses and co-
wrote the first draft of the paper. HC supported the model
parameterization through statistical analyses and co-wrote the
first draft of the paper. RO contributed to the modeling analyses.
LJA conceived and led the design of the study, analyses, and
drafting of the article. All authors have read and approved the final
manuscript.

Financial support

This publication was made possible by NPRP grant number 9-
040-3-008 from the Qatar National Research Fund (a member of
Qatar Foundation). The findings achieved herein are solely the
responsibility of the authors. The authors are also grateful for
support provided by the Biostatistics, Epidemiology, and Biomath-
ematics Research Core at Weill Cornell Medicine-Qatar.

Disclose funding received for this work

Others.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at https://doi.org/10.1016/j.ijid.2018.07.013.

https://doi.org/10.1016/j.ijid.2018.07.013


66 H.H. Ayoub et al. / International Journal of Infectious Diseases 75 (2018) 60–66
References

Aceijas C, Stimson GV, Hickman M, Rhodes T. Global overview of injecting drug use
and HIV infection among injecting drug users. AIDS 2004;18:2295–303.

Amin J, Law M, Micallef J, Jauncey M, Van Beek I, Kaldor J, et al. Potential biases in
estimates of hepatitis C RNA clearance in newly acquired hepatitis C infection
among a cohort of injecting drug users. Epidemiol Infect 2007;135:144–50.

Awad SF, Abu-Raddad LJ. Could there have been substantial declines in sexual risk
behavior across sub-Saharan Africa in the mid-1990s?. Epidemics 2014;8:9–17.

Ayoub HH, Abu-Raddad LJ. Impact of treatment on hepatitis C virus transmission
and incidence in Egypt: a case for treatment as prevention. J Viral Hepat
2017;24:486–95.

Ayoub HH, Al-Kanaani Z, Abu-Raddad LJ. Characterizing the temporal evolution of
the hepatitis C virus epidemic in Pakistan. J Viral Hepat 2018;25:670–9.

Barendregt JJ, Van Oortmarssen GJ, Vos T, Murray CJ. A generic model for the
assessment of disease epidemiology: the computational basis of DisMod II.
Popul Health Metr 2003;1:4.

Barrat A, Barthelemy M, Pastor-Satorras R, Vespignani A. The architecture of
complex weighted networks. Proc Natl Acad Sci U S A 2004;101:3747–52.

Bellan SE, Dushoff J, Galvani AP, Meyers LA. Reassessment of HIV-1 acute phase
infectivity: accounting for heterogeneity and study design with simulated
cohorts. PLoS Med 2015;12:e1001801.

Centers for Disease Control and Prevention. National Health and Nutrition
Examination Survey: 2015–2016 Data Documentation, Codebook, and Frequen-
cies. https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/HEPC_I.htm. Published
September 2017. [Accessed 10 July 2018].

Centers for Disease Control and Prevention. National Health and Nutrition
Examination Survey: 2007–2012 Data Documentation, Codebook, and Fre-
quencies. https://wwwn.cdc.gov/Nchs/Nhanes/2007-2008/SSHCV_E.htm. Pub-
lished February 2015. [Accessed 10 July 2018].

Centers for Disease Control and Prevention. National Health and Nutrition
Examination Survey: 2013–2014 Data Documentation, Codebook, and Frequen-
cies. https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/SSHEPC_H.htm. Pub-
lished January 2018. [Accessed 10 July 2018].

Chemaitelly H, Awad SF, Abu-Raddad LJ. The risk of HIV transmission within HIV-1
sero-discordant couples appears to vary across sub-Saharan Africa. Epidemics
2014;6:1–9.

Choo Q-L, Kuo G, Weiner AJ, Overby LR, Bradley DW, Houghton M. Isolation of a
cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome.
Science 1989;244:359–62.

Cuadros DF, Crowley PH, Augustine B, Stewart SL, García-Ramos G. Effect of variable
transmission rate on the dynamics of HIV in sub-Saharan Africa. BMC Infect Dis
2011;11:1.

DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials
1986;7:177–88.

Deuffic-Burban S, Yazdanpanah Y. Mathematical modeling: a tool for selecting
agents with complementary modes of action. J Hepatol 2013;59:1346–8.

Di Bisceglie AM. Natural history of hepatitis C: its impact on clinical management.
Hepatology 2000;31:1014–8.

Do SH, Yamada H, Fujimoto M, Ohisa M, Matsuo J, Akita T, et al. High prevalences of
hepatitis B and C virus infections among adults living in Binh Thuan province,
Vietnam. Hepatol Res 2014;45:259–68.

Egypt Ministry of Health and Population. Plan of Action for the Prevention, Care &
Treatment of Viral Hepatitis, Egypt 2014–2018. http://www.emro.who.int/
images/stories/egypt/VH_Plan_of_Action_FINAL_PRINT1.pdf. 2014.

El-Zanaty F, Way A. Egypt demographic and health survey 2008. Cairo, Egypt:
Ministry of Health, El-Zanaty and Associates, and Macro International; 2009.

Garnett GP, Anderson RM. Factors controlling the spread of HIV in heterosexual
communities in developing countries: patterns of mixing between different age
and sexual activity classes. Philos Trans R Soc B Biol Sci 1993;342:137–59.

Grebely J, Page K, Sacks-Davis R, Loeff MS, Rice TM, Bruneau J, et al. The effects of
female sex, viral genotype, and IL28B genotype on spontaneous clearance of
acute hepatitis C virus infection. Hepatology 2014;59:109–20.

Hajarizadeh B, Grebely J, Dore GJ. Epidemiology and natural history of HCV
infection. Nat Rev Gastroenterol Hepatol 2013;10:553–62.

Hamilton DT, Handcock MS, Morris M. Degree distributions in sexual networks: a
framework for evaluating evidence. Sex Transm Dis 2008;35:30.

Handcock MS, Jones JH. Likelihood-based inference for stochastic models of sexual
network formation. Theor Popul Biol 2004;65:413–22.

Harfouche M, Chemaitelly H, Kouyoumjian SP, Mahmud S, Chaabna K, Al-Kanaani Z,
et al. Hepatitis C virus viremic rate in the Middle East and North Africa:
systematic synthesis, meta-analyses, and meta-regressions. PLoS One 2017;12:
e0187177.

Klevens RM, Hu DJ, Jiles R, Holmberg SD. Evolving epidemiology of hepatitis C virus
in the United States. Clin Infect Dis 2012;55:S3–9.

Kuo G, Choo Q, Alter H, Gitnick G, Redeker A, Purcell R, et al. An assay for circulating
antibodies to a major etiologic virus of human non-A, non-B hepatitis. Science
1989;244:362–4.

Lagarias JC, Reeds JA, Wright MH, Wright PE. Convergence properties of the Nelder–
Mead simplex method in low dimensions. SIAM J Optim 1998;9:112–47.
Lansky A, Finlayson T, Johnson C, Holtzman D, Wejnert C, Mitsch A, et al. Estimating
the number of persons who inject drugs in the United States by meta-analysis to
calculate national rates of HIV and hepatitis C virus infections. PLoS One 2014;9:
e97596.

Lavanchy D. Evolving epidemiology of hepatitis C virus. Clin Microbiol Infect
2011;17:107–15.

Lee M-H, Yang H-I, Yuan Y, L’Italien G, Chen C-J. Epidemiology and natural history of
hepatitis C virus infection. World J Gastroenterol 2014;20:9270.

Lemon SM. Induction and evasion of innate antiviral responses by hepatitis C virus. J
Biol Chem 2010;285:22741–7.

Li K, Lemon SM. Innate immune responses in hepatitis C virus infection. Semin
Immunopathol 2013;35:53–72.

MATLAB1. The language of technical computing. The MathWorks, Inc.; 2013.
Mahmud S, Al-Kanaani Z, Chemaitelly H, Chaabna K, Kouyoumjian SP, Abu-Raddad

LJ. Hepatitis C virus genotypes in the Middle East and North Africa: distribution,
diversity, and patterns. J Med Virol 2018;90:131–41.

Messina JP, Humphreys I, Flaxman A, Brown A, Cooke GS, Pybus OG, et al. Global
distribution and prevalence of hepatitis C virus genotypes. Hepatology
2015;61:77–87.

Micallef J, Kaldor J, Dore G. Spontaneous viral clearance following acute hepatitis C
infection: a systematic review of longitudinal studies. J Viral Hepat 2006;13:34–
41.

Micallef JM, Macdonald V, Jauncey M, Amin J, Rawlinson W, van Beek I, et al. High
incidence of hepatitis C virus reinfection within a cohort of injecting drug users.
J Viral Hepat 2007;14:413–8.

Ministry of Health and Population [Egypt], El-Zanaty and Associates [Egypt], ICF
International. Egypt health issues survey 2015. 2015 Cairo, Egypt and Rockville,
Maryland, USA, p. 234.

Mohd Hanafiah K, Groeger J, Flaxman AD, Wiersma ST. Global epidemiology of
hepatitis C virus infection: new estimates of age-specific antibody to HCV
seroprevalence. Hepatology 2013;57:1333–42.

Mumtaz GR, Weiss HA, Thomas SL, Riome S, Setayesh H, Riedner G, et al. HIV among
people who inject drugs in the Middle East and North Africa: systematic review
and data synthesis. PLoS Med 2014;11.

NHANES. National Health and Nutrition Examination Survey. http://www.cdc.gov/
nchs/nhanes/nhanes_questionnaires.htm; 1999–2012.

Omori R, Chemaitelly H, Abu-Raddad LJ. Dynamics of non-cohabiting sex partnering
in sub-Saharan Africa: a modelling study with implications for HIV transmis-
sion. Sex Transm Infect 2015;91:451–7.

Omori R, Chemaitelly H, Althaus CL, Abu-Raddad LJ. Does infection with Chlamydia
trachomatis induce long-lasting partial immunity? Insights from mathematical
modelling. Sex Transm Infect 2018; in press.

Page K, Hahn JA, Evans J, Shiboski S, Lum P, Delwart E, et al. Acute hepatitis C virus
infection in young adult injection drug users: a prospective study of incident
infection, resolution, and reinfection. J Infect Dis 2009;200:1216–26.

Pawlotsky J-M, Tsakiris L, Roudot-Thoraval F, Pellet C, Stuyver L, Duval J, et al.
Relationship between hepatitis C virus genotypes and sources of infection in
patients with chronic hepatitis C. J Infect Dis 1995;171:1607–10.

Pereira LM, Martelli CM, Moreira RC, Merchan-Hamman E, Stein AT, Cardoso RMA,
et al. Prevalence and risk factors of hepatitis C virus infection in Brazil, 2005
through 2009: a cross-sectional study. BMC Infect Dis 2013;13:60.

Polaris Observatory. http://polarisobservatory.org/polaris/hepC.htm. 2018.
Ray SC, Wang YM, Laeyendecker O, Ticehurst JR, Villano SA, Thomas DL. Acute

hepatitis C virus structural gene sequences as predictors of persistent viremia:
hypervariable region 1 as a decoy. J Virol 1999;73:2938–46.

Seeff LB. Natural history of chronic hepatitis C. Hepatology 2002;36:S35–46.
Soriano V, Mocroft A, Rockstroh J, Ledergerber B, Knysz B, Chaplinskas S, et al.

Spontaneous viral clearance, viral load, and genotype distribution of hepatitis C
virus (HCV) in HIV-infected patients with anti-HCV antibodies in Europe. J
Infect Dis 2008;198:1337–44.

Takaki A, Wiese M, Maertens G, Depla E, Seifert U, Liebetrau A, et al. Cellular
immune responses persist and humoral responses decrease two decades after
recovery from a single-source outbreak of hepatitis C. Nat Med 2000;6:578–82.

Thornton L, Murphy N, Jones L, Connell J, Dooley S, Gavin S, et al. Determination of
the burden of hepatitis C virus infection in Ireland. Epidemiol Infect
2012;140:1461–8.

Tolmane I, Rozentale B, Keiss J, Arsa F, Brigis G, Zvaigzne A. The prevalence of viral
hepatitis C in Latvia: a population-based study. Medicina 2011;47:532–5.

Vickerman P, Hickman M, Judd A. Modelling the impact on hepatitis C transmission
of reducing syringe sharing: London case study. Int J Epidemiol 2007;36:396–
405.

Vickerman P, Martin NK, Hickman M. Understanding the trends in HIV and hepatitis
C prevalence amongst injecting drug users in different settings—implications
for intervention impact. Drug Alcohol Depend 2012;123:122–31.

Vriend HJ, de Coul ELO, Van De Laar TJ, Urbanus AT, Van Der Klis FR, Boot HJ.
Hepatitis C virus seroprevalence in The Netherlands. Eur J Public Health
2012;22:819–21.

World Health Organization. Combating hepatitis B and C to reach elimination by
2030. Geneva, Switzerland: World Health Organization; 2016.

http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0005
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0005
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0010
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0010
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0010
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0015
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0015
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0020
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0020
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0020
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0025
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0025
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0030
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0030
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0030
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0035
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0035
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0040
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0040
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0040
https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/HEPC_I.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2007-2008/SSHCV_E.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/SSHEPC_H.htm
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0060
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0060
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0060
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0065
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0065
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0065
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0070
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0070
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0070
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0075
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0075
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0080
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0080
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0085
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0085
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0090
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0090
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0090
http://www.emro.who.int/images/stories/egypt/VH_Plan_of_Action_FINAL_PRINT1.pdf
http://www.emro.who.int/images/stories/egypt/VH_Plan_of_Action_FINAL_PRINT1.pdf
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0100
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0100
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0105
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0105
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0105
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0110
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0110
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0110
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0115
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0115
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0120
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0120
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0125
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0125
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0130
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0130
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0130
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0130
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0135
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0135
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0140
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0140
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0140
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0145
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0145
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0150
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0150
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0150
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0150
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0155
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0155
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0160
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0160
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0165
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0165
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0170
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0170
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0175
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0180
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0180
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0180
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0185
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0185
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0185
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0190
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0190
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0190
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0195
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0195
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0195
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0200
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0200
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0200
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0205
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0205
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0205
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0210
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0210
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0210
http://www.cdc.gov/nchs/nhanes/nhanes_questionnaires.htm
http://www.cdc.gov/nchs/nhanes/nhanes_questionnaires.htm
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0220
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0220
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0220
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0225
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0225
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0225
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0230
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0230
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0230
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0235
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0235
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0235
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0240
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0240
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0240
http://polarisobservatory.org/polaris/hepC.htm
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0250
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0250
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0250
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0255
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0260
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0260
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0260
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0260
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0265
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0265
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0265
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0270
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0270
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0270
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0275
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0275
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0280
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0280
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0280
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0285
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0285
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0285
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0290
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0290
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0290
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0295
http://refhub.elsevier.com/S1201-9712(18)34472-2/sbref0295

	Hepatitis C virus infection spontaneous clearance: Has it been underestimated?
	Introduction
	Materials and methods
	Conceptual framework and key definitions
	Model description
	Model parameterization
	Model fitting
	Uncertainty analysis
	Sensitivity analyses

	Results
	Discussion
	Acknowledgements
	Conflict of interest
	Authors’ contributions
	Financial support
	Disclose funding received for this work
	Appendix A Supplementary data
	References


