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Abbreviations:  HR, human resources; PHC, public health clinics; TB, tuberculosis; HIV, human 

immunodeficiency virus; ICF, intensified case finding; ART, anti-retroviral therapy 

 

Abstract 

Mathematical models are increasingly used to compare strategies for tuberculosis control and 

inform policy decisions. Models often do not consider financial and other constraints on 

implementation and may overestimate the impact that can be achieved. We developed a 

pragmatic approach for incorporating resource constraints into mathematical models of 

tuberculosis. Using a transmission model calibrated for South Africa, we estimated the 

epidemiological impact and resource requirements (financial, human resource (HR) and 

diagnostic) of nine case finding interventions. We compared the model-estimated resources to 

scenarios of future resource availability and estimated the impact of interventions under these 

constraints. Without constraints, symptom screening in public health clinics or in those 

attending HIV care was predicted to lead to larger reductions in tuberculosis incidence (9.5% 

(95% range (8.6-12.2%)) and 14.5 (12.2-16.3)) than improved adherence to diagnostic guidelines 

(2.7% (1.6-4.1%)). However, symptom screening required large increases in resources, 

exceeding future HR capacity. Even under our most optimistic HR scenario, the reduction in 

tuberculosis incidence from clinic symptom screening was 0.2-0.9%, less than that of improved 

adherence to diagnostic guidelines. Ignoring resource constraints may result in incorrect 

conclusions about intervention impact, and to suboptimal policy decisions. Models used for 

decision making should consider resource constraints.  
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While South Africa has experienced a decline in  tuberculosis (TB) notifications from a peak in 

2011,[1] TB remains a major public health problem. In 2017, there were an estimated 322,000 

incident cases[2] and TB was the leading infectious cause of death.[3] Of the estimated incident 

cases in 2017, less than 70% were notified highlighting the need for improved TB case finding. 

Diagnosis of TB in South Africa has traditionally relied on passive presentation to health services 

leading to delays in diagnosis, especially among HIV uninfected individuals,[4] suggesting that 

new approaches are required to identify people with TB sooner. Several studies have identified 

missed opportunities for TB screening in those already attending public health clinics (PHC),[5, 

6] and recent initiatives in South Africa have led to increases in screening of PHC attendees with 

approximately 36 million persons screened for TB in 2015. Mathematical modelling[7] has 

suggested increased clinic-based screening, a form of intensified case finding (ICF), could result 

in significant reductions in TB. However, economic analysis suggest ICF, while cost-effective, is 

likely to require large financial commitments.[8, 9]  

Traditionally estimates of impact and cost-effectiveness of TB case detection (and other 

interventions) have assumed that the only constraint on scale-up was the health sector budget. 

However, ‘within’ sector budgets, (e.g. the TB programme budget), may also be constrained if 

policy makers are unwilling to disinvest in other areas. It is also important to consider 

constraints on human resources (HR) and other health system requirements. Even if funding is 

available it may take time to produce the necessary staffing and infrastructure to deliver 
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services. Financial and health systems constraints may limit the impact of proposed 

interventions, either because the desired coverage cannot be achieved in the anticipated time-

scale or because resources must be reallocated from elsewhere to achieve it.  

While mathematical models are increasingly used to predict the impact of strategies for TB 

control and to inform policy making, few models include resource constraints. Instead, models 

assume some intervention coverage and estimate the costs and impact of achieving this 

coverage, assuming sufficient health system capacity. This issue has recently been highlighted 

in HIV modelling with Mikkelsen et al[10] calling for new approaches to dynamically incorporate 

constraints into mathematical models of anti-retroviral therapy (ART) scale up. Lin and 

Langley[11, 12] addressed the issue of health system capacity in TB modelling using an 

approach that links detailed epidemiological and operational models. However, this approach 

requires a detailed understanding of the flow of patients through the health system, and linking 

the two models has proven technically challenging.[12]  

We propose an alternative pragmatic approach for incorporating resource constraints, 

illustrated via application to ICF for TB in South Africa. The approach was developed and applied 

in the context of informing the South African National Tuberculosis Plan,[13] and was 

conducted within the tight timeframe that country planning processes allow.[14]  

Using a dynamic transmission model, secondary data from costing studies and national data on 

health sector HR we estimate the potential epidemiological impact and financial and non-

financial resource requirements of achieving pre-specified coverage targets for nine intensified 
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case finding interventions. We then estimated the coverage and impact that could be achieved 

if resource use were to remain with estimates of future capacity.  

METHODS 

Transmission model 

The model used is similar to a number of published TB models[15, 16] with additional 

refinements to describe screening and diagnosis in South Africa. Full details are given in Web 

Appendix 1, Web Tables 1-14 and Web Figures 1-4. The model was used to project the impact 

of ICF strategies from 2016 to 2035. 

The population is divided into 3 “TB” states: susceptible, latently infected, and active disease 

(stratified into smear positive and smear negative states). Susceptible individuals are infected at 

a rate that depends on the prevalence of active disease. Following infection, some proportion 

progress directly to active disease, the remainder enter latent state. Latently infected 

individuals may remain infected, progress to disease (reactivation) or be re-infected. Individuals 

with active disease can self-cure, die or be diagnosed and treated for TB. Each of the infection 

and disease states is further stratified by treatment history (previously treated or treatment 

naïve) and drug resistance status (susceptible or multidrug resistant).  

The model includes human immunodeficiency virus (HIV) and the association of co-infection 

with the risk of developing and dying from TB. Age-specific HIV incidence and ART coverage are 

external inputs to the model. The HIV infected population is stratified by CD4 count and time on 

ART. ART is assumed to reduce the risk of TB and of HIV and TB associated mortality. 
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Screening, diagnosis and treatment are a simplification of the national TB diagnostic guidelines 

in South Africa[17] (Web Figures 2-3). These are not included as explicit states in the model. 

Instead we calculate the rate at which individuals start treatment based on the steps of the 

diagnostic pathway (see Web Appendix 1 for details). 

Base-case and interventions 

The base-case describes continuation of current TB care in South Africa. We assume that 

individuals self-present (passively) with symptoms suggestive of TB at rates estimated by fitting 

to incidence and notification data prior to the introduction of ICF. Current rates of ICF (among 

clinic attendees and HIV infected individuals enrolled in care) are estimated by fitting to the 

total reported number of persons screened for TB in recent years. Amongst those not in HIV 

care we assume that those presenting with prolonged cough (of more than 2 weeks)  are 

referred for sputum testing[17] while those in HIV care are evaluated based on the presence of 

any TB symptoms (WHO screening tool). Based on data reported to WHO we assumed that 40% 

of those enrolled in HIV care were asked about TB symptoms at their last visit.[18] National 

guidelines also recommend that household contacts of TB cases are screened for TB. We 

assume that attendance of contacts at clinics for TB screening is captured in the baseline 

passive screening rate. Active contact investigations, involving household visits, are not widely 

implemented in South Africa and were not included in the model. Eighty percent of initial 

diagnostic tests are assumed to be via Xpert MTB/RIF with the remainder via smear 

microscopy.[13] Xpert is a nucleic acid amplification test, endorsed by WHO in 2013, and 

subsequently adopted as the initial test for TB diagnosis in South Africa. HIV infected individuals 
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with an Xpert negative result should have further sputum samples collected for culture and 

drug susceptibility testing in line with national guidelines.[17] However, based on data from the 

Xtend study we assumed that only 14% of individuals receive appropriate follow-up.[19] Based 

on a systematic review published in 2014[20] and data from the Xtend study,[21] we assumed 

pre-treatment loss to follow up of 17%. Historical values of treatment success are based on 

national treatment outcome data:[22] 78% for drug susceptible TB and 50% for multidrug 

resistant TB in 2015. Full details of the base-case assumptions can be found in the appendix.  

In a secondary  analysis, we adapted the base-case to include the following activities planned in 

South Africa as part of the National Strategic Plan:[13] reducing pre-treatment loss to follow up 

by 80% (from 17% to 4%) by 2021; the introduction of short-course multidrug resistant TB 

treatment[23] alongside continued use of bedaquiline for pre-extensively drug resistant and 

extensively drug resistant TB.[24] This analysis allowed us to explore how the impact and 

resource use of the ICF strategies may be altered by other future improvements in the TB 

program. 

We considered nine interventions representing increased adherence to current diagnostic 

guidelines and various strategies for ICF. These were defined in collaboration with policy 

makers as part of the TB Think Tank Project[14] and are shown in Table 1. For all interventions, 

we assumed linear scale up to the target values between 2017 and 2021.  

Resource requirements and constraints 

To illustrate our approach, we considered three types of resources and their future constraints: 

budget (total costs of TB programme), HR (nurse time spent on TB activities) and diagnostic 
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(ratio of Xpert tests to TB notifications). These were identified through discussions with local 

stakeholders that took place as part of the South African TB Think Tank.[14] During these 

discussions, stakeholders from the Department of Health highlighted financial, human resource 

and diagnostic supplies constraints as critical areas to be addressed in this analysis. Full details 

of the methods used to estimate unit costs and nurse time and the derivation of the future 

constraints can be found in Bozzani et al.[25]  

Three future scenarios for the budget and total nurse time were considered (Table 2). We refer 

to these as the low (most restrictive), medium and high (least restrictive) scenarios; further 

details are provided below.  For the diagnostic constraint we considered a single scenario in 

which the ratio of Xpert tests to notifications was capped at 20:1. This constraint reflects a limit 

on diagnostic supplies (Xpert cartridges) purchased annually in South Africa. In previous years 

the budget for purchasing Xpert cartridges has been set based on a ratio of 20 Xpert tests for 

every case of TB diagnosed (South African NDoH, personal communication). 

The low budget (most restrictive) scenario was based on predicted GDP growth of 1.7% per 

year,[26] the medium scenario additionally assumed that a proportion of the current budget 

was reallocated to TB in line with the proportion of deaths in South Africa attributable to TB 

(approximately 10-15%) and the high scenario that a proportion of a health budget that 

achieves its full fiscal space growth was similarly reallocated.  

In the low HR scenario, the nurse minutes spent on TB were adjusted in future years based on 

population growth only; the medium constraint incorporated a reallocation of the current 

workforce to TB based on disease burden as above; and the high scenario similarly reallocated a 
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proportion of the nursing workforce that achieved its maximum growth based on historical 

growth rates.  

The budget and nurse time required in the base-case and each intervention were calculated by 

multiplying unit costs and nurse minutes per activity by the outputs of the transmission model 

(Table 3). Xpert use was calculated by dividing the number of tests (an output of the model) by 

the model estimated notifications.  

The total costs, nurse time and Xpert ratio required by each intervention were compared to the 

constraint scenarios to identify interventions that exceed the constraints. These interventions 

were then re-simulated to estimate the epidemiological impact under the constrained 

scenarios. For the budget and HR constraints we iteratively reduced the maximum intervention 

coverage achieved in 2021 (assuming linear scale up from 2017 as in the unconstrained 

scenario) such that the projected cost or nurse time remained below the constraint over the 

entire time horizon (2017-2035). When implementing the constraint on the Xpert to 

notification ratio we assumed an intervention would be stopped (coverage reduced to zero) 

when the 20:1 ratio suggested by the Department of Health was exceeded.  

Model calibration 

The model was fitted to TB notification data (total and multidrug resistant),[18] number of 

screens reported to the Department of Health, number of laboratory tests conducted[27] and 

estimated TB incidence and mortality.[1] Details can be found in the Web Appendix 2 and Web 

Table 15. In summary, values for parameters were sampled from prior specified ranges. The 

model was then calibrated in a two-step process by varying selected model parameters to 
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minimise the weighted sum of square differences between the model and the observed data. 

First, the contact rate and passive screening rate were varied to match the incidence and 

notifications in 1990 (before the increase in HIV associated TB). Secondly, the increase in 

passive screening, rate of ICF, rate of acquisition of drug resistance, a multiplier for the impact 

of ART on TB risk in people living with HIV and a multiplier of the TB mortality rate in HIV 

infected individuals were varied to fit to all calibration data from 1990-2015. This process was 

repeated N=1000 times to incorporate the uncertainty in the unfitted parameters.   

RESULTS 

Baseline fit and base-case projection 

The model reproduces the trends in incidence, mortality and notifications and predicts 

continued declines in incidence and mortality to 2020 (figure 1). Future notifications remained 

largely constant, although with large uncertainty. Short term increases in notifications result 

from an increase in the number of true positive TB cases diagnosed. However, over time, as TB 

incidence falls there will be an increasing number of false positive notifications due to the 

imperfect specificity of the diagnostic process. Reported testing volumes were within the model 

uncertainty. Baseline estimates of the total cost and nurse minutes spent on TB activities (see 

figure 2) in 2015/16 were consistent with previous estimates.[25] 

Total costs, nurse minutes and the ratio of Xpert to notifications are predicted to increase over 

time. The increase in costs and nurse time this is driven by population growth and increases 

access to HIV care, both of which result in increased numbers of people being screened for TB. 
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The increase in the ratio of Xpert tests to notification is driven by the fall in the prevalence of 

TB; as TB becomes rarer the number needed to test to find one TB case will increase.  

Impact of interventions – unconstrained scenario 

In the base-case (which includes current levels of ICF), the predicted reduction in TB incidence 

from 2016 to 2035 is 18.9% (95% central range (3.5-29.4)). Figure 3 and table 4 show the 

additional percentage change in the incidence rate in 2035 compared to the base-case 

(intervention 1) for each intervention.  When not accounting for constraints (black bars) the 

largest reductions in incidence are predicted for interventions which include increased 

coverage of screening using the WHO symptoms tool (interventions 8 (9.5% (8.6-12.2)), 10 

(12.6% (9.8-14.9)) and 7 (14.5% (12.2-16.3)) in order of increasing impact). A smaller but 

significant reduction (5.0% (3.8-7.1)) is also predicted for increased use of cough-based 

screening in PHC clinic attendees when combined with improved adherence to the diagnostic 

algorithm (intervention 9). 

Increased Xpert utilisation (intervention 2) and improved adherence to Xpert negative 

algorithms (intervention 3) result in small reductions in incidence. However, the combination of 

these two strategies (intervention 4) produces a similar impact to increases in PHC screening 

(intervention 6). The change to cough-based screening in those in HIV care (intervention 5), 

which is not recommended in national or WHO guidelines, results in an increase in incidence 

compared to the base-case. This is because cough-based screening has a lower sensitivity 

compared to the WHO screening algorithm which is included in the base-case. As a result, 
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despite the assumed increase in coverage this intervention strategy is inferior to continuation 

of current practice.   

 

Resource requirements 

Figure 2 shows the predicted resources required for the base-case and each intervention from 

2015 to 2035.  

All interventions, including the base-case, exceed the Low budget and Low nurse time 

constraints (most restrictive scenarios); these scenarios were not considered further.  In 

contrast, the Medium and High budget constraints are not exceeded by any intervention. For 

interventions 6-10, which include increases in ICF, the model predicts increases in nurse time 

which exceed the proposed constraints. This is particularly the case for interventions based on 

WHO symptom screening (interventions 7, 8 and 10) because of the increased time taken to 

carry out the screening and the lower specificity compared to cough screening which results in 

an increased number of tests in individuals without TB. The Xpert constraint is exceeded by 

interventions that include increased use of symptom screening (interventions 7, 8 and 10) and 

strategies that include increased use of Xpert as the first line test (interventions 2, 4, and 9). 

The most ambitious intervention (intervention 10) required more than 45 Xpert tests per 

notification.  
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Including medium budget constraints in the model (figure 3, dark grey bars) does not change 

the predicted impact, because the future budget predictions do not exceed these constraints. 

The high budget constraint is also not exceeded (not shown). Similarly, the impact in the base-

case (intervention 1), strategies focused on improved adherence to guidelines (interventions 2-

4) and the use of cough screening in HIV infected individuals (intervention 5) is not affected by 

the nurse time constraint.  

Both high (figure 3, mid grey bars) and medium HR constraints (figure 3, light grey bars) reduce 

the impact of increased ICF (interventions 6-10) as the previously assumed coverage (see table 

1) cannot be reached. Under the high HR constraint, the largest median impact is still observed 

for increased symptom screening of HIV infected individuals (intervention 7). However, for the 

medium HR constraint the ranking of the interventions is changed with the largest impacts 

predicted for increased adherence to guidelines (intervention 4) and the combination with 

increased cough screening in clinic attendees (intervention 9). The additional effect of the Xpert 

constraint on top of the medium HR constraint (figure 3, white bars) is small partly because 

much of the impact in each intervention has been achieved by the point at which the Xpert to 

Notification ratio exceeds 20:1. 

Secondary analysis 

The results for the secondary analysis including the NTP strategy are qualitatively the same. In 

the base-case the model predicts a greater reduction in incidence due to the additional impact 

of improved linkage to care. However, the incremental benefit of each intervention, when 

combined with reduced pre-treatment loss to follow up, is smaller as the impacts are not 
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additive.  The overall costs and nurse time are lower in the NTP scenario than for the 

corresponding interventions in the primary analysis however, the same interventions exceed 

the constraints. Web Appendix 3 and Web Figures 5-7 provide further details of the results of 

the secondary analysis.  

 

DISCUSSION  

Our results show that ICF may result in significant reductions in TB incidence, but with large 

increases in financial and HR requirements. While the costs may remain below the assumed 

budget projections, ICF strategies may exceed HR capacity, even under optimistic scenarios of 

reallocation of nurse time to TB, and normative limits around Xpert numbers. When the HR 

constraint is included in the model, the ranking of interventions by impact is changed. In 

particular, the impact of ICF strategies is greatly reduced and may, in rare cases, be less 

effective than continuation of current practice. 

Our approach was developed and implemented in the context of supporting the use of 

modelling to inform policy in South Africa.[14] Our aim was to demonstrate the feasibility of a 

simple approach to highlight the potential importance of constraints. In this light, several 

simplifying assumptions were made.  When incorporating constraints, we have assumed that 

other TB control activities continue at their current levels, and that the coverage of the new 

intervention is reduced to satisfy the constraint. An alternative would be to consider that the 

full intervention coverage is reached, and that the capacity for other activities must be reduced ORIG
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to compensate. This approach could be considered in the framework used here but would 

require rules for prioritisation of activities.    

Our illustrative approach also assumed a single change to intervention coverage to satisfy the 

constraints over the entire time-period considered. In reality, the mix and coverage of 

interventions may change over time as capacity varies. In our example, the HR constraint is 

typically exceeded in the short term as HR capacity is still increasing. As such it is possible that 

coverage could subsequently be increased in future. Our results are therefore likely a 

conservative estimate of the impact that could be achieved under these constraints. Yaesoubi 

and Cohen[28] modelled dynamic case finding policies and showed that they were preferable to 

static policies. However, they only considered the financial requirements of those policies. 

Combining these two approaches may be a useful way to identify strategies that account for 

the timescales of staff recruitment.    

Several studies have addressed the issue of resource constraints in infectious disease models. 

Lin and colleagues[11] have proposed an alternative approach to incorporate health system 

capacity in models by combining a discrete event simulation of the health system with a 

compartmental model of TB transmission. This approach has been used successfully to explore 

the impact of new diagnostics in Tanzania,[12] however it requires a detailed understanding of 

the whole health system in the country and presents computational demands in linking the 

models.  Hontelez et al [29] incorporated constraints into their analysis of changes to HIV 

treatment eligibility by defining a-priori a set of treatment scale-up scenarios that represented 

potential supply and demand side constraints. In contrast, our approach is similar to the 
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AsiaFluCap simulator used in planning pandemic influenza control;[30] the outputs of the 

model are used to dynamically estimate the resource needs of different interventions and 

compare these to constraints defined using a combination of secondary data and policy maker 

consultation. 

While we have attempted to include the key aspects of TB control in South Africa, there are 

several important limitations. We relied on routine data that may be subject to inaccuracy and 

bias.  We assume ICF occurs independently of true TB status, and hence may underestimate the 

TB prevalence in the population screened and the ICF impact. We also assume that linkage and 

completion of treatment is equal in those identified passively and via ICF. If those identified via 

ICF are less likely to start treatment[31] we may overestimate the impact and resource use. It is 

also possible that linkage to TB treatment may be greater for people in HIV care than for people 

not engaged with the health system. If this was the case it may increase the relative impact of 

screening in people living with HIV compared to other forms of ICF.  

In this work we have considered South Africa as a whole. The resource requirements of ICF 

could be reduced by targeting interventions to geographic regions with the highest burden. The 

preferred strategies may differ between areas due to differences in factors such as the 

prevalence of HIV co-infection.  

The model includes the association between of HIV and risk of TB but does not currently include 

other known risk factors for TB such as diabetes or smoking. Strategies to detect and prevent 

TB in these risk groups may form an important part of future efforts to control TB in South 
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Africa. Strategies that target these and other risk groups may reduce the resource requirements 

of case finding interventions. 

Our results can be used to illustrate to policy makers the need to define policies that expand TB 

services at the same time as addressing constraints to expansion. For example, in this work we 

have assumed that all activities are conducted by nurses, the main cadre of staff that have 

historically been responsible for delivering TB services in South Africa. Our findings show that 

policies which aim to increases TB screening must be accompanied by strategies to address 

human resource constraints. This may be via investment in training, or through task-shifting 

activities like contact tracing or symptom screening to other staff such as lay-workers. While 

none of the interventions exceeded the medium and high budget constraints, these assume a 

substantial reallocation of the health budget. Without this reallocation none of the 

interventions are feasible. Limiting Xpert use based on the number needed to test to diagnose 

one TB case may also restrict the reduction in incidence that can be achieved. As TB burden 

declines this ratio will need to increase to ensure that cases are not missed.   

 

It is also important to consider how these resource constraints may affect the cost-

effectiveness of different strategies. Strategies that are deemed cost-effective in the absence of 

constraints may not be cost-effective if the potential impact is limited by constraints or the 

costs of relaxing constraints are included in the analysis. This is the focus of ongoing research. 
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This work highlights the importance of including resource constraints in models used to 

evaluate TB control strategies. Ignoring these constraints may result in overestimation of the 

achievable impact of interventions in the absence of other actions to increase health system 

capacity, and ultimately lead to inappropriate or unwarranted policy decisions.   

 

Table 1. Summary of interventions modelled. 

Intervention Description 

1. Base-case Continuation of current practice 
2. Xpert Use of Xpert as first line test is increased from 80% to 100% 
3. Guidelines Adherence to Xpert negative guidelines increased from 14% to 90% in 

known HIV infected individuals 
4. 2 + 3 Combination of 2 and 3 
5. Cough HIV+  Cough based screening (cf. WHO symptom screen in base-case) in 100% (cf. 

40% in the base-case) of HIV infected individuals enrolled in care 
6. Cough PHC Cough based screening in 90% (cf. 50% in the base-case) of PHC attendees 
7. Symptom HIV+  WHO symptom screen in 100% (cf. 40% in the base-case) of HIV infected 

individuals enrolled in care 
8. Symptom PHC WHO symptom screen (cf. cough based screening in the base-case) in 90% 

(cf. 50% in the base-case) of PHC clinic attendees 
9. 4 + 6 Combination of 2, 3 and 6 
10. 4 + 8 Combination of 2, 3 and 8 

Abbreviations: cf., compared to; HIV, human immunodeficiency virus; PHC, public health clinic; WHO, 

World Health Organisation. 
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Table 2. Description of Constraints 

 Constraint Scenario 

Type Lowa Mediuma Higha 

Budgetb 

(total cost of TB 

programme) 

GDCP growth As low plus 

reprioritisation based on 

disease burden from 

2017-2021 

As medium plus 

earmarked taxes from 

2017-2021 

HRc 

(nurse time spent on TB 

activities) 

Population growth As low plus 

reprioritisation based on 

disease burden from 

2017-2021 

As medium plus historic 

nursing workforce 

growth 

Diagnosticd  

(ratio of Xpert tests to 

TB notifications) 

Ratio of Xpert tests to 

notifications does not 

exceed 20:1 

Ratio of Xpert tests to 

notifications does not 

exceed 20:1 

Ratio of Xpert tests to 

notifications does not 

exceed 20:1 

Abbreviations: HR, human resources; TB, tuberculosis. 

 aLow scenarios are the most restrictive, high scenarios the least restrictive.  

bTotal cost of TB programme.  

cNurse time spent on TB activities.  

dRatio of Xpert tests to TB notifications (a single diagnostic constraint scenario was considered). 
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Table 3. Minutes and costs per unit activity. 

Activity Nurse time (minutes) Cost (USD)  

Passive screening 2.63  0.68 per screen 
Cough screening 1.26  0.68 per screen 
WHO symptom screen 4.0  1.36 per screen 
Sputum smear microscopy 3.16 10.87 per screen 
Xpert 3.16 32.24  per screen 
Follow up of Xpert negative 8.61  24.00 per screen 
First line treatment 
(initiation phase, 2 months) 

35.72 21.43 per montha 

First line treatment  
(continuation phase, 4 months) 

7.57  21.43 per montha 

MDR treatment, DOT  
(initiation phase, 6 months) 

237.04 
 

359.1 per montha,b 

MDR treatment, non-DOT 
(initiation phase, 6 months) 

84.47 359.1 per montha,b 

MDR treatment, DOT 
(continuation phase, 18 months) 

159.83 
 

359.1 per montha 

MDR treatment, non-DOT 
(continuation phase, 18 months) 

84.47 359.1 per montha 

IPT 5.54 7.81  per month 

Abbreviations: DOT, directly observed therapy; IPT, isoniazid preventive therapy; MDR, multidrug 

resistant; WHO, World Health Organisation.  

a20% of drug susceptibe DS patients and 20% of decentralised MDR patients receive treatment via 

directly observed therapy (DOT), the remainder only attended monthly for drug collection (personal 

communication, National Department of Health).  

b60% of MDR patients are hospitalised during the intensive phase. This activity is not included in our 

estimates of PHC nurse time. 
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Table 4. Predicted reductions in incidence in the unconstrained scenario. 

Interventiona % Reduction in incidence in 2035 compared to base-case 
(median (95% central range))b 

1. Base-case 0 (0-0) 
2. Xpert 1.6 (0.9-2.4) 
3. Guidelines 1.1 (0.6-1.6) 
4. 2 + 3 2.7 (1.6-4.1) 
5. Cough HIV+  -0.7 (-2.0-0.76) 
6. Cough PHC 2.6 (2.1-3.2) 
7. Symptom HIV+  14.5 (12.2-16.3) 
8. Symptom PHC 9.5 (8.6-12.2) 
9. 4 + 6 5.0 (3.8-7.1) 
10. 4 + 8 12.6 (9.8-14.9) 

Abbreviations: HIV, human immunodeficiency virus; PHC, public health clinic.  

aRows refer to the interventions listed in table 1.  

bValues indicate the reduction in incidence in 2035 in the intervention compared to the base-case 

(intervention 1). Values in parentheses give the 95% central range (2.5-97.5th percentile).   
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Figure captions 

Figure 1. Baseline fit of the model. A) TB incidence per 100,000 population, overall (dark grey) and in 

people living with HIV (light grey). The dotted line shows the point value and the shaded area the range 

of the WHO estimate. The dashed line shows the median and the solid lines the range of the model 

output. B) TB mortality per 100,000 population in HIV uninfected individuals (dark grey) and PLHIV (light 

grey). Other details as for panel A. C) No. of TB notifications (in thousands), all forms (circles) and 

multidrug resistant (triangles). Points show the reported data. The dashed line shows the median and 

the solid lines the range of the model output. D) Rate of laboratory testing for TB per 100,000 

population. Other details as for panel C.  

Figure 2. Projection of future costs, HR requirements and Xpert to Notification ratio. Symbols show the 

median model prediction for each intervention from 2015 to 2035. A) Total costs of TB control activities 

(in millions of US dollars). B) Nurse time spent on TB activities (in millions of minutes). C) Number of 

Xpert tests per TB notification. Solid black lines show the low, dotted black lines the medium and dashed 

black lines the high constraints for total cost and nurse minutes. In the Xpert panel (C) only the single 

constraint (a ratio of 20:1) is shown (dashed line). 

Figure 3. Impact on incidence. Percentage reduction in incidence rate in 2035 compared to the baseline 

(intervention 1). Shading indicates the constraints applied to the model. Boxes show the 25th-75th 

percentile, whiskers indicate 1.5 times the interquartile range and black circles show outliers. The high 

budget constraint is not shown as results are the same as for the medium budget constraint. Values 

above 0 (dashed horizontal line) indicate a larger reduction in incidence compared to the baseline. 
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