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Summary. Health economic decision models are subject to various forms of uncertainty, in-
cluding uncertainty about the parameters of the model and about the model structure. These
uncertainties can be handled within a Bayesian framework, which also allows evidence from
previous studies to be combined with the data. As an example, we consider a Markov model for
assessing the cost-effectiveness of implantable cardioverter defibrillators. Using Markov chain
Monte Carlo posterior simulation, uncertainty about the parameters of the model is formally
incorporated in the estimates of expected cost and effectiveness. We extend these methods
to include uncertainty about the choice between plausible model structures. This is accounted
for by averaging the posterior distributions from the competing models using weights that are
derived from the pseudo-marginal-likelihood and the deviance information criterion, which are
measures of expected predictive utility. We also show how these cost-effectiveness calculations
can be performed efficiently in the widely used software WinBUGS.

Keywords: Bayesian model comparison; Health economics; Markov chain Monte Carlo
methods; Model averaging; Model uncertainty.

1. Uncertainty in health economic decision models

Cost-effectiveness models are now routinely used by health policy makers to evaluate medical
interventions and to allocate resources. These are often discrete time Markov models for the
occurrence of clinical events (Briggs et al., 2006). Each event or clinical state is associated with
a monetary cost and a measure of benefit such as quality-adjusted life. The model parameters
are usually informed by several sources of data, including clinical trials, hospital registers and
population mortality statistics. The aim of the model is to estimate the long-term expected cost
and benefit of one treatment compared with another, which are a complex function of the model
parameters. This result is subject to a range of uncertainties, including uncertainties about the
choice of model and about the parameters of a chosen model. In these models, short-term
evidence, typically from randomized trials with follow-up of a few years, must be extrapolated
to many years or even patients’ lifetimes. A set of alternative models which are all plausible in
the short term may produce widely varying lifetime results.

Uncertainty about the parameters is normally incorporated by using probabilistic sensitivity
analysis (Claxton et al., 2002). However, uncertainty about the model structure itself is usually
investigated by presenting the results under a series of alternative assumptions, but with no
formal indication of their relative plausibility. Typical assumptions that are considered as
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‘structural’ include the choice of clinical events or states and permitted transitions between
them, the way in which each transition probability depends on patients’ characteristics or varies
through time, or the choice of data that are used to inform the model (Bojke et al., 2006). Where
data exist to test each structural assumption, statistical methods for model assessment can be
used to estimate the weight of evidence for each model structure, to aid the decision maker in
their interpretation of the results. Jackson et al. (2009) discussed the use of model averaging
to account for structural uncertainty in health economic models. Models were fitted by using
maximum likelihood and their results weighted by using likelihood-based information criteria.
In this paper, these methods for model uncertainty are generalized to a fully Bayesian setting.
Bayesian models, in particular implemented by Markov chain Monte Carlo (MCMC) posterior
sampling, are increasingly used in health policy evaluations, because of the convenient frame-
work that they provide for synthesizing multiple sources of uncertain evidence (Spiegelhalter
et al., 2004).

We present a Bayesian model for the cost-effectiveness of two strategies for the prevention of
cardiac arrhythmia and formally account for both parameter and model uncertainty. Firstly, the
expected cost and benefit are complex functions of the model parameters. Normally in health
economic models (Briggs et al., 2006) probabilistic sensitivity analysis involves choosing distri-
butions from standard families, often independent, to approximate the joint uncertainty about
allmodel parameters. The resulting distribution of expected costs and benefits is accumulated via
repeated sampling from the parameter distributions. Instead, by using fully Bayesian, one-stage
model fitting and cost-effectiveness prediction, we can automatically sample from the required
posterior distribution instead of approximating it. Parameter uncertainty is propagated formally
to the model outputs, accounting for all correlations between the parameters. This method was
previously demonstrated for simple Markov health economic models by Spiegelhalter and Best
(2003) and Cooper et al. (2004), using the freely available software WinBUGS (Lunn et al.,
2000). One disadvantage of this implementation, which was cited by Cooper ez al. (2004), is that
it is computationally slow. We show how it can be adapted to handle arbitrarily complex model
structures at little extra computational cost, by using an extension of WinBUGS (Lunn, 2003)
that enables complex functions of parameters to be calculated substantially faster.

Secondly, this application involves several choices between plausible model structures, includ-
ing the choice of covariates for the incidence of clinical events, and different parametric forms
for the relationship of mortality to age. Rather than just presenting the results under each of
these alternative scenarios, we take formal statistical account of model structure uncertainty.
We assess the relative plausibility of these scenarios against data by estimating the expected
predictive utility of each model by using the cross-validatory ‘pseudo-marginal-likelihood’
(PML) (Geisser and Eddy, 1979; Gelfand and Dey, 1994) and the commonly used deviance
information criterion (Spiegelhalter et al., 2002). The differences in these measures between
models can be ‘calibrated’ by a Bayesian bootstrap procedure, to produce the probability that
each model has the highest expected predictive utility for a replicate data set, among the models
being compared. These probabilities can then be used to produce a model-averaged posterior
distribution which allows for sampling uncertainty about model selection. This differs from
the usual Bayesian model averaging procedure, in that we do not consider prior or posterior
probabilities of the models being true, since we believe that the true process underlying our
clinical history data is extremely complex.

In the following section, we introduce the application to cardiac arrhythmia, describe how
cost-effectiveness is estimated and present a set of reasonable alternative models for the data. In
Section 3 we describe how the posterior distributions of cost and effectiveness can be estimated
directly, accounting for the uncertainty in the model parameters, and how this estimation can
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be performed efficiently in WinBUGS. In Section 4, we describe measures of Bayesian model
adequacy that are based on expected predictive utility, which may be used to estimate selection
probabilities for the alternative models and produce a model-averaged posterior distribution.
The inferences from the individual models, the model adequacy measures and the model-
averaged inferences for our application are presented in Section 5. We conclude with a discussion
of further complexities of health economic decision models which may be addressed in this
Bayesian framework.

The data that are analysed in the paper and the programs that were used to analyse them can
be obtained from

http://www.blackwellpublishing.com/rss

2. Application: implantable cardioverter defibrillators

A Markov decision model has been developed to estimate the cost and effectiveness of implant-
able cardioverter defibrillators (ICDs), relative to anti-arrhythmic drug (AAD) treatment, for
the prevention of cardiac arrhythmia among patients at high risk of sudden cardiac death
(Buxton et al., 2006). To inform this model, individual data from 535 patients implanted with
ICDs at two UK centres were combined with individual data from 430 patients from the
Canadian Implantable Defibrillator Study (O’Brien et al., 2001) randomized controlled trial,
of ICD implantation compared with treatment with the AAD amiodarone. The data consist of
baseline demographic and risk factor information, longitudinal histories of hospital admissions
and dates of death or censoring. The mean follow-up time was 3.68 years, with a maximum
follow-up of 7.04 years, after ICD implantation or initiation of AAD treatment.

2.1. Base case Markov model

The ‘base case’ model, which will be compared against alternative model structures, is an eight-
state Markov model with a daily discrete time unit. This is described in detail elsewhere (Buxton
et al.,2006); a summary is presented here. The permitted transitions between the eight states are
illustrated in Fig. 1. The states correspond to alive and out of hospital (state r = 1), admission

to hospital for six alternative reasons (states r=2,...,7) and death from any cause (state r =8).
Several covariates are assumed to affect probabilities of hospital admission and mortality, via
multinomial logistic regression. Let (X;js:5=1,...,8) be the number of observed transitions

from state r to each state s, for patient 7 in year j after start of treatment, and N, = Ele Xijrs.
This is modelled as

Xijr1s- -, Xijrg) ~multinomial(Njjr; pijr1s - - -5 Pijr8)s
K
log(pijrs/pijrl)zﬂrs+Zﬁrskxijky r=19'-'983 S=2a"'a87 (1)
k=1

where p; j, is the transition probability from state r to state s, for patient i in year j with covariates
Xijl,--»XijK- Pijrs =0 for transitions that are not indicated in Fig. 1, such as transitions from
one hospital admission state to another, and p; ;| is defined so that 258=1 pijrs=1.The transitions
are aggregated by year j so that time-dependent covariates can be included, which are assumed
to be constant within each year.

Four baseline binary covariates were considered: treatment (3,5 is the effect of AAD
treatment, compared with ICD), sex (8, is the effect of female, compared with male), left
ventricular ejection fraction LVEF (5,3 is the effect of LVEF < 35%, compared with LVEF
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Fig. 1. Daily Markov model for hospitalization and death among patients at risk of cardiac arrythmia: on the
next day, patients can either remain in the same state or move to one of the permitted states indicated

> 35%) and country of treatment (5,5 is the effect of treatment in the UK, compared with
Canada). Age is treated as a time-dependent covariate with a piecewise constant effect (base-
line: under age 60 years, (5 for age 60-70 years and (,s for age 70 years or over). Certain
constraints were imposed on the covariate effects owing to the sparsity of data (Buxton et al.,
20006).

(a) Only two out of the 174 observed deaths followed a day spent in hospital; therefore the
baseline risk of death and all effects on that risk were assumed to be independent of the
state on the day before death, so u,g = up for all r and S8 = Bpi for all r and k.

(b) The only covariate that is assumed to affect the length of stay in hospital is country of
treatment, so 3, =0 for all k other than k =4.

(c) No effect of country of treatment is assumed for the rate of hospital admission and the
length of hospital stay for drug side-effects (state 7), so 3174 = 5774 = 0. There were no
admissions for this cause in the UK data.

Thus, in this base case model, there are 59 unknown parameters s, S = ., 7(6); Bisk, s =
2,6,k =1,..,630); Birik=1,2,3,5,6 (5); jirr, r=2,...,7 (6); 5rr4,r— - 6(5); pup (1);
ﬁDk,k=1,---,6(6)-

2.2. Prior distributions and implementation

The prior distribution for pi, the treatment effect on mortality, was normal, mean 0.414,
standard deviation 0.16, taken from a fixed effect meta-analysis of two previous randomized
trials of ICD versus AAD treatment (AVID Investigators, 1997; Kuck et al., 2000). Widely
dispersed prior distributions (normal, mean 0, standard deviation 10) are assumed for all other
parameters. The posterior distributions are estimated by using Gibbs and Metropolis MCMC
sampling, in the WinBUGS software (Lunn et al., 2000). The code that was required to run this
base case model is available from http://www.blackwellpublishing.com/rss.
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2.3. Cost-effectiveness estimation
The expected costs and benefits of ICD compared with AAD treatment for a ‘typical patient’
are estimated, as part of the model, as follows. The patient is defined by a set of covariate values,
including age at ICD implant or initiation of AAD therapy. Let P, be the transition probability
matrix of the Markov model at day ¢ for this patient, which is time dependent since it varies
according to the patient’s age, among other patient characteristics. The vector of probabilities
7, that a patient is in each state on day ¢ follows the recursive relationship m; =7, P, where
7o 18 such that an individual is in state 1 (out of hospital) with probability 1 at day 0. There is a
vector of costs ¢, = (c1y, - - -, cgy) associated with 1 day spent in each of the eight states, and a
fixed initial cost c,, for ICD implantation (« = 1) or drugs (u =0). Future costs are discounted
(Briggs et al., 2006) at a rate of 1006% per day. Then the total expected cost over T days for
treatment u is

T W;C/
E(Cy) =cou +t:Z:1 W 2
There is an analogous formula for the total expected benefit E(B,). In this example, benefit
is expressed in quality-adjusted life years (QALYs), and the discount rate for both costs and
QALYs was 3.5% per year. Life years were quality adjusted by using standard age-dependent
utilities of 0.75 for all hospital and out-of-hospital states and both treatments. The daily costs
that were used in the analysis, determined from the average experience of UK patients, are listed
in Table 1.

The model is run twice, once assuming a policy of ICD implantation, and once with a policy
of AAD therapy. The model is run for an ICD or AAD patient of average age, taken to be
63 years of age and with low LVEF. Around 87% of such individuals are male, so the binary
‘female’ covariate for the ‘typical’ patient is set to 0.13. The time horizon 7T is a ‘lifetime’ of
100 years after the starting age of 63 years. The targets of estimation are the incremental cost
Ac=E(Cy) — E(Cy) of ICD compared with AAD, the incremental benefit Ag = E(B1) — E(By),
and the incremental cost-effectiveness ratio (ICER) Ac/Ag, interpreted as the additional cost
per QALY of ICD compared with AAD.

2.4. Structural uncertainties
The Markov model that was described in Section 2.1 involves several uncertain choices of model
structure. We fit several plausible variants of the base case model to examine the uncertainty

Table 1. Costs for each statet

State Cost (£) for ICD (u=1) Cost (£) for AAD (u=20)
¢y nitial costs 23841 1566
Daily costs

1, out of hospital 2.30 2.43
2, arrhythmic 526

3, other cardiac 519.50

4, non-cardiac 296.50

5, ICD maintenance 646

6, ICD replacement 5495.50

7, AAD side-effects 122

8, death 0

TCosts for states 2-8 are common for ICD and AAD treatment.
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surrounding the structural assumptions. The base case model is labelled M1, and the alternative
models M>, ..., M.

2.4.1.  Covariate selections

Covariate selection is a common form of model uncertainty. The base case model includes
the effects of four time constant covariates and one time-dependent covariate on 19 possible
transitions, with constraints which give a total of 59 unknown parameters. Including unneces-
sary covariate effects may lead to a model with high predictive mean-square error, and omitting
necessary covariates may result in bias. Therefore, a set of three plausible alternative restrictions
M>—M, on the covariates was chosen, guided by the estimated covariate effects under the base
case model. As each MCMC model fit took several hours, it would have been impractical to
fit and compare models with every possible combination of covariates. There are alternative
methods of constructing a single MCMC sampler which mixes over the space of competing
models (see Section 6.5), but these require specialized programming.

(a) M»: an extra piecewise constant effect of age on length of stay in hospital is included,
alongside the effect of country (12 parameters more than the base case).

(b) Msj:all covariate effects on hospital admission for AAD side-effects, other than treatment,
are removed (giving four fewer parameters than the base case).

(c) My: all effects of sex are excluded, other than the effects on death and hospital admission
for cardiac arrhythmia (five fewer parameters than the base case).

2.4.2.  Extrapolation of age effects on survival

A particularly questionable assumption in the base case analysis is the piecewise constant
dependence of mortality on age, with effects for age under 60, age 60-70 and age 70 years
or over. The risk of mortality was assumed to be constant for all patients over 70 years old. In
this population, the probability of survival beyond age 80 years (from Kaplan—Meier estimates)
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Fig. 2. Unadjusted log-odds of death in 1 day (with 95% confidence intervals) against age for UK and
Canada ICD study patients, calculated from counts of deaths per year (least-squares-fitted functions of
log-odds of death as a function of age are illustrated, along with the log-odds of death for the general UK
population; extrapolations beyond the range of the data are drawn in light grey): , UK population (female);
- — -, UK population (male); , step function on three age periods; ------- , linear;«------ , quadratic;
------- , cubic; — — —, quartic
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is about 20%; therefore different models for this age dependence may have a substantial effect
on estimates of the treatment effectiveness in terms of quality-adjusted survival.

In Fig. 2, point estimates and confidence intervals for the log-odds of death within 1 day,
calculated from yearly counts of deaths in the study population, are plotted against age. Only
sparse data are available to inform plausible age-mortality models beyond age 80 years. Fig. 2
illustrates a series of polynomial regressions fitted to the yearly point estimates of log-odds. These
all seem to fit the study data reasonably well, but there are potentially important differences
between the models in the extrapolated log-odds among the oldest ages. Therefore, three
alternative models are fitted in which the piecewise constant effect of age on each log-odds
of transition (equation (1)) is replaced by polynomial functions:

(a) Ms, a quadratic function of age (same number of parameters as the base case);
(b) Mg, a cubic function of age (seven more parameters than the base case);
(c) M7, a quartic function of age (14 more parameters than the base case).

A further three models Mg, My and M are fitted as extensions of Ms, Mg and M7 respectively,
which also include an interaction between all age terms and treatment. These have 14, 28 and
42 more parameters respectively than the base case.

3. Probabilistic sensitivity analysis

The effect of parameter uncertainty on the expected cost E(C) and expected benefit E(B) is
accounted for by probabilistic sensitivity analysis. In cost-effectiveness models, this usually
involves choosing distributions for all unknown parameters after the models have been estimated
(Briggs et al. (2006), chapter 4). Monte Carlo simulation from these distributions then leads
to distributions for E(C) and E(B). This is termed a two-stage method (Spiegelhalter and
Best, 2003). Typically, standard distributions are chosen to approximate the marginal posterior
of each parameter, such as beta distributions for probabilities and normal distributions for
unbounded parameters, with means and variances inferred from data. Correlations between
parameters are difficult to specify in practice and are often ignored.

In a fully Bayesian framework, however, the appropriate joint distribution can be automati-
cally identified from the data. After convergence, MCMC simulation produces a sample from
the joint posterior distribution of all parameters and functions of parameters, including E(C)
and E(B). Thus model fitting and probabilistic sensitivity analysis can be accomplished in a
one-stage method (which was termed a comprehensive decision model by Cooper et al. (2004)),
avoiding the need to specify potentially inaccurate distributions for the parameters and account-
ing fully for parameter correlations.

The estimated distributions of E(C) and E(B) lead to a posterior probability of cost-effective-
ness PCE()\), which is defined as the probability of a positive incremental net benefit:

PCE(\) = P(AAB — Ac >0), 3)

where the ‘threshold’ A is the amount of money that a policy maker is willing to pay for 1 unit
of benefit (such as a QALY).

3.1. Implementation in WinBUGS

The one-stage method for cost-effectiveness estimation was previously described by Spiegel-
halter and Best (2003), who demonstrated how a simple example can be implemented in the
WinBUGS software for MCMC sampling. In WinBUGS, users can define arbitrarily general
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models by using the BUGS language (Lunn et al., 2000) and estimate the posterior distributions
of functions of the model parameters. However, as noted by Cooper et al. (2004), this can be
slow for complex cost-effectiveness models. For example, our analysis requires calculating the
expected lifetime cost (equation (2)), which involves over 365 x 100 multiplications of 8 x 8
matrices, one for each daily time unit over 100 years. This is currently computationally infeasible
when specified by using the BUGS language.

To perform this computation we use the WBDev interface (Lunn, 2003) which enables users
to write extensions to the core WinBUGS software. This can be used to calculate complex
deterministic functions of parameters, or to enable arbitrary univariate statistical distributions
to be employed in models. By ‘hard-wiring’ these calculations into the software as compiled
code, large computational savings can be made. This approach allows the benefits of Bayesian
modelling, such as one-stage estimation and incorporating the results of previous studies, to be
combined with arbitrarily complex cost-effectiveness calculations, which would have previously
required laborious MCMC programming or approximations. The WBDev code for the base
case model is available from http://www.blackwellpublishing.com/rss.

Alternatively, the exact posterior distribution of E(C) and E(B) could have been calculated
by storing the MCMC samples from the posterior distribution of the model parameters s and
Grsk produced by WinBUGS, and using other statistical software to calculate £(C) and E(B) in
terms of these parameters. The WBDev approach saves the cost of storage and processing the
stored samples, which may be expensive if there are large numbers of unknown parameters or
if a large MCMC sample is required to represent the posterior distribution accurately.

4. Bayesian model assessment and model averaging

The alternative model structures that were listed in Section 2.4 may all fit the data reasonably
well but still yield different expected costs and benefits. To enable this model uncertainty to
be formally acknowledged in the decision about the most cost-effective intervention, we seek
a measure of the adequacy f(x|My) of each model My, judged from the data x. We would
like to use this measure to derive model probabilities p(My|x) among the set of models being
compared (Draper, 1995; Burnham and Anderson, 2002). These are used to calculate a model-
averaged posterior distribution 7{z(0)|x}, for any function z(#) of parameters 6, in terms of the
model-specific posterior distributions 7{z(6)| M, x}, which accounts for the uncertainty about
the model choice (Draper, 1995). In this example, z(#) = E(C) or E(B), and

W{Z(G)IX}=Zk:p(Mk|X)7r{z(9)|Mk,X}. 4

4.1. Predictive versus consistent model assessment

The usual Bayesian approach to model uncertainty (Draper, 1995; Kass and Raftery, 1995)
involves computing posterior model probabilities. These are defined as proportional to a prior
model probability p(M;) multiplied by the marginal likelihood, i.e. the likelihood for data x
integrated over the prior distribution of parameters 6:

P p(Me) [ Fx16. Mo) m(B1Mc) . )
The prior and posterior model probabilities are interpreted as the probability of model M,

being true. As discussed by Bernardo and Smith (1994), judging model adequacy by posterior
model probabilities is only suitable in an M closed scenario, where it is believed that one of the
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candidate models is the truth, but it is not known which. Then this model selection procedure
would be consistent—as the sample size increases for fixed priors, the model probabilities in
expression (5) will converge towards a probability of 1 for the true model. Using a decision
theoretic argument, Bernardo and Smith (1994), section 6.1.5, and Key ez al. (1999) showed
that model averaging using expression (5) gives optimal prediction or estimation when one of
the models is assumed true.

But, in an M open scenario, candidate models are chosen to approximate a true model of
unknown form. For example, the true model may be extremely complex. Then, more complex
models would give better predictions in large samples, but these would be overpenalized by
criteria such as expression (5) and its Bayesian information criterion approximation (Schwarz,
1978) which aim for consistency. To derive an optimal model choice criterion or estimation
procedure in this situation, the true model must be approximated. This suggests model assess-
ment using predictive principles such as cross-validation. Bernardo and Smith (1994), section
6.1.6, derived cross-validatory criteria for choosing a model to give optimal point predictions
in an M open scenario, although they did not discuss uncertainty about model choice.

In the health economic contexts that we consider, models are considered as convenient devices
to approximate the highly complex processes of progression of disease and response to treatment.
We assume that the true process underlying the data is too complex to identify completely even
with an arbitrarily large sample. Therefore, instead of using expression (5), we take a predictive
approach. We judge model adequacy by the expected utility E{U(y|x, My)} of predicting a
replicate data set y based on a model M;, fitted to data x (following Gelfand and Ghosh (1998)). In
the following two sections, we describe two commonly used Bayesian model assessment measures
of this type, based on different utilities. We then describe how sampling uncertainty about model
selection using these measures may be accounted for, giving model selection probabilities which
are used to compute a model-averaged posterior distribution.

4.2. Pseudo-marginal-likelihood

The utility function U(-) can be defined as the posterior predictive likelihood for y, i.e. the like-
lihood integrated over the posterior distribution of the model parameters 6 (Laud and Ibrahim,
1995),

Up(y/x, My) = f(y|x, M) = / 316, My w61, My) 6. ©)

The expectation of this predictive utility for a replicate data set can be estimated, using only the
sample data, by a cross-validatory predictive density (Geisser and Eddy, 1979),

JexIMp) =T] fxilx@), Mo =]] / Jxil0, M) (013, M) dO,
] 1
where Xx;) is all observations excluding x;. This is often termed the PML. It differs in aim from
the marginal likelihood in expression (5), assessing predictive ability rather than fidelity to the
data. In addition, it does not suffer the sensitivity to choices of the prior variance for parameters
(‘Lindley’s paradox’) that is experienced by the marginal likelihood (Gelfand and Dey, 1994).
Gelfand and Dey (1994) described an importance sampling method for estimating the PML
based on a single MCMC model fit, which avoids the need to refit the model with each
observation excluded in turn. (For ease of notation in this section, the dependence on the model
M is omitted.) The full data posterior density 7 (#|x) is used as a proposal distribution to
approximate the leave-one-out posterior density 7(6|X(;)). Given an MCMC sample 61, ..., 0y
from the posterior of #, the importance weights are then w;, = w(6,|x¢))/7(0,1X) o< 1/ f(x;|6,),
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and the importance sampling estimate of f(x;|X(;)) is the harmonic mean of f(x;|0,) over the
posterior sample:

FCxilxay) =Y wir f(xilXy, 0:)/ D wir
1
=N . 7
/Zr: f(xi16,) @

Thus, the quantity 1/ f(x;|6,) ismonitored during MCMC sampling, and the estimate of f(x;|X(;))
is the reciprocal of its posterior mean. A sufficiently large MCMC sample should be taken to
ensure that the posterior mean is stable.

4.3. Deviance information criterion

An alternative commonly used Bayesian model comparison measure is the deviance information
criterion (DIC) (Spiegelhalter et al., 2002). This is an estimate of an expected predictive utility
E{U(y|x, My)} of a similar form to equation (6), defined as

D{y|E(0),x, My} =—2log[ f{y|E(0),x, M }],

the predictive deviance based on ‘plugging in’ the expected parameter values of model My. Since
the utility Up(y|x, M) = f{y|E(#), x, My} does not consider uncertainty about the parameter
values, as Up (6) does, the DIC is expected to be lower than the —2log(PML) (reflecting lower
loss, or higher estimated utility).

The deviance D(x|0) of the data x at the posterior mean 6 is an underestimate of D{y|E(9),
X, My }, with asymptotic bias 2pp, giving

D{y|E(9),x, My} ~DIC(x|My) = D(x|0) +2pp
where

pp=D(x|0) — D(x|0)

is the ‘effective number of parameters’ and D(x|6) is the posterior mean deviance. The asymp-
totic argument assumes that the models under consideration are reasonable approximations to
the true process, and that the posterior distribution of 6 is asymptotically normal. Therefore
a parameterization should be chosen so that 6 has an approximately normal posterior. In our
example, the posterior means of log(pijrs/ pijr1) (equation (1)) were used to compute the plug-in
deviance D(x|0). Plummer (2008) provided a more formal justification for the DIC, based on
a cross-validation argument which is valid when the effective number of parameters is much
smaller than the number of observations. This is true for our example, with about 60 parameters
and over 4000 observations.

For models with weak prior information and approximately normal likelihoods, § will be close
to the maximum likelihood estimate and pp will be close to the true number of parameters. Then
the DIC will be approximately equivalent to Akaike’s information criterion AIC,

AIC(x|My) = —2log{ f(x]0, M)} +2px.
—2 times the maximized log-likelihood penalized by twice the number of parameters p; in model

M; (Akaike, 1973).

4.4. Predictive model averaging
Model assessment by posterior model probabilities (5) naturally provides the weights in
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equation (4) for model averaging to account for uncertainty about model selection. But since
we assume that the true model is too complex to be identifiable from an arbitrarily large sample,
we prefer to compute a model-averaged posterior in which greater weights are given to models
with better predictive ability (according to the PML or DIC) rather than models with higher
posterior probabilities of being true.

It is not immediately clear how to account for model uncertainty when models are pre-
ferred according to their predictive ability. Laud and Ibrahim (1995) and Ibrahim et al. (2001)
calculated the standard deviation of predictive model selection criteria to ‘calibrate’ differences
in the criteria between models, but they did not discuss how to proceed when there is doubt
about which model is best and the models give different inferences. By analogy with the marginal
likelihood in expression (5), one approach would be to take model probabilities proportional to
the PML fp(x|My). It has also been suggested (Brooks, in the discussion on Spiegelhalter et al.
(2002)) that model probabilities could be defined as proportional to a transformation of the DIC,

Jp(X|My) =exp{—0.5 DIC(X|Mk)},

by analogy with the ‘Akaike weights’ exp{—0.5 AIC(x|My)} that are often used for frequentist
model averaging (Akaike, 1978; Buckland et al., 1997; Burnham and Anderson, 2002). However,
the performance of model-averaged estimators based on either fp(x|My) or fp(x|My) has not
been studied, and it is not clear how the model probabilities should be interpreted. Burnham
and Anderson (2002), chapter 6, suggested that model averaging using Akaike weights can be
interpreted as a Bayesian model averaging procedure with an implicit prior p(My) over the model
space which favours larger models for greater sample sizes. Such a prior cannot be interpreted
as a degree of belief in the truth of the model—rather it represents the belief that the model will
give the best predictions on a replicate sample.

Instead, we use model averaging weights p(Mj|x) which correspond to the probability that
model My is selected by the predictive criterion, in other words, the probability that model
M gives the best predictions on a replicate data set, among the models being compared. This
probability reflects the sampling uncertainty arising from reusing the data to assess future
predictive ability. This model selection probability can be estimated by a bootstrap procedure.
The resulting model-averaged posterior (4) is a mixture of the posteriors that we would obtain if
we repeated the study a large number of times with replicate data sets from the same process and
based the results on the ‘best’ model at each repetition. Buckland et al. (1997) and Burnham and
Anderson (2002) also estimated probabilities for model averaging in this way, as the proportion
of bootstrap resamples in which each refitted model had the lowest AIC among the models.
Breiman (1996) described a similar bagging (‘bootstrap aggregating’) procedure for improving
predictions by combining models.

4.4.1. Bayesian bootstrap
To avoid the computational expense of refitting models to calculate the model selection
probabilities, we use a Bayesian bootstrap method that was described by Vehtari and Lampinen
(2002). Instead of sampling with replacement from x, the Bayesian bootstrap samples sets of
probabilities g; that the random variable X underlying the data takes the value of each sample
point x;. In one bootstrap iteration, samples qfrep) of ¢; are drawn from a ‘flat’ Dirichlet
distribution with all parameters 1. This is the posterior distribution of the distribution of X,
conditionally on the sample x and an improper prior (Rubin, 1981). The bootstrap replicate of
the sample statistic is then computed by using the original data x with weights of qgrep)

In this example, the sample statistic is the log(PML), the sum of the log-predictive-ordinates
for each point x;,
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n
log{ fe(xIMi)} = >_ log{ f(xilx(i), M) },
i=1
where 7 is the sample size. The Bayesian bootstrap replicate of the log(PML) is then

log{ fp(x| M)} P =n Zl " log{ f(xilx ), M)} (8)

i=

Similarly, the DIC can be decon}posed into a sum over observations i, DIC(x| M) =X7_, DIC;,
where DIC; =2 D(x;|0) — D(x;|0), so the bootstrap replicate of the DIC is

n
DIC(x| M) ™ =n 3 g™ DIC;.
i=1

The advantage of the Bayesian bootstrap over a classical non-parametric bootstrap, for such
statistics equivalent to sums over observations, is that there is no need to resample the data
and to refit the model. The log{ f(x;|X(, Mk)} are calculated once by using equation (7), and
at each bootstrap iteration they are summed with different weights by using equation (8). This
procedure also assumes that any dependence between the f(x;|x(;), M) or DIC;, due to each one
being a function of the data x via the posterior of #, contributes a negligible amount towards
the uncertainty surrounding the summed statistic.

Thus, a definition of p(My|x) which corresponds to the uncertainty about model selection
arises naturally from the bootstrap procedure, as the proportion of bootstrap samples for which
M has the highest log(PML), or the lowest DIC, among the models considered. We label these as
(M |x)PML) and p(My|x)PIO respectively. These probabilities have a natural interpretation
as the probability that the model has the greatest expected predictive utility among the set of
models being compared.

5. Results of the implantable cardioverter defibrillator study

The base case model M| and the alternative models M>—M/ that were described in Section 2.4
were fitted to the ICD data. 25000 MCMC iterations were used to calculate posterior summary
statistics following a burn-in of 5000 iterations. The posterior means and 95% credible intervals
for the incremental cost and QALY associated with ICD therapy are presented in Table 2, along-
side the model adequacy measures —2 log(PML) and the DIC. Lower values of —2log(PML)
and DIC indicate better-fitting models. Note that the ‘effective number of parameters’ pp is less
than the number of parameters given in Section 2.4, because of the constraints that are imposed
by the prior distributions (Section 2.2).

5.1. Adequacy of the competing models

The DIC and —2 log(PML) are compared in Fig. 3(a) for models M;—Mjo. Owing to the different
utilities which they estimate, the DIC values are lower than the —2log(PML). The relative
preferences for the various models, as expressed by —2log(PML) and the DIC, are broadly
similar, though the DIC does not penalize the extra complexity of Mg—Mj(y as much as the
—2log(PML), perhaps because the utility underlying the DIC ignores parameter uncertainty,
and these models are more weakly identifiable. The model with the best predictive utility, judged
by both measures, is model M7, in which mortality is a quartic function of age. The extra
complexity of models Mg—Mq, with interactions between age and treatment, does not lead to
improvements in fit compared with Ms—M7.
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Fig. 3. (a) Comparison of measures of adequacy, the DIC (¢) and mean —2log(PML) (), for 10 competing

models of the ICD data and (b) mean and 95% interval estimates for the difference in —2log(PML) ( )
and the DIC (------- ) of each alternative model from the base case M,

The bootstrap procedure (Section 4.4.1) is used to produce a set of 1000 replicates of both
—21log(PML) and the DIC for each model under sampling uncertainty. Since it is the difference
in the criterion between models which is of interest for model comparison, rather than its
absolute value, the uncertainty surrounding the criteria is not presented in Table 2. Instead,
credible intervals for the difference in —2log(PML) and the DIC of each alternative model
from the base case are illustrated in Fig. 3(b). This suggests that, for the majority of bootstrap
samples, model M7 has a lower —2log(PML) and DIC than the base case, indicating better fit.
Model Mg, in contrast, has a generally worse fit.

The model selection probabilities p(My|x) are presented in Table 2. The probability that each
model has the highest predictive utility among the models being compared, calculated from the
PML and DIC (Section 4.4), is given as p(My|x)PMD) and p(M; |x) P1O respectively. The model
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M7, with mortality as a quartic function of age, is given the greatest weight by the PML-based
method at 66%, followed by model M; at 16%. Under DIC model selection, the probability of M5
is lower at 47% but still has the greatest weight, whereas model M( has a greater probability of
selection at 24% instead of 4%. These bootstrapped model probabilities are very different from
the less interpretable probabilities that are derived by drawing analogies between PML or DIC
and established model averaging methods (Section 4.4). Calculating p(M|x) as proportional to
the PML, by analogy with model averaging using marginal likelihood, gives a probability of over
99% to model M7. Calculating p(My|x) as proportional to exp(—0.5 DIC) gives a probability of
95% for M7, and 5% for model M. The sampling uncertainty surrounding the measures of fit
is important in this example. The quartic model M7 was observed to give the best fit to the ICD
data, but Fig. 2 suggests that this preference may have been strongly influenced by the small
number of deaths beyond 80 years. Bootstrapping the estimate of expected fit to a replicate data
set moderates the contribution of these outlying sample points to the model weight.

5.2. Inferences from the competing models

The posterior distributions of the incremental cost E(C), incremental QALY E(B) and the
incremental net (monetary) benefit, defined as A E(B) — E(C) for a ‘willingness-to-pay’ threshold
of A=£20000 per QALY (which is conventionally used in the UK; see National Institute for
Health and Clinical Excellence (2008)) are illustrated in Fig. 4, and summarized in Table 2. The
incremental cost and incremental QALY arising from the base case M and the three alternative
covariate selection scenarios M>—M, are very similar—there is little uncertainty about the
substantive conclusions arising from covariate choice. In contrast, extrapolating the age effect
on mortality by using polynomial curves, instead of assuming constant risk after age 70 years,
leads to smaller expected incremental QALY's for ICD therapy and increased incremental costs,
and thus lower incremental net benefits and an increased ICER per QALY from £17000 for the
base case to £38000 for the quartic model. The probability PCE()\) that ICDs are cost effective,
if a provider is willing to pay A =£20000 per QALY, is reduced from 0.67 under the base
case to 0.06 for the quartic model (Table 2). Including extra age—treatment interactions in the
polynomial models leads to fairly similar incremental costs to the base case but lower estimates
of QALYs gained, leading to higher estimated ICERs and lower incremental net benefits, but
these models are less well supported.

5.3. Model-averaged analysis

The different inferences that were obtained from the competing models are combined into a
model-averaged analysis, which weights the models according to their adequacy or predictive
ability. Samples from the model-averaged posterior distributions of the quantities of interest are
obtained by combining proportions, defined by p(M|x)PMD) or p(M;|x)PIO) | of the MCMC
samples from the posterior distributions from models M;—Mq. These are illustrated alongside
the model-specific posterior distributions in Fig. 4. Since 66% of the total contribution to the
model-averaged posterior using PML weights comes from model M7, the posterior distributions
are fairly similar to those from M7, but with a slightly lower cost, greater QALY gained and
greater net benefit. The credible intervals are wide, reflecting the uncertainty about the model
choice. The DIC-based model-averaged cost and QALY estimates are lower, because of the
greater contribution from model M1, but the incremental cost-effectiveness ratios are very sim-
ilar for the two model averages. The model-averaged probability that ICD therapy is cost effective
for A=£20000 per QALY is 0.23 by using the PML weights and 0.25 by using DIC weights,
compared with 0.06 for the single best-fitting model M7, and 0.67 for the base case (Table 2).
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6. Discussion

Bayesian methods implemented with MCMC sampling are well suited to health economic
decision modelling. Samples can be drawn directly from the posterior distribution of the expected
cost and effectiveness, which is a complex function of the model parameters. This accounts
formally for the uncertainty surrounding the model parameters. In this paper we have shown
how this can be accomplished, even for complex models, within routinely used software for
MCMC sampling. We have also shown how uncertainty about model structure can be accounted
for in Bayesian cost-effectiveness models. Models can be compared by their expected predictive
utility, estimated by the cross-validatory PML or the DIC, which can be computed routinely
as part of MCMC sampling. The PML does not rely on asymptotic approximations, unlike
the DIC. However, the DIC is in general easier to calculate than the PML, which relies on
the convergence of the harmonic mean of the predictive ordinates (Section 4.2). The harmonic
mean is unstable in some circumstances, though improvements have been proposed (Newton
and Raftery, 1994; Kass and Raftery, 1995).

These measures can be used to construct a model-averaged posterior distribution which
includes structural uncertainty. Model weights can be estimated by a bootstrap method, as the
probability that each model is selected by the predictive criterion, rather than the standard
Bayesian method which weights each model by its posterior probability of being true. We
assume that the true model is extremely complex, so that posterior model probabilities would
overpenalize complex models which would lead to better predictions in larger data sets. The
model selection probabilities that we compute have an easier interpretation than weights
calculated, by analogy with established model averaging methods, as proportional to the PML
or exp(—0.5 DIC). Another advantage of a model averaging weight which allows for sampling
uncertainty is to moderate the influence of outliers on the assessment of model fit, as in our
example (Fig. 2).

Assessing long-term cost-effectiveness involves combining evidence from data subject to a
range of complexities and uncertainties. In the ICD example presented, there are several such
issues which have not yet been addressed, but for which the Bayesian formulation can be
extended. In this discussion we briefly describe some of these possible elaborations. We also
discuss alternative methods of accounting for model uncertainty.

6.1. Choice of states

A common structural uncertainty in cost-effectiveness decision models is the choice of clinical
states which comprise the Markov model for cost and benefit accumulation. In the ICD analysis
there are six different causes of hospital admission which are assumed to incur different costs.
If the costs and utilities for two potential states are similar, then it may not be necessary to
distinguish between those two states for estimating lifetime cost and effectiveness. Similarly, if
the two treatment groups have similar incidences of a particular state, then that state will not
affect the difference in cost and benefit between the treatments. Then it would not be necessary
to include that state in the model at all. As a sensitivity analysis, two alternative state choices
were considered for the ICD study.

(a) My, the two hospital admission states corresponding to non-arrhythmic cardiac causes
and non-cardiac causes are merged. The unit cost for the combined state is an average of
the costs for the separate states, weighted by the incidence of each state during the study.

(b) M, these two hospital admission states are removed from the model, so that a period in
hospital for those causes is considered to be the same as the ‘out-of-hospital’ state.
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Hospital admission for arrhythmia is retained as a distinct state, since the two therapies being
assessed are intended to prevent arrhythmia. ICD maintenance or replacement and drug toxicity
are expected to be important sources of extra cost for ICD and AAD therapy respectively.

The results of both of these models were not substantially different from the base case
(posterior mean incremental cost £31619 for model M1y, £31678 for Mj;, and incremental
QALY gained 1.90 and 1.91 respectively). It is not clear how the fit of models on different state
spaces should be compared. The criteria that we have described cannot be used to compare
models M| and M, against M{—M, since they were fitted to different data sets, with transi-
tion counts aggregated for the states merged. Likelihoods for different data sets are on different
scales. An alternative approach would be to compare the ability of the models to predict
observed quantities such as the short-term cost actually incurred or the quality-adjusted survival
time, which have the same interpretation under each model. Expert judgement about whether
an event has a distinct cost and utility from similar events, or whether treatment groups are
expected to differ in their incidence of that event, could also be included.

6.2. Missing data

Missing data are encountered routinely in medical studies. 78 patients were omitted from our
ICD analysis since their LVEF at baseline was missing. We fitted a straightforward extension to
our model which included a Bayesian multiple imputation for this covariate. A regression model
in terms of all other covariates was used to estimate a fixed prior probability of low LVEF for
each individual with missing LVEF. This enabled a value to be imputed for these individuals
at each MCMC iteration. Using the base case model, there is little difference in the estimated
incremental QALY gained (posterior mean, 1.88 years; 95% credible interval, 0.47-3.31), but
about a 10% difference in the estimated cost (posterior mean, £34 598; credible interval, £30 589—
39795). Therefore there may have been a slight bias caused by omitting individuals with missing
covariates.

In addition, 154 UK ICD patients were omitted from the data because their hospital admis-
sion histories were unknown. The remaining information from these patients is more difficult
to include in the analysis. Since a greater proportion of patients with missing hospital data
(28%) died compared with those with complete data (10%), ignoring missing hospitalizations
may have biased the results. An imputation model for hospital admission histories could be
constructed, but predicting from this model would result in a variable number of daily transi-
tions from each state, i.e., although in each imputed data set an individual would have a fixed
number of daily transitions from the start of treatment until their known death or censoring
time, the denominators N; j- of the multinomial model (1) from each source state r would vary
between imputations. It is not clear how the fit of a model to such data could be assessed.

6.3. Extrapolation assumptions

The most important model uncertainty in our example is the dependence of mortality on age.
Data on older ages are sparse, and different models extrapolate differently beyond those ages
(Fig. 2). A polynomial of degree 4 provided the best fit to short-term data in this example, but
the true age-mortality relationship is likely to be more complex. Population mortality statistics
can often be incorporated in health economic studies to improve estimates of long-term survival
(Demiris and Sharples, 2006). In Fig. 2, the log-odds of death within a day are plotted against age
for the male and female populations of the UK (data for 20032005 from the UK Government
Actuary’s Department, Web site www.gad.gov.uk), alongside the same data for the ICD
study patients. The Canadian population survival data for 2000-2002 (which are not shown,
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but can be obtained from Statistics Canada, Web site www . statcan. ca) were almost indis-
tinguishable from the UK data. If the odds ratio between the population and study data were
constant across ages, then this could be estimated and used to inform extrapolations of the
survival probability for study patients, e.g. as a prior distribution. This odds ratio for all-cause
mortality is clearly not constant in this example, but it is more likely that it would be constant for
mortality from causes other than cardiac arrhythmia, or from non-cardiac causes. To make use
of this information, the Markov model (Fig. 1) would have to be extended to include separate
states for arrhythmic or cardiac mortality and other causes of death.

In health economic decision models which involve assessing long-term cost-effectiveness
beyond the horizon of available data, the most important assumptions are generally the extrapol-
ations of parameter values estimated from short-term data. Some of the uncertainty about these
assumptions can be accounted for by model averaging based on assessments against short-term
data. But assumptions about future changes in progression of disease, mortality and treatment
effects are generally untestable. Therefore it may be illuminating to present a series of sensitivity
analyses to demonstrate the effect on the results if key parameters were to change.

6.4. Other sources of uncertainty

Another major source of uncertainty in health economic models is the choice of data to use to
inform a particular parameter such as a treatment effect. Ideally all relevant evidence should
be used, but this may involve combining studies with slightly different populations, different
interventions or outcomes from those of interest. As shown by Turner et al (2009), expert
judgements may be used to inform about the biases from each piece of evidence. These can be
incorporated as prior distributions as part of a fully Bayesian random-effects meta-analysis.

Heterogeneity between individuals in their incidence of events or in the effects of treatment
or other covariates may in principle be accounted for by extending the regression model (1)
to a hierarchical model with exchangeable random intercepts u;.; or random coefficients 5;x.
Models could be assessed by using the DIC, which was motivated as a method for comparing
hierarchical models where the effective number of parameters in the model is not clear, but
alternatively the PML may also be computed by using the methods that were described in
Section 4.2.

The expected cost and effectiveness of a policy implemented for a real population may also
vary from that predicted for a fixed ‘typical’ patient described in Section 2.3. This extra variability
may be estimated easily by replacing the fixed patient definition by a probability distribution
before performing probabilistic sensitivity analysis.

6.5. Alternative methods for model uncertainty
An alternative to bootstrap-estimated probabilities of model selection would be to estimate
model averaging weights by optimizing the utility for a model-averaged estimate or prediction.
This would extend the decision theoretic methods that were described by Bernardo and Smith
(1994) to determine an optimal estimate or prediction in an M open scenario using a com-
bination of all plausible models, instead of a single model choice. This is related to the ‘stack-
ing’ method, which was described by Wolpert (1992) in the context of machine learning, which
derives model-averaged predictions by choosing weights to minimize cross-validatory squared
error.

An alternative to directly using predictive criteria for model assessment would be to use
Bayesian model averaging methods based on marginal likelihood as in equation (5), but with
a suitable prior p(My) over the model space, as described by Burnham and Anderson (2002),



252 C. H. Jackson, L. D. Sharples and S. G. Thompson

chapter 6. The prior would acknowledge that, when the underlying data-generating process is
complex, then, as the sample size increases, larger models will have better predictive ability. Such
priors, and the resulting posterior model probabilities, have a pragmatic interpretation as the
strength of belief in the expected predictive ability, rather than the truth, of a model. Reversible
jump Markov chain Monte Carlo sampling (Green, 1995) is another technique for including
model uncertainty which gives similar inferences to model averaging by using marginal likeli-
hoods (Han and Carlin, 2001). This constructs a single Markov chain to sample from a posterior
distribution over the joint model and parameter space, which avoids the computational expense
of fitting each model under consideration separately.

In the ICD example, the choice between models M;—M is a choice between different linear
predictors in equation (1), including polynomial functions of age. This may be considered as a
variable selection problem. Another method of including model uncertainty for such problems
would be to fit the maximal model with all possible predictors, but with a suitable prior on
the coefficients § which would minimize the predictive variance of the fitted model, and could
also incorporate substantive beliefs (Greenland, 1993). However, to our knowledge, the routine
choice of such priors in the absence of substantive information has only been investigated in
detail for normal linear models (e.g. Zellner (1986), George and McCulloch (1993) and George
and Foster (2000)).

Any consideration of model uncertainty involves choosing a reasonable set of models to
compare or average over. As discussed by Draper (1995), a set of well-supported models which
give different inferences should be chosen. In the ICD example, because of the computational
expense of fitting one model, only three alternative covariate selections (Section 2.4.1) were
chosen by judgement, and three alternative models for the dependence on age were chosen to
encompass a range of different extrapolations (Fig. 2). But other models may have fitted better
and led to different conclusions. Efficient automatic methods, such as reversible jump MCMC
sampling, would potentially be useful for exploring larger model spaces.
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