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Artemether-lumefantrine is a first-line regimen for the treatment of uncomplicated malaria during the second and third trimes-
ters of pregnancy. Previous studies have reported changes in the pharmacokinetics and clinical outcomes following treatment
with artemether-lumefantrine in pregnant women compared to nonpregnant adults; however, the results are inconclusive. We
conducted a study in rural Uganda to compare the pharmacokinetics of artemether-lumefantrine and the treatment responses
between 30 pregnant women and 30 nonpregnant adults with uncomplicated Plasmodium falciparum malaria. All participants
were uninfected with HIV, treated with a six-dose regimen of artemether-lumefantrine, and monitored clinically for 42 days.
The pharmacokinetics of artemether, its metabolite dihydroartemisinin, and lumefantrine were evaluated for 21 days following
treatment. We found no significant differences in the overall pharmacokinetics of artemether, dihydroartemisinin, or lumefan-
trine in a direct comparison of pregnant women to nonpregnant adults, except for a statistically significant but small difference
in the terminal elimination half-lives of both dihydroartemisinin and lumefantrine. There were seven PCR-confirmed reinfec-
tions (5 pregnant and 2 nonpregnant participants). The observation of a shorter terminal half-life for lumefantrine may have
contributed to a higher frequency of reinfection or a shorter posttreatment prophylactic period in pregnant women than in non-
pregnant adults. While the comparable overall pharmacokinetic exposure is reassuring, studies are needed to further optimize
antimalarial efficacy in pregnant women, particularly in high-transmission settings and because of emerging drug resistance.
(This study is registered at ClinicalTrials.gov under registration no. NCT01717885.)

Malaria, the most important global parasitic disease, carries a
high burden of morbidity and mortality, particularly in chil-

dren and pregnant women residing in sub-Saharan Africa (1–3),
where malaria exposure occurs in an estimated 12.4 million preg-
nancies annually (4). Malaria parasitemia during pregnancy, with
or without clinically symptomatic illness, places women at a
higher risk of severe maternal anemia (5). Placental sequestration
of Plasmodium falciparum parasites (6, 7) is strongly associated
with adverse pregnancy outcomes, including intrauterine growth
restriction and/or prematurity, resulting in low birth weight of the
newborn or spontaneous abortion (8–11).

A fixed-dose oral formulation of artemether plus lumefantrine
(AL), an artemisinin-based combination therapy (ACT), is a first-
line regimen for uncomplicated P. falciparum malaria in pregnant
women in the second or third trimester (12). Artemether is rapidly
converted to its active metabolite dihydroartemisinin (DHA) (13,
14). Both compounds have potent antimalarial activity and are
responsible for rapid reductions in parasite biomass (15–17). Lu-
mefantrine is absorbed more slowly, which can be impacted by
multiple factors, including food intake (18), and it has a longer
active terminal half-life, which helps to eradicate residual parasites
and is critical in protecting the host against recurrent infection
(19, 20).

Both artemether and lumefantrine undergo cytochrome P450
(CYP) metabolism (14), with final systemic clearance via uridine
glucuronosyltransferase (UGT) enzymes (21, 22), both of which
may be altered by malaria infection (23, 24) and pregnancy-re-
lated physiologic changes (25). The induction of these pathways

may lead to a reduction in AL pharmacokinetic (PK) exposure
during pregnancy (26, 27), thereby increasing the risk of reinfec-
tion, treatment failure (recrudescence), or selective pressures for
the development of drug resistance (20, 28, 29). However, drug
dosing strategies for pregnant women are typically not guided by
these and other physiologic changes in pregnancy and are the
same as those for nonpregnant adults (30, 31). AL PK has been
studied in pregnant women from Thailand, Uganda, and Tanza-
nia (26, 27, 32–37). These studies reported various magnitudes of
PK changes, but all suggested that artemether, DHA, and lume-
fantrine PK parameters may be reduced in pregnant women com-
pared to those in nonpregnant adults. The impact of this reduc-
tion in PK exposure on clinical outcomes for AL is unclear; a study
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in Thailand suggested low concentrations were associated with
suboptimal cure rates, while the high overall cure rates in Africa
precluded the ability to test for PK-recrudescence associations.
While the potential determinants of malaria treatment outcomes
are many, it is largely agreed that lumefantrine exposure is a crit-
ical determinant (19, 38, 39). It has been suggested that lumefan-
trine concentration, often cited as 175 ng/ml or 280 ng/ml, should
be kept above a certain threshold on day 7 to minimize the risk of
treatment failure (34, 38, 40). However, more definitive exposure-
response studies are needed in pregnant women in sub-Saharan
Africa, where malaria transmission patterns and intensities differ.
To fill this knowledge gap, we conducted a prospective intensive
PK clinical study (registered at ClinicalTrials.gov under registra-
tion no. NCT01717885) with extended PK sampling and fol-
low-up to directly compare artemether, DHA, and lumefantrine
PK and treatment outcomes between HIV-uninfected pregnant
women and nonpregnant adults in Tororo, Uganda, where P. fal-
ciparum transmission is high and holoendemic (41).

MATERIALS AND METHODS
Study design. A prospective single-center open-label clinical PK cohort
study was conducted to compare AL PK and treatment outcomes between
the pregnant and nonpregnant adults treated for uncomplicated P. falcip-
arum malaria. The inclusion criteria included a diagnosis of uncompli-
cated malaria (defined as a fever [tympanic temperature of �38°C or
history of fever within the past 24 h) and microscopy-confirmed P. falcip-
arum monoinfection), age �16 years, and a confirmed pregnancy of 12 to
38 weeks gestational age. The exclusion criteria included severe malaria, as
defined by the World Health Organization (WHO) (42), or significant
other illnesses (such as HIV and tuberculosis [TB]), hemoglobin (Hb)
level of �7.0 g/dl, concurrent use of medications with potential interac-
tions with the study drugs, and antimalarial drug treatment within 2
weeks prior to study enrollment. HIV-negative status was confirmed by
two rapid diagnostic tests. The study was independently approved by the
Uganda National Council for Science and Technology (Kampala,
Uganda), the Makerere University School of Medicine Research and Eth-
ics Committee (Kampala, Uganda), the Yale University Human Investi-
gations Committee (New Haven, CT), and the University of California,
San Francisco Committee on Human Research (San Francisco, CA).

Clinical procedures. Participants were recruited from the Tororo Dis-
trict Hospital and referral clinics from January 2013 to February 2014.

Informed consent was obtained in each participant’s local language, as
appropriate. For women, pregnancy was confirmed by a urine test, and
gestational age was determined by the last menstrual period, clinical ex-
amination, and ultrasound. All participants were provided an insecticide-
treated bed net at time of enrollment, and all pregnant women received
two doses of sulfadoxine/pyrimethamine at 16 to 24 weeks and 28 to 36
weeks gestation, in accordance with Ugandan guidelines. Day 0 was des-
ignated the first day of AL treatment. Six doses of 80 mg of artemether and
480 mg of lumefantrine (four tablets of Coartem; Novartis Pharma AG,
Basel, Switzerland), with 200 ml of milk to provide adequate fat to en-
hance and control for lumefantrine absorption (18), were administered
over a dosing schedule adjusted to permit the timing of the 6th dose to
occur in the morning of day 3 to allow intensive PK blood collection
during the day. Dosing was performed so as to ensure that the first 2 doses
were administered on the day of diagnosis, followed by dosing intervals of
no more than 16 h for the doses 3 and 4. Doses 5 and 6 were 12 h apart. A
full dose was repeated if vomiting occurred within 30 min. The enrolled
participants were clinically evaluated in the study clinic with active and
passive surveillance on study days 0, 1, 2, 3, 4, 8, 14, 21, 28, and 42 (Fig. 1).
Participants were given study contact information for emergencies and
encouraged to come to the clinic (open 7 days a week) anytime they felt
unwell.

The scheme of blood collection for various laboratory analyses is dis-
played in Fig. 1. At each visit, blood was collected for thin and thick
malaria blood smears and on filter papers for parasite genotyping. Com-
plete blood count and liver function tests were performed on study days 0,
14, and 28. Blood was collected for lumefantrine PK analysis on day 8
instead of day 7, which is typically reported in the published literature,
since AL dosing in our study was extended to day 3 instead of day 2 to
allow for intensive blood sampling to occur during the day. Thus, we refer
to day 8 results here as “day 7” to permit a convenient comparison to prior
studies. Blood for the PK analyses was collected (Fig. 1) on study day 0
(prior to first dose), before and after the last (6th) dose on day 3 at 0, 0.5,
1, 2, 3, 4, 8, and 24 h, and on study days 7, 14, and 21. Both capillary and
venous blood were simultaneously collected at 2 and 24 h after the last
dose and on day 7 to assess the correlation between the capillary and
venous plasma lumefantrine concentrations (37, 43), and only capillary
blood was collected at later time points. Only participants who completed
the full dosing regimen were included in the intensive PK study. For PK
analyses, 200 to 500 �l of blood was collected in a K3EDTA-coated tube,
immediately placed on ice, and centrifuged at 800 � g for 10 min at 4°C.

FIG 1 Blood for pharmacokinetic analyses was collected on study day 0 (prior to first dose) and before and 0.5, 1, 2, 3, 4, 24, 120, 264 h (day 14), and 432 (day
21) h after the last (6th dose). While the 120-h time point technically fell on day 8 in this study, the 120-h time is consistent with day 7 values previously reported
in the literature, since in both cases, this time point is 120 h after the last AL dose. Thus, for our study, the 120-h/day 8 time point is referred to as day 7 throughout.
AR, artemether; LF, lumefantrine.
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Plasma was separated, split into aliquots, and stored at �70°C until anal-
ysis.

Laboratory methods. Giemsa-stained thick and thin blood smears
were evaluated to quantify parasite density and identify isolates to the
species level, respectively. Parasite densities were calculated by counting
the number of asexual parasites per 200 leukocytes, assuming a leukocyte
count of 8,000/�l. A blood smear was declared negative when no asexual
parasites were seen under 100 high-power fields. Dried blood spots col-
lected on filter paper were used to distinguish recrudescent and new in-
fections for all recurrent episodes of malaria, using previously described
methods (44). DNA was isolated from blood spots, and samples were
genotyped in a stepwise fashion using 6 polymorphic markers (merozoite
surface protein [MSP]-1, MSP-2, and MSP-4 microsatellites). If, for any
of the 6 loci, an allele was not shared between consecutive episodes of
parasitemia, the episode was classified as a new infection. If at least 1 allele
was shared at all 6 loci, the episode was classified as recrudescent.

Assay analysis of artemether, DHA, and lumefantrine. Plasma con-
centrations of the study drugs were determined using high-performance
liquid chromatography-tandem mass spectrometry (LC-MS/MS), as pre-
viously described (45, 46). Artemether and DHA concentrations were
quantified from 50-�l plasma samples, with the calibration range between
0.5 and 200 ng/ml and a lower limit of quantification (LLOQ) of 0.5 ng/ml
for both artemether and DHA (46). The % coefficient of variation (%CV)
for quality control (QC) samples was �10% for artemether and DHA.
Lumefantrine concentration was quantified from 25-�l plasma samples
using an LC-MS/MS method, with a calibration range of 50 to 20,000
ng/ml, and the LLOQ was set to 50 ng/ml, as previously described (45).
The %CV during analysis for lumefantrine was �5%.

Data analysis. The primary endpoints were the PK parameters of arte-
mether, DHA, and lumefantrine. These included the area under the
plasma concentration-time curve from 0 to 8 h and 0 to 24 h (AUC0 – 8 and
AUC0 –24, respectively, for artemether and DHA, and AUC0 –� for lume-
fantrine), maximal concentration (Cmax), time to Cmax (Tmax), terminal
elimination half-life (t1/2), and plasma concentrations of lumefantrine on
days 7 (C7), 14 (C14), and 21 (C21). Secondary endpoints included the
type, severity, and frequency of adverse events (AEs) using the grading
criteria developed and used by the Division of AIDS, NIAID, to report AEs
in AIDS clinical trials (47), and PCR-confirmed malaria recrudescence or
new infection at 28 and 42 days of follow-up, using the WHO criteria,
defined as adequate clinical and parasitological response (ACPR), early
treatment failure, late clinical failure (LCF), and late parasitological fail-
ure (LPF) (48).

Noncompartmental analysis of plasma drug concentrations was per-
formed using WinNonlin (version 6.30; Certara L.P., Pharsight Corpora-
tion, Mountain View, USA). Plasma samples below the LLOQ were
treated as missing data except for (i) the predose concentration, which was
set to 0 if below the LLOQ, and (ii) when the first time point below the
LLOQ after Cmax was necessary to adequately estimate an AUC for arte-
mether or DHA, at which time 0.5 LLOQ was assigned. A linear-up/log-
down trapezoidal method with first-order input was used to calculate total
exposure, defined as the AUC from time 0 to 8 h (AUC0 – 8) and 0 to 24 h
(AUC0 –24). The extrapolated AUC from 0 h to infinity (AUC0 –�) was
determined by dividing the last measured concentration by the terminal
elimination rate constant (�z). Extrapolation to infinity was carried out
only if there were at least 3 measurable concentrations following the peak
concentration (including peak point). The elimination rate constant (�z)
was estimated using the program’s best fit feature combined with manual
fine tuning in some cases. The t1/2 was calculated as ln(2)/�z. The maxi-
mum concentration (Cmax) and time to maximum concentration (Tmax)
for lumefantrine and concentrations at 24 h (C1) and on days 7 (C7) and
14 (C14) were reported as observed.

The data were analyzed using Stata version 12.1 (StataCorp, College
Station, TX, USA). A sample size of 30 in each group was targeted to detect
a 35% difference in the AUC of all analytes with 80% power and 5%
significance level. PK parameters were compared between the two study
groups using a Wilcoxon rank sum or chi-square test, as appropriate.

RESULTS
Study profile. A total of 104 patients presented with suspected
malaria; 72 patients were eligible, consented, and enrolled, and 61
patients (31 pregnant women and 30 nonpregnant adults) com-
pleted the study. One pregnant woman delivered on day 11 and
was excluded, leaving 60 adults (30 pregnant and 30 nonpregnant
adults) in the final data analysis. Reasons for withdrawal (n � 11)
were elective discontinuation for reasons deemed not related to
the study or study drugs (n � 5), incorrect drug dosing (n � 2),
missed clinic visits (n � 2), early delivery (n � 1), and error in the
determination of pregnancy status for a woman initially assigned
to the nonpregnant group (n � 1). Table 1 displays the baseline
characteristics among pregnant and nonpregnant adults. The
pregnant women were divided nearly equally between 2nd and
3rd trimesters at the time of PK evaluations. The body weight and

TABLE 1 Baseline characteristics of study participants

Characteristica Pregnant women (n � 30)b Nonpregnant adults (n � 30)

Age (yr) 25 (18–39) 24 (16–68)
% female NA 63
Body wt (kg) 59.4 (44.5–81.1) 55.7 (38.0–68.4)
BMI 21.9 (17.4–28.9) 20.4 (14.3–44.8)
Gestational age (wk) 28 (14–34) NA
No. (%) in 2nd trimester 14 (47) NA
Parasite density (geometric mean [95% CI]) (parasites/�l) 13,227 (7,728–22,639) 597 (261–1,371)
White blood cell count (103/ml) 6.0 (2.4–8.5) 4.8 (2.7–9.5)
Neutrophil count (103/ml) 4.0 (1.3–6.4) 2.0 (1.1–7.4)c

Platelet count (103/ml) 142 (36–309) 167 (30–288)
Hemoglobin level (g/dl) 10.5 (7.6–13.1) 13.3 (11.8–17.1)
No. (%) with hemoglobin �10 g/dld 9 (30) 0
Alanine aminotransferase (IU) 12 (7–43) 19 (11–63)
Aspartate aminotransferase (IU) 23 (12–57) 28.5 (18–73)
Serum creatinine (mg/ml) 0.64 (0.17–1.27) 0.99 (0.46–1.53)
a All values are expressed as the median (range), unless otherwise noted. CI, confidence interval.
b Does not include the one pregnant subject who delivered on day 11. NA, not applicable.
c n � 29; one patient had undetectable neutrophils due to assay issues and was normal upon rechecking.
d Moderate-severe anemia, as per WHO definition (42).
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body mass index (BMI) were significantly higher in the pregnant
group (P � 0.05), as expected. Notably, out of the 30 nonpregnant
adults, 28 (93%) adults were underweight, according to the WHO
BMI classification (49). The parasite density at the time of diag-
nosis was significantly higher in pregnant women than in non-
pregnant adults (P � 0.001), with geometric means (95% confi-
dence interval) of 13,227 parasites/�l (7,728 to 22,639 parasites/
�l) and 597 parasites/�l (261 to 1,371 parasites/�l), respectively.
Hemoglobin was significantly lower in pregnant versus nonpreg-
nant adults, with 9 of 30 pregnant women (30%) and none of the
nonpregnant adults having moderate to severe anemia (hemoglo-
bin, �10 g/dl). Finally, 5 pregnant women and 2 nonpregnant
adults had detectable gametocytes at the time of diagnosis, and
23% of pregnant women and 10% of nonpregnant adults had
detectable gametocytes at some point during follow-up.

Pharmacokinetic parameters. The PK parameters are sum-
marized in Table 2. Overall, there were no significant differences
in the AUCs or Cmax for artemether, DHA, or lumefantrine be-
tween pregnant and nonpregnant adults (Table 2 and Fig. 2). The
lumefantrine concentrations on days 7 and 14 were not signifi-
cantly different between the two study groups, but the estimated
terminal half-lives for DHA and lumefantrine (Table 2 and Fig. 2)
were significantly shorter in pregnant than in nonpregnant par-
ticipants (P � 0.05), with the magnitude of difference being more
significant for lumefantrine than for DHA. Post hoc comparisons
of PK parameters between males and females, and between preg-
nant women in their 2nd and 3rd trimesters, revealed no signifi-
cant differences. The correlation between capillary and venous

plasma concentrations taken simultaneously and analyzed using
the same assay instrumentation was 0.94 to 1.04 (r2 � 0.96 for
pregnant women and 0.99 for nonpregnant adults), permitting
analytical results for either matrix to be interpreted similarly (our
unpublished data).

Adverse events and treatment outcomes. No significant clin-
ical or laboratory adverse events were observed. Three partici-
pants had grade 3 thrombocytopenia on day 0, and all resolved.
One nonpregnant adult developed grade 3 neutropenia on day 14,
which was attributed to direct effects of malaria and resolved on
day 28, with no complications. Overall, 57 (95%) and 53 (88%) of
60 participants achieved PCR-unadjusted ACPR on days 28 and
42, respectively. At 28 days, three pregnant women had recurrent
malaria, with one LCF and two LPFs. By day 42, 5 (17%) pregnant
(2 LCFs and 3 LPFs) and 2 (7%) nonpregnant (both LCFs) partic-
ipants had recurrent malaria. All recurrent infections were de-
tected between days 28 and 42 (gestational age, 24 to 37 weeks),
and PCR-based genotyping at six loci confirmed that all infections
were attributable to new infections rather than recrudescence.

An exploratory analysis of PK-outcome associations was con-
ducted. Using a lumefantrine level of 280 ng/ml on day 7 as a
target, 12 pregnant women (40%) and 9 nonpregnant adults
(30%) were below this threshold concentration. In pregnant
women, the median (interquartile range [IQR]) day 7 lumefan-
trine concentration in those experiencing recurrent infection (n �
5) was 231 ng/ml (218, 234 ng/ml) compared to 421 ng/ml (247,
651 ng/ml) in those with ACPR (n � 25) (P � 0.08). Four of 5
pregnant women experiencing recurrent malaria had a day 7 lu-

TABLE 2 Noncompartmental analysis of artemether, DHA, and lumefantrine PK parameters in pregnant and nonpregnant adults with
uncomplicated P. falciparum malaria

PK parametera Pregnant women (n � 30) Nonpregnant adults (n � 30) P valueb

Artemether
Total dose (range) (mg/kg of body wt) 8.1 (5.9, 10.8) 8.6 (7.0, 12.6) 0.03
Tmax (h) 2.0 (1.0, 2.0) 2.0 (1.0, 2.0) 0.52
Cmax (ng/ml) 38.3 (21.2, 71.5) 22.6 (11.3, 44.8) 0.09
AUC0–8 (h · ng/ml) 117.8 (56.9, 177.4)c 81.4 (41.7, 119.0) 0.20
AUC0–24 (h · ng/ml) 148.4 (70.7, 221)c 112.5 (61.2, 170.9) 0.39
t1/2 (h) 4.6 (2.1, 6.9) 6.0 (3.0, 8.3) 0.13

Dihydroartemisinin
Tmax (h) 2.0 (2.0, 3.0) 2.0 (2.0, 3.0) 0.91
Cmax (ng/ml) 73.9 (56.4, 106) 70.9 (56.7, 87.7) 0.65
AUC0–8 (h · ng/ml) 196.5 (148.0, 261.1) 199.5 (171.1, 259.7) 0.67
t1/2 (h) 1.3 (1.1, 1.5) 1.5 (1.3, 1.8) 0.01

Lumefantrine
Total dose (range) (mg/kg) 48.5 (35.5, 64.7) 51.7 (42.1, 75.8) 0.03
Tmax (h) 8.0 (0.6, 8.0) 5.9 (3.0, 8.0) 0.54
Cmax (ng/ml) 6.5 (4.1, 12.4) 5.0 (4.0, 7.1) 0.19
AUC0–� (h · ng/ml) 318.5 (181.0, 474.0) 266.7 (193.7, 339.8) 0.38
Tmax (h) 106.4 (48.8, 139.3) 128.8 (68.6, 146.6) 0.04

Day 7 concn (ng/ml)d 409.0 (231.0, 617.0) 383.5 (251.5, 546.0) 0.83
Day 14 concn (ng/ml)e 138.0 (72.1, 210) 155 (101, 225) 0.39
a All data represent PK parameters following the last (6th) dose of AL. Values are reported as the median (interquartile range), unless otherwise noted. Tmax, time to reach maximal
plasma concentration; Cmax, maximal observed concentration after last dose; AUC0 –�, area under the concentration-time curve from time zero to infinity; t1/2, terminal
elimination half-life.
b Wilcoxon rank sum test.
c n � 29.
d Sampling done on day 8 due to spacing of doses, as described in Materials and Methods.
e n � 26 for pregnant adults and n � 28 for nonpregnant adults.
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mefantrine level of �280 ng/ml. In nonpregnant adults, the me-
dian day 7 lumefantrine levels were 367 ng/ml (IQR, 245, 567
ng/ml) in those with ACPR and 385 and 440 ng/ml in the 2 non-
pregnant adults experiencing recurrent malaria. In a comparison
of the total dose of lumefantrine (in milligrams per kilogram of
body weight) administered over the 3-day period in those adults
with reinfection (n � 7) to those with ACPR (n � 53) (both
pregnant and nonpregnant), adults experiencing reinfection had a
significantly lower milligrams-per-kilogram dose than those who
remained aparasitemic during the 42 days of follow-up (P �
0.009). As expected, pregnant women had a significantly lower
milligrams-per-kilogram dose than that of nonpregnant adults
(P � 0.027).

DISCUSSION

Pharmacokinetics of artemether and its active metabolite DHA.
Our study showed no significant difference in the exposures
(maximal concentration or AUC) of artemether or DHA between
pregnant and nonpregnant adults who were treated with the stan-
dard six-dose regimen of AL for acute uncomplicated P. falcipa-
rum malaria. This contrasts with earlier publications on the PK of
AL in pregnant women, which reported reduced exposure of both
artemether and DHA in pregnant women compared to that in
nonpregnant populations: two Thai studies compared AL PK in
pregnant women to a previously published studies of mostly men
(27, 32), and the study in Tanzania provided a direct comparison

FIG 2 Time-plasma concentration plot of artemether (A), dihydroartemisinin (B), and lumefantrine (C) in pregnant women and nonpregnant adults with
uncomplicated malaria. The median concentrations are reported, with the error bars indicating interquartile ranges.
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of pregnant and nonpregnant adults using sparse sampling (34).
Although considerable variability in artemether PK exposure is
noted in the literature, our results for artemether and DHA during
pregnancy are similar to the values reported in southwestern
Uganda, suggesting some consistency in artemether exposure
during pregnancy (32).

This is the first report of a direct comparison of artemether PK
between pregnant and nonpregnant adults using intensive PK
sampling. Although exposure in pregnant versus nonpregnant
adults of either artemether or DHA was not significantly different,
a slight decrease in the terminal half-life of DHA during preg-
nancy was observed. This may be explained by the known preg-
nancy-related induction of UGT1A9 and UGT2B7 (19), the en-
zymes responsible for the final glucuronidation and disposition of
DHA (22). An assessment of plasma and urinary DHA and its
glucuronide products in human studies is needed to validate pub-
lished in vitro and in vivo animal findings.

Our understanding of the clinical implications of any altera-
tion in artemisinin (either artemether or its metabolite DHA) ex-
posure in special populations, such as children and pregnant
women, is incomplete. The frequency of blood smear collection in
the first few days following treatment (daily) and the minor
changes in PK parameters precluded our ability to accurately ac-
cess the association between the rate of parasite clearance and
artemisinin exposure; however, all participants cleared para-
sitemia by day 2.

Pharmacokinetics of lumefantrine. Our intensive PK study
that benefited from sensitive and specific LC-MS/MS measure-
ment of artemether and lumefantrine, PK sampling out to 21 days
(versus 14 days or less in earlier studies), and our direct compar-
ison of lumefantrine PK in pregnant versus nonpregnant adults
provides a robust assessment of the effect of pregnancy alone on
lumefantrine PK (27, 34, 36, 45, 46). Our finding of no significant
difference in the overall plasma exposure or maximal concentra-
tion of lumefantrine between pregnant and nonpregnant adults is
consistent with the results of a previous study in southwestern
Uganda, which directly compared pregnant to nonpregnant
women (35). Conversely, our results contrast with those of two
Thai studies that compared lumefantrine PK in pregnancy to his-
torical controls and another Tanzanian study, which directly com-
pared the PK between pregnant and nonpregnant women; all of
these studies suggest that lumefantrine exposure is lower in preg-
nancy. The AUC results from our study are comparable to expo-
sure estimates reported previously for a study in pregnant women
in Thailand, which also sampled after the last AL dose (27). Spe-
cifically, the median lumefantrine AUC was 252 ng · h/ml, com-
pared with 319 ng · h/ml in the current study, indicating the con-
sistency in exposure of the long-acting partner during pregnancy.
A comparison of the AUCs between our study and the southwest-
ern Ugandan study is not possible due to differences in PK sam-
pling schemes, and AUCs were not reported in the Tanzania study
(34).

Lumefantrine concentrations on day 7 have been shown to
correlate significantly with treatment response and typically pro-
vide a correlate to overall drug exposure (50). In our study, the
lumefantrine concentrations on day 7 or 14 did not differ between
pregnant and nonpregnant adults, contrasting with prior studies
that compared day 7 concentrations in pregnant women to either
historical controls in Thailand or to a within-study control group
in Uganda (27, 32, 35, 37). The median day 7 concentration of 409

ng/ml for pregnant women in our study was similar to the pre-
dicted median day 7 concentration of 414 ng/ml for pregnant
women studied in Uganda (37). However, for nonpregnant
adults, our directly measured median day 7 value of 384 ng/ml was
notably lower than the predicted value of 566 ng/ml for this pop-
ulation reported in that same study. The reasons for this difference
are unclear. Both men and women comprised our nonpregnant
group, while the earlier study included women only; nevertheless,
we found no significant difference in exposures between men and
nonpregnant women.

We detected a modest but statistically significant difference in
the terminal half-life of lumefantrine (106 and 129 h for pregnant
and nonpregnant groups, respectively). This finding was consis-
tent with a recent population PK analysis of data from Uganda and
the lower exposure seen at later time points in an earlier Thai study
(27, 37). A shorter lumefantrine half-life is attributed to increased
drug metabolism during pregnancy and a more-rapid decline in
concentrations, which may affect clinical response, since exposure
to the long-acting partner is predictive of the risk for malaria re-
infection or recrudescence (25, 28, 51). A simulation analysis of
data from pregnant women in Thailand suggested that a longer
duration of dosing may provide a longer duration of protection
for pregnant women, a hypothesis requiring validation in the field
(52).

Lumefantrine and malaria treatment responses. Although
the clinical efficacy and safety of the standard six-dose AL regimen
remain high for both pregnant and nonpregnant adults in sub-
Saharan Africa (53), a reduction in lumefantrine exposure may
compromise the two primary roles for this partner drug to (i)
augment the role of the artemisinin in the cure of acute infection,
and (ii) protect the host from new infection (20). Specifically,
concentrations of lumefantrine on day 7 (both 175 and 280 ng/ml)
have been used as threshold values to predict the risk of treatment
failure (38, 39), and a known major metabolite of lumefantrine,
desbutyl-lumefantrine, has been shown to be a strong predictor of
treatment outcome (52). A recent study from Tanzania reported
that day 7 lumefantrine concentrations were significantly lower in
pregnant women with PCR-uncorrected treatment failure than
those in patients experiencing treatment success, with 2 of 7 preg-
nant women found to have PCR-confirmed recrudescence (34).
Fortunately, in our study, based on PCR genotype-corrected re-
sults, all recurrent infections were due to new infections. In addi-
tion, although pregnant women had significantly higher parasite
densities at the time of diagnosis, AL was equally efficacious at
treating the acute infection in the two study groups.

However, when evaluating the link between day 7 concentra-
tions and the risk for recurrent parasitemia, we found lower me-
dian day 7 concentrations in pregnant women with recurrent par-
asitemia (231 ng/ml) than in those with ACPR (431 ng/ml), with 4
of 5 of the pregnant women exhibiting levels of �280 ng/ml.
Other factors that are expected to impact PK-outcome associa-
tions are the degree of background immunity in the population,
which is lower in pregnancy (54), and malaria transmission inten-
sity and seasonality (entomologic inoculation rate in Tororo,
�310 infectious bites per year) (55, 56). Although the overall PK
of artemether, DHA, and lumefantrine did not differ between
pregnant and nonpregnant individuals, the shorter lumefantrine
half-life combined with the decrease in immunity in pregnancy
may necessitate longer durations of treatment or higher doses of
lumefantrine to provide improved posttreatment prophylaxis in
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pregnant women living in such settings that are endemic for the
disease (52).

As per current dosing guidelines, all individuals weighing �35
kg are treated with the same 480-mg lumefantrine dose (12).
Given the trend toward a lower day 7 exposure in those with re-
current malaria, we looked at whether lower total AL dose based
on weight (in milligrams per kilogram) was associated with recur-
rent malaria. Notably, adults with recurrent parasitemia weighed
significantly more than those with ACPR and consequently had a
significantly lower total dose of lumefantrine (P � 0.009). Thus,
given the wide range of weights for adults (38 to 81 kg in our
cohort of 60 adults), along with our observation of an association
of milligrams per kilogram dosing and recurrent infection, further
evaluation of the “one-dose fits all” approach for those weighing
	35 kg is warranted. It remains uncertain whether the additional
of additional weight bands (for all adults) or an extension of the
duration of dosing (for pregnant women only), as suggested by
others (27, 33), is critical for optimizing AL treatment.

While this study represents the first direct comparison of arte-
mether and DHA PK in pregnant and nonpregnant adults and is
among the most extensive intensive PK studies for lumefantrine in
pregnant women, there are a few notable study limitations. We
elected to perform a parallel-group intensive PK study design,
allowing us to compare malaria-infected pregnant women to a
group of malaria-infected nonpregnant adult controls. A parallel
design in the context of infection allows the direct study of the
impact of pregnancy alone on specific PK parameters, informing
dosing guidelines specifically for pregnancy (57). Considering in-
tersubject variability, a sample size of 30 in each group permits the
detection of clinically relevant changes in PK due to pregnancy.
Although a sequential design would reduce intersubject variability
and allow a smaller sample size, enrollment of the same women
with malaria during and after pregnancy would not have been
feasible. Of note, the PK results for artesunate, using a sequential
design in which pregnant women were studied during pregnancy
when infected with malaria and again 3 months postpartum in the
absence of malaria, suggest that acute malaria had a greater impact
than pregnancy on the alteration of artesunate PK. Malaria infec-
tion itself may reduce first-pass metabolism, oral bioavailability,
or systemic clearance (58, 59). While the parasite density was
higher in pregnant individuals, the clinical severities of malaria in
our two study groups were similar, precluding the analysis of such
an effect. Another limitation, due to a lack of adequate sample
volume, was the absence of data on desbutyl-lumefantrine, the
primary metabolite of lumefantrine that may have a role in anti-
malarial efficacy (52, 60). Additionally, the analysis of associations
between the PK and treatment outcomes was limited by our small
sample size, and there was insufficient power to detect differences
for artemether, DHA, and lumefantrine between the 2nd and 3rd
trimesters.

In conclusion, our direct AL PK comparison between pregnant
and nonpregnant adults indicates that the overall PK exposures to
artemether, DHA, and lumefantrine are not significantly different
during pregnancy, indicating that an adjustment of AL during
pregnancy does not appear to be necessary to achieve similar ex-
posure in nonpregnant adults. However, a difference in the elim-
ination half-life of lumefantrine was noted in pregnant women,
which may impact the risk of recurrent malaria following treat-
ment. Larger studies in pregnant women investigating whether a
longer duration of AL dosing (such as 5 days) or higher total doses

of AL reduce the risk of recurrent malaria in areas that are highly
endemic for malaria may be warranted.
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